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ABSTRACT 

AGING, GAIT VARIABILITY, AND ADAPTABILITY 

Collin Douglas Bowersock 

Old Dominion University, 2020 

Director: Dr. Daniel M. Russell 

 

 

The purpose of this work was to study the relationships between age, measures of gait 

variability, and locomotor adaptability. Measures of gait variability are used to identify 

maladapted locomotor behavior, motor disease, and risk of falls. The first aim was to determine 

the relationships between age and measures of gait variability. Thirty-four participants (23-71 

years old) walked on a treadmill for 6 minutes at their preferred speed. Variability of stride times 

and lengths was computed via linear measures (standard deviation and coefficient of variation) 

and nonlinear measures (sample entropy and detrended fluctuation analysis). Movement 

trajectory variability of the dominant knee angle, and vertical and medial-lateral positions of the 

pelvis were quantified using nonlinear measures (correlation dimension and local dynamic 

stability). The results showed little association of age and variability measures. Additional 

analyses revealed that preferred gait speed was a better predictor of gait variability measures, 

suggesting that variations in gait variability are driven more by preferred gait speed than age. 

The second aim of this dissertation was to investigate the relationships between measures of gait 

variability. While the relationships between measures of gait variability have received little 

investigation, many have been suggested to quantify the same underlying component of 

locomotion, the ability of an individual to adapt. A principal component analysis was performed 
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to examine if measures of variability were related to one or more underlying constructs of gait 

variability. Four independent constructs of gait variability were identified, indicating there is no 

single construct underlying gait variability and different variability measures can be associated 

with the same constructs. The final aim was to determine if measures of variability quantify the 

ability of an individual to adapt to a novel split-belt gait adaptation task, where two treadmill 

belts were set at different speeds. The findings showed no significant association between 

measures of gait variability from the preferred walking trial and adaptability performance. To 

conclude, gait variability is more speed-related than age-related, measures of gait variability 

quantify at least four separate components of gait, and gait variability measures are relatively 

unrelated to the adaptability performance of an individual. 
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CHAPTER I: INTRODUCTION 

 

Measurements of gait variability are often used as an indicator of health, wellness, and 

performance of locomotion. By measuring gait variability researchers have noted differences 

between various populations and promoted the use of variability measures as a way to assess 

locomotor behavior and how gait behavior changes with age and disease (Hausdorff, 2007; 

Hausdorff, Rios, & Edelberg, 2001; Muñoz-Diosdado, Correa, Angulo-Brown, & Quevedo, 

2005). There are numerous methods used to quantify the variability of gait. Historically, studies 

have quantified the magnitude of gait variability using linear measures such as standard 

deviation and coefficient of variation. Using these measures, studies have found older individuals 

to have increased standard deviation and coefficient of variation of gait measures such as step 

time and stance time during walking when compared to younger individuals (Hausdorff, 

Edelberg, Mitchell, Goldberger, & Wei, 1997). Further, when comparing older individuals who 

experience falls and those who do not experience falls, fallers have increased stride to stride gait 

variability magnitude (Hausdorff, Edelberg, et al., 1997). Therefore, by measuring the variability 

magnitude of individual’s gait, researchers have attempted to quantify where an individual’s gait 

is on the spectrum from young healthy gait to elderly falls risk gait (Callisaya et al., 2011; 

Hausdorff, Rios, et al., 2001; Paterson, Hill, & Lythgo, 2011). More recently, researchers have 

begun utilizing nonlinear measures of gait variability. Nonlinear measures do not quantify the 

magnitude of variability but instead quantify the sequential structure or patterns that occur during 

gait. Both linear and nonlinear measures of gait variability are used by researchers to understand 

what drives locomotor behavior and how locomotor behavior changes due to age and disease 
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(Buzzi, Stergiou, Kurz, Hageman, & Heidel, 2003; Callisaya, Blizzard, Schmidt, McGinley, & 

Srikanth, 2010; Karmakar, Khandoker, Begg, Palaniswami, & Taylor, 2007). 

 

LINEAR MEASURES OF VARIABILITY 

One of the earliest measures used to quantify variability was the standard deviation (s) shaped by 

Gauss in the early 1800s (David, 1998). This measure is used to quantify the magnitude of the 

spread of the data (x) by computing the average deviation of each value (xi) from the mean (𝑥̅): 

𝑠 = √
∑ (𝑥𝑖−𝑥̅)2𝑛

𝑖=1

𝑛
    Equation 1.1 

where n refers to the number of data points. Each deviation from the mean is squared, to avoid 

the deviations above and below the mean canceling each other out when summed. The square 

root returns the units to the same as x. A similar measure known as the variance (s2), does not 

take the square root and therefore results in squared units of the original data. Note that the 

sequence of values is irrelevant to the computation of either variance or standard deviation. If all 

the data points tend to be close to the mean, the standard deviation will be small and if the data 

points are relatively spread out away from the mean, the standard deviation will be larger. The 

coefficient of variation is sometimes referred to as the relative standard deviation and defined as 

the ratio of the standard deviation to the mean. 

𝑐𝑣 =
𝑠

𝑥̅
× 100    Equation 1.2 

The coefficient of variation is expressed as a percentage and in this way allows for comparisons 

of variability between data with large relative differences in the mean. For example, if interested 

in comparing the differences in population height variability between a population of ants and a 
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population of camels, the coefficient of variation may be a better measure for comparison. The 

standard deviation of height for the ants would be much smaller than the standard deviation of 

height for the camels regardless of the magnitude of variability in the populations. 

Linear measures of variability began as a method used to quantify the dispersion of a measure in 

a population (e.g., height). In this example, a linear variability measure would be computed on 

data that is completely independent of one another. The height of one individual does not affect 

the height of another, baring all genetic components of things of this nature. The variability 

measure then quantifies how variable the population height is and can be used to compare 

populations and quantify how far away an individual is from the population mean. When 

modeling the data as a mean or a line in linear regression, standard deviation provides a measure 

of the error of the model of a population. Taking these concepts into the study of human 

movement has resulted in interpreting the mean of an individual’s movements as representing the 

signal of interest (e.g., stride times), and the standard deviation as quantifying the error or noise 

around that signal. This assumes that each step or movement for an individual is independent of 

every other movement (e.g., stride times are unrelated to one another), an assumption that can 

cause complications during the interpretation of an individual’s variability. 

As mentioned, standard deviation and coefficient of variation are both used to investigate the 

variability of locomotor behavior between differing populations to understand how behavior 

changes over time or what changes can become detrimental to gait performance. Studies 

frequently have shown that elderly and fall risk populations have increased variability magnitude 

when using standard deviation and coefficient of variation. For example, increased stride time 

variability,  stride width variability, step time variability, step length variability, double support 

time variability, and increased trunk, hip, and knee movement trajectory variability are 
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associated with older age and increased falls risk (Beauchet et al., 2009; Callisaya et al., 2010; 

Kang & Dingwell, 2008; Kyvelidou, Kurz, Ehlers, & Stergiou, 2008; Montero-Odasso et al., 

2011). Variability magnitude during gait has traditionally been considered unwanted noise or 

error within the system, i.e. the body. Thus, the finding that the old and falls risk populations 

have increased variability magnitude suggests that they are generating more movement noise 

during gait and this is viewed as a reason why falls are more common in the elderly. 

What is ignored when using only these linear measures of variability is the sequential structure 

of the movement variability. An illustration of how this can affect data interpretation is seen in 

figure 1.1. The top image is a sine wave, the middle image is the same data points randomly 

shuffled and the bottom image is the same data points arranged in ascending order from 0 to 600. 

All three signals have the same mean which is zero and standard deviation which is one. By 

simply looking at the time series, the structure of the signals is very different. Standard deviation 

and coefficient of variation are unable to differentiate these signals as they ignore the sequence 

of the data points, although visual inspection can easily reveal the differences. Movement data 

between individuals can also be structurally different while still having the same mean and 

magnitude of variability. Human movement and behavior are complex, showing evidence of 

chaotic behavior containing nonlinear properties (Diedrich & Warren Jr, 1995; Kubo, Wagenaar, 

Saltzman, & Holt, 2004; Newell & Corcos, 1993). A chaotic system is one that has long term 

aperiodic deterministic behavior and is sensitive to initial conditions. Aperiodic means system 

does not settle around fixed points over time but moves about in a seemingly random fashion. 

However, this behavior is not random but is deterministic (defined by initial condition with a 

predictable outcome). Human behaviors are difficult to predict because of their sensitivity to  
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Figure 1.1: Example of different signals with the same mean and standard deviation. Top; 

sinewave. Middle; random shuffled sinewave, Bottom; sinewave data points in ascending 

order. 
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initial conditions. Therefore, nonlinear analysis techniques have been applied to quantify the 

underlying structure in data sequences in which standard linear techniques are unable to do so. 

These nonlinear techniques further our grasp of the complexity of human movement and are used 

to understand the properties of locomotion that drive movement (England & Granata, 2007; 

Lipsitz & Goldberger, 1992; Newell & Vaillancourt, 2001; Russell & Haworth, 2014). 

 

NONLINEAR MEASURES OF VARIABILITY 

Nonlinear analysis techniques are used to evaluate the structure, complexity, predictability, 

persistence, and stability of a time series.  A time series which has structure refers to the 

presence of determinism, meaning the signal can be perfectly predicted if initial conditions and 

inputs are known. Data points in deterministic signals are related to and influenced by past data 

points. For example, a simple sine wave has a completely deterministic structure. It can be 

predicted with a very small amount of initial information, such as frequency and amplitude. A 

signal with two sine waves can also be predicted, but more initial information is needed to 

predict the signal (figure 1.2). This signal has therefore increased in complexity. Sine waves are 

examples of highly structured signals i.e. containing no noise or randomness, with little 

complexity. The stock market also has structure, although it is a much more complex system and 

difficult to predict over long periods. An infinite amount of infinitely precise information would 

be needed to predict what will happen over a long period of time, resulting in a system that can 

be considered chaotic. A chaotic system is deterministic, governed by laws that can be 

theoretically predicted but because of its sensitivity to initial condition, it is difficult to do so. 

Systems can still be chaotic while having relatively low complexity. For example, a Lorenz 

function illustrated at the bottom of figure 1.2 is defined by only three differential equations but  
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Figure 1.2. Examples of deterministic signals with varying degrees of complexity. Top sine wave, 

very little complexity. Middle the sum of 2 sine waves, low complexity. Bottom Lorenz system, 

high complexity. 
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behaves chaotically, meaning a small change in the initial conditions of these equations can 

result in wildly different patterns. These developments in chaos theory have demonstrated that 

rich complex patterns can arise from deterministic systems, and therefore variability should not 

be assumed to arise from noise or error in a system. 

Differences between linear and nonlinear systems also exist in the way they can respond to 

signal noise. For a linear system, the magnitude of applied noise results in proportional response 

magnitude. In contrast, with a nonlinear system, small noise may be damped out or larger noise 

may result in exponential growth in the system response or transitions to different behavior. This 

can be quantified by the stability of a system. This refers to the system’s resistance to change, 

investigating if a small external perturbation would knock the system out of its movement 

pattern, or the system moves back into its stable pattern quickly. Using nonlinear analysis 

techniques, signals can be quantified as being highly rigid, stable, or unstable. The persistence of 

a signal can also be quantified using nonlinear measures. The persistence of a signal refers to its 

trajectories over a period. The value of the variable at the current time point is closely related to 

previous values. Climate is often viewed as an example of persistent data and nonlinear measures 

can quantify the level or strength of persistence over time. A thousand years of an ice age is 

likely to be followed by another thousand years, and another thousand years. A desert is likely to 

remain a desert for a very long time. Human locomotion can also show persistence where future 

behavior is similar to previous behavior, though on a much shorter time scale. Depending upon 

the individual, the task, and the environment, human behavior has been described as 

deterministic and persistent with varying degrees of complexity and stability (Newell & 

Vaillancourt, 2001; Vaillancourt & Newell, 2002). 
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One of the first uses of nonlinear measures to quantify human biological signals began with heart 

rate variability. The mean and variance of heart rate over time between healthy individuals and 

individuals with heart disease were found to be similar, although the sequential structure of the 

heart rate was notably different. When visually inspecting the time series data, those with heart 

diseases had a heart rate that looked more similar to a sinewave, a more predictable pattern over 

time. Healthy controls had a more variable, less predictable heart rate. A nonlinear measure 

known as sample entropy was applied to these time series and it was able to differentiate 

between the two study populations(Goldberger et al., 2002). Those with heart disease had a 

decreased sample entropy value, interpreted as a more predictable, possibly less complex, time 

series. This has been interpreted as a loss of the ability for the cardiac system to adapt on a 

shorter time scale and change heart rate effectively (Lipsitz & Goldberger, 1992). This 

successful line of research in heart rate variability directed many to investigate the structure of 

gait variability and its importance in locomotor behavior instead of considering variability as 

simply unwanted noise. Some of the most common nonlinear measures used when studying 

human movement variability include entropy measures, local dynamic stability, correlation 

dimension, and detrended fluctuation analysis. We will consider each in turn. 

Approximate Entropy and Sample Entropy 

The measure approximate entropy was created by Pincus in the early 1990s based on Shannon’s 

work in information theory (Shannon, 1948). It was created to quantify the predictability and 

possibly complexity of a time series revealing information about the structure of the signal, 

rather than the magnitude of the variability as given by linear measures such as standard 

deviation and coefficient of variation (Pincus & Huang, 1992). Approximate entropy can be 

interpreted as a measure of how repeatable or regular a time series is. To calculate approximate 
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entropy, a time series of length N is broken up into many separate vectors of length m, a length 

that is chosen by the user (e.g., m=3 in Figure 1.3). A comparison is then made between vector 

m(i) and all other vectors including itself, m(1), m(2), m(3), …..m(N-m+1). The vectors are 

considered similar if the difference between each value in the vector pairs is less than r which is 

a buffer or filter chosen by the user, so the values of comparison do not have to be exactly the 

same to be considered similar (see Figure 1.3). Comparisons are then made between vector 

m(i+1) and all other m vectors. This process is repeated until all m vectors have been used for 

comparison. The ratio of like matches to possible matches for each m vector is then summed and 

divided by N-m+1, which we will call C(1). This entire process is then repeated to compute C(2) 

for a new set value for m which is m+1. Finally, the natural log of C(1) divided by C(2) is equal 

to the approximate entropy of the time series (Goldberger et al., 2000). 

𝐴𝑝𝐸𝑛 = ln [
𝑐𝑚(𝑟)

𝑐𝑚+1(𝑟)
]     Equation 1.3 

Larger values of approximate entropy indicate that there is less repetition in a time series, 

rendering the signal less predictable/regular, while smaller approximate entropy values represent 

greater regularity, which is increased repetition or predictability within the signal. Often, 

approximate entropy measures are used as a surrogate measure of complexity in human 

movement. The interpretation in gait studies has been that healthy individuals typically have a 

healthy amount of gait complexity and fallers, the elderly, or individuals with disease have 

significantly different amounts of complexity, sometimes more and sometimes less, depending 

on the population or variable studied (stride time, width, length, body acceleration, etc.). 
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Figure 1.3: Depiction of sample entropy calculation for m=3. The sample entropy 

algorithm finds self-similar matches of a pattern of length m with a match tolerance 

of r. Redrawn and adapted from Kang, Dingwell, (2016). 
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A criticism of approximate entropy is that it includes self-matching because each m vector is 

compared to itself. This may suggest more similarity within a time series than is truly present. To 

address this issue, an alternate method for calculating approximate entropy was created by 

Richman and Moorman (2000), called sample entropy. This algorithm does not include self-

matches and is less sensitive to a change in the length of the time-series data. Another critique of 

both approximate and sample entropy measures is their sensitivity to noise. If a time series has 

increased noise, repeatability of the signal is reduced and therefore the entropy value will 

increase. Hence, while some interpret larger approximate or sample entropy values as indicating 

increased complexity, the values could result from greater stochastic noise or more complex 

deterministic processes (e.g., more sinewave like oscillations at different frequencies). 

Entropy measures have been used to reveal differences in movement patterns between 

populations based on age, activity, and fall risk. When comparing the regularity or predictability 

of movement trajectories of the joints of the lower extremity between younger and older adults, 

older adults have decreased regularity, which is represented by increased sample entropy value 

when compared to younger adults. This was suggested to lead to decreases in gait stability and 

thus increase the probability of experiencing a fall (Kurz & Stergiou, 2003). In a separate study 

measuring the variability of minimum foot clearance while walking, fallers were found to have 

increased approximate entropy value when compared to healthy adults. This was suggested to be 

a result of increased irregularities and randomness in the gait of those labeled as fallers which 

lead to the loss of gait control. However, these findings are not consistent across the literature. 

Sample entropy values have also been found to decrease with age as well as motor impairments 

(Acharya et al., 2013). A study using entropy measure calculated on body acceleration found 

older individuals to have decreased sample entropy, indicating increased regularity, when 
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compared to younger adults. In this same population, older adults with impairments were found 

to have decreased sample entropy values compared to older adults with fewer motor 

impairments. Also, older adults who were highly physically active have been found to have 

increased sample entropy when compared to less active older adults (Cavanaugh, Kochi, & 

Stergiou, 2010). Here, the authors suggested that the increased entropy, decreased predictability, 

lead to a more complex gait pattern and an enhanced ability to adapt while the less active older 

adults who had increased predictability as measured by sample entropy had less complex gait 

patterns and a decreased ability to adapt one's gait. Examples of this bi-directional relationship 

between age or disease and regularity are common in the literature, showing that there is not a 

consistent finding (Arif, Ohtaki, Nagatomi, & Inooka, 2004; Bisi & Stagni, 2016; Ihlen, Weiss, 

Bourke, Helbostad, & Hausdorff, 2016; Leverick, Szturm, & Wu, 2014; Mills, Barrett, & 

Morrison, 2008; Tochigi, Segal, Vaseenon, & Brown, 2012) 

These differences in gait regularity, as measured by sample and approximate entropy, between 

populations are often suggested to be associated with the ability to adapt gait to sudden changes 

in task demands or environmental conditions. When sample entropy is reduced in elderly and fall 

risk populations, it is interpreted as degeneration of some biological system resulting in more 

regular and predictable gait patterns and a reduced ability to adapt. In other studies, increases in 

entropy values indicating less regular and predictable gait patterns, the findings are interpreted as 

indicating a loss of gait control and stability, leading to unhealthy locomotor behavior. This has 

led to the claim that there is an optimal range for entropy values that is necessary for safe and 

healthy gait (Stergiou et al., 2016), but to date, there are no generally accepted healthy or 

unhealthy values of different entropy measures applied to particular aspects of gait. The 

interpretation of sample entropy seems to change with the finding of the study due to the lack of 
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a pre-determined hypothesis set by authors and in the field itself. Without future work, these 

measures cannot be used to predict possible outcomes of gait, but instead are only used to 

separate populations post hoc, that are already known to be different i.e. young vs elderly. 

Detrended Fluctuation Analysis 

Detrended fluctuation analysis (DFA) is a nonlinear technique introduced by Peng et al. in 1994 

that can be used to quantify persistence within a time series. This measure was developed by 

expanding on the Hurst exponent which was born out of the field of fractals. Fractals are a subset 

of geometry that studies systems that exhibit patterns of self-similarity on increasing small 

scales. Fractals are common in nature showing up in plants and leaves and even in our biological 

architecture such as the lungs. When observing an object with fractal-like properties, the smallest 

part of the object will be self-similar to the whole. For example, the branching of the bronchi of 

the lungs is similar to the branching of the bronchioles when considered at a smaller scale. The 

Hurst exponent is directly related to the properties of fractals, quantifying the amount of 

similarity between a small portion of the fractal and the fractal as a whole. Detrended fluctuation 

analysis expands on this technique and allows for non-stationary data to be used, hence the term 

detrended. Using detrended fluctuation analysis, time-series data can be defined as being 

persistent, where a large data value will likely be followed by a larger value, or similarly 

decreasing values are followed by further decreases. Alternatively, time series can be defined as 

anti-persistent, where an increase in value will likely be followed by a decrease, or vice versa, 

indicating constant change in the direction of the time series. An α-value computed from DFA 

above 0.5 is categorized as persistent and a value less than 0.5 is categorized as anti-persistent. In 

this way, it can always be used as a measure of smoothness within a time series. Additionally, α 
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= 0.5 can be interpreted as a white noise time series where each value is independent of the 

others (Arif, Ohtaki, Ishihara, & Inooka, 2002). 

To apply a detrended fluctuation analysis, a large time-series is needed for accurate results. The 

mean of the time series is subtracted from each data point in the time series to center the signal 

around zero, resulting in Xt.  Xt is then broken up into multiple segments of the same length n and 

the local trend of each segment is calculated by fitting a least-squares line to each segment 

separately resulting in a piecewise sequence of straight-line fits, Yt (see Figure 1.4 middle panel) 

The root mean squared deviation of Xt from Yt is them calculated. This process is repeated for 

many different segment lengths n and the logarithm of the root mean square values are plotted 

against the logarithm of the segment length (see Figure 1.4 bottom panel). 

𝑓(𝑛) =  √
1

 𝑛
∑ (𝑋𝑡 − 𝑌𝑡)2𝑛

𝑡=1      Equation 1.4 

Finally, the linear slope of the log-log scale is calculated to determine the α-coefficient (Bryce & 

Sprague, 2012; Dingwell & Cusumano, 2010). Detrended fluctuation analysis results indicating 

persistence show that strides are influenced by preceding strides and will continue to influence 

strides in the future. Having a persistent gait suggests a smoother, more stable gait that oscillates 

slowly with longer-term drifts. An anti-persistent gait may suggest the occurrence of constant 

corrections and a lack of influence of one stride to strides in the future. Again, similar to other 

nonlinear measures, studies typically attempt to distinguish different populations or a change in 

external conditions such as a change in speed, cadence, or gait environment to see their impact 

on gait persistence. 
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Figure 1.4. Depiction detrended fluctuation analysis calculation. The original time series (top) is 

demeaned and broken up into several segments of length n (middle). For each segment, the data 

is linearly detrended and the fluctuation around the linear trend is calculated. The mean 

fluctuation per window size is then plotted against the window size on a log scale (bottom). The 

detrended fluctuation analysis exponent is then the slope of the best fit line of this plot. Redrawn 

and adapted from Decker, Cignetti, & Stergiou, (2010). 
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Using detrended fluctuation analysis, it has been shown that healthy adult gait has stride-to-stride 

correlations (i.e., 0.5 < α < 1) showing that current steps influence future steps, i.e. persistence 

(Hausdorff, Peng, Ladin, Wei, & Goldberger, 1995; Hausdorff et al., 1996). The data measures 

for these correlations are typically step/stride length and step/stride time. These stride to stride 

correlations are observed in both overground and treadmill walking (Dingwell & Cusumano, 

2010). These findings indicate that fluctuations occurring during gait are not random white noise 

but contain deterministic structure and fractal-like properties indicating that each step influences 

steps that will occur in the future. However, with aging and disease, there is a breakdown in 

these strides to stride correlations resulting in less persistence and a more random gait behavior 

(i.e., α ≈ 0.5). This has been interpreted as a relationship between detrended fluctuation analysis, 

gait adaptability, and falls in the elderly (Arif et al., 2002; Hausdorff, 2007). For example, 

detrended fluctuation analysis was calculated between younger and older adults while walking at 

their preferred speed. The preferred walking speeds were not different between the groups, but 

the older adults had comparatively lower detrended fluctuation analysis values, closer to α = 0.5, 

signifying a less persistent gait or more inherent noise within their walking pattern than the 

young adults. Similarly, when visually perturbed, older adults are affected more by this 

perturbation resulting in a less persistent walking pattern when compared to their unperturbed 

walking and visually perturbed younger adults (Franz, Francis, Allen, O’Connor, & Thelen, 

2015). Detrended fluctuation analysis has also been found to be related to falls history in the 

elderly population (Norris, Marsh, Smith, Kohut, & Miller, 2005). Elderly individuals who are at 

a high risk of falling have decreased gait persistence, suggestive of gait instability. Taken 

together, detrended fluctuation analysis research shows a consistent pattern of results, implying 
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the potential to use detrended fluctuation analysis to predict gait adaptability and individuals’ 

risk of experiencing a fall. 

Correlation Dimension 

The correlation dimension is another nonlinear method that originates from the study of fractals. 

In normal geometrical figures, determining the dimensionality of an object is simple. Simple 

lines are one dimensional, planes are two dimensional, and solid objects are three dimensional. 

But then what is the dimension of a line winding through space and time with arcs and curves 

and angles? The von Koch curve seen in Figure 1.5 is an example of a fractal that shows how 

objects rendered one dimensional in normal geometry can look very different. The von Koch 

curve (Figure 1.5) at iteration stage 4 looks to be more than 1 dimensional but without an area it 

cannot be 2 dimensional. Fractal geometry is committed to quantifying this dimensionality which 

is somewhere between traditional integer geometrical dimensions. With the study of fractal 

properties, nonlinear analysis techniques can be used to quantify the successive iteration of the 

von Koch curve as having a higher level of dimensionality (Strogatz, 2018).  While we are most 

used to the dimensionality of space, we can also consider the dimensionality of a time series. 

Correlation dimension is an approach to quantify the fractal dimension and has been used to 

investigate the dimensionality of human movement and behavior. 

To quantify fractal dimensionality, one-dimensional data must be manipulated to reveal its 

nonlinear behavior over time. As seen in Figure 1.6 a one-dimensional time series produced by 

the Lorenz equations can be plotted against a time-lagged version of itself in two dimensions. 

This can be further plotted in three dimensions using another time-lagged version of the original 

time-series. This technique is known as reconstructing a state space, based on time-lagged 

versions of a one-dimensional time series, which can help to better understand how the time  
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Figure 1.5. The von Koch curve. This two-dimensional shape is an 

example of an object with fractal properties. The von Koch curve 

has a finite area but infinite perimeter that increases with every 

iteration.  

P= perimeter (sum of d);  d= distance 
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series behaves over time and the dimensionality of the system. The Lorenz equations, when 

plotted in three dimensions (Figure 1.6 bottom panel), reveals that this signal is not noise, but 

rather displays a pattern within the state space revealing the richness of the system and further 

our understanding of its behavior through time and space. 

The approach of phase space reconstruction can be used to study locomote behavior. While 

signals of dimensionality greater than three cannot be plotted, the dimensionality of a signal is 

can be computed as the correlation dimension using the Grassberger and Procaccia algorithm 

(1983). For example, the phase space of knee motion can be reconstructed from a time series of 

knee angle values recorded many times a second over many strides, using time-lagged versions 

of the original time series to create additional axis dimensions to identify the attractor with a 

higher dimensional state space to study its dynamics over time. Before the state space can be 

reconstructed and dimensionality computed using correlation dimension, the appropriate time lag 

and embedding dimension (number of dimensions in the reconstruction) are required, which are 

determined by the average mutual information (AMI) function (Fraser & Swinney, 1986) and 

false nearest neighbor (FNN) function (Kennel, Brown, & Abarbanel, 1992), respectively. The 

AMI function quantifies how much information is shared between two vectors of data over a set 

range of time delays. The first minimum of quantified information is chosen as the appropriate 

time delayed coordinates as this assures the time-delayed vector has minimum redundancy. A 

false neighbor occurs when data points are close together in lower dimensions but when 

embedded into a higher dimension, they are no longer close in distance.  The FNN algorithm 

finds how many dimensions are necessary so that the number of false nearest neighbors 

approaches zero (Dingwell & Cusumano, 2000). To estimate the correlation dimension, the 

correlation sum C(r) is calculated, which quantifies the density of data points in a specified  



21 

 

 

   

Figure 1.6. The Lorenz equations plotted in 1, 2 and 3 dimensions. One dimensional state space 

(top) time lagged 2-dimensional state space (middle) and time lagged 3-dimensional state 

space (bottom).  
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radius r within the state-space. Many different radii are used to calculate the geometric structure 

of the time series embedded within the state space. A plot of logC(r), the probability value for 

that value of r, vs. log r is created. The linear slope of log[C(r,N)] and log(r), where N is the 

number of data points, is the estimated correlation dimension (CoD). 

CoD =
lim lim

N → ∞ r → 0
log [C(r,N)]

log [r]
   Equation 1.5 

The correlation dimension is commonly used due to its ease of implementation. It is claimed that 

a low correlation dimension indicates a freezing of degrees of freedom (reduced number of 

components in a movement) and a higher correlation dimension indicates a releasing of the 

degrees of freedom (increased number of components in a movement, illustrating the stages of 

motor learning proposed by Bernstein (1967). The correlation dimension can be more directly 

used to measure the complexity of a deterministic system. The more embedding dimensions 

needed to fully describe the signal, the more complex the system is said to be. Compared to all 

the ways we could walk and the available degrees of freedom (possible joint motions), walking is 

a relatively simple process, typically found to occupy between 4 and 5-dimensional subspace 

when continuous knee angle is used 

The effect of aging on walking complexity using correlation dimension has had mixed results. 

No differences in correlation dimensionality between young and old have been reported (Iqbal, 

Zang, Zhu, & Jie, 2015), while other studies have found an increase in correlation dimension in 

elderly individuals when compared to young  One investigation, although using a slightly 

different technique to calculate correlation dimensionality, found young individuals, elderly 

individuals, and individuals with Parkinson’s to have increasingly complex gait patterns, 

respectively (Sekine et al., 2002). Further work is needed to understand the effect of aging and 
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disease on gait dimensionality, but it does seem that an increase in age and task 

complexity/demand generally increases behavioral complexity as measured by correlation 

dimension measures. Thus, the correlation dimension is another method that can potentially 

reveal the health and proficiency of gait. 

Local Dynamic Stability 

Another nonlinear measure that can be computed based on the state space is known as local 

dynamic stability or the maximum Lyapunov exponent. Local dynamic stability quantifies the 

rate of divergence of nearby trajectories in state space over time (see Figure 1.7). It therefore 

directly attempts to quantify how stable the attractor is. Two of the most common methods for 

calculating local dynamic stability are the Wolf algorithm (Wolf, Swift, Swinney, & Vastano, 

1985) and the Rosenstein algorithm (Rosenstein, Collins, & De Luca, 1993). Both are similar in 

procedure, but Rosenstein’s method was designed especially for shorter data sets. This measure 

also uses the AMI and FNN functions to embed a time series into a reconstructed state space as 

previously discussed for the measure of correlation dimension. Briefly, local dynamic stability is 

the rate at which nearby trajectories in state space diverge. 

𝑑(𝑡) = 𝑑𝑜𝑒𝜆1𝑡    Equation 1.6 

Where d(t) is the mean divergence between trajectories in the state space at time t. d0 is the initial 

separation between neighboring points and λ is the true Lyapunov exponent. The finite-time 

Lyapunov which is used to quantify local dynamic stability is defined as t approaches infinity 

and the initial separate approaches zero. The natural log of the average divergence distance is 

plotted against each time step and the slope of the linear portion of this line is taken to quantify 

the rate of divergence of trajectories of the system. In some instances, the slope of a second  
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Figure 1.7. Depiction of local dynamic stability calculation. A time series (top left) is 

reconstructed using a time delayed embedding dimension (top right). For each data point in turn, 

the nearest neighbor is found and the distance between them (d(n)) is computed for each time step 

(bottom right). The natural log of the average divergence distance is plotted for each time step 

and the slope of the linear portion of this line for up to one stride is taken to quantify the 

exponential rate of divergence of the system (bottom left). Redrawn and adapted from Segal et al. 

(2008). 
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linear portion of the plot is taken and described as long-term divergence. These slopes are known 

as the largest or maximum Lyapunov exponent and provide a way to quantify local dynamic 

stability (Figure 1.7). Local dynamic stability is a tool that can be used to determine if a system 

has chaotic behaviors, defined as a system that has long term aperiodic deterministic behavior 

and is sensitive to initial conditions. Local dynamic stability can help categorize the structure of 

the system, whether it converges or divergences over time. If the trajectories that are near one 

another at time t(i) become separated in relatively few time steps, the system is considered 

unstable. If the distance between them in the state space stays consistent over time the system is 

said to be stable. This is quantified by the maximum Lyapunov exponent, the larger the exponent 

the faster the divergence, and therefore, the more locally unstable the system is said to be. Often 

local dynamic stability comparisons are made between young healthy adults and clinical, 

unhealthy, elderly, or rehabilitated populations. It can also be used to determine the change in 

stability of the system due to external conditions such as a change in speed, cadence, or gait 

environment. When comparing the young and the elderly, the elderly are typically less 

dynamically stable as measured by local dynamic stability (Mehdizadeh, 2018). For example, 

local dynamic stability was calculated on the hip, knee, and ankle coordinates as elderly and 

young females walked on a treadmill. It was found that the elderly had decreased local dynamic 

stability which is suggested to be a reason for the increased rate of falls in the elderly population 

(Buzzi et al., 2003). Similarly, local dynamic stability measures are used to differentiate healthy 

elderly individuals and the fall prone elderly individuals. It has been shown that the fall prone 

population and elderly individuals with a history of falls have decreased local dynamic stability, 

again suggesting that nonlinear measures of locomotor behavior can be used to quantify the 
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strength of gait stability and assess gait performance or risk of falling (Granata & Lockhart, 

2008; Terrier & Reynard, 2015; Toebes, Hoozemans, Furrer, Dekker, & van Dieën, 2012). 

 

THEORIES OF AGE DEPENDENT CHANGES IN GAIT VARIABILITY 

By studying the variability of locomotor behavior, researchers have found some age-dependent 

changes in linear and nonlinear measures of variability. Linear measures of variability have 

revealed older adults have increased stride to stride variability as measured by standard deviation 

and coefficient of variation, suggestive of increased noise or error within the older population 

(Hausdorff, Rios, et al., 2001). Measures of entropy have shown that the young healthy have 

significantly different amounts of stride to stride regularity and movement trajectory regularity 

compared to older adults. Interpretations of these results have been that young healthy 

individuals have an optimal amount of gait regularity and complexity and older adults fall out of 

the optimal range (Stergiou et al., 2016). Detrended fluctuation analysis has shown older adults 

to have decreased gait persistence which is suggestive to cause a loss of gait control. Correlation 

dimension has also been used to differentiate between young and old, finding differences in the 

dimensionality of their gait. Finally, local dynamic stability has shown that older adults have 

decreased stability in their movement trajectories when compared to younger adults, resulting in 

an unstable gait pattern. Therefore, it seems that the aging process has some ill effect on 

locomotor behavior, and this can be quantified using linear and nonlinear measures of gait 

variability. Two models have been developed to characterize what happens to gait patterns 

during the aging process which results in reduce locomotor health. 

Loss of Complexity Hypothesis 
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It has been proposed that gait variability provides the necessary flexibility a person needs to 

manage a sudden change, such as a push or a change in the environment and these nonlinear 

measures discussed can quantify this ability (Decker, Cignetti, & Stergiou, 2010; Heiderscheit, 

2000). One hypothesis suggests that there is a loss of complexity in biological systems as we age, 

which results in a reduced ability to adapt (Lipsitz & Goldberger, 1992). The core concepts of 

the loss of complexity hypothesis are that complexity is inherent and important to the biological 

system. As we age, there is a loss of this physiological complexity resulting from either 

structural changes within the system or a loss of communications between the structural elements 

within the system and this decrease is detrimental to the system. This loss can also be observed 

in individuals suffering from illness, injury, or disease (Lipsitz & Goldberger, 1992). Figure 1.8 

illustrates the loss of complexity hypothesis. Figure 1.8A represents a healthy system where all 

structural elements are working and can communicate with one another through some 

communication channel. The ability for all elements within the system to communicate directly 

and indirectly represents the flexibility in the system that allows for adaptation to a changing 

environment. Figure 1.8B represent a system which has lost some of the communication 

channels, decreasing the systems complexity and flexibility. For example, neural connections in 

the human body that are not used or stimulated can begin to degrade possibly leading to 

decreased function. Loss of complexity can also occur due to the loss of an element in the 

system. In figure 1.8C, a structural element within the system has been lost leading to decreased 

flexibility and complexity. For example, post stroke individuals may have damaged tissue in 

certain areas of the brain, resulting in the loss of function associated with that brain area or 

structure such as speech or movement. The communication channels may still be functional, but 

no information or action is created from the damaged structural element. Together the loss of 
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complexity model predicts that a loss of communicational (Figure 1.8b) or structural (Figure 

1.8c) complexity in a system is associated with a decrease in function and general health that 

occurs with aging and illness. Loss of complexity through either means is expected to result in 

reduced adaptability by an individual to internal or external variation and changes in nonlinear 

measures of variability have then been interpreted as indicating reduced ability to adapt (Buzzi et 

al., 2003; Decker et al., 2010; Heiderscheit, 2000). 
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Figure 1.8: Loss of complexity model. Redrawn and adapted from Vaillancourt & Newell  (2002). 
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Optimal Variability Hypothesis 

Another hypothesis related to nonlinear measures of variability and adaptability suggests that 

there is an optimum level of variability that leads to a somewhat predictable, somewhat complex, 

and highly adaptable gait pattern which is depicted at the top of Figure 1.9. A system that 

produces random signals will have low complexity and low predictability, indicating a non-

deterministic signal with little to no adaptability. A system can also produce highly predictable 

signals with limited complexity which also leads to reduced ability to adapt. A healthy system, at 

the top of Figure 1.9, produces relatively complex and relatively predictable signals which 

allows the system to be stable while also enhancing its ability to adapt. From the perspective of 

this hypothesis, young healthy individuals are expected to show optimal variability, with older 

adults and/or individuals with disease expected to show lower or higher levels of variability. 

A concern with these models and the use of variability measures is that studies investigating the 

changes in locomotor behavior due to age and disease use inconsistent measurement techniques 

and inconsistent interpretations. Studies that used linear measures of variability to identify 

differences between populations have separately quantified variability using, stride length, stride 

time, trunk accelerations, etc., without understanding the relationship between these measures 

(Brach et al., 2010; Frenkel-Toledo et al., 2005; Toebes et al., 2012; Webster, Merory, & 

Wittwer, 2006), Studies also use nonlinear measures to differentiate between populations and 

again use different gait variables without understanding the relationship between the measures of 

data sources (Buzzi et al., 2003; Terada et al., 2015; Toebes et al., 2012). Little is known about 

the relationship between nonlinear and linear measures of different aspects of gait because only 

one or two measures of gait variability are used in each study investigating gait variability. 

Without understanding whether these measurement techniques and/or the type of data used are  
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Figure 1.9. Optimal variability hypothesis.  Redrawn and adapted from Stergiou, Kent, & McGrath 

(201)6.  
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correlated or independent of one another, it is difficult to conclude how variability, adaptability, 

and age are related. Very few studies have directly tested whether adaptability and gait 

variability are related, and no study has tested this claim using multiple measures of linear and 

nonlinear measures of variability in adults across the lifespan. There has been no consensus for 

which measures of variability on which type of data should be collected to accurately describe 

locomotor behavior and the change in this behavior due to age or disease (Hamacher, Singh, Van 

Dieen, Heller, & Taylor, 2011). 

 

GAIT ADAPTABILITY 

Gait adaptability can be defined as the ability of an individual to adjust to the task and 

environmental demands quickly and accurately. This ability seems to decrease with age as 

individuals become more hindered with neural, sensory, musculoskeletal, and cognitive declines 

(Maki & McIlroy, 2003; Maki, 1997) . The most popular method for investigating gait 

adaptability is the split-belt treadmill paradigm (Torres-Oviedo, Vasudevan, Malone, & Bastian, 

2011). This paradigm uses a treadmill with two separate belts, each powered independently, 

allowing the belts to move at different speeds. By moving the belts at different speeds, 

participants are required to adapt their gait pattern. This paradigm has been used to test the 

ability of infants, children, adults, and clinical populations to adapt their gait (Reisman, Bastian, 

& Morton, 2010). The task creates a step length asymmetry which typically disappears over time 

as individuals adapt their kinetics and kinematic gait parameters to complete the split-belt 

walking task. Children, clinical populations, and the elderly have been shown to have a 

decreased ability to adapt to this task. These populations are unable to fully correct the step 

length asymmetry, have increased time to reach step length symmetry, and/or show smaller 
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aftereffects in step length asymmetry which indicates that the new gait pattern was not “learned” 

(Bruijn, Van Impe, Duysens, & Swinnen, 2012; Musselman, Patrick, Vasudevan, Bastian, & 

Yang, 2011; Vasudevan, Torres-Oviedo, Morton, Yang, & Bastian, 2011). While studies have 

noted the differences in gait adaptability between old and young populations, no study has 

investigated how this ability changes over the aging process. Also, while the above mentioned 

nonlinear measures are suggestive to measure the adaptability of gait, only two studies have 

attempted to directly test if there is a relationship between gait variability and adaptability 

(Ducharme, Kent, & Van Emmerik, 2019; Ducharme & van Emmerik, 2018). In these works, 

only one measure of variability, detrended fluctuation analysis, was used which limited the scope 

of the research to investigate the relationship between adaptability performance and a single 

measure of variability. Using only one measure of variability, the authors found no relationship 

between variability and adaptability performance (Ducharme et al., 2019). 

 

RELEVANCE OF GAIT MEASURES 

The gait measures used to investigate locomotor variability included stride time, stride length, 

knee flexion angle, and pelvis motion in the medial-lateral and vertical directions. These gait 

measures were chosen from other numerous measures of gait for explicit reasons. First, this 

dissertation critically examines the literature on gait variability and therefore uses the same 

measures of gait that are commonly used in this research literature. Using the same gait measures 

allows the findings from these studies to be applied to previous studies. Additionally, because 

this study aims to find relationships between multiple measures of variability (chapter 3), 

comparisons between different measures of gait variability used in previous and future studies 

will be able to be made. For example, if there is a strong relationship between SD of stride time 
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and LDS of pelvis vertical motion, previous or future studies using one or other of these 

measures can be related. The use of less common measures of gait would obviate these important 

contributions to the gait variability literature. These measures of gait were also chosen for their 

utility in the clinical setting. These measures can be quantified without highly specialized 

equipment and are functional and clinically important in gait as discussed below. 

Walking strides and steps are fundamental to gait and movement. Manipulation of these 

spatiotemporal measures stride time and stride length (similarly step time and step length) are 

what allows for changes in gait speed (Lythgo, Wilson, & Galea, 2011) and are important for 

maintaining balance during gait (Schniepp et al., 2012). Clinically, the regulation of these 

measures is essential to gait health. Older individuals and individuals suffering from disease are 

less able to regulate these spatiotemporal aspects of gait leading to increased falls risk (Kobsar, 

Olson, Paranjape, Hadjistavropoulos, & Barden, 2014; Richardson, Thies, DeMott, & Ashton-

Miller, 2005; Woo, Ho, Lau, Chan, & Yuen, 1995). For example,  older individuals and 

individuals experiencing freezing of gait due to Parkinson's disease are less able to appropriately 

regulate their stride time when compared to younger individuals and individuals not experiencing 

freezing of gait, respectively (Hausdorff et al., 2003; Kobsar et al., 2014; Woo et al., 1995). 

Stride time and stride length variability have also been associated with cognition and executive 

function. Individuals with cognitive impairments have altered spatiotemporal patterns of gait 

demonstrating the significance and usefulness of these measures (Montero‐Odasso, Verghese, 

Beauchet, & Hausdorff, 2012). Stride time and stride length have also been found to be a driving 

force for the locomotor system as individuals tend to walk at the speed which optimizes the 

stride time and stride length variability (Schniepp et al., 2012). These studies highlight the utility 

of using spatiotemporal measures of strides or steps in gait-related research. 
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The angular movement of the knee joint during walking is another fundamental aspect of gait 

and commonly used in gait research. While walking, the knee joint rotates about the medial-

lateral axis in the sagittal plane. When the foot first leaves the ground, the knee begins to flex 

along with flexion of the hip and ankle allowing for proper foot clearance as the leg swings 

forward during each step. As the foot approaches the ground, the foot moves further away from 

the body by producing flexion of the knee joint. This allows for the absorption of the ground 

reaction force and adequate step length to safely progress the rest of the body forward. The 

inability to properly move the knee joint due to injury or deficits in neuromuscular control can 

result in problems concerning balance, shock absorption, and joint health. (Chaudhari, Briant, 

Bevill, Koo, & Andriacchi, 2008; Hart et al., 2016; Henriksen et al., 2006; Luc-Harkey et al., 

2016). Compromised knee joints can also lead to decreased neuromuscular control resulting in 

more irregular movement patterns of the knee and possible gait imbalances (Moraiti et al., 2009; 

Rathleff et al., 2013; Yakhdani et al., 2010). This continued study of knee joint movement is 

important as it may also drive locomotor behavior. Similar to measures of stride time and stride 

length, individuals walk at a speed that optimized the stability of the knee joint motion 

illustrating its importance in the study of gait (Russell & Haworth, 2014). 

Measuring the center of mass oscillations during walking can reveal a considerable amount of 

information about an individual’s gait balance and deficits(Tesio & Rota, 2019). However, 

directly measuring the center of mass of individuals as they walk can be impracticable as the 

center of mass is located inside the body, and the center of mass location changes between 

individuals because of differences in body type and shape. The motion of the pelvis is often used 

as an accurate surrogate measure for the center of mass of the body (Gard, Miff, & Kuo, 2004; 

Saini, Kerrigan, Thirunarayan, & Duff-Raffaele, 1998). The interaction of the center of mass and 
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base of support (the area around the sections of the body which are in contact with the ground) is 

how balance is maintained during locomotion(Lugade, Lin, & Chou, 2011). During walking, the 

center of mass oscillates in the vertical direction from peak to valley as the body switches from 

single stance to double stance. The center of mass position in the medial-lateral direction 

oscillates from left to right with each step as the feet alternate from left foot ground contact and 

right foot ground contact (Tesio & Rota, 2019). If the center of mass moves outside the base of 

support, the individual will need to quickly increase the base of support or move their center of 

mass back into the base of support to avoid a fall. Maintaining the proper regulation of this 

movement is necessary to keep the body's center of mass stable and inside the base of support 

while moving in the forward direction. The indirect measure of the center of mass is a feasible 

measure to detect gait imbalances. Its use has shown elderly patients to be less able to properly 

control their center of mass (Chen & Chou, 2010; Lee & Chou, 2006; Lugade et al., 2011). This 

inability to properly regulate the center of mass results in decreased head stability and altered 

vestibular input which is associated with aging, and increased fall risk (Berthoz & Pozzo, 1994; 

Mazzà, Iosa, Pecoraro, & Cappozzo, 2008; Spoor, Wood, & Zonneveld, 1994). However, acutely 

increasing or decreasing the magnitude of the center of mass oscillation has been shown to 

increase the metabolic cost of walking (Gordon, Ferris, & Kuo, 2009; Ortega & Farley, 2005). 

This indicates that the movement of the center of mass is another driving factor of locomotion 

that must be properly regulated to maintain a safe and stable pattern of gait. Altogether, these 

gait measures are commonly used in research, in clinical practice, and are essential to gait 

performance. Altered spatiotemporal patterns or the movement patterns of the knee and center of 

mass have been associated with injury, disease, and gait imbalances supporting the notion that 

these parameters may be driving forces behind locomotion. 



37 

 

 

Statement of the Problem 

Measures of gait variability are used to assess gait performance and assess fall risks for 

populations and specific individuals. There are numerous techniques used to measure gait 

variability including linear and nonlinear techniques. Further, these analysis techniques are 

applied to many different data sources of gait such as step length, step time, joint angles, and 

movement trajectories. Nonlinear measures are claimed to measure gait adaptability, which is 

often said to allow for safe and healthy ambulation that is necessary to adjust to changing 

external or internal environments and task demands. However, the research investigating gait 

variability has not come to a consensus on 1) how measures of gait variability change with age 2) 

the relationship between gait variability measures, and 3) the relationship between gait 

variability measures and adaptability performance. The purpose of this work was to investigate 

how measures of gait variability change with age. This work also investigated the relationship 

between measures of variability to determine which if any measures of gait variability are 

related. Finally, this work investigated if measures of variability were predictive of an 

individual’s performance on a gait adaptability task. 

 

AIMS 

Aim 1 

The loss of complexity hypothesis theorizes that the loss of communications between structures 

in the body due to age and the loss of structures themselves leads to a loss in the overall 

movement complexity of gait. This loss of complexity is proposed to occur even in healthy aging 

across the lifespan and to especially result in changes in the variability of movement. The 
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purpose of this work was to investigate if measures of gait variability during steady-state walking 

are sensitive to age-related changes in gait across the lifespan in healthy individuals. Linear 

measures such as standard deviation (SD) and coefficient of variation (CV) are typically used to 

quantify the magnitude of stride to stride fluctuations in stride time or length. Recently, nonlinear 

measures have been used to quantify structure in gait variability and are suggested to be more 

sensitive than linear measures to age-related changes in gait. Sample entropy (SampEn) is a 

nonlinear measure that quantifies the regularity or predictability of fluctuations in stride lengths 

or time during gait. Correlation dimension (CoD) is a nonlinear measure that quantifies 

dimensionality of movement trajectories (e.g., knee angle or pelvis position) during gait. Local 

dynamic stability (LDS) is a nonlinear measure that quantifies the stability of movement 

trajectories (e.g., knee angle or pelvis position) during gait. Detrended fluctuation analysis 

(DFA) is a nonlinear measure that quantifies the persistence in a sequence of stride times or 

lengths. These measures were used to investigate the relationship between aging and gait 

variability and to test the loss of complexity hypothesis. From the loss of complexity hypothesis, 

SD and CV are expected to increase with age as older adults are suggested to be less able to 

control their gait leading to larger stride to stride variations. Loss of complexity with age is 

expected to be observed as an increase in stride to stride regularity or predictability (decrease in 

SampEn values) as loss of structures or communication leads to a less complex sequence of 

stride times or lengths. Also, aging is theorized to result in a decrease in stride to stride 

persistence (DFA) due to the diminishing neuronal structures and communication between 

neuronal and musculoskeletal structures in the body. This loss of complexity is also expected to 

reduce the dimensionality of movement trajectories (CoD) and decrease stability (increase LDS 

values). Therefore, it was hypothesized that SD and CV of stride times and length and LDS (an 
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inverse measure of stability) of knee and pelvis motion would be positively related with age, 

while SampEn (inverse measure regularity) of stride time and length, CoD of knee angle and 

pelvis motions, and DFA of stride time and length would be negatively related to age. Stride 

time, stride length, knee angle, and pelvis motion in the vertical and medial-lateral dimension 

were calculated as adults across the lifespan walked on a treadmill at their preferred gait speed. 

The relationship between age and each measure of gait variability was determined using simple 

linear regression analyses. 

Aim 2 

Measures of variability including SD, SampEn, CoD, LDS, and DFA have all been suggested to 

quantify an underlying construct of gait that is related to an individual's ability to adapt. 

However, studies that evaluate movement variability typically compute only one or two 

measures of gait variability making it difficult to recognize the relationship between measures of 

variability and the constructs of gait they identify. The purpose of this work was to identify the 

relationships between measures of gait variability and the gait constructs they independently or 

dependently quantify. Identifying these relationships and constructs is important to understand if 

measures of variability are quantifying the same aspects of gait allowing researchers and 

clinicians to optimize data collection and more accurately compare results across studies. To 

determine the relationship between gait variability measures and identify underlying gait 

constructs a statistical procedure called principal component analysis (PCA) was applied to 

measures of gait variability. A principal component analysis (PCA) is a descriptive statistical 

technique that is used to reduce the dimensionality of a data set by revealing if and which 

measures are related to one another, and the strength of their relationship to the underlying 

component or construct they are measuring. In this study, the gait variability measures of interest 
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included SD of stride length and stride time, SampEn of stride length and stride time, CoD of 

knee angle and pelvis motions, LDS of knee angle and pelvis motions, and DFA of stride length 

and stride time, which were calculated as adults walked on a treadmill at their preferred gait 

speed. Several hypotheses were tested in this study. In line with the literature, all measures of 

variability could load onto a single component possibly related to adaptability or, at the other 

extreme, all dependent variables could be unrelated and thereby quantifying different 

components of gait variability. Alternatively, the principal component analysis could reveal a 

smaller subset of constructs with variables grouping together. These groupings could be based on 

variability measure, i.e. SD of stride time is highly related to SD of stride length, or on some 

other underlying components of gait variability. 

Aim 3 

Measures of gait variability are suggested to reveal an individual's ability to adapt their pattern of 

gait when necessary. The types of adaptability tasks measures of variability are said to quantify 

is not defined in the literature, but instead refers to adaptability as a general construct. Very few 

studies have directly tested the claim that measures of variability are related to adaptability and 

no study has used multiple measures of gait variability to investigate the relationship between 

adaptability and measures of gait variability. The purpose of this study was to test the claim that 

measures of gait variability are related to an individual's ability to adapt. The split-belt treadmill 

paradigm is one of the most common adaptability tasks utilized to investigate an individual's 

capacity to adapt their gait pattern to a change in the walking environment. This study used the 

split-belt treadmill paradigm as the adaptability task. Measures of variability included SD of 

stride length and stride time, SampEn of stride length and stride time, CoD of knee angle and 

pelvis motions, LDS of knee angle, and pelvis motions, and DFA of stride length and stride time. 
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The relationship between constructs of variability discovered from the principal component 

analysis of study 2 and adaptability performance was also determined. Adaptability performance 

during the split-belt treadmill paradigm task was assessed using methodology from previous 

literature by calculating the step length asymmetry during the last 50 steps of the split-belt 

treadmill paradigm. Based on previous literature and the loss of complexity hypothesis, larger 

magnitude in stride to stride variability, quantified as SD of stride length and stride time, was 

hypothesized to be negatively related to adaptability performance. SampEn of stride length and 

stride time was predicted to be positively related to adaptability performance, as lower SampEn 

values indicate greater regularity and are assumed to mean the individual is less able to respond 

to a changing environment. CoD of knee angle and pelvis motion was hypothesized to be 

positively related to adaptability performance as greater dimensionality is assumed to provide a 

greater ability to adapt. LDS (an inverse measure of stability) of knee angle and pelvis motion 

was hypothesized to be negatively related to adaptability performance as individuals with a more 

stable gait are expected to better adapt to the environment. DFA of stride length and stride time 

was hypothesized to be positively related to adaptability performance as increased gait 

persistence is assumed to correspond with increased adaptability performance. Finally, age was 

hypothesized to be negatively related to adaptability performance due to age-related deleterious 

changes in gait behavior and outcomes. These relationships were determined using multiple 

simple linear regression analyses.



 

 

CHAPTER 2 

 GAIT SPEED IS A BETTER PREDICTOR OF GAIT VARIABILITY 

THAN AGE 

 

INTRODUCTION 

Identifying the changes in locomotor behavior that are associated with the aging process has long 

been of interest to researchers and clinicians as falls are a significant cause of morbidity and 

disability in the elderly (Al-Aama, 2011). One of the most noticeable and universal findings is 

the decline in walking speed (Alexander, 1996). As we age, walking speed is seen to decrease 

around 1 to 2% per decade until around the age of 60. After 60 years old, there is a rapid 

decrease in walking speed, estimated to be between 12 and 16% per decade (Himann, 

Cunningham, Rechnitzer, & Paterson, 1988) This decline in walking speed has been attributed to 

a decrease in step and stride length (Boyer, Andriacchi, & Beaupre, 2012; Elble, Thomas, 

Higgins, & Colliver, 1991; Himann et al., 1988). This decrease in gait length has been suggested 

to be an adaptation made by older individuals to increase gait stability (Finley, 1969; Maki, 

1997; Winter, Patla, Frank, & Walt, 1990). Surprisingly, however, those who walk slower and 

with a step length fall more than those who walk faster and with a longer step length (Bergland, 

Jarnlo, & Laake, 2003; Gehlsen & Whaley, 1990; Guimaraes & Isaacs, 1980; Lipsitz, Jonsson, 

Kelley, & Koestner, 1991). This paradoxical finding leads to questions regarding what changes 

in gait behavior over the aging process can lead to gait instability and what analysis and 

techniques can be used to quantify gait performance and gait stability. 
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A common method used to analyze the performance of gait has been to use standard deviation 

and coefficient of variation of stride to stride gait dynamics. When doing so, it has been shown 

that older individuals have increased stride to stride variability of stride length, stride time, and 

stride width (Hausdorff, Rios, et al., 2001; Öberg, Karsznia, & Öberg, 1993; Owings & Grabiner, 

2004) and this increase in variability is related to and predictive of falls (Bergland et al., 2003; 

Hausdorff, Rios, et al., 2001; Lord, Lloyd, & Keung Li, 1996). These works have led to the 

belief that increased gait variability, as measured by standard deviation and coefficient of 

variation, is detrimental to gait performance, possibly leading to an elevated fall risk (Hausdorff, 

Edelberg, et al., 1997). Historically, it has been believed that these measures were capturing error 

or noise within a signal, indicating that older adults produce more movement error leading them 

to be more susceptible to falls. However, standard deviation and coefficient of variation, 

characterized as linear measures, quantify the magnitude of variability but ignore the sequence in 

a time series. In contrast, nonlinear measures of variability quantify patterns and sequential 

structure in a time series and suggest that variability is not simply noise, but can be adaptive 

(Newell & Corcos, 1993). This has led researchers to use nonlinear measures of variability in an 

effort to further the understanding of how locomotor behavior changes with age. 

Some of the most common nonlinear methods used to quantify gait are correlation dimension 

(CoD), local dynamic stability (LDS), sample entropy (SampEn), and detrended fluctuation 

analysis (DFA). These measures attempt to quantify different characteristics of variability, 

including, dimensionality, stability, regularity, and persistence. Considering the dimensionality 

of movement, sitting and swinging a leg forward and backward at the knee joint is a relatively 

low dimensional movement compared to movements of the knee during walking. This 

dimensionality can be computed via correlation dimension (CoD), a nonlinear technique created 
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by Grassberger and Procaccia (1983) that originates from the study of fractals. While we are 

most used to the dimensionality of space, we can also consider the dimensionality of a time 

series. In standard geometrical figures, determining the dimensionality of an object is simple. 

Lines are one dimensional, planes are two dimensional, and solid objects are three dimensional. 

Using fractals, the dimensionality of a line winding through space and time can also be 

quantified. For example, a time series of knee angle recorded many times a second over multiple 

walking strides can be plotted against time-lagged versions of itself. Repeating the process with 

additional time-lagged dimensions creates a phase plot showing an attractor or consistent pattern. 

The number of dimensions needed to reveal this attractor approximates its dimensionality, 

however, only a limited region of state space is visited, hence dimensionality can be a non-

integer value. CoD quantifies this non-integer dimensionality or complexity of the original knee 

angle (or other measures) time series. The direction of age-dependent changes in CoD has been 

mixed. No differences in CoD between young and old have been reported in some studies (Iqbal 

et al., 2015), while others have observed an increase in correlation dimension in elderly 

individuals when compared to the young (Buzzi et al., 2003). Results from another study, 

although using a slightly different technique to calculate correlation dimensionality, found young 

individuals, elderly individuals, and individuals with Parkinson’s to have increasingly complex 

gait patterns, respectively (Sekine et al., 2002). Hence, while some previous research has 

identified differences between young, old and individuals with disease, change in dimensionality 

of gait across the lifespan has not been investigated. 

Quantifying the dynamic stability of the movement during gait is another approach used to 

measure locomotor variability. Here, stability refers to the human movement system’s resistance 

to change, the ability to move back into its stable pattern quickly after a perturbation, or how 
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persistent a gait pattern is over time. Stability is typically measured as the maximum Lyapunov 

exponent and referred to as local dynamic stability (LDS) (Bizovska, Svoboda, Janura, Bisi, & 

Vuillerme, 2018; Dingwell & Cusumano, 2000). This measuring technique quantifies the 

stability of a gait pattern by measuring the divergence of movement trajectories over time. The 

larger the LDS value, the faster the rate of divergence, and therefore, the more locally unstable 

the system is said to be. Fall prone and elderly individuals with a history of falls have decreased 

local dynamic stability and therefore are less dynamically stable (Granata & Lockhart, 2008; 

Terrier & Reynard, 2015; Toebes et al., 2012). However, these studies do not typically 

investigate the age-dependent changes across the lifespan but instead compare separate groups of 

old and young adults. 

Another approach to quantifying variability is to assess the regularity or predictability of time 

series such as stride length or stride time. Walking on a flat surface in a straight line would likely 

result in relatively predictable or repeatable stride lengths and times. Walking through the woods 

on a dirt trail would result in less predictable, more irregular stride lengths and times as gait will 

adjust to the changing environment. Sample entropy (SampEn) is a nonlinear measure adapted 

from approximate entropy that can be used to quantify this regularity or predictability of a time 

series by determining the probability of sequences of data points being repeated (Pincus & 

Huang, 1992; Richman & Moorman, 2000). A higher SampEn value indicates a low probability 

of repetition and therefore less regularity in the data, while smaller SampEn values represent 

increased regularity or predictability within the signal. However, research has found that aging 

can result in both increases or decreases in gait predictability when compared to younger 

counterparts (Arif et al., 2004; Karmakar et al., 2007; Leverick et al., 2014). 
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Finally, the persistence or smoothness of spatiotemporal gait parameters over time can be 

quantified. In a persistent gait pattern, a long stride length is likely to be followed by another 

long stride and a short stride is likely to be followed by a short stride. An anti-persistent gait 

would occur when a long stride is followed by a short stride which is then followed by another 

long stride. Detrended fluctuation analysis (DFA) is used to quantify persistence within a signal 

(Peng et al., 1994; Peng et al., 1995). A DFA value close to 1 suggests a more persistent, 

smoother, and slowly drifting gait pattern. A DFA value closer to 0.5, or less, suggests an anti-

persistent gait. With aging and disease, there is a breakdown in gait persistence resulting in less 

persistence and a more random gait behavior (i.e., α ≈ 0.5), possibly indicating constant 

corrections and a lack of influence of one stride to strides in the future (Arif et al., 2002; 

Dingwell & Cusumano, 2010). In continuation of these findings, a cross-sectional study that used 

local dynamic stability to determine the effect of age on stability found that gait stability may 

begin to change between the ages of 40-50 (Terrier & Reynard, 2015). Further investigation of 

the age-dependent changes in LDS across the lifespan is necessary. 

Utilizing these measures of variability, the movement of older individuals have often been found 

to become less dynamical stable (Buzzi et al., 2003; Mehdizadeh, 2018) less regular (Leverick et 

al., 2014) and less persistent  (Arif et al., 2002; Hausdorff, 2007)when compared to young 

healthy controls. These findings support the loss of complexity hypothesis proposed by Lipsitz 

and Goldberger in 1992 (Lipsitz & Goldberger, 1992) which suggest that with age there is a 

decline in biological complexity, leading to a decline in the ability to adapt to new environments 

or tasks (Decker et al., 2010; Heiderscheit, 2000). A limitation of much of this prior research 

investigating changes in locomotor behavior with age using linear and nonlinear measures of 

variability is that they typically compare older adults to young adults, but do not consider the 
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changes that occur across the lifespan. Also, these studies typically examine only one or two 

measures of variability making it difficult to understand the relationship between measures of 

variability, which has led to a lack of consensus on which techniques are appropriate to 

investigate and detect changes in locomotor behavior over the aging process. 

The purpose of this work was to determine how aging affects individuals' gait variability 

Specifically, we will be testing whether age predicts linear measures (SD and CV) and nonlinear 

measures (LDS, CoD, SampEn, and DFA) of gait variability. It is hypothesized that our findings 

will support the loss of complexity hypothesis by showing a consistent unidirectional change in 

gait variability measures over the aging process. Specifically, SD and CV are predicted to be 

positively related to age, and CoD, LDS, DFA, and SampEn will be negatively related to age. 

 

METHODS 

This study was approved by the Old Dominion University Institutional Review Board (reference 

number 19-143). Participants included 34 volunteers (22 females, 12 males) ranging from 23 to 

71 years old (see Table 2.1). Data collection took place between January and March 2020. 

Inclusion criteria included the ability to walk for at least 15 minutes at a time and the ability to 

walk for a total of 45 minutes with intermittent breaks. Exclusion criteria included any history of 

neuromuscular or neurological injury or disease or a current acute injury that affected gait. 

Following the participants’ informed consent, demographic information including age, height, 

weight, daily physical activity participation, and sex were recorded. Participants were prepared 

for three-dimensional motion capture by attaching reflective sphere markers. The passive marker 

set was adapted from previous works (Bowersock, Willy, DeVita, & Willson, 2016; Petit, 
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Willson, & Barrios, 2014): Four anatomical markers placed on the superior iliac crests to defined 

the pelvis, markers placed on the greater trochanters and femoral condyles defined the thighs, 

markers placed on the tibial plateaus and malleoli defined the shanks, a four-marker cluster 

placed on top of metatarsal head 1 to 5, and a marker on the heel cup of the shoe defined the feet. 

Tracking markers include the pelvis markers to track the pelvis. Clusters were used to decrease 

skin artifact movement and were placed on the lateral aspect of the thighs and posterior-lateral 

aspect of the shanks to track the lower limbs. The 5-foot markers remained to track the foot. All 

other markers were removed. 

  

Table 2.1. Participant demographics 

 

Mean SD 

Age (years) 41.8 14.5 

Body weight (kg) 74.9 24.0 

Body height (cm) 169 8.13 

Preferred walking speed (m/s) 1.13 0.13 

N=34     SD is the standard deviation 
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Kinematic data were collected using 10 cameras (Vicon) collecting at 100 Hz over a treadmill. A 

treadmill was chosen instead of assessing overground walking as continuous time-series data 

over many strides is necessary to calculate the nonlinear techniques used here. Before data 

collection began, participants preferred treadmill walking speed was determined by 

incrementally increasing the treadmill speed until the participant announced the current speed is 

their preferred walking speed. After one- and one-half minutes of walking at this speed, the 

treadmill slowed to a stop. The treadmill speed was then set to a speed that was approximately 

15% higher than the participants stated the preferred speed. The treadmill then incrementally 

decreased until the participant announced the current speed is their preferred. The average of the 

two stated preferred speeds was taken as the preferred walking speed (Ducharme et al., 2019; 

Jordan, Challis, & Newell, 2007). 

Participants first walked on the treadmill at their self-selected preferred speed for six-minutes to 

become acclimated to the treadmill. To capture gait variability, participants walked on the 

treadmill for six-minutes at their self-selected preferred speed. The variables of interest included 

stride length, stride time, knee joint sagittal plane angle for the dominant limbs (N=3 left foot 

dominant), and pelvis position in the medial-lateral and vertical axes. Stride length was defined 

as the anterior-posterior difference of the heel marker at the time of subsequent foot contacts of 

the ipsilateral limb (Reisman et al.). Foot contact was defined by the local minimum of the 

vertical position of the heel marker and foot off was defined as the peak vertical velocity of the 

heel marker (Pijnappels, Bobbert, & van Dieën, 2001; Roerdink, Lamoth, Kwakkel, Van 

Wieringen, & Beek, 2007). The flexion-extension knee angle was defined as the relative angle 

between the shank and the thigh segments. The pelvis position used to define pelvis position was 

defined as the center of the four anatomical markers placed on the back of the pelvis. Stride 
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length, stride time, knee angle, and pelvis vertical and medial-lateral positions defined above 

were measured using the motion capture software (Vicon Nexus, Oxford, UK). These measures 

were chosen because of their consistent use in gait variability research, their functional 

importance in gait, and the feasibility of collection in a clinical and laboratory setting (Gordon et 

al., 2009; Kobsar et al., 2014; Lythgo et al., 2011; Moraiti, Stergiou, Ristanis, & Georgoulis, 

2007; Russell & Haworth, 2014; Schniepp et al., 2012; Tesio & Rota, 2019). Gait variability 

analysis was completed using a custom MATLAB 2019b script. SD, SampEn, and DFA were 

implemented on stride measures, as is common. CoD and LDS were implemented on knee angle 

and pelvis motion. 

The mean, SD, and CV were calculated on a stride to stride basis for stride length and stride time 

for each subject over the 6-minute trial (10 strides were trimmed from the beginning and end for 

all analysis). The SampEn value for stride time and stride length over the 6-minute trials was 

quantified using parameters m of 2 and r of .2 times the standard deviation of the time series 

(Pincus & Huang, 1992; Russell & Haworth, 2014; Yentes et al., 2013). DFA was calculated on 

the sequence of the last 250 stride times and stride lengths. Following recommendations in the 

literature, the window sizes used in the analysis ranged from six strides to the total number of 

strides divided by eight (Damouras, Chang, Sejdić, & Chau, 2010; Delignières, Almurad, 

Roume, & Marmelat, 2016; Weilert, 2017). 

To begin calculating CoD and LYE, each movement trajectory time series was first normalized 

by extracting the last 100 strides from the 6-minute trial. These 100 strides were resampled so 

that on average 100 frames were equal to 1 stride. Therefore, each participant was analyzed 

using the same length and size of data, of 100 strides containing 100 frames each similar to 

previous works (Dingwell & Cusumano, 2000; Granata & Lockhart, 2008). The average mutual 
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information (AMI) and false nearest neighbor (FNN) algorithms were used to determine the 

subject-specific time lag and number of dimensions to reconstruct the state space. The AMI 

function quantifies how much information is shared between two vectors of data and assures the 

time-delayed is appropriate and the vectors have minimum redundancy. The FNN algorithm 

finds how many dimensions are necessary so that the number of false nearest neighbors 

approaches zero. A false nearest neighbor occurs when data points are close together in lower 

dimensions but are no longer close when embedded into a higher dimension. Previous works 

have found a similar result between using subject-specific or the same values for all participants 

(Raffalt, Guul, Nielsen, Puthusserypady, & Alkjaer, 2017). The CoD of knee joint angle and 

pelvis medial-lateral and vertical positions were then quantified using the Grassberger and 

Procaccia algorithm (Dingwell & Cusumano, 2000; Grassberger & Procaccia, 1983; Raffalt et 

al., 2017). The short term local dynamic stability was quantified between 0 and 1 strides for knee 

joint angle and pelvis oscillation (Dingwell & Cusumano, 2000; Raffalt et al., 2017; Rosenstein 

et al., 1993). 

Statistical analysis 

Linear regression models were used to identify significant relationships between predictor 

variables (age, walking speed) and the outcome variables measured during gait. Model 1 used 

age as the predictor variable. Because age and preferred walking speed are known to be related, 

model 2 used speed as the predictor variable to determine if the outcome measures predicted by 

age could also be predicted using preferred walking speed. A third multiple linear regression 

model used a forced entry of both predictor variables which were age and speed to determine if 

the inclusion of both predictor variables improved the statistical model when compared to only 

one predictor variable. An alpha level of 0.05 was used to define a significant prediction. The 
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predictor and outcome coefficients, 95% confidence intervals for the coefficients, standardized 

coefficients, and adjusted R2 values are reported for model 1 (Table 2), and model 2 (Table 3). 

Additionally, the significant F change was reported for model 3 (Table 3) to test if age 

significantly improved prediction over speed alone. Effect sizes for regression analyses were 

interpreted as small (0.01 ≤ R2 < 0.09), medium (0.09 ≤ R2 < 0.25), and large (R2 ≥ 0.25) (Cohen, 

2013). Separate independent t-tests were also implemented to compare differences in gait 

variability measures between the youngest and oldest participants. This analysis was conducted 

to compare this data with previous research which has investigated the mean variability 

differences between older and younger individuals, typically excluding middle-aged adults. 

Measures of gait variability of the youngest adults (n=12, age < 31 years old) were compared 

with measures of gait variability of the oldest adults (n=7, age > 59 years old) using independent 

t-tests with the level of significance set at p < .05 for all statistical tests. Effect sizes for the 

independent t-tests were computed using Hedge’s g and interpreted as small (0.3 ≤ g < 0.5), 

medium (0.5 ≤ g < 0.8), and large (g ≥ 0.8) (Cohen, 2013). 

 

RESULTS 

The results from model 1 are shown in table 2.2. The outcome measures mean gait speed and 

mean stride length were found to be predicted by age. Of all the linear measures outcome 

measures of gait variability, only CV of stride length was significantly predicted by age. Of the 

nonlinear measures, only SampEn of stride time was significantly predicted by age. Preferred 

gait speed and mean stride length decreased with age while stride length CV and SampEn of 

stride time were positively correlated with age. The largest effect of age was on preferred gait 

speed, accounting for 21% of the variance. 
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Model 2 shows that of the linear measures, mean stride time, mean stride length, and stride 

length CV were significantly predicted by the participant’s preferred walking speed (Table 2.3). 

Of the nonlinear measures, SampEn of stride time, SampEn stride length, CoD of knee angle, 

and pelvis position in the vertical direction was significantly predicted by preferred walking 

speed. Outcome measures that were negatively related with preferred walking speed included 

mean stride time, CV of stride length, SampEn of stride time, and CoD of knee angle and vertical 

pelvis motion. Outcome measures that were positively related to preferred walking speed 

included mean stride length and SampEn of stride length. Comparing these results with model 1, 

all the outcome measures predicted by age were predicted using preferred walking speed. Also, 

more of the variance was explained by the preferred walking speed than age. Speed accounted 

for more than 50% of the variance in mean stride length and SampEn of the stride time between 

individuals. Large effects were also observed with speed accounting for approximately 30% of 

the variance in stride length CV, and knee angle CoD. The other significant linear relationships 

with speed were all moderately sized (11-24% of the variance). 
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The purpose of model 3 was to determine if age predicts any variance in gait variables over and 

above the variance accounted for by speed. Therefore, a multiple linear regression was 

performed for each dependent outcome measure using both predictor variables, speed, and age. 

Age did not predict any variables over and above the variance accounted for by speed (Table 

2.4).To relate these results with previous research which has focused on investigating differences 

in mean gait variability measures between the young and the old (Arif, Ohtaki, Nagatomi, & 

Inooka, 2004; Buzzi, Stergiou, Kurz, Hageman, & Heidel, 2003; Ducharme, Kent, & Van 

Emmerik, 2019; Hausdorff et al., 1997; Kang & Dingwell, 2008; Mehdizadeh, 2018) the oldest 

participants (n=7, age>59) and youngest participants (n=12 age<31) were placed into separate 

groups and compared. The oldest adults were found to have a significantly slower gait, decreased 

stride length, and an increased stride time SampEn value, all of which had large effect sizes 

(Table 2.5). 
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DISCUSSION 

The purpose of this study was to investigate the relationship between age and measures of gait 

variability. It was hypothesized that linear measures, standard deviation (SD) and coefficient of 

variation (CV), would be positively associated with age, and secondly, that nonlinear measures, 

correlation dimension (CoD), local dynamic stability (LDS), detrended fluctuation analysis 

(DFA), and sample entropy (SampEn) would be negatively associated with to age. In support of 

the first hypothesis, CV of stride length was positively related to age (r2=.09), revealing stride 

length variability increased with age when normalized to the mean stride length, which decreases 

with age. However, age only accounted for 9% of the variance in CV stride length, and no other 

SD or CV measure was significantly related to age. SampEn of stride time increased 

significantly with age, as predicted by our second hypotheses, but only accounted for a moderate 

12% of the variance. Contrary to our second hypothesis, age was not statistically significantly 

related to any of the other nonlinear measures: DFA, CoD, or LDS. Overall, these findings 

contradict some previous research which has found differences in nonlinear measures of gait 

variability between different the young and old populations (Buzzi et al., 2003; Hausdorff, 

Mitchell, et al., 1997; Kang & Dingwell, 2008; Mehdizadeh, 2018), although some studies have 

also failed to find significant effects (Bollens, Crevecoeur, Detrembleur, Guillery, & Lejeune, 

2012; Iqbal et al., 2015). Differences between the current study and prior literature such as the 

sample population age range and walking environment could be partially responsible for the 

alternative findings. 

Previous gait variability research has typically focused on identifying differences between young 

and old groups of participants and reported on age-related changes. In contrast, the present study 

used regression analyses to assess the relationship between age and measures of variability. 
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However, the inclusion of middle-aged individuals in this sample population may have obscured 

the effects of age that have previously been reported(Buzzi et al., 2003; Hausdorff, Mitchell, et 

al., 1997; Mehdizadeh, 2018). We, therefore, investigated differences in outcome measures 

between the oldest and youngest participants to compare with previous findings. The oldest 

individuals were found to walk significantly slower and with shorter strides than the youngest 

participants. These findings are in line with previous studies that have found a decline in walking 

speed around the age of 60 are attributed more to shorter stride lengths than shorter step times 

(Alexander, 1996; Himann et al., 1988). Of all measures of variability, only SampEn of stride 

time was found to be significantly different between the young and the old (p=.037, g=1.03). 

Older individuals produced strides that were less regular than younger individuals (Karmakar et 

al., 2007; Leverick et al., 2014). Given that the current study replicated the common finding of 

previous aging studies, that preferred walking speed and stride length decrease with age, the 

limited effects of aging on gait variability appears to be a robust finding. In fact, the regression 

analysis suggests that age explained significantly more variance in preferred walking speed 

(21%) than any other variable, and that gait speed was more predictive of measures of gait 

variability than age. 

Considering the effect of gait speed on linear measures of variability, a decrease in gait speed, 

whether natural or experimentally, results in increased SD and CV of stride dynamics (Beauchet 

et al., 2009; Brach, Berthold, Craik, VanSwearingen, & Newman, 2001; Kang & Dingwell, 

2008; Kang & Dingwell, 2008). Our finding of a negative relationship between stride length CV 

and gait speed supports these findings. However, this increase in gait variability magnitude is not 

found to be detrimental to the dynamic stability of gait. The slower gait speed used by older 

adults, accomplished by shortening stride lengths, is suggested to be a strategy used to increase 
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dynamic gait stability, as measured by LDS. Studies that directly investigated the effect of gait 

speed on dynamic stability have found that experimentally slowing individuals' gait increases the 

dynamic stability of joints in the lower extremity (Dingwell & Marin, 2006; England & Granata, 

2007). However, these studies only included young adults and did not consider the effect of age. 

A later study that included both young and older adults found older adults to also increase their 

dynamic stability when gait speed was slowed, even more than younger adults. (Kang & 

Dingwell, 2008). Our results are in support of this finding as a nearly significant finding 

(p=0.05) between self-selected preferred gait speed and LDS was found. Those who naturally 

walk slower had a nearly significant increase (p>0.05) in the dynamic stability of the pelvis 

movement in the medial-lateral direction and had decreased knee angle and vertical pelvis 

movement dimensionality as measured by CoD. No clear directional change was found between 

gait speed and measures and SampEn. Thus, a decrease in gait speed, whether naturally or 

experimentally, leads to increased variability magnitude but increased dynamic stability of gait 

decreased. 

In conclusion, our results found age to be a poor predictor of gait variability measures. Instead, 

preferred walking speed, which was negatively associated with age, was predictive of more gait 

outcome measures and accounted for more of the variance. Numerous studies have found gait 

speed to decrease in age, especially in the elderly and frail who are at the highest risk of falls. 

The decrease in gait speed in the older populations may explain why previous findings often 

indicate a relationship between age and measures a gait variability. As age increases, speed 

typically decreases which was found to be a driving factor of gait variability measures. Further 

investigations on the effect of gait speed and measures of gait variability across the lifespan are 

needed to confidently quantify and interpret any possible relationship
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CHAPTER 3 

IDENTIFICATION OF FOUR INDEPENDENT COMPONENTS OF GAIT 

VARIABILITY 

 

INTRODUCTION 

Human movement is inherently variable. Although healthy adults have extensive experience 

walking, the motions of the body vary from stride to stride, even when walking over smooth, flat 

ground or on a treadmill. Each stride looks slightly different than the last. Traditionally, gait 

variability has been quantified by linear measures, such as the standard deviation, and was 

computed on spatiotemporal parameters such as stride time and stride length (Newell & Corcos, 

1993). Increased linear variability measures quantify a larger magnitude of variability and have 

been interpreted as indicating more neuromuscular noise and a potential sign of underlying 

disease and increased risk of falling (Callisaya et al., 2011; Hausdorff, 2007; Paterson et al., 

2011). Linear measures, however, ignore the temporal sequence in the movement trajectories or 

strides while nonlinear analysis techniques have been developed to quantify structure in a data 

sequence. These nonlinear measures appear to be more sensitive than linear measures and have 

been used to detect differences in gait variability between young and old, fallers and non-fallers, 

and individuals with and without different neurological diseases (Bizovska et al., 2018; Buzzi et 

al., 2003; Cavanaugh et al., 2010; Ducharme et al., 2019; Hausdorff, 2009; Hausdorff, Rios, et 

al., 2001; Weilert, 2017). The nonlinear measures of gait variability have been interpreted as 

quantifying neuromuscular health and the ability of an individual to adapt their gait to changes in 
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the task (e.g., different speeds) and environment (e.g., obstacles) (Buzzi et al., 2003; Decker et 

al., 2010; Heiderscheit, 2000). 

Nonlinear measures of gait variability are viewed as quantifying the same underlying construct 

of gait (i.e., locomotor healthy), but there are several different approaches for computing 

variability: regularity, persistence, dimensionality, and stability. Sample entropy (SampEn) can 

be used to quantify the regularity of a gait sequence by computing the probability of a sequence 

of values being repeated (Pincus & Huang, 1992; Richman & Moorman, 2000). If the sequence 

of stride times followed a sine wave pattern then the predictability or regularity would be high 

(SampEn would be closer to 0), but if it was a more complex combination of sine waves or 

random noise then the signal would be less regular (SampEn would be closer to 2). Previous 

works have found older adults and individuals who fall to have increased entropy, signifying 

decreased movement regularity (Karmakar et al., 2007; Kurz & Stergiou, 2003). Detrended 

fluctuation analysis (DFA) takes a different approach by quantifying persistence in the data time 

series (Hausdorff et al., 1995; Peng et al., 1994). Higher DFA values (α > 0.5) indicate 

persistence, whereby longer stride times are typically followed by even longer ones, and shorter 

stride times subsequently get shorter. An α ≤ 0.5 indicates anti-persistence, where short stride 

times are typically followed by longer values and vice versa. Typically, young healthy adults 

have DFA values closer to α =1, indicating persistence in stride times or lengths, while older 

adults have values closer to α ≈ 0.5, indicating an anti-persistent gait pattern (Dingwell & 

Cusumano, 2010; Hausdorff, Ashkenazy, et al., 2001; Maraun, Rust, & Timmer, 2004). 

Nonlinear measures of dimensionality and stability are typically applied to movement 

trajectories such as knee angle position or pelvis/trunk motion. To begin calculating the 

dimensionality and stability of movement during gait, a state-space of movement trajectories is 
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reconstructed using time-lagged versions of itself, revealing a self-replicating pattern. 

Correlation dimension (CoD) is a technique that can then be used to estimating the number of 

dimensions of state space the movement trajectory exists in (Grassberger & Procaccia, 1983). 

The greater the dimensionality the more complex the movement trajectory. Studies show older 

individuals have increased CoD, signifying an increase in movement complexity (Buzzi et al., 

2003). The local dynamic stability (LDS) of the trajectories in state space can also be quantified 

by the rate at which nearby trajectories diverge, computed as the maximum Lyapunov exponent 

(Rosenstein et al., 1993). Higher values indicate a greater rate of divergence and therefore 

reduced dynamic stability. When comparing young and older adults, the elderly have movement 

patterns that are typically less dynamically stable (Mehdizadeh, 2018). 

While these nonlinear techniques take different approaches to quantify gait variability, it remains 

unknown whether they can be interpreted as measuring the same underlying construct of 

neuromuscular health. Unfortunately, studies typically compute only one or two of these 

measures at a time. Therefore, the current study applied multi measures of gait variability to 

investigate the relationships between measures. Specifically, regularity and persistence of stride 

times and stride lengths, and dimensionality and stability of knee angle, vertical pelvis motion, 

and medial-lateral pelvis motion, were quantified as adults across the lifespan walked using their 

preferred gait. To identify the number of underlying constructs a statistical procedure called 

principal component analysis (PCA) was applied to twelve linear and nonlinear measures of gait 

variability. There are several possible hypotheses that this approach will test. In line with the 

literature, all measures of variability could load onto a single construct or, at the other extreme, 

all dependent variables could be unrelated and thereby quantifying different independent 

characteristics. Alternatively, the PCA could reveal a smaller subset of constructs with variables 
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grouping together. These groupings could be based on nonlinear techniques (e.g., all regularity 

measures load highly on the same construct) or on some other aspect of gait. 

 

METHODS 

Participants 

This study was approved by the Old Dominion University Institutional Review Board (reference 

number 19-143). Thirty-four healthy adults (23-71 years of age) volunteered to participate in the 

study (Table 3.1). Inclusion criteria included the ability to walk for at least 15 minutes at a time 

and the ability to walk for a total of 45 minutes with intermittent breaks. Exclusion criteria 

included any history of neuromuscular or neurological injury or disease or a current acute injury 

that affects gait. Participants were prepared for the protocol by adhering reflective sphere 

markers used for three-dimensional motion capture to anatomical landmarks on the lower limbs 

and trunk (Bowersock et al., 2016; Petit et al., 2014). Ten motion capture cameras (Vicon) 

recorded motion of the markers. Participants walked on a treadmill as many continuous strides 

are necessary to calculate the nonlinear measures. Before data collection began, participants self-

selected their preferred treadmill walking speed. The individuals then became acclimated to 

walking on the treadmill for at least 6 minutes. The experimental protocol included one six-

minute walking trial in which participants walked at their self-selected speed on the treadmill. 
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Data Analysis 

Based on the motion capture data stride length, stride time, knee joint angle for the dominant leg 

(N=3 left foot dominant), and pelvis position in the medial-lateral and vertical axes were 

computed. Stride length was defined as the anterior-posterior difference of the reflective heel 

marker at the time of subsequent foot contacts of the ipsilateral limb (Reisman et al.). Foot 

contact was defined by the local minimum of the vertical position of the reflective heel marker, 

and foot off was defined as the peak vertical velocity of the reflective heel marker (Roerdink et 

al., 2007). The flexion-extension knee angle was defined as the relative angle between the thigh 

and shank segments which were based on marker clusters placed upon the thigh and shank. The 

pelvis position used to define pelvis oscillation was defined as the center of four anatomically 

Table 3.1. Participant demographics 

 

Mean SD 

Age (years) 41.8 14.5 

Body weight (kg) 74.9 24.0 

Body height (cm) 169 8.13 

Preferred walking speed (m/s) 1.13 0.13 

Falls risk score (0-10) 9.99 0.04 

Exercise (days per week) 3.7 2.0 

N=34    SD is the standard deviation 
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placed markers on the back of the pelvis. Stride times and lengths, knee sagittal angle, and pelvis 

motion were calculated using the motion capture software (Vicon Nexus, Oxford, UK). 

Gait variability dependent variables were computed using a custom-written MATLAB 2019b 

script. SD, SampEn, and DFA were implemented on stride measures and CoD and LDS were 

implemented on knee angle and pelvis trajectories as is customary in the literature. For the stride-

to-stride measures, all the strides for the 6-minute trial were used except for the first 10 and last 

10 strides. Standard deviations of the stride lengths and stride times for each subject were 

calculated. SampEn was computed for stride times and stride lengths using the input parameters 

m = 2 and r = 0.2 times the standard deviation of the time series (Pincus & Huang, 1992; Russell 

& Haworth, 2014; Yentes et al., 2013). DFA was calculated on the sequence of the last 250 

stride times and stride lengths. Following recommendations in the literature, the window sizes 

used in the analysis ranged from six strides to 250/8 (Damouras et al., 2010; Delignières et al., 

2016; Weilert, 2017). 

To begin calculating CoD and LDS, the movement trajectory time series for the knee and pelvis 

were normalized first by extracting the last 100 strides from the 6-minute trial. These 100 strides 

were resampled so that on average 100 frames were equal to 1 stride. Therefore, each participant 

was analyzed using the same length and size of data, of 100 strides containing 100 samples each, 

similar to previous works (Dingwell & Cusumano, 2000; Granata & Lockhart, 2008). The 

average mutual information (AMI) and false nearest neighbor (FNN) algorithms were used to 

determine the appropriate time lag and number of dimensions to reconstruct the state space. The 

AMI function quantifies how much information is shared between two vectors of data and 

assures the time-delayed is appropriate and the vectors have minimum redundancy. The FNN 

algorithm finds how many dimensions are necessary so that the number of false nearest 
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neighbors approaches zero. A false nearest neighbor occurs when data points are close together 

in lower dimensions but are no longer close when embedded into a higher dimension. The CoD 

of knee joint angle, vertical pelvis, and medial-lateral pelvis motion was then quantified using 

the Grassberger and Procaccia algorithm (Dingwell & Cusumano, 2000; Grassberger & 

Procaccia, 1983; Raffalt et al., 2017). The LDS was quantified by the maximum Lyapunov 

exponent between 0 and 1 stride, for knee joint angle, and vertical and medial-lateral pelvis 

motion using the Rosenstein algorithm (Dingwell & Cusumano, 2000; Raffalt et al., 2017; 

Rosenstein et al., 1993). 

Statistical Analysis 

A principal component analysis (PCA) is a descriptive statistical technique that is used to reduce 

the dimensionality of a data set. Using a set of measured variables, a PCA will define several 

relatively uncorrelated components which are separately quantified by these variables, revealing 

previously unseen relationships between variables. For example, a PCA could be used to 

determine the relationship between the circumference of an individuals’ waist, arms, neck, and 

the length of the legs, toes, hands, and arms. In this example, A PCA could reveal two separate 

components. Component one would show a relationship between the measures of waist, arms, 

and neck circumference, which could be interpreted as a component related to an individual’s 

weight. Component two would show a relationship between leg, toe, arm, and leg length 

independent of component one. Component two could be interpreted as a component related to 

an individual’s height. In this study, a PCA was used to determine how many components of gait 

these measures of gait variability identify and the relationship between the measures of 

variability. A PCA was performed on all twelve measures of gait variability using Varimax 



69 

 

 

orthogonal rotation to investigate the interrelations between measures and the construct(s) of gait 

the measures quantify. 

 

RESULTS 

Four components were identified by PCA based on Kaiser’s criterion of retaining components with 

eigenvalues > 1 (Kaiser, 1970). These four components explained 72% of the variance in the data. 

The Kaiser-Meyer-Olkin measure (KMO = .551) indicated that the sample size was adequate for 

this analysis, while Bartlett’s test of sphericity, χ2(66) = 173.08, p <.000, showed that correlations 

between measures were sufficiently different from zero. The loadings for each dependent variable 

on the four identified components are displayed in Table 3.2. Four dependent variables load highly 

(absolute value > .6) onto component 1 (24.1% of variance), which included LDS of vertical pelvis 

oscillations, SampEn of stride time, SD of stride time, and SD of stride length. Four dependent 

variables loaded onto component 2 (21.7% of variance), including LDS on knee angle, CoD of 

vertical pelvis motion, CoD of knee angle, and SampEn of stride length. Only two dependent 

variables loaded onto component 3 (13.9% of the variance), including the CoD of medial-lateral 

pelvis motion and LDS of medial-lateral pelvis motion. The fourth component (12.7% of variance) 

also had only two dependent variables with high loadings, which included DFA of stride length 

and DFA of stride time. No measure of variability failed to display a large load on one component 

from the PCA. 
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Table 3.2. Loadings from principle component analysis based on twelve measures of gait 

variability 

 

CoD is correlation dimension; DFA is detrended fluctuation analysis; LDS is local 

dynamic stability; SampEn is sample entropy; SD is standard deviation; ML is medial-

lateral dimension; V is vertical dimension.  

* indicates large loading (> .6) 
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DISCUSSION 

The purpose of this study was to investigate the relationship between measures of gait 

variability. Specifically, we implemented a PCA to investigate whether variability measures 

quantify a single characteristic of gait, whether each variability measure quantifies an 

independent characteristic of gait, or if measures of variability group together around 

independent components of gait. Gait variability measures of magnitude (SD), regularity 

(SampEn), persistence (DFA), dimensionality (CoD), and stability (LDS) were computed for 34 

participants across the adult lifespan, walking on a treadmill at their preferred speed. Using a 

PCA analysis, we identified four independent components of gait variability from the twelve 

measures of gait variability. The four components were interpreted to be related to (1) vertical 

impulse attenuation, (2) knee stability, (3) medial-lateral stability, and (4) persistence based on 

the relationship between gait variability measures in each component. 

The measures which loaded heavily onto component 1 show that the stability of the pelvis 

motion in the vertical direction (0.86), the regularity of stride time (0.84), and the magnitude of 

stride length (0.76) and time (0.68) variability all quantify the same underlying characteristic of 

gait variability. Larger component 1 scores are associated with decreased stability in the vertical 

direction, decreased stride length regularity, and increased magnitude of stride length and time 

variability. The dimensionality of the knee also loaded onto component 1 (0.51), but as it loads 

higher onto component 2 (0.71) it will be considered later. What relates these dependent 

variables together is the vertical impulse attenuation. As we walk, our center of mass oscillates in 

the vertical direction as we push off the ground to move our body in a forward and upward 

direction, and then as we fall back to the ground. Regulation of the vertical impulse is an 

important aspect of gait. Vertical impulse regulation is conserved across all walking speeds, not 
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just preferred walking speed which indicates its importance in gait (Jordan et al., 2007). This is 

an essential ability as stabilizing vertical oscillations of the pelvis plays an important role in 

stabilizing the head, which in turn provides steady optic flow and enhances vestibular system 

processes (Berthoz & Pozzo, 1994; Spoor et al., 1994). Unfortunately, there is an age-related 

decline in the ability to walk with a stable upright posture, associated with increases in vertical 

body accelerations, and in an increase in stride time and length variability, all of which have 

been associated with falls (Decker et al., 2010; Iosa, Fusco, Morone, & Paolucci, 2014; Mazzà et 

al., 2008). Our results further show a relationship between a reduced ability to dynamically 

stabilize vertical body oscillations and reduced regulation of stride times and increases the 

magnitude of variability in stride times and lengths. This can be understood as related to a single 

component of gait variability, interpreted as vertical impulse regulation. This relationship points 

to the importance of vertical impulse regulation and its use as a possible marker of gait health. 

The second strongest component of gait variability included the dependent variables: stability 

and dimensionality of knee angle motion (-0.87 and 0.71, respectively), the dimensionality of 

vertical pelvis motion (0.82), and regularity of stride length (-0.63). Greater component 2 scores 

were associated with increased knee stability (local dynamic stability measure is inversely 

related to stability), increased dimensionality of the knee and vertical pelvis motion, and more 

regular stride lengths (lower Sample Entropy). Walking at the preferred stride frequency 

optimizes local dynamic stability of knee motion, suggesting knee stability is a critical parameter 

in an individual’s freely chosen gait (Russell & Haworth, 2014). Along with increased knee 

stability, the sequence of stride lengths is more regular. Similarly, individuals with compromised 

knee joint motions due to injury have altered stride variability and decreased stability supporting 

our findings of the relation between knee stability and stride regularity. Our finding of greater 
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dimensionality in both knee motion and vertical pelvis motion correlating with increased stability 

is also in line with previous research. Increased dimensionality has been found to stabilize 

coordination in the upper body and we see the same inclination in the lower body (Fink, Kelso, 

Jirsa, & De Guzman, 2000). Greater dimensionality has also been linked with an unlocking of 

degrees of freedom which allows for better movement proficiency and stability (Buzzi et al., 

2003; Harbourne & Stergiou, 2003; Tuller & Turvey, 1982). Overall, component 2 can be 

interpreted as relating to dynamic stability and complexity of knee motion which is related to 

lower body movement regularity. 

Both dimensionality and local stability of medial-lateral pelvis motion loaded highly onto 

component 3 (0.88 and -0.84, respectively). High component 3 scores correlate with greater 

medial-lateral dimensionality and stability of the pelvis. Our results again show an increase in 

dimensionality corresponds to greater movement stability which is in line with previous research 

on coordination (Fink et al., 2000). Medial-lateral measures of gait are used as a predictor of 

falls, just as vertical measures are associated with falls (Bizovska et al., 2018; Swanenburg, de 

Bruin, Uebelhart, & Mulder, 2010). Older adults typically walk with an increased step width 

possibly to improve balance (Aboutorabi, Arazpour, Bahramizadeh, Hutchins, & Fadayevatan, 

2016). However, older adults have excessive medial-lateral movement of the body (Kaya, Krebs, 

& Riley, 1998) when compared to the younger population and older adults also have difficulty 

controlling this medial-lateral movement (Maki, 1997). This may lead to the age-related 

difficulty in controlling medial-lateral head oscillation (Mazzà et al., 2008) which again is 

important in stabilizing the head allowing for proper gait. Further, the exclusion of any vertical 

measurement in this construct (such as the measures from construct 1 or 2) suggests that while 

vertical and medial-lateral variability measures are important constructs of gait, medial-lateral 
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stability is independently controlled. Therefore, individuals must appropriately regulate the local 

stability of body oscillation in both directions to retain a dynamically stable gait. A decrease in 

the stability in either direction could result in deleterious gait effects but may go unnoticed if the 

appropriate directional measure of variability is not considered. It is therefore important to 

capture both vertical and medial-lateral gait stability to quantify the dynamic stability of gait. 

Further, some older adults have been shown to have decreased anterior-posterior regularity 

movement while having no differences in vertical or medial-lateral movement regularity (Kobsar 

et al., 2014). This lends the question if vertical, medial-lateral, and anterior-posterior stability are 

all independently regulated. Because the participants in this study walked on a treadmill, 

anterior-posterior trajectories were unnaturally affected. Further works could investigate if gait 

variability measures in the anterior-posterior axis also quantify an independent component of gait 

variability. Overall, this component points to the importance of medial-lateral stability. 

Component 4 can be interpreted as quantifying the persistence of the stride parameters. Both 

detrended fluctuation analysis measures loaded highly onto this component, while the other 

dependent variables had relatively low loadings (< .22). High detrended fluctuation analysis 

values (α > 0.5) indicate persistence, whereby longer stride lengths or times are typically 

followed by longer lengths or times, and shorter stride lengths or times subsequently get shorter. 

While α ≤ 0.5 indicates anti-persistence, where short lengths or times are typically followed by 

longer values. Higher detrended fluctuation analysis values have been linked with young healthy 

adults and values closer to α ≈ 0.5 are observed with aging or disease. As neither detrended 

fluctuation analysis measures load highly onto the other three components it appears that these 

measures of persistence are quantifying an aspect of gait variability that is independent of the 

other variability measures. 
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In conclusion, measures of gait variability are not quantifying a single construct such as the 

locomotor health or adaptability of an individual. Gait variability also does not breakdown into 

two components described in the literature as linear measures of magnitude (e.g., SD) and 

nonlinear measures of structure (e.g., SampEn, DFA, CoD, and LDS). Based on the measures 

used here, we identified four independent components of gait variability, which appear to 

represent: (1) vertical impulse attenuation, (2) knee stability, (3) medial-lateral stability, and (4) 

persistence. Measures based on magnitude (SD), regularity (SampEn), dimensionality (CoD), 

and stability (LDS) are interrelated when quantifying the same component. Indeed, increased 

dimensionality occurs concurrently with greater stability in both knee motion and medial-lateral 

pelvis motion, which are important aspects of gait that decline with age and disease. Similarly, 

decreased stability coincides with decreased stride regularity and greater step magnitude of 

variability. In contrast, the persistence of stride-to-stride parameters during gait were found to be 

unrelated to the other measures of gait variability. Thus, multiple measures of variability are 

necessary to quantify an individual’s pattern of gait 
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CHAPTER 4 

MEASURES OF GAIT VARIABILITY DO NOT PREDICT THE 

ADAPTABILITY PERFORMANCE OF SPLIT-BELT TREADMILL 

WALKING 

 

INTRODUCTION 

Human locomotion is considered to provide a window into the health of an individual, just as 

heart rate and blood pressure are used by physicians to identify underlying health issues 

(Farrokhi, O'Connell, Gil, Sparto, & Fitzgerald, 2015; Hanakawa et al., 1999; Lewek, Poole, 

Johnson, Halawa, & Huang, 2010; Sosnoff, Broglio, Shin, & Ferrara, 2011). Those studying 

human locomotion have long been concerned with identifying individuals’ risk of experiencing a 

fall. Measuring the variability of gait is one technique that has been used to identify the risk of 

falling. Traditionally, linear measures of dispersion such as standard deviation (SD) have been 

used to investigate the magnitude of gait variability. These analysis techniques have typically 

shown that older individuals and individuals at a higher fall risk have a larger magnitude of gait 

variability than their healthy counterparts (Callisaya et al., 2011; Hausdorff, Edelberg, et al., 

1997; Hausdorff, Rios, et al., 2001). However, linear measures are limited in their interpretation 

as they can only quantify the magnitude of variability and therefore may not be sensitive to 

individual differences. 

Over the last few decades, analysis techniques known as nonlinear measures have been created 

and implemented to not only discern old from young, or fallers from non-fallers, but to 

investigate what factors of gait lead to unhealthy patterns of locomotion (Buzzi et al., 2003; 
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Dingwell & Cusumano, 2000; Grassberger & Procaccia, 1983; Leverick et al., 2014). Linear 

measures of variability ignore the sequence of a time series while nonlinear techniques seek to 

quantify the sequential structure in a time series. In doing so, nonlinear measures are used to 

analyze how the sequential patterns of gait change with age and disease, and their relation to the 

risk of falls. Studies using nonlinear measures of variability have repeatedly found differences 

between healthy gait patterns and gait patterns associated with locomotor difficulty and falls 

(Buzzi et al., 2003; Cavanaugh et al., 2010; Decker et al., 2010; Dingwell & Cusumano, 2000). 

Therefore, they have been interpreted as quantifying an individual's ability to adapt to a change 

in the walking environment (Buzzi et al., 2003; Decker et al., 2010; Heiderscheit, 2000). 

However, the general claim that differences in nonlinear measures recorded from steady-state 

walking performance indicate better gait adaptability have not been adequately tested (Ducharme 

et al., 2018; Ducharme & van Emmerik, 2018). 

While nonlinear measures of variability are considered to index adaptability, they have been 

developed from different approaches to quantify characteristics of gait stability, dimensionality, 

regularity, and persistence. Here, stability refers to the human movement system’s resistance to 

change, that is the ability to move back into a stable pattern quickly after a perturbation, Stability 

is typically measured as the maximum Lyapunov exponent and referred to as local dynamic 

stability (LDS) (Bizovska et al., 2018; Dingwell & Cusumano, 2000). This measurement 

technique quantifies the stability of a gait pattern by measuring the divergence of movement 

trajectories over time. The larger the LDS value, the faster the rate of divergence, and therefore 

the more locally unstable the system is said to be. Fall prone and elderly individuals with a 

history of falls have decreased local dynamic stability and therefore are less locally stable 
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(Granata & Lockhart, 2008; Terrier & Reynard, 2015; Toebes et al., 2012). Therefore, the 

increased LDS of the younger, healthy group has been interpreted as a greater ability to adapt. 

Another approach to quantifying gait variability is its complexity or dimensionality. Vertically 

raising and lower of a foot on and off the ground is a low dimensional movement and is less 

complex than the combined vertical and anterior movement of the foot during walking. This 

dimensionality can be computed via correlation dimension (CoD), a nonlinear technique created 

by Grassberger and Procaccia (1983) that originates from the study of fractals. While we are 

most used to the dimensionality of space, we can also consider the dimensionality of a time 

series. In standard geometrical figures, determining the dimensionality of an object is simple. 

Lines are one dimensional, planes are two dimensional, and solid objects are three dimensional. 

Using fractals, the dimensionality of a line winding through space and time can also be 

quantified. For example, a time series of knee angle recorded many times a second over multiple 

walking strides can be plotted against time-lagged versions of itself. Repeating the process with 

additional time-lagged dimensions creates a phase plot showing an attractor or consistent pattern. 

The number of dimensions needed to reveal this attractor approximates its dimensionality, 

however, only a limited region of state space is visited, hence dimensionality can be a non-

integer value. CoD quantifies this non-integer dimensionality or complexity of the original knee 

angle (or other measures) time series. A study has shown older individuals to have increased 

movement dimensionality which has been interpreted as gait instability and a reduced ability to 

adapt (Buzzi et al., 2003) 

A third approach to quantify structure in variations is to compute the regularity or predictability 

of movement. Walking on a flat surface in a straight line would likely result in relatively 

predictable or repeatable stride lengths or times, but when walking through the woods on a dirt 
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trail the stride lengths or times would be more irregular and more difficult to predict. 

Approximate entropy and sample entropy (SampEn) are nonlinear measures used to quantify this 

regularity or predictability in a time series by determining the probability of sequences of data 

points being repeated (Pincus & Huang, 1992; Richman & Moorman, 2000). A higher SampEn 

value indicates a low probability of repetition and therefore less regularity in the data, while 

smaller SampEn values represent increased regularity or predictability within the signal. Using 

this measure, research has found that disease and aging can result in both increased and 

decreased levels of gait predictability when compared to their younger counterparts (Arif et al., 

2004; Karmakar et al., 2007; Leverick et al., 2014). Because of the noted difference in SampEn 

values between these populations and the association between aging, disease, and falls, it has 

been theorized than an optimal amount of entropy exists which allows for movement flexibility 

necessary for gait adaptability (Decker et al., 2010; Stergiou et al., 2016) 

Finally, a fourth approach to assess the structure of variability is to quantify persistence or 

smoothness of spatiotemporal gait parameters. In a persistent gait pattern, a long stride length is 

likely to be followed by another long stride and a short stride is likely to be followed by a short 

stride. An anti-persistent gait would occur when a long stride is followed by a short stride which 

is then followed by another long stride. Detrended fluctuation analysis (DFA) is used to quantify 

persistence within a signal (Peng et al., 1994; Peng et al., 1995). A DFA value close to 1 

suggests a more persistent, smoother, and slowly drifting gait pattern. A DFA value closer to 0.5 

suggests an anti-persistent gait. With aging and disease, there is a breakdown in gait persistence 

resulting in less persistence and a more random gait behavior (i.e., α ≈ 0.5), possibly indicating 

constant corrections and a lack of influence of one stride to strides in the future (Dingwell & 

Cusumano, 2000; Dingwell & Cusumano, 2010). This in turn can be associated with and falls in 
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the elderly due to an inability to appropriately regulate gait and adapt to pertinent changes in the 

environment (Arif et al., 2002; Hausdorff, 2007). 

Altogether, measures of nonlinear variability are assumed to measure gait adaptability, which 

can be defined as the ability for an individual to quickly and accurately adjust to the task and 

environmental demands or constraints (Maki et al., 2008). To date, the most commonly used 

method to investigate gait adaptability is the split-belt treadmill paradigm (Bruijn et al., 2012; 

Ducharme et al., 2019; Ducharme et al., 2018; Musselman et al., 2011; Ogawa, Kawashima, 

Obata, Kanosue, & Nakazawa, 2015; Reisman et al., 2010; Vasudevan et al., 2011). This 

paradigm uses a treadmill with two separate belts, each powered independently, allowing the 

belts to move at different speeds. The task creates a step length asymmetry that typically reduces 

or disappears throughout a trial in healthy adults. This paradigm has been used to test the ability 

of infants, children, adults, and clinical populations to adapt their gait (Torres-Oviedo et al., 

2011). The ability to adapt to this split-belt paradigm is decreased in children, clinical 

populations, and the elderly. These populations are unable to fully correct the step length 

asymmetry, have increased time to reach step length symmetry, and/or show smaller aftereffects 

in step length asymmetry which indicates that the new gait pattern was not “learned.” (Bruijn et 

al., 2012; Musselman et al., 2011; Vasudevan et al., 2011). This reduced adaptability that has 

been demonstrated in older adults and clinical populations is in line with research studies 

described earlier which have distinguished these populations using nonlinear measures of 

variability in steady-state walking. However, it is a logical fallacy to conclude from the findings 

of all these studies that nonlinear measures of variability therefore index adaptability of 

individuals. 
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To assess the validity of the claim that nonlinear measures of variability quantify adaptability, 

the current study aimed to test whether these measures of variability (SD, SampEn, DFA, CoD, 

LDS) could predict adaptability in the split-belt treadmill paradigm. Only two studies could be 

found that have directly assessed this question, at least in part. In a study of young healthy 

individuals, persistence, quantified via DFA, was not found to be related to gait adaptability 

(Ducharme & van Emmerik, 2018). Later work which included older adults also found there to 

be no overall correlation between DFA and adaptability performance across the lifespan 

(Ducharme et al., 2019). As only DFA was computed, it remains possible that other nonlinear 

measures of variability are correlated with adaptability. Hence, the purpose of the current study 

was to investigate if any variability measure of steady-state walking could predict the ability to 

adapt gait. If nonlinear measures of variability are to be useful indicators of adaptability and 

health, they should show a relationship across the lifespan, and not only distinguish populations 

that have already been distinguished through other measures. Therefore, age and measures of 

variability were used to predict adaptability performance in adults across the lifespan. Measures 

of gait variability from a steady-state walking trial at the individual’s preferred speed included: 

standard deviation, SampEn, and DFA of stride times and stride lengths, and LDS and CoD of 

knee sagittal plane motion, and pelvis vertical and medial-lateral motion. Also, based on recent 

findings in chapter 3 of this dissertation, the components from the principal component analysis 

(PCA) were tested for predicting adaptability performance. The results from the PCA showed 

measures of gait variability to be interdependently related to four components of gait interpreted 

as vertical impulse regulation, knee stability, medial-lateral stability, and gait persistence. It was 

hypothesized that the four components from the PCA will be better predictors of gait adaptability 

than any single variability measure. 



82 

 

 

METHODS 

This study was approved by the Old Dominion University Institutional Review Board (reference 

number 19-143). Participants included 34 volunteers (22 females, 12 males) ranging from 23 to 

71 years old (see Table 4.1). Data collection took place between January and March 2020. 

Inclusion criteria included the ability to walk for at least 15 minutes at a time and the ability to 

walk for a total of 45 minutes with intermittent breaks. Exclusion criteria included any history of 

neuromuscular or neurological injury or disease or a current acute injury that affected gait. 

Following the participants’ informed consent, demographic information including age, height, 

weight, daily physical activity participation, and sex was recorded. 

  

Table 4.1. Participant demographics 

 

Mean SD 

Age (years) 41.8 14.5 

Body weight (kg) 74.9 24.0 

Body height (cm) 169 8.13 

Preferred walking speed (m/s) 1.13 0.13 

Falls risk score (0-10) 9.99 0.04 

Exercise (days per week) 3.7 2.0 

N=34   SD is the standard deviation 
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Participants were prepared for three-dimensional motion capture by attaching reflective sphere 

markers. The passive marker set was adapted from previous works (Bowersock et al., 2016; Petit 

et al., 2014): Four anatomical markers placed on the superior iliac crests to defined the pelvis, 

markers placed on the greater trochanters and femoral condyles defined the thighs, markers 

placed on the tibial plateaus and malleoli defined the shanks, a four-marker cluster placed on top 

of metatarsal head 1 to 5, and a marker on the heel cup of the shoe defined the feet. Tracking 

markers include the pelvis markers to track the pelvis. Clusters were used to decrease skin 

artifact movement and were placed on the lateral aspect of the thighs and posterior-lateral aspect 

of the shanks to track the lower limbs. The 5-foot markers remained to track the foot. All other 

markers were removed. 

Kinematic data were collected using 10 cameras (Vicon) collecting at 100 Hz over an 

instrumented split-belt treadmill with two embedded force plates collecting at 1000 Hz. An 

instrumented treadmill was chosen instead of assessing overground walking as continuous time-

series data over many strides are necessary to calculate the nonlinear techniques used in this 

study. Before data collection began, participants preferred treadmill walking speed was 

determined by incrementally increasing the treadmill speed until the participant announced the 

current speed is their preferred walking speed. After one- and one-half minutes of walking at this 

speed, the treadmill slowed to a stop. The treadmill speed was then set to a speed that was 

approximately 15% higher than the participants stated the preferred speed. The treadmill then 

incrementally decreased until the participant announced the current speed is their preferred. The 

average of the two stated preferred speeds was taken as the preferred walking speed (Ducharme 

et al., 2019; Jordan et al., 2007). 
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To collect steady-state walking variability the protocol began with one six-minute walking trial 

at the participant’s self-selected speed with the treadmill belts going the same speed. To test 

whether gait variability measures are related to gait adaptability performance, the split-belt 

treadmill paradigm was utilized. From the participant’s self-selected walking speed, the treadmill 

belt corresponding to the participant’s non-dominant limb was set to 50% of their preferred 

walking speed while the other belt was set at their preferred walking speed to create a 1 to 2 

walking ratio. The trial lasted 10 minutes. After 10 minutes, the treadmill was stopped. During 

all trials, participants were asked to look forward as much as possible. At the beginning of each 

trial, participants were instructed to put their hands on the handrails until they felt comfortable 

walking without the assistance of the handrails. All subjects were able to complete all trials 

without the need for assistance. The variables of interest included stride length, stride time, knee 

joint sagittal plane angle for the dominant limbs (N=3 left foot dominate), and pelvis position in 

the medial-lateral and vertical axes. Stride length was defined as the anterior-posterior difference 

of the heel marker at the time of subsequent foot contacts of the ipsilateral limb (Reisman et al., 

2010). Foot contact was defined by the local minimum of the vertical position of the heel marker 

and foot off was defined as the peak vertical velocity of the heel marker (Pijnappels et al., 2001; 

Roerdink et al., 2007). The flexion-extension knee angle was defined as the relative angle 

between the shank and the thigh segments. The pelvis position used to define pelvis position was 

defined as the center of the four anatomical markers placed on the back of the pelvis. Stride 

length, stride time, knee angle, and pelvis vertical and medial-lateral positions defined above 

were calculated using the motion capture software (Vicon Nexus, Oxford, UK). Gait variability 

analysis was completed using a custom MATLAB 2019b script. SD, SampEn, and DFA were 

implemented on stride measures, as is common. CoD and LDS were implemented on knee angle 
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and pelvis motion. Adaptability performance was quantified as the mean step length symmetry 

over the last 50 strides of the trial (Ogawa et al., 2015). Gait length symmetry was calculated as 

(Bruijn et al., 2012): 

𝑆𝑇𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑦 =  
𝑆𝑇𝐹𝑎𝑠𝑡− 𝑆𝑇𝑠𝑙𝑜𝑤

𝑆𝑇𝐹𝑎𝑠𝑡+ 𝑆𝑇𝑠𝑙𝑜𝑤
    Equation 4.1 

The mean, SD, and CV were calculated on a stride to stride basis for stride length and stride time 

for each subject over the 6-minute trial (10 strides were trimmed from the beginning and end for 

all analyses). The SampEn value for stride time and stride length over the 6-minute trials was 

quantified using parameters m of 2 and r of 0.2 times the standard deviation of the time series 

(Pincus & Huang, 1992; Russell & Haworth, 2014; Yentes et al., 2013). DFA was calculated on 

the sequence of the last 250 stride times and stride lengths. Following recommendations in the 

literature, the window sizes used in the analysis ranged from six strides to the total number of 

strides divided by eight  (Damouras et al., 2010; Delignières et al., 2016; Weilert, 2017). 

To begin calculating CoD and LYE, each movement trajectory time series was first normalized 

by extracting the last 100 strides from the 6-minute trial. These 100 strides were resampled so 

that on average 100 frames were equal to 1 stride. Therefore, each participant was analyzed 

using the same length and size of data, of 100 strides containing 100 frames each similar to 

previous works (Dingwell & Cusumano, 2000; Granata & Lockhart, 2008). The average mutual 

information (AMI) and false nearest neighbor (FNN) algorithms were used to determine the 

subject-specific time lag and number of dimensions to reconstruct the state space. The AMI 

function quantifies how much information is shared between two vectors of data and assures the 

time-delayed is appropriate and the vectors have minimum redundancy. The FNN algorithm 

finds how many dimensions are necessary so that the number of false nearest neighbors 
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approaches zero. A false nearest neighbor occurs when data points are close together in lower 

dimensions but are no longer close when embedded into a higher dimension. Previous works 

have found a similar result between using subject-specific or the same values for all participants 

(Raffalt et al., 2017). The CoD of knee joint angle and pelvis medial-lateral and vertical positions 

were then quantified using the Grassberger and Procaccia algorithm (Dingwell & Cusumano, 

2000; Grassberger & Procaccia, 1983; Raffalt et al., 2017). The short term local dynamic 

stability was quantified between 0 and 1 strides for knee joint angle and pelvis oscillation 

(Dingwell & Cusumano, 2000; Raffalt et al., 2017; Rosenstein et al., 1993). 

Statistical Analysis 

Linear regression analysis was used to assess whether age or measures of variability from steady-

state walking predicted adaptability performance. Using simple linear regression, each predictor 

was tested individually for its relationship with the outcome measure, adaptability performance. 

Chapter 3 of this dissertation identified four components of gait variability using a PCA: vertical 

impulse attenuation, knee stability, medial-lateral stability, and persistence. Each of the four 

components was used for each participant. An alpha level of < 0.05 was used to define a 

significant relationship. Effect sizes were interpreted as small (0.01 ≤ R2 < 0.09), medium (0.09 ≤ 

R2 < 0.25), and large (R2 ≥ 0.25) (Cohen, 2013). 

 

RESULTS 

Figure 4.1 displays step length symmetry plotted throughout the split-belt protocol. The 

participants have been plotted in three separate age groups, young (less than 30 years old) middle 

age (30 to 59 years old) and old (over 59 years old) to improve the visual clarity of adaptability 
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performance. The statistical analysis did not separate the population into age groups but used age 

as a continuous outcome variable. Participants began the split-belt treadmill trial with asymmetry 

between left and right step lengths, which decreased over the 10 minutes of walking. No age 

group differences could be discerned. This is supported by finding a small non-significant 

relationship between age and adaptability performance (see Figure 4.2 and Table 4.2). Figure 4.3 

displays scatter plots between variability measures (SD, SampEn, and DFA) and stride measures 

(time and length). SD, SampEn, and DFA measures of stride length and stride time were not 

significantly predictive of adaptability performance (Table 4.2). Figure 4.4 displays scatter plots 

between measures of knee, vertical pelvis, and medial-lateral pelvis variability and step length 

symmetry. CoD and LDS of the knee and pelvis medial-lateral and vertical motion were not 

significantly (none to small effect sizes) related to adaptability performance (See Table 4.2). 

Adaptability performance was not significantly predicted by any of the component scores from 

the PCA and the effects were small (See Figure 4.5 and Table 4.2). 
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Figure 4.1. Step length symmetry (dimensionless) during the split-belt treadmill trial for an 

individual at each step during the 10-minute trial. Top panel: younger <30 years old; Middle 

panel: middle age 30 to 59 years old; Bottom panel: older >59 years old). Each colored line 

represents the step length symmetry values for an individual. 
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Figure 4.2. Scatter plot of age and average step length symmetry of last 50 steps from 

split-belt treadmill paradigm. Data points represent individual participants.  
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Figure 4.4. Scatter plot between step length symmetry and movement trajectory variability. 

Top: knee angle variability. Middle: vertical pelvis variability. Bottom: medial-lateral pelvis 

variability. CoD is correlation dimension; LDS is local dynamic stability. ML is medial-

lateral direction, V is vertical direction. No statistically significant regressions were found. 
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DISCUSSION 

The purpose of this work was to directly test the claim in the literature that measures of gait 

variability from steady-state walking are indicative of the ability to adapt. For steady-state 

walking, participants walked on a treadmill for 6 minutes at their preferred speed, after already 

acclimating to the treadmill. Multiple measures of gait variability were computed from this trial, 

which included SD, SampEn, DFA of stride length and stride time as well as CoD, LDS of knee 

angle, and pelvis position in the medial-lateral and vertical directions. Gait adaptability was 

assessed using the most commonly investigated task in the literature, the split-belt treadmill 

paradigm, where the same participants walked at a 2:1 speed ratio with the belt for dominant leg 

set at the preferred speed and the belt for the non-dominant leg set at half of the preferred speed. 

Gait adaptability performance was quantified as the mean step length symmetry over the last 50 

strides of the trial. As older adults have been found to have reduced ability to adapt to the split-

belt treadmill, adult participants across the lifespan were recruited to participate in the study. The 

relationship between age and gait adaptability performance was tested, as well as the 

relationships between measures of steady-state gait variability and adaptability performance. 

Contrary to our prediction, age was not significantly related to gait adaptability. Even more 

importantly, there was no significant relationship between any single or combined nonlinear 

measure of gait variability and gait adaptability, which contradicts the claim made in much of the 

literature. 

Age and Adaptability 

The results of this work indicated no relationship between age and adaptability performance 

during the split-belt paradigm. While older adults have been found to adapt their gait less and 

more slowly when assessed by step length symmetry (Bruijn et al., 2012), a more recent study 
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also found no age-dependent difference in adaptability performance (Ducharme et al., 2019). The 

authors of this study pointed to the disregard of participants' physical activity in previous 

research. The convenience sample population of this work comprised of volunteers who 

concluded they would be able to complete the adaptability protocol may have resulted in older 

adults who were physically active. Ducharme and colleagues suggested that the activity level of 

the older negated the previously found age-related adaptability declines (Ducharme et al., 2019). 

Similarly, the older participants in the current study were active, exercising on average 4.4 days 

per week, and those with gait difficulties were excluded. The inclusion of healthy, active older 

adults is likely to have led to the absence of a statistically significant relationship between age 

and gait adaptability. The benefits of exercise on cardiovascular and musculoskeletal health in 

mitigating the effects of age are well documented (Faulkner, Larkin, Claflin, & Brooks, 2007; 

Lavie, Ozemek, Carbone, Katzmarzyk, & Blair, 2019; Pollock et al., 2018). The results in this 

work and from Ducharme et al (2019) indicate that gait adaptability can be retained through 

remaining physically active supporting the notion that exercise can reduce the age-related 

declines in neuromotor function (Ducharme et al., 2019). 

Measures of Variability and Adaptability 

The current research found no significant relationships between measures of variability and 

adaptability performance. This finding is in agreement with other research which has directly 

examined this relationship. Ducharme and colleagues computed DFA of stride time during 

symmetrical walking at the subject’s preferred walking speed and half the subject’s preferred 

walking speed. This study also used the split-belt treadmill paradigm at a 2:1 ratio and found no 

relationship between DFA results and adaptability performance or time of adaptability 

performance (Ducharme et al., 2019; Ducharme et al., 2018). The results of the current study 
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extend these findings by also quantifying SD, SampEn, CoD, and LDS. Similar to the results for 

DFA, none of these measures of steady-state variability alone significantly predicted adaptability 

performance. While each variable was not significantly related to gait adaptability, it remained 

possible that a group of variables might be. The principal component analysis in chapter 3 found 

independent groups of variability measures to be correlated and able to quantify four separate 

components of gait variability. Based on this finding, the relationship between each component 

score and adaptability performance was assessed. Gait adaptability performance in the split-belt 

treadmill task was not significantly predicted by any of the component scores. In summary, these 

results again show that measures of gait variability from steady-state walking are not 

significantly related to the performance of on a gait adaptation task 

A limitation of this work includes the possibility that the participants in this experiment produced 

a limited range of performance and gait variability values. However, the participants had ranges 

of adaptability performance comparable with other studies investigating the split-belt adaptation 

performance among health adults thus the range of performance can be considered acceptable for 

this adaptability task (Reisman, Block, & Bastian, 2005; Torres-Oviedo et al., 2011; Vervoort et 

al., 2019). Previous research has investigated differences in more extreme groups (i.e. Parkinson 

and stroke vs healthy) but the purpose of this work was to test if gait variability and adaptability 

performance were sensitive to changes in individuals that cannot easily be separated. In this 

study, adaptability performance was not especially sensitive to age-related changes but more 

likely related to participation in physical activity throughout the lifetime. Also, as no work to our 

knowledge has defined healthy ranges of measures of variability but many suggest their 

sensitivity to changes in gait stability and adaptability, we are confident in the merit of our 

findings and their meaningful addition to the literature. 
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Due to logistical constraints and appreciation for participants' time and safety, only one gait 

adaptability task was implemented. The split-belt paradigm task does not completely represent 

locomotor adaptation. Other tasks of gait arability may be more related to age and measures of 

gait variability. However, this task is one of the most common techniques used to investigate a 

system's ability to change kinetic and kinematic properties of gait to produce a novel gait pattern 

necessary to move in the new walking environment. Also, researchers do not specify what kind 

of adaptability tasks are related to measures of variability but refer to adaptability as a general 

ability. At the very least, this work has demonstrated the lack of relationship between 

adaptability performance during a split-belt treadmill paradigm and measures of variability. 

Therefore, this methodology was appropriate to test the claim that measures of variability reflect 

an individual ability to alter and adapt their pattern of gait. 

In conclusion, this study does not support the claim that measures of gait variability are 

associated with an individual ability to adapt. Neither the employment of single measures nor 

multiple measures of gait variability accurately predict adaptability performance. While a 

moderate relationship between age and adaptability performance may exist, participation in daily 

physical activity may impact the ability to adapt.
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CHAPTER 5 

 FINAL DISCUSSION 

 

The purpose of this work was to study the relationship between age, measures of variability, and 

locomotor adaptability. In the past few decades, measures of variability, specifically nonlinear 

measures of variability, have been used to study patterns of gait to identify unhealthy locomote 

behavior, motor disease, and risk of falls (Bizovska et al., 2018; Hausdorff, 2009; Hausdorff, 

Edelberg, et al., 1997; Lipsitz et al., 1991; Mehdizadeh, 2018). Typically, studies have used one 

or possibly two variability measures and compared young and old populations considering any 

age-related differences to be unfavorable. The findings, however, have been mixed without a 

consistent directional change in measures of gait variability due to age. Therefore, the first aim 

of this work was to determine the relationship between aging and multiple measures of gait 

variability. Further, because only one or two measures of variability are used at a time, it is 

difficult to understand the relationship between variability measures. Therefore, the second aim 

of this work was to examine the relationship between measures of variability to determine if they 

measure a single or multiple constructs of locomotor behavior. These measures have been 

claimed to quantify some underlying characteristics of the locomotor system and assess the 

ability for an individual to adapt (Buzzi et al., 2003; Cavanaugh et al., 2010; Decker et al., 2010). 

The final aim of this work was to investigate these claims and determine if measures of 

variability quantify the ability of an individual to adapt to a novel gait adaptation task. 
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AGE-RELATED CHANGES IN MEASURES OF GAIT VARIABILITY 

Human movement is inherently variable, and scientists have utilized numerous methods 

including linear and nonlinear analyses to quantify this variability. From these works, a 

relationship between measures of variability and age has been suggested by many researchers 

(Buzzi et al., 2003; Hausdorff, Rios, et al., 2001; Mehdizadeh, 2018; Newell & Corcos, 1993; 

Owings & Grabiner, 2004). However, these studies often use only one or two measures of 

variability and examine only young and old adults, without consideration of middle-aged adults. 

With multiple measures of variability used across different studies, it is difficult to identify a 

consistent change in these measures of variability and how changes occur over the lifetime. To 

investigate the age-dependent change in measures of gait variability, thirty-four volunteers from 

ages 23 to 72 years walked at their self-selected preferred speed for six minutes. During this 

time, stride length, stride time, knee angle, medial-lateral pelvis position, and vertical pelvis 

position were measured to capture locomotor variability. Linear variability measures, standard 

deviation (SD) and coefficient of variation (CV), and nonlinear measures, sample entropy 

(SampEn) and detrended fluctuation analysis (DFA), were applied to stride length and stride 

time. Nonlinear measures correlation dimension (CoD), and local dynamic stability (LDS) were 

applied to knee angle and pelvis motion in the medial-lateral and vertical dimensions. A simple 

linear regression model was used to investigate age-related changes in these measures. 

In this work, age was not found to be a strong predictor for the measures of gait variability. The 

only variability measures predicted by age were CV of stride length and SampEn of stride time, 

revealing an increase in the magnitude of variability in stride lengths and a decrease in the 

regularity of stride time with age. The strongest relationship between age and the outcome 

variables was the negative relationship with the mean preferred walking speed (moderate effect 
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size). The age-related decline in walking speed has been shown in previous research (Himann et 

al., 1988). We, therefore, investigated the relationship between gait speed and variability 

measures to investigate if gait speed was a better predictor of gait variability than age. Using a 

simple linear regression model, we found preferred gait speed to significantly predict more 

measures of gait variability and explain more of the variance than age. CV of stride length, 

SampEn of stride time and stride length, CoD of knee angle, and pelvis movement in the vertical 

direction was significantly predicted by preferred walking speed. Those who walked slower had 

decreased stride length variability magnitude (CV), increased stride time regularity (SampEn), 

decreased stride length regularity (SampEn), and decreased dimensionality of vertical pelvis 

movement and knee angle (CoD). A third linear multivariate model that used both age and gait 

speed as predictors found that age did not significantly explain any additional variance than 

speed alone. Because of the strong correlation between age and speed, it is not surprising that 

studies that compare only young and old populations have found significant age-related 

differences in measures of variability. The inclusion of middle-aged adults and physically active 

older adults may have nullified this finding as middle-age adults had a large variance in gait 

variability measures.  Overall preferred gait speed has a bigger impact on these measures of gait 

variability than age. Older individuals who can maintain a higher gait speed are likely to preserve 

the same level of gait variability as younger individuals. 

 

RELATIONSHIP BETWEEN MEASURES OF GAIT VARIABILITY 

Measures of gait variability are used to assess the health and performance of individuals' gait 

patterns. There are numerous different methods used to quantify variability, including linear and 

nonlinear measures. Both types of variability measures have identified differences due to older 
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age, disease, and risk of falls (Bizovska et al., 2018; Buzzi et al., 2003; Lipsitz et al., 1991; Lord 

et al., 1996; Owings & Grabiner, 2004). However, the direction of change in these measures is 

inconsistent, making interpretations and conclusions between studies difficult. Typically, studies 

utilize one or two measures of variability and compare these values between a population of 

young individuals and a population of old individuals. It is was therefore unknown if measures of 

variability are related and if they are all measuring the same construct if measures of variability 

are unrelated and each measure separate constructs of gait, or if groups of variability measures 

are addressing independent constructs of gait. In chapter 3, a principal component analysis 

(PCA) was implemented to investigate the relationship between variability measures. For this 

analysis, standard deviation (SD), sample entropy (SampEn), and detrended fluctuation analysis 

(DFA) of stride time and length were computed. SD quantifies the magnitude of stride 

variability, SampEn quantifies stride regularity, and DFA quantifies stride persistence. 

Correlation dimension (CoD) and local dynamic stability (LDS) of the knee angle and pelvis 

position in the vertical and medial-lateral dimensions were computed. CoD quantifies the 

dimensionality or complexity of movement and LDS quantifies the stability of movement. 

The results of the PCA identified four separate components of gait. Component 1 showed the 

stability of the pelvis motion in the vertical direction, the regularity of stride time, and the 

magnitude of stride length and time variability to all quantify the same underlying characteristic 

of gait. These measures appear to be related to attenuation of the vertical impulse exhibited 

during walking. The regulation of vertical impulse is an important aspect of walking as it enables 

individuals to control the vertical oscillations of the head which is necessary for steady optic 

flow and vestibular system processes (Berthoz & Pozzo, 1994; Spoor et al., 1994). The literature 

has shown an age-related decline in this ability to walk with appropriate vertical posture and 
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regulate body accelerations (Iosa et al., 2014; Mazzà et al., 2008). This may be the cause of the 

age-related differences found in these measures of variability (Acharya, Joseph, Kannathal, Lim, 

& Suri, 2006; Kurz & Stergiou, 2003; Mehdizadeh, 2018), which points to the importance of 

vertical impulse regulation. 

Component 2 showed the stability and dimensionality of knee angle motion, the dimensionality 

of vertical pelvis motion, and regularity of stride length to quantify the same characteristic of 

gait. We proposed that these measures quantify the stability of the lower limb movement. The 

positive relationship between dimensionality and stability has previously been observed, with 

increased dimensionality being associated with releasing degrees of freedom, which allows for 

better movement proficiency and stability (Buzzi et al., 2003; Fink et al., 2000; Harbourne & 

Stergiou, 2003; Tuller & Turvey, 1982). Therefore, knee stability appears to be an important 

aspect of gait proficiency. Further, walking at the preferred stride frequency optimizes local 

dynamic stability of knee motion, alluding to the importance of knee stability in the gait 

parameters individuals freely adopt (Russell & Haworth, 2014). Knee stability is associated with 

increased stride length regularity and individuals with compromised knee joint motions due to 

injury have altered stride variability and decreased stability supporting our findings of the 

relation between knee stability, dimensionality and stride regularity (Moraiti et al., 2007; 

Yakhdani et al., 2010). Overall, component 2 reveals the importance of knee stability and its 

relation to lower body movement regularity. A decrease in either of these features of gait can be 

detrimental to gait. 

Component 3 showed that dimensionality and local stability of medial-lateral pelvis motion 

quantify the same characteristic of gait. We proposed that these measures are quantifying the 

stability of medial-lateral movement during walking. Regulation of medial-lateral motion has 
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previously been identified as an import aspect of gait that declines with age (Bizovska et al., 

2018; Kaya et al., 1998; Maki, 1997; Swanenburg et al., 2010), and is independent of vertical 

movement regulation as seen in component 1. Therefore, individuals must appropriately regulate 

the local stability of body oscillation in both directions to retain an overall dynamically stable 

gait. A decrease in the stability in either direction could result in deleterious gait effects but may 

go unnoticed if the appropriate directional measure of variability is not considered. Further, some 

older adults have been shown to have decreased anterior-posterior regularity movement while 

having no differences in vertical or medial-lateral movement regularity (Kobsar, Olson, 

Paranjape, Hadjistavropoulos, & Barden, 2014). Regulation of vertical, medial-lateral, and 

anterior-posterior movements are necessary for proper gait and appear to be independently 

regulated by the locomotor system as shown by the results of the PCA. 

Component 4 for the PCA showed that the persistence of the stride parameters is independent of 

the other gait variability measures. As with vertical and medial-lateral gait stability, there is also 

an age-related decline in gait persistence as measured by DFA (Hausdorff, Ashkenazy, et al., 

2001). High detrended fluctuation analysis values (α > 0.5) indicate persistence, whereby longer 

stride lengths or times are typically followed by longer lengths or times, and shorter stride 

lengths or times subsequently get shorter. An α ≤ 0.5 indicates anti-persistence, where short 

stride lengths or times would be followed by longer stride lengths or times and vice versa. The 

persistence of strides appears to be another important component of gait that is independent of 

the other variability measures and characteristics of gait variability. Therefore, multiple measures 

of variability are necessary to understand the specific declines in gait an individual or population 

may have. 
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MEASURES OF GAIT VARIABILITY AND ADAPTABILITY PERFORMANCE 

Measures of gait variability are used to indirectly access an individual’s ability to adapt. It has 

been suggested that gait variability measures indicate movement flexibility and adaptability 

(Buzzi et al., 2003; Cavanaugh et al., 2010; Decker et al., 2010) Only two studies have directly 

investigated this claim and the findings do not support this claim so far (Ducharme et al., 2019; 

Ducharme et al., 2018). However, these previous studies have only investigated the relationship 

between one measure of gait variability (DFA) and adaptability. Chapter 4 expanded on this 

work by investigating the relationship between several measures of gait variability and 

adaptability performance. The split-belt treadmill paradigm was adopted, because it is the most 

commonly used approach for assessing the ability for individuals to adapt to a novel gait task 

(Reisman et al., 2010). Specifically, participants walked at a 2:1 split-belt ratio where the 

treadmill belt associated with their dominant limb moved half the speed of the belt associated 

with their non-dominant limb. The belt speed of the non-dominant limb was set at the subject’s 

self-selected preferred speed, determined during baseline walking trials. Performance was 

quantified using step length symmetry which has previously been used as a measure of 

adaptability performance in this protocol. Linear regression models were used the compute the 

relationship between measures of gait variability and adaptability performance. Further, the four 

components of gait found using the PCA in chapter 3 were used to determine if these 

components were independently or dependently more predictive of adaptability performance 

than any single measure of gait variability. 

Results from this work found no relationship between measures of gait variability and 

adaptability performance. This is in further support of the two previous studies that found no 

relationship between the single measure of DFA and gait performance (Ducharme et al., 2019; 
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Ducharme et al., 2018). Therefore, no single measure of gait variability during steady-state 

walking predicts how well an individual will adapt to a change in the walking environment using 

the split-belt treadmill paradigm. Clearly, this task does not represent all possible forms of 

locomotor adaptation. To avoid a fall after suffering a trip, a different type of locomotor 

adaptation is needed than was studied here, and of course, there are others. However, the split-

belt treadmill paradigm does represent a system's ability to change kinetic and kinematic 

properties of gait to produce a novel gait pattern necessary to move in a unique walking 

environment and has been the most extensively investigated adaptability paradigm. If measures 

of gait variability do not predict adaptability in the split-belt treadmill task, then the general 

claim of the relationship between variability and adaptability must be questioned. 

 

CLINICAL RELEVANCE 

The findings presented in this study not only add to the current scientific literature and further 

our knowledge of gait variability and adaptability, but this work is also applicable to clinicians 

and the work being done in clinical settings. The biggest impact was the finding of relationships 

between measures of gait variability. Using nonlinear measures of gait variability as a sort of 

vital sign of gait health has been promoted in the research field but because of the need for 

special algorithms, data collection tools, and knowledge of appropriate protocols, their use in the 

clinical settings has been stifled. However, the linear measure SD is often used clinically to 

quantify gait improvements, deficiency, or detect possible fall risks of individuals 

(Balasubramanian, Neptune, & Kautz, 2009; Brach et al., 2010; Brach et al., 2001). This work 

was able to further unlock the benefits of linear measures by showing associations between linear 

and nonlinear measures of variability. A relationship between the linear measure SD calculating 
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on the simple spatiotemporal measures stride time and stride length, and the nonlinear measures 

SampEn and LDS was discovered. This allows clinicians to use the familiar measures of an 

individual’s SD of stride time and stride length and extrapolate information about the individual's 

gait regularity (SampEn) and stability (LDS). Further, this information can be used together to 

uncover possible deficiency in vertical impulse attenuation, an important aspect of gait as 

discussed in chapter 4. This work's aim of relating measures of variability has increased the 

clinical utility of nonlinear measures, which have been previously shown to be useful tools in 

identifying risks, deficits, and changes in gait. 

Other findings in this work showed gait speed and not age to be the driving factor behind the 

changes in gait variability measures seen between the young and old population. Previous studies 

have shown higher gait speeds achieved either naturally or through exercise training in older and 

frail adults to be beneficial and accompanied by a decrease in balance, fear of falling, mortality, 

and overall improvements in ambulation (Chou, Hwang, & Wu, 2012; Hardy, Perera, Roumani, 

Chandler, & Studenski, 2007). Training otherwise healthy older individuals to increase their 

preferred walking speed may help to also maintain gait variability values like those seen in 

younger adults, possibly improving the functionality and stability of their gait. Although no 

relationship between measures of gait variability and adaptability performance were found using 

the split-belt treadmill adaptability task, measures of variability are related to falls in older adults 

(Buzzi et al., 2003; Hausdorff, 2007; Norris et al., 2005). Therefore, achieving variability 

measures those seen in non-fallers or youths by increasing gait speed may be beneficial to 

decrease falls risk. Future work investigating the effect of training programs to increase preferred 

walking speed on measures of gait variability is needed to uncover further benefits of preserving 

gait speed. 
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SUMMARY 

To conclude, this work intended to understand the relationships between age, measures of 

variability, and locomotor adaptability. Age was found to be a poor predictor of gait variability 

measures, while instead, preferred walking speed predicted more of the variance in these 

measures of variability. Measures of variability are not quantifying a single construct of 

locomotor health or adaptability. Instead, we identified four components of gait variability which 

are independently regulated by the motor system. However, neither these four components nor 

any single measure of variability is associated with an individual’s ability to adapt their gait. This 

dissertation contributes to our understanding of the concepts of variability and adaptability. This 

work has shown that gait variability does not quantify a single component but at least four 

independent components for gait. Finally, adaptability cannot be inferred from linear or 

nonlinear measures of gait variability.
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