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ABSTRACT 

CONSTRAINED OPTIMAL ORBIT DESIGN FOR EARTH OBSERVATION 

Sharon D. Vtipil 
Old Dominion University, 2010 
Chairman: Dr. Brett A. Newman 

The purpose of this dissertation is to demonstrate user requirements for a satellite 

observation mission can be used to determine a constrained optimal orbit based on 

observation site requirements, observation condition restraints, and sensor characteristics. 

The typical Earth observation satellite is first designed according to an appropriate orbit; 

then the observation requirements are used to develop a target schedule. The new design 

process outlines the development of the appropriate orbit by incorporating user 

requirements at the forefront of mission planning, not after an orbit has been selected. 

This research shows how to map the user requirements into constraints for the cost 

function and optimization process. A global case study with variations demonstrates the 

effectiveness of the design process. Additionally, a case study is performed for a regional 

or clustered set of targets. Finally, a lifecycle analysis tests the orbit in a full perturbation 

environment to evaluate the changes in the ideal orbital elements over time without orbit 

maintenance or corrections. 
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CHAPTER 1 

INTRODUCTION 

1.1 Problem Motivation 

To obtain the ultimate view, the human has pursued the high ground. The first 

high ground was terrestrial; the hill, mountain, or cliff. This advantageous view served as 

a look out for approaching visitors whether friend or foe. The high ground provided a 

military advantage to see the battlefield for maneuvering troops or political advantage of 

viewing one's realm. Humans also learned to build towers as tall as their engineering 

skills allowed reaching into the sky to gain an aerial view.1 Towers are an integral part of 

fortresses for lookouts and serve as lighthouses to lead ships to safety. 

As technology advanced, the high ground became the sky. The first recorded use 

of the sky as the high ground was in 1794 when a French officer used a hot air balloon to 

watch Austrian army troop movements.2 On December 17, 1903, in Kitty Hawk, North 

Carolina, man first achieved powered flight.3 Wilbur Wright expressed his belief in a 

letter "For some years I have been afflicted with the belief that flight is possible to man." 

Orville Wright was "proud that he and his brother had made something of themselves, 

and had used their own wits and their modest resources to change the future; that of all 

the giants who had come before, he and Wilbur alone had the gumption and the know-

how to succeed with their frail machine of sticks and canvas on the remote stretch of sand 

at Kitty Hawk."3 Airplanes quickly found their purpose for providing aerial 

reconnaissance. By 1910 Britain, France, and Germany recognized the value of winged 

aircraft for reconnaissance. Whereas cavalry scouts on the ground might be gone for 



2 

days, airplanes could cover more ground in hours instead of days, much better than a 

lieutenant gripping a church steeple." As early as 1914, the first cameras were employed 

on British squadron aircraft becoming the first photoreconnaissance aircraft.6 "The first 

really successful air reconnaissances were made, not on the Western Front, but in East 

Prussia, where the Germans were withstanding the advance of superior numbers of 

Russian troops in late 1914. During the decisive Battle of Tannenberg an unexpected 

Russian attack was reported by Fliegerabteilung 14; the crew of the third machine of that 

unit to observe the enemy movement, Lts. Canter and Mertens, made a personal report to 

Generals Hindenburg and Ludendorff at headquarters, and the Russians were later forced 

to withdraw."6 In battle, these eyes in the sky could scout out advancing armies and 

provide critical data for development of battle maneuvers. 

Airplanes also found civilian usefulness for this high ground. In 1919, the first 

aerial surveying and mapping operations began with the U.S. Coast and Geodetic survey 

of Atlantic City.4 Even in peacetime operations, aircraft were employed for special 

missions to gain insight into an opponent's realm. For example hi 1956 President 

Eisenhower authorized the U-2, a new reconnaissance aircraft, to overfly the Soviet 

Union.7 The U-2 was designed to fly fifteen thousand feet higher than any Soviet fighter 

or missile and be undetectable.8 Eisenhower ordered the U-2 to be a civilian effort 

because he was immensely concerned that a military incursion into Soviet airspace could 

ignite a war.8 He was concerned about the rudimentary character of intelligence 

estimates of the Soviet Union military stature. He wanted to develop policies based on 

estimates of the actual situation, not speculation. In a few flights, the images brought 

back by the U-2 showed the Soviets were not racing ahead of the US in development of 
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the heavy bombers.8 Eisenhower stopped the overflights when the Soviets shot down a 

U-2 on 1 May I960.10 Speaking on the achievements of the U-2, Eisenhower noted the 

program "produced intelligence of critical importance to the United States" and "perhaps 

as important as the positive information-what the Soviets did have- was the negative 

information it produced-what the Soviets did not have."8 Today airborne sensors 

continue to provide valuable information for a multitude of surveillance and 

reconnaissance missions. 

In understanding the advantage of high ground, humans pushed forward to the 

ultimate high ground, space. Eisenhower looked to higher heights where platforms could 

not be shot down.7 He wanted freedom in space. 

...by establishing principle of freedom of space, the as-yet-untested 
doctrine that terrestrial laws, including traditional claims of sovereign 
airspace, did not extend into space. The Eisenhower administration knew 
this novel legal issue was pivotal. If the Soviet Union or other nations 
asserted that their restricted national airspace extended above the 
atmosphere, the operation of any kind of satellites, whether civilian or 
military, would be impeded.. .8 

The Russians first entered this realm of space with the launch of the satellite Sputnik in 

1957." Sputnik was only 58 centimeters in diameter and weighed only 84 kilograms. 

The Americans quickly answered the Russians with the launch of Explorer 1 on 31 

January 1958.' The precedence of satellite overflight was quickly established.7 Also, the 

concept of remote sensing satellite overflight was acknowledged when the Soviet leader 

Khrushchev said "he did not care how many satellites flew over his territory" and that 

"anyone might take all the pictures he wished from satellites over Soviet territory."" As 

Eisenhower desired, the satellite reconnaissance missions were less vulnerable to being 
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shot down than were U2. Satellites quickly found the new high ground, space, 

advantageous for reconnaissance and surveillance missions. 

The idea of looking down on the Earth's surface to obtain information describes 

remote sensing. Formally, remote sensing is defined as "the practice of deriving 

information about the Earth's land and water surfaces using images acquired from an 

overhead perspective, using electromagnetic radiation in one or more regions of the 

electromagnetic spectrum, reflected or emitted from the Earth's surface." Employing 

overhead platforms for remote sensing is well stated by the following explanation: 

Space-based systems in appropriate orbital deployments provide 
worldwide coverage and frequent access to specific Earth locations, 
including those denied to terrestrial-based forces, on a recurring basis. 
Unconstrained by political boundaries, satellites deployed in specific 
orbits and in sufficient numbers maintain a continuous presence over 
enemy [and friendly] territory....Although space systems provide global 
coverage, some can be focused to provide information on specific areas of 
interest, which can improve situational awareness and planning tempo and 
can enable information dominance for all friendly military forces. 

Corona was the first American military program to put this philosophy into action. The 

data provided key intelligence on Soviet programs, including missile complexes, test 

ranges, ship deployments, aircraft operations, and atomic weapons storage facilities. 

The Corona series, a secret military intelligence imagery space-based platform, took over 

800,000 images from 1960 to 1972.10 

Even though secret military reconnaissance missions may continue, satellites have 

also taken their place in the civilian realm. Views from space enable sensors to gather 

information about crops and natural resources greatly facilitating fanners and resource 

managers.lj Space-based imagery enables map development to see changes in a given 

area or to reveal unfamiliar terrain. ' ' These imagery products are used in developing 
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agriculture management, forestry practices, disaster relief operations, fire-fighting, and 

urban planning.10 Also, an eye can be kept on potential adversaries for troop movements 

and violations of international treaties.14 During wartime, space-based sensors provide 

photoreconnaissance and radar data to locate and identify targets.7 Whether for military 

or civilian purposes, space has enabled enhanced missions for reconnaissance and 

surveillance. 

The pursuit of the high ground has led man to better understand his environment 

and surroundings. From military to civilian missions the field of remote sensing, 

observing from a distance, continues to grow. This research explores the challenge of 

determining an optimal orbit for observing a given set of desired ground locations. This 

orbit can be used in the mission design process of a new satellite or to maneuver a current 

on-orbit satellite. The purpose of this research is for better employment of space-based 

Earth observing sensors. 

1.2 Literature Review 

1.2.1 Orbital Mechanics 

The basis of understanding the newest domain of high ground, space, lies with the 

study of orbital dynamics, the study of motion of one body revolving around another 

body. The governing laws were first understood by the great scientists like Johann 

Kepler and Isaac Newton. Kepler studied precise astronautical observations provided by 

Tycho Brahe,3 and from these studies of this data, Kepler discovered three important 

orbital laws. 

1. The orbit of each planet is an ellipse with the Sun at one focus. 
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2. The line joining the planet to the Sun sweeps out equal areas in equal times. 

3. The square of the period of a planet is proportional to the cube of its mean 

distance to the Sun. 

Each orbit is described by three main components: size, shape, and orientation. 

These three main components are often quantified by the classical orbital elements or 

Keplerian orbital elements. The first five elements describe the orbit while the sixth 

element places the satellite along the orbit. The six orbital elements include:14 

1. Semi-Major axis: describes the orbit's size. This variable is half the distance 

of the major (long) axis. 

2. Eccentricity: describes the orbit's shape. For Earth satellites, the orbit will be 

either circular where eccentricity is zero or elliptical where eccentricity is 

between zero and one. 

3. Inclination: one of three elements to describe the orbit's position. This 

variable is the tilt of the orbit with respect to the Earth's equatorial plane. 

4. Longitude of Ascending Node: one of three elements to describe the orbit's 

position. This variable is the swivel of the orbit with respect to the Earth's 

equatorial plane. This angle is measured from the vernal equinox to the 

ascending node, the point in the orbit where the satellite goes from below the 

equator to above the equator. 

5. Argument of Perigee: one of the three elements to describe the orbit's 

position. This variable is the angle from the ascending node to perigee, the 

point of the orbit closest to the Earth. 



6. True Anomaly: describes the satellite's position. This variable is the angle 

from perigee to the satellite position. 

Together these six elements describe the satellite's orbit (Figure 1.1a) and its location on 

the orbit (Figure 1.1b). 

Figure 1.1a Keplerian Orbital Elements 
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Figure 1.1b Keplerian Orbital Elements ' 

Another way to describe the motion of one body around another is to use the 

position and velocity vectors at a given time reference. Note the correlation of the three 

components of each of the position and velocity vectors for a total of six elements to the 

six Keplerian orbital elements needed to fully describe orbital motion. In fact, the choice 

of orbital elements or position and velocity vectors may depend on the situation. 

Additionally, transformations between the two sets of elements are available. 

While Kepler was able to describe the kinematics of motion, Newton was able to 

describe the dynamics of motion.16 Newton's three laws of motion include: 
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1. Every body continues in its state of rest, or of uniform motion in a right [straight] 

line, unless it is compelled to change that state by forces impressed upon it. 

2. The change of motion is proportional to the motive force impressed and is made 

in the direction of the right line in which that force is impressed. 

3. To every action there is always opposed an equal reaction: or, the mutual actions 

of two bodies upon each other are always equal and direction to contrary parts. 

While Kepler and Newton laid the foundation of understanding for orbital motion, 

Konstantin Tsiolkovskii, father of astronautics, paved the way for man to reach the stars 

through his groundwork in modern rocketry. He calculated a spacecraft would need to 

obtain a velocity of 7 km/sec to enter orbit around the Earth. He proposed the concept of 

a multistage rocket and presented discussions of weightlessness, artificial satellites, and 

space stations." Others like Robert Goddard, Wernher von Braun, and Sergei Korolev 

brought rocketry to fruition. Although man has achieved the dream of reaching the 

heavens to look down upon our planet, the intricacies of orbital mechanics are still 

sought. 

1.2.2 Orbital Propagation 

Several methods are available for orbital propagation, some use ideal conditions 

and others take into consideration special circumstances such as perturbations. Under 

ideal conditions, the two body Lagrange Coefficients method is quite useful to propagate 

the orbit. Also, numerical integration algorithms may be used for ideal conditions and for 

special circumstances. Various strategies to deal with perturbations are also available, 

each having their own advantages and disadvantages. 
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The two body Lagrange Coefficient procedure is based on the position and 

velocity vectors of the orbiting body in an ideal, unperturbed situation. This method, also 

known as the Lagrange F and G functions, uses position and velocity vectors in terms of 

orbital plane coordinates. Propagation is based on true anomaly not time. However to be 

useful for mission analysis or design, true anomaly must be ultimately related back to 

time. The updated position and velocity vectors are determined by the transition matrix 

of F, G, Ft, and G, Lagrangian coefficients and initial position and velocity vectors. 

This method is a fast way to propagate along the orbital path for undisturbed motion. 

Another method of orbital propagation is to use Cowell's formulation based on 

second-order differential equations. Cowell's formulation determines the overall 

acceleration by adding perturbing accelerations to the two-body equation of motion.16 By 

using rectangular coordinates, perturbations can be added linearly as desired. Numerical 

integration can incorporate the disturbed or perturbed motion through the use of calculus 

of finite differences to accomplish the integration.16 Various methods are available for 

performing the finite difference, most notably are Euler's method, Taylor's method, and 

the Runge-Kutta method.20 These are single step methods that do not require back values 

to start the integrator. Multistep methods are available such as the Adams-Bashforth 

formula but they require a single step or starting method.20 This research employs the 

Runge-Kutta fourth-order method with Cowell's rectangular formation. The fourth-order 

Runge-Kutta alogorithm evaluates the state derivative function (first order differential 

equations form) at four different points along an estimated trajectory. These four 

evaluations are used to find a final estimate from a weighted average. One main 

disadvantage of this method is that error will continue to grow through propagation. 
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However, using an appropriate time step for orbital integration, it can be shown that the 

fourth order Runge-Kutta method is sufficient for orbital propagation within a reasonable 

time frame. 

1.2.3 Perturbations 

Kepler and Newton allowed for the development of idealized two body motion. 

However, actual satellite motion is not idealized; it is in an ever changing environment. 

One example of these intricacies is the study of perturbations within orbital mechanics. 

Perturbations are defined as the "deviations from a normal, idealized, or undisturbed 

motion."16 Some perturbations are secular while others are periodic, both short and long 

term.21' 22 The main perturbations of interest in relation to this dissertation are non-

spherical Earth effects, aerodynamic drag, solar pressure, and third body effects. 

The Earth is not a perfect homogeneous sphere. Rather, it slightly bulges at the 

equator with flattening at the poles.21 This flattening is called oblateness. The Earth's 

radius at the equator is about 22 km more than the radius of the poles. Therefore, to treat 

the Earth as spherically symmetric with uniform density does not accurately describe its 

gravitational force.14 Therefore, the shape of the Earth can be described as a geoid, an 

imaginary surface to which a level is parallel and plumb bob perpendicular to which the 

real surface of the Earth's elevation is measured.1 This perturbed gravitational force is 

conservative.14 The satellite's acceleration can be found through the gradient of a 

geopotential function.21 

The Earth's atmosphere decreases with altitude but still has an impact as far as 

1000 km up.14 This thin air interacts with satellites causing resistance to motion and 
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dissipation to energy, and this interaction is called aerodynamic drag. Drag causes the 

satellite to slow down through a non-conservative force and must be considered in 

complete perturbation modeling. Satellites in lower Earth orbits are more affected by 

aerodynamic drag than satellites at higher altitudes. The upper atmosphere is difficult to 

model due to many variables such as the mean free path between particles, day-night 

cycle, solar cycles, and fluctuation of the magnetic field. Also, drag is difficult to model 

due to the satellite's drag coefficient and cross sectional area. ' 

Solar radiation causes pressure on satellites. This effect is more pronounced in 

lightweight, large cross sectional area satellites. Solar radiation pressure is also more 

pronounced on higher altitude satellites.21 Solar radiation pressure is a non-conservative 

force and is also difficult to model due to fluctuating solar radiation and the satellite's 

cross sectional area that faces the Sun.1 

Third body effects are perturbation due to the gravitational influence of other 

bodies within the idealized two body sphere of influence. For Earth orbit applications, 

the two main bodies are the Moon and Sun. Satellites in higher altitudes are more 

affected by third body perturbations. Third body perturbations are conservative since 

they are based on gravitational attraction.16 

Fortunately, each of these four perturbations can be modeled to help understand 

its effect on the nominal orbit. These perturbations can be modeled independently as in 

this research. While this research uses basic models described in detail in Section 5.3, 

more complete models are available. For example the non-spherical Earth standard is the 

World Geodetic System 1984 with the gravitational field model the Earth Gravitational 

Model 1996. ~ The Jacchia-Bowman 2006 model incorporates satellite drag 
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measurements and solar flux estimates for a significantly improved satellite drag model. 

Like aerodynamics drag models, solar radiation models are also dependent on improved 

satellite measurements. Third body models are based on the accuracy of the third body 

position. The Jet Propulsion Laboratory offers very precise planetary ephemerides while 

the Astronomical Almanac offers simpler, yet fairly accurate models.'6 The perturbation 

models can be incorporated into sophisticated models to more accurately assess their 

overall impact. Section 5.1 describes the two main models developed over the years that 

are still in use, the Position and Partials as functions of Time (PPT3) and the Simplified 

General Perturbations (SPG4).27 

These four main perturbations, aerodynamic drag, solar radiation, third body 

effects, and non-spherical Earth, must be considered when choosing an orbit for a 

particular mission. Many satellites with Earth observation missions are often placed in 

similar orbits because of these perturbations. This research incorporates the most 

significant non-spherical Earth effect in the orbit design process and assesses the effects 

of the other perturbation sources on the orbit lifecycle. 

1.2.4 Orbit Design 

To view the Earth from the high ground of space, sensor platforms have been 

placed in special orbits to best achieve their mission. Orbits are generally described by 

three main categories: low-Earth orbit (LEO), mid-Earth orbit (MEO), or geosynchronous 

orbit (GEO). LEO is defined by orbits with an altitude below 800 km. MEO ranges from 

about 800 km to 30,000 km. GEO is around 35,780 km and these orbits have periods 

equal to the Earth's rotation.1 Most Earth observation missions are either LEO or GEO. 
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Low altitudes provide increased instrument performance since it is closer to the 

Earth's surface. However, the amount of Earth's surface that can be viewed in any 

given instance is relatively limited. One trade off in LEO is the relatively short dwell 

time over a target; however, because of the shorter orbit period, the revisit rate is also 

more frequent.7 The cost associated with LEO launches is less because less propellant is 

needed for lower orbits.21 

GEO provides a relatively fixed view over a given region. It can view nearly 40% 

of the Earth's surface. However, because of the greater distance, the satellite sensors are 

less able to refine target coordinates.7 Another advantage of GEO is the longer lifetimes 

being much less affected by aerodynamic drag. But the cost associated with GEO 

launches is much greater. 

Two specialized orbits employed frequently are the Sun-synchronous orbit and 

the repeat ground track orbit.28 The Sun-synchronous orbit, a LEO, enables certain 

ground lighting conditions by maintaining a constant orientation towards the Sun.1 The 

orbit takes the satellite over the poles providing coverage of the globe by successive 

orbits.29 The repeat ground track orbit may be applied to any altitude orbit and provides a 

periodic revisit over a particular ground location. The repeat ground track does exactly 

as its name implies, it retraces its ground track over a certain time interval. After 

considering the advantages and disadvantages of the many orbit possibilities, mission 

planners choose an appropriate orbit category for a given satellite mission. The repeat 

ground track orbit type is emphasized in the dissertation research. Within a particular 

category, efforts to design a specific orbit are still necessary, and this is a major thrust of 

the research incorporating user requirements and optimization principles. 
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1.2.5 Scheduling Options 

Once an orbit has been selected for the satellite, the sensor can be tasked at 

particular times in the orbit to view specific ground locations for information collection. 

Consider each tasking of gathering information on a specific ground location as a "job." 

Scheduling takes three main questions into account:30 

1. Which jobs make the schedule? 

2. What order should they be in (order in time)? 

3. What is the exact start and stop time for each scheduled job? 

There are many scheduling options available, each taking into account varying 

considerations or constraints. These constraints are well described: 

These constraints include requirements on the instruments used to collect 
the data, and duration and ordering constraints associated with the data 
collecting, recording, and downlinking tasks. In addition, SSR [solid state 
recorder] capacity, and constraints on communications equipment such as 
satellite antennae and ground stations must be satisfied. There may also be 
set-up steps associated with particular operations, like establishing a data 
link prior to downlink, or aiming an instrument prior to data acquisition. 
These steps generate further temporal and ordering constraints. A request 
can also involve coordinating activities among different satellites. For 
example, a stereo image will involve multiple sensing events of the same 
location at different viewing angles. In other cases, adequate spectral 
coverage may require the use of two or more instruments to sense the 
same land area, or to sense both land use and atmospheric conditions. 
Finally, scientists may want to image the same area at different times of 

Each scheduling algorithm must determine which considerations are most 

appropriate, hence the numerous algorithms available to provide an "optimized" schedule 

for a satellite mission. For example some satellite schedules take into account multiple 

sensors on one platform/" Other algorithms are designed for multiple sensors on 

multiple platforms for a company that has a number of satellites to manage.31 Other 
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schedules must consider tasking an area that requires multiple images for complete 

coverage/3 This research investigates the problem of only one sensor on one platform. 

Algorithms may employ different methods to solve for the satellite schedule. 

Two popular methods are constructive and evolutionary algorithms. The constructive 

method builds a schedule using rules to select jobs allocating resources if available.30 

This method is fairly fast and straightforward. The evolutionary algorithm evaluates 

numerous permutations to determine the best allocation.34 This method requires 

permutations to evolve to create more fit solutions and therefore is inherently more 

complex and time consuming. This research is based on the constructive Priority 

Dispatch (PD) algorithm for a Window Constraint Packing (WCP) problem. A WCP 

strategy uses a given amount of time, divided into discreet time intervals forming a 

timeline, to accomplish a specific number of jobs. PD logic is the method used to assign 

the jobs to the timeline which schedules the jobs according to priority and slack, the 

number of opportunities available for that job to be scheduled.30 

1.2.6 Optimization 

In his textbook, Goldberg states "Optimization: Seeks to improve performance 

towards some optimal point or points...two parts: (1) we seek improvement to approach 

some (2) optimal point. There is a clear distinction between the process of improvement 

and the destination or optimum itself."35 

Optimization begins with an objective in mind, a quantitative measure of the 

system performance/'6 The characteristics of the system that are used to optimize the 

performance are called variables and may be restricted, or constrained.'6 This research 

addresses a constrained optimization problem because parameter bounds are imposed on 
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the system variables. Modeling the system objective, variables, and constraints is the 

first step in the optimization process. Once the system is modeled, an optimization 

approach or method can be applied to solve the problem. Regardless of which method is 

chosen for the optimization process, it should possess the following characteristics: 

1. Robustness: They should perform well on a wide variety of problems in their 

class, for all reasonable values of the starting point. 

2. Efficiency: They should not require excessive computer time or storage. 

3. Accuracy: They should be able to identify a solution with precision, without 

being overly sensitive to errors in the data or the arithmetic rounding errors 

that occur when the algorithm is implemented on a computer. 

Solutions may be local, the point at which the objective function is optimized 

compared to other feasible nearby points, or the solution may be global, the point most 

optimized among all feasible points.3 A few techniques are available to find the global 

optimum; however, no method can guarantee a solution that is the absolute, single, 

unique global optimum without searching the entire domain. Popular techniques include 

genetic algorithm, neural network, particle swarm optimization, and simulated annealing. 

The genetic algorithm is based on natural selection and genetics while neural network 

techniques mimic the computing power of interconnected processors.37 Particle swarm 

optimization methods were developed by researching the motion of bird flocks searching 

for food/8 Simulated annealing is based on the process of cooling of solids. 7 This 

research desires a global solution to the proposed problem and therefore implements the 

genetic algorithm (GA) optimization process. The GA approach does not use the system 

variables directly, but instead uses a coded version of the variables.35 This codification 

allows the GA to search through the entire feasible region to find a global solution. 
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1.2.7 Problem Statement 

Many Earth observation satellite missions are designed sequentially where the 

first step is selection of a suitable orbit and then the satellite sensor is scheduled for 

collecting observations based on the suitable orbit. This design philosophy leads to a less 

than ideal system that under performs in the volume of data generated per unit of time 

and/or the duration of time consumed per unit of data. An integrated strategy would 

allow desired observations to drive the orbit design. This approach would place the 

priority of the mission, e.g., user requirements, at the forefront of the mission planning. 

Incorporating a robust scheduler into a design methodology would aid in finding a 

realistic strategy to bring user requirements to the forefront of the mission planning. User 

requirements in this dissertation refer to a request for performance that drives a system 

capability where as that capability entails numerous possibilities such as maximum 

observation coverage of requested surface targets, consistent observing angle from 

orbiting satellites, specific lighting conditions during observation periods, and flexibility 

of priority rank for each ground target. Additionally, the chosen sensor for the satellite 

will have certain limiting characteristics such as lighting conditions appropriate for 

sensor type, maximum altitude for quality sensor resolution, sensor field of view, and 

sensor slew angle. Sensor resolution as defined in this problem is spatial resolution, the 

fineness of the spatial detail visible on an image or how small an object can be to be 

identified on an image.9 

This dissertation investigates a new methodology for constrained optimal orbit 

design for Earth observation. The puipose of this work is to provide a solid foundation 

for decision making for new Earth observing satellite mission designs. This design 
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methodology for finding an optimal orbit provides clearer insight into the requirements 

for the new satellite system and can be used to show how altering a mission requirement 

can affect the determined optimal orbit. Also, the methodology can be a useful tool in 

repositioning a current on-orbit satellite for improved observation coverage. While target 

selection is necessary on a daily basis32 a satellite may need to be re-evaluated for orbital 

positioning. Optimal orbits generated from the proposed methodology may need to be 

refined according to additional system design concerns including orbit stability, orbital 

maneuvering fuel consumption, or launch site restrictions. Objectives of the research are 

to explore the feasibility of using requirements to drive the solution for an optimal orbit 

where constraints are placed on the process, as well as to formulate effective strategy, 

algorithms, and software to bring the design process to a state where practical and useful 

orbits can be generated in a reliable and efficient manner for a given set of requirements 

and constraints. These objectives have been achieved. 

1.2.8 Assumptions 

The development presented in this dissertation is for a single-vehicle, single-

sensor satellite for one Earth-based elliptical orbit. Additionally, observations are 

assumed to require a recurring basis; therefore the orbit is based on a repeating ground 

track. Limited zonal effects are accounted for in determining the semi-major axis and 

identical perturbations are included in the orbit propagation which is needed to 

repetitively evaluate the cost function and therefore is iteratively run in the search 

process. The ground track coordinates are calculated as geodetic latitude and geocentric 

longitude. Orbital perturbations such as aerodynamic drag and solar radiation are also 
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not accounted for during the observation period. Also phenomena such as space weather 

or cloud cover are not considered in this analysis. The final orbit should be evaluated 

with a full perturbed propagation model. Needed modifications to maintain the desired 

orbital parameters are assumed to be small and achievable with satellite thrusters. 

Scheduling assumptions include no time is needed between observations for sensor 

functions and that the entire period of repetition is available for observing. 

1.3 Dissertation Outline 

This research work includes the design methodology for generating a constrained 

optimal orbit based on user requirements. Chapter 2 discusses this design methodology, 

mapping the mission requirements into parameters. Chapter 3 investigates the available 

repeating ground track methods and determines the best fit for this research. Chapter 4 

describes the genetic algorithm optimization process, as well as the cost function 

developed for this problem, and has some insights into the "optimality" of this work. In 

Chapter 5, the unmodeled on-orbit perturbations of non-spherical Earth, aerodynamic 

drag, solar pressure, and third body effects are reviewed as well as the techniques 

employed in the lifecycle analysis. Chapter 6 presents the case study results for the 

baseline case and variations. Also, the lifecycle analysis of the orbital elements under 

full perturbations is demonstrated. Finally, Chapter 7 presents research conclusions. 
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CHAPTER 2 

ORBIT DESIGN METHODOLOGY 

2.1 Introduction 

The concept of developing an orbit based on observation sites was first explored 

by Abdelkhalik and Mortari.39 They proposed a solution based on an orbit that does not 

require maneuvering to visit all observation sites within a given time frame. Two 

different types of mission constraints are proposed to include maximum resolution which 

requires a predetermined semi-major axis and a maximum observation time which may 

not be necessary to acquire desired data. This research expands on their preliminary 

work by directly incorporating user requirements with a more sophisticated cost function 

and also shows that orbital altitude can be included as an optimized parameter.40 This 

chapter steps through solving this problem of finding a constrained optimal orbit for 

Earth observation satellites based on user requirements by first outlining the design 

process. Then the problem is bounded based on mission requirements including 

observation requests and sensor characteristics. Next, the optimization parameters are 

described. Finally, the orbital lifecycle is discussed. 

2.2 Design Process 

Figure 2.1 outlines the information flow for the overall orbit design process. The 

process starts with the input by defining the user requirements. For Earth observing 

satellites, the most important measurement parameters are resolution, repetition interval, 

time of year for observations, and Sun angle.41 The requirements subdivide into three 
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categories comprising observation site requirements, observation restraints, and sensor 

information. Each user requirement component is mapped into the optimizing parameter 

bounds or cost function components. The parameters are optimized through a search 

technique to find a minimum cost function value. The final algorithm output includes 

orbital elements of the constrained optimal orbit and the observation schedule for the 

ground targets. This design process is coded in Matlab using a modular concept so 

elements may easily be updated and the program could be incorporated with other 

programs. 

Input 
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Location 

Priority 

Observation Restraints 

Lighting Conditions 

Minimum Duration 
of Coverage 

Revisit Rate 

Date 

Sensor Information 
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Figure 2.1 Information Flow for Orbital Design Based on User Requirements 
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2.3 Mission Requirements 

The first step in this problem to finding an optimal orbit for an Earth observation 

satellite is to map the mission requirements into constraints. The mission requirements 

are divided into three parts: observation site requirements, observation condition 

restraints, and sensor characteristics. 

Observation site requirements include the observation site's location and priority. 

The observation location consists of latitude and longitude. The site with the highest 

degree of latitude determines the minimum inclination bound, as indicated by the flow 

path in Figure 2.1. The latitude and longitude of each site are used to compute the 

windows of opportunity in the cost function. A window of opportunity is a time frame 

the observation site will be within view of the satellite sensor given the defined problem 

restraints. The second observation site requirement, observation priority, is a ranking 

from 1 to 5 with 5 being the highest priority. The priority is a weighting measure in the 

cost function. 

The observation restraints include the minimum time duration of coverage, 

lighting condition, revisit rate, and start date. The minimum time duration of coverage 

sets the minimum time needed to complete an observation and is used in the cost function 

computation. The lighting condition includes the maximum allowable Sun angle for the 

observation. The Sun angle is measured from the nadir line of the satellite-observation 

site to the Sun-observation site line. Lighting condition is used in computing possible 

windows of opportunities. The revisit rate is the number of revolutions the Earth 

completes in its rotating cycle as viewed from the precessing orbital plane42 which is 

approximately the number of days at which the target needs to be repeatedly observed. 
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The revisit rate is used to calculate the minimum and maximum values of the orbital 

revolutions in the repetition cycle. The date is the start of the first period of repetition 

given in Julian format. The date is extremely important for sensors that depend on 

specific lighting conditions. 

The sensor parameters include the sensor field of view (FOV), slew angle, and 

maximum altitude of sensor for desired resolution. The FOV is measured from nadir to 

the edge of view and is used for determining windows of opportunity. The slew angle, 

also used for determining the windows of opportunity, is the angle the middle of the 

sensor can move off the satellite's nadir. The maximum altitude of the sensor for desired 

resolution provides the maximum height of the sensor for an allowable resolution. 

Sensor resolution as defined in this problem is spatial resolution, the fineness of the 

spatial detail visible on an image or how small an object can be and still be identifiable 

on an image.9 If the sensor is above this altitude, the observation quality is reduced. The 

resolution determines the maximum allowable height of perigee. 

2.4 Bounding the Problem 

From the given mission requirements, the bounds for this problem are developed. 

Each of the mission requirements maps into the problem conditions as shown below in 

Figure 2.2. Note the maximum altitude for minimum sensor resolution does not specify 

the orbit semi-major axis or the maximum height of apogee. The mission requirement on 

resolution only determines the maximum allowable height of perigee. This map allows 

for an orbit to be more elliptical where at other points in the trajectory the satellite may 

reach altitudes above this maximum ceiling for resolution. Penalizing the observation 
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quality above the desired resolution height is taken into account through a cost function 

weighting measure and is further described in the cost function section. This 

implementation allows increased design flexibility that would otherwise be overly 

constraining. 

Mission Requirements 
Revisit Rate —» 
Observation Site Latitude —» 
Maximum Altitude for —» 
Desired Sensor Resolution 

Problem Definition 
Earth Revolutions in Repeat Cycle, d 
Minimum Inclination, imin 

Maximum Height of Perigee, hpmax 

Figure 2.2 Mapping Mission Requirements 

The mission requirements lead to auxiliary requirements for the semi-major axis 

and eccentricity. The semi-major axis, a, is determined using the Epicyclic motion 

Repeating ground track Orbit (ERO) concept by Aorpimai and Palmer42 based on the 

inclination, i, and similitude parameter, r; the number of Earth rotations for a period of 

repetition divided by the number of orbits in the period of repetition.39 An efficient 

method of employing the ERO concept is to use a polynomial equation shown in 

Equation (2.1) for finding the valid semi-major axis root which is the single real, positive 

root within a valid semi-major axis range of low Earth to geosynchronous orbits.43 

{r(£a +Tja2 -9 + X)-ya2 + 8 + e}2 -J32 a" = 0 (2.1) 

where 

J2Ji2
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In Equation (2.1), RE is the mean radius of the Earth, COE is the rotation rate of the Earth, 

J2 is the second zonal gravitational harmonic coefficient, J4 is the fourth zonal 

gravitational harmonic coefficient, and f.i is the Earth gravitational parameter. 

Additionally, the eccentricity, e, of the orbit is based on the semi-major axis and height of 

perigee, hp, as shown in Equation (2.2)/ 

RE+K 
e = \-— - (2.2) 



27 

These auxiliary requirements map into the problem definition as shown in Figure 2.3. 

These mappings also appear in the signal flow paths as indicated in Figure 2.1. 

Auxiliary Requirements Problem Definition 
Inclination and —* Semi-Major Axis, a 
Period of Repetition 

Height of Perigee and —» Eccentricity, e 
Semi-Major Axis 

Figure 2.3 Mapping Secondary Requirements 

Equation (2.1) is based on a near circular orbit as well as the assumption n = 

(/Jet)'" where n is the mean motion. Implications are that orbital propagation using 

nonlinear simulation with perturbations, although close, will not lead to high precision 

ground track closer. Therefore the ERO solution needs to be refined to account for the 

eccentric orbit and mean motion assumption using the Simplified Repeat Groundtrack 

(SRG) method by Collins.44 Equation (2.3) and the mean motion expression n — (juJa)1'2 

may be solved using a two step iteration Newton method with the ERO determined semi-

major axis and given inclination, eccentricity, and similitude parameter. Ground track 

closure is typically very precise after employing this refinement process. 

X3+QX1-— = 0 (2.3) 
r 

where 

and * Recommendation from Dr. Paul Cefola, Personal Correspondence, September 2009. 
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2.5 Optimization Parameters 

The optimization process used for this design methodology is the genetic 

algorithm. The genetic algorithm allows the logic program to search over the entire 

parameter space in an efficient manner. The search for an optimal orbit will rely on six 

parameters: inclination, longitude of ascending node, argument of perigee, true anomaly, 

the height of perigee, and number of revolutions of the orbit in the period of repetition. 

These parameters are adjusted by the genetic algorithm to best achieve the objectives and 

simultaneously satisfy the constraints. 

The inclination, i, has a minimum bound determined by the maximum observation 

site latitude. This constraint ensures the satellite will pass overhead the observation site 

since the orbit's inclination determines the highest latitude the satellite can reach.14 The 

maximum inclination bound is preset at 105 deg to allow for the possibility of polar 

orbits and Sun synchronous missions in the search domain. The longitude of ascending 

node, Q, has no physical restrictions and is set for the full range from 0 to 360 deg. 

Additionally, the argument of perigee, co, and true anomaly, 9, range from 0 to 360 deg. 

The height of perigee, hp, ranges from a minimum set altitude for avoiding significant 

orbital decay to a maximum altitude where the sensor is still within a desired resolution 

as given in the mission requirements. Additionally, the radius of perigee is constrained to 

be equal to or less than the semi-major axis to ensure an elliptical orbit. 

The number of revolutions in the orbit in the period of repetition, k, is based on 

the similitude parameter, r, from 0.0625 to 1. The similitude parameter is the number of 
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Earth rotations for a period of repetition divided by the number of orbits in the period of 

repetition given in Equation (2.4).j9 

r = d/k (2.4) 

The parameter k allows for the altitude of the orbit to range from the very minimum low 

Earth orbit when the similitude parameter is 0.0625 to the highest altitude of a 

geosynchronous orbit when the similitude parameter is 1 given by Equation (2.5). 

£mi„ =dl\ 
min 

*ms=rf/0.0625 (2.5) 

Within this well defined constraint problem, the altitude of the orbit is not preset 

and only bounded to ensure physically feasible orbits avoiding hyperbolic or parabolic 

orbits, orbits that penetrate the Earth, or complex number solutions. The shape of the 

orbit is not limited to circular or near circular solutions but may also include elliptical 

solutions. Additionally, the solution can range across a wide variety of inclination 

values. 

Chapter 4 describes the cost function and optimization process used to determine 

an optimal solution for this design method. 

2.6 Lifecycle Analysis 

Once an optimal solution is determined, its orbital parameters are evaluated to 

determine the solution's effective life. As part of the design process, it is essential to 

know how long to expect the orbital elements to hold up under perturbations. This 

research assumes satellite thrusters can overcome the effects of perturbations to maintain 

the desired optimal orbit solution found in the optimization algorithm.45 However, the 
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required level of orbit maintenance is an important characteristic to evaluate for design 

purposes. The lifecycle analysis shows how the orbital elements are affected over time 

without the thruster corrections and thus indirectly evaluates this characteristic. The 

initial solution orbital elements are propagated using perturbations of non-spherical 

Earth, aerodynamic drag, solar radiation pressure, and third body effects from the Sun 

and Moon. These propagations are described in detail in Chapter 5. In intervals of the 

repetition period, the orbital elements and cost function are graphed over time to see how 

the solution holds up with the additional perturbations previously mentioned. Results are 

presented in Chapter 6. 
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CHAPTER 3 

REPEATING GROUND TRACK CONCEPTS 

3.1 Repeating Methods 

For many Earth observation satellites, an ideal orbit designed in the presence of 

perturbations is based on a repeating ground track which allows for specific observations 

to be scheduled on a routine basis or with the same sensing conditions. Two recent 

methods for finding a repeat ground track are available. Unfortunately each method is 

based on different assumptions and parameters, and has their own set of limitations on 

the type of orbit for which the method should be applied. In order to bridge these 

differences and limitations and provide a comparison for evaluating the merits and/or 

deficiencies, a third method is developed. 

The first method for generating repeat ground tracks is the Flower Constellation 

(FC) concept by Mortari, Wilkins, and Bruccoleri.46, 47 The FC method is based on the 

Keplerian orbital elements: semi-major axis, eccentricity, inclination, longitude of the 

ascending node, argument of perigee, and the mean anomaly. The main advantage of this 

method is a general applicability to any elliptic eccentricity based on a specified perigee 

height. Unfortunately, the FC method only considers the second order zonal effects, that 

is J2 effects. The second method provides a repeating ground track based on epicyclic 

motion theory by Aorpimai and Palmer.42 The Epicyclic motion Repeating ground track 

Orbit (ERO) concept is based on two polar elements (radius and argument of latitude) 

and two orbital elements (inclination and longitude of the ascending node). This 

method was developed for near circular orbits and therefore does not use eccentricity or 
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require a specified height of perigee. The ERO method includes the J? term like the FC 

method, but also uses the J4 first order and J? second order terms. These different 

perturbation models, variable sets, and orbit families make comparison between the 

methods difficult. 

The new method is an extension or modification of the FC method and is denoted 

by MFC. In order to bridge the gap between the limitation of the FC framework using 

only the J2 term and the ERO limitation for near circular orbits, the Flower Constellation 

procedure is modified to include the J4 and J2~ terms. In addition to these three methods, 

a fourth Simplified Repeat Groundtrack (SRG) method by Collins44 is re-introduced. The 

SRG approach is based on the Keplerian orbital elements with the J2 perturbation term 

like the FC method. However, this method requires more specific inputs than the FC 

method. 

In the following sections, mathematical conditions for repeating ground tracks 

using the FC and ERO techniques are reviewed, a modified FC method is developed, and 

the SRG technique is applied as a refinement process. The modified FC method is 

applied to several examples and results are compared with the corresponding FC and 

ERO results. The FC, MFC, and ERO conditions are solved through numerical and 

polynomial methods for computational comparison. Finally, conclusions from these 

examples and results are drawn to support the selection of one of the methods for use in 

an orbit design optimization algorithm.49 
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3.2 Condition for Repeating Ground Tracks 

For an orbit to have a repeating ground track, the period of repetition Tr is related 

to the nodal period of the satellite TQ and nodal period of Greenwich TQG by Equation 

(3.1) 46 

T - NT -NT (3.1) 

Np is the number of revolutions along the orbit in one period of repetition and Nj is the 

number of sidereal days the Earth completes during the period of repetition.46 Note Np 

and Nd are integers. Figure 3.1 shows the relationship of the inertial frame orbits to the 

rotating Earth reference frame orbit. 

Relative Orbit 

ECFX-Aw-'-'iroto;,) 

FIG. I. Admissible Locations for a Saiclhii- n .: '*•• I 't-mi Constellation 

x 10' 

Figure 3.1 Inertial vs. Reference Orbits46 

The geometry underlying this condition is illustrated in Figure 3.2. Equation (3.1) 

simply states that the time for the westward progression of the ground track to complete 

one revolution and the time for the northward penetration of the ground track to also 
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complete one revolution constitute a rational number. By expressing the nodal periods to 

depend on the orbital elements, Equation (3.1) is converted to a more useful form. 

z„ z,, \ 

Ascending Node, 
Perigee, and Spacecraft 
all coincident at t=0 and 
Point P. 

Perigee at 
time= t 

-XYZ, and XYZECF 

coincident at t=0. 
- M represents the 
motion of the satellite 
with respect to time . 
-The figure is drawn 
with ti> < 0. 

Figure 3.2 Perturbing Elements for Repeating Ground Tracks" 

The nodal period 7Q is related to the satellite's anomalistic period T by Equation 

(3.2) where M denotes the rate of change in the mean anomaly due to nominal motion and 

perturbations and<» is the rate of change in the argument of perigee. 

In 
T = (3-2) 

M + co 

The current mean anomaly, M, in Figure 3.2 represents the motion of the spacecraft with 

respect to time. M is related to the initial mean anomaly, M0, by Equation (3.3)16 

M = M0+nt (3.3) 
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where n is the satellite's mean motion. The rate of change of the current mean anomaly 

is related to the rate of change of the initial mean anomaly through Equation (3.4).' 

M = M0+n (3.4) 

The anomalistic period T is similarly related to the mean motion in Equation (3.5). 

T = ^ (3.5) 
n 

Now Equation (3.2) can be rewritten in terms of the anomalistic period in Equation (3.6). 

f 

n + M„+co 
= T 1 + ^ -

K n J (3.6) 

Figure 3.2 represents the perturbing elements appearing in Equation (3.6) as a function of 

time for the satellite. 

The nodal period of Greenwich is provided as in Equation (3.7) 

6)E -fi 

where the Earth's rotational rate is coE = 7.29211585530 x 10"5 rad/s. The nodal 

regression of the orbital plane is £2. Referring back to Figure 3.2, TUG physically 

represents the time required for the Greenwich meridian to depart from the ascending 

node and return to its perturbed (D) location. Substituting these expressions for the 

nodal period of the satellite and nodal period of Greenwich into Equation (3.1) and 

rearranging for the similitude parameter, x = NJNP, yields Equation (3.8). 

r= ar° (3.8) 
n + Mn + c'o 

This equation is the fundamental necessary requirement in usable form for repeating 

ground tracks and is the foundation for any repeating ground track mission design 
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method, including the FC and ERO methods. For a specified similitude r, the equation 

will be solved for the unknown orbital parameterization variables in the various 

methodologies. 

3.2.1 Flower Constellation 

The Flower Constellation concept was developed by Mortari, Wilkins, and 

Bruccoleri to group existing constellations and orbits with three common 

characteristics:46 

1. Identical orbit shape. Anomalistic period, argument of perigee, height of perigee, 

and inclination are common across the orbit family. 

2. Compatible periods. The orbital period is evaluated in such a way as to yield a 

perfectly repeated ground track. 

3. Equally spaced nodes. Tracks crossing the equatorial plane at the nodes for each 

satellite in a complete Flower Constellation are displaced equally. 

Examples include the Walker constellation, Molniya orbits, and geosynchronous orbits. 

The common framework also allows for the development of new constellations with 

these same characteristics. A full FC may have multiple orbits, but this dissertation will 

only develop one orbit with a repeating ground track. Therefore, characteristics 1 and 3 

will not be investigated in this research. The development in this dissertation is 

categorized as an "incomplete" FC since only one satellite for one orbit is addressed, not 

multiple orbits or a multi-satellite orbit. 

The FC method is based on the Keplerian orbital elements: semi-major axis, 

eccentricity, inclination, longitude of the ascending node, argument of perigee, and the 
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mean anomaly. The main advantage of this method is a general applicability for any 

eccentricity which is a product of a specified height of perigee. Unfortunately, the FC 

method only considers the second order zonal effects, that is J2 effects.51 The FC concept 

uses geopotential perturbation theory, but the second order zonal effects only change the 

argument of perigee, longitude of the ascending node, and mean anomaly46 as applied in 

Equations (3.9), (3.10), and (3.11). 

cb=3nRE/2U-5Sm2(i)} (3.9) 
Ap 

Q = - 3 w J ? E / 2 c o s ( / ) (3.10) 
2p-

M ^ - 3 ^ V r r 7 { 3 s ^ ( / ) - 2 } (3.11) 

Equations (3.9)-(3.11) are derived by a standard variation of parameters technique 

applied to the orbital elements. In these expressions, RE = 6378.1363 km for the Earth 

radius, p is the semi-parameter, i is the inclination, e is the eccentricity, and J2 is the 

Earth gravitational perturbation parameter. 

Express eccentricity, semi-parameter, and mean motion in terms of the semi-

major axis a and perigee height above Earth's surface hp as given46 in Equations (3.12), 

(3.13), and (3.14) 

RF + hn 
e = l - — - (3.12) 

a 

p = 2(RE + hp)-^ >J- (3.13) 

« = , / 4 (3-14> 
a 
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where/; = 3.986004415 x 105 km3/s2 for the Earth's gravitational constant. Substituting 

Equations (3.9)-(3.14) into the similitude expression yields Equation (3.15)50 

coE + 2A(a) cos(z') 
T = • 

M + A(a)\ 1 1 
R.+h, 

- {2-3sin2(/)}+{4-5sin2(/)} 

(3.15) 

A(a) = 

where 

3-l —RE J2 
a 

2(RE+hp)-
(RE+K) *\ 

Equation (3.15) will be used to compute the semi-major axis for specific inclination and 

perigee height that result in a repeat ground track. For computational advantages, 

Equation (3.15) can be converted to the polynomial equation given in Equation (3.16). 

4/uifia2 y\a)~ x\a)= \co\a7, x{af - (pa2 x{a)— /^\af \ (3.16) 

where 

/? = 2-3sin2(z) 

X = 4-5sin2(/') 

x(a) = ap 

y{a) = z\x\af + dya2 J- 25 cos(/)a2 

file:///co/a7
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From Equation (3.16) the semi-major axis can be determined for a given inclination and 

specified height of perigee. 

3.2.2 Epicyclic Motion Repeat Ground Track Orbit 

The second method provides a repeating ground track based on epicyclic motion 

theory by Aorpimai and Palmer.42 The Epicyclic Motion Repeating Ground Track Orbit 

concept is based on two polar elements (radius and argument of latitude) and two orbital 

elements (inclination and longitude of the ascending node). The argument of latitude 

replaces the argument of perigee and mean anomaly. See Figure 3.3 for the epicycle 

geometry. ERO includes the J2 term like the FC, but also uses the J4 first order and J? 

second order terms. This method was developed for near circular orbits with an 

eccentricity less than the order of J2 and therefore does not use eccentricity or require a 

specified height of perigee. " 

equatorial plf4ae 

osculating orbital plane 

line of nude 

Fig. 1 Coordinate system. 

Figure 3.3 Epicyclic Motion 53 
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The ERO basis has a very similar development of perturbation theory to the FC 

method but uses the argument of latitude instead of the argument of perigee and mean 

anomaly.42 This choice is consistent with the near-circular assumption and omits 

eccentricity. The ERO development is different from other published techniques because 

only a mean orbital radius is defined. A mean orbital plane or other mean elements are 

not defined in the ERO technique.53 The ERO semi-major axis, a, is designed to satisfy 

the energy relation Equation (3.17). 

£ = -
f ^ (3.17) 
\2aj 

s is the total orbital specific energy for the satellite and is constant for an axisymmetric 

gravitational potential. The semi-major axis for a circular orbit and epicycle frequency, 

wc, satisfy a3ne
2 = /.i. The nodal frequency used in the FC method is related to the 

epicycle anomalistic frequency through the relation seen in Equation (3.18)33 

2K 

T 
(1 + * K (3-18) 

where K is the secular change in argument of latitude. 

Equation (3.19) provides the basic ERO repeating ground track condition 

equivalent to Equation (3.8). 

^ - ^ - (3.19) 

k 1 + K-

Parameters d and k are analogous to FC parameters Nj and Np and v is the secular change 

in ascending node. Using the defined terms of v and K,3" where 
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-2j (Ik) (4„ 5 s i n - ( / ) )_J_J(3JL) (i36-5O0sin2(/)+385sin4(0)+--y2
2[^l (l4 + l7sin2(0-35sin"(/)) 

(3.20) 
and 

v = - | - / / ^ T c o s ( 0 + ^ 4 - | cos( ;){4-7sm2(0)+ | j2
2f^) cos(,)(ll-20sin2(,)) (3.21) 

2 \ a ) 16 v. a J 8 V a 

the repeat condition can be written in terms of semi-major axis and inclination42 given in 

Equation (3.22) using J?, J4, and J2 perturbations. 

* feJ^(->'''')-^0-»-'^?-'H^¥{^',-,w-J5*,w) 

(3.22) 

This equation can be used to determine the semi-major axis for a given inclination using 

a numerical solver.42 

For computational advantages, Equation (3.22) can be converted to the 

polynomial equation given in Equation (3.23).3° 
{r(Ca4 +rja2-0 + A)-ya2 + 8 + s}2 -J32 a" =0 (3.23) 

where 

/? = 
J, R2

F ^ 1 

3 /> y = — cos(i) 

8 = — i± R2
E cos(i){4 - 7sin2 (i)} 

16 J 

e = l ElL^ R2 cos(i)\ll - 20sin2 (i)\ 
8 J , ' ' 

1 
4 =-J,Ri 
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r> = 3 sin (i) 
4 

15 J4 J 34 . 2r)77 . 4 

0 = RE< — -25sin (i)+ — sin (i) 16 J2
 E\ 5 " 4 

X=~ VjJ- Rl \l4 +17sin2(i) - 35sin4(i)\ 
16 J2

 c( ' 

3.2.3 Modified Flower Constellation 

The Modified Flower Constellation uses a similar development as the basic 

Flower Constellation approach, except the MFC method includes additional gravitational 

terms in the variations in argument of perigee, longitude of the ascending node, and mean 

anomaly. This enhancement allows for additional perturbation terms in order to compare 

with the ERO while retaining eccentricity and the ability to address non-circular orbits. 

Adding the J4 and J2 terms'6 yields the following variational expressions in Equations 

(3.24)-(3.26). 

co = 3nJ2R/ {4-5sin2(i))+ 9nJl'R{ \56e2 + {760-36e2)sin2(i)-(890 + 45e2)sin4(i)) 
4p- 384p 

- 15nJ4Rz U4 + 72e
2 -(248 + 252e2 )sin2(i) + (l96 + 189e2)sin4(i)\ 

128p4 K 

(3.24) 

^ = -3J 2 R E
2 ncos ( V + 3j/RE

4ncos(i) ^ _ ^ _ ( ^ + 5 e ->) ,w -V u} 
2P 32P (3.25) 

15J.RF ncos(i) < ,„ , / , „, 7\ , 1 
+ " 4 \S + Ue' - \14 + 21e2 jshr (i)\ 

32p 
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. 3J,R/nJl-e2 , . , 
M =—-—^ \2-3sin (i) 

3nJ,2RE
4 \320e2 - 280e4 + (l600 - 1568e2 + 328e4)sin2(ij[ (3.26) 

2096 + 1072e2 + 79e4) sin4'(i 

{-8 + 40sin(i) - 35 sin2 (i)) 

512p44l-e2 1+ (-2096 + 1072e2 + 79e4) sin4(i) 

45JdR
4e2n4T-

128p" 

Once again substitute Equations (3.24)-(3.26) into the basic condition for a 

repeating ground track in Equation (3.8). Also replace e, p, and n as given in Equations 

(3.12)-(3.14) to yield the equation that is used to determine the semi-major axis for a 

given inclination and perigee height. The MFC formulation preserves eccentricity like 

the FC and includes the additional J4 and j / terms like the ERO. The MFC condition is 

given in Equation (3.27). 

a>F +. 
-, Mr a a a 
2 cos\i)8 — - s —7 + g — 

\ J 

1 , - Vx -Ix\ a2 , 
— + ho—y + sy— 1 
a x x v 

X 

\ 3 4 
. c a a a a 

x2 x4 x3 x V x 
• + qp 

4x X2 y/x 

(3.27) 

where 

x = x(a) = ap 

3REJ2 

4 T2 

P 

r 

1536 

15R4
EJ4 

128 

s = b/3+ fy + d/3 + gy 

q = df3+gr 

file:///2-3sin
file:///320e2
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rj = v/3 + ty + wfi + ny 

<j> = wf3 + uy 

A = (q + k + rri)(5 

v = {2q + m)j3 

b = 48cos{i){l2 - 80sin(i)2 ) 

d = 48cos(i){- 4 - 5 sin(i)2 ) 

f = 4cos(i)\s - 14sin(i)2 ) 

g = 4cos{i)y2 — 21sin(i)2 } 

h = 2 — 3 sin{i)~ 

j = 4 — 5sin(i) 

k = 3{l600sm(i)2 - 2096sin{i)4 \ 

m = 3^20 - 1568sin(i)2 + 1072sin{i)4 ) 

q=3\r 280 + 328sin{i)2 + 79sin{i)4 } 

s = JJS - 40sin(i)+ 35sin{i)2 } 

t = -^,4 - 248sin(i)2 + 196sin{i)4 } 

ti = -\/2 - 252sin(i)2 + 189sin{i)4 } 

v = 12^760 sin{i)2 - 890sin{i)4 } 

w = 12{56 - 36sin(i)2 - 45sin(i)4 \ 

The MFC condition can also be transformed into a polynomial equation given in 

Equation (3.28).43 

{r2jLiE{a)2 -ofEax{a)9 -/ux{a\D{u)-TF(a)]^ -4coi/Lia"x{a)"'{D{a)-rF(a)]2 =0 

(3.28) 
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where 

x(a)= ap 

D\a) = 2 cos\i)Sa2 x2 — sa4 + ga2x 

E\a) = hSax3 + sya3x — syax2 + Aa3 — va3x + q/3ax2 

F{a) = x" + jSa2x2 + rja4 —<ja2x 

4 

_ 3REJ*2 

1536 

15R4
EJ4 

y — —Z_ 

128 

£ = b/3 + fy + dj3 + gy 

g = dfi + gy 

rj = vj3 + ty + wj3 + uy 

(/> = w/3 + uy 

X = (q + k + m)/3 

v = {2q + m)/3 

b = 48cos{i)\l2 - 80sin(if } 

d = 48cos{i)\~ 4 — 5sin(i)2 } 

/ = 4cos(i)\p - 14sin{if ) 

g = 4 cos(i))12 — 21 sin{i)2 } 

h = 2 — 3 sin\i) 

j = 4 — 5sin{i)~ 

k = 3{l600sin(i)2 - 2096 sin(i)4 } 
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m = 3^20 - 1568sin{i)2 + 1072sm{i)" ) 

q = i { - 280 + 328sin{if + 79 sin{i)4 } 

A' = 3^ - 40 sin(i)+ 35 sin{i)2} 

r = --J64 - 248 smiff +196 sin{i)4 } 

u = -{72 - 252sin{if + 189sin{i)4 ) 

v = 72^7605/n(i)2 - 890sin(i)4 } 

w = 12)56 — 36 sin{i)2 — 45sin(i)4 } 

Additional terms in the element rate changes may be added as appropriate. A 

second modified Flower Constellation (MFC2) procedure includes the J<j terms.1 This 

term was added to determine the degree of change between the FC, the MFC, and the 

MFC2. Since J8 (1.426810879194179e-011) is two orders of magnitude less than J6 

(6.08346498880600 le-009),25 and the difference in the MFC and MFC2 techniques are 

so small,50 this investigation does not include terms beyond J2, J4, and J2 '• 

3.2.4 Simplified Repeat Groundtrack 

Another method of evaluating the repeat ground track condition is to use a 

simplified form of Equation (3.8) with only the J2 term.44 This method is different from 

the FC method in that eccentricity is given, rather than being a function of the perigee 

height and semi-major axis. Equation (3.8) may be written as below. 

( o D2 A 
n , 3 7 RE 

K 2 a j 
°^ = 0 (3.29) 

where 
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Let 

Q = ^2-^TW (3-30) 

and 

Z = nm (3.31) 

so that Equation (3.29) becomes 

Z'+QX1-^L = 0 (3.32) 

r 

Equation (3.32) can be easily solved using a two step iteration Newton method with a 

close guess semi-major axis and given inclination, eccentricity, and similitude 

parameter.^ 

The SRG refinement method is needed because the FC, ERO, and MFC methods 

all make the assumption n = (fda)112, which is not true under perturbation and introduces 

error in the computed semi-major axis. Although simulating the perturbed orbital motion 

with such values leads to a ground trace that is approximately closed, in many cases the 

accuracy is not sufficient. Given a starting condition for a from either the FC, ERO, or 

MFC methods, Equation (3.32) is used to find x(n) directly and n = (/da3)1'2 is used to 

find the corresponding a, leading to the two step iteration procedure. Usually only two 

iterations are needed for convergence. Ground track closure with these results is nearly 

always satisfactory. 

Recommendation from Dr. Paul Cefola, Personal Correspondence, September 2009. 
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3.3 Method Comparisons 

The method comparison focuses on evaluating the four processes to discover the 

most efficient method for finding a semi-major axis for a given inclination, similitude 

parameter, and perigee height. The equations for repeating ground track conditions for 

FC, ERO, MFC, and SRG are the basis for comparing the four methods. The FC, ERO, 

and MFC equations are first used to find the semi-major axis for a given inclination, 

similitude parameter, and perigee height. The SRG method needs a close guess initial 

semi-major axis as well as given eccentricity, inclination, and similitude parameter. 

Thus, the method comparison uses the SRG method to refine the semi-major axis 

determined by the FC, ERO, and MFC methods and these refined methods are called 

FCr, EROr, and MFCr respectively. 

3.3.1 Semi-Major Axis Comparison 

A grid pattern is laid with ranging inclinations and eccentricity for three cases for 

r = Vi (12 hour period), r = % (6 hour period), and r = 1/16 (90 minute period). For r = lA, 

e ranges from 0 to 0.68. For r = 14, e ranges from 0 to 0.28. For r = 1/16, e ~ 0. 

Inclination ranges from 0 to 100 degrees at a step interval of 5 degrees for all three cases. 

Figures 3.4-3.12 show the results for the inclination versus semi-major axis for each of 

the FC, ERO, and MFC methods in comparison to the SRG refinement. In all three cases 

the SRG refinement for each method converges to the same result, and the unrefined 

MFC method closely approximates this result. This behavior shows that using the FC or 

ERO method with the SRG refinement leads to the same semi-major axis as determined 

by the MFC method without need for refinement. 



49 

A few additional comments are given on Figures 3.4-3.12 before moving on. For 

the T = Vi case, note all FC semi-major axis curves over the family of eccentricities 

coalesce at the inclination of 90 deg. This behavior is likely related to the cos(/) 

numerator term in Equation (3.15) vanishing at this critical inclination. Also note the 

unrefined and refined curves for each eccentricity intersect precisely at 60 deg 

inclination. For this value of /, each sin2(/) factor in the denominator in Equation (3.15) 

equates to ± 0.25, while in Equation (3.29) both sin2(z) and cos2(z) factors within 

parameter \\i become ± 0.125 (including multiplying the term 3) at i = 60 deg. The noted 

intersections in Figure 3.4 correlate with this term cancelling. Similar features are 

observed in the FC method for r = % and 1/16 in Figures 3.7 and 3.10. Finally note that 

the refined curves for all three methods (Figures 3.4-3.6) intersect near i = 30 deg for r = 

V2 but there is no similar intersection for x = lA and 1/16 (Figures 3.7-3.12). For x = lA and 

i = 30 deg, the sin2(/) factor in Equation (3.29) becomes + 0.625 while the combined 

cos2(z) and cos(z) factor gives -1/0.622, again causing an approximate cancellation of 

terms (i.e., elimination of the eccentricity parameter) thus inducing the intersection of 

curves. When T ^ lA, this alignment is diffused. 
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Figure 3.12 Inclination vs. Semi-Major Axis for MFC Methods x = 1/16 

3.3.2 Computational Time Comparison 

A second part of the method comparison focused on the computational time 

needed to find the semi-major axis for a given inclination, similitude parameter, and 

perigee height. Once again, the ERO equation is based only on inclination and similitude 

parameter (near circular orbit). The same three cases for z - 'A (12 hour period), r = % (6 

hour period), and r = 1/16 (90 minute period) are also used in comparing the 

computational time. The first computational time is found through using an algebraic 

numerical solver, the Newton method for this comparison, for the semi-major axis using 

Equations (3.15), (3.22), and (3.27). A realistic choice for a first guess of the semi-major 

axis leads to an appropriate root. The second process leading to a second computational 
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time is from the corresponding polynomial equations. Here all roots must be examined to 

determine the appropriate root. The FC and MFC polynomial equations can lead to 

multiple roots within a valid orbital range (from low orbital altitudes to a geosynchronous 

altitude). Therefore the valid roots must be further examined to find the appropriate root. 

Since finding the valid roots for the FC and MFC methods is complex, the SRG 

refinement with a two step iteration process is only applied to the ERO method. Figures 

3.13-3.21 show the results for computational time for the two different processes for each 

T based on the FC, ERO, and MFC approaches. Computational times are found using the 

"tic" and "toe" commands in Matlab. Each run represents an inclination and eccentricity 

pair, and a total of 105 pairs for r = 14 and % were considered, but only 63 pairs were 

used in the r = 1/16 case. 

The polynomial root finding approach consistently outperformed the algebraic 

Newton iteration approach with regards to computational time. A single run using the 

polynomial equation formulation consistently required 0.001 s or less to complete, while 

the algebraic equation formulation often took 3 to 5 times longer. When using the 

algebraic Newton iteration approach, due to the larger number of terms to evaluate (J'4, 

J22), the ERO and MFC runs approximately took 0.003 to 0.005 s while the simpler FC 

runs usually took 0.002 s of computational time. 
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3.3.3 Residual Comparison 

Another consideration for evaluating repeat ground track methods is the value of 

the repeat ground track function, f, where by rearranging Equation (3.8) for the residual 

cor — Q. 

(3.33) 
/ = * • 

n + M„ + co 

For an ideal case, f is zero. For this case study, each method was evaluated using the 

appropriate form of Equation (3.33). The tolerance selected for the Newton method was 

10° in order to maintain quick computing times. Tighter tolerances will produce smaller 

residual error with undesirable impact on run time. The same three cases for r = Vi (12 

hour period), r = V* (6 hour period), and r = 1/16 (90 minute period) are presented in 
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comparing the function value. Also, identical gridding for inclination and eccentricity as 

that used in the semi-major axis comparison was employed here. 

Figures 3.22-3.33 show the results for the FC, ERO, EROr, and MFC methods. 

Note the magnitude difference in the values. The EROr method consistently has the 

smallest error (10"13 to 10"'6) and is likely related to it being a refinement process of a 

previous solution. The ERO and MFC methods have comparable error (107tol0"8)and 

consistently outperform the FC method (10~3). These differences in convergence between 

the FC and ERO/MFC methods are likely due to the differing function slopes at the semi-

major axis zero due to the various J4, J2" perturbation terms present in the ERO/MFC 

methods and absent in the FC method. 

Figure 3.22 Function Value for FC, r = Vi 
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3.3.4 Comparison Conclusions 

Four methods for numerically determining the condition for repeat ground tracks 

were investigated. Three recent methods, the FC, ERO, and MFC were reviewed. A 

fourth method, the SRG, was re-introduced and considered as a refinement process since 

a close guess semi-major axis and given eccentricity are necessary. A method 

comparison using three design orbits of various altitudes (r = V2, x = lA, and r = 1/16) was 

investigated to better visualize the design space for each method. 

Figures 3.4-3.12 show that the determined semi-major axis from the MFC and 

refined SRG methods are comparable. Therefore the ERO approach can be used with a 

SRG refinement to produce the equivalent MFC result. The ERO polynomial approach 
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only leads to a single valid, appropriate root where as the FC and MFC polynomial 

equations can lead to multiple valid roots which must be further examined to find the 

appropriate root. Therefore the ERO polynomial equation with the SRG is included in 

computational run time analysis for the polynomial equation strategy vs. traditional 

algebraic numerical solver. Figures 3.13-3.21 show the computational run times for the 

FC, ERO, and MFC methods. Overall, the polynomial equations are seen to be much less 

expensive than a traditional numerical solver. Also, the ERO approach shows a faster 

computational time over the FC and MFC approaches, even with the SRG refinement. In 

regard to Figures 3.22-3.33, the repeat ground track function values vary from 

thousandths with the FC method to 10"8 with the ERO and MFC methods to 10"13 for the 

ERO refined method. Clearly, the ERO refined method shows the function value closest 

to zero; zero being the ideal case. 

For use in an optimization algorithm, each method was weighed based on 

reliability, performance, and computational ease. For reliability, the FC and MFC 

methods are not recommended because of the restricted solution space for near circular 

orbits. For performance, the FC and MFC methods use more variables than the ERO 

method. In regards to computational ease, the FC and MFC polynomial equations, 

Equations (3.16) and (3.28), can lead to multiple possible roots for a set of solutions 

which requires further investigation to find the appropriate viable, single solution. The 

ERO method polynomial equation, Equation (3.23), leads to only one viable root 

solution. Therefore, taking into consideration the overall reliability, performance, and 

computational ease exhibited by the ERO method with SRG refinement, the ERO 
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formulation is recommended over the FC and MFC approaches for finding initial orbital 

parameters. This research uses the ERO method with SRG refinement. 
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CHAPTER 4 

OPTIMIZATION PROCESS 

4.1 Optimization Cost Function 

Selection of the cost function for the optimization process is critical. Abdelkhalik 

and Mortari present two cost functions. The first cost function is observation resolution 

with the objective of achieving the highest value and the second is observation time for 

the site where attaining the largest possible value is the goal. The cost functions are 

mathematically expressed in such a way that a minimum numerical value over the design 

space is desired for each cost function. For the first cost function, the position vector for 

each site, k, is given in Equation (4.1) in an inertial reference frame. See Figure 4.1 for 

the satellite observation geometry. 

r,' =RC 

cos </>k cos[A.k + (oEt) 

cos <f>k sin\Xk + (oEt) 

sin<f>k 

(4.1) 

In Equation (4.1), several parameters are introduced where </>k is the site latitude, h is the 

site longitude, and t is time. 

The cost function for highest resolution39 is given in Equation (4.2) 

where a* is the priority weight for the k1' site, r^ is the k' site's position vector, and r is 

the satellite's inertial position vector. The cost function for the maximum observation 

time''9 is provided in Equation (4.3) 
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kih target 
site 

FOV 
/ Subsatellite 

Fig. 1 The angle ift as defined for the *th site. 

Figure 4.1 Satellite Position and Geometry 

JT =^akH{umr -sA tf -|cos(?7,V? 

W 

(4.3) 

where H is the Heaviside unit step function where H(x) = 0 if x<0 else H(x) = 1. 8k is the 

angle measured at the satellite from nadir to the kth target, r\k is the angle measured at 

Earth's center from nadir to the k' target, and tf is the overall reconnaissance time. An 

advantage of the two cost functions is that sites are weighted to establish priority. 

However, there are multiple limiting factors: 

1. Sites are provided in geocentric coordinates and not transformed to more accurate 

geodetic coordinates which account for the non-spherical shape of the Earth. 
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2. By minimizing the distance between the satellite orbit and the sites, the semi-

major axis must be first considered and fixed. Otherwise, the cost function would 

be optimized by an orbit that is close to the Earth's surface! 

3. Best resolution is achieved only in the nadir direction. Sites within the slant range 

are still penalized in the cost functions.54 

4. The orbit is assumed to be circular. 

The first test case examined in Reference 39 included only two sites using the 

highest resolution cost function. Figure 4.2 shows how an appropriate orbit is easily 

achieved over only two sites. However, when the number of sites is increased to 20, the 

orbit does not visit all the sites as seen in Figure 4.3. When using a maximum 

observation time cost function, the 20 sites are observed by the optimized orbit as seen in 

Figure 4.4 where again all sites are not visited. The conclusion in the technical paper 

states that "As the number of sites increases, the solution orbit does not visit each site." 

Figure 4.2 Optimal Orbit for Highest Resolution Cost Function for Two Sites 
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A more robust cost function for the repeating ground track problem is desired. 

The first cost function presented is based on maximum resolution for each site and the 

second cost function maximizes the observation time. However, these cost functions 

inherently include two limitations. For the maximum resolution, the semi-major axis 

must be first considered and fixed. This first limitation is already partially circumvented 

in this dissertation design methodology (see Chapter 2) by searching for the best semi-
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major axis. The second limitation is the best resolution is considered only in the nadir 

direction so sites within the slant range that could have the needed observation data 

collected are still penalized. This limitation is overcome in the present work by the cost 

function selection itself. 

Therefore, this work uses an enhanced cost function based on a Window-

Constraint Packing Problem (WCP) which optimizes the opportunities for site 

observations depending on priority and windows.30 The WCP method is an example of 

how satellites are currently tasked. The WCP method focuses on scheduling observations 

and eliminates the problem of needing to select the semi-major axis like in the maximum 

resolution cost function. The window method incorporates both minimum and maximum 

observation times and therefore negates the assumption of always desiring a maximum 

duration time like in the best observation time cost function. Also, the window method 

allows for off-nadir considerations by using the entire field of view. The WCP desires a 

maximum magnitude cost function value. One method of solving the WCP is to use a 

priority dispatch30 cost function. The foundation of the cost function lies in the windows 

of opportunity, the time the observation sites are within view of the satellite, and all 

lighting conditions are met. Computations are based on propagating an initial state 

forward in time at discrete time element intervals using a fourth order Runge-Kutta 

scheme, with a 10 s step size, determining the cost function at each of those points. At 

each time element, each observation site is evaluated for feasible viewing opportunities. 

Once the viewing opportunities are determined, valid windows of opportunity are 

selected. To be a valid window of opportunity, the satellite must be within a given slant 
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range of the observation site and the length of the window must meet the minimum 

duration of coverage requirement. 

The windows of opportunity are calculated for one period of repetition, Tr, which 

is related to the nodal period of the satellite, 7Q, and nodal period of Greenwich, TQG, 

by Equation (4.4). 

Tr=kTn=dTnG (4.4) 

By expressing the nodal periods to depend on the orbital elements, Equation (4.4) is 

converted to a more useful form. The nodal period 7b is given by Equation (4.5) where K 

denotes the secular rate of change in the argument of latitude and ne is the epicycle 

frequency.5 

2n 

Including J?, J4, and Jj perturbations, K is defined by Equation (4.6).5j 

(4.5) 

(4.6) 

where 

*2 4 2 [a )[4-5sin^] 

3 ' — 4 

^ - 1 [l36-500sin(/)2+385sin(/)4] K*=~JiJ< 

K-22 =— A{—1 [l4 + 17sin(i)2 -35sin(i)4] 

The nodal period of Greenwich is provided as in Equation (4.7) 

In 
Tna X (4-7) 

a>E - i l 
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where the Earth's rotation is COE= 7.29211585530 x 10"5 rad/s. The nodal regression of 

the orbital plane is Q given by Equation (4.8) 

Q = vn (4.8) 

where v is the secular change in the ascending node5j and n is the satellite's mean motion. 

Again, including J2, J'4, and J2 perturbations, v is defined by Equation (4.9).53 

v = o2 + L>4 + o22 (4.9) 

where 

v? = J J — 
2 -1 ' i 

2 V a j 

15 (R ^ 

22 —
 0

 u 1 , 
a j 

cos(z') 

cos(/)[4-7sin(02] 

cos (i)[ll-20sin(f)2] 

The repetition period may be calculated using either &7Q or CITQG-

Once calculated, the repetition period is divided into discrete time elements. Each 

time element for each observation site is assigned a suitability function, 5. The suitability 

function, s, contains three multiplicative parts. The first part is based on the altitude, h, 

of the satellite at observation. If the satellite is over the maximum altitude of sensor for 

desired resolution, the suitability function component for height, s/„ is penalized as shown 

in Equation (4.10) 

^ = l i f ^ < l 

^*=l- log[^) if 1< z < 2 

sh=0ifz>2 (4.10) 
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where % is a percentage of resolution height given by Equation (4.11). 

l = hlhpmax (4.11) 

This factor allows for some margin above the resolution ceiling altitude for that 

observation point, but does not force the entire orbit below a certain altitude. The second 

part of the suitability function, sr, depends on the sensor range angle, 0. Observations on 

the edge of coverage are slightly penalized to encourage coverage near nadir as seen in 

Equation (4.12) 

S r = l i f 0 < 0 m x a 

sr=fi if ®>®taaa (4.12) 

where a = 0.75 and /? = 0.8. The constants a and /? may be any predetermined constants 

less than unity and 0 max is the maximum range angle at the given time based on the 

satellite's altitude and sensor FOV and slew capability. Combining these two parts of the 

suitability function and multiplying by the observation site priority, p, provides an overall 

suitability function value for each time element of coverage during the window as given 

in Equation (4.13). 

s = shsrp (4.13) 

To find an overall window of opportunity suitability value, use the sum average of the 

suitability values for each time element for that window. 

To create a schedule, the priority dispatch method ranks the targets first according 

to priority, a user defined requirement. Then the targets are ranked according to the 

number of window opportunities for scheduling, also called slack. Finally, the window 

opportunities are ranked according to the quality of the observation based on the 

suitability function. The highest fitness window of opportunity is scheduled if the time 
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slot is available. If not, the algorithm checks the next window and so forth. When the 

target is scheduled, the scheduled time slot elements are assigned the corresponding 

suitability values. Once the schedule has been created, it is optimized for additional 

available times that expand each observation as suggested by Sorensen and Wolfe. The 

evaluation function, Q, as given in Figure 2.1, is the negative sum of the time slot values 

based on suitability values, and is to be minimized by the optimization process. 

0 = -ZfX (4-14) 

In Equation (4.14), nw is the number of windows scheduled and ntj is the number of time 

elements within the ith window. The negative is inserted to convert the problem from 

maximization to minimization in order to be compatible with the selected optimizer 

software package. 

Now that the cost function for the optimization process has been defined, return to 

the overall goal of finding a constrained optimal orbit for an Earth observation satellite. 

This problem is very complex and may lead to multiple local minimums. To search 

through the parameter space to find a global minimum, the genetic algorithm was 

selected. This choice allows for a broader search and does not highly depend on the 

initial guess/9 The genetic algorithm uses the primary six parameters: inclination, 

longitude of ascending node, argument of perigee, true anomaly, the height of perigee, 

and number of revolutions of the orbit in the period of repetition. The number of 

revolutions of the orbit in the period of repetition, k, must be an integer. To incorporate 

this restriction, the value for k is immediately truncated to an integer right after the 

genetic algorithm selects the value of k and before the cost function is processed. The 

genetic algorithm process referring to Figure 2.1 is seen in the iterative loop between the 
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selection of parameters and cost function evaluation. The evaluation function Q is 

calculated on the selected parameters. Using a coding for each of the parameters, the 

genetic algorithm evaluates Q using probabilistic transition rules to refine the parameters 

until an optimum state is found. 5 The optimality of the genetic algorithm is investigated 

in Section 4.3. The parameters for the genetic algorithm include a maximum generation 

limit of 100, function tolerance of 0.000001, population size of 100, crossover fraction of 

0.85, infinite stall time limit, stall generation limit of 10, and with an initial population 

range bound as discussed in Chapter 2. 

4.2 Optimization Process 

Now that the cost function for the optimization process has been selected, return 

to the overall goal of finding an optimal orbit for an Earth observation satellite. This 

problem is very complex and may lead to multiple local minimums. To search through 

the parameter space to find a global minimum, the genetic algorithm (GA) has been 

selected. This selection allows for a broader search and does not highly depend on the 

initial guess.39 GAs differ from the conventional search methods in four ways:35 

1. GAs work with a coding of the parameter set, not the parameters themselves. 

2. GAs search from a population of points, not a single point. 

3. GAs use payoff (objective function) information, not derivatives or other 

auxiliary knowledge. 

4. GAs use probabilistic transition rules, not deterministic rules. 

GAs do not use design variables directly, instead the variables are coded into strings (a 

member). This codification allows the GA to exploit similarities in codes of multiple 
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members. Multiple members (a population) are used simultaneously to enable the GA to 

search a broader area with less chance of getting confined in a local minimum or 

maximum as with the calculus based methods. In each iteration of a population (a 

generation), an objective function value is assigned to each member. The objective 

function values are used in randomized operators to define the next generation. To create 

the next generation, the GA uses three main operators:^5 

1. Reproduction 

2. Crossover 

3. Mutation 

Reproduction involves randomly copying a member of the previous generation 

based on a percentage of fitness which is determined by the objective function value of 

previous generation members. For example, a member who has a high objective function 

value will be given a higher percentage of fitness. All member fitness percentages will 

total to 100%. In this way, when a new member is randomly selected, it will more likely 

come from a previous member with a high objective function value. Once the next 

generation members have been selected, the next step is crossover. 

Crossover randomly pairs up members of the generation pool. All or a percentage 

of the members may be paired. Once members are paired, they are mated by crossing a 

portion of each member at a randomly chosen point on the member. The newly crossed 

members are maintained as members of the current generation and replace the pair that 

was crossed. Crossover essentially enables members to exchange information to search 

for a better function value performance. Figure 4.5 demonstrates this concept. 
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FIGURE 1.8 A schematic of simple crossover shows the alignment of two 
strings and the partial exchange of information, using a cross site chosen at 
random. 

Figure 4.5 Crossover35 

Mutation consists of a small percentage of members having a bit in their string 

changed (from 0 to 1 or vice versa) and ensures that the reproduction and crossover 

phases have not lost sight of an important aspect of the population. A GA with good 

results usually includes mutation occurring on the order of one per thousand bit transfers. 

Therefore mutation is considered a secondary mechanism when compared to 

reproduction and crossover. 

The three phases of GA describe the operations performed on each member, but 

what does this mean to the overall goal of finding an optimum solution? That answer can 

be found in schemata. Members with the same characteristics in certain string positions 

are said to have similarity templates or schema. For example, two members that both 

begin with the same bit value share a schema. For a four binary bit code, the schema, for 

example, would be represented as 1*** where the star represents positions that could be 
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any characteristic. Schema enables the members to be grouped according to string 

characteristics. As generations progress, the most fit schema will emerge according to 

the Schema Theorem or Fundamental Theorem of Genetic Algorithms given in Equation 

(4.15).35 

m{H,t + \)>m(H,t)^ 
f 

1 S(H) (II\ (4.15) 

In this inequality relation, m(H, t+1) is the number of members with a particular schema, 

H, of population t+1, m(H,t) is the number of members with a particular schema, H, of 

population t,f(H) is the average fitness of the members with schema H of population t, f 

is the average fitness of the entire population t, pc is the probability of crossover, and 

d(H) is the defining length of schema H. Defining length is determined by the distance 

between the first and last specific member positions, / is the member length, o(H) is the 

order of schema H defined by the specific number of positions in the schema, and pm is 

the probability of mutation. 

The Schema Theorem clearly includes all three operators (reproduction, 

crossover, and mutation) and demonstrates how schema with high fitness will emerge 

with successive population generations. This theorem provides the fundamental power of 

genetic algorithms. 

4.3 Genetic Algorithm Optimality 

For each run of the algorithm, a different solution may be produced due to the 

probabilistic nature of the search logic. To characterize this solution randomness, this 
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section investigates the population size of the genetic algorithm, the runtime of the 

algorithm, and the cost value obtained for each solution. Additionally, the solutions are 

examined for any commonalities. 

The default population size for the genetic algorithm in Matlab is 20.55 This 

default is compared to population sizes of 100, 250, and 500. Four runs for each 

population are examined using the global case for no lighting conditions with the date 

midnight 1 January 1994 (see Chapter 6). Figures 4.6-4.8 shows the cost function value, 

number of generations, and run times in hours for the four runs of each population size. 
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Figure 4.6 does not show a clear connection between the increased population 

size and a more optimal cost function value since the algorithm is designed to find the 

global minimum value. Ideally, an increase in population size to find a more optimal cost 

value would result in few needed generations since the search pool is more widespread. 

However, this is not necessarily the case as shown in Figure 4.7 where the generations 

range from 20 to 60. As expected, the time needed to run the algorithm increases with 

increased population size as shown in Figure 4.8. With a population size of 20, only an 

hour is needed for the genetic algorithm. When the population size increases to 250, the 

time increased from 8 hours to as much as 19 hours. A balance of time versus cost 

function value becomes apparent. The degree of "optimality" that is really needed in 

comparison to the time required to achieve the desired result is an open issue at this point. 

Table 4.1 provides the orbital elements for the solutions for various population 

sizes. Although not shown, all these solutions successfully schedule all targets. 

Interestingly, the inclination tends toward 66 deg or a band of 80-85 deg. All hp are 

within the resolution ceiling limit, 2000 km. Some solutions call for orbital locations 

above the ceiling limit as seen by a values that are above 8378 km. There is no clear 

overall repeatable answer which provides one unique optimal solution. Results suggest 

there are many different orbit designs which satisfy the constraints and have similar cost. 

The optimization process should continue to be investigated to find a more clear method 

to achieve at least a tight family of ideal solutions. 
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Table 4.1 Orbital Elements for Population Sizes 20, 100, 250, and 500 

Population 

20 
20 
20 
20 
100 
100 
100 
100 
250 
250 
250 
250 
500 
500 
500 
500 

fi (deg) 

57.19 

117.42 

76.41 

351.00 

59.15 

164.20 

325.59 

233.64 

111.05 

87.06 

120.89 

227.43 

131.08 

289.33 

151.85 

88.75 

co (deg) 

61.63 

268.29 

273.17 

241.91 

91.00 

208.66 

182.79 

114.60 

10.59 

126.74 

269.90 

194.33 

110.44 

270.88 

270.87 

270.13 

i (deg) 

82.08 

70.00 

103.34 

75.38 

83.87 

66.58 

67.35 

84.34 

85.60 

80.30 

65.09 

66.84 

79.84 

66.14 

68.67 

79.27 

6 (deg) 

49.97 

298.18 

320.19 

179.30 

159.06 

234.74 

339.46 

171.41 

169.57 

202.10 

274.73 

109.33 

147.15 

191.47 

253.65 

183.23 

hp (km) 

1846.75 

1788.31 

1017.63 

795.51 

1815.68 

1927.21 

425.18 

1900.18 

207.19 

1980.23 

1946.51 

192.09 

1851.34 

1792.44 

1559.23 

1951.10 

k 

10 
11 
11 
10 
10 
10 
12 
10 
12 
10 
10 
12 
10 
11 
11 
10 

e 

0.0945 

0.0406 

0.1344 

0.2097 

0.0980 

0.0844 

0.1523 

0.0888 

0.1815 

0.0796 

0.0822 

0.1813 

0.0938 

0.0397 

0.0674 

0.0828 

a (km) 

9072.61 

8502.36 

8534.14 

9066.63 

9073.99 

9062.53 

8015.25 

9074.39 

8033.23 

9071.33 

9061.75 

8014.24 

9070.94 

8499.74 

8501.30 

9070.58 
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CHAPTER 5 

UNMODELED ON-ORBTT PERTURBATIONS 

5.1 Introduction to Space Surveillance 

The United States Space Surveillance program is an excellent example of how to 

realistically incorporate perturbations into orbital model predictions. The predictions are 

distributed to a wide array of sensors to collect observations. Once collected, the 

observations are sent back to a central processing facility to update the orbital elements. 

Figure 5.1 shows this information flow. This method of surveillance enables the U.S. 

military to maintain a catalog of all detectable Earth orbiting objects. 

Collected 
Observations 

Space 
Surveillance 

Center updates 
orbital elements 

Surveillance 
Sensors acquire 
satellite data 

Figure 5.1 Orbital Model Information Flow 

The requirement for a space surveillance program was identified shortly after the 

first artificial satellite was launched in 1957. The Air Force needed to prevent false 

missile warning threats while the Navy wanted to warn forces about overhead 
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reconnaissance satellites.' Today two main models developed over the years are still in 

use, the Position and Partials as functions of Time (PPT3) and the Simplified General 

Perturbations (SPG4). In 1959 each model started with a simple non-spherical Earth 

zonal harmonic solution by Brouwer. An atmospheric drag modification was added to 

the models in the early 1960s. In the 1970s the SPG4 added third body lunar and solar 

gravitational effects. The same terms were added to an original PPT to become the PPT3 

in 1997. The main characteristics of each model are provided below:27 

PPT3 

1. Brouwer's solution includes J'?, J3, J4, and J5 zonal harmonics. 

2. Lyddane's modifications avoid small divisors of eccentricity and the sine of 

inclination. 

3. Critical inclinations are handled with a special 12 term series expansion. 

4. Smith's semi-empirical atmospheric drag model represents the mean motion 

effect as a quadratic time function. 

5. Hujsak adapted Bowman's lunar and solar gravitational effects and Earth tesseral 

harmonics resonance effects and provided an extension to geosynchronous 

satellites. 

SGP4 

1. Brouwer's solution with long and short periodic terms that do not include 

eccentricity as a factor are included. 

2. Lane and Crawford developed an atmospheric drag model with only the secular 

terms. 
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3. Hujsak adapted Bowman's lunar and solar gravitational effects and Earth tesseral 

harmonics resonance effects and provided an extension to geosynchronous 

satellites. 

The Navy and Air Force space surveillance centers' models still use foundations from 

the orbital models developed in the 1950s and 1960s. These orbital models used by the 

U.S. military have evolved from a simplified, analytical non-spherical Earth zonal 

harmonic solution to include special perturbations of aerodynamic drag and third-body 

effects. This development was made possible by the improvement of computational 

techniques and facilities."7 One computational method of adding perturbations is 

Cowell's Formulation. 

5.2 Cowell's Formulation 

This numerical technique enables any disturbing acceleration to be included in the 

formulation of a problem. For example the two body like equation is shown in Equation 

(5.1)16 where r is the position vector and a rbetl is the perturbing acceleration vector. 

r=—yr+aperturbtd (5.1) 

The acceleration is divided into the traditional two body acceleration plus perturbing 

accelerations. Each perturbing acceleration can now be linearly added as appropriate and 

even turned on or off accordingly in the problem. Cowell's formulation of the problem is 

then numerically integrated to propagate the orbit. Perturbations of consideration for an 

Earth observation problem include non-spherical Earth, aerodynamic drag, solar 

radiation, and third body effects. The perturbed acceleration can be expressed in 

Equation (5.2). 
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S perturbed = 5nS + «</rag + Ar + ^body (5 2) 

Outlined below are four perturbations of main concern for the Earth surveillance 

application. These disturbances include the non-spherical Earth, aerodynamic drag, solar 

radiation, and third body effects. These perturbations (except the low order zonal effects) 

are not modeled in the optimization design problem for finding an orbital solution 

covering the target set. However, the following perturbations are modeled in the lifecyle 

portion of this research showing the effective life cycle of the determined orbit. Other 

perturbations exist, but are not discussed. 

5.3 Disturbing Functions 

5.3.1 Non-Spherical Earth 

Since the Earth is not a perfect sphere, its gravitational potential is not uniform. 

An aspherical potential function U is defined and then used to determine the gravitational 

acceleration (by taking the gradient) at a particular point.16 Figure 5.2 shows the 

geometry of the non-spherical Earth. 
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'ITRF 

Figure 8-3. Deriving the Gravitational Potential. We consider each point In the Earth, IHQ, 
when determining the gravitational potential at P. The latitude is a geocentric 
value. A is the angle between the vectors VQ and r. 

re-Figure 5.2 Non-Spherical Earth Geometry 

The potential function is given by Equation (5.3) 

i mr 

e=i PQ 

(5.3) 

where G is the gravitational constant, mo is the Earth mass at point Q, P is the satellite 

point, and PQ is the distance from Q to P. As the sum of the masses (a large but finite 

number) approaches an integral, Equation (5.3) becomes Equation (5.4) where me 

denotes Earth mass. 

U = G \ ^-dmt 

body PQ 

(5.4) 

The geocentric distance from the Earth's center to the point of interest P is Equation 

(5.5). 

r = VJ , 2 "> 1 

r = Jx + v' + z~ (5.5) 
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The distance from center of the Earth to an elemental mass of the Earth, located at Q, is 

provided in Equation (5.6). 

rQ=4s2+t]2+C2 (5.6) 

The total range angle A between position vectors r and rQ is given by Equation (5.7). 

r*rQ 
cos(A) = *- (5.7) 

rrQ 

Finally, the distance PQ between the elemental mass and the satellite is shown in Equation 

(5.8). 

pQ = r" + rQ - 2rr0 cos(A) (5.8) 

Substituting pg into the potential equation yields Equation (5.9). 

U = G\ , d™E (5.9) 
bodyr^\ - 2a cos(A) + a2 

where 

rQ a = — 

r 

Since cos (A) is less than or equal to 1 and a is less than 1 for a point outside the Earth, 

use Legendre Polynomials to express part of Equation (5.9) as Equation (5.10). 
1 

J^a'P,[cos{A)] (5.10) 
yj1 -2a cos( A) + a ~ /=o 

The potential Equation (5.9) then becomes Equation (5.11). 

U = — J Y^a'P,[cos(A)}/w£ (5.11) 
r body'=0 

Use the cosine law of spherical trigonometry to find an expression for the range angle A 

in terms of latitude <j> and longitude X as in Equation (5.12). 
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cos(A) = s i n ^ j s i n ( ^ f ) + cos(^)cos(^ C ; )cos(/le -Xsa,) (5.12) 

Following a spherical harmonics approach, expand the Legendre Polynomials using the 

addition theorem shown in Equation (5.13) 

P, [cos(A)] = P, [ s « 4 J> [ s i n (^ ) ]+ jjt^hA,^Ahn +BlmB'Lm} 
m=i I' + mf-

A1 - P 
A I,in ~ rl,m 

Bl,m = Pl,,„ 

3 in(^e)JcosMo) 
. s i n(^.)] c o sM.™,) 

.Sill(^»,)]Sin(,WA
M') (5.13) 

where / indicates degree and m indicates order. 

Isolate terms that are independent of the satellite's location (for m=\ Xo I) \n 

Equation (5.14). 

(/ - m)l 
rl,m P '" \5V e J^vsyrisiQ jurnE 

(5.14) 

C'i.m = J r'Q Jj-^Y, PK», F'"fece )}cos(mAQ )dmt 
body V /* 

body v + mr 

For the special case of zonal harmonics (where w=0), the C coefficient in Equation 

(5.14) reduces to Equation (5.1.5) 

C',.0= I'i^ol^kj^E 
body 

(5.15) 

so that the potential Equation (5.11) can now be expressed as Equation (5.16). 

^ = — 2 - ^ w + ^ Z L / \Ci.-> cosVnKal) + Slm sw{mXsJ) 
i=u 1=1 m = l 

(5.16) 

Non-dimensionalize the C" and S' coefficients of Equation (5.14) into Equation (5.17) 
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C'l m = Cl mREmF 

(5.17) 
S'l,„, = S,,m

REmE 

where RE is the mean equatorial radius of the Earth. The potential Equation (5.16) then 

becomes Equation (5.18) where ju = GmE. 

r 1=0 \ r J r 1=1 m=l \ r J 

(5.18) 

However, C7,o, Cij, and SJJ are all zero for / > 1. Separating the 0th term (ideal spherical 

potential) from the rest allows the potential Equation (5.18) to be written as Equation 

(5.19). 

£/ = £ 1 + Z 2 X W ^ , t—) fa* «»M.M,)+ S,,m sin{mXj} (5.19) 

The terms in Equation (5.19) comprise the types of spherical harmonics, which are 

discussed next. 

Spherical Harmonics (Zonal): 

Zonal Harmonics, 0-order (m=0), represent bands of latitude and is commonly 

notated as "J" where J, = -C, 0. The normalized, second-degree, zonal gravitational 

coefficient C^orepresents the Earth's equatorial bulge and is the strongest perturbation.'6 

Thus, J2 =-C20 -0.0010826269. Figure 5.3 shows the zonal harmonics. 
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Side 

Top 

Figure 8-4. Zonal Harmonics. .A accounts for most of the Earth's gravitational departure 
from a perfect sphere. This band (and others) reflects the Earth's oblateness. The 
shading indicates regions of additional mass. The third harmonic appears similar to 
the J2 from the top but is reversed for the bottom view. 

Figure 5.3 Zonal Harmonics16 

Spherical Harmonics (Sectorial): 

Sectorial harmonics occur when l=m and represent bands of longitude which look 

like "orange-slice" sectors.16 Figure 5.4 shows the sectorial harmonics. 

Side 

Top 

4,4 
Figure 8-5. Sectorial Harmonics. Sectorial harmonics take into accowtt the extra mass distri

bution in longitudinal regions, 

Figure 5.4 Sectorial Harmonics16 
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Spherical Harmonics (Tesseral): 

Tesseral harmonics look like tiles carved out with a number of circles {l-rri) of 

latitude and 2m meridians of longitude.16 Figure 5.5 shows tesseral harmonics. 

Side 

Top 

3,1 3a <M 4,2 
4,3 

Figure 8-6. Tesseral Harmonics. Tessera] harmonics attempt to model specific regions on the 
Earth which depart from a perfect sphere. 

.16 Figure 5.5 Tesseral Harmonics 

Non-Spherical Acceleration: 

The gravitational potential is used to find the gravitational acceleration by taking 

the gradient of the potential. Since the potential is expressed in spherical coordinates, use 

the chain rule to find the non-spherical acceleration in Cartesian coordinates as shown in 

Equation (5.20).I6 

_dU_(drY _8U_ (d<P.< A 

dr [dr J dd>„. \ o r J 

dU (dA„ ^T 

+ • 

dX....\ dr 
(5.20) 

The Cartesian components (I J K) of the non-spherical perturbative acceleration vector, 

ans, are thus found to be in terms of the potential function U and the satellite position 

vector r and its components r/, rj, and YK-
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1 dU du dU 
ans, = • 

r dr r
2Jr?+rj Wg 

dU dU 

r dr r
2Jr?+r]- Wg 

[r?+rj dAsal 

[ 1 dU 

\dU 
HA K 3 K 

r or 

ff + rt dU 

W. (5.21) 

.16 The effects of non-spherical acceleration on an orbit include: 

1. Secular perturbations induced by even zonal harmonics on Q, co, and M. 

2. No secular effects are seen in a, e, and /. 

3. Periodic perturbations induced by all harmonics on all elements. 

Another important aspect of the non-spherical Earth is the coordinate system used 

to describe points on the surface of the Earth. Coordinates used to describe locations 

based on a perfect sphere model are called geocentric coordinates. Geodetic coordinates 

are based on the geoid, or reference ellipsoid, model. The difference between geocentric 

16 and geodetic coordinates can be up to 20 km and is shown in Figure 5.6 
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^ > \ x Auxiliary Circle 

N. \ 
N. \ 
\ \ 

Earth \i 
(ellipsoidal approximation) 

Equatorial Plane 

Figure 3-3. Latitude Geometry (exaggerated scale). The geodetic latitude, <j> ., makes an 
angle perpendicular to the surface and the equatorial plane, whereas the geocentric 
latitude, <j>gc, is referenced to the center of the Earth. Astronomic latitude, <f>as, is 
very close to <j>gd. The center of the ellipsoid differs slightly for <j> , and $m. 
Reduced latitude, 4>ni, is used only to derive relations. 

Figure 5.6 Geocentric vs. Geodetic Coordinates56 

Fortunately, a simple transformation between geocentric and geodetic coordinates 

for latitude is available.16 The difference between longitude coordinates is very small. 

For very accurate coordinates, the National Geospatial-Intelligence Agency provides a 

model called the World Geodetic System 1984 (WGS84). This model, updated in 1996, 

is of degree n = 360 and order m = 360 with 130,317 coefficients and provides accuracy 

on the order of 1.0 m or better.25 This research uses geodetic latitude and geocentric 

longitude coordinates. 

In addition to the surface coordinates, calculating the altitude height of the 

satellite perpendicular to the Earth's surface also needs to take into consideration the 
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perturbed shape of the Earth. Figure 5.7 shows the geometry involved in finding the 

height of the satellite based on the ellipsoid. 

Figure 5.7 Satellite Altitude^6 

5.3.2 Aerodynamic Drag 

This non-conservative perturbation is the second strongest influence for near 

Earth satellites. The atmospheric density is difficult to model because of the large 

molecular mean free path and changes due to the atmosphere's molecular structure, 

incident solar flux, and geomagnetic interactions. Accurately modeling the atmosphere 

includes characteristics such as: molecular chemistry, thermodynamics, aerodynamics, 

hypersonics, meteorology, electromagnetics, planetary sciences, and orbital mechanics. 

Models may include static or time-varying variations.16 
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Static Variations: 

1. Latitudinal: The Earth's bulge effects actual altitude and hence atmospheric 

density. 

2. Longitudinal: These effects are caused by atmospheric changes due to land 

formations such as mountains and oceans. 

Time-Varying Variations: 

1. Diurnal: These changes take place every day as the Earth rotates and the 

atmosphere is heated and cooled by the Sun. The maximum atmospheric bulge 

(warmest) is around 2PM where as the minimum value is about 4AM. 

2. 27-day Solar Rotation Cycle: These irregular effects come from the Sun's 

rotational period where active solar regions grow and decay. 

3. 11-year Sun Spots Cycle: The intensity of the Sun's magnetic field slowly 

oscillates in localized regions. This effect is actually a 22-year cycle. 

4. Semi-Annual/Seasonal: These variations last approximately six months due to the 

varying distance of the Earth from the Sun and the Sun's declination. 

5. Cyclical: The exact cause of this effect is not fully understood but is most likely 

related to Sun spots and parallels but lags the 11-year Sun spot cycle. 

6. Rotating Atmosphere: The atmosphere rotates with the Earth. The velocity is 

larger closer to the surface due to friction. 

7. Miscellaneous: Additionally, winds, magnetic storms, and even the tides can 

cause the atmospheric density to fluctuate. 
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Various models have been developed for the atmosphere from the very basic to more 

complex. Most models are valid for a specific range of altitude or for certain 

assumptions. 

The basic equation for atmospheric drag is provided in Equation (5.22)1 

™ 2 K/| 

where Co is the drag coefficient which is approximately 2.2 for a flat plate or 2 for a 

sphere, p is the density, A is the cross sectional area, m is the satellite mass, and vrel is the 

velocity vector relative to the atmosphere. 

A summary of the effects of drag on an orbit includes16 

1. Large secular changes in a and e and small change in /'. 

2. Large periodic changes in i, Q., and a> and small changes in a and e. 

3. Perigee remains approximately constant but can be coupled with third-body or 

central body effects. 

5.3.3 Solar Radiation 

This effect is a non-conservative perturbation which shares the same time-varying 

variations caused by the Sun as aerodynamic drag. The effects are more pronounced at 

higher altitudes. Solar radiation is also difficult to model because of varying satellite 

cross-sectional area, solar cycles and variations, and accurate representation of the 

coefficients to model the satellite's reflectivity. 
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A basic solar radiation model is developed starting with the solar-radiation 

constant, or solar flux, SF = 1353 W/m". The average solar pressure is the solar flux 

divided by the speed of light given in Equation (5.23). 

SF 1353W/m2
 ]n_6 2 

v„-— = T1 = 4.51x10 N/m (5.23) 
sr c 3x10s m/s 

The acceleration due to solar radiation is given by Equation (5.24)16 

- _ PsRCR^sun f"sun-sot / c JA\ 

m \rsur^sa\ 

where CR is the reflectivity which is 0 for translucent material, 1 when all radiation is 

absorbed, and 2 when all radiation is reflected; Asu„ is the area exposed to the Sun, and 

^sun-iat *s t n e v e ctor from the Sun to satellite. 

The effect of the solar radiation pressure on an orbit includes16 

1. Periodic changes in all orbital elements; approximately equal to drag at 

800 km. 

2. Changes in perigee height can seriously effect satellite's lifetime. 

3. Period for variations can be as long as a year. 

4. Effects are usually small except for low mass/large surface area satellites. 

5. Need to account for time in Earth's shadow. 

5.3.4 Third Body Effects 

These conservative perturbations effect satellites in higher altitude orbits and are 

more noticeable where the effects of aerodynamic drag start to diminish.16 Third body 

effects are usually caused by the Sun and Moon for Earth satellites. The acceleration of a 



103 

satellite with the influence of a third body, denoted by subscript 3, is given as in Equation 

(5.25) I6 

ME? '~ " ^ 
r = — + ft3 

r i r3 r3 , 
\'sai3 'E3 J 

(5.25) 

Subscript sat3 denotes direction from satellite to third body while subscript E3 denotes 

direction from Earth to third body. This equation includes the two body gravitational 

term as the first term. Removing this term and summing over k bodies concludes the 

acceleration due to the disturbing bodies, a3bodv, is seen in Equation (5.26). 

aibody ~ 7 .Mi 
rsati rEi 

r3 r3 

\'sali 'Ei J 

(5.26) 

This research focuses on the affects from the Sun and Moon as the additional 

bodies of influence. The Moon, because of its closer proximity has a larger influence 

than that of the Sun by a ratio of about 2.2.16 The Moon's influence has even been used 

to help change the orbits of satellites.57 

The third body effects on an orbit can be summarized:' 

1. No secular, long-periodic, or monthly variations in a. 

2. Secular perturbations in Q and <x>. 

3. Long-periodic variations in e, i, Q and co are associated with the satellite's 

perigee and disturbing body motion. 

4. For near Earth orbits oblateness dominates orbital plane regression about 

polar axis. 

5. For higher orbits the orbital plane regression is about a pole between the 

polar axis and ecliptic pole. 
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5.4 Employing Perturbations 

These four perturbations, non-spherical Earth, aerodynamic drag, solar radiation 

pressure, and third body effects, are modeled in the lifecycle analysis portion of the 

design method. This research includes the simple models presented in Section 5.3 for 

each perturbation. More sophisticated perturbation models may be available and could 

be incorporated at a later time. The lifecycle analysis simulation employs Cowell's 

method to linearly add each perturbation component to the general two-body equation of 

motion. 
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CHAPTER 6 

CASE STUDY RESULTS 

6.1 Global Case Study 

The global case study includes twenty observation sites worldwide given in Table 

6.1. Observation site location is from the National Geospatial-lntelligence Agency 

GEOnet Names Server.58 The global case was evaluated first using a baseline condition, 

then variations of the baseline are investigated. Table 6.2 shows the case study baseline 

and variations. The start date chosen is midnight 1 April 1994. 

Table 6.1 Global Observation Sites 

Country 
Argentina 
Australia 
Brazil 
Canada 
China 
Costa Rica 
Cote d Ivoire 
Egypt 
Germany 
Iceland 
India 
Indonesia 
Japan 
Mexico 
Morocco 
New Zealand 
Qatar 
South Africa 
The Bahamas 
United Kingdom 

Capital 
Buenos Aires 
Canberra 
Brasilia 
Ottawa 
Beijing 
San Jose 
Yamoussoukro 
Cairo 
Berlin 
Reykjavik 
New Delhi 
Jakarta 
Tokyo 

Lat (deal 
-34.5875 
-35.283333 
-15.783333 
45.416667 
39.928889 
9.93333 
6.816667 

30.05 
52.516667 
64.15 
28.6 
-6.174444 

35.685 
Ciudad de Mexico 19.434167 
Rabat 
Wellington 
Doha 
Pretoria 
Nassau 
London 

34.02 
-41.3 
25.286667 
-25.706944 
25.083333 
51.5 

Long (dee) 
-58.6725 
149.216667 
-47.916667 
-75.7 
116.388333 
-84.0833 

-5.283333 
31.25 
13.4 

-21.95 
77.2 

106.829444 
139.751389 
-99.138611 

-6.83 
174.783333 
51.533333 
28.229444 
-77.35 

-0.116667 

Priority Target 
1 
4 
2 
5 
1 
2 
3 
2 
2 
1 
3 
3 
2 
3 
4 
2 
3 
2 
3 
1 

16 
2 
10 
7 
8 
11 
9 
12 
1 
18 
13 
14 
5 
3 
17 
20 
4 
15 
19 
6 
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Table 6.2 Case Study Baseline and Variations 
^•--^Conditions 
U s e r ~ \ _ 
Req u i re m ents--^ 

Min Duration 
(s) 
Revisit Rate 
(day) 
Lighting 
Max Sun Angle 
(deg) 
FOV (deg) 
Slew (deg) 
Resolution (km) 

Baseline 

60 

1 

Off 
N/A 

30 
15 
2000 

Min 
Duration 

360 

1 

Off 
N/A 

30 
15 
2000 

Revisit 
Rate 

60 

2 

Off 
N/A 

30 
15 
2000 

Lighting 

60 

1 

On 
45 

30 
15 
2000 

Max Sun 
Angle 

60 

1 

On 
60 

30 
15 
2000 

FOV 

60 

1 

Off 
N/A 

10 
15 
2000 

Slew 

60 

1 

Off 
N/A 

30 
5 
2000 

Resolution 

60 

1 

Off 
N/A 

30 
15 
1000 

6.1.1 Global Baseline 

For the global case study baseline condition, an orbit was found that met all the 

user requirement conditions. However, note this orbit in not a unique solution as there 

are ample design freedoms to meet all user requirements as discussed in Section 4.3. The 

resulting primary and auxiliary parameters for the baseline condition are 

Q = 59.48 deg co = 272.40 deg i = 68.66 deg a = 8501.45 km 

9= 197.06 deg A, = 1837.53 km k =11 e = 0.0347 

The evaluation function has a value of Q = -2199.62. Table 6.3 shows the schedule for 

each target assuming time is zero at the start of the parameters given. All schedules are 

listed by targets according to priority and slack. Start and stop times are given in seconds 

from start of propagation. Figure 6.1 shows the ground trace for a satellite flying the 

designed orbit with repeat ground track. 



Table 6.3 Global Baseline Schedule 
Target 

7 
2 
17 
3 
4 
9 
13 
14 
19 
10 
11 
12 
15 
5 
20 
1 
16 
8 
6 
18 

Start Time (s) 

37380 

25620 

55160 

78970 

5720 

55830 

83840 

32740 

70980 

72160 

36630 

47490 

4510 

68380 

17920 

46850 

72460 

76300 

21960 

30080 

Stop Time (s) 

37990 

26060 

55750 

79530 

6240 

56280 

84410 

33230 

71490 

72450 

37090 

48040 

4970 

68890 

18290 

47470 

72810 

76900 

22570 

30700 

Priority 

5 
4 
4 
3 
3 
3 
3 
3 
3 
2 
2 
2 
2 
2 
2 
2 
1 
1 
1 
1 
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Figure 6.1 Global Baseline Ground Trace 

This orbit has interesting characteristics. The inclination constraint of a minimum 

64 deg dictated by Target 18 was met. The height of perigee at 1837.53 km stays under 

the resolution ceiling of 2000 km. However, all orbital positions do not remain under the 

2000 km limit, an example of an orbit that would not be considered by traditional 

methods of focusing on orbits that remain fully under the ceiling. The spacecraft makes 

11 revolutions in each repetition period. Each target is viewed at some point with either 

near direct overflight or sensor slew capability and is scheduled for much more than the 

60 seconds required by the minimum duration of coverage. Note the highest priority 

targets are observed by near direct overflight. Also, the minimum schedule is 290 s but 

most observations are 450 s or larger. 



6.1.2 Minimum Duration Variation 

The minimum duration was extended to 360 s from the baseline 60 s. The 

resulting primary and auxiliary parameters for the minimum duration condition are 

£=19.92 deg co= 174.24 deg i = 86.71 deg a = 8034.66 km 

<9 = 188.92 deg /zp = 373.01km k=\2 e = 0.1610 

The evaluation function has a value of Q = -2208.73. Table 6.4 shows the target schedule 

while Figure 6.2 shows the ground track. 

Table 6.4 Minimum Duration Variation Schedule 
Target 

7 
2 
17 
3 
4 
9 
13 
14 
19 
1 
5 
10 
12 
15 
20 
11 
8 
16 
6 
18 

Start Time (s) 

22240 

55980 

7580 

28660 

79010 

6820 

71940 

63840 

21690 

940 
57800 

13470 

410 
84870 

48660 

67750 

65120 

20180 

45640 

52570 

Stop Time (s) 

22840 

56720 

8270 

29470 

79770 

7570 

72670 

64690 

22230 

1470 

58490 

14220 

930 
85660 

49410 

68110 

65720 

20860 

46000 

52930 

Priority 

5 
4 
4 
3 
3 
3 
3 
3 
3 
2 
2 
2 
2 
2 
2 
2 
1 
1 
1 
1 
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Figure 6.2 Minimum Duration Variation Ground Trace 

Interestingly, here is another orbit that easily meets the minimum inclination of 64 

deg with an inclination in the mid 80s. The orbit is quite elliptical for such a low Earth 

orbit, k being 12 or approximately a two hour orbital period, with a height of perigee only 

at 373 km. Although in a different order than the targets scheduled in the baseline 

condition, all targets were able to be scheduled for the extended minimum duration of 

360 s while most targets are scheduled for 500 to 700 s. The cost function value is very 

close to the baseline value and is slightly larger (magnitude). Changing the minimum 

duration for a global case is fairly easy to accommodate for only 20 targets. A higher 

number of targets may produce a much different solution where the cost function value 

would be expected to be lower than the baseline. Note the longer duration requirement 
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does not allow near direct over flights of the highest priority targets, when ground tracks 

in Figures 6.1 and 6.2 are compared. 

6.1.3 Revisit Rate Variation 

The revisit rate was extended to 2 days from the baseline 1 day. However, when 

the algorithm was employed, the computer did not have enough memory to process the 

request. In order to run the algorithm on the available computer, the discreet time 

interval was doubled to 20 s for propagation purposes. The resulting primary and 

auxiliary parameters for the revisit rate condition are 

Q = 74.18 deg co = 268.55 deg i = 68.94 deg a =8771.75 km 

0= 142.85 deg hp= 1979.52 km A: = 21 e = 0.0482 

The evaluation function has a value of Q = -1189.23. Table 6.5 shows the target schedule 

while Figure 6.3 shows the ground track. 



Table 6.5 Revisit Rate Variation Schedule 
Target 

7 
2 
17 
9 
14 
3 
4 
19 
13 
10 
15 
11 
12 
20 
5 
1 
16 
8 
6 
18 

Start Time (s) 

40500 

28240 

59200 

105040 

35700 

84240 

133180 

75780 

124820 

158740 

142620 

166300 

51160 

110280 

108220 

50460 

167680 

26220 

140580 

32840 

Stop Time (s) 

41260 

28740 

59900 

105680 

36280 

84800 

133800 

76460 

125520 

159280 

143140 

166920 

51820 

110760 

108940 

51140 

167860 

26920 

141340 

33620 

Priority 

5 
4 
4 
3 
3 
3 
3 
3 
3 
2 
2 
2 
2 
2 
2 
2 
1 
1 
1 
1 
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Figure 6.3 Revisit Rate Variation Ground Trace 

Even though the amount of available viewing time was doubled in the revisit rate 

variation compared to the baseline condition, the overall quality of the solution was about 

the same. While the cost function value was -1189, this included half the number of 

points along the timeline; therefore half the opportunity to calculate the cost value since it 

is a sum of the quality at each point. So, doubling the revisit rate value to -2378, shows 

only a slight increase (magnitude) in the value of the solution as compared to the 

baseline. The inclination of 68 deg meets the required 64 deg. The height of perigee 

stays under the 2000 km ceiling resolution altitude. All targets are scheduled; all much 

more than the minimum duration of 60 s. Near direct overflight behavior of high priority 

targets has also returned. 
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6.1.4 Lighting Condition Variation 

The lighting condition variation as part of the user requirements includes a 

maximum Sun angle on the observation sites at 45 deg. While only 16 of 20 observation 

sites are able to be covered, keep in mind the short duration of only a one day revisit rate 

is challenging to achieve. An expanded revisit rate would provide more flexibility to find 

a solution covering more sites. Additionally, the Sun angle requirement for the time of 

year specified makes it geometrically unobtainable to reach parts of the southern 

hemisphere. The targets not scheduled are all in the southern hemisphere with the 

exception of one which is designated with low priority. Once again the solution 

presented is not a unique solution as multiple runs provide other solutions that also meet 

user requirements. The parameters found for the lighting condition variation are 

Q = 223.53 deg to = 347.87 deg i = 92.92 deg a = 8042.17 km 

0 = 204.18 deg A, = 343.75 km k=\2 e = 0.1654 

The evaluation function has a value of Q = -1775.80. Table 6.6 shows the schedule of 

each observation site. Sites with zero times were not able to be scheduled. Figure 6.4 

below shows the ground trace for a satellite flying the designed orbit with repeat ground 

track. 



Table 6.6 Lighting Condition Variation Schedule 

Target 

7 
2 
17 
3 
4 
9 
13 
14 
19 
20 
1 
5 
10 
11 
15 
12 
16 
18 
6 
8 

Start Time (s) 

26860 

0 
12720 

34600 

84710 

13410 

77470 

71170 

27330 

0 
5190 

62940 

21190 

27800 

120 
5670 

0 
0 
12340 

70010 

Stop Time (s) 

27320 

0 
13400 

35480 

85590 

14190 

78340 

72010 

27790 

0 
5660 

63780 

21990 

28510 

600 
6360 

0 
0 
12710 

70810 

Priority 

5 
4 
4 
3 
3 
3 
3 
3 
3 
2 
2 
2 
2 
2 
2 
2 
1 
1 
1 
1 
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Figure 6.4 Lighting Condition Variation Ground Trace 

The orbit for lighting condition variation is quite different from the baseline. The 

orbit has a lower height of perigee than the baseline and not all orbital position heights 

remain within the resolution ceiling. The orbit is more inclined at 92 deg and is much 

more elliptical. With the lighting restriction, only 16 sites are observed in the short 

repetition cycle. This performance is mostly due to the angle of the Sun for the given 

time of year. A different choice of day would make a noticeable difference in which 

targets are able to be viewed. The top priority target can only be viewed certain days of 

the year. While the top priority target is scheduled, only one of the two next level 

priority targets is scheduled. The magnitude of the evaluation function value for the 



117 

lighting condition variation is less (magnitude) than the baseline as expected in a more 

restrictive case study. 

6.1.5 Maximum Sun Angle Variation 

The maximum Sun angle was extended to 60 deg from the baseline 45 deg. The 

resulting primary and auxiliary parameters for the maximum Sun angle condition are 

Q= 178.68 deg co = 358.67 deg i = 83.52 deg a =8030.77 km 

0=112.O8deg hp= 151.18km it =12 e = 0.1882 

The evaluation function has a value of Q = -2231.42. Table 6.7 shows the target schedule 

while Figure 6.5 shows the ground track. 



Table 6.7 Maximum Sun Angle Variation Schedule 
Target 

7 
2 
17 
3 
4 
9 
13 
14 
19 
1 
5 
10 
15 
20 
11 
12 
8 
16 
18 
6 

Start Time (s) 

14600 

52610 

500 
22350 

72460 

1140 

65210 

58910 

15080 

79050 

50690 

8980 

81040 

45580 

15600 

79600 

57810 

16730 

7190 

180 

Stop Time (s) 

15070 

53360 

1130 

23310 

73390 

2120 

66110 

59880 

15590 

79590 

51540 

9820 

81860 

46320 

16180 

80350 

58580 

17440 

7470 

490 

Priority 

5 
4 
4 
3 
3 
3 
3 
3 
3 
2 
2 
2 
2 
2 
2 
2 
1 
1 
1 
1 
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Figure 6.5 Maximum Sun Angle Variation Ground Trace 

By relaxing the Sun angle restriction in the lighting condition case, a higher value 

cost function value was obtained as expected. Additionally, all targets are within range 

limits and were therefore scheduled. 

6.1.6 Field of View Variation 

The field of view was confined to 10 deg from the baseline 30 dcg. The resulting 

primary and auxiliary parameters for the field of view condition are 

Q = 208.23 deg m = 15.93 deg J = 83.77 deg a= 8034.66 km 

# = 99.34deg A, = 554.12 km £=11 e = 0.1868 
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The evaluation function has a value ofQ = -1000.42. Table 6.8 shows the target schedule 

while Figure 6.6 shows the ground track. 

Table 6.8 Field of View Variation Sc 

Target 

7 
2 
17 
3 
4 
9 
13 
14 
19 
1 
20 
5 
10 
11 
12 
15 
6 
18 
8 
16 

Start Time (s) 

23750 

57260 

8360 

32340 

79030 

9060 

71200 

64460 

24210 

0 
0 
55440 

17500 

24660 

720 
2190 

0 
0 
63020 

18330 

Stop Time (s) 

24190 

57990 

8850 

32640 

79640 

9680 

71590 

64740 

24650 

0 
0 
55600 

18260 

25240 

1020 

2850 

0 
0 
63510 

18590 

ledule 

Priority 

5 
4 
4 
3 
3 
3 
3 
3 
3 
2 
2 
2 
2 
2 
2 
2 
1 
1 
1 
1 
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Figure 6.6 Field of View Variation Ground Trace 

As expected, limiting the field of view had a noticeable impact on the cost 

function value, approximately half of the baseline value. The field of view parameter has 

a greater impact on the cost function value than imposing the lighting condition. Indeed, 

four targets were not able to be scheduled, but these four targets were of the lowest and 

next to lowest priority. Interestingly, here is another orbit that meets the requirement of 

64 dcg dictated by Target 18 with an inclination in the mid 80s. Also, this is another 

elliptical orbit where all orbital positions do not remain under the resolution ceiling. 

Even with the limited viewing angle, the targets scheduled were scheduled for more than 

300 s. much more than the minimum required 60 s. 



6.1.7 Slew Variation 

The slew angle was confined to 5 deg from the baseline 15 deg. The resulting 

primary and auxiliary parameters for the slew angle condition are 

Q = 58.84 deg co = 282.17 deg i= 84.27 deg a = 9074.33 km 

#=143.73 deg hp= 1897.01 km Jt = 10 e = 0.0013 

The evaluation function has a value of Q = -1345.61. Table 6.9 shows the target schedule 

while Figure 6.7 shows the ground track. 

Target 

7 
2 
17 
3 
4 
9 
13 
14 
19 
10 
11 
12 
15 
20 
1 
5 
8 
16 
6 
18 

rable 6.9 Slew Variation Schedule 

Start Time (s) 

33660 

21020 

16160 

79880 

45290 

15540 

36560 

75610 

33180 

23720 

32890 

7450 

6250 

57620 

53110 

67890 

27600 

72680 

16590 

25620 

Stop Time (s) 

34210 

21310 

16580 

80420 

45780 

15940 

37100 

75880 

33640 

23950 

33170 

7930 

6550 

57890 

53720 

68390 

28220 

73000 

17150 

26140 

Priority 

5 
4 
4 
3 
3 
3 
3 
3 
3 
2 
2 
2 
2 

2 
2 
1 
1 
1 
1 
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Figure 6.7 Slew Variation Ground Trace 

Like the field of view restriction, limiting the slew angle has a noticeable effect 

on the cost value function as compared with the baseline condition. This orbit is much 

closer to the resolution height overall and is nearly circular. The height of perigee at 

1897 km is approaching resolution ceiling of 2000 km. The spacecraft makes 10 

revolutions in the repetition period. Again, the inclination requirement is met and the 

orbital inclination is in the mid 80s. However, even with the limited slewing capability, 

the solution provides for a schedule that covers all targets. Also, the targets are 

scheduled for more than the minimum duration required time. So while all the targets are 

scheduled, the quality of the observations must be less for the magnitude of the cost value 

to be so low. Thus slew capability is an effective design freedom to enhance observation 

quality, and the baseline case exploited this feature. 



6.1.8 Resolution Altitude Variation 

The resolution altitude was confined to 1000 km from the baseline 2000 km. The 

resulting primary and auxiliary parameters for the resolution altitude condition are 

Q= 146.22 deg w = 304.70 deg i = 73.70 deg a = 8034.66 km 

6 = 235.49 deg hp = 915.1 A km k= 13 e = 0.0034 

The evaluation function has a value of Q = -772.28. Table 6.10 shows the target schedule 

while Figure 6.8 shows the ground track. 

Table 6.10 Resolution Al 

Target 

7 
17 
2 
3 
13 
19 
4 
9 
14 
10 
5 
12 
15 
1 
11 
20 
6 
16 
8 
18 

Start Time (s) 

56640 

78340 

81550 

12660 

58660 

56310 

23320 

36150 

9580 

0 
3720 

29990 

72880 

37010 

56000 

74850 

71280 

7160 

10400 

50490 

titude Variation Schedule 

Stop Time (s) 

56890 

78550 

81710 

12860 

58880 

56480 

23490 

36350 

9750 

0 
3950 

30220 

73130 

37270 

56200 

75010 

71570 

7310 

10640 

50760 

Priority 

5 
4 
4 
3 
3 
3 
3 
3 
3 
2 
2 
2 
2 
2 
2 
2 
1 
1 
1 
1 
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Figure 6.8 Resolution Altitude Variation Ground Trace 

Altering the minimum resolution definitely makes a difference in the outcome of 

the orbital solution in comparison to the baseline condition. This orbit has an inclination 

of 73 deg, different from the other solutions with inclinations in the 80s. This solution is 

the lowest orbit with 13 revolutions in the repetition cycle, to be expected with the 

limitation of 1000 km ceiling resolution altitude. The orbit is near circular with the 

height of perigee and most orbital positions being very close to the resolution ceiling. 

The cost function is highly degraded at only -772 in comparison to the baseline value of -

2199. This solution provides viewing opportunity for all but one target with relatively 

low priority. While all target viewings meet the 60 s requirement, most are only 

scheduled for 200 s, not much more than the minimum due to the higher velocity flybys. 
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6.2 Regional Case Study 

In addition to the global case study, this research optimization algorithm was 

employed for a regional set of observation sites. The purpose of the regional target set 

was to see how well the algorithm performed when stressed with a cluster of targets. 

Table 6.11 shows the target selection for a regional case study including ten sites. The 

same baseline conditions given in Table 6.2 are used in the regional case study. To 

ensure viewing opportunities for this target set, the start date selected was midnight 1 

January 1994. 

Table 6.11 Regional Observation Sites 

Country 
New Zealand 
New Zealand 
New Zealand 
New Zealand 
New Zealand 
New Zealand 
New Zealand 
New Zealand 
New Zealand 
New Zealand 

Citv 
Auckland 
Christchurch 
Dunedin 
Hastings 
Invercargill 
New Plymouth 
Queenstown 
Westport 
Wellington 
Whangarei 

Lat (dee) 
-36.866667 
-43.533333 
-45.866667 
-39.65 
-46.4 
-39.066667 
-45.033333 
-41.75 
-41.3 
-35.816667 

Long (dee) 
174.766667 
172.633333 
170.5 
176.833333 
168.35 
174.083333 
168.666667 
171.566667 
174.783333 
174.5 

Priority Target 
4 
3 
2 
1 
2 
1 
5 
3 
2 
3 

8 
3 
10 
6 
1 
7 
2 
4 
5 
9 

In the regional case, an orbit was found that met all the user requirement 

conditions. However, note this orbit in not a unique solution as there are ample design 

freedoms to meet all user requirements. Like the global case study and variations, 

repeated runs may produce different resulting parameters that also meet the user 

requirements. The resulting parameters for the regional case are 

£=155.51deg a; = 71.03 deg i = 71.50 deg a = 8019.21 km 
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6= 159.78 deg A, = 607.90 km k= 12 e = 0.1300 

The evaluation function has a value of Q = -416.68. Table 6.12 shows the schedule for 

each target. Figure 6.9 shows the ground trace for a satellite flying the designed orbit 

with repeat ground track. 

Table 6.12 Regional Case Schedule 
Target 

2 
8 
4 
9 
3 
5 
1 
10 
6 
7 

Start Time (s) 

80540 

42340 

80670 

80890 

80740 

73350 

73180 

73250 

73420 

80820 

Stop Time (s) 

80660 

43030 

80730 

80990 

80810 

73410 

73240 

73340 

73660 

80880 

Priority 

5 
4 
3 
3 
3 
2 
2 
2 
1 
1 
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Figure 6.9 Regional Case Ground Trace 

The inclination value of 71.50 deg meets the minimum inclination 46.4 deg 

determined by Target 1. While the height of perigee is much less than the required 

ceiling altitude, here is another example of an orbit that has orbital positions above the 

resolution ceiling altitude. An elliptical solution is not unexpected as it can provide 

intensive coverage over a selected geographical area.59 All targets are scheduled but note 

the schedule reflects four minimum observation times of 60 s where the global case 

schedule times were expanded well beyond the minimum requirement. In general, the 

regional observation times are shorter than the global case, as expected with a set of 

clustered targets. Note all but one target are viewed on two specific flybys, also expected 

for high target density. The cost value for the regional case study is much less than the 

global case; however, the target set is based on half the number of targets. 
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6.3 Lifecycle Analysis 

One way to evaluate the feasibility of the optimization solution is to see how 

significant the orbital parameters and cost function value change over time considering 

perturbation influences. The optimization solution is determined using only limited zonal 

effects. Additional perturbations such as aerodynamic drag, solar radiation pressure, and 

third body effects should be considered in a more realistic simulation. This section 

employs the perturbations as described in Section 5.3 using Cowell's Formulation as 

described in Section 5.2. The satellite description is provided in Table 6.13. 

Table 6.13 Satellite Description 

Mass 
Coefficient of Drag 
Coefficient of Reflectivity 
Cross Sectional Area 

100 kg 
2 
1.2 
2 m2 

Figures 6.10-6.17 show the changes in the orbital elements and cost function 

given over time for 10 repetition cycles. The global baseline initial orbital elements are 

Q= 59.48 deg co = 272.40 deg / = 68.66 deg a = 8501.45 km 

0= 197.06 deg hp= 1837.53 km £=11 e = 0.0347 

The ideal evaluation function has a value ofQ = -2199.62. 
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Figure 6.10 Longitude of Ascending Node over Time 

The drift in the longitude of ascending node shows a long term secular change 

towards the West. Over the 10 repetition cycle time period, the change is about 13 

degrees. This variation is in good agreement with the nodal regression behavior 

documented in Figure 3.1-5 in Reference 60, which in some sense validates the higher 

fidelity lifecycle analysis propagation simulator. A zoomed view of this graph shows 

very small periodic variances, not even noticeable at this level of detail. 
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Figure 6.11 Argument of Perigee over Time 

The argument of perigee shows much more noticeable short term periodic effects 

of the perturbations. The overall secular change which is in the retrograde direction is 

still more pronounced than the periodic effects. The total change in the argument of 

perigee over the 10 repetition period is about 10 degrees. Results here are also consistent 

with the apsidal rotation data given in Reference 60 in Figure 3.1-6, providing further 

validation of the lifecycle propagator accuracy. 
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Figure 6.12 Inclination over Time 

The inclination of the orbital period slightly increases over time with a small 

change of only 0.03 degrees. Here, both periodic and secular changes are apparent with 

an appropriately chosen scale. 
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Figure 6.13 True Anomaly over Time 

This graph shows the motion of the satellite along the orbit for 110 orbital cycles, 

as excepted since there are 11 revolutions per repetition cycle and this graph covers 10 

repetition cycles. As expected the true anomaly passed through all 360 degrees in a 

cyclic motion. 
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Figure 6.14 Height of Perigee over Time 

The height of perigee looses a noticeable amount of altitude over the 10 repetition 

period timeframe with a loss of approximately 100 km. The short term periodic affects 

show an interesting pattern. However, the secular changes dominate the overall direction 

of change in the height of perigee. 
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Figure 6.15 Semi-Major Axis over Time 

The semi-major axis shows a slight overall increase in orbital size of 20 km. 

There are 110 periodic cycles shown that correspond to each orbital revolution like true 

anomaly in Figure 6.13. These short term periodic cycles are due mostly to the harmonic 

zonal affects. The increasing of the orbital period is most likely a long term periodic 

harmonic zonal effect. 
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Figure 6.16 Eccentricity over Time 

The eccentricity of the orbit shifts from 0.034 to 0.049 which corresponds to the 

decreasing height of perigee and increasing semi-major axis. Here the periodic variations 

seen in each orbital revolution are obvious, as well as the overall secular change. 
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Figure 6.17 Cost Function Value over Time 

The ideal cost function value is plotted as the 0 repetition cycle. The significant 

change of the cost function value over time is quite apparent. However, looking at the 

first few repetition cycles, it could be argued that keeping the orbital elements near the 

original initial elements through orbital maintenance would keep a cost function value 

near the ideal cost function value even in the full perturbation environment. 

To estimate how much impulsive velocity change would be required to achieve 

orbital maintenance, simple two body expressions can be used. For elliptic orbits, the 

specific energy of the satellite, E, is related to the semi-major axis by E = -/u/2a. Using 

the initial semi-major axis a/ = 8501 km where subscript 1 indicates the beginning value, 

the energy level is E/ = -23.44 km7s2. After 10 repetition cycles, Figure 6.15 indicates 

an approximate 20 km increase or ci2 = 8521 km yielding the ending energy E2 = -23.39 
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km2/s2. The energy change over the 10 day period due to perturbations is AE = E- -E\ = 

0.05 km2/m2. Now recall the general energy relation E = vV2-/v/r, which can be used to 

find the initial velocity vj = 7.083 km/s at perigee where ;•/ = 8215 km. Assuming orbital 

maintenance is executed at perigee, the required velocity v? to restore the original energy 

level is thus V2 = 7.090 km/s. Therefore, every 10 days an impulsive velocity change of 

Av = V2 - v; = 7 m/s is required for orbital maintenance. This maintenance level is 

consistent with existing technologies and deployed satellites. 

Figure 6.18 Perturbed Ground Trace 

Figure 6.18 shows the ground trace over the 10 period repetition cycle timeframe. 

The magenta color is the first repetition cycle. The blue shows the rest of the 9 cycles. 

As expected from Figure 6.10, the shift of the longitude of ascending node is to the West. 

The change in inclination is not noticeable. 



139 

Figures 6.19 and 6.20 show the inertial position of the orbit over the 10 repetition 

cycles from a polar viewpoint and a more equatorial view. The red line shows the 

direction of the last position of the Sun while the blue line shows the direction of the last 

position of the Moon. 

Sun Direction 
' Moon Direction 

X (km) 

Figure 6.19 Perturbed Orbit Polar View 
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Figure 6.20 Perturbed Orbit Equatorial View 

Also of interest is the change in the scheduling of targets over time. Tables 6.14 

and 6.15 show the first repetition cycle schedule and the tenth repetition cycle 

respectively. Notice the difference between Table 6.14 and Table 6.3, the global baseline 

schedule built in an ideal limited zonal model simulator (Table 6.3) where as the first 

repetition cycle schedule here (Table 6.14) is developed in the full perturbation model 

simulator. Only the first three targets (first two priority levels) are scheduled in the same 

order in the first and tenth repetition cycles. In Table 6.15 there is one target (Jakarta) 

not scheduled in the tenth repetition cycle. The scheduled time of each target in the first 

repetition cycle ranges from 290-630 s. The scheduled time of each target in the tenth 

repetition cycle ranges from 110-590 s. While the schedules show the decreased 

observation times in the repetition cycles, the schedules do not reflect the quality of the 
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observation. The cost function is based on both the length of observation times and the 

quality of the observations. 

Table 6.14 First Repetition Cycle Schedule 

Target 

7 
2 
17 
3 
4 
9 
13 
14 
19 
10 
11 
12 
15 
5 
20 
1 
16 
8 
6 
18 

Start Time (s) 

37380 

58960 

55160 

78980 

5720 

55830 

83840 

32750 

70990 

72160 

36630 

47490 

4510 

68370 

17920 

46850 

72460 

76300 

21960 

30080 

Stop Time (s) 

37990 

59360 

55750 

79530 

6240 

56290 

84410 

33230 

71490 

72450 

37090 

48040 

4970 

68890 

18290 

47480 

72810 

76900 

22570 

30710 

Priority 

5 
4 
4 
3 
3 
3 
3 
3 
3 
2 
2 
2 
2 
2 
2 
2 
1 
1 
1 
1 



Tab] 

Target 

7 
2 
17 
14 
19 
3 
4 
9 
13 
10 
11 
5 
12 
15 
20 
1 
8 
16 
6 
18 

e 6.15 Tenth Rep 

Start Time (s) 

72530 

27510 

57130 

0 
72920 

81070 

41540 

57710 

33600 

22010 

73320 

17730 

7370 

50640 

19660 

48750 

25540 

21600 

48630 

48200 

etition Cycle Schedule 

Stop Time (s) 

72910 

27770 

57590 

0 
73310 

81390 

42120 

58220 

34140 

22430 

73650 

18300 

7910 

50980 

20060 

49330 

26130 

21910 

48740 

48620 

Priority 

5 
4 
4 
3 
3 
3 
3 
3 
3 
2 
2 
2 
2 
2 
2 
2 
1 
1 
1 
1 
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CHAPTER 7 

CONCLUSIONS 

7.1 Conclusions 

This research has shown that user requirements can be brought to the forefront of 

mission planning for Earth observation missions. The observation site requirements and 

restraints along with the sensor characteristics can be used to find an appropriate orbit for 

the satellite. The design methodology presented in this research mapped mission 

requirements into parameters and uses a cost function based on the Window-Constraint 

Packing Problem to create a schedule based on the priority dispatch method. The genetic 

algorithm was used to find optimized parameters that best meet the user requirements and 

constraints. A case study demonstrated the effectiveness of this design methodology and 

showed the design methodology leads to an orbit satisfying the user specified 

requirements and constraints. Additionally, the global baseline was varied to show how 

each of the user requirements can change the quality of the cost function and the 

scheduling of the targets. The case study demonstrated elliptical orbits and orbits with 

altitudes above the resolution ceiling should be explored in mission designs to maximize 

system performance. The lifecycle analysis results provided insight into how each of the 

orbital elements changes under perturbations assuming no corrective measures are taken 

to maintain the repeating ground track orbit. 
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7.2 Recommendations 

While the goal of this research is to find an optimal orbit for the given user 

requirements, the cost function and search process do not provide a fully unique solution. 

Further investigation to refine the cost function and/or search process is needed. The cost 

function could be expanded to include more constraints ranging from launch site 

restrictions on the types of available orbits, to the space environment areas of concern 

such as the Van Allen radiation belt, to the amount of energy or fuel required to maintain 

the desired repeating ground track orbit over a specific mission timeframe. Also, further 

work envisioned includes adapting the design method for use with other software 

programs such as Satellite Tool Kit to take advantage of more sophisticated perturbation 

models and propagation algorithms. 
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