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different, this relationship between the conformation and the state of ion channel is true 

in all other voltage-gated ion channels. However, it has been unsolved as to how many 

stable states actually exist during the dynamics of an ion channel. 

Since the structure of a K+ ion channel from bacteria was revealed in 1998 [24], X-

ray crystallography has been widely used to physically view the real states of ion 

channels. By crystallizing an ion channel at a certain state, its structure is revealed 

through X-ray diffraction analysis. With this advanced method, the open state structure of 

the voltage-gated ion channels has been successfully solved [92,94]. However, the closed 

state of ion channels still remains unknown, especially in conformational channel 

structures. Therefore, ion channel modeling can be different depending on the number of 

the closed channel states [30,62]. Nevertheless, most ion channel models possess 

ambiguity in determining the number of closed channel states because of the difficulties 

in distinguishing different ion channels in closed states [74]. 

For the ion channel model in this study, the optimized numbers for a were used to 

represent the possible ion channel states including an open state. As explained in Chapter 

4, the increased numbers in a at the graphically same location generate the narrower 

signal pattern. When considering the relationship between the number of proteins in a 

channel and their state numbers, more proteins in a channel result in the higher values in 

the parameter, a. For example, a Na+ ion channel with four subunits and two subunit 

accessories in skeletal muscle had 8 different channel states based on the determined 

parameter, a3. Apparently, this number cannot represent a specific state topology of a Na+ 

ion channel, but it may provide the minimum number of states that can reveal the stable 

invariant manifolds of the proteins in the channel [47]. Also, the computed number, 5, for 
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a2 implies the possible states of the K+ ion channel, and 1 was assigned to ai for leakage 

in the channel model of this study. With the assumption in these numbers, other 

parameters can also be determined. Specifically, the parameter p controls the increasing 

and decreasing rates, which means that a lower value in p produces a faster increase or 

decrease. From the aspect of ion movement, these changes in conductance can be 

partially caused by the speed of ion movement, which is one of the important factors in 

deciding the biological function of the channels [35]. 

As explained, the proposed ion channel model, specifically ion channel conductance 

model, was developed with electrophysiological considerations and experimental facts. 

As shown by the study of Hodgkin and Huxley (H-H), the action potential in cells is 

generated by the driving forces of channel conductances and the proposed ion channel 

conductance models for Na+, K+ and leakage under the action potential model in this 

study consistently show the previous theory by H-H. 

6.2 ION CHANNEL CONDUCTIVITY 

The conductivities of Na+ and K+ channels lead to depolarization and repolarization, 

respectively, during cell excitation, and their dynamic properties are critical in modeling 

an IAP, especially in muscle. As shown in the H-H experiments [11], the patterns of these 

ion channel conductances were apparently different in duration. Na+ channel conductance 

was characterized as a fast increase and a fast decrease within a short time period. Even 

though the strength of an applied stimulus could change the amplitude of Na+ 

conductance, the responding pattern of the Na+ conductance to different stimuli was 

similar. In addition, the responding time was shorter as the applied stimulus became 
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FIG. 36: Generated conductances for Sodium (Na+) and Potassium (K+) in nerve. The 
provided parameters for each conductance were obtained from the result by the Gauss-
Newton optimization method with the Erlang PDFs. [aNa, PNa] were [8, 1.34], and [aK, 
PK] were [5, 1.21]. The amplitudes for conductances were modified based on the H-H 
neuron model. 
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FIG. 37: Generated conductances for Sodium (Na+) and Potassium (K+) in muscle. The 
provided parameters for each conductance were obtained from the result by the Gauss-
Newton optimization method with the Erlang PDFs. [aNa, PN3] were [8, 7.02], and [aK, 
PK] were [5, 3.07]. The maximum amplitudes for conductances were obtained from a 
previous paper [78]. 
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FIG. 38: Na+ conductances of muscle and neuron. The Na+ channel conductance for 
neuron was based on H-H model and the generated Na+ channel conductance for muscle 
was by the Erlang PDF with [8, 7.02] for [aNa, PN3], respectively. For comparison, the 
maximum amplitudes for conductance in muscle were adjusted to those in neuron. 
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FIG. 39: K+ conductances of muscle and neuron. The K+ channel conductance for neuron 
was based on H-H model and the generated K+ channel conductance for muscle was by 
the Erlang PDF with [5, 3.07] for [aNa- PNa], respectively. For comparison, the maximum 
amplitudes for conductance in muscle were adjusted to those in neuron. 
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larger. On the other hand, K+ channel conductance was identified with a relatively slower 

increase than Na+ channel conductance during depolarization and lasted as long as an 

applied stimulus remained. The increased strength of a stimulus made the increasing rate 

greater and the maximum conductances for different stimuli were continuously 

maintained with a constant stimulus. These specific characteristics are captured well in 

the generated nerve IAP (Figure 36) from the result by the Gauss-Newton optimization 

method with Erlang PDFs. Those similar changes in ion conductances were also shown in 

muscle (Figure 37). As explained in Chapter 2, most mechanisms to generate a muscle 

IAP are similar to a nerve IAP. The only difference between them is the number of ions 

involved with generating an IAP. Specifically, two ions, Na+ and K+, play a dominant 

role in generating a muscle IAP, and their conductances are the key in generating a 

meaningful muscle IAP. 

In Figures 38 and 39, the comparisons between the generated Na+ and K+ channel 

conductances in muscle and neuron are shown. The generated Na+ a nd K+ c hannel 

conductances in muscle were based on the Erlang PDFs in the currently generated muscle 

IAP model in this study and those in neuron were based on the H-H models [11]. Due to 

the difference in amplitude, the amplitudes of the conductances in muscle were increased 

to match those in neuron for comparison. The Na+ channel conductances in muscle and 

neuron showed similar profiles during cell excitation. However, the K+ channel 

conductance in neuron presented a longer time duration than that of the Erlang PDF in 

the muscle LAP model in this study. It is reasonable because there are some differences in 

the IAP profiles of muscle and neuron; for example, the duration of IAP in neuron is 

longer than that in muscle, and there is no hyperpolarization in muscle. 
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FIG. 40: Generated ionic currents for Sodium (Na+), Potassium (K+), and leakage in 
muscle. The consolidated ionic current was computed by the summation of the generated 
currents for Na+, K+, and leakage. 
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FIG. 41: Generated capacitor current in muscle. The membrane capacitor, Cm, was 
assumed as 1 pF/cm2 as many previous studies suggested [11,72,75,78,89]. 
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6.3 TOTAL IONIC CURRENT 

The H-H circuit model (Figure 2) showed that the ionic current through cell membrane 

could be computed using ion conductances. As shown in equations (1.1)-(1.3), the 

summation of the individual ionic currents produces the consolidated ionic current. The 

total ionic current is eventually provided by adding the capacitive current to the 

consolidate current. Based on the generated ion conductances, each ionic current for Na+, 

K+ and leakage are computed as follows: 

iNa = gNa(Vm - ENa) (6.1) 

IK = gK(Vm - EK) (6.2) 

I I = gL(Vm - EL) (6.3) 

where Vm is the membrane potential, and Ex represents equilibrium potential for an ion 

species, x. The resting membrane potential was -77.7 mV from the final muscle IAP 

model (Figure 34), and 63 mV and -58 mV were applied for ENa and EK, respectively 

[26]. The equilibrium for the leakage was decided by considering that the leakage current 

has a small effect on the ionic current, and it was assumed to be -70 mV. For the ion 

conductance models, the parameters by the Gauss-Newton optimization method with 

Erlang PDFs were applied with [1, 0.33, 5, 3.07, 8, 7.02] for [aL, pL, aK, PK, aNa, pNa], 

respectively. All amplitudes of ion conductances were modified based on the H-H neuron 

model. The ionic current was computed using equation (1.1). To find the total ionic 

current, a capacity current was added to the consolidated ionic current and computed as 

follows: 
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= C m ^ f (6.4) 

where Cm is the membrane capacity, which is generally 1 pF/cm2. Based on the above 

computations, the total ionic current can be calculated using equation (1.4). Due to the 

limits of experimental references in capacitor currents, the total ionic current is not shown 

in this study. 

6.4 TRANSMEMBRANE CURRENT 

Transmembrane current,3 is also called transmembrane ionic current and can be 

computed by the second derivative of the IAP [75,89]. Mathematical generation of the 

transmembrane current is possible using the core conductor model [45]. By simplifying a 

real excitable cell with some specific assumptions, the core conductor model can generate 

the transmembrane current. The assumptions used by the core conductor model are listed 

as follows: 

(1) Two conductors, the intracellular and extracellular fluids, are separated by the cell 

membrane. Both fluids are homogeneous and isotropic, and they follow Ohm's 

law. 

(2) An excitable cell has a cylindrical and symmetric shape. 

(3) Any magnetic effects are ignored. 

(4) The current flows in intracellular and extracellular fluids move longitudinally. 

With assumption (1), the intracellular and the extracellular potentials can be computed as 

follows: 

13 The flowing current through the cell membrane caused by the potential difference between intra- and 
extracellular fields 
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dt 

dVj 

dt -r = -nh 

(6.5) 

(6.6) 

where V\ and Ve are the intracellular and extracellular potentials, respectively. /', and ie are 

the intracellular and extracellular currents, respectively, r, and re are the intracellular and 

extracellular resistors, respectively. Using assumptions (2) and (3), the following 

relations can be obtained. 
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FIG. 42: Generated Transmembrane current in muscle. The cell radius (a) and the 
intracellular resistor (r,) were obtained from a previous study [78] and they were 27.5 pm 
and 4209.06 kQ/cm respectively. 
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ii(0 = ~ie(t) (6.8) 

where a is the radius of the cell, and im is the transmembrane current. Using equations 

(6.5), (6.6) and (6.8), the relation between V, and Ve can be calculated as follows: 

1 ^ + 1^1=0 (6.9) 
re dt rt dt v ' 

Ve(t) = -rfVt(t) (6.10) 

Based on equations (6.6) and (6.7), 

2naim=j^ (6.11) 

Therefore, the transmembrane current can be computed as follows: 

im = — ^ (6.12) 
771 27rar- dt2 v ' 

As shown in equation (6.12), the transmembrane current can be computed by the second 

derivative of the intracellular potential. 

From a previous study [106], the specific values for a cell radius and an intracellular 

resistor were obtained, and they were 27.5 pm and 4209.06 kQ/cm respectively. In 

addition, the conduction velocity14 (CV) was assumed to be 4 m/sec, which is the most 

general CV in a muscle fiber [108-110], and it was used to find the correct unit for the 

The propagating velocity of an action potential in an excitable cell 
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transmembrane current. By applying these values, the transmembrane current was 

generated (Figure 39). 

6.5 APPLICATIONS OF ION CHANNEL MODELS 

As shown in muscle IAP modeling, an ion channel (conductance) model provides the 

fundamental sources to generate an IAP. Moreover, an ion channel model can be used in 

generating the ionic currents for specific ions such as Na+ and K+, which is not easy to 

measure in experimental laboratories. Using an ion channel model, only simple 

mathematical computations are required to generate the ionic currents. This is not the 

only benefit from ion channel models when considering that ion channels are closely 

related to many cellular functions and various pathological disorders [15,25], especially 

in excitable cells such as neurons, cardiac myocytes, and skeletal muscle fibers. The 

applications for ion channels are also varied from simple electrophysiological research to 

hypothalamic neural thermosensitivity [69]. Recently, ion channels have been used as 

targets for many venom15 peptides [90], and these applications of ion channels are 

possible when the structures and characteristics of ion channels become explicit. An ion 

channel model can be successfully used in understanding the characteristics of ion 

channels when mainly focused on electrophysiological features. 

Due to their critical role in physiological processes, ion channels have been 

considered important therapeutic targets [36]. Based on the structural and 

electrophysiological characteristics of ion channels, a new drug or chemical for specific 

channels can be designed. In particular, the electrophysiological dynamics in ion 

Toxins discharged by certain types of animals to inject their victims 
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channels should be comprehended for therapeutic strategies for a new drug. An ion 

channel model can be useful for examining how fast a newly developed medicine affects 

a specific target area or how long the effects of the medicine last in that area. For 

example, consider the case where there are two ion channels for the path of a drug, and 

let's assume that the ion channels are Na+ and K+ channels. As shown in the previous ion 

channel conductivities, the conductivities of these ion channels are different in a reactive 

time and duration as much as their maximal amplitudes during cell excitations. If the Na+ 

channel is targeted for a drug, the drug works faster and lasts a shorter time than the case 

that targets the K+ channel. Electrophysiological dynamics arising from the different 

targets can help decide the structural and chemical characteristics of a new drug and its 

possible reactions can be estimated by using an ion channel model. 

An ion channel model can also be used to investigate neural thermosensitivity [69]. It 

is well known that depolarization and hyperpolarization of ion channel conductances are 

affected by temperature [103]. The changes in temperature affect the firing pattern of the 

extracellular action potential, which indirectly shows the changes in IAP. Eventually, the 

changes in IAP result from the changes in ion channel conductivities. Therefore, the ion 

channel conductance due to thermosensitivity can be examined by an ion channel model 

by adding a variable for temperature. 
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CHAPTER 7 

CONCLUSION AND FUTURE WORK 

To allow for less computational burden and easier implementation, several simplified 

intracellular action potential (IAP) models have been used. Of these LAP models, 

Rosenfalck's and Nandedkar's IAP models have been widely accepted to generate 

muscle IAPs while the Dimitrov and Dimitrova (D-D) IAP model has been recently 

developed and utilized. However, Rosenfalck's and Nandedkar's IAP models produced 

unrealistic amplitudes and time durations, and the D-D IAP model has the disadvantage 

of a difficult implementation. Additionally, previous models have failed to link 

morphological structure and physiological behavior of ion channels to the IAP model 

itself. Therefore, a muscle IAP model is required to resolve all the problems that are 

inherent in previous IAP models. 

7.1 CONCLUSION 

To understand how LAP in a muscle fiber is generated, it is necessary to examine the 

main sources for IAP. A muscle fiber is generally surrounded by extracellular fluid, and 

the area around the muscle fiber has a relatively high concentration of sodium (Na+). 

Contrastingly, the inside of a muscle fiber is filled with intracellular fluid that has a 

relatively high concentration of potassium (K+). These two main ions, Na+ and K+, are the 

fundamental sources in generating a muscle IAP during cell excitation. A muscle IAP is 

composed of several typical phases beginning with a rapid increase, then continuing with 

a relatively slow decrease, and ending with a very slow decreasing phase. These 

distinctive phases are caused by the inward or outward flow of different ions. However, 
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typical muscle fibers are enveloped by a special bilayer called the cell membrane that 

blocks the free flow of ions. To allow ions to pass through the cell membrane, there are 

special gates called ion channels. Ion channels play a main role in the movement of ions, 

and the voltage-gated ion channels are dominant on the cell membrane controling most 

changes in an IAP. Moreover, each ion channel is permeable only to a specific ion type. 

For example, Na+ can pass the cell membrane only through Na+ channels, and K+ moves 

only through K+ channels. During the resting state of a muscle fiber, IAP is negatively 

ranged between -75 and -90 mV. Once a muscle fiber is excited, the conductivity of Na+ 

channels sharply increases which results in the flow of many Na+ into the muscle fiber. 

Due to the rapid increase in Na+, the inside of the muscle fiber starts to be more 

positively charged, which is called depolarization. Depolarization led by Na+ ends within 

a short period of time, and repolarization starts with K+ outward flow activated by 

opening K+ channels. After repolarization, a cell excitation finishes and is presented in 

IAP by very slow potential decreases until the IAP obtains its initial potential, the so-

called resting membrane potential. 

Based on these physiological dynamics, a new IAP model is developed using 

optimization methods. In optimization, an objective function is constructed, which 

contains all involved ion channels' dynamics. The objective function is composed of 

three independent Erlang probability density functions (PDF) and each PDF matches with 

the ion channel conductivity of different ions. Through iterative methods, nine unknown 

values in the objective function are generated, and these values are adjusted through 

validation and modification. The final IAP model with calculated values is well matched 

to several experimental results. 
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An IAP model is required in generating an Electromyogram (EMG). An EMG is 

computed by the summation of motor unit action potentials (MUAPs) and a MUAP can 

be calculated by the summation of the extracellular action potentials (EAPs) in one motor 

unit. An EAP from a muscle fiber is calculated by the multiplication of a weighted 

function and the transmembrane current. The weighted function is computed using the 

inverse distance between a possible measuring point and the muscle fiber location. Also, 

the transmembrane current can be calculated using the second derivative of the IAP. Due 

to the interconnected computations for the EMG, development of a precise and realistic 

IAP model is required, and the IAP model in this study satisfies these requirements. 

In addition to being the source in generating an EMG, the LAP model in this study has 

several advantages over other previous IAP models. First, the LAP model directly shows 

the separated ion channel conductance model in its equation. As previously explained, a 

typical IAP is generated by the dynamical changes of ion channel conductances. 

Therefore, the changes of ion channel conductances have been considered in designing 

the objective function during optimization. Depending on different values of «, the type 

of ion channel is determined which helps to classify which independent function in the 

IAP model represents what kind of ion channel conductance. By applying the maximum 

values of ion channel conductance from the experimental results, the dynamics of ion 

channel conductances are easily generated. Second, the IAP model can be used to 

examine muscle fiber diseases related to abnormal ion channel activity. Any abnormal 

changes in ion channel conductances result in an unusual IAP, and it is possible to 

investigate the major problems by examining independent ion channel conductances. A 

third advantage is the realistic amplitudes and time duration of the IAP model in this 
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study. As proved by comparison with several experimental results, the IAP model in this 

study shows a good matching shape to the real IAP. This implies that the IAP model in 

this study can be free from the problem of unrealistic LAP generation. It has never been 

overcome by popular IAP models that are still utilized in EMG generation. The last 

advantage is the ease of implementation for the generation of the transmembrane current. 

As explained, the transmembrane current can be calculated by the second derivative of 

the IAP model. Therefore, the function of an IAP model needs to be continuous in time to 

be differentiated twice. Notably, the D-D LAP model is unable to be used in calculating 

the transmembrane current because of its functional discontinuity. The IAP model in this 

study is developed with continuous functions, and it can be easily implemented to 

generate the transmembrane current. Overall, the IAP model in this study shows better 

results in the aspects of being a realistic model and supporting practical applications than 

other previous IAP models. 

7.2 FUTURE WORKS 

By developing a new IAP model based on ion channel dynamics, an advanced and 

accurate IAP model is presented in this study. In particular, an IAP model with 

meaningful components is designed. However, some components in the developed IAP 

model are still unknown. For example, the number of closed states in the ion channel is 

not as clear as other research assumes. Based on the ion channel structures, the possible 

closed channel states may be presumed, but an exact number of channel states is not 

known. 
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The IAP model in this study also has a limitation in explaining the meaning of y, 

which is simply used to adjust the IAP model to the reference data. If all other values in 

the IAP model are correctly assigned and optimized, the values in y also represent a 

meaningful component. Instead of directly using the values in y, however, the maximum 

conductance values were obtained from the results of an experiment that measured the 

ion channel conductances. This might be related to the uniqueness of a solution in 

optimization. Even though the uniqueness was partially resolved by applying different 

optimization methods, the obtained y suggests that more research is necessary in the 

future. 
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