
Old Dominion University
ODU Digital Commons

Mathematics & Statistics Faculty Publications Mathematics & Statistics

9-1999

A Simplified Model of Wound Healing (With
Particular Reference to the Critical Size Defect)
J. A. Adam
Old Dominion University, jadam@odu.edu

Follow this and additional works at: https://digitalcommons.odu.edu/mathstat_fac_pubs

Part of the Applied Mathematics Commons, and the Software Engineering Commons

This Article is brought to you for free and open access by the Mathematics & Statistics at ODU Digital Commons. It has been accepted for inclusion in
Mathematics & Statistics Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

Repository Citation
Adam, J. A., "A Simplified Model of Wound Healing (With Particular Reference to the Critical Size Defect)" (1999). Mathematics &
Statistics Faculty Publications. 95.
https://digitalcommons.odu.edu/mathstat_fac_pubs/95

Original Publication Citation
Adam, J. A. (1999). A simplified model of wound healing (with particular reference to the critical size defect). Mathematical and
Computer Modelling , 30(5-6), 23-32. doi:10.1016/s0895-7177(99)00145-4

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fmathstat_fac_pubs%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mathstat_fac_pubs?utm_source=digitalcommons.odu.edu%2Fmathstat_fac_pubs%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mathstat?utm_source=digitalcommons.odu.edu%2Fmathstat_fac_pubs%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mathstat_fac_pubs?utm_source=digitalcommons.odu.edu%2Fmathstat_fac_pubs%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=digitalcommons.odu.edu%2Fmathstat_fac_pubs%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.odu.edu%2Fmathstat_fac_pubs%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mathstat_fac_pubs/95?utm_source=digitalcommons.odu.edu%2Fmathstat_fac_pubs%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu


PERGAMON Mathematical and Computer Modelling 30 (1999) 23-32 

MATHEMATICAL 

COMPUTER 
MODELLWG 

www.elsevier.nl/locate/mcm 

A Simplified Model of Wound Healing 
(With Particular Reference 
to the Critical Size Defect) 

J. A. ADAM 
Department of Mathematics and Statistics, Old Dominion University 

Norfolk, VA 23529, U.S.A. 

(Received March 1999; accepted April 1999) 

Abstract-This paper is an attempt to construct a simple mathematical model of wound heal- 
ing/tissue regeneration which reproduces some of the known qualitative features of those phenomena. 
It does not address the time development of the wound in any way, but does examine conditions (e.g., 
wound size) under which such healing may occur. Two related one-dimensional models are examined 
here. The first, and simpler of the two corresponds to a “swath” of tissue (or more realistically in 
this case, bone) removed from an infinite plane of tissue in which only a thin band of tissue at the 
wound edges takes part in tissue/bone regeneration. There is no tissue or bone in the interior. The 
second model has a similar geometric structure, except that not all the tissue in the interior has 
been removed: it is a “gouge” or “graze” rather than a hole or puncture. In each model, there is a 
thin layer of tissue (e.g., the epidermis) or bone (depending on the context) that is responsible for 
increased mitotic activity at the edges of the wound by manufacturing a generic growth stimulator 
of concentration C(z, t) small, where z is the direction of wound closure, and t is time. Using a 
combination of results from these two models, we have been able to predict the size of the critical 
size defect, which ls defined ss the smallest intrsosseo us wound that does not heal by bone formation 
during the lifetime of the animal being studied. We have also been able to isolate parameter ranges 
that will give reasonable values for both the thickness of the active region and the critical size defect, 
and in addition, establish that the models discussed here have the sensitivity to place reasonable 
bounds on such parameter values. @ 1999 Elsevier Science Ltd. All rights reserved. 

Keywords-Wound healing, Tissue regeneration, Critical size defect, Diffusion equation, Growth 
factors. 

1. INTRODUCTION 

The fields of bone regeneration and wound healing in general often rely on suitable animal models 
to test experimental bone and tissue repair materials. One accepted model for the former is the 
so-called Critical Size Defect (CSD), which has been defined as the smallest intraosseous wound 
that does not heal by bone formation during the lifetime of the animal [l]. For practical purposes, 
this timescale can usually be taken as one year. In [2], the definition was further extended to 
a defect which has less than“heal” by fibrous connective tissue formation, but since this is not 

I would like to thank Dr. T. Barco of the Portsmouth, VA Naval Hospital for providing me with an extensive set 
of papers on the critical size defect problem, and for useful discussions on this and related topics. 
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bone, it does not have the properties (strength, etc.) that a completely healed defect would. 

Some typical CSDs are for rat, rabbit, dog, and monkey calvaria (skullcap), respectively: 8mm, 

15mm, 20mm, and 15mm (details can be found in [l]). 

Wound healing, when it occurs, does so by means of a combination of various processes. 

Chemotaxis (the movement of cells up a concentration gradient), neovascularization, synthesis of 

extracellular matrix proteins, and scar remodeling [3]. G rowth factors are likely to play a very 

significant role in bone regeneration [4-71. Such factors include Transforming Growth Factor p 

(TGF-P), Platelet-Derived Growth Factor (PDGF), Insulin-Like Growth Factor (IGF), and in 

the case of skin, Epidermal Growth Factor (EGF), [4,8]. Furthermore, the supply of oxygen to 

a wound has much influence on the quality of healing [5], and hence, angiogenesis is of vital 

significance in bone and tissue regeneration [9,10]. 

This paper is an attempt to construct a simple mathematical model of wound healing/tissue 

regeneration which reproduces some of the known qualitative features of those phenomena. Ini- 

tially a one-dimensional model is developed, but this easily generalized to the more realistic case 

of a circular wound (still technically one-dimensional if the only independent variable is the ra- 

dius). This will be carried out subsequently: the results will not differ in any major qualitative 

way from those in this paper. Obviously the results will differ somewhat in a quantitative sense, 

if only because of geometric factors. 

This paper does not address the time development of the wound in any way; it merely examines 

the conditions (e.g., wound size) under which such healing may occur. The temporal development 

has been addressed by others in the context of rather different models; those in the present paper 

can be adapted somewhat to incorporate this, but the primary focus is to account for the existence 

of a critical size defect by means of biochemical regulation of mitosis. 

Two related models are examined here. The first, and simpler of the two, corresponds to a 

‘swath” of tissue (or more realistically in this case, bone) removed from an infinite plane of tissue 

(see Figure 1) in which only a thin band of tissue at the wound edges takes part in tissue/bone 

regeneration. There is no tissue or bone in the interior. The second model has a similar geometric 

structure to the first, except that not all the tissue in the interior has been removed: it is a “gouge” 

or “graze” rather than a hole or puncture. 

Figure 1. Schematic diagram of the wound configuration: wound width is L and 
active wound edge is of thickness 6. 

In each model, there is a thin layer of tissue (e.g., the epidermis) or bone (depending on 

the context) that is responsible for increased mitotic activity at the edges of the wound by 

manufacturing a generic growth stimulator of concentration C(z, t), where z is the direction of 

wound closure, and t is time, both in appropriate units discussed below. 

2. BASIC CONFIGURATION: MODEL 

We consider a one-dimensional “wound” of width L centered at the origin of coordinates. At 
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the wound “edges”, x = &L/2 , we suppose that a generic “Growth Factor” (GF) is produced 

and it is the distribution of this growth factor that determines whether or not wound healing 

occurs on the basis of this model. Before discussing the basic assumptions inherent in the model, 

we state the fundamental differential equation describing the space and time distribution of the 

growth factor concentration C(s, t). It is given by 

ac -- 
at 

Dg + xc = PS(x), 

where D, A, and P are, respectively, the diffusion coefficient for the GF in the tissue, the decay 

or depletion rate of the GF, and the production rate of GF by the enhanced mitotically active 

cells in the vicinity of the wound edges. These are all assumed to be constant in both models. 

Furthermore, S(X) is the source term describing the distribution of GF production throughout 

the active tissue. In both models, this is assumed to be uniform; thus, 

S(x) = 1, 4 5 2 5 ; + 6, (2) 

where 6 is the thickness of the active layer, and elsewhere 

S(x) = 0. 

In equation (1) above, the first term represents the time rate of change of GF concentration, 

the second term describes the spatial change due to diffusion of GF, and the third term is the 

depletion or decay rate of GF as it interacts with the system as a whole, and is changed or 

removed. Thus, in the absence of diffusion and production, an initial distribution of GF will 

decay exponentially according to this equation. 

3. MAIN ASSUMPTIONS 

Several assumptions have already been noted, but in this section, we identify the more impor- 

tant ones and their implications. The first to be noted is that of diffusive equilibrium: basically 

this means that the process of readjustment of the GF concentration as the wound heals is so 

fast (when compared with the typical wound-healing time) that, to a first approximation, the 

distribution of GF may be considered independent of time. This also simplifies the mathematics 

considerably! In order to justify this assumption, consider the diffusion timescale T as defined 

from equation (1): 

where 1 refers to a typical length scale (size) of the system, i.e., the wound. The value of D of 

course depends on the particular GF or enzyme in general (the higher the molecular weight, the 

smaller is D), and the medium in which it is diffusing. However, some indication of this can be 

found by considering the diffusion of oxygen and sucrose in water. At a temperature of 25” C, 

DX 2.4 x low5 cm2 set-‘, while for sucrose at 20” C, De 4.6 x 10s6 cm2 set-l [ll]. Sherratt 

and Murray [12,13] carried out a best fit analysis from data on epidermal wound healing (there 

being no direct experimental data from which D could be determined) and estimated that for 

epidermal GF, D cc 3.1 x 10m7cm2 set-l, considerably smaller because of the high molecular 

weight (about 6000, see (141). In their papers, they also considered growth inhibitors, for which 

D E 5.9 x 10s6 cm2 see-l (we will not consider such inhibitors in this paper). Thus, it seems 

not unreasonable to take a value of D x lob5 cm2 set-l for oxygen (clearly, an important factor 

in wound healing) and Dx 5 x 10T7 cm2 set-1 for GF, the quantity of primary concern here. 

Using this value of D for Z-values of 1 pm (10V4 cm), 10 pm, 1 mm, and 1 cm, we find typical 

diffusion times of 2 x 10m2 set, 2 set, x 5(1/2) hr and M 23 days, respectively. The corresponding 
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diffusion timescales for ozygen, it should be noted, are 10e3 set, 10-l set, M 15 min and x 1 day, 

respectively. Clearly, the approximation is less well justified for GF in wound sizes of order one 

centimeter if we are considering wound healing per se, but recall that we are here interested in 

a mechanism that may shed light on the existence of the critical size defect, i.e., that wound 

size above which no essential healing occurs during the lifetime of the animal [l]. Over such a 

timescale, the diffusive approximation is certainly a very good one for GF distributions. Under 

these circumstances, g = 0 in equation (1). 

The second assumption is that the tissue growth or bone regeneration is regulated by the GF 

concentration C(X) (recall: no time dependence for C in the light of the first assumption) via 

a discontinuous switch mechanism, such that increased mitotic activity, and hence, regeneration 

occurs at the wound edges when the GF concentration reaches or exceeds a critical or threshold 

value 8, i.e., when 

(3) 

The third basic assumption is that there are no mechanical constraints: by this we mean that 

the tissue/bone is free to grow (when the above criterion is satisfied) into the wound space with- 

out any resistive pressure constraints (e.g., as would be present for an expanding benign tumor). 

Finally, we make explicit an already implicit assumption, namely that of the continuum approxi- 

mation. This means that the dependent variable C(Z) is a continuous and suitably differentiable 

function: we do not encounter on the present scale of description the discontinuities which must 

inevitably be present on the molecular scale. We are now in a position to discuss Model I. Be- 

cause in both models the system and solutions are symmetric about z = 0, we shall only address 

the domain 2 2 0. The results for z I 0 are then easily established. To obtain results valid for 

either sign of Z, merely replace z by 1x1 in equations (6), (i’), (lo), (ll), and (14). 

4. MODEL I: EQUATIONS AND SOLUTION 

The governing differential equation may now be written in the simple form 

and 

d2C L L -- 
dx2 

& = _P 
D’ 

$x<~+b 

d2C -- 
dx2 

cY2c=o 

(4) 

(5) 

elsewhere (the domain of C(x) is [L/2, oo)). Here the constant 

x 
a!= -. d-- D 

The boundary conditions to be satisfied are 

(i) C(x), q are both continuous at z = L/2 + S, 

(ii) lim+_+oo C(x) = 0, 

(iii) 9 = 0 at x = L/2. 

The second of these conditions is necessary because there are no distant sources of GF pro- 

duction, and so the concentration must decrease as the distance from the wound increases. The 

final condition means that there is no flux of GF into the (empty) interior. This will be modified 

in Model II for which interior tissue will be present. 

Using standard techniques to solve the above ordinary differential equations, we find after some 

algebraic manipulation that in the active or “epidermal layer” defined by L/2 I x I L/2 + 6, 

the concentration of GF is given by 
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Figure 2. Growth factor profile from Model I in active layer (wound edge: L/2 5 
I 5 L/2 + 6). For illustrative purposes, the following values have been chosen: 
a=1,6=1/2, andL=l. 

0.05 - 
I I I 

0.1 1.5 2 2.5 3 
X 

Figure 3. Growth factor profile from model I in wound exterior region (z 1 L/2 + 
~5). For illustrative purposes, the following values have been chosen: a = 1, 6 = 
l/2, and L = 1. 

(6) 

The shape of the GF distribution, namely XC(z)/P in dimensionless form, is illustrated 

schematically below. In this figure, and all the graphs of C(z) in Models I and II, we have 

chosen the values a = 1, 6 = l/2, and L = 1 to show the basic qualitative features of each 

GF profile. Obviously it is a straightforward matter to modify the graphs for more biologically 

realistic parameter values. 

Finally, in the region exterior to the wound, z L L/2 + 6, the corresponding solution is 

C(z) = g sinh(ab) (expo (4 - z)) . 

Note that the ratio of the GF concentration at the edge (zr = L/2) to that at the other edge 

of the mitotically active region (z = L/2 + 6 = m) is given by 

C(L/2) Co = (exp(aa) - 1)csch ofi. 

Using equation (6), we apply the criterion that 

i.e., 

:(l - exp(-a6)) 2 8. 



28 J. A. ADAM 

n 

Figure 4. Graph of the dimensionnless quantity a& as a function of the parameter 
n = P/M. Note that cr8, is undefined for 0 5 n 5 1. Healing occurs in the region 
above the curve. 

After some rearrangement, this can be rewritten as 

S 1 S, = a-‘ln --& , 
( > 

(9) 

where n is a parameter defined in terms of the tissue constants P, X, 0 by 

In the graph of the dimensionless quantity a& as a function of the j parameter n = P/X8, 
note that crr5, is undefined for 0 5 n 5 1. 

This clearly places, for given n, a lower bound (6,) on the thickness of the active layer neces- 
sary for the wound to heal. The region above the curve corresponds to thicknesses 6 for which 
healing/regeneration occurs; below the curve no such event takes place-the active region is too 
thin to sustain the required level of GF production and retention. 

5. MODEL II: EQUATIONS AND SOLUTION 

In this model, as indicated above, there is still some tissue in the wound interior, i.e., for 
-L/2 5 x <_ L/2. However, it is considered to be dormant in that it does not contribute to the 
healing process, as before, the wound edges of thickness 6 are the domains of GF production. 
As in Model I, we will invoke spatial symmetry (i.e., C(x) = C(-2)) to allow the mathematical 
convenience of working with x 2 0 only. The boundary conditions now are slightly different: we 
demand that C(x),and C’(x) are both continuous at x = L/2 and z = L/2 + 6 , C’(0) = 0 and 
as before 

lim C(x) = 0. 
z+aJ 

There are now three regions to consider for z 1 0. The governing differential equation is 
unchanged except that the homogeneous form now applies in both the wound interior 0 5 z 5 
L/2, and the exterior x 1 L/2 + 6. In 0 5 x 5 L/2, the solution is 

C(x) = f {exp (-a:)} (1 -exp(-a6))coshczz. 

(Again, in the graphs below we use cr = 1, 6 = l/2, and L = 1. They represent the dimen- 
sionless quantity X(x)/P aa a function of distance from the center of the wound.) 

In the active region of GF production, L/2 5 z 5 L/2 + b = m, 

C(x) = g{l+Acoshax+Bsinholx}, (11) 

where 

exp(-am) - exp Q! ( g)} = - {sinh? +exp(-am)} (12) 
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Figure 5. Growth factor profile from Model II in wound interior region (0 5 z 5 L/2). 
For illustrative purposes, as in previous figures, the following values have been chosen: 
a = 1, 6 = I/2, and L = 1. 
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Figure 6. Growth factor profile from Model II in active layer (wound edge: L/2 5 
z 5 L/2 + 6). For illustrative purposes, ss in Figure 5, the following values have 
been chosen: a = 1, 6 = I/2, and L = 1. 

and 

B = -[A + exp( -om)] = sinh $. (13) 

Note that the maximum value of GF concentration occurs in the active region, as would be 

expected. This maximum occurs at 2 = z,, where 

-1 

zm = a-‘arctanh 1 + exp(-um)csch$ . 

Note also that 

C(zm) = $1 + A sech ozm). 

Finally, in the exterior z 2 m, the solution is 

C(x) = F exp(-az), (14) 

where 
F = -[exp(am)] {A sinh om + B cash am}. (15) 

Of particular interest once again is the condition for healing at the wound edge, namely 

From equation (lo), this can be rearranged to yield the expression 
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0.04 - , I I I I I 
1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 

n 

Figure 7. Growth factor profile from Model II in wound exterior region (z 2 L/2+6). 
Again, for illustrative purposes, the following values have been chosen: (a = 1,6 = 
112s and L = 1. 

where n = P/M as before and 
N = n[l - exp(-a6)] 

= no 6, if cuf!? >> 1, (17) 

so N is clearly, dependent on the active region thickness 6. Further rearrangement enables the 
above inequality to be written in terms of the width of the wound L that is necessary for healing 
to occur, namely 

(18) 

Thus, if L is below the critical width L, defined by this expression, then healing/regeneration 
occurs, and above this critical width it does not. The dimensionless quantity crL, is illustrated 
in the figure below. The physical restrictions on N are 1 < N(6) < 2. 

"0.1 0.2 0.4 0.6 0.6 2.0 
" 

Figure 8. Graph of the dimensionless quantity a& as a function of the modified 
parameter N = n[l - exp(-a6)]/k3. Healing occurs in the region below the curve. 

Note that 0 < N < n, these extremes being determined by the (unphysical) values of active 
region thickness 5 being zero and infinite, respectively. 

6. ESTIMATES OF PARAMETER VALUES 

We have already noted some possible values for the diffusion coefficient D, but other quantities 
are still harder to pin down for a conceptual model of this type. Based on studies of DNA synthesis 
suppression by repeated injection of epidermal extract, Sherratt and Murray [3,4] estimated 
the half-life of chemical decay as 12 hours, so for pure exponential decay this corresponds to 
X = ln2/12 hr-’ or approximately 1.6 x 10-5sec-1. For D m 5 x 10-7cm2sec-1 this gives 
(Y z 6cm-‘. The most difficult of our parameters to assess is the ratio P/O, though at least 
this does not require us to know each quantity independently. The reciprocal of this ratio is 
a measure of how long it would take the active region to “pump out” enough GF to initiate 
the healing process (by reaching the threshold concentration 0) in the absence of GF decay and 
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&@&on. With these processes included of course this takes considerably longer. It seems entirely 

reasonable to expect that P << 8 and so noting from Model I the requirement that n > 1, we 

must have P/B > 1.6 x 10-5sec- l. This means that even in the absence of the depletion effects 

mentioned above, the required time from wounding to the start of the healing process (not the 

time to heal, note) is at most about 17 hours. This will be increased of course by the presence 

of depletion. We are now in a position to estimate the critical thickness of the active region S by 

using equation (9). We write this now as 

5 2 6, x i17-t -I!- . ( > n-l (19) 

Consider the following examples: for 

n = 1.2, 6, Z 0.30cm, 

n = 1.4, S, x 0.21cm, 

n = 1.7, S, M O.l5cm, 

n = 2.0, S, M O.l2cm, 

n = 3.0, 6, x 0.07cm. 

Choosing a representative value of S x O.l8cm, and n = 3, we find from (17), using o = 6 

that N M 1.98, whence from (18), L, x 0.75cm, that is, the critical size defect is about 0.75 

cm for this choice of parameters. A reasonable question may be asked at this stage. Why do 

we choose a value for 6 of O.l8cm, rather than 6, = 0.07 as indicated for this choice of n? The 

answer is that the model indicates that S is at least 6, and so we are free to choose a larger value 

consistent with biological considerations. A further point to be noted is that Models I and II are 

related in formulation, but are independent, so we use only general information on 6 as provided 

by Model I to ascertain general features from Model II, such as the size of L,. It is also clear 

that some, indeed many, choices of parameter values will give very small (and hence, unrealistic) 

values of the critical size defect. In our present state of knowledge about, for example, values of 

D, A, PItI, and hence, n, S, and N, what we have been able to accomplish is to isolate parameter 

ranges that will give reasonable values for both the thickness of the active region and the critical 

size defect, and also to establish that the models discussed here have the sensitivity to place 

reasonable bounds on such parameter values. 

7. FURTHER COMMENTS 

It is of course highly desirable to carry out the above analyses in circular geometry. This will 

be more complicated mathematically because the solutions and inferences therefrom will involve 

modified Bessel functions (Ic(or) and Kc(cur)) rather than hyperbolic functions which possess 

relatively simple properties. Nonetheless, the major qualitative features of the present models 

will still apply, but there may well be some subtle, and perhaps unexpected quantitative changes 

which could raise the models to a higher level of biological relevance. This work is currently in 

progress (Adam and Arnold, to appear). The present model predicts critical size defects which 

are somewhat on the low side when compared with the observational data, yet certainly of the 

right order of magnitude. It is clear that when circular geometry is employed, the wound will 

“feel” its other side (via the wound curvature) and this may well affect the numerical value of 

the critical size defect. The planar model has no such capability and as such serves as a useful 

comparison for the more realistic model. 



32 J. A. ADAM 

REFERENCES 
1. J.P. Schmitz and J. 0. Hollinger, The critical size defect as an experimental model for craniomandibulofacial 

nonunions, Clinical Orthopaedics and Related Research 205, 299-308, (1986). 
2. J.O. Hollinger and J.C. Kleinschmidt, The critical size defect as an experimental model to teat bone repair 

materials, J. Cnzniofacial Surg. 1, 60-68, (1990). 
3. N.T. Bennett and G.S. Schultz, Growth factors and wound healing: Biochemical properties of growth factors 

and their receptors, Am. J. Surg. 165, 728-737, (1993). 
4. G.R. Mundy, Regulation of bone formation by bone morphogenetic proteins and other growth factors, Clin. 

Orthop. 324, 24-28, (1996). 
5. R.E. Marx et al., Platelet-rich plasma. Growth factor enhancement for bonegrafts, Oral Surg. Oral Med. Oral 

Pathol. Oral Radiol. Endod. 85, 638-646, (1998). 
6. N.N. Nissenet et al., Vascular endothelial growth factor mediates angiogenic activity during the proliferative 

phase of wound healing, Am. J. Pathol. 152, 1445-1452, (1998). 
7. S.C. Hsieh and D.T. Graves, Pulse application of platelet-derived growth factor enhances formation of a 

mineralizing matrix while continuous application is inhibitory, J. Cell. Biochem. 69, 169-180, (1998). 
8. M. Eisinger, S. Ssdan, LA. Silver and R.B. Flick, Growth regulation of skin cells by epidermal cell-derived 

factors: Implications for wound healing, Proc. Natl. Acad. Sci. USA 85, 1937-1941, (1988). 
9. H. Winet, The role of microvasculature in normal and perturbed bone healing as revealed by intravital 

microscopy, Bone 19, 39S-57S, (1996). 
10. J. Schmid et al., The significance of angiogenesis in guided bone regeneration. A case report of a rabbit 

experiment, Clin. Oral Implants Res. 8, 244-248, (1997). 
11. L. Edelstein-Keshet, Mathematical Models in Biology, Random House, New York, (1988). 
12. J.A. Sherratt and J.D. Murray, Models of epidermal wound healing, Pmt. R. Sot. Land. 241B, 29-36, 

(1990). 
13. J.A. Sherratt and J.D. Murray, Mathematical analysis of a basic model for epidermal wound healing, 

J. Math. Biol. 29, 389-404, (1991). 
14. R.W. Ruddon, Cancer Biology (Second Edition), Oxford University Press, New York, (1987). 


	Old Dominion University
	ODU Digital Commons
	9-1999

	A Simplified Model of Wound Healing (With Particular Reference to the Critical Size Defect)
	J. A. Adam
	Repository Citation
	Original Publication Citation


	PII: S0895-7177(99)00145-4

