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Abstract-Recently, a one-dimensional model was developed which gives a reasonable explanetiotl 
for the existence of a Critical Size Defect (CSD) in certain animals [l]. In this paper. we examine the 
Inore rea.listic two-dimensional model of a circular wound of uniform depth to see what modifications 
are to be found, as compared with the one-dimensional model. in studying the CSD phenomenon. It 
t.ranspires that the range of CSD sizes for a reasonable estimate of parameter values is 1 mm-1 cm 
More realistic estimates await the appropriate experimental data. @ 1999 Elsevicr Science Ltd. All 
rights reserved. 

Keywords-Wourld healing, Bone regeneration, Critical size defect. Growth factors, Diffusiotl 
equation. 

INTRODUCTION 

This paper is an attempt to construct a simple two-dimensional mathematical model of wound 
healing or tissue regeneration. This extends earlier work [l] to more realistic circular geometry, 
i.e.. the cases of both a circular gouge and the emire removal of a circular port,ion of bone. and 
a circular gouge with some bone left in the wound area. 

The time-development of the wound is not addressed here, we examine the conditions (e.g., 
wound size) under which tissue regeneration occurs. The primary objective is to find in each case 
a critical radius beyond which no healing occurs--the definition of a CSD. 

The first model examined corresponds t)o a circular cylinder (with depth equal to the bone 
t,hickness) of bone being removed, so that no bone tissue remains in the vacated area. The 
second model allows some bone to remain in the excavated area, i.e., the cylinder thickness is 
less than that of the bone, (this is what is termed a gouge). 

In each model we will assume, following [l], the existence of a thin ring of width (? which 
influences the mitotic activity up to the wound edge. In the models that follow, C(T. t) will 
represent the concentration of a generic growth stimulator, where 0 < T 5 R, R being the wound 
ratlius, and t being time, both in appropriate units. 

THE NORMAL WOUND HEALING PROCESS 

Bone is one of the tissues of the body capable of repairing itself. The process of bone healing 
involves new growth of cartilage-like cells called a sleeve, formed on the outer surface of the wound. 

0895-7177/1999/$ - see front matter @ 1999 Elsevier Science Ltd. All rights reserved. Typeset by A,&-T@ 
PII: SO895-7177(99)00197-l 
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This usually occurs during the first few days after a wound has occurred. The gap between the 
sleeve of new bone is invaded by embryonic tissue which forms a bridge of connective tissue. 
This generally takes seven to ten days. The third stage of bone regeneration is the hardening or 
calcification of the fibrocartilage. This begins at the wound edge and moves toward the center. 
This usually occurs three to four weeks after the wound’s birth. The next stage is calcification. 
During this stage the vascular system penetrates the fibrocartilage which causes it to be broken 
down and absorbed while the area is now replaced with a fiber bone. This takes place during the 
sixth to eighth week. Finally, the newly formed fiber bone is gradually changed to a rigid bone 
and eventually to normal bone within two months to two years. In nonunions, the calcification 
process fails to occur leaving the gap with fibrous tissue or fibrocartilage [2]. 

SUMMARY OF THE 1-D MODEL 

The first model corresponds to bone (or indeed soft tissue) removed from an infinite plane, in 
which only a thin band of tissue at the wound edges takes part in regeneration. The edges are 
represented by x = &L/2. The region [0, L/2] represents the right half of the wound where no 
tissue or bone remains, and [L/2, L/2 + 6] represents the layer creating the Growth Factor (GF) 
concentration. The governing differential equation is 

dC __ 
at 

Da% 
Tg-&+AC=PS(x), 

in [l] where the parameters D, A, and P, and the source term S are defined below for the present 
problem. It was found that for C(L/2) L 0, 6 2 6, = CX-iln(n/(n - 1)) with domain n 2 1, 
where the parameter n is determined by P, A, and 0. Clearly, 6, is a lower bound for the GF 
active region. 

In the second model, where it is assumed some bone remains in the wound area [O,L/2], 
C(L/2) 2 0 produces a critical length, L,, where L, = au-‘ln((N(S))/(2 - N(S)) where N(6) = 
n[l - ema6]. For further details see [l]. 

PARAMETER ESTIMATES 

Some reasonable values for the parameters P, A, and 19 were found in [l] to be as follows: 
X = 1.6 x low5 set-r (based on [3,4] work that the estimated half-life of chemical decay is 
about 12 hours; thus, X = (ln2)/12 hr-l which yields the preceding value). An approximate 
value for D, the diffusion parameter is D M 5 x 10W7 cm2 set-’ which gives o M 6 cm-l. The 
most difficult parameter to access is P/B. A reasonable estimate is P/6’ > 1.6 x 10h5 set-’ [l]. 

BASIC CONFIGURATIONS: MODEL I 

We position the center of the circle at the origin. A wound disk of radius R is removed. As 
indicated earlier, we suppose that a generic “growth factor” (GF) is produced as a result of the 
trauma to the system, and it is the distribution of this growth factor that determines whether or 
not wound healing occurs in this model. 

The differential equation describing the space and time distribution of the growth factor con- 
centration Cfr. t) is 

where D, A, and P are, respectively, the diffusion coefficient for the GF in the tissue, the decay 
or depletion rate of the GF, and the production rate of GF by the enhanced mitotically active 
cells in the vicinity of the wound edges. These are assumed to be constant in both models. 
Furthermore, S(T) is the source term describing the distribution of GF production throughout 
the active tissue. In both models this is assumed to be uniform; thus, 
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S(r) = 1, for R 5 T 5 R + 6, 

S(r) = 0, elsewhere, 

6 being the width of the active layer. 
In equation (l), the time rate of change of GF concentration is not included because WC are 

invoking the diffusive equilibrium approximation; full details and the justification for this ca.n be 
found in [l]. The second term describes the spatial change due to diffusion, and the third t,erm 
is the depletion or decay rate of GF as it interacts with the system as a whole, and is changed or 
removed. 

MODEL I: EQUATIONS AND SOLUTIONS 

If o2 = X/D, then equation (1) can be written as 

d2C(r) + 1 dC(r) ____ _ 
dr” r dr 

- a2C(r) = gS(r). (2) 

‘I’hcj boundary conditions are 

?? C(r) and (dC(r))/(dr) are both continuous at R + S, 
0 limr_-,oo C(r) = 0, 
?? (dC(r))/(dr) = 0 at r = R. 

The first two conditions are obvious requirements. The third condition implies that there is no 
flux (number of molecules crossing unit area in unit time) at the wound edge. The second model 
mill modify this restriction as we will permit tissue in the wound area capable of dispersing GF. 

In terms of the dimensionless variable z = CYT, equation (2) becomes 

2 d2C(x) 
x 7+x 

dC(x) -- 
dx 

x%(x) = gs (Z) (?J 

The homogeneous solutions are modified Bessel functions of order zero. After some algebra, the 
solution can be written as 

C(r) = -PKI(~R + b))I 
m5 

0 
(ar) + -PK1(4R + 6)) II 

m 
---Ko(m-) + g. 
Kl (aR) 

(4) 

forR<rsR+& 

C(r) = 
-PKl(a(R + 6)) I,(crR) 

M5 KI (cYR) 
+ PIl(a(R + 6)) 

V6 I 
Ko(ar), (5) 

for r > R + 6 where ,!36 = (IoK + Kol,)(a(R + 6)). 
For the parameter values P, X = 1, aR = 2, and cy0 = .5 the graph of C(r) can bc seen in 

Figure 1. 
Using equation (4), we apply the criterion that 

where 0 represents a threshold value above which wound healing will occur for values of I‘ satisfying 
this condition. The resulting equation is 

P 
x 

1 _ Kl(a(R + 5)) 
P6 

Io(aR) + ll(aR)Ko(aR) 
KI (NR) I>- > o (6) 

using standard identities for the [5], the second term in equation (6) simplifies to 

Kl(aR + (~(o)(cyR + ~5) 
aRKI 

= Q(aS). (7) 
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0.4 

0.3 

C(r) - 
0.2 

Cl(r1) - 

0.1 

O- 
2 2.5 3 

r,rl 

3.5 4 

Figure 1. The growth factor concentration C(r) for Model I, which assumes no bone 
is left in the wound area, T 5 R, where R is the radius size of the circular wound. 
rl = T for T in [R + 6, co]. For illustrative purposes, the parameters P and X = 1, 
and 06 = .5. 

If aR = y and a6 = E, then equation (7) can be written as 

Q(E) = Kl(Y+E)(Y+E) <1_xO,l_l 
YKl(Y) - p n’ (8) 

where n = (P)/(M). W e examine equation (7) as a function of E = aS, from which we can find 
a lower bound 5, (6 critical) for the width 6 above which healing can occur. It is not possible to 
obtain an explicit expression for 6, in general, but if 6 is small compared with R, then we may 
use first-order Taylor polynomials to simplify the Bessel functions. Thus, to first order in E, 

Kl(Y + E) 25 Kl(Y) +4(y). 

Also, 

whence 

KI(Y) 
K;(Y) = -Ko(Y) - T1 

[ii~(i/)+t(-iin(~)](Y+E)< (1 

which simplifies to 
E > Kl(Y) 

- nKo(Y) ’ 

i.e., 

SLS,= K1(y) 
~~Ko(Y) 

The graph of ~6~ is given in Figure 2. 

; YKl(Y), 
> 

(9) 

Note that if E = a&, satisfies inequality (8), i.e., Q(E) < 1 - l/n, then a6 > CXS, satisfies 
Q(E) < 1 - l/n for all 6. 

This follows despite the fact that Kl(y + E) is monotone decreasing in E, while (y + E) is 
monotone increasing in E. The derivative of (y + E) Kl (y + E) is - (y + E) Ko (y + E), hence, 
(Y + E) Xi (Y + ) . E 1s monotone decreasing in F. Thus, Q(aS,) > Q(a6) since CM?, 5 a6 for all 6. 
Hence, &(a@ 5 Q(ctS,) 5 1 - l/n for all S. 
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Figure 2. The graph of the width function cc(y) = (r&(y), defined by inequality (9). 
In this graph 1~ = 2. 

1 

Q(E) 

1 0.5 
1~ 

n _. 

0 

1 I I 

I 
1 

E 

Figure 3. The graph of the function Q(E) defined by equation (8). The parameter 
values used are y = 2 and TZ = 2. The intersection of the dotted line with the graph 
of Q defines a minimum thickness of GF activity, below which no healing can occur. 

Large values of n denote an active production rate which would certainly be necessary for 
healing. In Figure 3, the graph of Q(E) from equation (8) is illustrated for the parameter values 
y = 2 and n = 2. 

A comparison of the values from the graph of equation (8) referred to as ((~6~)~ (with no 
approximation except rounding) and the values from equation (9) referred to as nS, are given in 
Table 1. 

Using this value of S,, a representative for R,-values 
can write 

Q(y) = (Y + E) K1 (Y + &) 
YKI(Y) 

can be sought. Using equation (8), we 

(10) 
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Table 1. 

0.5 

0.4 

Q(Y) - 0.3 

,-- 1 
n 

. I 

Yd)o 
0.2 

n 1 - 1 aR cd, 
n. 

(m, (a6c)g - a& 

1.5 3 1 .95 1.39 .44 

1.5 3 3 .77 1.22 .45 

1.5 3 5 .73 1.15 .42 

1.5 3 7 .71 1.16 .45 

1.5 3 10 .70 1.16 .46 

1.5 3 20 .68 1.13 .45 

5.0 .8 1 .29 ,307 ,017 

5.0 .8 3 .23 ,253 ,023 

5.0 .8 5 .22 ,244 ,024 

5.0 .8 7 .21 ,235 ,025 

5.0 .8 10 .21 ,235 .025 

5.0 .8 20 .20 ,226 .026 

8.0 .9 1 .18 ,190 .Ol 

8.0 .9 3 .14 .I54 ,014 

8.0 .9 5 .I4 ,145 ,001 

8.0 .9 7 .13 ,145 ,015 

8.0 .9 10 .13 .140 .Ol 

8.0 .9 20 .13 ,137 ,007 

1 

I I I I 

0 0.2 0.4 0.6 0.8 1 

Y,YvX 

Figure 4. The graph of Q(y) where the approximation cc(y) replaces E in Q(E). The 
resulting graph shows the region that satisfies the inequality; namely (0, yC]; yC is 
represented by the vertical line. n =1.5 was chosen for this illustration. 

By substituting (Kl(y))/(nKo(y)) f or E in equation (10) and simplifying the result, Q(y) 
becomes 

(11) 

the graph of which is given in Figure 4. 
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The parameter value used for Figure 4 is n = 1.5. 
Solving for y from equation (11) is not feasible, analytically, at least. However. observe that, 

the graph of Figure 4 resembles that of a rational function. Thus, by finding a rational funct,ion 
which approximates Q(y), it should be possible to approximate R, by an explicit, formltla. 

A rational function which approximates Q(y) for various parameter values is 

for suitable CL and b, both positive. Solving b - a/y 5 1 - l/n for y, the formula for nR, or y, is 

CYR 5 cuR,, = a 

b + l/77 - 1. 

In Figure 5, for n = 1.5 

F(y) = .523 - y 

ant1 y z .253 while graphical methods give y x .252. 
Some additional comparisons are given in Table 2. 
An interesting observation is that using the minimum value for aS, will always produce a CSD 

because of the dependence on n. in the equation. (See equation (ll).) For 72, very large, e.g., 
n = 200, the graph of equation (11) is shown in Figure 6. 

If we choose an ~6 > a6, such as (,kKl(y))/(nKo(y)) for 0 > 1, it is possible to create graphs 
which show no CSD is possible. For example; for n = 2 and p = 1: 1.2. and n 

&i(y) = 
7qyKo(Y) + PKl(Y) 

nYKo(Y)Kl(Y) 

)jyl(Y+!jE$d) <l-k, fori=O,1,2. (12) 

(which is true from an earlier conjecture) graphs are given in Figure 7. Thus, using an a6 value 
larger than the minimum might yield a situation modeling complete healing. For 0 = 1, Q(y) 
represents CYS, substituted for E. For 0 = 1.2, Ql(y) represents a situation which shows the 
existtxnce of a CSD. For fi = 72, Qz(y) is exhibiting a graph with no CSD. 

MODEL II: EQUATIONS AND SOLUTIONS 

In this model, as indicated above, there is still some tissue in the wound interior for r < R. It 
is merely a passive environment into which GF can diffuse. As before, the ring from the Tvound 
edge at R to R + 6 is the domain of GF production. Additional boundary conditions need to be 
imposed, namely continuity of C(r) and (&Y(r))/(&) at R. 

The corresponding solutions are 

C(r) = AIo(ar) + BKo(cw), for r < R, 

C(r) = Mlo(ar) + NKrJ(ar) + ;, forRLrLR+5% 

C(T) = G&,(W), for r > R + 6. 

Let, ,3 = (10oK1 + Koll)(ar) and ,& as before, then 

for r < R, 

I -I’ II 

( ) 

P 
x P 

Ko(ar) + -1 x 
for R < r 5 R + 6. 

(13) 

(14) 
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I I I I 

:__/;I--:_“-- / 
-1 I 

I 
I 

I 

I 

/ I I 
I I I I I OY 

0 0.2 0.4 0.6 0.8 1 

Figure 5. The graph of Figure 4 and its rational approximation F(y). Ideally F(y) 
attains its most accurate representation of Q(y) in the vicinity of y = 1 - l/n. As 
the value of n is changed new values for a and b must by found. For this graph 
n = 1.5, a = ,048, and b = ,523. 

o.99496 5 
0.4 0.6 0.8 1 1.2 1.4 

Y 

Figure 6. Figure 4 reproduced for n =200. The purpose of this graph is to illustrate 
the existence of a CSD no matter how large an n is chosen. 

Table 2. 

I” 

1.1 ,091 .I3 ,155 ,050 ,413 

1.5 ,333 .26 ,237 ,045 ,523 

3.0 ,667 .40 ,480 ,029 .727 

5.0 ,800 .45 .487 ,014 ,829 

8.0 .875 .54 ,572 ,010 ,892 

10 ,900 54 ,539 ,008 ,915 

20 ,950 .59 ,670 ,002 .952 
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_____-- -___ 
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0 0.5 I 1.5 2 2.5 3 

Y 

Figure 7. For i = O,l, 2 and n = 2 in equation (12), Q%(y) > c&,(y). For i = 2 com- 
plete healing occurs as observed by the graph of Qz(y). For i = 1, Qr(y) intersects 
1 - l/n which implies the exstence of a CSD. Qo(y) = a&(y) (i.e., fl =l). Qt(y) 
,corresponds to fi = 1.2 and &s(y) corresponds to p = 2. 

0.8 I I .- I 
’ *. ’ I 

0.6 - 

Cl(x1) - 

C2( x2) 0.4 - _ - 

C3( x3) - 

0.2 - 

ol 
0 5 IO 15 20 

xl ,x2.x3 

Figure 8. The growth factor concentration C(r) for Model II, which assumes some 
bone is left in the wound area, T < R, where R is the radius size of the circular 
wound. ~l=rforrin[O,R],~2=rforrin[R,R+6],and~3=rforrin(R+6,~]. 
For illustrative purposes, the parameters P and X = 1, aR = 12, and ~6 = 3. 

> 
War)1 for r > R + 6. 

55 

(15) 

A typical graph of C(T) using parameter values P, X = 1, cuR = 12, and a6 = 3 can be seen in 
Figure 8. 

The requirement C(R) > 6’ implies, from equation (14) that 

cy(R + 6)Kl(a(R + S))Io(aR) + aRI~(cuR)Ko(cxR) i 1 - ;. 
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Figure 9. The graph represents the function Q(E) < 1 - l/n. The parameter values 
used are y = 12 and n = 3. 
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4 

3 

E(Y) 2 - 
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I I I 

-0 0.5 1 1.5 2 

Y 

Figure 10. The graph of the approximation function E=(Y) = c&(y). In this graph 
n = 3. 

Again, if E = a6 and y = CYR, then this becomes 

Q(E) = (Y + &WI(Y + E)~o(Y) + Y~I(Y)Ko(Y) I 1 - ;, (16) 
the graph of which is given in Figure 9, using parameter values n = 3 and y = 12. 

By similar methods to those used in Model I, we can find an approximation for 6, under the 
assumption that b/R < 1. This is 

or 

S>S,= 
1 

n~YKo(YVo(Y) 

CW5 > a& = E,(Y) = 
1 

nYKo(Y)~o(Y) 
(17) 

the graph of which is given in Figure 10 (for n = 3). 
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Again, substituting cd, = E,(Y) from equation (17) for E in equation (16) we obtain the 
following graph (Figure 11) for the parameter value n = 3. The rational function F(y) which 
closely approximates 

Q(y) = (y + 1 
nYKo(Y)lo(Y) 

) KI (Y + nyKo(iy)lo(y)) b(Y) + YIl(Y)KO(Y) 5 l - ; 

with n = 3 is 

(see Figure 12). 

0.8 

0.6 

Q(Y) - 

1 ’ 0.4 
n _ _ 

YcJx) - 
0.2 

F(Y) = &> for b = .765 and c = ,059 

I I I I 

________-_-____-___ 

I I I I 
0 0.2 0.4 0.6 0.8 1 

Y,Y,X 

Figure 11. The graph of Q(g) 5 1 - (l/n), w h ere the approximation se(y) replaces 
E in equation (15). The resulting graph shows the region the satisfies the inequality 
namely (0, yC]; g/C is represented by the vertical line. n = 3 was chosen for this 
illustration 

Q(Y) - 

F(Y) _ _ 

1 
I 

n 

0.8 I I I I 

----_-- 

0 0.2 0.4 0.6 0.8 1 

Y 

Figure 12. The graph of Figure 11 and its rational approximation F(y). F(y) attains 
its most accurate representation of Q(y) in the vicinity of 9 = 1 - l/n. As the value 
of n is changed new values for b and c must be found. For this graph n = 3, b = 765, 
and c = .059. 
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Table 3. 

n 1 - 1 aR a& 
n (a), (aS& - a& 

1.5 J 1 1.251 2.58 1.329 
1.5 3 3 1.311 none 

1.5 3 5 1.326 none 

1.5 zi 7 1.330 none 

1.5 3 10 1.332 none 

1.5 zi 20 1.333 none 

5.0 .8 1 .3750 ,400 ,025 

5.0 .8 3 .3930 ,470 ,077 

5.0 .8 5 .3980 .490 ,092 

5.0 .8 7 .3990 ,500 .I01 

5.0 .8 10 .3990 ,500 ,101 

5.0 .8 20 .3990 ,500 .I01 

8.0 .9 1 .2340 ,250 ,016 

8.0 .9 3 .2460 ,270 ,024 

8.0 .9 5 .2490 ,280 ,031 

8.0 .9 7 .2490 ,280 ,031 

8.0 .9 10 .2500 ,280 ,230 

8.0 .9 11 .2500 ,290 ,040 

Table 4. 

n I-1 
n (c& )g a% b c 

1.1 ,091 ,116 ,072 ,597 .4 

1.5 ,333 .237 ,240 ,639 .22 

3.0 ,667 ,400 ,450 ,755 .06 

5.0 ,800 ,480 ,466 ,845 ,026 

8.0 ,875 ,510 ,543 ,899 ,015 

10 ,900 ,530 .585 .909 .006 
20 ,950 ,560 ,598 ,952 .0015 

The explicit formula for Y from bY/(c + Y) 5 1 - (l/n) is 

c - cn 
Y= n-l-bn’ 

(In Table 3 where the (~5,)~ values from the graph show none, the entire graph lay above 
1 - (l/n).) 

Tables 3 and 4 show some values for CUS, and aR, that were found for Model II in the same 
manner as that of Model I. 

RELEVANT EXPERIMENTAL DETAILS 

Many experiments on wound healing have been done on rats, rabbits, and dogs, but not much 
literature has been written on experiments for monkeys or humans. From the literature which 
we do have, the wound was created in the calvaria, which is the bony part of the cranium from 
the base of the skull to the forehead. In [6], Prolo implies that humans do not react the same 
as other animals to calvaria wounds because of a poorer blood supply in the calvaria and some 
deficiency of bone marrow. This seems to imply that the experiments on the lower mammals 
may not extend in the same manner to humans. Freeman and Turnbull [7,8] were the first to 
attempt the study of CSDs in rat calvaria. In a 500 mg Wilstar albino rat they studied a 2 mm- 
diameter CSD, which failed to heal in 12 weeks. Mulliken and Glowacki [9] and Glowacki et al. 
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[lo] found 4mm-diameter to be the CSD in young (28 days old) Charles River rats. Taxaki 
and Urist [5] found 8mm-diameter to be the CSD in six month old Sprague-Dawlep rats. It 
did reduce to 5mm-diameter in four weeks, but no further healing was noticed at the end of 12 
weeks. Kramer et al. [ll] experimented on the calvaria of 6 to 10 pound New Zealand White 
rabbits. They found 8 mm-diameter CSDs occurred at various periods up to 16 weeks. Frame [la] 
worked with a crossbreed of New Zealand White and Half Lop rabbits. He made 5. 10. 15, and 
20mm-diameter wounds in the calvaria of these 6.6 to 10.5 pound rabbits. At 24 and 36 wtleks, 
the 15 mm-diameter wound had created the fibrous connective tissue but continued to retrin a 
central uncalcified area. Friedenberg and Lawrence [13] described the wound healing experiments 
with mongrel clogs. A 17mm-diameter had less than 40% osseous repair at 20 weeks. Prolo f’t al. 
[14] found that a 20 mm-diameter in mongrel dogs healed 20% by six months. Urist. 1151 also 
suggested that 20 mm-diameter was a recasonable CSD in dogs. These experiments show IIS t,hnt. 
there is a critical size defect, in the general range of 2 mm--2 cm. JVe might also conclude that 
monkeys and humans will probably have a CSD larger t,han 2 cm. (Values for o are in t,llr range: 
of .05cm-’ to Gem-l.) 

CONCLIJSIONS 

1Vhen a bone wound occurs, the body produces electrical signals that, stimulate growt,h hor- 
mones in the bone. These growth hormones, which we have called growth factors. t,rigger the 
natural healing process. For reasons which are poorly understood, sometimes bone wolmds fail to 
heal properly (these are called nonunions). Our mathematical model demonstrates why this may 
occur. Obviously there are many factors affecting these nonunions, but some of the most logical 
observations in humans are that adults do not heal as well as the young, and adults, who may 
have other health challenges, may be unable to heal completely [16]. The mathemat,ical model 
indicates that there exists a lower bound value for the width of the growth hormone region. and 
if that width is no less than this value then the GF concentration is such that healing may ~~usuc. 
This by itself does not ensure complete healing, but that, some healing will occur. Iu this model. 
we have shown the dependence of the GF region on the original size of the wound. Obviollsly, 
this region i.s limited in size by the animal and by the size of the region in the c&aria available 
to stimulate the GF region. Wounds that are too large may not have enough GF to stinlulat,e 
complete healing, (i.e., C(R) < 0). It may also be the case, that, C(R) > Q but, due to the, long 
time (several weeks to years) needed to complete the healing process, the GF region may not 
be adequate in size. According to both Models I and II, sufficiently large wounds cl(o not have 
enough GF in proximity to the wound center and to the edge to stimulate and maintain healing 
growth, and thus, complete the healing process. This creates the CSD. 

In earlier work [ 11, a value for IY was estimated from entirely phenomenological collsitlr~r.?t~iorls 
for illustrative purposes. The basis for this estimate was soft tissue data, and yielded CI = 6 ~:.n-~, 
Clearly, the CSD phenomenon is confined to bone: and it is reasonable to ask what rangr of o- 
values might be appropriate. Since (1~ = fl th. 1s is equivalent to asking how both X and D 
change from soft to hard tissue environments. Unfortunately. this data, if known at all. is difficult 
to come by. The best that can be done at t,his stage is to make some plausible est.imatc~s of t,heir 
orders of magnitude. 

DiEusion processes alone will not suffice in bone to provide nourishment for the osteocytes, but 
capillaries are never far away: the osteocytes are arranged around central capillaries in concentric 
layers, which form spindle-shaped units known as ostcons. Thus, pure diffusion is facilitated by 
the efficient capillary transport system, and we might expect that the effective diffusion coefllcient 
is enhanced compared with the standard value used in [I] (at least for growth factors of t,h+ same 
molecular weight). Concerning the decay coefficient X it is even harder to speculate. Gix’en the 
iucreased average density of bone compared with soft tissrle, the effective decay of GF 7~n.l~ be 
hindered somewhat (i.e.; X reduced). It is difficult to bc more prccisc at this stage: bllt, again, for 
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the purposes of illustration, we suppose that, compared with the values used in [l], X is halved and 
D is increased by a factor of five. Thus, we take X z 8 x 10e6 set-’ and D x 2.5 x 10FG cm2 see-‘. 
This results in a value of cy M 1.8cm -I. It can be seen from Column 4 in Table 2, and 4 in this 
paper, that the dimensionless quantity ctR, ranges from about 0.07 to 0.95; for the above value 
of Q this corresponds to R, in the range 0.4 mm to 5.3 mm which is certainly of the right order of 
magnitude for the lower end of the CSD sizes quoted above corresponding to a diameter range of 
1 mm-l cm. It must be emphasized however, that our values for Q are only as valid as the values 
for X and D, and these are estimated. Clearly, quantitative validation of the consistency of the 
models in this paper, must await measurement of these parameters based on experimental data. 

(A subsequent paper will address the three-dimensional problem, this is more appropriate in 
the context of, for example, surgical excision.) 
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