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ABSTRACT 

Antimcrobial midgut proteins and peptides that result from blood digestion in feeding 

American dog ticks Dermacentor variabilis (Say) were identified. Midgut extracts from 

these ticks showed antimicrobial activity against Micrococcus luteus, regardless of whether 

they were challenged with bacteria (Bacillus subtilis, Escherischia coli and Borrelia 

burgdorferi), purified peptidoglycan, blood meal components and/or whole blood (rabbit). 

However, no peptide band co-migrating with defensin was found in midgut extracts from 

ticks challenged with these microbes or blood meal components. Partial purification of the 

midgut extracts using C1s Sep Paks and gel electrophoresis showed the presence of 4 distinct 

bands with rMW 4.1, 5.3, 5.7 and 8.0 kDa identified by tryptic digestion-mass fingerprinting 

as digestive fragments of rabbit a-, B- y-chain hemoglobin, and rabbit ubiquitin. No 

evidence of varisin, a defensin previously identified in the hemolymph of D. variabilis, was 

found in the tryptic digest, although varisin was found in a hemocyte lysate isolated and 

analyzed by the same methods. However, varisin transcript was detected in midgut cell 

lysates. Also present in all midgut samples was a cluster of 3 overlapping bands with rMW 

13.0, 14.1 and 14.7 kDa which were identified by tryptic-digestion LC-MS and MALDI

TOF as rabbit a- and B-chain hemoglobin (undigested) and transtherytin. Lysozyme 

transcript was detected in midgut cell extracts but the peptide was not. Studies done on the 

midguts of other tick species demonstrated that hemoglobin digestion resulted in fragments 

that were antimicrobial. Our findings for D. variabilis confirmed the presence of these 

hemoglobin digestive fragments as well as an additional peptide from rabbit blood, 

ubiquitin, a peptide known to occur as part of an antimicrobial complex in vertebrate 

leukocytes. In addition, we show antimicrobial activity due to larger hemoglobin fragments 
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than those reported previously. In this respect, the midgut's response to microbial 

challenge appears different than the hemolymph. The midgut' s antimicrobial activity 

appears to be primarily a byproduct of hemoglobin digestion rather than expression of 

immune peptides and proteins. In addition to the absence of direct evidence of defensin and 

lysozyme peptides, we also noted that Borrelia burgdorferi spirochetes were not lysed in the 

midgut lumen which would be expected if defensin was active in this location. In view of 

these findings, no evidence was found that defensin and lysozyme, despite the presence of 

transcript, contributes to the midgut's immune defense. 

Keywords: Midgut, antimicrobial peptides, hemoglobin fragments. 

Running head: Tick midgut response to blood feeding and bacterial challenge. 
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INTRODUCTION 

Ticks are notorious as vectors of the agents of infectious disease which they transmit when 

feeding. As blood feeders, the midguts of these parasites are exposed to microbes, both 

pathogenic and non-pathogenic, in addition to the nutritive components of their food source. 

How some microbes survive in the tick's midgut and internal tissues while other 

microorganisms are destroyed is a question that has baffled investigators for many years. 

In insects and other invertebrates, ingestion of various microbes provokes an effective 

defense by upregulating the innate immune system (Gillespie et al. 1997, Beerntsen et al. 

2000). Foreign molecules, e.g., LPS, lipoteichoic acid, etc., on the surfaces of many 

prokaryotes and some eukaryotic parasites trigger receptor responses by pattern recognition 

molecules on the luminal surfac~s of the midgut cells. The response induces or enhances 

expression of an array of antimicrobial peptides such as lectins, lysozyme and defensins. In 

mosquitoes, defensin expressed following challenge by motile malaria ookinetes effectively 

destroys most of the cell penetrating parasites (Richman et al. 1997; Vizioli et al. 2001; 

Lowenberger et al. 999). As many as three different antimicrobial peptides, a cercropin, an 

attacin and a defensin, are expressed in tsetse flies, when challenged with tsetse-specific 

Trypanosoma organisms. Even non-pathogenic microbes such as Micrococcus luteus and 

Escherichia coli can induce expression of these potent defense compounds (Boulanger et al. 

2002). In addition, heme and microbe-inhibiting peptidic fragments that result from 

hemoglobin digestion contributes to the rapid elimination of most invading microorganisms. 

In contrast to blood feeding insects, much less is known about the ability of ticks to 

recognize and destroy invading organisms. The tick midgut has long been regarded as a 

favorable environment for survival of ingested microorganisms because of the presumed 
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absence of intraluminal proteolytic enzymes. Digestion in ticks is almost entirely 

intracellular. However, antimicrobial peptides have been found in ticks. A defensin, varisin 

was purified from the hemolymph of American dog ticks, Dermacentor variabilis (Johns et 

al. 2001 ). More recent evidence indicates the hemocytes as an important site of defensin 

synthesis and storage (Ceraul et al. 2003). However, no unequivocal evidence of its 

expression in the midgut of these ticks has been found (Ceraul et al. unpublished). 

Defensins have also been reported in both the hemolymph and digestive tract of the soft tick, 

Ornithodoros moubata (Nakajima et al. 2002). Other antimicrobial peptides, including 

lysozyme isolated from the midgut (Kopacek et al. 1999; Grunclova et al. 2003) and a lectin 

from the hemolymph (Kovar et al. 2000) have been in found in soft ticks. Evidence of 

lectin-like activity was also reported in D. variabilis hemolymph when challenged with E. 

coli (Ceraul et al. 2002). Aside from these few reports, little information is available 

regarding the occurrence of antimicrobial peptides in the midgut or whether they are 

expressed in response to microbial challenge. 

In addition to the antimicrobial peptides, tick digestion of blood meal hemoglobin may 

result in peptides that can destroy invading microbes. Fragments of hemoglobin digestion in 

the lumen of the midgut of a hard tick, Boophilus microplus (Fogaca et al.1999) and the soft 

tick 0. moubata (Nakajima et al.2003) have been reported to have antimicrobial activity 

against non-pathogenic, non-invasive bacteria. Whether such peptidic fragments would kill 

pathogenic microbes has not been reported. 

The use of capillary oral feeding has made it possible to introduce specific microbes or 

compounds into the tick's digestive tract (Macaluso et al. 2001, 2002) and to observe the 

response. Using this method, we sought to determine whether challenge with selected 
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microbes, e.g., Borrelia burgdorferi, bacterial components or blood products would induce 

expression or secretion of antimicrobial peptides by the tick's midgut. Knowledge of how 

the tick's digestive tract responds to microbes and molecules in its blood meal may provide 

new insights into how pathogenic microbes are able to survive and colonize their tick 

vectors and be transmitted to cause disease. 

MATERIALS AND METHODS 

Ticks. D. variabilis was colonized and maintained as described previously (Sonenshine, 

1993). Blood-fed females were detached from New Zealand White Rabbits (Oryctolagus 

cunniculus) following 4 days feeding on these animals. All use of animals for this research 

was done in accordance with protocols approved by the Old Dominion University 

Institutional Animal Care and Use Committee (IACUC). The approved protocols are on file 

in the Old Dominion University Animal Care Facility Office. 

Bacteria and Bacterial Components. Bacillus subtilis ( A TCC strain 6051) and 

Escherischia coli (A TCC # 25922) were obtained from the American Type Culture 

Collection. B. subtilis were grown in Tryptic Soy Broth (TSB) (Difeo, Detroit, MI). E. coli 

were maintained on TSA agar plates. Borrelia burgdorferi strain B-31 was obtained from 

the Centers for Disease Control, Fort Collins, CO and cultured in BSK II (Sigma, St. Louis, 

MO) at 33°C in a 5% CO2 incubator. Bacterial suspensions were prepared by centrifugation 

(3000 g for 10 min) and washing the pellet with 10 mM Phosphate-buffered saline (PBS) pH 

7.2 to remove the growth medium. Cells were re-suspended in the same buffer. B. 

burgdorferi suspensions were adjusted with a Hausser Brightline hemocytometer (Hausser, 

Horsham, PA) using a Nikon Optiphot phase contrast compound microscopy to 

approximately 50,000 cells per microliter. B. subtilis and E. coli were re-suspended in 10 
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mM PBS and adjusted to 135,000 colony forming units (CFU) per microliter for B. subtilis 

and 155,000 CFU per microliter for E. coli. 

Oral Feeding. Artificial capillary feeding ( oral feeding) was done as described by 

Macaluso et al. (2002). Ticks fed on rabbits for 4 days were immobilized on glass slides and 

allowed to imbibe medium in glass microcapillaries positioned over their mouthparts. Ticks 

were incubated at 27 ± 1 ° C and 90 ± 1 % RH during the procedure. At first, oral feeding 

was done for 3 - 4 h; subsequently, oral feeding was increased to periods of 6 - 15 h. ATP 

{l mM) was added to 0.1 M PBS (pH 7 .2) buffer as a feeding stimulant. Medium was 

replenished lX or 2 X to compensate for any evaporation or leakage. Ticks were challenged 

with the 3 different bacterial genera in buffer as described below. In addition to bacteria, 

ticks also were challenged with peptidoglycan (Sigma Chemical Co., St. Louis, MO) at a 

concentration of 1 µg/µl in buffer. Other ticks were challenged with 2% rabbit whole blood, 

2% rabbit serum, 2% hemoglobin (Sigma), hematin (Sigma) and heme, all diluted in buffer. 

Heme was prepared by digesting 5% hemoglobin with protease, then precipitating the 

protein and collecting the heme-containing supernatant; the presence of heme was confirmed 

by spectrophotometry (Shimadzu UV160U, Shimadzu Instrument Co., Columbia, MD). 

Controls consisted of ticks allowed to feed only on buffer (including ATP) and blood fed 

ticks without challenge. 

To determine whether ticks consumed fluid from the glass capillaries, 20µ1 of 1 µm 

FITC-labeled fluorescent microspheres (Molecular Probes, Inc., Eugene, OR) per mL of 

blood was included in the medium. To confirm fluid uptake, the ticks were washed 3 X in 

buffer, agitated (Vortex) and the capitulum (containing the mouthparts) excised to remove 

surface contamination. Samples of midgut tissue collected during tick dissections ( 10 
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ticks/sample) were smeared onto glass slides, mounted in Slo-Fade mounting medium 

(Molecular Probes) and examined by epifluorescence microscopy. 

Tissue Collections and Protein Assays. Following host or capillary feeding, ticks were 

surface washed with 70% ethanol: 3% H20 2 to remove contaminants. The midguts were 

removed, washed in PBS buffer and homogenized in cold (4° C) protein collection buffer 

consisting of 100 mM PBS supplemented with 0.1 - 0.2 mM PMSF and a 200-fold dilution 

of protease inhibitor cocktail (Sigma, St. Louis, MO, cat.no. P8340). Samples (N = 45) 

were sonicated, then frozen (-20° C) until needed. One sample of midguts from 6-day 

blood-fed ticks was collected in lysis buffer (Ceraul et al. 2003), homogenized, sonicated 

and filtered using 3.5 MWCO Microcon filters (Millipore Corp., Bedford, MA) prior to 

freezing. Bradford protein assays were performed as described by the manufacturer 

(BioRAD, Richmond, CA) using immunoglobulin Gas the standard. 

Gel Electrophoresis. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-

P AGE) with 2-mercaptoethanol was done using Tris-Bis 4 -12% gradient NuPage minigels 

gels, 10 cm x 10 cm x 1 mm thick (Invitrogen, Carlsbad, CA) in accordance with the 

manufacturer's recommendations. Midgut samples collected as described above were 

adjusted to similar protein content (10 µg) and loaded into each lane. Gels were stained 

with silver (Silver Express, Invitrogen) or Commassie Brilliant Blue (R), photographed with 

a Kodak Gel Logic 100 Imaging System (Kodak, Rochester, NY) and relative molecular 

weights (rMW) assigned using the Kodak ID Software.™ Controls included 1) midguts 

from blood-fed ticks without bacteria; 2) extracts of sonicates made from cultures of the 

three different bacterial genera; 3) serum from a tick-infested rabbit; 4) hemoglobin only 

(Sigma); 5) heme (Sigma) and 6) lysate of D. variabilis hemocytes. 
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To detect basic proteins (pH> 7.0), samples of midgut lysate were assayed on a 1 mm thick 

native 15% acidic gel as described by Lebendiker (2004) and run using reversed polarity. 

Gels were stained with Coomassie Brilliant Blue (R). Bands that migrated into the gel were 

excised, eluted, dialyzed overnight, concentrated and stored (-20 ° C) for protein 

identification. 

Western Blot. This was done as described by Ceraul et al. (2003). Antiserum was 

prepared in a rabbit (Orytolagus cunniculus) immunized with synthetic defensin conjugated 

to keyhole limpet hemocyanin (KLH) and affinity purified using a 4% agarose Aminolink 

Plus Immobilization affinity column (Pierce Biotechnology Inc., Rockford, IL) prior to use. 

Defensin controls were synthetic defensin and D. variabilis hemocyte lysate as described by 

Ceraul et al. (2003). Trials were repeated twice with midguts collected in normal buffer and 

with midguts collected in lysis buffer. 

Protein Purification and Identification. Crude extracts of midguts collected were 

fractionated by loading them onto C1s Sep Paks (Waters, Milford, MA) and eluting with 

mixtures of 0.1 % trifluoroacetic acid (TFA): acetonitrile (ACN) ranging from 100% TFA to 

100% ACN. Fractions were concentrated by lyophilization (LabConco, Lyphlock 

Lyophilizer, Kansas City, MO) and reconstituted in 50 mM PBS to the desired concentration 

for further analysis. Aliquots of fractions were assayed by SDS-P AGE as described above, 

silver-stained (Silver Quest, Invitrogen) or Coomassie Blue (R) stained and bands of interest 

excised, eluted, filtered to remove buffer salts using 3.5 MWCO Microcon filters, 

concentrated and frozen for further analysis. 

Gel slices excised from the protein gels were analyzed in accordance with standard 

protocols at the University of Virginia's W.M. Keck Biomolecular Research Facility, 
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Charlottesville, VA (www.healthsystem.virginia.edu/intemet/biomolecD as described by 

previously (Cohen and Chait, 1997; Rao et al. 2003). After digestion with trypsin, peptides 

were introduced into a The~o-Finnigan LCQ DecaXP mass spectrometer and the resulting 

spectra were searched against the NCBI (BLAST P) non-redundant database. The 

sensitivity of detection would detect proteins or peptides present in low concentrations, even 

as low as 1 % of the sample. 

Assay for Anti-microbial Activity. Aliquots of midgut protein extracts and fractions 

eluted with C1s SepPaks were adjusted to equivalent concentrations (approximately 15 

µg/µl) and pipetted into 8 mm wells cut into agar plates as described previously (Johns et al. 

2000). Subsequently, the agar plates were seeded with a 3 h log phase culture of 

Micrococcus luteus to create a bacterial lawn. Samples included crude and fractionated 

extracts of midguts from female ticks forcibly detached after 3 - 4 days of feeding as well as 

those oral fed on 1) 2% hemoglobin, 2) 5% heme; 3) 5% hematin; 4) 2% globin (from 

protease digestion of hemoglobin); 5) B. burgdorferi; 6) B. subtilis and 8) E. coli. Controls 

included 1) ticks fed 4 days, no other treatment and 2) ticks fed with PBS + ATP buffer. 

Antimicrobial activity, as detected by a zone of growth inhibition around each well, was 

measured after 24 h. 

Electron Microscopy. Midgut samples were collected after capillary feeding for 3 h and 

prepared for TEM by conventional methods. Tissues were fixed in cold (4° C) 4% 

glutaraldehyde buffered in O.lM S-collidine, washed, postfixed, dehydrated and embedded 

(EM 812) as described previously (Sonenshine et al. 1981 ). Thin sections in the gray-silver 

spectrum were cut on an RMC Ultramicrotome MT2C using a Dupont Diatome 45° diamond 

knife. The sections were positively stained using uranyl acetate and lead citrate. Thick 
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sections were examined with the Nikon Optiphot microscope at 400 and 1 OOOX and 

photographed with the Spot digital camera (Diagnostic, Inc., Milwaukee, WI). Thin sections 

were viewed and photographed using a JOEL 100 CX II transmission electron microscope at 

an accelerating voltage of 60 kV. 

Molecular Analysis. mRNA was isolated from bacteria-challenged or blood-fed midguts 

using QuickPrep™ Micro mRNA Purification Kit (Amersham Biosciences, Piscataway, NJ) 

in accordance with the manufacturer's recommendations. Reverse transcription {RT) and 

PCR amplification was done as described by Ceraul et al (2003) except as noted below. 

Primers used for detection of defensin (varisin) and lysozyme transcript in tick midguts are 

given in table 1. To determine the presence of defensin or lysozyme transcript, RT was 

done using the lmProm-11 Reverse Transcription System (Promega, Madison, WI) with the 

specific primer V snR for varisin and the specific primer LysR for lysozyme. PCR was 

carried out using PCR Supermix High Fidelity (lnvitrogen) with 200 nM of the defensin 

primers VsnF and VsnR (Ceraul et al. 2003) and 200 nM of the lysozyme primers LysF and 

LysR designed from the tick lysozyme sequence (GenBank AY183671.1). RT negative 

controls were included to monitor for DNA contamination. For both defensin and lysozyme, 

PCR cycling was as follows: 95°C for 5 min followed by 35 cycles of 94°C for 30 s, 58°C 

for 1 min, 68°C for 1 min followed by a final extension at 68°C for 10 min. The resultant 

amplicons were visualized on a 2% agarose gel. Following PCR, the - 225 (putative 

defensin) and-400 bands (putative lysozyme) were extracted from the agarose gel using a 

Qiagen gel extraction kit (Qiagen) and cloned into pCR4 TOPO (lnvitrogen, Carlsbad, CA). 

DNA sequencing was carried out using the ABI Bigdye Terminator V3.1 Ready Reaction 

Kit and run on an ABI Prism 310 Genetic Analyzer (Applied Biosystems, Foster City, CA). 



Identification of the DNA sequences was by BLAST analysis from the National Center for 

Biotechnology Information (NCBI), National Library of Medicine, NIH, Bethesda, MD. 

RESULTS 

12 

Smears of midguts from samples of female ticks (10 females/sample) challenged by 

capillary oral feeding showed numerous fluorescent microspheres in all specimens examined 

with the fluorescent microscope, indicating that the ticks imbibed at least some of the 

contents from the capillaries (figure not shown). 

Agar plates containing the midgut extracts showed zones of anti-bacterial activity in the 

M luteus lawn surrounding wells containing midgut extracts from females challenged with 

B. burgdorferi, 2% hemoglobin and unchallenged (fed on rabbits only) (Fig. 1 A). Similar 

results were obtained with samples challenged with the other bacteria and heme. No 

inhibition zones were observed surrounding the wells left untreated, those treated with 

buffer, or midgut extracts from ticks challenged with hematin (Fig. 1 A). Similarly, no 

growth inhibition was observed with samples challenged with peptidoglygcan or rabbit 

serum. When the midgut was extracted with lysis buffer, a distinct clear zone of growth 

inhibition was observed surrounding the crude extract; much larger zones of growth 

inhibition were observed around the wells treated with fractions partially purified by SepPak 

elution of the midgut lysate with increasing strength acetonitrile, especially around the wells 

with the 40% and 80% eluates. No growth inhibition was found around the well with buffer 

only (Fig. 1 B). When the 40% SepPak eluate was electrophoresed (see below), strongest 

growth inhibition was observed around the 8 kDa band but weaker inhibition around the 4-5 

kDa bands excised from the gel (Fig. 1 C). 



13 

Transmission electron micrographs {TEM) showed that spirochetes, B. burgdorferi, 

remained intact in the lumen of the midgut as long as 3 h after oral feeding (Fig. 2). 

Numerous specimens were observed in the lumen; however, none had penetrated the midgut 

epithelium or migrated to the midgut's outer lining. 

When the SDS-PAGE profiles of the midguts of ticks fed naturally or challenged with B. B. 

burgdorferi, were examined, a small protein band with rMW of 6.2 kDa was evident; in 

some specimens, a smaller band at 5.30 kDa was barely detectable. However, neither band 

co-migrated with the rMW 4.95 kDa band in the hemocyte lysate subsequently identified by 

tryptic digestion as tick defensin. Neither band was evident in the samples from ticks 

challenged with 2% hemoglobin solution or 30 % rabbit serum while only the upper band 

was faintly evident in the sample from ticks challenged with peptidoglycan (Fig. 3 A). 

These bands were subsequently identified as fragments of a and ~-chain hemoglobin (see 

below). No difference was found in the presence or intensity of these peptide bands when 

capillary feeding was done for 3 h or 6 -15 h. Midguts from ticks challenged with B. 

subtilis, E. coli, the heme moiety of hemoglobin or hematin showed a similar response; no 

evidence of a band that co-migrated with defensin was seen ( data not shown). 

Gel electrophoresis of the 40% SepPak purified eluate showed the presence of 3 distinct 

bands with rMW 4.1, 5.3, 5.7 kDa. Also present was a band at rMW 8.0 kDa, and a cluster 

ofup to 3 bands, rMW 13.0, 14.1 and 14.7 kDa. The latter 3 peptides migrated as a broad 

band that was evident in all blood fed specimens and in the rabbit hemoglobin control. 

Arrows indicate the peptides or peptide clusters submitted for protein identification (Fig. 3 

B). 
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W estem blots done on the protein gels did not detect varisin in the midgut samples ( data 

not shown). Acidic gels, which separated basic proteins such as defensin, showed a distinct 

band in the hemocytes lysate that co-migrated with the defensin standard, but did not reveal 

any peptides from the midgut lysate that co-migrated with defensin (Fig. 3 C). 

Tryptic digestion -mass spectrometry of the gel slice from the hemocyte lysate 

containing the 4.95 kDa band revealed a fragment with the sequence of varisin, the D. 

variabilis defensin. In contrast, tryptic digestion-mass spectrometry of the 4.1, 5.3 and 5.6 

kDa bands from the midguts revealed digestive fragments of rabbit a-chain and B-chain 

hemoglobin and fragments of rabbit ubiquitin, but no evidence of defensin. Similarly, 

tryptic digestion of the 13.0- 14.7 kDa band showed rabbit a-chain and B-chain hemoglobin 

and rabbit transtherytin, but no evidence of lysozyme. Tryptic digestion of the antimicrobial 

8.0 kDa band also showed fragments of rabbit a-chain and B-chain hemoglobin, indicating 

larger fragments of a-and B-chain hemoglobin than those noted above. Representative 

fragments of the tryptic digests are shown in Table 2. MALDI-TOF of the 8 kDa band 

(from the SDS-PAGE gel) showed one predominant peak at 11,293 daltons constituting 

65.4% of the total peaks present, and several smaller ones (Fig. 4 A). Clearly, one (the 

largest) or several of the a-and B-chain hemoglobin fragments is responsible for the 

antimicrobial activity found in this midgut sample. MALDI-TOF analysis of the 13.0- 14.7 

kDa band showed peaks consistent with the undigested rabbit a-chain and B-chain moieties 

of hemoglobin, but no evidence of lysozyme (Fig. 4 B). 

RT-PCR using varisin primers showed a band (- 225 bp) in the sample from tick 

mid guts, which was identified by sequencing as varisin, the D. variabilis defensin ( GenBank 

AY181027). RT-PCR using lysozyme primers showed a band (- 400 bp) in samples from 



tick midguts. Sequencing of this amplicon gave a sequence with similarity with the D. 

variabilis tick lysozyme sequence (GenBank AY183671.l). 

DISCUSSION 
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The results of these studies showed the presence of fragments of rabbit a.- B-and y-chain 

hemoglobin, resulting from breakdown of these proteins, as well as rabbit ubiquitin and 

rabbit transthyretin in the midguts of D. variabilis females. However, there was no evidence 

of tick defensin (varisin) peptide, even though varisin transcript was amplified from tick 

midgut tissue. Western blots, which previously showed defensin in hemocyte lysates 

(Ceraul et al. 2003) did not detect this peptide in midgut extracts. Acidic gels, which 

separate basic proteins such as defensin based on their polarity, showed a band in the 

hemocyte lysate, subsequently identified as varisin by tryptic digestion/mass spectrometry, 

but no comparable peptide band in the midgut lysates. On SDS protein gels, bands that 

migrated at or close to the relative mobility of defensin were found instead to be fragments 

of the rabbit proteins, a.- and B-chain hemoglobin and ubiquitin. The importance of the 

finding of these digestive fragments ofrabbit proteins is related to their antimicrobial 

activity reported in previous studies. Digestion of rabbit a.- chain hemoglobin by the soft 

tick, 0. moubata (Nakajima et al. 2003) and bovine hemoglobin by the cattle tick, Boophilus 

micro plus (F ogaca et al. 1999) led to the production of small fragments that were 

antimicrobial against gram positive bacteria. In this study, even larger fragments of a.- and 

B-chain hemoglobin digestion, including one as large as 11.29 kDa, were found to have 

antimicrobial activity. This has not been reported elsewhere. 

In contrast to blood feeding insects, where defensin is expressed in response to 

microbial challenge, no evidence of tick defensin was found in samples from tick challenged 



with different bacteria, components of bacterial cell wall such as peptidoglycan or increased 

concentration of hemoglobin. 
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Erythrocytes and other blood cells are lysed in the midgut lumen, but there is no 

evidence that the hemolysins of ticks are also anti-microbial (Ribeiro, 1988). Hemoglobin 

released by hemolysis of erythrocytes is digested intracellularly. There, the hemoglobin 

tetramer is disrupted, releasing heme (hemin) and the a-, B-, y- and o-chain hemoglobin 

moieties. The a- and B-chain hemoglobin moieties are known to be active against a variety 

of gram-positive and gram-negative bacteria (Parish et al. 2001 ). Hemin also has significant 

antibacterial activity (Stojilkovic et al. 2001). Escape of these moieties into the midgut 

lumen is expected to occur after break up of the midgut digestive cells, a normal facet of the 

digestive process in ticks (Sonenshine, 1991 ). 

This study is the first to report evidence of host ubiquitin in the tick midgut. Members 

of the ubiquitin protein family found in the cytosol of leukocytes form a complex with 

ribosomal S30 that exhibits strong antimicrobial activity against gram-negative as well as 

gram-positive bacteria (Hiemstra et al. 1999). Since ticks are known to secrete hemolysins 

into the lumen that lyse leukocytes as well as erythrocytes (Sonenshine, 1991) this would 

allow release of the ubiquitin-S30 complex, which may inhibit any microbes present. 

It is not clear whether tick lysozyme contributes to the inhibition of ingested bacteria in 

the tick's midgut. No evidence of this protein was found in the tryptic digests of the midgut 

extracts. Although it is possible that lysozyme was not extracted from the midgut tissues, 

this seems unlikely in view of the tissue lysis procedure used. However, lysozyme transcript 

was found in the midgut tissue lysate and its identity confirmed by DNA sequencing. In 0. 

moubata, Grunclova et al. (2003) reported that tick gut lysozyme is upregulated in response 



to blood feeding (measured by semi-quantitative PCR), but lysozyme in hemocytes 

remained unchanged. These authors found no evidence of an increase in lysozyme 

transcript in response to bacterial infection. Other digestive enzymes that might inhibit or 

kill bacteria have been found in tick midgut cells, e.g, acid phosphatase (Agyei et al. 1992), 

alkaline phosphatase (Gough and Kemp, 1995) and serine proteases (Mulenga et al. 2003), 

but were localized to intracellular vesicles within the midgut epithelia and would not 

normally be available in the lumen. 
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In contrast to the hemolymph, exposing the tick's midgut to challenge with different 

bacteria or peptidoglycan, a bacterial wall component, did not lead to defensin secretion 

previously shown to occur in the hemolymph (Johns et al. 2000; Johns et al. 2001b). No 

band consistent with the rMW for defensin was found in response to these different types of 

challenge. Challenging the midgut with hemoglobin, heme or serum also did not result in 

production of defensin, although blood feeding was reported to induce defensin expression 

in soft ticks (Nakajima et al. 2002). One possibility is that the number of microbes or 

peptidoglycan molecules ingested during the oral feeding was insufficient to induce such a 

response. Alternatively, direct contact with the midgut epithelium may be blocked by the 

developing peritrophic membrane, in those species where it occurs, but this probably occurs 

too late be effective (Vaughn and Azad, 1993). Blood feeding insects, however, showed 

expression of specific antimicrobial peptides in response to similar challenges with 

infectious microbes (Boulanger et al. 2002; Beemsten et al. 2000; Lowenberger et al. 1999; 

Richman et al. 1997; Vizioli et al. 2001). 

Previous studies (Sonenshine et al. 2002) showed that, contrary to earlier beliefs, the 

midgut lumen may be an unsuitable environment for survival of bacteria. Attempts to 
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culture B. subtilis, E. coli, or B. burgdorferi from the midguts of ticks that had ingested these 

bacteria were unsuccessful. The mode of inhibition is unknown, although the survival of 

intact B. burgdorferi spirochetes as late as 3 hours is not surprising in view of the apparent 

absence ofvarisin and lysozyme in the midgut lumen. 

In summary, our evidence suggests that the antimicrobial activity observed in the 

midguts of D. variabilis is related primarily to host-derived blood meal proteins, namely, 

digestive fragments of a- and B-chain hemoglobin and, possibly, the ubiquitin ribosomal S-

30 complex, rather than expression of defensin, lysozyme and/or other tick specific 

antimicrobial peptides. 
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Table 1. Primers used for determination of antimicrobial peptides in tick midgut. 

Name 

VsnF 

VsnR 

LysF 

LysR 

Sequence 

5 'GACTGCGCTTTGAGACGACAAA 3' 

5'AGAAAGCATAACCATTTTTAATATGCATTT 3' 

5' ATGCAGCTGCACCTGCCGCTCGCG-3' 

5' ATATCGGCACCCCTTGACGTAGGA-3' 
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Table 2. Results of tryptic digestion/mass spectrometry analysis for identification of antimicrobial 

peptides recovered from gel slices of protein gels. 

rMW Representative partial Native 

band amino acid sequence found Mass (D) Identification1 MW (D) 

A. Hemocytes 

4.95 kDa GFGCPLNQGACHNHCRSa 1884.8 Tick defensin 4229.0 
band (varisin) 

B. Midgut 

4.1,5.3,5. 7 A VGHLDDLPGALSTLSDHAHKa 2267.2 a -chain 15482.5 
kDa bands hemoglobin 
" VLAAFSEGLSHLDNLKa 1713.9 ~-chain 16141.5 

hemoglobin 
" TITLEVEPSDTIENVKa 1787.9 Ubiquitin 17959.7 

8 kDa band A VGHLDDLPGALSTLSDHAHKa 2267.2 ·a -chain 15482.5 
hemoglobin 

" KVLAAFSEGLNHLDNLKa 1869.0 ~-chain 16141.5 
hemoglobin 

13.0-14.7 FLANVSTVLTSKa 1279.7 a -chain 15482.5 
kDa bands hemoglobin 
" VVAGVANALAHKa 1149.7 ~-chain 16141.5 

hemoglobin 
" AADETWEPF ASGKa 1408.6 Transthyretin 

1 
Determined by tryptic digestion/mass spectrometry. See Materials and Methods for details. 

a Selected sequences from among numerous others from the tryptic digest. 

Abbreviations: D = Daltons; kDa = kilodaltons. 
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Description of Figures 

Fig. 1. Photograph of an anti-bacterial assay done on an agar plate. The plate was seeded 

with a lawn of Micrococcus luteus. Extracts of D. variablis midguts with or without 

challenge with bacteria or nutrient solutions were deposited in the 8 mm diameter wells. A. 

Midguts extracted in protease inhibitor buffer. 1 = blank; 2 = buffer solution only; 3 = 

midguts challenged with 5% hematin solution; 4 = midguts challenged B. burgdorferi; 5 = 

mid guts challenged with 2% hemoglobin solution; 6 = mid guts from fed ticks, no challenge. 

Protein content of midgut samples adjusted to an average of 154 µg protein per well. B. 

Midguts extracted in lysis buffer. 1 = Midgut, crude extract; 2 = TF A only; 3 = 30% 

acetonitrile eluate; 4 = 40% acetonitrile eluate; 5 = 80% acetonitrile eluate; 6 = 100% 

acetonitrile eluate; 7 = buffer only. Protein content was adjusted to approximately 150 

µg/well. C. Protein bands from 30% acetonitrile fraction excised from an SDS reducing gel. 

1 = buffer only; 2 = a, (3-chain moieties of hemoglobin; 3 = 3 kDa; 4 = 4 - 5 kDa; 5 = 8 

kDa; 6 = 14 kDa; 7 = midgut lysates ( 40% acetonitrile eluate). 

Fig. 2. Transmission electron microscopy profile showing persistence of B. burgdorferi in 

D. variabilis midgut collected after 3 hours of capillary oral feeding with these bacteria. 

Arrows (white) indicate B. burgdorferi spirochetes. Bar= 0.66 µm. 

Fig. 3. Protein profiles (gel electrophoresis) of D. variabilis midgut extracts from partially 

fed females following challenge with different treatments versus a hemocyte lysate (known 

to contain defensin). A. Representative gel of midguts extracts collected 6 - 15 h after 

capillary oral feeding 1 = hemocyte lysate; 2 = midgut, no challenge; 3 = midgut 

challenged with B. burgdorferi; 4 = molecular weight markers; 5 = midgut challenged with 

peptidoglycan; 6 = midgut challenged with 2% hemoglobin; 7 = midgut challenged with 
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30% rabbit serum. Sample loading 10 µg total protein per lane. Arrow in lane 1 indicates 

band identified as tick defensin (varisin). B. Proteins in 40% SepPak eluate of midgut 

extract showing low molecular proteins tested for antimicrobial activity and identification by 

mass fingerprinting. 1 = midgut extract; 2 = molecular weight markers. C. Midgut and 

hemocyte proteins separated in relation to polarity on an acidic gel. Arrow indicates 

defensin (varisin). 1 = defensin synthetic peptide, 5 µg; 2 = band in hemocyte lysate 

subsequently confirmed as defensin by tryptic digestion/mass spectrometry, 60 µg; 3 = 

midgut lysate, 60 µg. Note absence of defensin (varisin) in the lane for the midgut lysate. 

Fig. 4. MALDI-TOF of extracts from protein bands atrMW 8.0 kDa and rMW 13.0-14.65 

kDa showing peaks for rabbit a-and B-chain hemoglobin. A. 8.0 kDa band showing 7 

peaks, all fragments of a- and B-chain hemoglobin. Arrow indicates predominant peak at 

11,279 daltons. B. 13 - 14.65 kDa band. Left arrow indicates a-chain hemoglobin (141 

amino acids, mass weight 15,482); right arrow indicates B-chain hemoglobin (147 amino 

acids, mass weight 16,022). 
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30% rabbit serum. Sample loading 10 µg total protein per lane. Arrow'in lane 1 indicates 

band identified as tick defensin (varisin). B. Proteins in 40% SepPak eluate of midgut 

extract showing low molecular proteins tested for antimicrobial activity and identification by 

mass fingerprinting. 1 = midgut extract; 2 = molecular weight markers. C. Midgut and 

hemocyte proteins separated in relation to polarity on an acidic gel. Arrow indicates 

defensin (varisin). 1 = defensin synthetic peptide, 5 µg; 2 = band in hemocyte lysate 

subsequently confirmed as defensin by tryptic digestion/mass spectrometry, 60 µg; 3 = 

midgut lysate, 60 µg. Note absence of defensin (varisin) in the lane for the midgut lysate. 

Fig. 4. MALDI-TOF of extracts from protein bands at rMW 8.0 kDa and rMW 13.0-14.65 

kDa showing peaks for rabbit a-and B-chain hemoglobin. A. 8.0 kDa band showing 7 

peaks, all fragments of a- and B-chain hemoglobin. Arrow indicates predominant peak at 

11,279 daltons. B. 13 - 14.65 kDa band. Left arrow indicates a-chain hemoglobin (141 

amino acids, mass weight 15,482); right arrow indicates B-chain hemoglobin (147 amino 

acids, mass weight 16,022). 



29 

Fig.1 

A 



14.5 

l 2 3 4 5 6 7 l 2 


	Old Dominion University
	ODU Digital Commons
	2005

	Host Blood Proteins and Peptides in the Midgut of the Tick Dermacentor variabilis Contribute to Bacterial Control
	Daniel E. Sonenshine
	Wayne L. Hynes
	Shane M. Ceraul
	Robert Mitchell
	Tiffany Benzine
	Repository Citation


	tmp.1456854699.pdf.JSyJW

