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Abstract

Growth phenomena are ubiquitous and pervasive not only in biology and the medical sciences, but also
in economics, marketing and the computer and social sciences. We introduce a three-parameter version
of the classic pure-birth process growth model when suitably instantiated, can be used to model growth
phenomena in many seemingly unrelated application domains. We point out that the model is compu-
tationally attractive since it admits of conceptually simple, closed form solutions for the time-dependent
probabilities.

Keywords: Stochastic Growth Models, Pure Birth Process, Time-Dependent Probabilities, Continuous
Markov Chain

1. Introduction

Over the centuries, the task of understanding the dy-
namics of various growth phenomena noticed in na-
ture and society had captured the interest of schol-
ars and philosophers. However, with the exception
of D. Bernoulli’s attempt at modeling the outbreak
of a smallpox epidemic [7], T. R. Malthus’ popu-
lation growth model [28] and P. Verhulst formula-
tion of the logistic growth model [39], most of the
early efforts, including Gompertz’s human mortality
model [17], were empirical, the data available was
highly unreliable and the general sense of evidence
was lacking by today’s standards. All this were to
change in 1874 when Watson and Galton undertook

the first systematic attempt at understanding growth
and extinction phenomena noticed in the social sci-
ences that, nonetheless, could not be convincingly
explained [16, 41]. Their work was among the earli-
est systematic attempts at enlisting the help of prob-
ability theory in modeling, and thus, understanding,
the dynamics of population growth. While their pi-
oneering work had focused on a rather narrow prob-
lem, namely that of accounting for the wholesale
extinction of family names in Great Britain, their
mathematical methods (and, in particular, the by-
now classic Galton-Watson process) turned out to be
surprisingly powerful and general [18].

Unfortunately, Galton and Watson’s work and
their mathematical model was neglected for many

International Journal of Computational Intelligence Systems, Vol. 5, No. 3 (June, 2012), 472-482

Published by Atlantis Press 
      Copyright: the authors 
                   472

Administrateur
Texte tapé à la machine
Received 8 February 2012

Administrateur
Texte tapé à la machine
Accepted 14 February 2012



SA IK SO

years, more precisely until 1924, when Yule [46] ap-
plied similar probabilistic machinery to the study of
the dynamics of the proliferation of new species and
genera. Yule’s contribution, a linear pure-birth pro-
cess, was rediscovered, a few years later by W. H.
Furry [15] in the context of electron physics and by
Feller and Lotka in population biology [14, 24].

The next major landmark event in modeling
growth model was provided by Kolmogorov and
Dimitriev’s seminal work [27] where they general-
ized the Galton-Watson model, proposing branching
processes as a powerful modeling tool for a large
class of growth phenomena that, as it turned out,
sub-summed much of the previous work cited above
and set the stage for a systematic look at growth
models.

Not surprisingly, in the following decades a
plethora of mathematical growth models intended to
capture the essence of natural and social phenomena
ranging from the social sciences to genetics, to bi-
ology, to epidemiology, to physics, to astronomy, to
computer science and macro-economics have been
proposed in the literature [1,3,8,9,11,18,20,26,31].

Some of these models are intended to capture the
essence of high-powered, unhindered growth as wit-
nessed, for example, in particle physics and astron-
omy (e.g. the Big Bang theory). By contrast, most
of the growth phenomena that we encounter in bi-
ology and medicine, economics and the social sci-
ences involve a close interaction between the phe-
nomenon under study and its surrounding environ-
ment. For example in economics, the merger of
companies is subject to internal stimuli and to ex-
ternal pressure (inhibition) coming from the market-
place and competition [34]. In the biological sci-
ences, when resources are plentiful and environmen-
tal conditions appropriate, bacteria population can
increase rapidly. However, in most instances re-
sources are not unlimited and environmental condi-
tions are far from optimal. Climate, food, habitat,
water availability, and other similar factors conspire
to keep population growth in check. Indeed, the en-
vironment can only support a limited number of in-
dividuals in a population before some resource runs
out and endangers the very survival of those indi-
viduals. Population models are used to determine

maximum harvest for agriculture, to understand the
dynamics of biological invasions, and have numer-
ous environmental conservation implications. Popu-
lation models are also used to understand the spread
of parasites, viruses, and disease. The realization
of our dependence on environmental health has cre-
ated a need to understand the dynamic interactions
of the earths flora and fauna. Methods in population
modeling have greatly improved our understanding
of ecology and the natural world [22, 26, 33, 36].

1.1. Our contributions

Among the numerous growth models proposed over
the decades, two main general-purpose models
stand out: the deterministic growth models and the
stochastic growth models [1, 23, 29, 31, 33, 37]. The
deterministic models, including the well-known ex-
ponential, logistic, Gompertz and Bass models are
well understood and in widespread use, chiefly be-
cause they are mathematically tractable and, most
of the time, fairly accurate. On the other hand, the
stochastic growth models, while often more realis-
tic, typically lead to complicated or even intractable
mathematics. We note that for particular instances
of the stochastic model closed forms for the vari-
ous transition probabilities can be obtained by us-
ing bivariate probability generating functions and
by solving a Fokker-Planck partial differential equa-
tion. However, it is common knowledge that, in gen-
eral, the resulting partial differential equation does
not admit of a closed form solution and the only re-
course is to employ various approximation schemes
[3, 13]. This is, no doubt, one of the main reasons
that stochastic growth models have been less widely
used, especially in the biological and biomedical
communities [29, 30].

With this in mind, the main contribution of this
work is draw attention to a simple stochastic growth
model, namely, the pure birth process, that was
somehow overlooked by the research community.
We point out that the pure-birth model admits of
conceptually simple, closed form solutions for the
time-dependent probabilities of the system being in
a given state. Importantly, these closed-form solu-
tions can be obtained through a straightforward it-
erative approach that lends itself to efficient com-
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puter implementation. Our extensive simulations
have shown that, suitably instantiated, the pure-birth
process can be used to model growth phenomena
in many, seemingly unrelated, application domains
ranging from yeast production to the spread of Tas-
manian sheep population, to the adoption of durable
consumer goods and to software reliability.

In summary, we do not to advocate replacing
the aforementioned, well-established, growth mod-
els. Our goal is to argue that being simple and ver-
satile, the pure-birth model is a worthwhile addition
to the panoply of tools that researchers have at their
disposal and, consequently, deserves a place in the
growth model toolbox.

The remainder of the paper is organized as fol-
lows: Section 2 offers a quick review of modeling
the interaction between population growth and the
surrounding environmental attributes and limitations
and looks briefly at the exponential, logistic Gom-
pertz, Bass and Yule growth models. Next, in Sec-
tion 3 we describe the generic pure-birth model that
we deal with and for which we derive closed form
for the various transition probabilities. In Section ??
we discuss a simple algorithmic implementation of
the task of computing efficiently the state probabili-
ties Pk(t). Further, in Section 4 we show that the pa-
rameters of the pure-birth model can be fine-tuned to
track very closely various growth phenomena. Sec-
tion 5 offers concluding remarks and directions for
future work.

2. State of the art

In many biological situations the finiteness of avail-
able resource ensure that an isolated population can-
not grow without limit and in due time after achiev-
ing carrying capacity a violent downward fluctua-
tion in population size is bound to occur which will
drive the population to extinction [3,33]. Population
growth in the natural world does not occur smoothly
up to the carrying capacity and remain there. In
other words it fluctuates before it reaches the car-
rying capacity.

Self-reproduction is the main feature of all liv-
ing organisms. This is what distinguishes them from
non-living things. Any model of population dy-

namics must include reproduction. In Subsections
2.1 and 2.2 we will discuss two important mod-
els of population growth based on reproduction of
organisms: the exponential and the logistic mod-
els. In Subsection 2.3 we look briefly at the Gom-
pertz model used in a variety of situations ranging
from reliability to cancer research [29, 31]. Further
in Subsection 2.4 we discuss Bass’s growth model,
the immensely popular model used in marketing re-
search to predict, among other things, the time of
adoption of durable consumer goods. Finally, to set
the stage for our further discussion, in Subsection
2.5 we look at a simple stochastic growth model pro-
posed by Yule, that turns out to be a linear growth-
rate pure birth process.

2.1. The exponential growth model

The exponential population growth model is usually
associated with the work of T. R. Malthus (1766-
1834) [42] who first realized that any species can
potentially increase in numbers according to a geo-
metric series. If a species has non-overlapping popu-
lations (e.g., annual plants), and each organism pro-
duces R offspring then the number, Nt , of individual
in generation t = 0,1,2, · · · · · · is given by

Nt = N0Rt , (1)

where N0 is the initial size of the population (i.e.,
at the 0-th generation). By writing r = lnR, (1) be-
comes

Nt = N0ert , (2)

where, depending on the application domain, r is re-
ferred to as Malthusian parameter, intrinsic rate of
increase, instantaneous rate of natural increase, or
population growth rate.

A glance at (2) reveals that depending on the pa-
rameter r, there are three possible outcomes:

• if r < 0, the population declines exponentially;
• if r > 0, the population increases exponentially;
• if r = 0, the population does not change.

Some of the applications of the exponential
model and equation (2) are in microbiology (growth
of bacteria), conservation biology (restoration of
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disturbed populations), insect rearing (prediction of
yield), plant or insect quarantine (population growth
of introduced species), fishery management (predic-
tion of fish population dynamics) [1, 11, 26].

In spite of its widespread use, a serious short-
coming of the exponential model is that it ignores
the limitations to unbounded growth imposed by en-
vironmental factors and conditions [3].

2.2. The logistic growth model

The logistic growth model was proposed by the Bel-
gian mathematician P. Verhulst around 1838. Ver-
hulst suggested that the rate of population increase
may be limited, as it may depend on the population
size, N = N(t), and on the growth rate, r, defined as

r = r0

(
1− N

K

)
,

where the parameter K represents the upper limit on
population growth and is called carrying capacity.
The carrying capacity of a biological species in a
given environment is the largest population size of
the species that the environment can sustain indef-
initely, given the food, habitat, water and other ne-
cessities required.

Observe that when N is small relative to K, the
population growth rate r is maximal and is nearly r0.
The parameter r0 can be interpreted as the popula-
tion growth rate in the absence of competition. The
population growth rate declines with N and reaches
0 when N = K. If N exceeds K, the population
growth rate becomes negative and the population de-
clines, eventually becoming extinct. It can be easily
seen population size N is a function of time t. The
dynamics of population growth are captured by the
following differential equation, with boundary con-
dition N = N0 at t = 0,

dN
dt

= rN
(

1− N
K

)
. (3)

Equation (3) tells us that when N is small, the
early unimpeded growth rate can be approximated
by rN. Later, as N grows, rN2

K , becomes larger and
larger, as some members of the population interfere
with each other by competing for critical resource,

such as food or living space. The competition di-
minishes the combined growth rate, until the value
of N ceases to grow which indicated the saturation
of the population in the given environment.

As it turns out, taking into account the boundary
condition, equation (3) has the solution

N(t) =
N0K

N0 +(K−N0)e−rt . (4)

Observe that

lim
t→+∞

N(t) = K

which is to say that the limiting value of N is K, the
highest value that the population can reach given in-
finite time or come close to reaching in finite time.

2.3. The Gompertz growth model

Gompertz function is used to approximate growth up
to certain limit.It is the most popular function to es-
timate growth,probability and proportion along with
logistic function. It is more general type than lo-
gistic function class.The right-hand or future value
asymptote of the function is approached much more
gradually by the curve than the left-hand or lower
valued asymptote, in contrast to the logistic func-
tion in which both asymptotes are approached by the
curve symmetrically.

G(x) = aebecx
(5)

where a ∼ (0,∞),b ∼ (−∞,0) and c ∼ (−∞,0).
G(t) usually denotes the number of individuals at
time t.

The 3 coefficients control the shape of the func-
tion . The upper limit of the curve is controlled by
the coefficient a. Whereas b is the growth rate and c
is the acceleration rate .

Gompertz model have been used in various
fields, for example

• Mobile phone uptake, where costs were initially
high (so uptake was slow), followed by a period
of rapid growth, followed by a slowing of uptake
as saturation was reached. [44]
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• Population in a confined space, as birth rates
first increase and then slow as resource limits are
reached. [19]

• Modeling of growth of tumors [31, 32]
• Reliability growth model [38]

2.4. The Bass growth model

The Bass growth model [4] was developed by Frank
Bass and describes the process of how new prod-
ucts get adopted as an interaction between users and
potential users. It has been described as one of the
most famous empirical generalizations in market-
ing. Based on very simple behavioral observations,
Bass’s model became immensely popular. In spite of
its deceiving simplicity, the Bass model is an excel-
lent predictor of new-product sales and is still heav-
ily used.

The model is based on number of empirical ob-
servations. First, that there exists an intrinsic ten-
dency of some individuals to make a purchase, in-
dependent of the number of previous adopters. Bass
calls these individuals the innovators. In contrast to
the innovators, some people buys a product due me-
dia and social pressure. Bass refers to these folks
as imitators. Bass’s second major assumption is that
the probability that an initial purchase will be made
at time t is a linear function of the number of pre-
vious buyers. Under these assumptions Bass postu-
lates that

dN(t)
dt

= [M−N(t)][p+
q
M

N(t)] (6)

where

• p and q be two parameters that quantify the ex-
tent of the influence of innovators and imitators,
respectively;

• M – the market potential of a given product, that
is, the size of the potential consumer population;

• N(t) – the cumulative number of adopters in [0, t]
• M−N(t) is the size of the remaining population,

and
• p+q/MN(t) is the instantaneous adoption rate of

every individual in the remaining population.

The differential equation (6) with boundary condi-
tion N(0) = 0) has solution

N(t) = M
e(p+q)t −1
e(p+q)t + q

p
.

It is easy to confirm that

lim
t→∞

N(t) = M

and that N(t) has an S-shaped graph characteristics
of many other growth models for example the logis-
tic growth model.
It was recently pointed out by Yan et al. [45] that
Bass’ growth model is a common generalization of
the exponential and logistic models. Indeed,

• for q = 0, Bass’ model reduces to the exponential
model;

• for p = 0, Bass’ model reduces to the logistic
model.

As was pointed out by Bass himself in [4] as well
as in later work [5, 6], the accuracy of his model de-
pends on the three parameters, M, p, and q. In the
case of a new product, these parameters are obtained
by using existing sales data for previous versions of
the same product or by extrapolating from sales data
for similar products.

2.5. The Yule model

No doubt one of the earliest stochastic processes
was proposed in 1924 by G. U. Yule [46] in his
mathematical theory of evolution. In Yule’s model
{Y (t) | t > 0} represents the number of species in
some genus of plants or animals [35]. Yule’s model
assumes that evolution begins with a single species
at time t = 0 and that species do not die out. If there
are Y (t) species at time t, then λY (t)δ is the proba-
bility that a new species will be created in the time
interval [t, t +δ ] for some very small δ > 0.

More formally, the process {Y (t) | t > 0} has
boundary conditions P1(0) = 1 and Pi(0) = 0 for
i 6= 1 and transition rate λn such that:

∀n ∈ N, , λn = nλ > 0.

An easy inductive argument confirms that ∀t > 0

Pn(t) = e−λ t(1− e−λ t)n−1
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It follows that In Yule’s growth model the events
{Y (t) = n} are geometrically distributed with suc-
cess probability e−λ t .

It is clear that because of its underlying assump-
tions, the Yule model is not sufficiently flexible to
deal with growth phenomena encountered in real-
life application. In addition to the assumed linear
growth rate, the Yule model assumes unbounded
growth and, consequently, cannot be used to model
growth in limited-capacity situations.

3. A generic pure-birth growth model

Consider a stochastic process {N(t) | t > 0} of con-
tinuous parameter t, where for every positive integer
k, (1 6 k 6 N), the event {N(t) = k} occurs if the
population contains k individuals at time t.

For simplicity, we assume that at time t = 0 the
population starts with a single individual and assume
an upper bound N on the carrying capacity, i.e., the
total size of the population. It is worth noting that in
many, if not most, practical situations this assump-
tion is violated. However, it is rather straightforward
to see that the case of n0 initials reduces to the n0-
fold convolution of independent simple processes.

When the population contains k individuals, λk
captures the growth rate of the population. In the
generic pure-birth process that we investigate the λks
are subject to the mild restriction

λi 6= λ j (7)

for all 1 6 i, j 6 N; moreover, since N is the largest
size the population may assume, we have

λN = 0. (8)

As it turns out, and will become apparent in Sec-
tion 4, the condition (7) is not unduly restrictive
since we can instantiate the λks in such a way that
(7) is satisfied.

Further, we let Pk(t) denote the probability that
the event {N(t) = k} occurs. In other words,

Pk(t) = Pr[{N(t) = k}].

In this section we outline a possible derivation of
a closed form for Pk(t) for all k, (1 6 k 6 N) subject
to (7) and (8).

3.1. Deriving a closed form for Pk(t), 1 6 k < N

It is fairly obvious that for k > 1 and for a small
h > 0, Pk(t +h) has the following components:

• Pk(t)[1−hλk +o(h)] , which describes the proba-
bility of staying at state k.

• Pk−1(t)[hλk−1 +o(h)], which describes the proba-
bility of reaching to the state k from state k−1.

This allows us to write

Pk(t +h) = Pk(t)[1−hλk +o(h)]
+ Pk−1(t)[hλk−1 +o(h)]+o(h)
= Pk(t)[1−hλk]+Pk−1(t)hλk−1 +o(h).

Transposing Pk(t) and dividing with h yields

Pk(t +h)−Pk(t)
(t +h)− t

=−λkPk(t)+λk−1Pk−1(t)+
o(h)

h
.

Taking limits on both sides of this equality as h→ 0
yields the differential equation

dPk(t)
dt

=−λkPk(t)+λk−1Pk−1(t) (9)

with the boundary condition Pk(0) = 0.
Proceeding similarly, when k = 1, we write

P1(t +h) = P1(t)[1−hλ1 +o(h)]+o(h)
= P1(t)[1−hλ1]+o(h).

Transposing P1(t) and dividing with h yields

P1(t +h)−P1(t)
(t +h)− t

=−λ1P1(t)+
o(h)

h
.

Taking limits on both sides of this equality as h→ 0
yields the differential equation

dP1(t)
dt

=−λ1P1(t) (10)

with the boundary condition P1(0) = 1. This latter
equation can be easily solved to obtain

P1(t) = e−λ1t . (11)
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Having obtained P1(t), we use the differential
equation (9) to obtain a closed for P2(t). This pro-
cess is then continued, iteratively, until a closed form
is obtained for Pk(t) for (1 6 k 6 N). The interested
reader can find the details of the derivation, as well
as the proof of Theorem 1, on the first author’s web-
page [2]. To summarize, we state the following gen-
eral result.

Theorem 1. For all t > 0,

Pk(t) =



λ1λ2 · · ·λk−1 ∑
k
i=1

e−λit

k

∏
j=1
j 6=i

(λ j−λi)

, 1 6 k 6 N−1

1−∑
N−1
i=1

N−1

∏
j=1
j 6=i

[
λ j

λ j−λi

]
e−λit

 , k = N.

(12)
The detail derivation of 12 can be found at [2].

4. Applications

The main goal of this section is to show that by a
suitable instantiation of the λks, the generic pure-
birth process can be used to model various growth
phenomena.

In Section 3 we have derived simple formulas for
the state probabilities for a generic pure-birth pro-
cess growth model. Specifically, (12) allow us to
compute the probability of having k, (1 6 k 6 N),
individuals at any given time t for all λks subject to
the condition (7). In turn, once the state probabilities
are computed, we are in a position to derive the ex-
pected number, E[N(t)], of individuals at any given
time t, by the well-known formula

E[N(t)] =
N

∑
k=1

kPk(t). (13)

In order to model various flavors of growth pro-
cesses, we instantiate λk, (16 k 6N), subject to (7),
as described below:

λk = kα(N− k)β (14)

where

• α and β are distinct positive real numbers, as-
sumed to be of infinite precision. This allows us
to always “tweak” α and beta in such a way that
λi 6= λ j for i 6= j, thereby satisfying the condition
(7);

• we observe that kα is the driving force of popu-
lation growth where k is the current size of the
population. In most applications we shall take
α = 1.0. Interestingly, there are growth models
applications (such as software engineering) where
α = 0.0;

• notice also that (N−k)β acts as an inhibitive force
imposed by environmental limitations.

4.1. Selecting the parameters

One of the key issues in using a growth model is
the use of the parameters. In our case, the pure-
birth process has three parameters, namely, N, α,
and β . We now offer guidelines for selecting these
parameters in a given application domain. First, the
finite capacity, N, can be estimated quite accurately
from available domain knowledge, along the lines
that Bass uses to estimate the market potential of a
given product. It is easy to see both analytically and
empirically, that the prediction of the expected size
of the population at time t is rather insensitive to N,
especially if N turns out to be very large.

We have adopted Bass’ strategy detailed in [4]
for choosing the parameters p and q to selecting
α and β . As we discussed already, these values
are application-specific and involve a two-stage pro-
cess:

• we begin by a standard learning process that in-
volves selecting the best fit of α and β to existing
data;

• we extrapolate the values of α and β obtained by
learning to similar situations. In case no good
match is available between the situations on which
α and β were trained, a weighted average is em-
ployed.

4.2. Growth of yeast population

Many laboratory populations have been followed as
they increase in size and the success of the deter-
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ministic logistic curve in summarizing the resulting
data sets depends on the circumstances surrounding
each particular experiment. Classic yeast growth ex-
periments are described by [10, 21, 25] and subse-
quent analyzes of Pearl [36]. For the prediction of
yeast population growth we have used N = 670,000,
α = 1 and β = 0.2 and verified that (7) holds for
the chosen parameters. Moreover, for 1 6 i 6= j 6
N, λi 6= λ j and λN = 0.

Fig. 1. Growth of Yeast Population.

The above figure shows amount of yeast cell pro-
duced against time t in hours [10]. With the choice
of α and β as above, the pure-birth model closely
tracks the Logistic model.

4.3. Growth of Tasmanian sheep population

As the experiments on Yeast growth were performed
under ideal laboratory conditions, the assumptions
underlying the derivation of the logistic model can
be expected to hold true. The growth of sheep pop-
ulation in [12] which shows good agreement with
logistic model. In Figure 2 below we compare the
pure-birth model with the observed data and logistic
model predication. It is fair to say pure-birth model
predicts the growth of sheep population closely with
other models and observed real data for the whole
period. For the prediction of sheep population we
have used N = 1600,000, α = 1 and β = 0.13 and
again, for 1 6 i 6= j 6 N, λi 6= λ j and λN = 0.

Fig. 2. Growth of Tasmanian sheep population.

4.4. Predicting color television sales from
1964-1970

So far we have shown results of growth models in
population biology. However, in this subsection we
would present that our growth model to predict sales
of durable goods using Bass’s model assumption. In
Bass model we have two groups of consumers in-
novators and imitators. Some individuals decide to
adopt an innovation independently of the decisions
of other individuals in a social system. They are
the innovators. Imitators or adopters are the ones
that are influenced in the timing of adoption by the
pressures of the social system. From [4] we have
gathered data of actual sales of color televisions
from 1964-1970. The total population size would
be around 32 million and in the simulation results
reported in Figure 3 we took N = 31450000, α = 1
and β = 0.28. Moreover, for 1 6 i 6= j 6 N, λi 6= λ j
and λN = 0. On the horizontal axis we have time in
years and on the vertical axis we have total sales of
the product during that period. From the figure we
can see that with α and β as above, the pure-birth
model very closely follows Bass model’s prediction
of total sales of color television from 1964-1970.
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Fig. 3. Prediction of color television sales

4.5. Software reliability growth model

Software reliability is a critical component of com-
puter system availability, so it is important that soft-
ware customers experience a small number of soft-
ware failures in their production environments. Soft-
ware reliability growth models [40] can be used as
an indication of the number of failures that may be
encountered after the software has shipped and thus
as an indication of whether the software is ready to
ship. These models use system test data to predict
the number of defects remaining in the software.
Software reliability growth models have been ap-
plied to portions of several releases at Tandem over
the past few years. One variation of our model can
address and predict remaining software defects effi-
ciently as we will show in this subsection. If we take
N = 40, α = 0, β = 1 then we have the following
form for λk,

λk = (N− k) (15)

It is not hard to see [2] that (15) leads to

Pk(t) =
(

N−1
k−1

)[
e−t]N−k [1− e−t]k−1

. (16)

It is clear that (16) indicates that N(t) is governed
by negative-binomial transition probabilities, which
is somewhat surprising.

Now, imagine for a certain software release the
QA team predicts there are N bugs so for each state

with new discovery of bugs we would be left with
one less bug. So it at when we have discovered k
bugs we would be left with N− k bugs. It is right
to incorporate this fact in the growth model with
λk = (N− k). In this following simulation we com-
pare the findings from the pure-birth model instan-
tiated as above with the results reported in [40, 43].
The horizontal axis tracks time (in days), while the
vertical axis keeps track of the number of new bugs
found. So, for a particular project this graph repre-
sent number of bugs found at certain point of soft-
ware testing. As shown by Figure 4, the pure-birth
model instantiated as described closely tracks the ac-
tual bugs found represented in red from a particular
project debugging data found at [43].

Fig. 4. Prediction of software bugs.

5. Concluding remarks and directions for
future work

Growth models have captured the attention of re-
searchers worldwide for various applications. In this
paper we tried to sketch some possible growth phe-
nomenas, tried to predict them with stochastic tools.
Most of the growth phenomena are deterministic
and we showed that, suitably instantiated, the well-
known pure-birth model depicts a far more realistic
picture of different growth phenomenas than the de-
terministic models. However, in this paper we have
barely scratched the surface of a large field which
has numerous applications not only in population bi-
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ology and biomedical arena but also in vast array of
social, ecological and financial phenomenas. Even
in the medical field important incidents like cancer
cell growth have not been touched in this paper.

In future work, we would like to understand how
and why different parameters work from our model
for different applications and have a better feel for
the upper and lower bound of the values which de-
picts the characteristics of the growth. We would
also like to investigate growth phenomena in geo-
logical surveys such as mine reserve estimation, es-
timation of ground-water reserves for aquifers. Also
in population biology we would want to incorporate
latent period to reproduction in our model.
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