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ABSTRACT

ACTIVE AND ADAPTIVE FLOW CONTROL OF 
TWIN-TAIL BUFFET AND APPLICATIONS

Zhi Yang 
Old Dominion University, 2002 
Director: Dr. Osama A. Kandil

Modem fighter aircraft with dual vertical tails are operated at high angles of 
attack. The vortex generated by leading edge extension (LEX) breaks down before 
reaching the two vertical tails. The wake of highly unsteady, turbulent flow causes 
unbalanced broadband aerodynamic loading on the tails and may produce severe buffet 
on the tails and lead to tail fatigue failure.

Flow suction along the vortex cores (FSVC) is investigated as an active control 
method for tail-buffet alleviation. Suction tubes have been tilted at different angles to 
study the control effectiveness of suction tubes orientation. Flow field response, 
aerodynamic loading and aeroelastic results are compared with the no-control case. These 
flow modifications produce lower tip bending and rotation angle deflections and 
accelerations. Moreover, the root bending and twisting moments are reduced in 
comparison with the no-control case. However, there was no shift in the frequencies at 
which the peaks of the power spectral density (PSD) responses occurred. The primary 
effect o f the FSVC methods is the amplitude reduction of the aeroelastic responses up to 
30%. A parametric investigation is conducted and the best control effectiveness is 
obtained with the suction tubes tilted at -10°. Next, the twin-tail buffet alleviation is 
addressed by using adaptive flow control, and an adaptive active control method is 
developed. Control ports, whose locations are determined according to the locations of a 
range o f high-pressure difference, are placed within a small area on the tail surfaces. 
Flow suction and blowing are applied through these controL ports in order to equalize the 
pressures on the two surfaces o f the tail. Mass flow rate through each port is proportional 
to the pressure difference across the tail at the location of this port. Comparing the flow 
field and aeroelastic response with the no-control case, the normal-force and twisting-
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moment distributions are substantially decreased along with the damping of their 
amplitudes of variation. The bending-deflection and rotation-angle responses have not 
changed their sign. The PSD o f the root bending moment and root twisting moment have 
shown substantial decreases o f more than 70%. The tail tip acceleration responses have 
shown similar decreases too.

Next, a parallel high-order compact-scheme code (PHCC) is developed to 
investigate flow control more accurately and more efficiently. The validation cases are 
presented and compared with theoretical results, experimental results and other 
computational results. The PHCC results show good accuracy and high efficiency. Flow 
computational simulations o f Jet and Vortex Actuator (JaVA) or synthetic jet have been 
investigated. The computational results show good agreement with the experimental data 
and other computational results. Simplified 2D models, which include an airfoil under the 
effect of JaVAs and synthetic jet actuators, are developed and investigated for control 
effectiveness. Simulation results show: with properly selected parameters, the oscillating 
amplitude of pressure difference and normal force acting on airfoil can be reduced, the 
peak of the normal force PSD can be reduced and the frequencies at which the peaks of 
the pressure difference PSD responses occurred can be shifted to higher frequency levels. 
Too low or too high exciting frequencies have no effect or adverse effect. Low exciting 
velocity may not produce enough disturbances to suppress the pressure oscillation.
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I

CHAPTER 1: INTRODUCTION

1.1 Motivation
Modem designs of fighter aircraft require high agility and maneuverability, which 

are achieved by the combination of delta wings with leading edge extensions (LEX) and 
vertical tail(s). When aircraft are operated at high angles o f attack, the LEX maintains 
high lift by generating a pair of leading edge vortices. At some angle of attack, as shown 
in Figure 1.1, the vortex generated by LEX breaks down before reaching the two vertical 
tails. The wake of highly unsteady, turbulent flow produced by this vortex breakdown 
causes unbalanced aerodynamic loading on the tails. According to experiments, the 
power spectrums of unsteady pressure acting on tails are broadband and may cover the 
resonance frequencies o f the tails, as shown in Figure 1.2. This may produce severe 
buffet on the tails and lead to tail fatigue failure.

The buffet phenomenon has been investigated as early as the 1930s. The purpose 
of such studies is to understand and control the buffet phenomenon. How to control this 
flow-induced-structure-vibration, in fact, is to keep the frequencies of aerodynamic 
loading away from the resonance frequencies of the structure, and at the same time, not to 
compromise other aerodynamic and stability requirements of the aircraft.

Computational simulation is a powerful tool for the study of the buffet problems. 
However, the computational simulation of the whole aircraft is expensive and sometimes 
unnecessary. A simple model for the essence of the tail buffet is highly desirable to study 
the buffet phenomenon and its control. This could be achieved by isolating the 
ingredients of the buffet problem from the whole aircraft A delta-wing/twin-tail 
configuration in a vortex breakdown flow provides an efficient and effective model to 
study the tail buffet phenomenon. Thus, the computational resources are focused on a 
small region for high computational resolution and efficiency.

Micro-electro-mechanical System (MEMS) techniques provide new and more 
practical methods to modify and control flow field. Jet and vortex actuator (TaVA) and 
synthetic jet actuator are few examples of the MEMS. Their potential performances for 
buffet control should be investigated.

The reference model used for this work is \hzAIAA Journal.
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Figure LI Flow visualization of F-18 (HARV) vortex burst, NASA Dryden Photo, EC89- 
0096-206, EC89-0096-240,1989.
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1.2 The Present Research
Flow control has always been one of the main research areas in aerodynamics. 

There are passive methods, such as aerodynamic shaping, winglets, wing strakes and 
wing flaps, and active methods, such as blowing, suction and surface heating. Recently, 
adaptive active control methods, which integrate active control and sensors, 
microprocessors and actuators for flow actuation, have shown more promising prospects.1 
The purpose of this research is to investigate different active flow control methods for 
alleviating aircraft tail-buffet and other applications. A simple model, which considers 
the essence o f tail buffet, is used. The model consists of a sharp-edged delta wing and
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twin-tails. The delta wing is assumed to be rigid and is used to generate a pair of vortices* 
The tails are flexible and mathematically modeled as cantilevered beams, with varying 
cross sectional area, which are fixed at the root and allowed to oscillate in both bending 
and torsion* This aeroelastic problem is a multidisciplinary problem that is solved using 
fluid flow equations, structure dynamic equations and grid displacement equations* First, 
the fluid flow equations are solved using time-accurate, implicit, upwind, flux-difference 
splitting, finite-volume scheme to obtain the flow field and the aerodynamic loading on 
the tails. Next, the aeroelastic equations, which are transformed into a set of ordinary 
differential equations by using modal analysis and the Galerldn method, are solved 
accurately in time by using fifth-order Runge-Kutta scheme to obtain the bending and 
torsion deflections, velocities and accelerations of the tails* Finally, the grid displacement 
equations are solved to update the grid coordinates according to the tail deflection* 
Different active flow control methods are applied near the tails or on the surface of tails* 
Structure response results are compared between the controlled cases and no controlled 
cases.

Since L990, developments in Micro-electro-mechanical System (MEMS) and 
materials like piezo-ceramics have led to innovative actuators, such as synthetic jet 
actuator and Jet and Vortex Actuator (JaVA). A lot of experimental and numerical studies 
have been conducted to investigate the synthetic jet actuator* Compared with synthetic jet 
actuator, JaVA is more flexible since it is able to generate four primary flow regimes 
(vortex flow, wall jet, free jet and oblique jet), which may be used for active flow control, 
hi the present research work the JaVA actuators are investigated for flow control* 
Application of flow control using a synthetic jet actuator is also investigated and 
compared with the JaVA actuators* The size of JaVA (about 10mm) and synthetic jet 
actuator are much less than the size of wing or tail. Many actuators may be needed on the 
tail surface to control its buffet, and the size of the grid would be very big that would 
require prohibitive computational resources* Therefore, the use o f actuators for buffet 
control of the delta wing/twin-tail model is very expensive computationally and may not 
be appropriate as the first step* Thus, an alternative simplified 2D model, which includes 
an airfoil and a JaVA or a synthetic jet actuator, is developed and investigated* The 
actuator is placed on the surface of the airfoil in order to control the flow and suppress
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the amplitude of pressure oscillation. A parallel high order compact scheme code (PHCC) 
is developed and applied for the JaVA and synthetic jet actuator simulation studies. The 
PHCC is not only more accurate but also more efficient than the lower order scheme used 
before.

In Chapter 2, a literature survey is presented. This chapter includes brief reviews 
of vortex-generated lift, vortex breakdown over delta wing, state o f the art of 
experimental and numerical investigations of vortex-breakdown induced tail buffet, 
active flow control, tail buffet alleviation and high order numerical simulation.

In Chapter 3, the mathematical formulations of the fluid flow equations, structure 
dynamics equations and the grid displacement equations are presented. The initial 
conditions and boundary conditions are also presented. The implicit, upwind, Roe flux- 
difference splitting, finite volume scheme is applied to the numerical formulation of fluid 
flow equations. The modal analysis and Galerkin method are applied to the numerical 
formulation of structure dynamics equations. The development of a time accurate, 
implicit, 6th order compact scheme with 10th order filter is also included.

In Chapter 4, computational results of the active flow control of tail buffet for the 
delta-wing/twin-tail configuration by using flow suction along vortex core (FSVC) are 
presented. The position and direction o f suction tubes are investigated. The primary effect 
o f the FSVC method is the amplitude reduction of the aeroelastic responses.

hi Chapter 5, computational results of adaptive active flow control by using 
blowing-suction ports on tails surface are presented. The distributions of the ports are 
investigated. The power spectral densities of the root bending moment and root twisting 
moment have shown substantial decreases of more than 70%.

In Chapter 6, validations of the parallel high-order compact-scheme code (PHCC) 
are presented. The validation cases include inviscid and viscous, steady and unsteady 
flow problems. It has been shown that the PHCC is accurate and efficient.

In Chapter 7, computational simulations of Jet and Vortex Actuator (JaVA) are 
conducted by using an incompressible two-dimensional Navier-Stokes flow solver 
(INS2D). Computational simulation o f synthetic jet actuator is also conducted by using
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PHCC. The computational results are in good agreements with experimental data and 
other published computational results . Applications of Jet and Vortex Actuator (JaVA) or 
synthetic jet actuator to flow control o f a simplified 2D model are investigated by using 
the parallel high-order compact scheme code (PHCC). Parametric investigations of the 
control effectiveness of actuators are carried out.

hi Chapter 8, conclusions of the present study are given and recommendations for 
future investigations are suggested.
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction
The purpose of this study is to develop active and adaptive flow control tools for 

the tail buffet problem and other flow-control applications. For the problems associated 
with tail buffet, it is essential to understand the characteristics of the unsteady separated 
flows, which are produced by delta wings at high angles of attack during aircraft 
maneuvers. So in the first part of this review, a brief history of the discovery and study of 
vortical lift and vortex breakdown is presented. This will include the experimental work 
and computational techniques involving vortex breakdown over delta wings. In the 
second part, experimental and computational investigations of the tail-buffet phenomenon 
are presented, hi the third part, active flow methods are summarized and discussed. In the 
fourth part, the tail-buffet alleviation methods, including flow control methods and 
structure control methods, are presented. In the last part, highly accurate computational 
schemes are presented.

2.2 Vortex Generated Lift and Vortex Breakdown Over Delta Wings
2.2.1 Discovery of Vortex Generated Lift

In the 1940s, the German researchers discovered the vortex generated lift in their 
design o f the Me-262. According to Polhamus review100 of vortex lift research, the Me- 

262 wing was designed with, an 18° sweepback and inadvertently led to a speed 
advantage by delaying the onset of compressibility drag. In 1942, modified versions of 

the Me-262 had wings with sweep angle up to 50°. The highly swept delta wing was also 

under consideration. In 1946, researchers at Langley tested the captured German highly 
swept delta wing DM-1 glider to study the low speed characteristics of full scale, highly 
swept delta wing. Wilson and Lovell135 sharpened the leading edge of the DM-l and 
found that flow separated from the sharp leading edge and produced a strong vortex. The 
re-attachment of the leading-edge vortex delayed trailing-edge separation and largely 
increased the lift.
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A schematic view of the vortex generated by a slender, sharp-edge delta wing is 
shown in Figure 2.1. The primary vortices reattach on the surface o f delta wing and move 
outwards to the lead-edge, causing a secondary flow separation. These vortices induce a 
high suction pressure over the delta wing upper surface along the foot of the vortex core 
and generate a large increase of lift.

Figure 2.1 A schematic view of the vortical flow and the roll up o f the shear layer over a 
slender, sharp edge delta wing, Visser and Washburn.128

2.2.2 Early Observation and Experimental Work of Vortex Breakdown
hi 1957, Peckham and Atkinson96 first discovered the vortex breakdown 

phenomenon when they tested a Gothic wing, which was a cropped delta wing with 
curved leading edge, for the lift and drag characteristic over a wide range of angles of 
attack and yaw angles. They found that the low pressure in the vortex core decreased the 
temperature, caused a water vapor condensation and revealed the path of the vortex core 
when the flow speeds were greater than 150 ft/sec and the angles of attack were between 

20° and 30°. They noticed the length of vortex core decreased from three root chords 
downstream o f the trailing edge to only a  quarter root chords when the angles of attack 

changed from 25° to 30°. The trail of the condensation belled out before disappearing. 
They attributed this to the diffusion of the leading edge vortex core.

In 1958, Elle18 found a similar phenomenon on a thin delta wing, and he was the 
first to call it vortex breakdown. He thought that the vortex breakdown was due to the 
failure of the downstream fluid transport in the vortex core.
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In I960 by using water tunnel, Werle131 observed a relationship between the 
breakdown location and the angles of attack of the delta wing. He suggested that the 
vortex breakdown is due to transition of the vortex flow from laminar to turbulence. He 
also noticed the effect of Reynolds number on the breakdown position at low Reynolds 
number, shown in Figure 2.2. However, Elle disagreed with Werle. In his transonic 
studies published in 1960, EUe19 found the breakdown location is relatively invariant at 
high Reynolds number. He concluded that the transition was not the primary mechanism 
of breakdown, but due to some sort of instability. He also suggested the weak shock at 
breakdown location was not the cause of breakdown, but a result of it.

a  = 20°, Rec=5000 a =20°, Rec = 10000
Figure 2.2 Effect of Reynolds number on vertex breakdown position on a 63° delta wing.131

hi 1961, after conducting massive experimental investigations of vortex 
breakdown on a delta wing, Lamboume and Bryer73 suggested the main reason of 
breakdown was the low total pressure in vortex core combined with an adverse pressure 
gradient along vortex axis. They also found two major modes of breakdown, an 
axisymmetric bubble type and an asymmetric spiral type. Figure 2.3 shows the famous 
photograph of Lamboume and Bryer73, two modes of vortex breakdown can be seen. The 
lower vortex shows the axisymmetric bubble and the downstream irregular flow. The 
upper vortex shows the asymmetric spiral flow and the downstream turbulent flow. 
Figure 2.4 shows the detail of an axisymmetric bubble type of vortex breakdown, hi the 
vortex core there is a stagnation point, which is followed by a sudden expansion zone. 
Flow is axisymmetric and smooth before the half bubble zone. Then the flow becomes 
irregular and transform to the spiral type. Figure 2.5 shows a sketch o f the spiral type of
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vortex breakdown. The vortex core is suddenly decelerated in the direction of vortex axis; 
the core is deflected spirally for a few revolutions after a sudden kink; and the flow is 
characterized with large-scale turbulence after a transition.

. . ' X

Figure 2.3 Vortex breakdown on a 65° delta wing, Re = 10000.73 Upper vortex shows an 
asymmetric spiral type breakdown. Lower vortex shows an axisymmetric bubble type 
breakdown.

Figure 2.4 An axisymmetric bubble type vortex breakdown. The photo above was taken 
by Professor Turgut Sarpkaya who retains the copyright.

Figure 2.5 A sketch, of asymmetric spiral type vortex breakdown.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10

la 1988, Escudier21 concluded the key ideas of these early investigations for 
vortex breakdown, which are: sudden transition, spiral disturbance instability, axial 
stagnation and wave motion. However, there is still no generally accepted theory of 
vortex breakdown.

When the angle of attack of a delta wing increases, the leading edge vortex grows 
strong, the adverse longitudinal pressure gradient increases, the flow in vortex core 
stagnates and the vortex breaks down into a large-scale turbulence. The characteristics of 
delta wing vortex breakdown were summarized by Lamboume and Bryer73 as:

1. Vortex Breakdown includes a sudden deceleration of the vortex core axial flow, 
followed by an expansion of vortex core, a transition to the large-scale turbulence 
after a short time.

2. Low total pressure in the vortex core is an essential feature of breakdown.
3. A prerequisite for core flow to stagnate is a positive static pressure gradient along 

the vortex axis. The breakdown position is also sensitive to this pressure gradient. 
Decreasing the positive pressure gradient can delay breakdown.

4. The required positive pressure gradient could be attributed to viscous actions 
within the vortex core, or to deceleration of the flow outside the core. A small 
change in the external flow would be sufficient, because the external pressure 
gradient is magnified towards the axis of the core.

5. Depending on the ratio of the rotational to axial velocity components, the 
spontaneous expansion o f a vortex core produces the pressure rise for core 
stagnation.

6. The vortex breakdown may be attributed to the pressure recovery associated with 
the existence of the tailing edge. If the breakdown occurs upstream of the trailing 
edge, its position depends on a combination of incidence and leading edge 
sweepback and is independent of Reynolds number.

In 1988, Payne95 summarized the mam factors affecting the location of the vortex 
breakdown:

1. Angle o f attack: As angle of attack increases, the breakdown moves upstream.
2. External pressure gradient: As external pressure gradient increases, the 

breakdown, moves upstream.
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3. Aspect ratio: An increase of aspect ratio or a decrease of the swept angle moves
the breakdown upstream.

Breakdown can be affected, by using suction, blowing or flaps. Lamboume73 and 
Hummel37 found applying suction just downstream of the original breakdown position 
could eliminate the vortex breakdown. Blowing can delay the onset o f breakdown. 
Upward deflection o f a trailing edge flap can move the breakdown upstream and 
downward deflection can move the breakdown downstream.73 But Erickson20 found both 
upward and downward deflection moved the breakdown upstream.

In L999, Reisenthel, Xie, Gursul and Bettencourt101 investigated vortex 

breakdown over a 75° delta wing with a vertical fin placed near the trailing edge at a 
fixed angle of attack. Results showed the strong hysteretic effects in response to forced 
oscillations of the fin. Predications of nonlinear indicial theory corroborated two of the 
key experimental observations, the flattening of the hysteretic loops and the shift of the 
average location of vortex breakdown with increasing frequency.

2.2.3 Numerical Simulation of Vortex Breakdown
Early computations o f vortex breakdown, Hall33 and Gartshore24, only considered 

the isolated, axisymmetric and steady vortices. The locations of vortex breakdown were 
identified when the computations diverged due to the high adverse pressure gradient. The 
early computations could not give any information of the flow downstream of vortex 
breakdown. The present study is focused on the effect of vortex breakdown on the tads. 
So, time accurate method is sought to predict the locations of vortex breakdown and the 
unsteady turbulent flow downstream of the breakdown.

In 1983, Krause, Shi and Hartwich69 obtained the first time accurate, unsteady 
quasi-axisymmetric solution o f vortex breakdown. A bubble type of vortex breakdown 
was observed, involving the formation, disappearance and reappearance of two internal 
vortices within the bubble.

hi 1987, Taylor et al.121 produced the solutions of stable vortex flow over a 76° 

delta wing at 20° angle of attack by solving the unsteady, thin layer Navier-Stokes
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equations. Compared with experimental data, computation results under predicted the 
vorticity and total pressure loss in vortex core.

In 1990, Thomas et al.122 predicted the flow over a low aspect ratio delta wing 

from 0° to 40° angle of attack by solving thin layer Navier-Stokes equations with an 

upwind finite volume scheme. A bubble type of vortex breakdown was observed at 40° 
angle of attack.

In 1991, O. Kandil, H. Kandil and Liu42 produced the first time accurate, full 
Navier-Stokes solutions of supersonic vortex breakdown. They considered a supersonic, 
quasi-axisymmetric vortex flow in a configured circular duct. A shock was generated 
near the duct inlet and an unsteady vortex breakdown was predicted behind the shock. 
The flow was characterized by the evolution, convection and shedding of vortex 
breakdown bubbles. In a series o f papers by O. Kandil, H. Kandil and Liu44, 45, 46, 
extensive parametric investigations were conducted to determine the effects of grid 
resolution, Reynolds number, inflow/outflow boundary conditions and inlet swirl ratio. A 
detailed discussion of these results can be also found in the dissertation of H. Kandil.41

hi 1991, Gordnier and Visbal28 studied the vortex breakdown over a 76° delta 

wing at 20.5° angle of attack by solving the three dimensional, unsteady, full Navier- 
Stokes equations. The results showed that the shear layer emanating from the leading 
edge was subject to instability similar to that occurring in a two-dimensional shear layer 
flow.

hi 1991, by using the full Navier-Stokes equations, Webster and Shang130 

simulated the vortex breakdown over a  70° delta wing at 33° angle of attack. Their results 
showed the breakdown appeared to be a bubble type in the time average flow field, but it 
seemed the instantaneous flow field was the spiral type.

hi 1993, O. Kandil, H. Kandil and Liu49 presented the vortex breakdown in 

transonic flows for the first time over a 65° cropped delta whig by solving the full 
Navier-Stokes equations. The angle of attack, Mach number and Reynolds number were 

20°, 0.85 and 3.23xl06, respectively. A X-type shock system and a transverse terminating 
shock were captured on the upper surface of the delta wing. The leading edge vortex
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breakdown to a two-bubble cell behind the terminating shock. As the Mach number 
increased from 0.85 to 0.9, the terminating shock moved downstream and the size of 

breakdown region reduced. As the angle of attack increases from 20° to 24°, the shock 
moved upstream and the size of breakdown region expanded.47

In 1994, Ekaterinaris and Schiff17 simulated the vortex breakdown over a delta 
wing by solving the thin-layer compressible Navier-Stokes equations with embedded grid. 
They found the main effect o f turbulence modeling was the change of the vorticity in the 
vortex feeding sheets and hence changed the location of the breakdown and the size of 
the breakdown region. The computed results showed a progression from no breakdown to 
steady bubble type breakdown to unsteady spiral type breakdown as the angle of attack 
was increased.

In 1995, Visbal125 studied the onset of breakdown in the leading edge vortices 

above a 75° delta wing under a low Reynolds number. Results showed when the angle of 
attack was larger than a critical value, even a small increase in angle o f attack would 
induce breakdown. When the bubble type breakdown moved upstream on to the wing, it 
would lose stability and transform to a helical type breakdown.

In 1996, when applying a  two-equation (k-E) turbulence model in a numerical 

simulation o f vortex breakdown over a delta wing, Rizzetta104 found the k-e model gave 

too much turbulent dissipation and enlarged weak vortices with no breakdown.

hi 1999, Gortz and Rzzi29 investigated the effects of wing thickness, viscosity, 
turbulence model, numerical scheme and grid refinement on the vortical flow and on 
vortex breakdown by solving Euler and Navier-Stokes equations. They found that model 
thickness had an influence on integrated forces, but had a minimal effect on the location 
o f the vortex breakdown at fairly high Reynolds numbers. The breakdown locations 

appeared to depend on the different numerical schemes —  Roe’s upwind scheme 
predicted a more upstream breakdown position than the central scheme. They also 
noticed the sensitivity of the numerical solution to the fineness of the grid m apex region.
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23  Tail Buffeting
Buffeting refers to an irregular motion of any parts of aircraft under aerodynamic 

loads. It is a structural response problem due to the forced vibration when the frequencies 
of aerodynamic loads excited by the flow turbulence are commensurate with the natural 
frequencies of the structure. This phenomenon not only decreases the fatigue life of the 
aircraft structure, but also limits the angle of attack envelope of the aircraft.
2.3.1 Discovery of Tail-Buffet Phenomenon

The investigation of tail-buffet phenomenon was originated in connection with the 
deadly crash o f the Junkers-F13 commercial airplane at Meopham, England on July 21, 
1930. Eye witnesses reported seeing the airplane enter a cloud, suddenly hearing a loud 
noise and then seeing parts of the aircraft fall to the ground. The unusual circumstances 
of the accident led scientific organizations in England and Germany to undertake detailed 
investigations of the possible causes. The British Aeronautical Research Committee 
concluded that the most probable cause of the accident was “buffeting” o f the tail. The 
aircraft had been drawn upward by a region of strong rising gust, which caused the angle 
o f attack to increase sharply, resulting in massive flow separation over the wing. The 
highly turbulent wake flow passed over the tail resulting in severe vibrations of the tail 
unit, in which the stabilizer bent rapidly up and down and the elevator moved in an 
erratic manner. The term buffeting was first used by the British investigations to name 
this phenomenon.23

Liepmann79 pointed out that since buffeting is the response of an elastic body to a 
turbulent flow, and hence it is a stochastic process. He suggested that a correct theory of 
buffeting must account for the turbulent characteristics of the oncoming flow and 
statistical methods are therefore appropriate for the analysis of buffeting. He concluded 
that the use o f power spectrum concept for the motion of air, and the impedance concepts 
for the aerodynamic and elastic response could make the analysis relatively simple.

2.3.2 Experimental Investigations of Tail Buffet
Experimental investigations have been massively conducted from the beginning 

of buffet research. The British Aeronautical Research Committee used, wind-tunnel- 
model to investigate the cause of Meopham accident23. They found at large angles of
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attack the tail, situated in the wing wake, was subjected to intense forced vibrations 
caused by the turbulences in the separated flow, which brought about the accident. At the 
same time, German scientists Blenk, Hertel and Thalau conducted a series of laboratory 
and flight test23. These investigations show that it was possible for the tail to buffet. But 
in usual flight, except during a steep dive, buffeting intensity was not sufficient to cause 
the structural failure. They concluded that the Meopham accident was probably caused by 
high gust or maneuvering load.

Duncan and his associates15 investigated the buffet by using an airfoil, which 
created the disturbances, and a "detector” which was made movable to investigate the 
whole region behind the airfoil. The detector’s oscillations, equaling to buffeting 
intensity, were recorded. The width of the wake was obtained by using a total head tube. 
They noted the buffeting intensity contours did not coincide with the total head wake.

This early research showed that tail buffeting was a result of flow separation. Tail 
buffeting could be prevented by preventing flow separation, by boundary layer control or 
by locating the tail outside of the disturbance region23. However, for modem aircraft, 
especially fighter aircraft, which use vortex generated lift and often is often operating at 
high angle of attack in combat maneuvers, flow separation and high intensive turbulent 
flow are inevitable and can cause a very serious problem of tail buffeting. So 
experimental investigations o f the vertical tail buffet have been conducted by many 
researchers in the past two decades.

Triplett (1984)123 conducted a wind tunnel studies on a 13%-scale F-15 model. He 
observed that there were large vibrations of the vertical tails during simulated combat 
maneuvers at high angles of attack. He suggested the tail flexibility had a significant 
effect on the unsteady pressures on the tails. He concluded the tails were mainly 
oscillating in the first torsion mode.

Lee and Brown (1990)74 investigated tail buffet on the vertical fin o f a rigid 6% 
model of the F/A-18. They found that there was a large increase in the unsteady pressure 
fluctuations on the upper surface of the LEX at high angle o f attack above 25 degrees. 
The low-pressure region was located outboard o f the fins at high angle o f attack. The 
LEX fence had a small influence on the steady balance measurements, such as lift and
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pitching moment However, unsteady quantities were reduced with the fence on. At a  = 

30°, there were large reductions in steady and unsteady pressures on the vertical tail 

inboard with fence on.

In 1993, Washburn, Jenkins and Ferman129 conducted extensive investigation on 

vortex breakdown induced tail buffeting by using a 76° delta wing with twin tails. The 
vertical tails were placed at nine locations. The results showed the change of chord wise 
tail location had a bigger influence on the aerodynamic loads than the change of span 
wise tail location. The buffeting response decreased as the tails were moved towards the 
vortex core. It also showed that the vortex breakdown was influenced by the tail location, 
but the core trajectories upstream of the tail were not. The results also showed a flexible 
tail could affect the unsteady pressure on a rigid tail located on the other side of the 

model.

Meyn and James (1993)85 conducted tail buffet studies on a full-scale, production 
F/A-18 fighter aircraft. They found the LEX fence significantly reduced RMS bending 
moment, peak PSD bending moment, RMS pressure and peak PSD pressure. But the 
LEX fence only had a small effect on the peak power frequencies. Non-dimensional peak 
power frequencies measured in small-scale model agreed well with the full-scale model, 
but the non-dimensional RMS pressures measured on the full-scale aircraft were larger 

than those measured in small-scale tests for angles of attack less than 40°. The full-scale 
power spectra had more power in the frequencies below the peak power frequency. 
However, the agreement was good for power spectra for both models.

Lee and Tang (1994)75 conducted a wind tunnel test on a rigid 6%-scale F/A-18 
model. They found the RMS values o f the unsteady pressure fluctuations increased with 
increasing angle of attack on both surfaces. Spectral analyses of the vertical fin buffet 
loads showed a broad peak at a  value of reduced frequency decreased with the increase of 
angle of attack. The probability density function of the buffet load showed that it had a 

Gaussian distribution at a  = 25° and there was a small deviation from the Gaussian 
profile when the angle of attack was increased.

Pettit, et al. (1994)98 also conducted a full-scale, production model F/A-18 in 
wind tunnel. The LEX fence was shown to effectively reduce the RMS root bending
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moments and the corresponding spectral levels when the angle of attack was less than 32° 
and the sideslip was zero. Higher angles of attack reduced the benefits of the LEX fence 
and caused the buffet pressures to be concentrated in a narrow, low frequency band. 
Sideslip had a small effect on the frequency of peak buffet excitation. The changes in the 
LEX fence’s effectiveness caused by varying sideslip were less than those caused by 
altering angle o f attack. Cross-spectral densities between the buffet pressures on the 
inside and outside surface o f the fin showed strong coherence and phase relationships at 
certain locations.

hi 1994, Gursul30 conducted an experiment to investigate the vortex breakdown of 
delta wings at high angle of attack. He noticed the coherent pressure fluctuations were 
due to the helical mode instability of the vortex breakdown flow field. The vortex 
shedding took the form of symmetric flows and its influence on the unsteady pressure 
fluctuations was negligible. Measured unsteady pressure at different stream wise 

locations on the wing surface showed the dimensionless frequency /  x/U^ was close to 
constant at a fixed angle of attack and sweep angle, which implied increasing wavelength 
in the stream wise direction. For different wings, the nondimensional frequency was a 

function of nondimensional circulation T/Uojc only. At a fixed stream wise location, the 
wavelength of the disturbances and the core radius increased with the nondimensional 
circulation.

Moses and Pendleton (1996)91 conducted a comparison of pressure measurements 
between a full-scale and a 1/6-scale F/A-18 twin tail during buffet. The comparison 
revealed similarities in the trends of the spectral content as a function of angle of attack. 
At same station the phase between inboard and outboard was nearly same for both 
models. So the phase of differential unsteady pressures between two stations on the 1/6- 
scale model might be scaled up to identically located stations on the full-scale model by 
using the scaling relationship. They confirmed the effectiveness of LEX fence on 

reducing buffet load for angle of attack up to 32°.

hi 1998, Moses and Ashley91 investigated the spatial characteristics of the 
unsteady differential pressures on rigid and flexible tails of a 16% F/A-18 wind tunnel 
model at buffet loading conditions. Results o f the cross correlation and cross spectral
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analyses of the pressure time histories showed the unsteady differential pressures were 
not fully correlated and resembled a wave that traveled along the tails. The pressure 
correlation varied with flight speed at a constant angle of attack. The results of rigid tail 
and flexible tail were similar and showed the tail flexibility did not affect the time delays 
or the phase delays of the unsteady differential pressures.

2.33 Numerical Investigations of Tail Buffet
With the fast development of computer memory and speed, CFD became a more 

powerful tool for physical simulations. However, the cost of computational simulations 
of the tail buffet problem, which includes turbulence modeling, flow-structure coupling 
and time accurate computation, is still high. Edwards16 estimated that the computer speed 
would have to increase by three orders of magnitude to make the full aircraft simulations 
practical. His estimates were based on the requirement of tail buffet simulation of full F- 
15 aircraft and 40 psec/grid cell/time step using thin layer Navier-Stokes solver. So, a 
simple model that isolates the characteristics of the tail buffet phenomenon from the 
whole aircraft is needed. The group led by Dr. O. A. Kandil48,51 investigated the tail 
buffet, including strong coupling between the flow and structure, by using a simplified 
delta wing/tail model.

In, Rizk, Guruswamy and Gee (1992)l02, 103 investigated the buffet problem of 

F/A-18 aircraft at 30° angle of attack by solving the Reynolds-averaged, thin layer 
Navier-Stokes equations. A Chimera type grid consisting of 0.9 million cells was used to 
simulate the symmetric half of the aircraft. To save computational cost, the tails were 
assumed to be rigid. So only weak coupling between aerodynamics and structures was 
considered in this simulation. The significant effects of flexible tails on the unsteady 
pressure loading o f the tails had been demonstrated by an experiment.129 They concluded 
that the main response of tail was in the first bending mode.

In 1993, O. Kandil and Flanagan48 conducted a successful buffet simulation on a 
single tail model, which consisted of a single flexible cantilevered tail placed in a circular 
duct. The inlet swirling flow was forced to breakdown by the interaction of supersonic 
swirling flow and a shock at the inlet of the duct. The unsteady, compressible, full 
Navier-Stokes equations with, the assumption o f quasi-axial symmetry were solved. The
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tail reached periodic response in short time and the frequency of the bending oscillation 
was about 20.94.

hi 1993, O. Kandil, H. Kandil and Massey50 presented another successful tail 

buffet simulation on the model of a 76° sharp edge delta wing and a single flexible 
rectangular vertical tail. The tail was treated as cantilevered beam and allowed to oscillate 
in bending mode. The torsion aerodynamic loading was neglected. The results showed 
the response of the tail was primarily in the first bending mode. The results also showed 
the effects of the tail location, shape and deflection on the flow field upstream of the tail.

O. Kandil, Massey and H. Kandil (1994)sl and O. Kandil, Massey and Sheta 
(1995)52 developed the model used in Ref [SO] by considering both bending mode and 
torsional mode of the tail. The coupled bending-torsion case showed one order of 
magnitude higher on the deflection and loads than those of bending only cases. The 
results also showed the vortex breakdown location and the unsteady pressure on wing and 
tails were affected by the motion o f the tail. The coupled bending and torsion response 
was nearly twice as large as that of the uncoupled case.

In 1995, Gee, Murman and Schiff25 made an improved CFD analyses based on 
previous work102,103 by using a refined grid system and computing longer time histories. 
Total 1.7 million grid points were used and the time histories were up to Is of real time. 
When compared with experimental data, the RMS pressure on the vertical tail inboard 
and outboard surface as well as the power content of the unsteady differential pressure 
were predicted. Also, the CFD results accurately predicted the effects of the LEX fence, 
with the inclusion of the fence reducing the magnitude of the aerodynamic loads acted on 
the vertical tail. Such results indicated that CFD methods could be used to predict tail 
buffet loads, given sufficient grid resolution in sensitive regions.25

hi 1995,0 . Kandil, Shcta and Massey59 investigated effects of angles of attack on 
the tail buffet in transonic flow. The computational model consisted of a single swept- 
back vertical tail placed at 6% wing-chord downstream of the wing trailing edge and a 
65° swept-back, sharp edged, cropped delta, wing. Results showed that the vortex 
breakdown became stronger, the normal forces and torsion moments became larger, the
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change in either case. They concluded that the apex flap was an efficient and harmless 
method for delaying vortex breakdown without increasing the level of tail buffet.

In 2001, Sheta, Rock and Huttsell117 presented a time-accurate computational 
investigation of the vertical tail buffet of the F/A-18 aircraft at typical flight conditions. 
The computed results accurately predicted the RMS of the differential pressure, RMS 
pressure on the inboard and outboard surface of the tails and the RMS of tail root bending 
moment. The predominant frequencies of the pressure and the PSD peak of the 
differential pressure spectra were also predicted accurately. The vertical tail was 
responding mainly in the first bending mode. The strong coupling between the fluid and 
structure produced more accurate results than the weak coupling.

2.4 Active Flow Control
Flow control can improve aerodynamic performance and is one of major 

aerodynamics research areas. Flow control is classified into passive flow control, such as 
aerodynamic shaping, wing flaps, vortex generators, etc., and active flow control, such as 
blowing, suction, etc. With the development of micro electromechanical systems 
(MEMS), more powerful tools can be used to control flow. By integrating 
microprocessors and MEMS, including arrays of sensors and actuators, flow controls 
become smarter, or more active and adaptive. Recently, there are many researches on the 
flow control applications o f MEMS-based synthetic jet and vortex actuator.

2.4.1 Blowing and Suction
In 1992, Craig13 investigated computationally to the tangential leading edge 

blowing (TLEB) on a rounded leading-edge 60-degree delta wing at a high angle of 
attack by solving the thin layer Navier-Stokes equations. The Baldwin-Lomax algebraic 
turbulence model was used in his simulation. The computational results demonstrated the 
effectiveness o f blowing as a way to provide roll control at high angles of attack. The 
saturation effect o f increased blowing was also captured well in the computations.

hi 1995, O. Kandil, Sharaf El-Din and Liu55 investigated two active control 

methods —  flow injection and surface heating— for asymmetric flows around circular 
cones by solving the unsteady compressible foil Navier-Stokes equations. The locally
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conical flow assumptions had been used in the simulations to save computational time. 
The injected mass-flow rate was proportional to the surface pressure difference between 
the left and right side of the cone. A hybrid flow control method of flow injection and 
surface heating was also studied. The results showed the normal injection alone lost its 
effectiveness at high angle of attack. However, the surface heating still worked at very 
high angles of attack. The hybrid method showed superior control effectiveness.

In 1995, O. Kandil, Sharaf El-Din and Liu56 investigated numerically to the 
effectiveness of the active control using flow injection on a slender pointed cone by 
solving the three-dimensional thin-layer Navier-Stokes equations. Normal and tangential 
flow injection were applied. The injection angle, injection port length and maximum 
mass flow rate were specified. The maximum mass flow was proportional to the pressure 
difference between the right and left side of the cone. The computational results showed 
the flow had recovered its symmetry after the normal or tangential injection control was 
applied. They also found the tangential injection control was more effective than the 
normal injection control.

In 1996, Pedreiro, Rock, Celik and Roberts97 conducted an experiment to 
investigate the forebody tangential blowing (FTB). They demonstrated that FTB could 
control the roll-yaw motion of a delta wing-body model. It was shown that asymmetric 
blowing was a highly non-linear effecter that could be linearized by superimposing 

symmetric blowing. They noticed the flow structure over wing-body combination at 45° 
angle o f attack was asymmetric. Asymmetric FTB could increase the flow asymmetry or 
invert it depending on which side of the model blowing was applied. The asymmetry 
could also be inverted by a change in roll angle.

In 1996, O’Rourke, Ralston, Kloc and Langan94 investigated a conformal 
pneumatic control device employing tangential slot blowing. Results showed that the 
device provided effective levels of yaw control on a realistic configuration representative 
of future fighters. A parametric investigation on forebody cross-section, device location, 
device orientation and different slot and jet geometries was conducted. The optimum 
configuration was found to be tangential slot blowing located at the near the apex o f the 
forebody blowing forward and inboard, across the nose. This configuration was tested at
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different blowing levels, sideslip angles and rotation rates. In all cases it was found to be 
robust and controllable and the response indicated little or no control lags.

In 1997, O. Kandil and Menzies54 developed a control system to control the wing 
rock. The unsteady, compressible, foil Navier-Stokes equations and the Euler equations 
of rigid-body dynamics were solved to simulate the delta wing rock phenomenon. An 
active control model using a mass injection system was applied from wing surface to 
suppress the limit-cycle oscillation of the wing. The control law was based on the 
feedback of the roll angle and roll velocity. Results demonstrated the effectiveness of the 
design.

In 1999, Guy, Morrow and McLaughlin31 applied periodic blowing and suction at 

the leading edge of a 70° swept delta wing. A parametric study was conducted at an angle 

of attack o f 40° to search for the optimum working point of the periodic flow actuator. 
The best effect of the flow excitation was found at a nondimensional frequency of 1.2-1.4 
and at an oscillatory momentum coefficient o f0.0045. Velocity surveys showed the flow 
excitation increased velocities close to the wing and across the vortex after the onset of 
vortex breakdown. The effect of periodic blowing and suction was experimentally 
demonstrated which showed the vortex breakdown was delayed as much as 0.2 chord 
length.

2.4.2 Synthetic Jet Actuator
The synthetic jet actuator is also called zero mass jet actuator because the jet is 

formed without net mass injection across the system boundary. Figure 2.6 shows a sketch 
of synthetic jet. It consists of an enclosed rigid cavity with a small orifice and a movable 
diaphragm. When the diaphragm is driven by a piezoelectric actuator, the fluid is 
periodically blown out and drawn into the cavity through the orifice, generating a jet with 
a train of counter rotating vortex pairs that are produced at the edge of the orifice. As one 
of the most useful micro fluid devices, the potential application of synthetic jet includes 
thrust vectoring of jet engines118, mixing enhancement11 and active control of separation 
and turbulence in boundary layer.3
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Synthetic Jet
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Figure 2.6 Schematic of synthetic jet.

in L997, B. Smith and Glezer118 investigated the flow characteristic of high ratio 
synthetic je t actuators. The experimental results showed that a unique feature of synthetic 
jets was the capability of transferring linear momentum to the flow system without net 
mass injection across the system boundary. The application of synthetic jest to thrust 
vectoring and direct excitation of small-scale motions in a conventional jet was also 
investigated. The primary je t could be vectored either toward or away from the actuator 

jets at angle of 30° to 80°. The actuation frequency was at least an order of magnitude 
higher than the unstable frequency and thus resulted in direct excitation of small-scale 
motions and enhanced turbulent dissipation.

In 1997, Krai, Donovan, Cain and Cary68 investigated the synthetic jet by solving 
the two-dimensional, incompressible Navier-Stokes equations with the Spalart-Allmaras 
turbulence model. The computational domain did not include the cavity and the 
diaphragm. The actuator was represented by a suction/blowing boundary condition along 
the orifice. The turbulent synthetic simulations showed a pair o f counter-rotating vortices, 
the quick diffusion of these vortices due to the turbulence and good agreement with the 
experiments of Smith and Glezer.118

In 1997, Hassan and JanakiRam34 conducted a numerical study to investigate the 
effect o f an array o f synthetic jets on the aerodynamic characteristics of the NACA-0012
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airfoil. The results suggested the synthetic jets with the careful selection of their peak 
amplitude and oscillation frequency could enhance the lift characteristics of airfoils. The 
results also showed that the synthetic jet for a helicopter blade could alter the pressure 
distribution near the blade’s leading edge and hence lower blade-vortex interaction (BVI) 
noise levels. They found the ratio between the jet peak velocity to the external flow 
velocity was an important parameter.

hi 1998, Cain, Krai, Donovan and D. Smith10 presented the first set of simulations 
of high-speed synthetic jets. The results showed a near sonic jet, both primary and forcing 
jets were near sonic, was capable of an amazing mixing enhancement. To examine the 
effects of turbulence model on the synthetic jet simulation. Spalart Allmars one equation 

model and Menter blended k-co/k-8 shear stress transport model were used in 
computation. The results showed the influence of the turbulence model is almost 
negligible.

hi 1998, Smith and Glezer119 investigated the formation and evolution of synthetic 
jets. They found that a train of counter-rotating vortex pairs were formed at the edge of 
an orifice by the periodic motion of a flexible membrane in a sealed cavity. They noted 
the jet was formed without net mass injection, but the momentum of ejected fluid was 
nonzero. Each vortex pair developed a span wise instability and transition to turbulence 
and became indistinguishable from the mean jet flow. In the far field, the synthetic jets 
were similar to conventional two-dimensional jets and had higher mean velocity decrease 
in stream wise centerline direction.

In 1998, Rizzetta, Visbal and Stanek105 investigated a three-dimensional synthetic 
jet by using a Direct Numerical Simulation (DNS) approach. Several two-dimensional 
cases were also investigated. The interior flow was computed on an overset deformation 
grid and the je t flow was simulated by a high-order compact finite difference scheme. 
The depth of the cavity and the Reynolds number were found to be important parameters. 
The three-dimensional computation indicated that the external flow breakdown into 
turbulence resulting o f span wise instabilities.

In 1998, Hassaa35 conducted numerical studies to investigate the beneficial effects 
o f an array(s) o f zero-mass jets. Results were shown the lift enhancement and emulation
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o f the aerodynamic effects resulted from a mechanical trailing edge flap. Two arrays of 
zero mass jets were used on rotor/proprotor blades to alter the local pressure distribution 
and decrease noise levels of the blade vortex interaction (BVI).

In 1998, Amitay, D. Smith, Kibens, Parekh and Glezer2 conducted flow control in 
wind tunnel experiments on a two-dimensional cylinder and a two-dimensional thick 
airfoil by using synthetic jet. Their experiments showed the effects of synthetic jets on 
the pressure distribution around the models resulting in the substantial lift increases and 
drag reductions. The transient mechanisms of the lift force as a result of a step change in 
the control input was investigated using phase-locked velocity measurement in the wake.

In 2000, Lee and Goldstein77 conducted direct numerical simulation of an array of 
two-dimensional synthetic jets. A virtual solid boundary condition, which imposed a 
localized body force along desired points in the computational mesh to bring the fluid 
there to a specified velocity so that the force had the same effect as a solid boundary, was 
used in the simulation. Results suggested the jet formation was highly sensitive to the 
flow Reynolds number and jet evolution was affected by Strouhal number. They also 
conducted the investigation on the geometry and found the shape of lip and the depth of 
the cavity were important parameters in the resulting flow.

hi 2000, Amitay, Pitt, Kibens, Parekh and Glezer3 demonstrated flow control for 
internal flows by using an array of synthetic jets. A two-dimensional serpentine duct 
model with three configurations was used to generate separation bubble or complete 
separation. The Mach number of the flow in duct was less than 0.3 and the array 

momentum coefficient was about OC10*4). The results showed the separation flow was 
reattached when arrays of synthetic jets were placed downstream of the separation point. 
Flow reattachment reduced the losses within the duct and increased the volume flow rate.

In 2001, Chatlynne, Rumigny, Amitay and Glezer11 investigated the modification 
o f the aerodynamic shape o f a two-dimensional Clark-Y airfoil in wind tunnel 

experiments. A low-C(j. synthetic jet actuator was placed downstream from a miniature 

surface-mounted passive obstruction. The interaction between the actuation and the cross 
flow resulted in the formation, o f a small stationary recirculating flow domain near the 
surface of the airfoil. Results showed a reduction in the magnitude of the pressure within
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the recovery domain to the trailing edge and resulted in reductions in the pressure drag 
and relatively small reductions in lift.

In 2001, Mittal, Rampunggoon and Udaykumar88 investigated the interaction of a 
modeled synthetic jet with a flat plate boundary layer by using an incompressible Navier- 
Stokes solver. The motion membrane is modeled as a moving boundary in order to 
accurately compute the flow inside the cavity. The simulations showed that the presence 
of the cross flow resulted in a significantly different flow because o f the dynamics of the 
vortex structures produced by the jets. The results also showed the skewness might be an 
important characteristic of the jet profile. The virtual aero-shaping effect of the synthetic 
jet was investigated. Large mean recirculation bubbles were formed in the external 
boundary layer when the jet velocity was much higher than the cross flow velocity.

In 2001, B. Smith and Swift120 investigated synthetic jets and similar continuous 
jets by experimental measurements and flow visualization. The results showed no 
synthetic jet was formed if dimensionless stroke length LJh was less than one threshold 
value. As Lo/h was increased beyond the threshold value, the vortex pair escaped the 
influence of the suction stroke and resulted in the increase of jet momentum. Synthetic 
jets with large stroke lengths had more small-scale motions than similar Reynolds 
number jets with the smaller stroke lengths. A synthetic jet bears much resemblance to a 
continuous jet in the far field, but a synthetic jet entrained more fluid and grown faster 
than a continuous jet in the near field. Reynolds number affected the transition of the 
flow exiting the nozzle, the transition of the vortex pair and the turbulent characteristics 
of the developed jet flow. The far field behavior of synthetic jets appeared to be a 
function of both Reynolds number and stroke length.

2.4.3 Jet and Vortex Actuator (JaVA)
Jet and vortex actuator (JaVA) is similar to a synthetic actuator shown in Figure 

2.7. It consists of a cavity and a plate that serves as the actuation surface. A shaker is 
used to actuate the plate in an oscillation motion. Air is pushed out of the cavity when the 
plate moves downward and sucked into cavity when the plate moves upward. The plate is 
placed asymmetrically over the cavity opening, forming narrow and wide gaps, shown in 
Figure 2.7 (b). Depending on the scaling parameters, JaVA can generate different flows,
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such as free jet, wall jet, vortex flow or a combination of these flows. There are massive 
studies on the synthetic jet actuator, but the researches on the JaVA are relatively less. 
The author thinks JaVA is more flexible and can generate more flow types compared 
with synthetic jet actuator, hi Chapter 7, the JaVA’s characteristics and applications on 
flow separation control are investigated.

In 1995, Jacobson and Reynolds39 developed an actuator that consisted of a 
pizeoelectrically driven cantilever mounted flush and asymmetric in a cavity. When the 
actuator is driven, flow disturbance over the actuator is a quasi-steady pair of counter 
rotating stream wise vortices. The actuator is fast, controllable and do not need a fluid 
source (zero net mass). It is compact by using planar micro electromechanical systems 
(MEMS) and generates a substantial disturbance in the flow. Its performance was 
demonstrated in a laminar boundary layer flow.
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Figure 2.7 A 3D model (a)lJB and a  sketch (b) of Jet and Vortex Actuator (JaVA).

In 1995, Koumoutsakos67 conducted direct numerical simulations to investigate 
the active vortex actuators without external flow, which had been experimentally studied 
by Jacobson and Reynolds38, and Saddoughi.110 An adaptive computational scheme, 
based on the vortex methods, was used to solve the two-dimensional incompressible 
unsteady flow. The simulations had shown a dramatic difference in the flow behavior for 
various parameters of the configuration. Two types of flows were observed 
computationally and experimentally. Type I, the periodic jet developed from the narrow 
gap at relatively low amplitudes and high frequencies; Type II, the periodic je t developed 
from the wide gap at relatively high amplitudes and low frequencies.
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In 1998, Lachowicz, Yao and Wlezien80 conducted experiments to characterize jet 
and vortex actuators in still air. They concluded the JaVA could generate three primary 

flow regimes —  wall jet, free jet and vortex flow —  depending on scaled amplitude, 
actuator Reynolds number and gap spacing. For the vortex flow, they noticed the actuator 
operational range increased as the size o f the actuator decreased. Then they suggested for 
the first time that micro-size actuators might provide a larger operational range than 
macro-size actuators. The optimum actuator efficiency occurred at a Stokes number of 
about 8 for the vortex flow.

hi 1998, Joslin, Lachowicz and Yao40 simulated the flow induced by the jet and 
vortex actuator (JaVA). Direction numerical simulation was used to solve unsteady, 
incompressible Navier-Stokes equations. The cavity was not included in computational 
domain. A velocity profile was used to represent the flow in the gaps and motion of the 
oscillating plate. The computational results showed a vortex structure with approximately 
the same size as the experiments. The amplitudes of the tangential velocities were smaller 
than the measured values.

In 1999, Kandil, Yang and Lachowicz65 simulated the JaVA induced flow using 
incompressible Navier-Stokes equations. Two types of flow modes, a vortex mode and a 
free jet mode, were presented and had good agreement with experimental data.

2.5 Buffeting Alleviation
Because o f the destructive effects of tail buffet, many researchers investigated 

how to alleviate the tail buffet. The buffet phenomenon is structural forced vibration 
excited by the aerodynamic loading. Change of structure characteristic or flow 
characteristic could control the buffet. The methods that alleviate tail buffet can be 
classified as structure control and flow control.

2.5.1 Buffeting Alleviation by Structure Control
Hauch, Jacobs and Dima (1995)32 developed an Active Vertical Tail to alleviate 

the tail buffet by using piezoelectric actuators, strain gage sensors and simple control 
techniques. Moses (1999)93 presented the research work of the NASA Langley research 
center in buffeting alleviation by active control of smart materials. LaRC was conducting
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wind tunnel tests of new piezoelectric actuators to demonstrate their effectiveness under 
specific load conditions. However, there are penalties on weight to get effective control 
by using piezoelectric actuator.

2.5.2 Buffeting Alleviation by Flow Control
Bean, Greenwell and Wood (1992)5 and Bean and Wood (1993)6 studied the 

application of suppressing single bin buffet by tangential leading edge blowing (TLEB). 
The buffet suppression was achieved at any angle of attack in the testing. Symmetric 
TLEB induces a linear shift in the buffeting response and the wing stall angle. It was 
found that a tapering slot was almost twice as efficient at modifying vortex behavior, and 
therefore, suppressing fin buffeting, compared to a parallel slot. The maximum response 
was characterized by both leading edge vortex shear layers impinging on the fin leading 
edge and tip. It has been shown that the frequency content of the excitation flow field is a 
function of freestream velocity and angle of attack. Mass flow requirements for TLEB are 
comparable to short takeoff vertical landing reaction control system; for a modem combat 

aircraft at low speeds typical of a high angle of attack flight, a total CM of 0.1 corresponds 

to about 10% of compressor mass flow.

In 1996, Pettit et al.98 and Meyn et al.85 applied the leading edge extension (LEX) 
fences to alleviate the tail buffet. The LEX fence is shown in Figure 2.8. The LEX fences 

could reduce the tail buffet excitation for the angle of attack up to 32°.
*i A
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Figure 2.8 LEX fence atM «=0.6 and a =30

LEX off-surface flow near the end ofthe fence
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In L999, Kandil, Yang and Sheta62 investigated the tail buffet alleviation by using 
flow suction along the vortex cores (FSVC). The results showed that the root bending and
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twisting momentums were reduced. The frequencies at the peaks of the power spectral 
density responses did not shift. A parametric study about the location of suction and 
direction ofthe suction tube was conducted. The best control results were obtained when 
the suction tubes were placed near the tail with tilted direction of >10°.

In 1999, Kandil and Yang63,64 developed a new adaptive flow control for twin-tail 
buffet alleviation. Control ports were placed at certain locations of the tail inner and outer 
surface. The suction and blowing volume flow rate at each port was proportional to the 
pressure difference between the inner and outer tail surface at each location. A parametric 
study o f the effects of the number and location of these control ports on the buffet 
response including their control effectiveness at different angle of attack was carried out. 
The bending and rotation angle responses did not change their sign. The power spectral 
densities of the root bending momentum and root twisting momentum showed substantial 
reduction of more than 70%.

hi 1999, Flynn, Morrison andMabey22 conducted experiment to investigate buffet 
alleviation on an un-swept wing at high incidence. Results showed that a permeable 
surface vented to an otherwise airtight plenum, adjacent to an unsteady separation, 
reduced the severity of the buffet excitation. However, the separation produced “stall 
cells.” Qualitative evidence suggested that the buffet excitation increased rapidly when 
the size of the stall cell approximately doubled. It also showed that the position of the 
permeable surface was moved to follow the mean separation line. If the permeable 
surface was placed under attached flow in a region of large favorable pressure gradient, 
separation could occur further upstream and lead to an increase of buffet excitation.

2.6 Highly Accurate Numerical Simulation for Complex Unsteady Flows
Fast increases in speed and storage of computer make computational fluid 

dynamics (CFD) an effective tool for performing design and understanding the nature of 
flow. The nonlinear partial differential equations that describe flow dynamics are solved 
numerically in a computational grid to simulate a flow field. Turbulence, usually referred 
to high frequency and small random amplitude fluctuations, are characteristics o f such 
flow. Averaged governing equations are often used; therefore, the turbulence properties
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are not calculated directly and models need to be incorporated in the governing equations 
to account for turbulence’s effects. Most turbulence models function reasonably well for 
a wide range o f flow conditions. However, all turbulence models eventually fail when the 
fluid state becomes sufficiently intricate. The use of time-averaged flow equations 
neglects the effects of high frequency phenomena, which are often the important 
considerations of aero-acoustics, combustion, buffet, flutter and other fluid related 
interactions.107

As an alternate approach to traditional time averaged equations and turbulence 
modeling, direct numerical simulation (DNS) can compute fine scale flow details directly. 
But DNS requires huge computational resources because the mesh should fine enough to 
capture the smallest scales in the flow. Only the calculations to simple geometric 
configurations can be done. By modeling the smallest turbulent structures with a sub-grid 
model (SGS), Large-Eddy Simulation (LES) only simulate the large scales of turbulent 
structures. LES can be more accurate than RANS and need much less computer time than 
DNS.

In 1992, Lele78 presented and analyzed compact finite difference schemes for the 
evaluation o f derivatives, interpolation and filtering. The new schemes improved the 
representation of a range of wave numbers rather than accurate resolution of a single 
wave number. The schemes might be used on non-uniform meshes and a variety of 
boundary conditions might be imposed. The family of schemes presented reduced to the 
Pade schemes if  the constraint of maximal formal accuracy with a specified 
computational stencil was imposed. Their unproved resolution with spectral-like behavior 
had been demonstrated in a variety of applications.

In 1992, Pomsot and Lele" discussed the boundary conditions for Navier-Stokes 
equations. The boundary conditions using characteristic wave relations and compatible 
with non-dissipative scheme were derived. Reflecting and non-reflection boundary 
condition treatments were presented. Implementation for inlet, outlet boundary conditions 
and slip, non-slip walls were presented.

hi 2000, Visbal and Gordnier126,127 solved the three dimensional, unsteady Navier- 
Stokes equations on dynamic meshes by high-order compact schemes. Pade type spatial
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discretizations up to sixth order and low-pass filters up to tenth order were applied. Time 
integration method were the explicit forth order Runge-Kutta method, which was suitable 
for wave propagation, and implicit sub-iterative second order approximately-factored 
method, which was suitable for wall-bounded flow simulations. The numerical metrics 
were treated with strong conservation form to eliminate metric-cancellation errors. The 
second order temporal approximation was used to compute the grid speed. This high 
order scheme showed superior accuracy over standard second order scheme on severely 
distorted dynamic meshes.
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CHAPTER 3: FORMULATION AND COMPUTATIONAL 
SCHEMES

3.1 Introduction
The research focus deals with multidisciplinary type problems. In this study, 

modeling of flow-structure interaction problems is investigated. Three sets of governing 
equations need to be used. They are: the unsteady, compressible, full Navier-Stokes 
equations; the aeroelastic equations for coupled bending and torsion vibration of 
cantilevered tails; and the equations for moving grid due to the deflection of tails.

This chapter is organized as follows: First, the flow equations, the computational 
fluid dynamics formulation, including Roe’s 2nd order upwind scheme and boundary and 
initial conditions for the flow field are presented. Then, the elastic equations, the 
computational structural formulation and structural initial and boundary conditions are 
presented. Next, the grid displacement equations are presented. The method of solution is 
presented at the end of the chapter.

3.2 Fluid Flow Dynamics Equations
The dimensionless, unsteady, compressible Navier-Stokes equations in 

conservative form are given by

j = i - 2 ’ 3  ( 3 i >o t dqf dqj

The flow field vector Q, inviscidflux Ej and viscous flux (Ev)j are given by

Ej = y (tti),Q+C?,)kE j  (3.2)

(E.)j =y(5i)k(E.K

where Q is the flow vector in the Cartesian coordinates, and J is the Jacobian o f the 
transformation from the Cartesian coordinates to the body-conformed coordinates. Ek are
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the inviscid flux vectors in Cartesian coordinates and (Ey)k are viscous and heat 
conduction fluxes vectors in Cartesian coordinates. They are given by

Q  _
acx p x ^ x j.t)’

~ p "
put
pu2 E = » k
pu3

_pe_

puk
PUiUk +8ikp
pu2uk+82kp
pu3uk+83kp

puk(e+ —) 
P

0
Tki

IIM *k2
*k3

- q k

(3.3)

where Tim is the shear stress tensor. For Newtonian fluids with the Stokes’s hypothesis, 

A, = —§-p., Tioi is given by

pM.
tkn Re

3uk 3un
v3xn dxk

2~ du„ ot (3.4)

and the heat conduction flux, q*, is given by
-pM _ 3T

(y—i)PrRedxk
(3.5)

The variables in Equation (3.1) — (3.5) are non-dimensionalized by using the 

reference parameters. The reference parameters are L,a„,L/a„ ,p„ andpn for the length, 

velocity, time, density and molecular viscosity, respectively. The pressure is non- 

dimensionlized by p^a^,. The freestream Reynolds number is defined by Re = and

the Prandtl number, P r i s  chosen as 0.72. The dimensionless viscosity is given by 

Sutherland’s law

(3.6)

where T is the non-dimensional temperature and c is the Sutherland’s constant, 

c = l l0 .4 /T , .

3.3 Computational Fluid Dynamics Formulation
The schemes used in computational fluid dynamics include the finite difference 

scheme and the finite volume scheme. The code used in Chapter 4 and 5 is based on the
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Roe's upwind finite volume scheme. The code (PHCC) developed in Chapter 6 is based 
on the high order compact finite difference scheme. The Roe’s upwind finite volume 
scheme and high order compact finite difference scheme are presented below.

dV+ <f Ej j Ev)fam -nds =0 (3.8)

3.3.1 Finite Volume Formulation: Roe's Upwind Scheme
The conservative form of the full Navier-Stokes equations, Equation (3.1), can be 

integrated over the domain V

J l T dv + l ~ a ~ ¥ Ev >j *d v = o P.7)v v

Applying the Gauss divergence theorem to the second term, the equation above can be 
rewritten as

riQ,i.._u ^ - ( E v ) ;  _

3*

where am is the covariant base vector, d9t the boundary enclosing computational domain 

V and n the unit outward normal of d9t.

The flux-difference splitting scheme developed by Roe108 is based on a 
characteristics decomposition of the flux differences and posses the conservation 
properties. Consider the one-dimensional equation

l r +l f = 0  <” >

where E is a function of first order of Q. Using the chain rule, this equation can be written 
as

^ + a |2 .=  ° (3.10)
d t dx

dEwhere A = - — is the flux Jacobian matrix. The exact solution o f the Riemann problem 
dQ

can be written as

(311)
i=l
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where cti represents the projection of the difference in Q between the initial right and left 

states, A* and ej are the eigenvalues and eigenvectors of the Jacobian matrix A, 
respectively. As shown in Ref. 108, the interface flux can be determined using

E. ,(Q L .Q »)= :H ^ + E* - i > M ]  (3-12)
**2 ^  V  i=t y

Consider the Euler equations, where E is not a linear function of Q, Roe108 suggested the 
following form

^ + a | Q = o
d t  dx

(3.13)

where A is the Roe-average matrix, which satisfies the following conditions:

1. A constitutes a linear mapping from the vector space Q to the vector space E.

2. As Qu —» QR -» Q , A(Ql,Qr ) —» A(Q)

3. For any Ql and Qr, A(Ql ,Qr )x(Q l - Q r ) = El  —Er

4. The eigenvectors of A are linearly independent.
Based on the third property, the flux difference between the left and right states and the 
interface fluxes can be written as

Er “ El = A(Ql —Qr )

E. ,(Q,i -Q i )=M (Ei. + Er) - |a |(Qr - q J - tt—1

(3.14)

(3.15)

The last term of Equation (3.15) is the dissipation term and can be written as124

|a |(Q.l-Q l)= |a |aQ

a*
d£
o
d£u 2a 4 ■*-—— a 5 -t-Oj 

dx2
d§u 3a 4 + ^-^(*5  + a 8
d Xj

Ha4 + ^ f - | t)a5 + u ta 6 -Fu2a 7 + u3a , - r a2 a ,
L r - U  1

(3.16)
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where, J the transformation Jacobiaa is a function of time on dynamic grids.

Spatial Discretization

To discretize Equation (3.17), the first derivative can be expressed as a linear 
combination of node values. The compact finite difference schemes in generalization 
form are

H-ti + c C , ^ 0|-' (3.18)

where, 4> can be any scalar function, such as metric or flow variable, h is the grid size. 

The spatial derivative is obtained m the computational plane by solving the tri­

diagonal system. The coefficients a, b and a  determine the spatial properties of the 
algorithm. According to Taylor series expansion, the relations between the coefficients a, 
b and a  are

a + b = 1 + 2a (2nd order)
a+4b = 6 a  (4th order)

a + 16b = 10a (6th order)

So the different combinations o f a, b and a  give the different scheme accuracy. Table 3.1 

lists several combinations o f a, b, and a  and correspond truncation error. When a  is not 

zero, the formula yields the compact scheme. When a  is equal to zero, the explicit 
scheme can be obtained.

Table 3.1 Coefficients for spatial discretization at interior points78

a a b Truncation error

Compact 5-point, 6th order, C6 j.3 i±9 .L9 f h V 7)

Compact 3-point, 4th order, C4 J.4 32 0 ifh 4<i>(5)

Explicit 5-point, 4th order, E4 0 43 3 ifh V 5"

Explicit 3-point, 2nd order, E2 0 1 0 jr h V 3)

To keep the tri-diagonal form of equation, high order one-sided formulas are used 
at boundary points. For example, at first point Point-1 and at last point Point-N, the 

derivatives are expressed as:78
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Point-1: (3.19)
1=1

M
Point-N: <j>'N + = £  c^N+i-i

t=i

For the second point Point-2 and the Point-N-1, the derivatives <J>' are expressed as:78

Point-2: C21tf  -f<|>'2 ® f ) d t̂  (3.20)
i=l

Point-N-1: C2l̂  + <&_, + = J d ^ w
i=l

where the coefficients Ci, C21, C2 2 , c,- and di are selected to provide the required order at 
boundary points and keep a minimum stencil size.78

Filtering Scheme

Because the compact schemes used here are center-differenced and non- 
dissipative, filtering is needed to suppress numerical instabilities generated from all 

sources, such as boundary conditions and the mesh non-uniformities. If a solution is <|>,
A.

filtered values <j> satisfy

ctfii-L + &  +<t>i-n) (3.21)
n=0 “

With proper choice of coefficients, a 2N111 order formula on a 2N-H point stencil can be 

obtained. By using Taylor series analyses, the N+l coefficients, ao, a t , ..., aN, are derived 

in terms of at. The parameter otf can be adjusted in the range of -0.5 to 0.5. The higher 

value of otf corresponds to less dissipative filter, ctf =0.5 corresponds the no filtering. 

According to reference 126, a value of ctf between. 0.3 to 0.5 is appropriate. The filtering 
can be applied on the conserved variables or non-conserved variables after each iteration 
in every direction. For the grid points near boundary, either locally reduce-stencil-size 
LOC (low-order centered) formula or high order one-sided formula can be applied. The 
LOC method is simple and has been successful in some problems, but LOC requires very 
fine grid near boundary to keep low error. The one-sided high order formula does not 
need fine grid near boundary and can be more accurate. Table 3.2 lists the coefficients for
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filter formula at interior points. Details about the coefficients of boundary points can be 
found in reference 28. Visbal et al. showed that the high order filter is superior to 
damping in terms of robustness and accuracy.126

Table 3.2 Coefficients for filter formula at interior points78
Scheme a o a* a 3 a4 a 5 Order

F2 i + a r i+ o t f 0 0 0 0 2

F4 i + 4 a f i+ c t f 0 0 0 4

F6

F8

F10 12L+ .SLa256 T  128 u f

H a .I2.ry 32 ̂  16 u f

—+ 4 ry16 8 f

122+HLa ,256 T  128 **r

~ l6 + 8a f

~ 32+ i? a f

- i i + l n  
64 32 f

"n- l6'a f

l6~ 8a f

J1___H/v
512 256 “ T

0

~ 2M ■*'l28a f

0

0

512~  256a f

6

8

10

a r is a free parameter in the range of 0 < |a f | < 0.5

Metric Evaluation
When using finite the difference compact scheme, the metric calculation needs to 

be paid attention in computation, especially in the three-dimensional computation. When 
the governing equations are written in strong-conservation form, errors arise in finite 
difference discretizations. To keep these errors from degrading the accuracy of finite 
difference schemes, freestream preservation and metric cancellation should be satisfied. 
There are four metric identities:127

-Lis. +  *5- = 0
\

t r

(3.22)

For the two-dimensional problems on distorted grids, when the metrics are computed 
with the same formula as those used for the fluxes, the compact scheme satisfies the
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freestream preservation.126 The use of analytic metrics on stretched curvilinear grid could 
produce large errors.126 However, this straightforward method o f computing metrics does 
not satisfy the metric cancellation for three-dimensional curvilinear grids. Unacceptable 
errors can be produced by using below formulas.

5*/J = ynzc - y ;zn
= (3-23)

CxA=y§zn- y nz§

Thus the special treatments of metric computation for three-dimensional problems were 
given:127

lx A = (y nz)c -(y ?z)n
Tlx/J = Cy?z)§ -  (y|Z)? (3.24)

CxA=Cy§z)n -Cynz>§

Similar formulas are used to calculate other metric terms. The freestream preservation is 
recovered by using above formulas to transform metrics computation.127

Solution Procedure
First, forming the inviscid fluxes at the nodes and calculating the derivatives of 

these fluxes by using compact scheme. The metrics are calculated by the same scheme as 
that used in fluxes computation. For three-dimensional computation on curvilinear grids, 
special treatments are needed to satisfy the freestream preservation as mentioned above. 
Then, the viscous terms in the Navier-Stokes equations are obtained by twice applications 
o f the compact scheme to primitive variables, u, v, w and T. After updating the solution 
at the interior grid points, the physical boundary conditions are applied.78

33 3  Euler Implicit Time Integration; Approximate Factorization
The governing equations can be written as

^ = R ( Q )  where R ( Q ) = - ^ I ^ E l M  (3.25)
d t d^-

Using Euler implicit tune integration, above equations can be rewritten as

- r lo + f liQ " 1 -Q *)-*(Q " -Q “' i)]=R(Q” ,> (3.26)At
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where $ equal to 0 and 0.S correspond the 1st and 2nd order temporal accuracy. The 
residual is linearized by using Taylor series expansions

— — jsp _
R(Qn+l) = R(Qn) + ^ A Q r

3Q

where AQ=Qn+l —Qn

Assuming a nondeforming grid and 1st order temporal accuracy, Equation (3.25) becomes

± - § ] a q - = r (q .)

In terms of the inviscid and viscous fluxes, the equations can be rewritten as

(3.27)

I
At 3*,

(3.28)

To save computational time, the approximate factorization of Beam and Warming is 
used, the equations can be approximately factorized as

I 3+•
At a s ,

i  a +
At 35 3

i a+

V

At

I
(At)2

z
-i-t (3.29)

The solution is obtained by solving the following three one-dimensional equations

I d 
+

At 3 5 l

i a +

a

At 3 5 ,

AO =

AQ‘* =AQ’

At 3 5 2

Y

V (At)'

(3.30)

(3.31)

(3.32)

The solution of each of these equations is obtained by solving a block tri-diagonal set of 
equations.
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3.3.4 Discretization of the Viscous Terms
The viscous fluxes on the left-hand side o f the differential equations, Equation 

(3.26), are given by

a 9(E ,)r a 3(EV), a a ce .), a a(B„),
at, 3q at, 3q at, sq at, 3Q '

Differentiating the portions with terms that are functions of (where n*m ) will 

produce cross-derivative terms. The presence of these terms on the left-hand side of the 
equation would destroy the efficiency o f the upper and lower triangular matrix solution 
by requiring a central differencing of these terms, hi some applications, the viscous terms 
containing derivatives parallel to the solid body surface can be neglected relative to those 
in the normal direction. This approximation is known as the thin-layer approximation
where only the viscous terms containing derivatives normal to the body surface (along
the coordinate line), are retained, hi this investigation, the thin-layer approximation was 
used only to simplify the viscous terms on the left-hand side of the differential equations 
for better efficiency of the computer code. While the cross-derivative terms were retained 
on the right-hand side of the differential equation where they were evaluated explicitly.

On the right-hand side of the differential equation, Equation (3.26), the viscous 
terms contribution to the residual is given by

R . (3.34)
3?i

The viscous fluxes are linearized in time by

(Ev) " ‘ = ( E j;  +0(At) (3.35)

The viscous terms at a time step n-H are evaluated using the information from the 
previous time step, n. The fluxes are centrally differenced and a second-order 
approximation to the cross-derivative terms is used.

33.5 Large Eddy Simulation
To accurately predict the turbulent flow, direct numerical simulation (DNS) is the 

straightforward method. However, DNS is also very expensive method because it 
requires that the grid should be fine enough to capture the smallest scales in the flow.
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Large eddy simulation (LES) has been shown to yield accurate turbulence simulation at 
an acceptable CPU time compared with DNS. In LES the large scales are computed 
directly and the smallest scales are modeled by a subgrid scale model. The LES equation 
for compressible flows are the Navier-Stokes equations written using the filtered 
variables and the additional subgrid terms in the momentum and energy equations. 
Following Moin et al.89, the subgrid term in the momentum equations can be written as

V  = -2Cp A2 js|(Sto -  -L S „ 8  J  + -L 5^ (3.36)

where

r 3 u . d O*lc | v  un = - M A ,3x tt d x j

and A2 is a spatial filter width and is set equal to cell size. In the three dimensional case, 

A = t f v  and V is the volume of the cell. According to the Smagorinsky subgrid 

simulation (SGS) model9, C is a constant and is set to 0.01. Near the solid wall, a 
damping function is added and C is written as

C = 0.01(l-exp(-(yV2S)3)>. y * = ^ ,  u =
P \  P

In dynamic SGS model developed by Germano et al.26, the C is not a constant and is 
determined by a dynamic procedure. The dynamic SGS model is better but more 
computationally expensive than the Smagorinsky SGS model. The last term in Equation 
3.35 is usually neglected and little error is introduced. Then, the SGS stresses in the 
Navier-Stokes equations can be combined with the laminar viscosity coefficient and is 
given by

H-etT = M,Lammar ‘*'M'SGS > ^ d  M’SGS = CpA Sj (3.37)

Similarly m the energy equation, the hear conduct coefficient is replaced by

V —V U _ M’UmmarCp , M-SOSCp -jo\eff ~  Laminar ^  KSGS ~  p Pr V-5-58/
Uaa-r r iSCS

3.4 Flow Initial and Boundary Conditions
hiitial and boundary conditions are very important in the computation. In­

appropriate boundary conditions can contaminate the solution or even make computation
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divergent. The boundary conditions used in this investigation are discussed in the flowing 
sections.
3.4.1 Initial Conditions

For the steady flow problems, the initial conditions are assumed as impulsively 
started initial conditions. These initial conditions mimic inserting the configuration 
suddenly in the freestream. For the unsteady flow problems, the initial conditions are set 
as the solution of the steady flow calculations with same configuration and flow 
conditions.
3.4.2 Solid Surface Conditions

For a solid surface, the velocity, pressure and temperature conditions should be 
specified. For stationary surface without blowing or suction, the no-slip and no­

penetration conditions are enforced, v = vlurfjice. The normal pressure gradient, §£, is set

to zero and the adiabatic condition is enforced, (§£), = 0 .

For a moving surface, such as moving tails due to buffet loading, the normal 

pressure gradient becomes §§-=-pa -n, where a is the acceleration vector of the surface

and n is the surface unit normal. For the tails, the acceleration vector due to the coupled 
bending and torsion deflections is given by

a = —r a2e .
at2sin0+ cos 6 i-H

av _
at2 + r a2e „ fae^2

a t2
C O S0  —

l a t >
sin0 j  (3.39)

where r  is the displacement vector to the point measured from the elastic axis of the tail.

For the surface with, blowing or suction, the velocity at the surface is set by the 
blowing/suction coefficient CQ

Vb/s =
SCr

u  nb/s (3.40)

where A is the blowing/suction tube cross section area and nb/s is the unit normal of the 

blowing/suction direction.
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3.4 J  Far Field and Non-Reflection Boundary Conditions
At infinite distance from the source of disturbance the flow is assumed to be 

undisturbed and equals the free stream flow. Because of the limitation of computational 
domain, some special treatments, so-called non-reflecting boundary conditions, must be

characteristic theory and are implemented at the far-field boundary o f the computational 
domain.

3.4.4 Zonal Boundary Conditions
For the multi-block computational domain, information needs to be exchanged at 

the block interfaces. So the zonal boundary conditions are used. At the interface of two 
blocks, ghost cells, which belong to each block separately, are used. After each iteration, 
flow variables are exchanged and saved in ghost cells.

3.5 Aeroelastic Equations
For the twin-tail buffet problem, the wing is assumed as rigid and the vertical tails 

are simplified as flexible cantilevered beams. The tail bending and torsion displacements 
are assumed small in comparison with the tail thickness and the cross section of beams is 
assumed rigid. The dimensionless, linearized aeroelastic equations for the bending 

deflection, w, and the twist angle, 6, are given by116

applied to mimic the infinite domain boundary. These conditions are based on the

interface

interface

EI(z)|-^(z,t) + m(z)4^-Cz,t)+■m(z)x9( z ) t )  = N(z, t) (3.41)
a z dz dt dt
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where z is the verticaL distance from the fixed support, N is the normal force per unit 
length and Mt is the twisting moment per unit length, I(z) is the area moment of inertia 
and is given by

I(z)= p M ^ ) l  (3.43)

J(z) is the geometrical torsion constant For thin rectangular cross section, it is given by

J(z )= p b(Z)*31(Z)3 (3.44)

The mass moment o f inertia per unit length about the elastic axis, Ie, is equal to 

I0 = mXg + , where m is the mass per unit length, Izzcm the mass moment of inertia

per unit length about the center o f mass axis, and xe the distance between the elastic axis 

and inertia axis. Then, Ie is given by

t,(z) = m(z)x; + m(z)(l2(z> + bi(z)) (3.45)

The El and GJ are the bending and torsional stiffness of the tail section, and E is the
elastic modulus of elasticity. The modulus of rigidity, G, is given by

p Iv = -  (3.46)
2(1+ v )’ 3

The aeroelastic equations are normalized by L,a„,L/a„, and p . for the length, velocity, 

time and density, respectively. The modulus of elasticity, E, and the modulus of rigidity, 

G, are normalized by p .a i .

3.6 Computational Structural Dynamics Formulation
For the vertical tails, which are treated as flexible cantilevered beam, the 

dimensionless, linearized governing equations are given by Equation (3.41) and (3.42). 
The Galerkin. method is used to solve these equations.

Using modal analysis, the dependent variables are expanded in terms of the 
natural free vibration modes o f a  cantilevered. beam as116

w(z,t) = ^ 0 [(z)q[(t) (3.47)
1=1
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(3.48)

where ^ (z) and <t>j(z) are the comparison functions satisfying the free vibration modes 

o f bending and torsion, respectively; and q{( t ) , qj(t) are generalized coordinates for 

bending and torsion, respectively.

The comparison functions for the bending deflections are taken as the 
eigenfunctions of uniform beam given by

where (3, is the solution of the bending frequency equation for cantilevered beam which 

is given by

sin(P,L)—smh(p,L)
1 r cos(PjL)+ cosh(pjL)

[sin(PiZ) -sinh(PjZ)] + [cos(P;z) -cosh(P;Z)] (3.49)

cos((3;L) cosh((3;L) = —I 

The solutions satisfying the bending frequency equation are given by

(3.50)

pt =1.875 p2 = 4.694 p3 =7.855 
p4 = 10.996 Ps =14.137 P6 =17.279 

Pi = ( i—0.5)71 as i —» °o
(3.51)

and the bending natural frequency is given by

(3.52)

The comparison functions for the torsional deflections are given by

0j(z) = sin^jz)

There are infinite solutions satisfying the torsional equation. They are given by

(3.53)

(3.54)

The torsion natural frequency is given, by

(3.55)
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Rewrite the equations in matrix form; the original governing aeroelastic equations have 

been transformed from coupled partial differential equations to a M set of coupled 2nd 
ordinary differential equations as

[M]{q>+[K]{q} = {Q} (3.64)

or

‘  " MX i IV X i 0 '

Ma _ 0 K *.
|N J  i =  l,2 ,~ ,I_  
In J  j  = I + l,^ ,M

(3.65)

Where

Mu = fm * r$ldz (3.66)

Ml2 =M 2l = ^ m x e ^ d z (3.67)

= f le ^ jd z (3.68)

Ku = t  E Id^  dz
11 «*> dz1 dz2

(3.69)

K22 = f  GJ d—* d -  dz 
22 dz dz

(3.70)

N\ = £  4>rNdz (3*71)

II & X > (3.72)

(3*73)

The equations can be further reduced to a set of coupled first order ordinary 
differential equations by introducing a new variable q

Ol}=[I]{q}
M {fl}-KKl{q} =  {Q}

Then, the new system of equations can be written in state space form as

0 -{urlUQ
1 0

fnl f[Mrl{Q}l 
LqJ I o J

(3*74)

The solutions of these equations can be obtained by using fifth-order accurate Runge- 
Kutta method. Then, by substituting these solutions into Equation (3.47) and (3.48), the 

bending deflection, w, and the torsion deflection, 6, can be obtained.
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3.7 Structural Initial and Boundary Conditions
The tails are initially assumed in an undeformed stationary state. The initial 

conditions are given by

The tails are assumed to respond as cantilevered beams, clamped at the root and free at 
the tip. They are free to oscillate in both coupled or uncoupled bending torsion 
oscillations. The corresponding boundary conditions for cantilevered beam are given by

where L is the vertical height of the tail. The boundary conditions at the clamped root are 
plugged in the computational, solver explicitly, while the boundary conditions at the free- 
end are used before in the process of transforming the aeroelastic equations form their

3.8 Grid Displacement Equations
After the bending deflection, w, and the torsion angle, 0, of the tails are obtained, 

the grid points are smoothly deformed to accommodate the deflections of the tail. Since 
the grid displacement is relatively small and the grid is deformed at every time step, 
simple interpolation procedure is used to compute the y and z coordinates of the grid. 
These equations for the right side of the tail are given by

w(z, o ) = i ^ M = o
at (3.75)

" ( ° ,0 = ^ ( 0 , t) = ^ ( L,t) = A  E l(L ) |^ (L ,t)  =0 

8 (0 ,t)= ||(L ,t)= 0
(3.76)

partial differential form to them ordinary differential form.

(3.77)

(3.78)
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where y"jk and z"jlk are the y and z coordinates of a grid point at the n+1 time step, 

z°i k is the original z coordinate o f a tail grid point and Az°Jk =z?Jk — z°j k_t, Y is the

maximum value of y coordinate from the grid point on tail surface to the corresponding 
point at the right boundary of the computational domain, Z is the maximum value of z 
coordinate from the tail root to the upper boundary o f the computational domain and X is 
the x coordinate of the tail elastic axis. The deforming grid generated by these equations 
is smooth and can respond to the deformation of the tail. The displacements o f grid are 
decreased smoothly from the tail surface to the outer boundary o f the computational 
domain. At each time step, the metric terms and the grid speed terms are updated once the 
new grid is obtained.

3.9 Method of Solution
For the delta-wing/twin-tails problem, the delta wing is assumed to be rigid, while 

the tail is considered flexible. The procedure includes several steps.
1) Initially, the tails are assumed to be rigid and the grids do not deform. The Navier- 

Stokes equations are solved by using pseudo-time stepping, implicit, upwind finite- 
volume scheme. Once the computation converges, the resulting solution is used as the 
initial condition for next step.

2) The time accurate, implicit, upwind finite-volume scheme is used to solve the fluid 
flow problem. The tails can deform and the grid speed is obtained. The initial grid 
speed is set to zero. In this step, the flow field solution and the pressure distribution 
on the tail surfaces are obtained.

3) The normal force and twisting moment acting on tail surfaces due to the pressure 
distribution obtained in step 2 are computed. Next, the twin-tail deflections are 
obtained by using the aeroelastic equations.

4) Using the twin-tails deflections, new grid is generated by solving the grid 
displacement equations. The metric coefficients and the grid speed are updated.

5) The computational cycle, which includes steps 2,3 and 4, is repeated every time step. 
Equal time step is used for both, flow and structural computations. The tales are rigid 
in step 1, but are movable in steps 2,3 and 4.
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For the JaVA/synthetic jet flow control problems, the procedure Includes: 1) 
Solving for initial solution while the actuator is not active, and 2) Solving for disturbance 
flow while the actuator is active.
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CHAPTER 4: ACTIVE FLOW CONTROL 

4.1 Introduction
Active flow control for twin-tail buffet alleviation is investigated. Flow suction 

along the vortex cores (FSVC) of the leading edges of the delta wing is used in order to 
delay the vortex breakdown flow upstream of the twin tail and to modify the vortex core 
path. This approach has been used earlier by Hummel37 in his experimental research work. 
A parametric study of the effects of the span-wise position and axial orientation of the 
suction tubes and volumetric suction flow rate on the twin-tail buffet response is carried 
out. The computational model consists o f a sharp-edged delta wing of aspect ratio one 
and swept-back flexible twin tail with taper ratio of 0.23. This complex multidisciplinary 
problem is solved sequentially using three sets of equations for the fluid flow, aeroelastic 
response and grid deformation, on a dynamic multi-block grid structure. The 

computational model is pitched at 30° angle of attack. The freestream Mach number and 

Reynolds number are 0.3 and 1.25 million, respectively. The model is investigated for the 
inboard position of the twin tails, which corresponds to a separation distance between the 
twin tails of 33% of the wingspan. Comparison of the time history and power spectral 
density responses of the tails for various FSVC controls are presented and discussed.

4.2 Computational Model: Active Flow Control Method (FSVC)
The twin tail-delta wing configuration consists of a 76° swept back, sharp-edged 

delta wing (aspect ratio of one) and dynamically scaled flexible twin tail similar to those 
used by Washburn et al.129. The vertical tails are oriented normal to the upper surface of 

the delta wing and have a centerline sweep of 53.5°. Each tail is made of a single 
Aluminum spar and Balsa wood covering. The Aluminum spar has a taper ratio of 0.3 
and a constant thickness of 0.001736. The Aluminum spar is constructed from 6061-T6 

alloy with density, p, modulii of elasticity and rigidity, E and G o f 2693 kg/m3, 

6.896xlOto NZm2 and 2.5925x1010 N/m2, respectively. The Balsa wood, covering has a 

taper ratio of 0.23 and aspect ratio of 1.4. The Balsa thickness decreases gradually from 
0.0211 at the tail root to 0.01L1 at the tail midspan and then constant thickness ofO.Olll
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is maintained to the tail tip. The tail cross section is a semi-diamond shape with bevel 
angle o f 20°. The Balsa density, modulii of elasticity and rigidity, E and G, are 179.7 

kg/m3, 6.896xl08 N/m2 and 2.5925xl08 NZm2, respectively. The tails are assumed to be 

magnetically suspended and the leading edge o f the tail root is positioned at x/c = 1.0, 

measured from the wing apex. The configuration is statically pitched at 30° angle of 

attack. The freestream Mach number and Reynolds number are 0.3 and 1.25xl06, 

respectively. A multi-block grid consisting of four blocks is used for the solution of the 

problem. The first block is O-H grid for the wing and upstream region, with 101x50x54 
grid points in the wrap around, normal and axial directions, respectively. The second 

block is H-H grid for the inboard region of the twin tails, with 15x50x13 grid points in 

the wrap around, normal and axial directions, respectively. The third block is H-H grid 

for the outboard region of the twin tails, with 87x50x13 grid points in the wrap around, 
normal and axial directions, respectively. The fourth block is O-H grid for the 

downstream region o f the twin tails, with 101x50x25 grid points in the wrap around, 

normal and axial directions, respectively. Figure 4.1 shows the grid topology of the twin 
tail-delta wing configuration.

Figure 4.1 Three dimensional grid topology of the twin tail delta wing configuration.

The main purpose o f flow control method is to modify the flow field in the region 
o f the twin-tail. Unsteady vortex breakdown of the leading-edge vortex cores develops
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upstream of the twin-tail and moves downstream in close proximity to the twin-tail. This 
highly unsteady vortex-breakdown flow produces unsteady differential pressure on each 
tail forcing it to oscillate through wide ranges of amplitudes and frequencies, which 
eventually result into a tail fatigue failure. Hence, flow control method should be 
designed to move the vortex breakdown location downstream behind the twin-tail and 
displace the vortex core path in such a way as to add more aerodynamic damping to tail. 
The control method should be effective over the whole ranges of angle o f attack and 
Mach number during the configuration maneuverability. Moreover, the control method 
should not produce adverse effects on the aerodynamic performance. This is a 
multidisciplinary, time-dependent control problem.

To deal with such complex problem, the approach that we have adopted is a step- 
by-step investigation of simple and combined flow control method. The first method is 
the tangential leading edge blowing (TLEB)115’62. The second method is the flow suction 
along the vortex core (FSVC) u5,62. hi the TLEB method, an air jet is blown tangential to 
the delta wing surface along its whole leading edge. The volume flow rate of this jet is 
varied linearly along the wing leading edge. The control effect of this method is to 
modify the path of the leading edge vortex core, moving it closer to the tail to intersect it. 
This will increase the aerodynamic damping of the tail. An other effect o f this method is 
to increase the vortex core axial momentum, which in turn moves the vortex breakdown 
location further downstream. In the FSVC method, flow suction is applied along the 
leading edge vortex core in order to remove the low-level axial momentum flow from the 
vortex breakdown region. This control method will increase the axial momentum of the 
vortex flow and move the vortex breakdown further downstream.

It had been shown that TLEB method moved the vortex breakdown location 
downstream and the leading edge vortices laterally toward the twin tail115,62. The TLEB 
control produced lower tail root bending and twisting moments as well as lower torsion 
deflection and acceleration than those of the no-control case. However, the bending 
deflection and acceleration were higher than those of the no-control case. In the FSVC 
method (out position)115, it has been shown that size o f the vortex breakdown region has 
been reduced and moved in the downstream direction. It also reduced the tail bending
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deflection. However, the root bending momentum, bending and torsion accelerations and 
torsion deflection of the tail were higher than those of the no-control case.

The TLEB and FSVC (out position) methods were combined and applied 
simultaneously to the same configuration115. The results have shown no improvement 
compared with those of each method being applied separately.

Further investigation o f the FSVC method has shown that moving the suction 
tubes in the spanwise direction toward the tail location produced favorable aeroelastic 
control. This controL method is called the FSVC in position method. The results of this 
method have shown additional reduction in the tail root bending and twisting moments, 
its tip bending and torsion accelerations and its tip torsion deflection than those of no­
control case. Increasing the suction volumetric flow rate produced further reduction in the 
tail aeroelastic responses. It is therefore concluded that the FSVC in position method 
produces the best control in comparison with all the other methods that were tried before.

The imaginary suction tubes are installed behind the wing at x,/c = 1.3 on both 
sides of the wing along the center of the two vortices, which are almost at zt /c -  0.2 
above the wing surface at this location, shown in Figure 4.2. This FSVC method is called 
suction out position. A volume flux Q is sucked away from the vortex cores along the 

vortex path at an angle of 30°. The suction coefficient is Cq =  3.53xl0'2 and the suction- 

tubes non-dimensional cross-section area is 2.94xl0*3. A parametric study of the effects 
of the spanwise position o f the suction tubes and volumetric suction flow rate on the 
twin-tail buffet response is also investigated. In this case, the spanwise position of the 
suction tubes is moved towards the twin tails (called FSVC in position) with the same 
volumetric suction flow rate. The suction tubes cross-sectional area is then increased 

from 2.94xl0‘3 to 5.29xl0*3, keeping the suction velocity fixed. This results in increasing 

the suction coefficient from Cg=3.53xl0*2 to Cg=6.354xl0"2. To get better results, the 
axial orientation of suction tubes is investigated. The direction of suction tubes is tilted to 

the right at an angle of-Hp or to the left at angle of -<p with respect to an observer looking 

in the upstream direction, shown in Figure 4.2.
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Figure 4.2 Schematic view showing the arrangement for sucking of the flow.

4.3 Flow Field Results of FSVC Method
Figures 4.3 and 4.4 show snap shots of the flow field results at t  = l9 after 

allowing the tails to move and interact with the flow. The figures show a top view of the 
vortex cores total pressures iso-surfaces, total pressure contours and instantaneous 
streamlines on a cross-flow plane at x=1.096, for the no-control case. Figures 4.6 and 4.7 

show the flow field results for the FSVC method (in position) with <p = +10°at the same 

time instant as that of the no-control results. Figures 4.9 and 4.10 show the flow field 

results for the FSVC in-position method with <p — —10° at the same time instant.

The top view figures of vortex cores (Figures 4.3,4.6 and 4.9) show the effect of 
FSVC in-position methods on the location of vortex-breakdown point. It is observed that 
when the suction tubes are titled to the right or the left the location of vortex-breakdown 
point moves further downstream. The best control has been achieved when the suction 

tubes are tilted to the left at <p = —10°, where the breakdown point is at 70% of the wing 
chord. The no-control case shows that the breakdown point is at 64% of the wing chord.

The cross-flow-plane figures of the total pressure contours and instantaneous 
streamlines (Figures 4.4, 4.7 and 4.10) show the substantial effect o f FSVC methods, 
particularly when the suction tubes are tilted. It is observed that tilting the suction tubes 
to the right or the left lowers the vortex core vertical location and moves it away from the
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tail. Moreover, it increases the high total-pressure flow in the region between the tails. 
The best control has been achieved with the suction tubes tilted to the left.

The results of FSVC methods show that when the suction tubes are tilted to the 
left they produce the best control results of the vortex-breakdown region so far. The 
location o f the vortex-breakdown point is moved in the spanwise direction away from the 
tail location, and additional high total-pressure flow moves in the region between the twin 
tails. These modifications of the flow field above the wing and near the tails are expected 
to reduce the aeroelastic responses, and hence the fatigue failure.

4.4 Load and Aeroelastic Results of FSVC Method
Figures 4.5,4.8 and 4.11 show the distribution histories of bending deflection, w, 

rotation angle deflection, 6, normal force, N, and twisting moment, M, versus the tail 
height, z. Each figure shows the distribution every dimensionless time unit. These curves 
are labeled as A, B, etc. It is observed that the bending deflections are in the first, second 
and third mode shapes, while the rotation angle deflections are in the first and second 
mode shapes. The bending deflections are mostly positive and the twisting angle 
deflections are mostly negative. On the other hand, the maximum normal forces are 
occurring at the tail root, and the maximum twisting moments are occurring in the 
distance range of z = 0.04 to z =  0.06, which corresponds to 17.8% to 26.7% of the tail 
span, respectively. The normal forces are mostly positive and the twisting moments are 
mostly negative. It is observed that the FSVC methods reduce the variations in the 
normal force and twisting moment in comparison with those of the no-control case. They 
also reduce the bending and rotation angle deflections. The best control is achieved with 

the suction tubes tilted at <p = —10°.

Figure 4.12 shows comparisons o f the time history of the tip bending deflection, 
tip rotation angle deflection, tip bending acceleration and tip rotation angle acceleration 
for the FSVC methods and no-control case. It is observed that the best control of the 

amplitudes o f these responses is obtained with the suction tubes tilted at <p = —10°. Figure 

4.13 shows the power spectral density (PSD) of the corresponding tip bending and 
rotation accelerations. It is observed that the FSVC with the suction tubes tilted at
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<p=—10° produces the lowest peaks. However, there is no shift in the frequencies of these 
peaks.

Figures 4.14 shows comparisons of the time history o f the root bending moment 
and the root twisting moment for FSVC methods and the no-control case. It is observed 
that the best control o f the amplitudes of these responses is obtained again with the 

suction tubes tilted at <p = —10°. Figures 4.15 shows the PSD of the corresponding root 
bending and twisting moments. The lowest peaks of the PSD are obtained for the same 
tubes tilting. Again, there is no shift in the frequencies of these peaks.

It is important to mention that Figures 4.12 and 4.14 are not showing any period 
or phase changes due to the FSVC methods. The main effect of these methods is the 
amplitude reduction of the various responses.
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(a) Side view (b) Top view
Figure 4.3 Top view and side view showing the vortex core total pressure iso-surface. No- 
control case atx=  19, M»=0.3, a =30°, Re = 1.25xl06.

Figure 4.4 Snap shots of total pressure contours and instantaneous streamlines on cross plane, 
x  = 1.096. No-control case at t  = 19, =0.3, a = 30°, Re = l.25xl06.
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Figure 4.5 Distribution o f bending deflection, rotation angle, normal force and twisting 
moment along the tail span. No-control case at M* =  0.3, a =30°, Re = 1.25x10®.
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(a) Side view (b) Top view
Figure 4.6 Top view and side view showing the vortex core total pressure iso-surface. 
FSVC (in, 10°) case atx = 19, M»=0.3, a=30°, Re= 1.25xl06.
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Figure 4.7 Snap shots of total pressure contours and instantaneous streamlines 
plane, x = 1.096. FSVC (in, 10°) case at x = 19, M . = 0.3, a =30°, Re = 1.25xl06.
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Figure 4.8 Distribution o f bending deflection, rotation angle, normal force and twisting 
moment along the tail span. FSVC (in, 10°) case at M »=0.3, a =30°, Re= 1.25xl06.
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(a) Side view (b) Top view
Figure 4.9 Top view and side view showing the vortex core total pressure iso-surface. FSVC 
(in, -10°) case atx = 19, M* =0.3, oc = 30°, Re= l.25x!06.
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Figure 4.10 Snap shots of total pressure contours and instantaneous streamlines on cross 
plane, x  = 1.096. FSVC (in, -10°) case at T = 19, Moo = 0.3, a  = 30°, Re = 1.25xl06.
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Figure 4.1L Distribution of bending deflection, rotation angle, normal force and twisting 
moment along the tail spam FSVC (in, -10°) case at Moo=0.3, a =30°, Re — 1.25xl06.
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Figure 4.12 Effect of FSVC on the history of right tail tip bending and torsion deflections and 
accelerations for uncoupled bending-torsion modes. =0.3, a =30°, Re = 1.25xl06.
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Figure 4.13 Effect of FSVC on power spectral density o f right tail tip bending and torsion 
accelerations for uncoupled bending-torsion modes. M» — 0.3, a =30°, Re — 1.25x10®.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



67

4.5 Summary
The fundamental issue of twin-tail buffet alleviation is addressed using flow 

control methods via suction. Flow suction along the vortex cores (FSVC) of the leading 
edges of the delta wing of the configuration is used. The purpose of the FSVC methods is 
to move the location of the vortex-breakdown point in the downstream direction and the 
vortex-breakdown region in the spanwise direction away from the tail location. The 
effects of the axial orientation of the suction tubes of the FSVC methods have been 
investigated. The suction tubes have been tilted to the left at an angle cp = —10° and to the 

right at an angle (p = 10°. The flow field results and the loads and aeroelastic results are 
compared with those of the no-control case. The results of the FSVC tilting methods 
show that the vortex-breakdown point is moved downstream, the vortex-breakdown 
region is moved away from the tail location, and a high total-pressure flow move in the 
region between the twin tails. These flow modifications produce lower tip bending and 
rotation angle deflections and accelerations. Moreover, the root bending and twisting 
moments are reduced in comparison with the no-control case. However, there is no shift 
in the frequencies at which the peaks o f the PSD responses occur. Moreover, there are no 
changes in the periods or the phases o f these responses. The primary effect of the FSVC 
methods is the amplitude reduction of the aeroelastic responses. The best control results 

are obtained with the suction tubes tilted at <p= —10°.
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CHAPTER 5: ADAPTIVE ACTIVE FLOW CONTROL 

5.1 Introduction
Adaptive active flow control for twin-tail buffet alleviation is presented in this 

chapter. The concept o f this technique is to place control ports at certain locations of the 
tail surfaces. The locations o f the control ports are determined by searching for the 
locations o f maximum pressure differences across the tail surfaces. Control ports are 
placed at these locations and flow suction or blowing is applied through them in order to 
minimize the pressure difference across the tail. The volumetric flow rate at each port is 
proportional to the pressure difference across the tail at each location. The computational 
model consists of a sharp-edged delta wing and a swept-back flexible twin tail. This 
complex multidisciplinary problem is solved sequentially using three sets of equations for 
the fluid flow, aeroelastic response and grid deformation, using a dynamic multi-block 

grid structure. The computational model is investigated at 30° and 35° angle of attack for 
the inboard position of the twin tails of 33% of the wingspan. Flow field and aeroelastic 
results are presented, compared with the no-control case and discussed.

5.2 Computational Model: Adaptive Suction and Blowing Flow Control
The delta-wing/twin-tail configuration is the same as the one used in Chapter 4. 

The delta wing/twin tail configuration consists of a 76° swept back, sharp-edged delta 

wing (aspect ratio of one) and dynamically scaled flexible twin tail. To achieve this goal 
the contours of the pressure-coefficient difference are calculated for the left and right tails. 
A range of the high-pressure difference is determined and the corresponding cells are 
located, hi these cells, control ports are placed. The computations for this case starts with 
the initial conditions that correspond to the solution of the flow field with a rigid twin tail. 
Next, the aeroelastic equations are turned on along with the grid displacement equations 
for the elastic tails. The flow control is implemented through the boundary conditions on 
the tail surfaces at the control ports (reference the equations of Chapter 2). The suction or 
blowing volume flow rate is proportional to the instantaneous pressure difference across 
the tail at the location of die port

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



69

Figure 5.1 shows the difference of pressure coefficients on the tail surface without 
control after 11,000 time steps or T = 11. If the pressure on the outer tail surface is greater 
than the pressure on the inner tail surface, suction volume flow rate is applied at the outer 
port and an equal volume of blowing flow rate is applied at the corresponding inner port. 
Figure 5.2 shows different arrangements for active flow control ports on the tail. The type 
T and type T2  are shown here. The locations of the active control ports are marked with 
black color, their distribution looks like a T-shape at the lower left portion of the tail 
starting from the tail leading edge.

5.3 Flow Field Results of Adaptive Flow Control
Figures 5.3 and 5.4 show snap shots of the flow field results at x= !0  after 

allowing the tails to move and interact with the flow. These figures show side and top 
view of the vortex cores total pressures iso-surfaces, total pressure contours and 
instantaneous streamlines on a cross-flow plane at x = 1.096, for the no-control case at 

oc=30°. Figures 5.5 and 5.6 show the flow field results for the T type control case at the 
same angle o f attack and tune instant as that of the no control case. Figures 5.8 and 5.9 
show the flow field results for the Ti type control case at the same angle of attack and 
time instant as that of the no-control case.

The top view figures of vortex cores (Figures 5.3, 5.5 and 5.8) show the effect of 
adaptive control methods on the location of vortex-breakdown point. Compared with the 
no-control case, the vortex-breakdown points do not show obvious change. This is what 
is needed, because the purpose of using the adaptive control ports is to modify the flow 
field near tails and at the same time not to affect the flow field upstream.

The cross-flow-plane figures of the total pressure contours and instantaneous 
streamlines (Figures 5.4, 5.6 and 5.9) show substantial effects of adaptive control 
methods. It is observed that the vortex cores near the tail move towards the tails. 
Moreover, adaptive control increases the high total-pressure flow in the region between 
the twin tails. These modifications of flow field near the twin tails, which are produced 
by adaptive control, add more aerodynamic damping to the tails. The effects of these 
modifications will be seen in the figures o f tail’s structure response.
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Figure 5.13 shows the time history o f the root bending moment and root twisting 
moment. It is obvious that the control effectiveness is substantial. It is suppressing the 
amplitudes of their variations continuously with time with a substantial decrease in their 
mean level. In comparison with the no-control case, the corresponding power spectral 
densities of Figure 5.14 show decreases in their values at the fundamental frequency of 
more than 70%.

Figure 5.15 shows the time history of the absolute mass flow rate, Q, and the 
kinetic energy rate (power), K.E., which are needed for applying the adaptive flow 
control. It is observed that both Q and K.E. amplitudes are decreasing substantially with 
time. T2-type control requires less mass and energy than T type control. For the 

configuration at a = 30°, both T-type and T2-type control generate good results.

Figures 5.24-27 show the aeroelastic responses of the tail for the no-control case 

and the present adaptive control cases at a =35°.

Figure 5.24 shows the time history of the tip bending and rotation deflections and 
accelerations. For the tip bending deflection, T type control produces much higher value 
compared with the no-control case. As time increases, the tip bending deflection 
decreases but it is still higher than the value of the no-control value. The tip bending 
deflection of T2-type control case is a little bit higher than that of the no-control case at 
the beginning and decreases as time increases. As for the rotation angle, both types of 
control generate much smaller amplitude than the no-control case. The power spectral 
densities of the tip bending and torsion acceleration are shown in Figure 5.25. The 
amplitude of the tip bending acceleration at 1st mode is decreased up to 40% for T type 
control and 50% for T2-type control compared with the no-control case. For higher mode, 
T2-type control generates higher tip bending accelerations than T-type control. Both of 
them are less than those of the no control case. Similar results can be observed in the 
figure of the power spectral density of torsion acceleration.

Figure 5.26 shows the time history of the root bending moment and root twisting 
moment. The control effectiveness of T2-type control is substantial, but not for T-type 
control at this time. T2-type control is suppressing the amplitudes of their variations 
continuously with time with a substantial decrease in their mean value level, hi
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comparison with the no-control case, the corresponding power spectral densities of 
Figure 5.27 show decreases in their values at the fundamental frequency of more than 
40% for root bending moment (Tr-type) and 20% for root twisting moment (T2-type).

Figure 5.28 shows the time history of the absolute mass flow rate, Q, and the 
kinetic energy rate (power), K.E., which are needed for applying the adaptive flow 
control. Ti-type control requires less mass and energy than T-type control. For this 

configuration at a  = 35°, T2-type control generates much better results than T-type 

control.

Based on the results above, it is concluded the adaptive control method had shown 
its control effectiveness. However, the control ports must adaptively change their 
locations to be effective at different angles of attack.
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Figure 5.1 Difference of pressure coefficient contours on twin-tail surface. M» = 0.3, Re 
1.25xl06.
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Figure 5.2 Schematic view showing the arrangement for active control ports.
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(a) Side view (b) Top view
Figure 5.3 Top view and side view showing the vortex core total pressure iso-surface. No 
control case atT= 10. Ma«=0.3, a  = 30°, Re = 1.25x10*.
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Figure 5.4 Snap shots of total pressure contours and instantaneous streamlines on cross plane, 
x —1.096. No control at x = 10. Ma» =0.3, a = 30°, R e=1.25x10*.
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(a) Side view (b) Top view
Figure 5.5 Top view and side view showing the vortex core total pressure iso-surface. Active 
control (T type) a tx=  LO. Mia» = 0.3, a = 30°, Re = 1.25x10*.
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Figure S.6 Snap shots o f total pressure contours and instantaneous streamlines on cross plane, 
x = 1.096. Active control (T type) at x = 10. Ma^ = 0.3, a =30°, Re = 1.25x10*.
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Figure 5.7 Distribution of bending deflection, rotation angle, normal, force and twisting 
moment along the tail span. Active control (T type) at x =  10. Ma» = 0.3, a  = 30°, Re = 
1.25x10*.
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(a) Side view (b) Top view
Figure 5.8 Top view and side view showing the vortex core total pressure iso-surface. Active 
control (T2  type) at x = 10. M a. — 0.3, a =30°, Re = 1.25x10®.

Figure 5.9 Snap shots of total pressure contours and instantaneous streamlines on cross plane, 
x = 1.096. Active control (T2  type) at t  = 10. Ma«=0.3, a  = 30°, Re = 1.25xl06.
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Figure 5.10 Distribution, o f bending deflection, rotation angle, normal force and twisting 
moment along the tail span. Active control (T* type) at x = 10. Ma» =  0.3, a  = 30°, Re = 
1.25xl06.
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Figure 5.11 Effect of Adaptive Flow Control on the history of right tail tip bending and 
torsion deflections and accelerations for uncoupled bending-torsion modes. = 0.3, a  = 
30°, Re = 1.25X106.
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Figure 5.12 Effect of Adaptive Flow Control on power spectral density of right tail tip 
bending and torsion, accelerations for uncoupled bending-torsion modes. M» =  0.3, a  = 30°, 
Re = 1.25xl06.
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Figure 5.13 Effect of Adaptive Flow Control on the history o f right tail root bending moment 
and twisting moment coefficients for uncoupled bending-torsion modes. M<„ =0.3, a  = 30°, 
Re = l.25xl06.

Root Bending Moment Power Spectral Density Root Twisting Moment Power Spectral Density
0.05

20
1 °-°*

-  No Control
-  Active Control(T type)
-  Active Control(Tz type)

0.03

0.02

aot

n

3  0.015

No Control 
Active Contn>l(T type) 
Active ControI(T2 type)

0.006

n.

Figure 5.14 Effect of Adaptive Flow Control on power spectral density of right tail root 
bending moment and twisting moment coefficients for uncoupled bending and torsion modes. 
Moo=0.3, a =30°, Re = 1.25x10s.
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Figure 5.15 Mass flow rate and K.E. needed for active control ports. M »=0.3, a =30°, Re — 
1.25x10*.
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(a) Side view (b) Top view
Figure 5.16 Top view and side view showing the vortex core total pressure iso-surface. No 
control case at t = 10. Ma. =0.3, a =35°, Re = 1.25x10®.
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Figure 5.17 Snap shots of total pressure contours and instantaneous streamlines on cross 
plane, x = 1.096. No control case at x = 10. Ma« = 0.3, a  = 35°, Re = 1.25xl06.
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(a) Side view (b) Top view
Figure 5.18 Top view and side view showing the vortex core total pressure iso-surface. Active 
control (T type) atT= 10.Ma» = 0.3, a=35®, Re= 1.25x10s.
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Figure 5.19 Snap shots o f total pressure contours and instantaneous streamlines on cross 
plane, x  =  1.096. Active control (T type) a tx =  10. Ma» = 0.3, a =35°, Re =  1.25x10®.
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Figure 5.20 Distributioa of bending deflection, rotation angle, normal force and twisting 
moment along the tail span. Active control (T type) at t  = 10. Ma«o = 0.3, a  = 35°, Re =
1.25x10°.
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(a) Side view (b) Top view
Figure 5.21 Top view and side view showing the vortex core total pressure iso-surface. Active 
control (T2  type) at x —10. Ma»=0.3, a =35°, Re = 1.25xl06.
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Figure 5.22 Snap shots o f total pressure contours and instantaneous streamlines on cross 
plane, x = 1.096. Active control (Ti type) atT= 10. Ma* = 0.3, a= 35°, Re = 1.25x10s.
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Figure 5.23 Distribution of bending deflection, rotation angle, normal force and twisting 
moment along the tail span. Active control (T2  type) at t  = 10. Ma«, — 0.3, a  = 35°, Re = 
1.25xl06.
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Figure 5.24 Effect of Adaptive Flow Control on the history o f right tail tip bending and 
torsion deflections and accelerations for uncoupled bending-torsion modes. Moo = 0.3, a  = 
35°, Re = 1.25x10*.
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Figure 5.25 Effect of Adaptive Flow Control on power spectral density o f right tail tip 
bending and torsion accelerations for uncoupled bending-torsion modes. M*. = 0.3, a  = 35°, 
Re = 1.25xl06.
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Figure 5.26 Effect of Adaptive Flow Control on the history of right tail root bending moment 
and twisting moment coefficients for uncoupled bending-torsion modes. M . = 0.3, a  = 35°, 
Re = 1.25xl06.
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Figure 5.27 Effect of Adaptive Flow Control on power spectral density of right tail root 
bending moment and twisting moment coefficients for uncoupled bending and torsion modes. 
M» =0.3, a = 35°, Re = 1.25xl06.
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Figure 5.28 Mass flow rate and K.E. needed for active control ports. Moo =  0.3, a =35°, Re = 
1.25x10s.
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5.5 Summary
The twin-tail buffet alleviation is addressed using adaptive active flow control. 

The concept behind this technique is to place control ports within a small area on the tail 
surfaces. The locations of these control ports are determined according to the locations of 
a range o f high-pressure difference. Flow suction or blowing is applied through these 
control ports to reduce the pressure differences. The suction or blowing volume flow rate 
from each port is proportional to the pressure difference across the tail at the location of 
the port.

Comparisons of the fluid flow and aeroelastic responses with those of the no­
control case have shown assessments o f the control effectiveness o f this adaptive control 
technique. It has been shown that the vortex breakdown location moved further 
downstream. The normal force and twisting moment distributions are substantially 
decreased with damping of their amplitudes of variation. The bending and rotation angle 
responses do not change their sign. The power spectral densities o f the root bending 
moment and root twisting moment show substantial decreases of more than 70%. The tail 
tip acceleration responses have shown similar decreases. The idea behind introducing the 
concentrated cells control is to use a small number of the control ports effectively within 
a small area of the tail. This is viewed as a practical design in comparison with the design 
complications o f distributing the control ports on the whole area of the tail as was 
presented m Ref. 63. The problem of changing the location of control ports as the angle 
of attack varies can be solved, by using a sliding solid plate which is moved up or down 
on the tail surface in order to close or open control ports as the angle o f attack changes 
producing the T-type or T^-type control.
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CHAPTER 6: PARALLEL HIGH-ORDER CODE AND 
VALIDATIONS

6.1 Introduction
To investigate the flow control on tail buffet, a new parallel code based on high 

order compact scheme was developed. The reasons for developing a new code are: I) 
Computational efficiency: The code used in chapter 4 and 5, which was based on the 
CFL3D code, does not have the parallel function. It is computationally prohibitive to use 
that code to investigate the JaVA based flow control since it needs millions of grid points. 
2) Computational accuracy: The flow generated by JaVA is complex small-scale flow, 
which interacts with a higher-scale mean flow. Low-order scheme may introduce large 
artificial damping and cannot capture some small-scale but important flow.

Several cases are shown here to validate the parallel high-order compact code 
(PHCC) in fluid dynamics computation. There are mviscid cases, viscous cases and 
moving boundary cases. Results are compared with theoretical analysis, experimental 
results and computational results produced by other codes, including third-order upwind 
scheme (CFL3D, Roe scheme). These comparisons show the accuracy and efficiency of 
PHCC.

6.2 Code Validations
6.2.1 Advection of Vortical Disturbance

Advection of vortical disturbance is about the vortex convection in an inviscid 
unsteady flow. This problem was used by many researchers126 as a testing case. It shows 
the scheme’s capabilities of accurately predicting vortical structure convection, which is 
very important in direct and large eddy simulations (DNS/LES). The initial condition is 
imposed by setting a  vortex, centered at the location (Xc, yc), and satisfying the following 
relations:126

u = U_ - CCy ~ yc)exp(—4 ) ,  v = C(* ~ x«>exp<-4)
R. iv

PC2 . 2 . 2 ( x -x c)2 + (y -y c)2
P = P - “ ^rrexpC -r2), r = -------------- —
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where u and v are the Cartesian velocity components in x and y direction, p and R. are 
static pressure and vortex core radius, respectively. The Mach number of the mean flow 

is set to 0.1. The nondimensional vortex strength parameter C/(LLR) is chosen to be - 

0.02. The density is assumed to be constant. A uniform Cartesian mesh with Ax=Ay=0.2 

is used. The grid size is 201x161 and the time step is set to 0.004.
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Figure 6.1 Comparison of vorticity contours and vorticity along centerline.

Figure 6.1a to 6.1c show the solution of CFL3D (Roe, 3rd order upwind), the 
explicit and the implicit compact scheme PHCC (CD6F10,6th order with 10th order filter) 
at t  = 8, respectively. Figure 6.1d shows the comparison of vorticity distribution along 
centerline. The results o f compact scheme show good agreement with the exact solution 
in terms of vorticity distribution. In fact, there is no eye-seeing difference between the 
results of compact scheme and exact solution in figures 6.1b, 6.1c and 6.1d. The
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where the wavelength L = 2 jc /a . Figure 6.2e shows the comparison of kinetic energy 
growth between PHCC and CFL3D. PHCC (CD6F10) shows good agreement with linear 
theory. However, there are noticeable differences between linear theory result and the 
result produced by the CFL3D (3rd order upwind scheme). Figure 6.2f shows the vorticity 
contours at t=70, which is given by PHCC. A vortex is rolling up because o f the 
developing of the small disturbance in shear flow.
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Disturbance Energy Growth for Shear Layer Instability Vorticity Contours at t = 70
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Figure 6.2 Evolution of small-amplitude disturbance in shear flow.

6.2.3 The Suddenly Accelerated Plane Wall, Couette Flow
This case shows the viscous effects on the flow formation in Couette flow. The 

Couette flow is generated by an impulsive motion of the lower wall in a channel. The 
flow in the channel is driven by the lower wall and at last reaches a linear velocity profile. 
The flow is assumed to be periodic in streamwise and spanwise directions. The simplified 
Navier-Stokes equation and the boundary conditions are

t £ 0 :  u = 0 f o r 0 < y < h
t> 0 :  u = U0 at y = 0, u = 0 at y = h

The exact solution can be found in Ref. 112, pp 92 and 278. The transient velocity 
distribution is

where Uo and To are the velocity and temperature of lower wall, respectively. The 
temperature o f upper wall is assumed to be To. The height of channel is h. hi the

9u _  82u 
d t 8y2

£  {erfc(2rnit +i\) - erfc(2(n+ l)ril - r tf} , r\

The temperature distribution at steady status is given by
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calculation, the flow condition is set as Re = 1.0 and Mw =0.05. The boundary conditions 
on the walls are set to be no-slip and isothermal conditions.

The velocity and temperature distribution at different time, which are obtained by 

using PHCC, are shown in Figure 6.3a and 6.3b. 5=0.25,0.5,1.0,1.5,4 corresponding to 
t = 0.0039, 0.0156, 0.0625, 0.1406, 0.5, respectively. They are in excellent agreement 
with the exact solutions (the exact solutions are not shown here because they are totally 
overlapped by the results of PHCC).
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Figure 6.3 Velocity and temperature distribution in Couette flow.

6.2.4 Flat Plate Boundary Layer
In boundary layer flow, the viscous effect is very important. The boundary layer 

flow over a flat plate is a well-known test case because its exact solution can be easily 
obtained. Under the incompressible assumption, the solution of the steady, laminar, flat 
plate boundary layer is given by Blasius equation.

f ' + - f f ' = 0
2

The Macb number of freestream flow is set as 0.1. Figure 6.4 shows comparison of the 
velocity profile between PHCC (CD6F10) and Blasius solution at different Rex number. 
Results show an. excellent agreement between high order compact scheme (CD6F10) and 
the analytic solution (Blasius solution).
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Figure 6.4 Velocity profile of boundary layer flow at Rex = 105 and 2.5xl05.

6.2.5 Flow past a Circular Cylinder
The flow over a circular cylinder has the characteristic of simple geometry and 

complex flow field. A lot of experimental and numerical studies have been done and 
there are reviews given by Berger and Wille8, and Williamson134. The flow over a 
circular cylinder shows the dependence on Reynolds number. There are two symmetric 
counter-rotating vortices behind the cylinder when Re is about 5 to 40. As the Re 
increases up to 190, the vortex begins to shed and forms the famous Karmann vortex 
street. As Re is larger than about 190, there are spanwise scales with wavelength of about 
four cylinder diameters4. When Re increases to 260, the flow generates three dimensional 
finer scales and the spanwise wavelength becomes about one cylinder diameter. With the 
increasing o f Re number, the vortex street becomes turbulence. After Re is bigger than 

3xl05, the laminar boundary layer on the cylinder begins to undergo turbulence transition 

and wake becomes more chaotic. After the critical point Re = 3.5xl06, the boundary layer 

on the cylinder becomes fiilly turbulent and the vortex street forms again.

The two-dimensional circular cylinder calculations have been used to be a 
validation case for long time. When Re is larger than, about 250, the three dimensional 
features become important and the two-dimensional calculations cannot produce accurate 
drag and lift coefficients71. So the three-dimensional calculations are necessary and are 
used.
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6.2.5.1 M a=0.1, R e=20 and 40

At Re number 20 and 40, the flow over circular cylinder is steady and consists of 
two symmetric counter-rotating vortices. Figure 6.5 show the results obtained by using 
PHCC. Figure 6.5a and 6.5b show the streamlines at Re = 20 and 40, respectively. Figure 
6.5c shows the history of Cd for both cases. Table 6.1 lists the comparison of vortex 
length and Co. Results obtained by PHCC display good agreement with experiment and 
other computational results.

Streamlines of Circular Cy Under
_______(Re«2Q>Ma«0»l)________

Streamlines of Circular Cylinder
_______(Re»40,Ma«0.l)________

Time Histories of CD for Circular Cylinder

Z5
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20 t

(c)
Figure 6.5 Circular cylinder flow at Re = 20 and 40.
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Figure 6.6 Circular cylinder flow at Re =100.
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Figure 6.7 Circular cylinder flow at Re = 3900.
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Figure 6.8 Circular cylinder flow at R e=3900.
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6.2.6 Efficiency of PHCC
To test the efficiency of PHCC, tests are conducted on fix size grids. Table 6.4 

lists the execution time comparison of CFL3D and PHCC. The execution time is for a 

viscous computation on one CPU. The 2D grid is 101x101 and the 3D grid is 

146x11x161. On both 2D and 3D tests, PHCC shows that its execution time is about 
three times faster than that of the CFL3D. These differences are attributed to the 
difference scheme, small code size and better optimization of PHCC.

Table 6.4 Execution time comparison between CFL3D and PHCC.
2D, grid 101x101 3D, grid 146x11x161

CFL3D PHCC CFL3D PHCC

T(sec) 8.318 2.659 360.08 121.19

|is/grid point/iteration 13.59 4.344 23.21 7.811

Tests were run at a Pc with AMD Athlon 1.4G CPU.

To test the parallel speedup and efficiency of PHCC, a 3D problem with fixed 

size grid (181x41x129) is run on Sun E10000 parallel computer and home made cluster 
computer. The Sun E10000 consists of 64 nodes. The cluster computer consists of 16 
nodes, but right now only six nodes (all are 2G PentiumlV) are available. The speedup 
and the efficiency are defined as

T Tspeedup= —L, n = — z r
Ta a-Ttt

where the Ti and Ta are the wall-clock execution time on 1 and n CPUs. The execution 
time, speedup and efficiency on two parallel computers are list in Table 6.5 and Figure
6.9. The execution time listed in the table is for 20 tune steps. There are three sub­
iterations in each time step.
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Table 6.5 Execution time, speedup and efficiency comparison.

Np

Sun E10000 Cluster

T(sec)
ps/grid

point/iteration
Speedup n T(sec)

ps/grid

point/iteration
Speedup *1

I 405.12 7.053 1.00 1.00

2 206.68 3.598 1.96 0.98

4 113.48 1.975 3.57 0.89

6 80.724 1.405 5.02 0.84

20 395’ 6.878'
There are lots o f  jobs running at E10000 and there are several jobs running in  one CPU. At the normaL speed these numbers should be 

about 130 and 23+ respectively.

Speedup onGridt 181x41x129 Efficiency on Grid: !8lx4lxL29
t.2

t.t

1!
09

07

06
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nn

Figure 6.9 Speed up and efficiency of parallel code.
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6.3 Summary
PHCC produces excellent results in the inviscid or viscous, steady or unsteady 

test cases. The PHCC results also show high efficiency in comparison with those of the 
CFL3D. The main purpose o f developing PHCC is to simulate the flow control for the 
buffet problem of the delta-wing/twin-tail configuration by synthetic je t actuators and jet 
and vortex actuators, which requires: 1). Very large number of grid points because o f the 
small size of the actuators as compared to the tail size. 2). More accurate turbulence 
simulation because the wake o f vortex breakdown is highly turbulent, and the buffet 
control using actuators is an interaction among the highly turbulent wake, the tails and 
the actuators. PHCC can do parallel computation and can deal with large-scale 
computational problem with a low cost cluster of personal computers. The high order 
scheme used in PHCC can be coupled with LES/DES turbulence model to produce more 
accurate turbulence simulation.
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CHAPTER 7: APPLICATIONS OF JET AND VORTEX ACTUATOR 
AND SYNTHETICE JET ACTUATOR

7.1 Introduction
To improve the aerodynamics and structural dynamics performance of aircraft, 

many flow control methods have been developed and used. These methods can be 
cataloged as passive flow control and active flow control. Passive flow control includes 
the use of stationary fences, strakes and flaps. Passive flow control methods have the 
advantages of being simple, low cost and easy to manufacture. But there are two 
significant disadvantages: passive flow control cannot be optimized for multiple flight 
conditions and passive flow control methods may add drag when control is not needed. 
Active flow control has the potential to minimize both disadvantages because active flow 
control can be adjusted for optimizing overall flight conditions. In the previous two 
chapters, methods of active flow control are introduced. They are blowing and suction, 
which need additional air, pump and pipe. A primary goal of active control is to develop 
efficient actuators. One of the promising candidates is the zero-net-mass flux system, 
which only needs electric input and does not require external plumbing. Therefore, 
vehicle weight would not be increased and the design might be relatively simple. There 
are two types of zero-net-mass devices: synthetic jet actuator, and jet and vortex actuator 
(JaVA). The mechanisms of generating vorticity are different for the synthetic jet 
actuator and JaVA. JaVA does not rely on external flow to generate a vortex, but 
synthetic jets use the interaction with an external flow to generate vorticity. Eel addition, 
the JaVA operates over a range of amplitudes and frequencies, potentially allowing 
control over different flight regimes.

This chapter presents the computational simulations of the JaVA induced flow. As 
mentioned early in Chapter 2, the JaVA consists of a cavity with a plate, which serves as 
the actuator surface and is driven by a mechanical driver (a shaker) or a piezoelectric 
driver. The actuator plate acts as a piston pumping air out of the cavity on the down- 
stroke and sucking air into the cavity on the upstroke. Previous research work80,81 
indicated that the actuator produced several flow fields (free jet, wall jet and vortex flow) 
according to amplitudes, frequency and slot spacing. Figure 7.1 shows the ranges o f these
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flow fields as a function o f the Reynolds number, Re, and the scaled amplitude o f the 
actuator plate, Sa. Figure 7.2 shows a typical time-averaged visualization for the flow 
field produced by JaVA operating in vortex flow mode.

g = 3  (b  = 9.65mm)
Figure 7.1 Flow fields produced by JaVAs Figure 7.2 JaVA at vortex flow mode

Next, the flow induced by the synthetic jet actuator is presented as a comparison. 
The application of the synthetic jet and JaVA for flow control is investigated. Buffet 
alleviation by using synthetic jet and JaVA is presented.

in this chapter, the computational simulations of JaVA (section 7.2) are conducted 
by using INS2D, an incompressible code, because of the very low Mach number of the 
flow. Other simulations are conducted by using PHCC.

7.2 Validation of Jet and Vortex Actuator Flows
7.2.1 Computational Model and Grid

The computational model of jet and vortex actuator consists of a cavity, an 
oscillating plate and the external region. To simulate the flow field induced by JaVA, 
three multi-block grids are used in the two-dimensional computation. These blocks are 

213x253 (red region), 65x165 (green) and 79x165 (blue). The block adjacent to the 

actuator plate moves with the plate motion. The grid near the solid wall is refined.

The cavity depth is 0.5in. The thickness and width of the oscillating beam are 
0.044in and 0.38in, respectively. The width of wide slot is 0.0376in. and the width of the 
narrow slot is about 0.004 ~ 0.005m. The grids are nondimensionalized by the width of 
oscillating plate.
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Figure 7.3 The multi-block grid used to simulate JaVA.

7.2.2 Flow Field Validation
With different combinations of the amplitude, frequency and slot spacing, jet and 

vortex actuator (JaVA) can generate several flow types, including free jet, wall jet and 
vortex flow. Two types of flow applications, a vortex flow and a jet flow, are presented. 
Vortex Flow

The first case presented is the vortex flow, which corresponds to the green 
rectangle in Figure 7.1. The main parameters for the vortex case are: 

f  = 190Hz Re = 146 Sa = 0.13
Figure 7.4 shows the time-averaged visualization of the experimental work, which was 
conducted by Lachowicz et al.80, for the vortex flow. Figures 7.5a — 7.5h show the 
average velocity contours from 1st cycle (referring to the actuator plate cycle) to 8th cycle, 
respectively. The development of the vortex flow is generated from 1st cycle to 8th cycle. 
The size and center o f the computed vortex shown in Figure 7.5h are in good agreement 
with the experimental result shown in Figure 7.4.

Figure 7.4 Time-averaged visualization for vortex flow
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Avenge Velocity Contours of Jev* 
lOw l>2aiqrci*5,.*.t3.St^l46,f*l9a»&M>2gnfl

a

J k

Avenge Velocity Cooioun ofJevm 
(Ow20flicydc.S>*.t3.R,»M6»f* tto»fin»Zpid)

Avenge Velocity Contours o f  Jev*.
lO«r4*tt>cycta.St».l3..*v*t4«kr«lM.lW2|r«n

Aveng* Velocity Contours o f  Jev* 
lOMr6>7fecycfc.S»*.tl»Rv*!4Ckf«l9a»fi»Z|n(t)

g

Avenge Velocity Coouun of J m  
(OwxJ-Uticyck.S.g.U. r»190.ft»—ZgnO)

Aveng* Velocity Contours of Java 
(Ovtr5-*«hcy«k.S#* .l3 . R »» t4« .f» l90 .& »2 |n rf)

Aveng* Velocity Contours o f  Jev*
(Owt TO* cyck. S ^ .tX  140. C* 190. fin»2 pvQ

Figure 7.5 Computational simulations of JaVA flow field for vortex flow.
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Jet Flow

The second flow presented is the angle free jet flow, which corresponds to the 
green circle in Figure 7.1. The main parameters for the angle free jet flow are: 

f  = 70Hz Re = 56 Sa = 0.l3 
Figure 7.6 shows the time-averaged visualization of the experimental work, which was 
conducted by Lachowicz et al.80, for the jet flow case. Figures 7.7a — 7.7h show the 
average velocity contours from 1st cycle to 8th cycle, respectively. The development o f 
the angle free jet flow is shown from Figure 7.7a to Figure 7.7h. The angle o f the free jet 
shown in Figure 7.7h is in good agreement with the experimental result shown in Figure 
7.6.

______
Narrow
Sap

Figure 7.6 Time-averaged visualization for jet flow
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Figure 7.7 Computational simulations of JaVA flow field for jet flow.

7.3 Validation of Synthetic Jet Actuator
Recently, there have been massive experimental and computational investigations 

published on the synthetic jet actuators. The cases presented here are for validation 
purpose.
7.3.1 Computational Model

The model of the synthetic jet actuator consists of a cavity, a nozzle and an 
external region. In the computational simulation four blocks, as shown in Figure 7.8, are 
used. They are cavity (red block), nozzle (green block) and external zone (blue and cyan
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blocks). The bottom of the cavity is capable of oscillating to generate synthetic jet. The 
grids are nondimensionalized by the width of jet nozzle, d, which is 0.5mm. The length 
of nozzle is equal to d. The nondimensional width and length of cavity are 15 and 10, 
respectively. The geometry parameters are obtained from Ref 105. The grid sizes are 

301x151 (red block, cavity), 97x117 (green block, nozzle), 331x149 (blue block, external 

region I) and 331x156 (cyan block, external region 2), respectively.

The reason of dividing the external region into two blocks is to keep loading 
balance in parallel computation. Then the four blocks can be run on four CPUs to save 
time.

•00 0 SO -to *5 O 5 10

Figure 7.8 Multi-block grid used to simulate synthetic jet actuator.

7.3.2 Validation cases of Synthetic Jet Actuator
For this case, the conditions are set as the standard sea level atmospheric 

conditions. The reference velocity is 22m/s, which corresponds to M = 0.065. The 
oscillating frequency of cavity bottom is set as 1000Hz. These flow conditions are 
obtained from Ref 105.There are 8000 time steps for each oscillation period and the time 
step is set as 0.0055. In each tune step, five sub-iterations are used. The computations are 
conducted on four Intel P4 2G cluster and they used about 1 second per time step.

Figures 7.9a— 7.9d show the instantaneous vorticity contours at t  =  10T, 10.25T, 
10.5T and 10.75T, where T is the oscillation period, respectively. The reduced frequency 

is go, which is defined as go =2n/T. Figure 7.9e shows the published computational results 

from Ref. 105. The comparison o f time mean velocity at nozzle exit is shown in Figure
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7.10. The instantaneous velocity at nozzle exit is shown in Figure 7.11. All of these 
results show good agreement with other published computational results.105

Vorticity Contour* of Synthetic Jet at M k 20x  Vorticity Contoun of Synthetic Jet at o t*  (20*1/2)*

Vorticity Contour* of Synthetic Jet at tat«(20* I)* Vorticity Cbntout* of Synthetic Jet at « t  ■ (20*3/2)*

m=o

0f=1E (Qt=3TZ/2

Figure 7.9 Instantaneous vorticity contour o f synthetic jet flowfield. (a)-(d) Present PHCC. (e) 
Ref. 105.
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be useful in buffet control. The potential application of oscillating exciting in buffet 
control was mentioned in Ref. 137. However, buffet alleviation was not shown in the 
computational case presented in Ref. 137, where the oscillating amplitude of Cp was 
decreased near trailing edge but increased near leading edge. The average oscillating 
amplitude of Cp over whole airfoil also was increased. So, the position, the oscillating 
frequency and amplitude of actuator should be investigated to achieve the optimal buffet 
control at different flow conditions because some combinations of excitation position, 
frequency and amplitude may not produce any good effect or may produce adverse effect 
on buffet control.

Figure 7.12 Delta-wing/twin tails configuration and proposed model for buffet alleviation 
by using actuators on twin-tails.

Figure 7.12a shows a  delta-wing/twin-tail configuration at high angle of attack. 
Vortices generated from leading edge of delta-wing breakdown before they reach the 
twin tails. Highly turbulent wake would produce pressure fluctuation on the tails. Figure 
7.12b shows a proposed buffet alleviation by using actuators on the surface of twin tails. 
Because of the limitation o f computer resources, a simplified 2D model is investigated 
here. Figure 7.13a shows the flow field on the plane along the vortex core. Figure 7.13b 
shows the simplified 2D model of buffet alleviation by attaching actuator on airfoil. 
Numerical simulation is used in this research in order to investigate the best parameter, 
such as frequency and maximum velocity amplitude, for buffet control.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



109

Figure 7.13 Plane along vortex core (a) and the simplified 2D model of buffet alleviation 
by using actuators on airfoil (b).

The simplified 2D model consists of an airfoil and an actuator. The airfoil is a 
NACA0012 airfoil. The synthetic jet actuator is attached near 1% airfoil. The jet and 
vortex actuator is placed on the airfoil upper surface at 1.5% chord station. Figure 7.14 
shows the grid used to simulate flow control by using a synthetic jet actuator. There are 

four grid blocks, which are 104x10 l(red, cavity), 63x45(green, nozzle), 378x63(blue, 

external region 1) and 378x64(black, external region 2). These four blocks are run using 
four CPUs separately. Figure 7.15 shows the grid used to simulate flow control by a jet 

and vortex actuator. There are three grid blocks, which are 95x51(red, cavity), 

405x68(green, external region 1) and 405x69(blue, external region 2). These three blocks 
are run using three CPUs separately. The thickness of oscillating plate of the jet and 
vortex actuator is assumed to be zero in this computational application.

The external flow conditions are set as: Ma = 0.2, Re = 105, and the airfoil angle 

of attack is a  = 15°. At these conditions the flow will separate on upper airfoil surface 
near the leading edge. The pressure on the upper surface of airfoil will be highly unsteady 
and produce oscillating force on the airfoil. It needs to be noted that one important 
difference between the simplified 2D model and the twin-tail buffet is that the unsteady 
excitation in the simplified 2D model is generated by flow separation near upper surface 
of airfoil at a high angle of attack; while the pressure oscillation acting on the twin-tail is 
due to a highly turbulent wake that is generated by the vortex breakdown. However, if  the 
flow around the airfoil or twin-tail is assumed to be a vibration system with numerous
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springs, active control of such, systems — exciting some frequencies or suppressing some 
frequencies -  becomes similar. In this section the effects of different actuator parameters 
on the pressure response are investigated. All computations are obtained by using PHCC.

•05 0 0 5  I 1.5X
zoom in

Figure 7.14 Grid used for flow control using a synthetic jet actuator.

zoom in
Figure 7.15 Grid used for flow control using jet and vortex actuator.

In this study, two parameters (jet velocity and oscillating frequency) for synthetic 
jet actuator and three parameters (velocity and frequency of oscillating plate, and 
direction o f JaVA) for JaVA are investigated. The table below shows the parametric 
study of active control by both actuators.

_________________ Table 7.1 Parameters for synthetic jet actuator_________________
exciting frequency fe

0.1 0.2 0.5 1. 2. 4. 10.
0.05 Jal Ja2 Ja3 Ja4 JaS Ja6 Ja7

V* 0.1 Jbl Jb2 Jb3 Jb4 Jb5 Jb6 Jb7
0.2 Jcl Jc2 Jc3 Jb4 JcS Jc6 Jc7

* V, maximum velocity at nozzle exit
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Table 7.2 Parameters for jet and vortex actuator
exciting frequency fe

0.1 0.2 0.5 1. 2. 4. 10.

0.02 val va2 va3 va4 vaS va6 va7
val- va2- va3- va4- vaS- va6~ va7~

vb+ 0.035 vbl vb2 vb3 vb4 vb5 vb6 vb7
vbl- vb2- vb3- vb4- vb5- vb6- vb7-

0.05 vcl vc2 vc3 vc4 vcS vc6 vc7
vcl- vc2- vc3~ vc4- vc5- vc6~ vc7-

+ Vb, maximum velocity o f oscillating plate
-  Narrow slot close to leading edge

Because there are a lot of figures and some of them do not show appreciable 
control effect on the flow field, only the cases in Bold Italic are shown here.

Figures 7.16 — 7.39 show comparisons between the no-control case and control 
cases. These comparisons include the time history of pressure difference at 50% airfoil 
and power spectral density of pressure difference, the time history of normal force and 
power spectral density of normal force. The normal force is defined as the force normal 
to the mean plane of airfoil. The symbols of control case and corresponding parameters 
are listed in the table above.

Figures 7.16 -  7.23 show the results o f using the synthetic jet actuator. The best 
control is achieved in control case Jc6 (Figure 7.22). The pressure difference PSD near 
low frequencies (1-3) are reduced more than 80%. Peak of pressure difference PSD is 
shifted to near a value o f 4. The peak of normal force PSD is reduced by up to 40%. Low 
exciting velocity (control case Ja6, Figure 7.18) is not as good as high exciting velocity 
(control case Jc6). Very high exciting frequencies do worse job (control case Ja7, Figure 
7.19 and control case Jc7, Figure 7.21). Low exciting frequencies do not have much 
effect (control case Ja3, Figure 7.16 and Jc3, Figure 7.20).

Figures 7.24 — 7.39 show the results of using the je t and vortex actuator. The best 
control achieved by JaVA is the control case vc5 (Figure 7.33) and vc5- (Figure 7.37). 
The peak of pressure difference PSD is shifted toward the exciting frequency. The normal 
force PSD is reduced more than 50% except at exciting frequency, compared to the no­
control case. High exciting frequencies (vc7, vc7-) or low exciting frequencies (vc3, vc3-)
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and low exciting velocity (va5, va5-) have little or worsening effect. The direction of 
JaVA has little effect on control.

Comparing the effectiveness of synthetic jet actuators and JaVA, JaVA achieves 
best control at a relatively low velocity (vc5 and vc5-), while the corresponding synthetic 
jet actuator (Ja6) does not produce good effect.

It is important to note that the exciting frequencies and velocities presented here 
are not optimal. The values o f these parameters used here only show an approximate 
effect on the characteristics o f flow field near airfoil. Based on the comparison of all the 
control cases, it can be concluded that actuators (synthetic jet, JaVA) can produce good 
effect on buffet control if  they are operated at carefully selected frequencies, which are 
coupled with the flow system, and carefully selected velocities, which are big enough to 
change the pressure characteristics near the airfoil. It also needs to be noted that different 
flow problems have different flow properties. So the exciting frequencies should be 
adaptive adjusted to these different flow properties.
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Figure 7.18 Comparison between no-control-case and control-Ja6.
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Figure 7.21 Comparison between no-control-case and controI-Jc5.
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Figure 7.24 Comparison between no-control-case and control-va3.
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7.5 Summary
Jet and Vortex Actuators (JaVA) have been computationally investigated. A 

computational simulation model, which uses the hill Navier-Stokes equations, has been 
developed and applied to the JaVA. Computational simulations duplicate two types o f 
flow, vortex flow mode and flee jet mode, and show good agreement with the 
experimental data. Computational simulations of synthetic jet actuator are conducted as 
validation cases.

The model of delta-wing/twin tails buffet alleviation by applying actuator on the 
surface o f twin tails is simplified to a 2D model, which consists of an airfoil and an 
actuator (a synthetic jet actuator or a JaVA). Parametric investigation of the actuator has 
been conducted. With proper selection of the parameters values, the oscillating amplitude 
of the pressure difference and the normal force acting on the airfoil can be reduced, the 
peak of the normal force PSD can be reduced and the frequencies at which the peaks of 
the pressure difference PSD responses occurred can be shifted to higher frequency levels. 
Too low or too high exciting frequencies have either no control effect or adverse control 
effect. Low exciting velocity may not produce enough disturbances to suppress the 
pressure oscillation.
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case, if the control ports are adjusted adaptively. Thus, this adaptive flow control method 
can benefit buffet control during aircraft maneuvering, when the angle of attack changes 
with time.

In Chapter 6, a high order compact scheme code (PHCC) has been developed for 
its advantages of computational accuracy and efficiency. Validations of the code are 
carried out for different flow cases. Compared with other computational simulation 
results and experimental data, the PHCC shows the expected high accuracy and 
efficiency.

In Chapter 7, Jet and Vortex Actuators (JaVA) have been computationally 
investigated and applied to an airfoil at a high angle of attack with unsteady separated 
flow. A computational simulation model has been developed and applied to the JaVA. 
The results o f the computational simulations duplicate two types of flow -  a vortex flow 
mode and a free jet mode, and show good agreement with the available experimental data. 
Computational simulations of synthetic jet actuator are also conducted and validated. The 
model of delta-wing/twin tails for buffet alleviation using actuators on the surface of twin 
tails is simplified to a 2D model, consisting o f an airfoil at a high angle of attack and an 
actuator placed near the airfoil leading edge. Parametric investigations of the actuators 
are carried out. It has been shown that actuators (synthetic jet actuator or jet and vortex 
actuator) can reduce the oscillating amplitude of pressure difference acting on the airfoil 
and shift the frequencies at which the peaks of the PSD responses occurred. It also has 
been shown that with proper selection of the parameters, actuators can suppress the 
pressure level and variation near airfoil; hence, they will be beneficial for tail buffet 
alleviation.

8.2 Recommendations
The research work done in this dissertation has introduced the basics and 

foundations for continuing more targeted research work on the problem of twin tail buffet 
alleviation. Conducting computational simulation o f 2D model with unsteady incoming 
flow, which originates from a typical breakdown vortex flow, should be the next step in 
order to assess the control effectiveness of the actuators. A parametric study which
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includes optimal positions, exciting frequencies, phases and velocity for the actuators 
should be performed.

Once the control effectiveness is established for the 2D model, research work 
should be directed to the 3D model of the delta-wing/twin-tail configuration. Applying 
the actuators on the surface of twin-tails and investigating the optimal distributions, 
exciting frequencies, phases and velocity of the actuators should be the focus o f this stage 
of the research work. However, considering the size of tail (-meter), the size of the 
actuators (-millimeter) and tens or hundreds of actuators attached on the surface of the 
tails, then tens of million grid points are needed and the 3D simulation is still a task that 
will require very extensive computational hardware and software resources. Parallel 
computation with a cluster o f PC’s with more than several hundred processors is 
envisioned to be the approach for handling the 3D type problems.
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