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ABSTRACT 

EXCLUSIVE 7T" ELECTRO-PRODUCTION FROM THE 

NEUTRON IN THE RESONANCE REGION 

Jixie Zhang 

Old Dominion University, 2010 

Director: Dr. Gail E. Dodge 

The study of baryon resonances is crucial to our understanding of nucleon structure. 

Although the excited states of the proton have been studied in great detail, there are 

very few data available for the neutron resonances because of the difficulty inherent 

in obtaining a free neutron target. To overcome this limitation, the spectator tagging 

technique was used in one of the CEBAF Large Acceptance Spectrometer (CLAS) 

collaboration experiments, Barely off-shell Nuclear Structure (BoNuS), in Hall-B at 

Jefferson Lab. We have constructed a radial time projection chamber (RTPC) based 

on the gaseous electron multiplier (GEM) technology to detect low momentum re­

coil protons. Electron scattering data were taken in Fall 2005 with beam energies 

of 2.1, 4.2 and 5.3 GeV using a 7 atmosphere gaseous deuterium target in conjunc­

tion with the RTPC and CLAS detectors. We have studied the exclusive reactions 

D(e, e'ir~pChAS)p and D(e, e'TT~pRTPC)p, in which the proton was detected either in 

CLAS or in the RTPC. Measurements of the absolute differential cross section over 

a large kinematic range are reported. 
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CHAPTER I 

INTRODUCTION 

It is well known that matter is composed of atoms and that atoms have a nucleus 

and electrons that move around it. A nucleus is made up of nucleons, which is a 

collective name for protons and neutrons. Since the discovery of the neutron by J. 

Chadwick in 1932, protons and neutrons were assumed to be the elemental particles 

of matter, until the 1960s. As time went on, more and more evidence that the proton 

and neutron had internal structure was discovered. In 1964, the constituent quark 

model (CQM) was proposed by Gell-Mann and Zweig to explain particles and their 

strong interactions in the language of quarks [1] [2] [3]. In the CQM, particles made 

from quarks fall into one of two groups: mesons and baryons. Mesons are composed 

of quark and anti-quark pairs, while baryons are composed of three quarks. Mesons 

and baryons together form the family of hadrons. The quantum numbers of a hadron 

can be formed by considering the quark components, which are shown in Table 1. 

TABLE 1: Quarks and their properties 

Symbol Name Mass (GeV/c2) Charge (e) Isospin 
d Down 0.0015 - 0.005 -1/3 1/2 
u Up 0.003 - 0.009 2/3 1/2 
s Strange 0.06 - 0.17 -1/3 0 
c Charm 1.1 - 1.4 2/3 0 
b Bottom 4.1 - 4.4 -1/3 0 
t Top 168.6 - 179.0 2/3 0 

Although this model succeeded in explaining most hadrons, it violated Fermi-

Dirac statistics, which was discovered by Fermi in 1952 [4], when trying to describe 

the A++ hadron. The A++ has spin | and charge +2, and is interpreted as a 

uuu bound state with zero orbital angular momentum and three parallel spins. In 

that case the wave function is completely symmetric, which would violate the Pauli 

exclusion principal. In order to explain this dilemma, in 1965 and 1966, Han and 

Nambu [5] and Greenberg [6] independently introduced another quantum number 

This dissertation follows the style of Physical Review C. 
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into the CQM. It was proposed that quarks have another quantum number with 

three possible states which can change from one to the other. This quantum number 

was later named "color", and its three states are known as red, green and blue. This 

"color charge" provides an additional SU(3) gauge degree of freedom to the CQM. In 

the 1970s, Politzer [8] [9] and Wilczek and Gross [7] realized that quarks and gluons 

couple to the color change in a theory named Quantum Chromodynamics (QCD). 

QCD has two unique properties, asymptotic freedom and confinement. Asymptotic 

freedom means that in very high-energy reactions, quarks and gluons interact very 

weakly. Asymptotic freedom tells us that if the quarks are close enough to each 

other, the strong interaction between them is so weak that they behave almost like 

free particles. Confinement means that the force between quarks does not diminish 

as they are separated. Because of this, it would take an infinite amount of energy 

to separate two quarks. Although not analytically proven yet, confinement seems to 

be true because it explains the consistent failure to find a free quark despite many 

searches. 

Despite the highly nonlinear nature of the strong force, asymptotic freedom means 

that one can use the perturbative approximation accurately at high energy since 

quarks and gluons can be treated as nearly free. This technique is known as pertur­

bative QCD (pQCD) and enables us to calculate many aspect of experiments at high 

energy. Unfortunately, many processes at low energy can not be calculated directly 

with pQCD because free quarks and gluons are not allowed by confinement. There­

fore physicists separate strong interactions into two parts: the short-distance part 

(for which pQCD is available) and the long-distance part (non-perturbative). The 

long-distance parts can be measured with a global fit to experiments. In such a way, 

scientists obtain a partly calculable prediction of particle reaction processes. The 

universal long-distance functions include the parton distribution functions (PDF), 

generalized parton distributions (GPD), and many kinds of form factors and struc­

ture functions. 

Since 1932, the structure of nucleons and their excited states, known as reso­

nances, has been an active area of experimental investigation. Electron scattering as 

a probe of the internal structure of nucleons has been widely used. Large and suc­

cessful efforts have been dedicated to obtain accurate measurements of the inclusive 

electron scattering cross section. Unfortunately, the nucleon resonances are wide 

and overlapping, so inclusive measurements are not capable of distinguishing and 
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studying all of them. More information can be available by measuring the other out­

going particles together with the scattered electron. Such measurements are known 

as "exclusive" because the final state of the reaction is completely determined. 

In this dissertation we will describe an experiment, Barely off-shell Nuclear Struc­

ture (BoNuS), which was carried out in Hall B of the Thomas Jefferson National 

Accelerator Facility (TJNAF) in the Fall of 2005. Electrons with beam energies of 

1.1005, 2.1426, 4.2262 and 5.2681 GeV were used to bombard a gaseous deuterium 

target. A Radial Time Projection Chamber (RTPC) was built to measure low energy 

spectator protons to study the D(e, e'ps)X reaction. With this detector, protons with 

momentum as low as 67 MeV/c were measured. We analyzed these experimental data 

to study the D(e,e'7r~p)p reaction, in order to investigate neutron resonance struc­

ture. This thesis is dedicated to the analysis of exclusive negative pion production 

from the deuteron for the purpose of studying the neutron resonances. 
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CHAPTER II 

THEORETICAL BACKGROUND 

II. 1 MOTIVATION 

The objective of this analysis is to study the resonances of the neutron. The 

proton (uud quarks) and neutron (udd quarks) are isospin partners of each other. 

The electromagnetic force on a proton and neutron is different, since their electric 

charge is different. There is also a slight difference between the mass of an up and 

down quark. However, these differences are negligible compared to the magnitude 

of the strong force. Since the strong force on an up quark and a down quark are 

the same, the quark model does not predict important differences between proton 

structure and neutron structure. From the view of the strong force, it can even be 

assumed that the proton and the neutron are the same particle but in different states. 

The difference between these two states can be characterized by the z component 

(Iz) of their isospin (I). For the proton Iz — \ while for the neutron Iz = Of 

course protons and neutrons are more complicated in reality because their structures 

include qq pairs (the sea) and gluons. 

Many electron-proton scattering experiments have been carried out in the past 60 

years and a lot of useful data have been measured, both inclusive and exclusive, for 

the proton. However, due to the fact that there is no free neutron target, very few 

neutron data are available. The free neutron /3-decays with a half life of about 10.3 

minutes, but some bound states of the neutron are remarkably stable. Deuterium, 

an isotope of hydrogen, whose nucleus consists of one proton and one neutron, is the 

best alternate target for neutrons, because it is the simplest and most loosely bound 

state that includes a neutron. However, because the neutron and the proton in a 

deuteron are still bound, a few corrections must be considered in order to extract 

the neutron information. For example, binding effects, off-shell effects and the Fermi 

motion of the nucleon play important roles. 

Figure 1 shows the cross section in the resonance region for both the proton and 

deuteron measured by Jefferson Laboratory (JLab) as well as the fit to the Stanford 

Linear Accelerator Center (SLAC) data. In the case of the proton the three main 

resonance structures, known as A(1232) and the 2nd and 3rd resonance regions, 
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Q2=1.5 (GeV/c)2, E = 3.245 GeV, 0 = 26.98° 
i—i—i—i—|—i—i—i—i—|—i—i—i 

* JLab DATA 

SLAC: fit 

D 

W2(GeV)2 

' • « • I 1_ J I I L-
1.5 2.5 

W2(GeV)2 
3.5 

FIG. 1: Inclusive electron scattering cross section for the proton (top) and deuteron 
(bottom) measured by Jefferson Lab (JLab) at Q2 = 1.5 GeV2 and 6 = 26.98°. The 
red points are JLab data and the blue curve is a fit to the Stanford Linear Accelerator 
Center (SLAC) data. The or (black curve) and CTNR (green curve) in the top figure 
are the resonance fit and non-resonance background fit, respectively. 
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can be seen clearly. However, the deuteron spectrum has been smeared out for the 

reasons mentioned above. New theoretical models and new technology are needed to 

deal with binding effects, off-shell effects and the Fermi motion in order to extract 

more detailed information about the resonances of the neutron. 

II.2 ELECTRON SCATTERING 

Electron scattering is a powerful tool to study the internal structure of hadrons. 

While elastic scattering can be used only to study the ground state of the particle, 

inelastic scattering can be employed to investigate the complicated excited states of 

the particle. 

FIG. 2: Diagram of electron scattering in the one (virtual) photon exchange approx­
imation. 

Fig. 2 shows a diagram of electron scattering. In this picture, the electron comes 

in with initial four-momentum (E,k) and goes out with final four-momentum (E',k') 

and with an angle 6e with respect to the incident direction. A virtual photon is 

emitted that interacts with a target nucleon N at rest, whose four-momentum is 

characterized as N(M,0). The four-momentum of the virtual photon here can be 

characterized as q(u,q), where u = E — E' and q = k — k'. The squared four-

momentum transfer Q2 is defined as the negative mass square of the virtual photon 

p 
O 
p 
o 
o 

Q2 = -q2 = 4££'sin2^ 
& 

(1) 
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and the invariant mass of the photon-nucleon system is given by 

w = y/(q + N)2 = y/M2 + 2Mv - Q2 . (2) 

The cross section for inelastic electron scattering from a nucleon target can be 

written as 
d2(J = ffMo,t(21Vi(i/, Q2)tan2 %  + W 2{V, Q 2 ) ) .  (3) 

dE'dn ,vlottv ^ ' 2 

Here <7Mott = ^jf— cos2 y is the so called Mott cross section, which is the cross 

section for electron scattering from a point like particle in a Coulomb field and a = 

1/137 is the electromagnetic coupling constant. W\ and W2 are inelastic structure 

functions. For convenience, we introduce the transverse and longitudinal component 

cross sections aT and crL, 

aT = ̂ ~^lM2)' (4) 

47r2a 
cr, = 

v ,2 

W 1 ( u , Q 2 )  +  ( 1  +  7 - ) W 2 ( V , Q 2 ) \  .  (5) 
Jsr7 v Q 

In the equation above, 
W 2  -  M 2  

K = J1 (6) 
7 2 M ' w 

is introduced as the photon equivalent energy, the laboratory energy necessary for a 

real photon to excite a hadronic system with center of mass W. Using Eqs. (4) and 

(5), Eq. (3) then can be written as 

^ = r„(at+£„L), (7) 

where T,, is the flux of the virtual photon, which is given by 

r — 01 ^ ^1 ^ (8^ 
" 2vr2 E Q2 1 -e' 1 j  

and e is the degree of virtual photon polarization defined by 

= ( l + 2 ( l + £  e = (1 + 2~ tan2 1 = (1 + 2(1 + tan2 1. (9) 

II.3 RESONANCES 

The ground states of most hadrons are relatively stable and they decay by the 

weak or electromagnetic interaction. There also exists many excited states, which 
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are usually highly unstable particles, called resonances. Excited states usually decay 

through the strong interaction with a very short life-time of about 10~23 seconds [10], 

so they are very difficult to detect directly. However, the existence of resonances can 

be inferred from the observation of the more stable hadrons to which they decay. For 

example, in an electron neutron inelastic scattering, a neutron may absorbs a virtual 

photon and turn into A resonance: 

7* + n —> A , (10) 

which then decays bv the reaction 

A —* 7T~ + p . (11) 

This reaction has been illustrated in Fig. 3, where the time between when the A is 

y* (v,q) 

FIG. 3: In an electron neutron inelastic scattering event, a neutron absorbs the 
virtual photon and turns into a resonance state A which then decays to a tt~ and 
proton. 

produced and when it decays is too short to be measured. The observation of this 

reaction therefore is written as 

e + n —> e' + ir~ + p, (12) 

but the same final state may be produced from many other resonant or non-resonant 

reactions. 

Basically a resonance is considered to be a "particle" since it has all the character­

istics that a particle has, i.e. mass (energy), charge, spin, isospin and other quantum 
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numbers. However, we still use the term "resonance" because its life time is short 

and its energy spans a large range. Therefore the resonance energy, width and half 

life are usually used to describe a resonance. For example, if one plots the probability 

of finding a 7r~p final state as a function of the invariant mass, W = yj{p1 + w^)2, 

where and IT1' are the four-momentum of the proton and n~ respectively, one sees 

a broad peak centered at 1.232 GeV for the lowest lying A resonance. 

The notation that we use to characterize a particular resonance depends on its 

quantum numbers. There are currently 6 families of resonances: N (I = |), A 

(I = |), A (I = 0), S (/ = 1), E (I — |) and f2 (/ = 0). The numbers inside the 

parenthesis is the isospin of this type of resonances. These families are organized in 

the following way: 

• N are the resonances with I = | that consist of u and d quarks only. 

• A are the resonances with I = | that consist of u and d quarks only. 

• A are the resonances with 1 = 0 that consist of both u and d quarks plus at 

least one quark from s, c and b. The c or b quarks must be included in the 

name as a subscript. 

• S are the resonances with 7=1 that consist of both u and d quarks plus at 

least one quark from s, c and b. The c or 6 quark must be included in the name 

as a subscript. 

• S are the resonances with I = \ that consist of one quark from u or d plus 

two quarks from s, c and b. The c or b quark must be included in the name as 

a subscript. For example the dsc and dcc bound states are written as and 

2+, respectively. 

• Q are the resonances with 1 = 0 that have no u or d, quarks. Again, the c or b 

quarks must be included in the name as a subscript. 

II.4 PION PRODUCTION 

As mentioned above, resonances usually decay via the strong interaction, so the 

decay products must be a baryon (three quarks state) accompanied by one or more 

mesons (two quarks state). Referring back to the masses of quarks in Table 1, one 
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can see that a meson that is a bound state of an up and a down quark must be the 

lightest one in the hadron family. There are three combinations of u and d quark 

and anti-quark pairs: 7T+(ud), 7r°("^fei) and tt~(ud). These three bound states are 

also known as pions. A pion production process is a reaction whose decay products 

contain at least one of these three pions. Since the pions are the lightest hadrons, 

the pion production process is one of the most common ways to study the nucleon 

resonances. The four simplest pion production reactions from proton and neutron 

targets in electron scattering can be summarized as 

7* + P —>• ?r+ + n , (13) 

7* + P —> 7T° + p , (14) 

7* + n —> tt" + p , (15) 

7* + n —• 7T° + n . (16) 

Reaction (16) is very difficult to study because there are two neutral particles in the 

final state. Reaction (15) is problematic due to the lack of a free neutron target, as 

mentioned above, but it is the channel on which we are focused in this analysis. 

The kinematics of 7r~ electro-production from the neutron is shown in Fig. 4. The 

kinematic variables u, q, Q2 and W are the same as described in Section II.2. The 

leptonic plane is formed by vector q and the direction of the beam line. The hadronic 

plane is formed by the momentum vector of the emitted 7r~ and the momentum of 

the center of mass (CM) system (the virtual photon plus the moving neutron target: 

q 4- n). The three axes of the CM frame can be defined as: 

q + n 
|q + n| 
q x n ; 

y x z .  

9* and <p* are the polar angle and azimuthal angle of the outgoing 7r~ in the CM 

frame. The invariant mass W defined in Eq. (2) was derived assuming that the target 

nucleon is at rest. In the BoNuS experiment our target neutron has Fermi motion 

inside the deuteron, so the invariant mass of the virtual photon plus neutron system 

becomes 

W' = \J(QI* + NV)2 . (17) 
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7V~ 

' Leptonic plane / 

Hadronic plane 

FIG. 4: Kinematics of 7r~ electro-production from a moving neutron. The leptonic 
plane is formed by vector q and the direction of the beam line. The hadronic plane is 
formed by the momentum vector of the emitted 7r~ and the center of mass momentum 
of the virtual photon and the moving neutron. 9* and (f>* are the polar angle and 
azimuthal angle of the outgoing TT~ in the C.M. frame. 

Since we are using an electron beam and a deuterium target, reaction (15) can 

be rewritten as 

e + D —> e' + 7r~ + p + pS)  (18) 

where p s  stands for the spectator proton, which is not involved in the reaction. 

The cross section for this exclusive reaction with unpolarized electron beam and 

unpolarized deuteron target is given by 

^  = r . ^ ,  ( 1 9 )  
dE>dnedn* vdn*' 

where F,, is the virtual photon flux given by Eq. (8) and is the differential pion 

photo-absorption cross section: 

—— = crT + ecrL + \/2e(l + e)aLT cos fa + eaTT cos 2 fa . (20) 
011 * 

In this equation, aT and aL are the transverse and longitudinal components of the 

differential pion photo-absorption cross section, crLT is the longitudinal-transverse in­

terference term and aTT is the transverse-transverse interference term. All of them are 
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functions of W', Q2  and 9*. In this analysis, we have measured JQ2 ,  cos 9*,fa) 

and have extracted the structure functions aT + eaL , aLT and crTX for comparison with 

existing phenomenological models in the resonance region. 

II.5 FITS TO EXISTING DATA 

There exist several phenomenological models which describe the pion production 

cross section in the resonance region. Two of the widely used models are MAID 

and SAID. The MAID model is a unitary isobar model for pion photo- and electro-

production on the nucleon, which was developed in Mainz, Germany [11] [12] [13]. 

The SAID model is another similar database provided by the nuclear physics group at 

George Washington University (GWU) [14]. Both of these models are phenomeno­

logical fits to previous photo- and electro-production data, covering the center of 

mass energy W up to 2.0 GeV and Q2 up to 4.0 GeV2. Most of the data points fitted 

by these two models came from proton measurements. A very small fraction of the 

data came from deuteron target experiments in which the ratio of TT~ production to 

7r+ production was measured [16, 17, 18, 19, 20, 21, 22, 23]. For example, in the 

SAID database, there are in total about 100,000 pion electro-production data points, 

but only 890 of them belong to deuteron or helium measurements. 

II.6 EXTRACTING THE CROSS SECTION 

The goal of this analysis is to provide 7r~ electro-production cross sections over a 

large kinematic range to the phenomenological models mentioned above. These cross 

sections will be added to the database and should improve the fits, such as MAID 

and SAID, for the neutron. However, as mentioned previously, using a neutron in a 

deuteron target is not the same as a free neutron target, even if the spectator proton 

is detected. Although the momentum of the spectator proton is measured, we still 

need to deal with the off-shell effects and final state interactions. 

II.6.1 Off-shell Effects 
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One way to investigate the effects of the neutron being off-shell is to consider the 

ratio of the off-shell to on-shell neutron structure function F2: 

T?n bound 
_ 2 

Rn 
~ F2

nfree ' 

The ratio Rn  calculated by Melnitchouk and Schreiber [24, 25] is plotted in Fig. 5 as 

a function of spectator proton momentum ps for different values of Bjoken x, which 

is defined as 

x = (22) 

where q'J  is the four-momentum of the virtual photon and N'J /  is that of the target 
q2 

with mass M. If the target is at rest then the Bjoken x can be reduced to x = 

1.05 

x=0.3 

0.4 

0.95 

^ 0.9 

0.85 

0.8 
1 0 0  200 300 400 0 

\p\ (MeV/c) 

FIG. 5: Calculation of the ratio of bound to free neutron structure function as a 
function of the spectator proton momentum. Predictions for various Bjoken x values 
are shown [24, 25]. 

One can see that the off-shell effects are small (less than 5%) when p s  is below 300 

MeV/c, regardless of the value of x. 
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II.6.2 Final State Interactions 

Final state interactions (FSI) play a critical role in the reaction D(e, eV~p)p. Of 

course the motivation to study 7r~ production from the deuteron is that it is primarily 

sensitive to the neutron. We hope to study the process shown in Fig. 6 (I). However, 

also shown in Fig. 6 are the main two source of final state interactions in which the 

final state TT~ (Fig. 6 (II)) or proton (Fig. 6 (III)) interact with the spectator proton. 

One can define an FSI correction factor, RFSl, which is the ratio of the amplitude 

associated with the diagram in Fig. 6 (I) to the full calculation for all diagrams in 

Fig. 6. 

( I )  ( I " )  

FIG. 6: Feynman diagrams for the three leading terms in 7*d —> 7r~pp [27]: (I) 
quasi-free; (II) 7rp rescattering; (III) pp rescattering. Diagrams (II) and (III) are the 
main source of final state interactions. 

I. Strakovsky et al. are working on a calculation of the FSI for real photons 

('Q2 = 0), 7d —* 7r~pp. For E1 = 0.8 GeV or W = 1.545 GeV and with the spectator 

proton momentum below 200 MeV/c, the FSI correction factor varies from 0.4 to 

1.3 [26]. Strakovsky and collaborators plan to expand this calculation to include 
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virtual photons (Q2 > 0). 

J.M. Laget has also calculated the 7d —> TT~ppprocess [27]. Laget considered the 

same two processes (-7rp and pp rescattering) in Fig. 6. The ratio of the full cross 

7 

6 

5 

4 
QC 

3 

2 

1 

O 

FIG. 7: The ratio of the total to the quasi-free cross section for the reaction 
D('y,ir~p)p as a function of the polar angle of the recoiling proton, whose momen­
tum is kept constant at 500 MeV/c (top) and 200 MeV/c (bottom) [27]. The peaks 
labeled 7rp and pp correspond, respectively, to 7rp and pp on-shell rescattering. The 
dotted line corresponds to the quasi-free process. The kinematics is coplanar, and 
positive angles correspond to the emission of the pion and the recoiling proton on 
the same side of the photon. 

section to the quasi-free cross section at W = 2.896 GeV and momentum transfer 

t = —3.0 GeV2 for spectator momenta PR = 500 MeV/c and PR = 200 MeV/c are 

shown as a function of the angle between the spectator proton and the photon (c/. 

Fig. 7), where t is defined as the momentum transfer between the photon and the 

outgoing 7T~: 

t = { q » - p i » y .  

The 7rp and pp rescattering peaks are extremely prominent, which means that FSI 

has a very strong dependence on the angle OR. In additional to that, by comparing 

= W=2.896 GeV 

^P„=500 MeV/c 

t=-3 GeV 

Coplanar 

PP PP 

Pd=20,0 MeV7c 

-150 -IOO -50 O 50 1 0 0  1 50 

0R (Degrees ) 
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these two ratios one can see that FSI at PR = 500 MeV/c can be as large as a factor 

of 7 while FSI at PR = 200 MeV/c is no more than a factor of 0.5, which means 

that FSI has strong dependence on spectator momentum too. Note that the ratio 

calculated by Laget is the inverse of RFS} defined previously. 

In order to study the spectator momentum dependence, Laget selected the 7rp 

rescattering peak region and plotted the ratio of the total to the quasi-free cross 

section in that same kinematic region as a function of the spectator momentum (c/. 

Fig. 8). This result shows that the ratio decreases as PR increases when PR < 250 

10 

9 

P P TC 8 

7 
W=2.896 GeV 

6 
t=-3 GeV 

5 

A 

3 

2 

QF 1 

O 
O 100 200 300 400 500 600 

PR (MeV/c ) 

FIG. 8: The ratio of the total to the quasi-free cross section at W = 2.896 GeV 
and t = —3.0 GeV against the spectator proton momentum at the pip rescattering 
peak region. The solid curve includes both 7rp and pp scattering (small effect). The 
dotted line corresponds to the quasi-free process. 

MeV/c, while the ratio increases sharply as PR increases when PR > 250 MeV/c. If 

one keeps PR < 120 MeV/c, the FSI correction factor can be held at a level below 

20%. 

A very similar result had been achieved by C. Ciofi degli Atti, L.P. Kaptari and 

B.Z. Kopeliovich [28]. Ciofi degli Atti and his collaborators were trying to study 

FSI in semi-exclusive deep inelastic scattering (DIS) of electrons off the deuteron, 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 



17 

D(e, e'p s)X. Their calculation demonstrated that when the recoiling spectator nucleon 

is detected in the backward hemisphere with low momentum, the effects from the 

FSI are negligible, whereas at large transverse momenta of the spectator, FSI effects 

are rather large [28]. Figure 9 shows the ratio of the DIS cross section with and 

without FSI corrections as a function of spectator proton momentum ps (left) and 

6S (right). 0S defined by Ciofi is the same as 8pq defined in the BoNuS analysis. One 

-•— ps = 0 GeV/c 
A—ps= 0.1 GeV/c 
O— ps = 0.2 GeV/c 

D. 
~~Q 
C 

t 

cr 
d. 

0.8 

0.8 C/D _ LL. O 
c 

0.6 

0.6 
0.4 

0.4 

0.2 0.2 

0.0 0.1 0.2 0.3 0.4 

Ps [GeV/c] 

FIG. 9: The ratio of the deep inelastic scattering cross section with and without 
FSI corrections from [28], at Q2 = 5 GeV2 and x = 0.2, as a function of spectator 
momentum ps (left) and 9S (right), which is the angle between spectator proton 
and the virtual photon). In the left panel, the full lines correspond to the Q2- and 
z-dependent debris-nucleon effective cross section (<reff), whereas the dashed lines 
correspond to a constant cross section creff = 20 mb. 

can see that FSI effects can be held at a level below 20% by requiring the spectator 

momentum less than 120 MeV/c and 9S larger than 100°. 

All three of the calculations described above show that the effects of FSI are 

not trivial. Although no predictions for D{e,e'-K~p)p are available yet, both the 

DIS model (from Ciofi degli Atti) and the exclusive photo-production model (from 

Laget) show that the effects of FSI can be held to the 20% level by requiring ps < 120 

MeV/c and 9pq > 100°. In order to study this, a special cut named "Very Important 

spectator Protons (VIP)" is introduced in this analysis. For convenience, the VIP 
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cut is defined as 70 MeV/c < p s  < 120 MeV/c and 9pq  > 100°. The differential cross 

section and the structure functions aT + eaL , aLT and aTT with and without this VIP 

cut will be extracted and compared. Details will be given in the following chapters. 

In this thesis we describe an experiment to measure the differential cross sections 

for the D(e, e'7r~p)preaction. In Chapter 3 we describe the BoNuS experiment in 

some detail, including both the CLAS and the RTPC detectors. The simulation 

of BoNuS will be described in Chapter 4 and the data analysis procedure will be 

described in Chapter 5. Chapter 6 shows the physics results and chapter 7 will 

summarize this work and give an outlook for the future. 
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CHAPTER III 

EXPERIMENTAL SETUP 

III.l CONTINUOUS ELECTRON BEAM ACCELERATOR FACILITY 

The BoNuS experiment was performed using the electron beam provided by the 

Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab (TJNAF). 

The electron accelerator uses 338 superconducting radio frequency accelerating cav­

ities to boost the electron and provides a continuous high luminosity electron beam 

with energy up to almost 6 GeV after five turns [29, 30, 31]. These accelerating 

cavities are made of the metallic element niobium, which is a superconductor when 

cooled down to 2 Kelvin by liquid helium produced at the Lab's Central Helium 

Refrigerator. The cavities are operating at a frequency of 1.497 GHz to produce an 

electric field that accelerates a charged particle beam. A schematic of the accelerator 

is shown in Fig. 10. The electron injector delivers polarized electrons from a strained 

FIG. 10: Schematic view of the accelerator. One of the cryomodules is shown in 
the upper left corner. A vertical cross section of a cryomodule is shown in the lower 
right corner. A cross section of the five recirculation arcs is shown in the upper right 
corner. 

GaAs photocathode source [32], Electrons leaving the injector can have energy up to 
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about 70 MeV, but the electron source can only give electrons about 100 KeV. The 

main portion of the injector contains 18 cavities and each cavity can give an electron 

2.5 MeV energy. The beam from the injector is accelerated through a unique recir­

culating beam line consisting of two linear accelerators joined by two 180° arcs with 

a radius of 80 meters. A cryostat is a thermos-bottle-like tank that contains a pair of 

cavities and filled with liquid helium needed to cool them to two Kelvin. Four of the 

cryostats are assembled together to form one cryomodule, which weighs about six 

tons and measures 8.3 meters in length. The accelerator contains 40 cryomodules. 

Both the north linear accelerator and the south linear accelerator are lined up end 

to end with 20 cryomodules. The two parallel linacs recirculate the beam up to five 

times boosting the beam energy up to 1.2 GeV for each turn. Many quadrupole 

and dipole magnets are used in the tunnel to focus and steer the beam as it passes 

through each arc. More than 2,000 conventional magnets, powered by an elaborate 

direct-current (dc) power system to guide and focus the beam through its orbits. 

The energy spread of the beam is SE/E < 10~4 [31][33]. The beam is directed into 

each experimental hall's transport channel using magnetic or RF extraction. The 

RF scheme uses 499 MHz cavities, which kick every third bunch out of the machine. 

Beam is delivered into three experimental areas (Halls A, B and C) with one beam 

"bucket" every 2 ns. The accelerator is able to deliver beam currents sufficient to 

reach luminosities of 1038 cm_2s-1 in Halls A and C. The maximum luminosity of 

Hall B is limited to about 1034 cm_2s_1 by detector occupancy in the CEBAF Large 

Acceptance Spectrometer (CLAS) [35]. 

III.2 THE BEAM LINE OF HALL B 

The electron beam delivered to Hall B is monitored by three beam position mon­

itors (BPMs) located at 36.0, 24.6 and 8.2 m upstream of the CLAS center [35]. 

These BPMs measure the current and position of the beam in real-time with resolu­

tion better than 100 /xm. The current and position of the beam from each BPM is 

written into the data stream every 20 seconds. The beam profile is determined when­

ever any significant changes are made to the beam, such as the beam current. There 

are a total of three profilers, called harps, placed at 36.7, 22.1 and 15.5 m upstream 

from the center of CLAS [35]. Each harp is a set of wires (20 and 50 /xm tungsten 

and 100 iron) orientated along the horizontal axis (x) and vertical axis (y). To 
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measure the beam distribution, the harps are slid into the beam line and moved at 

45°with respected to the horizontal axis using a computer-controlled stepping motor. 

A small fraction of the electrons are scattered by the wire and the signal is collected 

by PMTs located about 6.8 m upstream of the CLAS center [35]. The acceptable 

width of the beam is typically less than 200 /.tm. 

The Faraday cup (FC) is located at the very end of the beam line, 29.0 m down 

stream of the center of CLAS. The FC is used to measure the accumulated beam 

charge. It is made of 4 tons of lead and has a depth of 75 radiation lengths. The 

electron beam usually ends up in the FC and part of its energy turns into heat. In 

front of the FC, there are some pieces of lead shielding that can be moved in, if 

necessary, to protect it from over heating. During experiments, the beam charge is 

measured through a current-to-voltage converter followed by a voltage-to-frequency 

converter. Once the voltage or frequency reach the preset threshold the FC will be 

reset by an electrical signal. Under the typical operating gain, a pulse can accumulate 

0.11 pC of charge. The gain and offset can be checked, calibrated and operated 

remotely. In the BoNuS experiment, this gain was changed to 10% of the typical 

value since high beam current was requested(see entry 20126 in CLAS electronic log 

database for detail). The FC measurement is necessary for determining the cross 

sections and beam charge asymmetry correction and is written into the output data 

with a frequency of 30 Hz. A schematic view of the Hall B beam line and the FC is 

shown in Fig. 11. 

III.3 CEBAF LARGE ACCEPTANCE SPECTROMETER 

The CEBAF Large Acceptance Spectrometer (CLAS), a nearly 4-7r detector (c/. 

Fig. 12), is located in Hall B of Jefferson Lab. It provides a unique facility to 

investigate nucleon reactions with multi-particle final states. 

The magnetic field in the CLAS is generated by six superconducting coils ar­

ranged around the beam line to produce a field oriented primarily in the azimuthal 

direction around the beam axis, with maximum magnitude of about 2 Tesla. CLAS 

is divided into six independent sectors by the superconducting coils (cf. Fig. 13). 

Each sector essentially acts as an independent spectrometer. The size and shape 

of the coils (about 5 m long and 2.5 m wide) were chosen to optimize measure­

ments with fixed targets. Each sector of the CLAS consists of three separate Drift 
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FIG. 11: Schematic view of the Hall B beam line and CLAS detector and its asso­
ciated equipment. Items used for electron beam experiments are described in the 
text. 
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FIG. 12: Cutaway view of CLAS detector. The Drift Chamber (DC) are shown 
in purple, the Cherenkov Counters (CC) are in dark blue, the Scintillator Counters 
(SC) are in red and the Electromagnetic Calorimeters (EC) are in green. 
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FIG. 13: Configuration of the CLAS torus coils. 
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Chambers (DC) assembled to determine the trajectories and momenta of charged 

particles, Cherenkov Counters (CC) for electron identification, Scintillation Coun­

ters (SC) for time-of-flight (TOF) measurements, and Electromagnetic Calorimeters 

(EC) to identify showering particles such as electrons and photons and also to de­

tect neutral particles (i.e. neutrons). All detectors may be used to build the trigger 

configuration for the reaction of interest. The EC system coverage is extended by 

the Large Angle Calorimeter (LAC) in sectors 2 and 5. The polar angle coverage 

ranges from 8° to 140° for the DC, 9° to 143° for the SC, and 8° to 45° for the CC 

and EC. The LAC accepts particles from 45° to 75°. The next sections describe the 

individual detectors. 

III.3.1 Drift Chambers 

The drift chamber system is divided into six sectors by the six superconducting 

coils. Each sector consists of three separate regions: Region 1 is closest to the target, 

Region 2 is between the coils and Region 3 is outside of the coils (c/. Figs. 12 and 13). 

A toroidal magnetic field with magnitude up to 2 Tesla and pointing in the azimuthal 

direction (c/. Fig. 14), which is produced by the coils, is mainly distributed in the 

2nd region and has a negligible influence in Regions 1 and 3 or in the target area. 

This magnetic field will kick charged particles in the 9 direction while keeping the 

4> angle essentially unchanged. Measurement of the bending of charged particles in 

Region 2 enables us to determine the momenta of the charged particles. 

Each region of the drift chambers consists of axial and stereo layers of wires. Axial 

wires are strung parallel to the direction of the magnetic field (perpendicular to the 

beam direction). Stereo wires are strung at an angle of 6° with respect to the axial 

wires. The sense wires are surrounded by field wires in hexagonal cells (c/. Fig. 15). 

The axial-stereo combination in each region allows us to determine the azimuthal 

information for particle trajectories. Each region contains 2 superlayers (cf. Fig. 16) 

and each superlayer contains four or six layers of drift cells. The first superlayer of 

Region 1 contains only four layers due to the limited space while all other superlayers 

(the 2nd superlayer of Region 1 and all other superlayers in Regions 2 and 3) consist 

of six layers of sense wires. 

The drift chamber system uses a non-flammable Ar/C02 gas mixture, 88/12 by 

volume, which has an ionization gain of RS 104. This mixture provides drift velocities 
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FIG. 14: CLAS magnetic field strength in the center of the area between two torus 
coils. 

FIG. 15: Drift chamber section showing two super-layers. The wires are arranged in 
hexagonal patterns (cells). The sense wires are located in the center and field wires 
are located at each corner of each cell. The arrow shows a charged particle passing 
through the drift chamber and the shadowed hexagons represent the hit cells. 
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FIG. 16: CLAS drift chamber layout. This view represents a vertical slice through 
the drift chambers at the target position looking downstream. The schematic shows 
how the regions and superlayers are placed and named. 

of typically 4 cm//isec and an operational voltage plateau of several hundred volts 

before breakdown. The intrinsic resolution provided by this gas is « 100 fim [37]. 

The final spatial resolution is ~ 400 /jm, mostly limited by the knowledge of the wire 

position and the quality of the drift velocity parametrization. 

The charged particles ionize gas molecules in the drift chamber while they are 

traversing through. The gas is maintained in an electric field so that the electrons and 

ions created in the ionization process drift toward the anode and cathode wires, re­

spectively. In the high field region near the anode wires, drifting electrons collide with 

gas atoms and produce secondary ionization resulting in a multiplication of collected 

electrons and ions. Detected electric signals on the sensor wire carry information 

about the particle's drift time which translates to the hit position of the original 

charged particle going through the detector. The electric signal passes through a 

preamplifier, an amplifier, a discriminator, and a 2:1 multiplexer and then starts a 

time-to-digital converter (TDC), which is written into the output data stream. More 

details on the DC are given in [36]. 
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III.3.2 Cherenkov Counters 

The Cherenkov Counters (CC) are designed to discriminate between electrons and 

pions at the trigger level [38]. A charged particle will emit electromagnetic radiation 

while traveling through a medium with a speed exceeding the local phase velocity 

o f  l i g h t .  T h e  v e l o c i t y  t h r e s h o l d  f o r  C h e r e n k o v  l i g h t  e m i s s i o n  i s  f 3  =  \ / n  w h e r e  n  

is the refraction index of the medium. The Cherenkov material used in CLAS is 

perfluorobutane, C4F10, which has refraction index of 1.00153. That corresponds to 

an energy threshold for the particle: 

„ M nM <r ,  E = —. : = —. = 18.10 M , 

where M is the mass of the particle. This provides an acceptably high pion momen­

tum threshold of 2.5 GeV/c. 

The CLAS Cherenkov detector consists of six independent identical Cherenkov 

detectors (one per sector) and each detector covers a scattering angle 9 from 8° to 45°. 

Each detector consists of 36 optical modules (c/. Fig. 17) to cover 18 regions of 9, 

with two modules per 9 region. Each module has three mirrors, elliptical, hyperbolic 

Elliptical Mirrors 

- Hyperbolical 
Mirrors 

1 PhatomuHiplier 
and 

Magnetic Shielding 

Winston 
Cones 

FIG. 17: CC optical modules in one of the six sectors. 

and cylindrical, to direct the light into a light collecting Winston cone (c/. Fig. 18). 

The mirrors are aligned to optimize the light collection by the photomultiplier tubes 

(PMT). 

III.3.3 Time of Flight System 
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FIG. 18: One optical module of the CLAS cherenkov detector. Optical and light 
collection components are also shown. Cherenkov light from electrons is reflected 
from the hyperbolic and elliptical mirrors into the Winston Cone (WC), surrounded 
by a Magnetic Shield (MS), and is collected by a Photomultiplier Tubes (PMT). 

The CLAS Time-of-Flight (TOF) system was designed to measure the travel time 

for charged particles from the target to the scintillator counter [40]. Knowing the 

path length, the TOF system allows us to determine the velocity of the particle 

(j3), which can determine the particle's mass in conjunction with the momentum as 

measured by the DC: 

M = ?£EE. (23) 

In each sector, the TOF system consists of 57 scintillator paddles (BC-408) 

mounted as four panels combined together (cf. Fig. 19). The scintillator paddles 

are uniformly 5.08 cm thick and vary in length from 32 cm to 445 cm depending on 

their location in the array. Their width is 15 cm in the forward region (0 j 45°) and 22 

cm at larger polar angles. These scintillator paddles are located perpendicularly to 

the beam direction with angular coverage of 2° each. The light signals are collected 

by the PMTs connected to light guides attached to both ends of each paddle. Signals 

from the PMTs are read out by TDCs and analogue-to-digital converters (ADCs). 

The last 18 scintillators in the back angles are grouped into 9 pairs each connected to 

a single TDC and a single ADC channel. Because of that pairing, each sector com­

prises 48 electronic channels. The timing resolution for scintillator counters varies 

! 
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Beam 

FIG. 19: TOF scintillator counters in one of the six sectors. 

with the length and width of the strip. The time resolution is about 150 ps for the 

shortest paddle and about 250 ps for the longest paddles 19), which allows us to 

separate reliably pions and protons up to a momentum of 2.5 GeV/c. 

III.3.4 Electromagnetic Calorimeter 

The CLAS Electromagnetic Calorimeter (EC) is designed to identify electrons 

and neutral particles like the neutron and photon. Mostly it is used for detection 

and triggering of electrons at energies above 0.5 GeV, detection of photons at energies 

above 0.2 GeV, and detection of neutrons, assuming their separation from photons 

based on time information [41]. 

The EC system consists of alternating layers of scintillator strips and lead sheets 

with a total thickness of 16 radiation lengths. The lead sheets are used to produce 

electro-magnetic showers, and the scintillator layers are used to measure the timing, 

location and energy of the charged particles in the resulting showers. The calorimeter 

covers the region 8° - 45°in the polar angle and consists of six modules, one for 

each sector, with the cross-section of an equilateral triangle(c/. Fig. 20). Each 
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FIG. 20: CLAS electromagnetic calorimeter modules in one of the six sectors. 

module has a total of 39 lead-scintillator layers, each consisting of a 2.2 mm thick 

lead sheet followed by a layer of 10 mm think BC-412 scintillator. The calorimeter 

utilizes a "projective" geometry, in which the area of each successive layer increases. 

This minimizes shower leakage at the edges of the active volume and minimizes the 

dispersion in arrival times of signals originating in different scintillator layers. Each 

scintillator layer is made of 36 strips parallel to one side of the triangle, with the 

orientation of the strips rotated by 120° in each successive layer (c/. Fig. 20). Thus 

there are three orientations or views (labeled U, V and W), each containing 13 layers, 

which provide stereo information on the location of energy deposition. The 13 layers 

of each view are combined into an inner (5 layers) and outer (8 layers) stack, to 

provide longitudinal sampling of the shower for improved hadron identification. 

A fiber-optic light readout system is used to transmit the scintillator light to the 

PMTs. Figure 21 displays a schematic side view of the fiber-optic readout unit of 

the calorimeter module. These fibers were bent in a controlled way to form semi­

rigid bundles originating at the ends of the scintillator strips and terminating at a 

plastic mixing light-guide adapter coupled to a PMT. The PMTs have been chosen 

to behave linearly over a very large dynamical range and for a typical signal from 

a 1 GeV electron have an amplitude resolution of 4% and time resolution of about 

100-150 ps. 
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FIG. 21: Side view of the fiber-optic readout unit of the calorimeter module. 

The total energy deposited in the calorimeter is available at the trigger level to 

reject minimum ionizing particles or to select a particular range of scattered electron 

energy. Pion events are heavily suppressed by setting the EC total energy threshold 

Etotai in the CLAS hardware trigger. 

III.3.5 Event Trigger and Data Acquisition System 

A schematic of the data acquisition system (DAQ) is shown in Fig. 22. The trigger 

requires that signals from the detectors (e.g. CC, SC and EC) are sent to a pretrigger 

logic module. If the pretrigger conditions are satisfied, the signal is submitted to the 

Level-1 trigger. If there is a trigger in the event, then the signal is passed to the 

trigger supervisor (TS) which communicates with the read out controllers (ROCs). 

The Level 2 trigger selects events by DC track hits and by identifying a primary 

track. It is implemented between the trigger supervisor and the read out controller. 

A level 2 trigger is passed to the ROC from the TS by a different channel. If the 

Level 2 trigger is satisfied, then the data are read out, digitized and transferred to 

the Event Builder (EB). In the BoNuS experiment, we used only the Level 1 trigger, 

which required a coincident signal in the CC, ECinner and ECtota!. Finally the Event 

Recorder (ER) receives the information from the Event Builder through the Data 
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FIG. 22: CLAS data acquisition system. 
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Distribution (DD) shared memory. The data then are written to the disk and later 

transferred to the tape SILO for permanent storage. The typical CLAS DAQ rates 

are about 2.0-4.0 kHz with a live time of about 90% [35]. However, the RTPC DAQ 

rate was about 0.7 KHz, so the DAQ rate for BoNuS experiment was just 0.7 KHz 

with a live time of about 74% [42]. 

The event trigger is formed from a combination of signals from the CLAS detec­

tor components that pass pretrigger discriminators. The configuration of the event 

trigger and the pretrigger discriminator thresholds are set to satisfy the requirements 

of each experiment. The threshold on the CC is normally set to minimize ir~ con­

tamination in the trigger particle. Similarly the threshold on ECinner is usually set to 

exclude minimum ionizing particles. The threshold on the total deposited energy in 

the calorimeter, ECtotai, is chosen to reduce the background of low energy electrons 

and photons. 

In the BoNuS experiment, an electron trigger was used. The hardware thresh­

olds were 75 mV for the CC (corresponding to 1.5 photoelectrons), and 72 mV for 

the ECinner. We used three thresholds for ECtotai: 150 mV, 200 mV and 260 mV, 

depending on the beam energy. A complete set of the trigger thresholds used in the 

BoNuS experiment can be found in [43]. Our trigger thresholds were much higher 

than typical experiments. For example the CC threshold is typically set to 20 mV 

and ECtotai is usually set to 100 mV. We set these thresholds so high based on the 

following considerations: 1) the DAQ rate and live time are seriously encumbered by 

the RTPC DAQ rate; the CLAS could have accepted more events; 2) high thresholds 

provide much higher quality triggers and much smaller data stream size. The high 

thresholds in the BoNuS experiment resulted in a high energy requirement for the 

trigger electrons. The relation of ECtotai threshold to the trigger electron energy is 

given by [44]: 

Eer(MeV) « 214 + 2.47 x ECthreshold(mV). (24) 

III.3.6 Target 

In order to meet the goal of the BoNuS experiment it is necessary to detect 

low energy spectator protons. A Radial Time Projection Chamber (RTPC) with a 

gaseous deuterium target was built for that purpose. Most of the spectator protons 

have a momentum less than 150 MeV/c. We had to avoid using a solid or liquid 
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target because the spectator proton would not have enough energy to escape. The 

target wall had to be made of material with a small radiation length and that was 

strong enough to enable us to reduce the thickness as much as possible. For these 

reasons we finally used a gaseous deuterium target at about 7 atmospheres and room 

temperature. We used kapton with a thickness of 50 micrometers to make the target 

"straw" (tube), which had an inner diameter of 6 mm. The total length of the target 

"straw" is 280 mm but only 210 mm was covered by the RTPC. At both ends of 

the target window there is a 15 micrometers thick aluminum cap. On the upstream 

end there is an aluminum collar (c/. Fig. 23) to limit forward going particles from 

causing a signal in the RTPC. Therefore the valid target length is about 160 mm. In 

order to minimize the background, the down stream part of the target "straw" was 

surrounded by a helium gas tube with a diameter of 25.4 mm. Some details of this 

target design can be seen from its assembly drawing in Fig. 24. 

Although deuterium was the production target for BoNuS, we also used gaseous 

hydrogen and helium targets for calibration purposes. The details of the RTPC are 

described below. 

III.4 RADIAL TIME PROJECTION CHAMBER 

The addition of a custom-built Radial Time Projection Chamber (RTPC) using 

Gas Electron Multipliers (GEM) technology [46] is the key feature of the BoNuS 

experiment that makes it different from other CLAS experiments. 

The major purpose of the RTPC is to detect low energy backward protons. There 

are two important features of this detector: radial time projection and low energy 

threshold. The time projection was chosen due to its fast response. In order to have 

a low energy threshold, we need to minimize the energy loss of the particle before it 

reaches the drift region. Therefore we chose a gaseous target with a kapton target 

wall of only 50 fim thickness. A detailed picture of the RTPC detector design is 

shown in Fig. 25 

Our RTPC was divided into two identical halves by their supporting bed plates, 

each covering 180° in azimuthal angle and 20 cm in length. Looking at the RTPC 

from the downstream end, one sees that the RTPC is composed of six coaxial cylinders 

(Cf. 25, panel a). The first cylinder is the inner window located at r = 2 cm, which is 

made out of aluminized mylar (CIQH8) foil (6.4 /mi thick mylar with 0.035 fim thick 
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FIG. 23: Mechanical drawing of the BoNuS target. 
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FIG. 24: The BoNuS target system 
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FIG. 25: a) Cross section of the RTPC detector as viewed from down stream; b) 
A picture of the RTPC's left section without the read out pad board layer and an 
exploded diagram of the right section. 

aluminum on both sides). This layer was connected to ground during data taking in 

order to shield the target straw from the electric field. The second cylinder layer is 

located at r = 3 cm. It is also made of the same aluminized mylar foil. This layer also 

serves as the cathode of the drift region. The 3rd, 4th and 5th cylinders are the Gas 

Electron Multiplier sheets, which are attached at r — 6.0, 6.3 and 6.6 cm, respectively. 

These GEM sheets are made from copper-surfaced kapton (C22H10N2O5) foil (50 /xm 

thick kapton with 5 /xm thick copper on both sides). Figure 26 shows the electric 

field in a single layer of GEM computed using GARFIELD [47] [48]. The holes in the 

foil have a diameter of 50 jim, a pitch of 100 jim and a double-conical cross section. 

Drift electrons enter the hole (region 2) and are multiplied in the high electric fields. 

The resulting avalanche of electrons provides a gain per foil on the order of 100 [57]. 

The 6th cylinder layer, located at r = 7.0 cm is the readout board, which is also 

the anode layer of the drift region. 3200 readout pads were attached to the outside 

surface of this layer, 40 rows x 40 columns for each half of the detector. Each pad 

covers a rectangle of 5.0(z) x 4.45(0) mm. Every 16 pads were grouped and connected 

to one preamplifier chip. The shaded region of Fig. 27 shows an example group of 

pads read out by the same preamplifier. Electron signals were collected by these pads 

then passed to the preamplifier chips and eventually passed to the Data Acquisition 
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FIG. 26: Electric field map of a GEM foil. Shown are the electric field lines and their 
equipotential lines. 
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FIG. 27: Pad layout of the RTPC. 
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FIG. 28: Magnetic field map in the vicinity of the RTPC. 

(DAQ) system. 

The RTPC detector and the BoNuS target were placed at 58 cm upstream of 

the CLAS center, which is the center of a superconducting solenoid. Operating with 

an electric current of 450 A, this solenoid can produce a magnetic field of 4 Tesla 

at its center, and pointing in the opposite direction of the beam. The magnetic 

field map is shown in Fig. 28. One can see that this magnetic field has a non-

negligible (f) component at either end of the RTPC. A He/DME gas mixture at 

normal atmospheric pressure with volume ratio of 80/20 was filled into the inner gap 

(between the inner window and the cathode) and the drift region. When a proton 
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goes through the drift region, it ionizes the gas and creates ionization electrons along 

its trajectory. Due to the magnetic field the proton trajectory will bend in the (f) 

direction but not in 0. The ionization electrons drift toward the anode driven by 

the electric field. Electron avalanche happens when they go through the GEM layers 

and finally they are collected by the read out pads. The electronic signals are then 

chopped into 114 ns intervals and written into the output data stream. Each 114 

ns interval signal for each pad here is called a hit. The trajectory of drift electrons 

also bends due to the the magnetic field. Using the drift time one can calculate the 

initial r position (the distance from the z axis) of the drift electron and its change 

in & angle. Since the pad position (70.0.2) is known, one can calculate the initial 

position (r0,(f)0,z0) for each hit. By linking those reconstructed positions to form a 

train, one can reconstruct the trajectory of the proton. A schematic picture of this 

reconstruction is shown in Fig. 29. Fitting the proton trajectory with a helix, one 

can obtain the radius of the track and the initial angles 9 and <f>. Figure 30 shows an 

example of the helix fitting to the reconstructed positions in the drift region of the 

RTPC. 
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FIG. 29: Schematic of the BoNuS RTPC. 
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FIG. 30: An example of helix fitting to the reconstructed positions in the drift 
region. The box size for each hit is proportional to the pulse amplitude (the deposited 
energy). The four panels represent different views of the same event. The figure in 
the top left is viewed from the down stream of the beam line. The top right figure is 
viewed from the side along x axis, and the arrow in the center of the RTPC points 
along the direction of the electron beam. The two figures in the bottom are viewed 
from side but with a small 0 angle. The bottom left is viewed with cj> = 90° and the 
bottom right is viewed with 0 = 0°. 
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CHAPTER IV 

SIMULATION 

IV.l INTRODUCTION 

Simulation is very important for experiments, especially for nuclear experiments 

that are time consuming and require a huge amount of manpower and financial sup­

port. In the stage of preparing the experiment, simulation is very useful in designing 

a detector and developing the reconstruction software. For instance, in the case of the 

RTPC there are so many possible configurations of drift gas that can be used, such 

as Ar/C02 with various volume ratios, or He/DME (Dimethyl ether gas, CH3OCH3) 

with various volume ratios, or some other gas mixture. The designers have to know 

which configuration is the best, but they may not have enough time, manpower or 

resources to test all of these configurations. Simulation can be a useful tool to find 

out the answer. At the data analysis stage, simulation can be used to study the 

acceptance and efficiency of the detector, determine the energy loss corrections and 

model the background. 

Compared with other CLAS experiments in the past, BoNuS has a new target 

system and a new Radial Time Projection Chamber (RTPC). We had to develop 

our simulation and reconstruction software packages for the RTPC. Our simulation 

includes a program sequence including the following: 

• The simulation of the RTPC (named BONUS), 

• The simulation of the CLAS (GSIM), and 

• GSIM Post Processing (GPP). 

At the end of the GPP, the simulated data are in the identical format as the real 

experimental data and are ready to use. We then use the reconstruction and analysis 

framework (RECSIS) to reconstruct and analyze both the simulated and the real 

data. The details of the simulation we developed for the BoNuS experiment will be 

described in the following sections. 
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IV.2 THE SIMULATION OF THE RTPC DETECTOR 

Our Radial Time Projection Chamber was constructed to detect the low energy 

backward protons. Because the RTPC was newly built for the BoNuS experiment, the 

simulation of the RTPC was very crucial. Our RTPC uses three layers of Gaseous 

Electron Multipliers (GEMs) to amplify the ionization electron signal. Although 

the GEM technology with parallel Time Projection Chamber (TPC) has been used 

in other laboratories, such as CERN, our Radial Time Projection Chamber with 

GF;Ms was the first of its kind 45'. The simulation of the RTPC' was developed 

by N. Baillie and J. Zhang. Baillie ran a Magboltz simulation program [49j to 

determine the drift path and drift velocity for low energy electrons (less than 3 

keV) within the drift region under various configurations of drift gas, high voltages 

and magnetic fields. MAGBOLTZ is a Monte Carlo simulation package of electron 

drift and diffusion in counting gases under the influence of electric and magnetic 

fields. I was responsible for developing a full simulation of particles traveling inside 

the RTPC using the GEANT4 software [50] [51], version 8.01. GEANT4 is a toolkit 

to simulate the interaction of particles with matter [54], It is widely used in the 

simulation of high energy, nuclear physics, accelerator physics, as well as in medical 

physics and space science. Because GEANT4 cannot simulate the thermal electrons' 

behavior very well [55] [56], we used a parameterized result for the drift path and drift 

velocity in the RTPC simulation. The following sections will explain the GEANT4 

RTPC simulation program, BONUS, in detail. 

IV.2.1 Material 

To "build" a detector in GEANT4, one first needs to create/define all used el­

ements and materials. To define an element, the atomic index Z and density must 

be provided. To create a material one usually needs to provide the following infor­

mation: density, components, state (solid or gas), temperature and pressure. This 

means that no material can be made without the molecular formula. 

The molecular formula for most materials used in this simulation were already 

known, for example, Kapton with the molecular formula C22H10N2O5. However, the 

molecular formula for some mixtures were unknown, for instance, the flat cable and 
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the preamplifier chips embedded with two connectors. We were not able to find their 

densities and molecular formula in any books. Therefore we had to make a careful 

investigation to determine these quantities. A large portion of the credit for this 

work should be granted to M. Ispiryan for his contribution. 

The Flat Cable 

According to our measurements, the flat cable used for the RTPC readout has 

a rectangular cross-section of 21.5 x 0.4 mm. Its linear density is 0.03027 kg/m. 

Within these cables there are 34 copper conductors and copper constitutes 57% of 

the mass. The insulator is made of polyvinyl chloride (PVC) with molecular formula 

C2H3CI. If we assume that a molecule of the cable has the formula CUxC2H3C1, then, 

in order for the copper to have the same mass fraction (0.57) in the molecule, x must 

be 1.316. This brings us to the following "molecular formula" of the flat cable as 

CUI.3I6C2H3CL or CU4C6H9C13. 

The Preamplifier Chip Plus Two Embedded Connectors 

We already know the density and the molecular formula for a standard Printed 

Circuit Board (PCB) without electronic elements embedded. The preamplifier chip 

connected to the readout PCB has two embedded connectors and some small elec­

tronic elements. In order to get a good approximation we took one of the preamplifier 

chips and measured its weight and dimensions. The equivalent size of the board is 

35 x 31 x 2.5 mm3. Its mass is 6.27 g. Hence its density is 2.31 g/cm3. The edges 

of the parallelepiped that are 31 mm in length are parallel to the z axis. The 35 mm 

edges are almost parallel to the radius direction. Its chemical components have been 

listed in Table 2. 

TABLE 2: Preamplifier chip elements 

Component Mass (g) Mass Fraction 

Epoxy C20H22O6 5.77 0.920 
Copper Cu 0.4 0.064 
Silicon Si 0.1 0.016 
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Fig. 31 shows the geometry and position of the preamplifier chips and the con­

nected flat cables for the RTPC detector. The "molecular formula" of this chip with 

connectors is Cuo.3gSio.22C2oH2206 or CugSi5C4goH5060i38. A list of all materials used 

in the RTPC simulation can be found in Appendix A. 

IV.2.2 Geometry 

The geometry in the RTPC simulation module was built based on the mechanical 

drawing for each piece of the detector. We tried to make the simulated detector as 

similar as possible to the real one, while also considering the speed of the simulation. 

For those components within the RTPC read out boards and for most of the down­

stream part, the shape, position, material and thickness of each piece of material was 

built exactly the same as the real detector. For those components outside (at greater 

radius) the RTPC read out boards and for the upstream part, some approximations 

have been used. Materials outside the read out board are not as important as those 

inside. That is because 1) the spectator protons do not need to be simulated any 

longer once they hit the read out board and 2) the CLAS particles mostly go for­

ward and penetrate the downstream end-plate and very few of them penetrate the 

preamplifier chips and cables; 3) furthermore, the CLAS particles usually have high 

energy such that the deviation between their behaviors in the real geometry and in 

an approximation geometry is negligible. 

The geometry of the RTPC detector is shown in Fig. 32. This diagram represents 

the design of the prototype RTPC. Some of the thicknesses shown in this diagram 

were changed for the final RTPC detector. The corrected values have been listed in 

Tables 3 and 4. A beam view of the RTPC geometry in the GEANT4 simulation is 

shown in Fig. 33. 
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FIG. 32: Diagram of the RTPC geometry and materials. The exact thicknesses of 
some components may be different from the real detector. 
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Name Shape Size and 
Position(mm) 

Material Density(mg/cm3 for 
gas or g/cm3 for others) 

Target tube cylinder 0 < R < 3 D2 gas, 7.5 atm, 300K 1.227 
Target wall tube 3 < R < 3.05 kapton(C22HioN205) 1.42 
Helium tube tube 3.05 < R < 20 He gas, 1 atm, 300K 0.163 
Inner layers 

(3 layers) 
tube 20 < R < 20.00607 Al/mylar(Ci0H8)/Al 

thickness: 0.035/6.4/0.035 /xm 
aluminum: 2.7 

mylar: 1.39 
Inner gap tube 20.00607 < R < 30 He/DME(C2HeO) mixture 

volume ratio 80/20, 1 atm, 300K 
helium: 0.163 
DME: 1.871 

Cathode tube 30 < R < 30.00607 Al/mylar(Ci0H8)/Al aluminum: 2.7 
(3 layers) thickness:0.035/6.4/0.035 /im mylar: 1.39 

Drift region tube 30.00607 < R < 60 He/DME(C2H60) mixture 
volume ratio 80/20, 1 atm, 300K 

helium: 0.163 
DME: 1.871 

GEM 1 tube 60 < R < 60.06 Cu/kapton(C22HioN205)/Cu Cu: 8.96 
(3 layers) thickness: 5/50/5 /im kapton: 1.42 

GEM gap 1 tube 60.06 < R < 63 He/DME(C2H60) mixture 
volume ratio 80/20, 1 atm, 300K 

helium: 0.163 
DME: 1.871 

GEM 2 tube 63 < R < 63.06 Cu/kapton(C22Hi0N2O5)/Cu Cu: 8.96 
(3 layers) thickness: 5/50/5 /xm kapton: 1.42 

GEM gap 2 tube 63.06 < R < 66 He/DME(C2HeO) mixture 
volume ratio 80/20, 1 atm, 300K 

helium: 0.163 
DME: 1.871 

GEM 3 tube 66 < R < 66.06 Cu/kapton(C22Hi0N2O5)/Cu Cu: 8.96 
(3 layers) thickness: 5/50/5 fim kapton: 1.42 

GEM gap 3 tube 66.06 < R < 70 He/DME(C2H60) mixture 
volume ratio 80/20, 1 atm, 300K 

helium: 0.163 
DME: 1.871 

TABLE 3: RTPC geometry and materials 



Name Shape Size and 
Position(mm) 

Material Density(mg/cm3 for 
gas or g/cm3 for others) 

Readout Board tube 70 < R < 71.5748 G10FR4: ( 60% Si02 

and 40% C11H12O3 ) 
Si02: 2.2 

CuH1203: 1.268 
Support Spikes box R = 20 to 108 ultem (C37H24N206) 1.27 

(bed-plates) 7.1628 x 88 x 200 
Support spike PCB box R = 30 to 108 

1.5748 x 88 x 200 
1.5748 mm thick G10FR4 Si02: 2.2 

CnH:203: 1.268 
Support of GEM1 box locate at R = 60.06 to 90 

2.1084 x 29.94 x 200 
ultem (C37H24N2O6) 1.27 

Support of GEM2 box locate at R = 63.06 to 90 
4.6228 x 29.94 x 200 

ultem (C37H24N206) 1.27 

Support of GEM3 box locate at R = 66.06 to 90 
4.6228 x 29.94 x 200 

ultem (C37H24N206) 1.27 

Entrance cover poly-cone locate at z = —58.7 to —145 aluminum 2.7 
End plates box + tube locate at z = ± 108.1736 6.3 mm thick ultem 1.27 

Up end plate cover box + tubes z = -117.6236 6.3 mm thick stainless steel 7.8 
Down end plate cover box 4- tubes z = 115.2737 1.6002 mm thick G10FR4 Si02: 2.2 

CHHI203: 1-268 
Pre-amplifier chip boxes union 200 chips effective molecular formula: 2.31 
with 2 connectors 35 x 31 x 2.5 CU9 Si5 C46O H506 O138 

Flat cable boxes union 40 groups, along z direction effective molecular formula: 
Cu4C6H9C;3 

3.520 

TABLE 4: RTPC geometry and materials (Cont.) 
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IV.2.3 Physics Processes 

In a GEANT4 simulation, one needs to link the relevant physics processes to 

each particle. If no physics process is registered, the particle may not be simulated 

properly. In this RTPC simulation program, BONUS, the following physics processes 

from the GEANT4 packages had been registered: 

• Penetration, 

• Decay, 

• Multiple Scattering, 

• Low Energy Elastic Scattering, 

• Low Energy Inelastic Scattering, 

• High Energy Inelastic Scattering, 

• Low Energy Ionization, 

• Ionization, 

• Low Energy Gamma Conversion, 

• Gamma Conversion, 

• Low Energy Compton Scattering, 

• Compton Scattering, 

• Low Energy Photo-Electric Effect, 

• Photo-Electric Effect, 

• Low Energy Rayleigh Scattering, 

• Low Energy Bremsstrahlung, 

• Bremsstrahlung, 

• Annihilation, 
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FIG. 33: Diagram of the RTPC and ionization electrons in the GEANT4 simulation 
without the end plates and elements outside the readout board. This view is looking 
from the downstream. Blue curves are the trajectories of protons and red points 
along them are secondary electrons created from the ionization of the gas. Light 
blue materials indicate that energy depositions (hits) occur inside them. 
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• Pair Production. 

Note that the above physics processes were not all registered for each particle. For 

example, we only associated decay, low energy elastic and inelastic scattering, high 

energy inelastic scattering, multiple scattering and ionization with protons. For 

details about the physics processes used in BONUS, please refer to the Appendix B. 

IV.2.4 Electric and Magnetic Fields 

Our RTPC detector was immersed in a magnetic field which was parallel to the 

negative z direction. This magnetic field was produced by a superconducting solenoid 

which was originally designed for the Inner-electromagnetic Calorimeter (IC) in the 

CLAS. When running with full current (534 A) it can provide a field up to 4.5 T. In 

order to accurately simulate the tracks for the protons in the RTPC, it is important to 

introduce the magnetic field into the detector. The electric fields in both halves were 

very weak since the potentials between the anode and cathode of both halves were 

only about 2.5 KV. Compared with the typical kinetic energy of a spectator proton 

(about 1 ~ 5 MeV), the influence caused by this electric field is negligible. Therefore 

we introduced a simplified electric field in the simulation. The simplified electric field 

is calculated assuming that there are two coaxial infinitely long cylinders with inner 

radius a = 30 mm and outer radius b = 70 mm and their potential difference is V, 

the electric field for an arbitrary point in between these two cylinders is given as 

V_ 

r In 
£W = ^T- (M) 

a 

IV.2.5 Electron Drift Path 

The drift path for electrons from ionization were simulated by N. Baillie using the 

Magboltz program. This program used an electric and magnetic field to study the 

Lorentz angle (the deflection of a moving charged particle affected by the magnetic 

field), the drift velocity and the trajectory of the electron [57]. He parameterized 

these results in an analytical form and provided the following functions: 

• A function /^(r, </>, z) that can calculate the 0 angle change, 5(f) ,  of a track which 

starts from position (r, 0, z) and ends up on the read out board (rf,<j)f,Zf), 

where ry = 70 cm. 
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• A function f t(r,  (j) ,  z)  that can calculate the drift time, t ,  of an electron which 

starts from position (r, <fi, z) and ends up on the read out board. 

• A function that is the inverse function of /f(r0, <f> o, z0) .  This function 

was used to reconstruct a position (r0, <T>O, ZQ) using the <J> angle on the readout 

board and the drift time. 

This drift path package was used to propagate electrons from the ionization lo­

cation (ro,<f>o,Zo) until it then hit the readout board (77, (pf, Zf) at which time the 

position, drift time and deposited energy was converted into (ID, TDC, ADC) sig­

nals. On the other hand, it was also used in the reconstruction to convert (ID, TDC, 

ADC) signals back to position (r0,0O, 20) • The digitization and reconstruction will 

be described later. 

Figure 34 shows a typical path of an electron from ionization moving in the 

drift region of the RTPC. Figure 35 shows the azimuthal angle (top) and the radial 

position (bottom) of the electron as a function of the drift time for various high 

voltage settings. More information about the drift path package can be found in [57]. 
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FIG. 34: Drift path of ionization electrons in the drift region of the RTPC. 
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FIG. 35: The azimuthal angle (top) and radial position (bottom) of electrons as 
function of the drift time for various high voltage settings. 
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IV.2.6 Signal Digitization 

Generally speaking, the RTPC simulation can simulate the behaviors of all par­

ticles traveling inside it. According to our goal, the drift region was designed to be 

sensitive to heavy ionization particles only, i.e. proton, deuteron, triton and alpha 

particles. When a proton travels through the drift region, the physics processes like 

low energy elastic and inelastic scattering, high energy inelastic scattering, multiple 

scattering and ionization will take effect according to the GEANT4 physics mod­

els. Ionization is very likely to happen for a proton along its trajectory, so ions and 

electrons are created from the He/DME drift gas. The number of ion-electron pairs 

is proportional to the deposited energy, SE. From the simulation point of view, an 

ionization is a hit, which contains information on the position (r, <fi, z) and deposited 

energy, 5E. The analytic functions for the drift path will be used to 1) propagate 

the ionization electrons from the ionization position (r, 0, z) to the readout board 

(r/,(j)f,Zf) and 2) calculate the drift time t. Eventually the position (rf,(j)f,Zf) will 

be converted to channel ID, the drift time t will be converted to TDC using the 114 

ns time window and the deposited energy 5E will be convert into ADC in units of 

10 eV. This unit was chosen such that the simulated ADC distribution match that 

of the real data. 

One important issue I must point out here is that the digitization described 

above does not represent the real electronics signal very well. In the real detector, an 

electron will cause avalanches in the GEMs, hence producing a pulse in the readout 

electronics. This pulse may last for more than one TDC window (114 ns) and have 

signal on several channels. If taking electrical inductance into account, there may be 

some induced signal in the adjoining channels too. Unfortunately, we do not have an 

analytical solution for this pulse and electrical inductance. It requires more effort on 

testing the real detector and the read out electronics. Due to the lack of knowledge 

of these, one simulated hit (r, 0, z, 5E) in the current RTPC simulation was digitized 

to only one set of digital signals of {ID, TDC, ADC). As a result, the number of 

simulated hits and the number of simulated fired channels are much smaller than 

in the real data. Our experimental data show that the average number of hits in a 

proton track is about 50. In order to make the simulation generate an equivalent 

number of hits as the real detector, a step length limit of 0.6 mm was applied in 

the drift region of the RTPC. In other words, with this 0.6 mm step length limit 
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GEANT4 would force particles to create a step within each 0.6 mm path length. 

This step length limit cut "0.6 mm" was set in the configuration file "Detector.ini" 

of the simulation program (BONUS) and could be changed to any positive values. 

Noting that if this value is set too large, the simulation may not generate enough 

hits. If it is set too low, the simulation would create too many overlapped hits which 

may cause longer CPU time and a larger output data size. 

IV.2.7 Event Reconstruction 

As part of the simulation code, I have developed a simple and quick reconstruction 

module to analyze the simulated data and write the output into the data stream. 

This reconstruction module uses the inverse drift path function to reconstruct all 

simulation hits, and then links them to build a track. A helix fitting routine is 

then applied to the track, which returns the necessary parameters of this track, for 

example the vertex position (XQ, YO, ZQ) and the initial polar angle 9 and azimuthal 

angle <j), the radius of the helix curvature R (which will be converted to momentum 

later), the x2 of the fit, etc. Compared to the full RTPC reconstruction module in 

RECSIS, which was developed to reconstruct the experimental data, my module did 

not contain the sophisticated track finder which selects only those hits likely to be 

a track to form a chain while rejecting background hits. However, this module can 

provide a result as good as the full reconstruction one for the simulated data because 

there are no background hits in the simulation. This module is very helpful for the 

RTPC simulation in some cases because we can get the result much quicker than 

running the slow and complicated RECSIS program. 

IV.3 THE SIMULATION OF THE CLAS DETECTOR 

There is already a simulation program based on GEANT3 for CLAS named GSIM. 

This program uses an input file called "ffread card" to configure what kind of modules 

(i.e. DC, CC, SC, EC and so on) will be used in the simulation. For example, we 

turned off all devices except torus, DC, CC, SC, EC and the solenoid. Basically 

each CLAS experiment will have a custom-built target system and this part must be 

customized before running GSIM. In our case, we developed the RTPC and target 
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system using the GEANT4 package, BONUS. There is no way to link the GEANT4 

code with a GEANT3 code. My solution for running the full BoNuS simulation is 

described next. 

In the RTPC simulation program, BONUS, we defined a virtual boundary as 

a barrel with radius of 114 mm, length of 290 mm and thickness of 1 mm. This 

virtual boundary is made of air and the whole RTPC was placed within it. We made 

it a sensitive volume therefore it can record all the information (i.e. time, particle 

type, momentum and position) of a particle which impinges on it. This information, 

together with the original particle information is written into the output in a format 

called "bos" [52] [53], which can be read by GSIM. This bos format output file 

contains only the initial (thrown) information (momentum, position, and particle id) 

at the vertex and the final information (at the RTPC virtual boundary). Then we 

ran GSIM to read this file and continue simulating these particles as they propagate 

in the CLAS detector. In order to let GSIM read this information and process it 

correctly, we had to modify a few places in the existing GSIM and the RECSIS code. 

First, GSIM usually takes only one set of input as the thrown parameters and these 

thrown parameters can be recognized by the reconstruction program, RECSIS, and 

finally written into the output data stream. Since the BONUS output file contains 

two sets of information (one at the vertex and another at the virtual boundary), by 

default GSIM can take the latter only. We had to modify GSIM such that it copied 

the original information set at the vertex and finally wrote it into GSIM's output. 

In order to implement this we introduced a new BOS bank named TRUE into GSIM 

and RECSIS. This bank has a structure similar to the PART bank, which is one of 

the bos format data streams that GSIM can read, and contains all information on 

the BONUS output. Secondly, GSIM usually treats the input information as if it is 

generated at the vertex of the CLAS and therefore it smears the position in a default 

way. In the BoNuS situation we had to turn off these smearings. Third, the BONUS 

TRUE bank we introduced could not be recognized and processed by RECSIS unless 

we modified it to do that. Therefore we added a reconstruction module for the TRUE 

bank into the RECSIS code. 

After all the above modifications, the new GSIM copies the TRUE bank into 

its output file without smearing the positions provided by BONUS, and the new 

RECSIS processes both the RTPC signals and the TRUE bank. 
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IV.4 GSIM POST PROCESSING 

The detection efficiency of a real detector can be affected by a lot of sources, 

such as temperature, alignment or malfunction of electronics. The efficiency of the 

detector, hence, is always less than 100%. In simulation, these kinds of issues are 

very difficult to take into account, so the efficiency of the detector in the simulation is 

always ideal. In order to achieve a simulation result that can match the real data, we 

ran another program called GSIM Post Processing (GPP), which is used to change 

the simulation output such that it agrees with real data, for example, by accounting 

for the dead wires in DC and by smearing the timing and distance resolution. 

The GPP is an existing program developed by previous CLAS collaborators. It 

can be used to change the simulation signals for the DC, SC, CC and EC detectors. 

For DC signals, the GPP can 1) knock out the dead wires according to the DC 

calibration database and 2) shift the DOCA mean value and 3) smear the hit signals 

according to the resolution determined by the DC calibration procedure using the 

real experimental data. For the SC signal, GPP can smear the signal to change the 

time resolution. For the CC and EC signals, GPP can take the hardware thresholds 

into account. 

The resolution and detector constants may vary from experiment to experiment 

since the experimental conditions may change. We therefore had to find a new set of 

calibration constants for each experimental based on the experiment data. For the 

same reason one needs to have a unique set of optional parameters to run one's own 

GPP, such as the run number (R), the DC smearing scale values for regions 1, 2 and 

3 (a, 6, c) and the SC smearing scale value (/). The value for R can be any run 

number that belongs to the BoNuS experimental data set. This number was used to 

determine which entry of the calibration constants in the calibration database would 

be used. In order to simplify the job, we chose only one single value for the DC 

smearing, namely we used the same value for a, b and c, assuming DC Regions 1, 

2 and 3 had identical resolutions. In order to determine a value for a, b and c, we 

generated about 1 million electron-proton elastic events distributed according to the 

elastic cross section and then ran them through BONUS and GSIM. 

To find a value for / such that the simulated resolution matches the real res­

olution, we scanned / from 0.8 to 1.4 with the GPP. These GPP outputs were 

reconstructed by RECSIS and then analyzed to plot the SC time resolution for the 
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trigger electrons as a function of /. Figure 36 shows the scan result, namely the 

simulated SC time resolution for electrons as a function of /. Figure 37 shows the 

SC time resolution for electrons in the real data. By matching the resolution from 

the simulation to that of the real data we determined that the / value for BoNuS 

simulation is 1.01. 

Sigma of cH V». »c»mear : 4GeV Radiated Elastic Events )f 0.8762 / 4 
~ . . . 3~p0 0.01069+ 0.00531 

m 0 sigma • 0.01069 + 0.13345*scsmear 
0.1335+ 0.004949 

0.18 
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Mean of dt Vs. scsmear : 4GeV Radiated Elastic Events 7.294 / 5 

J pO -Q 5748 + 0.0005028 

S>.571 
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FIG. 36: The SC timing resolution for the simulation as a function of the GPP SC 
smearing scale value. 

To find a value for a, we scanned a from 1.0 to 4.0 with the GPP, then recon­

structed and analyzed the simulated data to plot the invariant mass (W) as a function 

of a. Finally we compared the resolution of W in simulation with that in real data 

to determine the best value for DC smearing. Since W resolution is beam energy 

dependent, we had to find a value for a for each beam energy separately. Figure 38 

shows the resolution in W as a function of a for the 1 GeV simulated data. Figure 39 
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dt of Electron I Entries 205260 

X3 / nd* 14.88 / 19 

Constant 7391 ± 28.7 

Mean 0.002239 ± 0.000675 

Sigma 0.1429 ± 0-0012 
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so t[sc[0]-1 ]-tr time-sc r[sc[0]-1 J/29.98 

FIG. 37: Timing resolution for electrons in the BoNuS experimental data. 

shows the resolution in W for the l GeV real data. Again, by matching the simulated 

resolution to the that of the real data we determined that a = 2.76 for the l GeV 

data set. Repeating the same procedure for the other beam energy data sets, we 

finally obtained the DC smearing scale values of 1.89, 1.69 and 1.56 for the 2, 4, and 

5 GeV data sets, respectively. Figures 40 to 45 show these scanning results. These 

GPP optional parameters for the BoNuS simulation are summarized in Table 5. 

TABLE 5: GPP parameters for the BoNuS simulation 

invoke option values description 
-Ri? any run number To select the corresponding database 
-Y N/A Knock out dead DC wires based on the database 

-U 1.01 SC smearing scale value, for all data sets 
-aa -ba -ca 2.76 DC smearing scale value, for the 1 GeV data set 
-aa -ba -ca 1.89 DC smearing scale value, for the 2 GeV data set 
-aa -ba -ca 1.69 DC smearing scale value, for the 4 GeV data set 
-aa -ba -ca 1.56 DC smearing scale value, for the 5 GeV data set 
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S i g m a o f W  V s .  d c s m e a r  :  1 G e V  R a d i a t e d  E l a s t i c  E v e n t s  
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FIG. 38: W resolution for the 1 Gev simulated data as a function of the DC smearing 
scale value. 
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FIG. 39: W resolution for the 1 GeV real data after momentum correction. 
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FIG. 40: The W resolution for the 2 Gev simulation as a function of a. 
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FIG. 41: The W resolution for the 2 GeV real data after momentum correction. 
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FIG. 42: The W resolution for the 4 Gev simulation as a function of the DC smearing 
scale value. 

I I h_Wcorr 
Entries 621186 

Mean 0.9404 

RMS 0.03414 

Prob 0.004356 

Constant 524.1 

Mean 0.9311 

Sigma 0.02484 

1U 

FIG. 43: The W resolution for the 4 GeV real data after momentum correction. 
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FIG. 44: The W resolution for the 5 Gev simulation as a function of of the DC 
smearing scale value. 
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FIG. 45: The W resolution for the 5 GeV real data after momentum correction. 
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IV.5 EVENT GENERATORS 

The event generator determines the initial kinematics of the particles in an event 

according to a specified distribution. It is very important because one can save a 

lot of CPU time with a good event generator which can generate events that match 

the real experimental data. This kind of event generator usually contains the cross 

sections information. However, the cross section for D(e,e'-ir~p)p is not well known 

yet due to the lack of data, so we had to generate event according to other criteria. 

In this analysis, two event generators have been used. One is for inclusive simulation 

and the other is for exclusive simulation. 

IV.5.1 Inclusive Event Generator 

The event generator used in inclusive and semi-inclusive simulation was written 

and maintained by S. Kuhn. It used the RCSLACPOL code developed at SLAC to 

do the radiative corrections [59, 60]. In addition to the cross section information, 

a deuteron wave function obtained from the Paris potential solution [61] was also 

included to account for the Fermi motion of the neutron. To meet the goal of inclu­

sive analysis, three types of events were generated: 1) electron scattering from the 

deuteron or proton D(e, e') and H(e,e'); 2) quasi-elastic scattering from the neutron 

inside the deuteron D(e,e'pa); 3) inelastic scattering from the neutron D(e, e'ps)X. 

In order to generate the neutron quasi-elastic and inelastic scattering events with 

Fermi motion, this event generator first picked the Fermi momentum for the spectator 

proton, ps, according to the deuteron wave function. Assuming the deuteron was at 

rest, the kinematics for the neutron were given by: 

Note that the off-shell mass of the neutron here is different from the free neutron 

mass at rest. Then the generator picked a random Q2 and u within the boundaries de­

fined in the configuration file to generate the kinematics for the scattered electron, e!. 
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The full radiative cross section for the generated events was calculated, and the event 

was written out if the cross section was larger than a random number thrown with 

uniform distribution. Pre-scattering radiative corrections were taken into account at 

this step. The H(e, e') simulation was used to search for the proper parameters for 

the GPP (see Section IV.4). The D(e, e'), D(e, e'ps) and D(e, e'ps)X simulations were 

use to extract the trigger efficiency of CLAS and for inclusive analysis purposes. 

IV.5.2 Exclusive Event Generator 

The event generator used for exclusive D(e, e'ir~pp s)  simulation is called Fi­

nal State GENerator (FSGEN)[64], and was provided by S. Stepanyan. This 

code was written based on the PYTHIA package [65, 66], which generated the 

D(e, e'ir~pps) events uniformly or under a given distribution in the center-of-mass 

frame. The Fermi motion of the initial neutron was modeled using the deuteron 

momentum distribution obtained from the Bonn potential. No cross section is yet 

included in FSGEN. To run this event generator, one needs to provide a configura­

tion file to specify the final state and the kinematic boundaries. One can also limit 

some kinematic distributions, for example, W, Q2. t (the momentum transfer square 

between the virtual photon and outgoing hadron tt~: t = (q^ — 7r^)2 ), such that the 

simulated data can match the experimental data. 

FSGEN generates D(e, e'-K~pp s)  events by first selected the momentum for the 

spectator proton ps according to the Bonn potential. The momentum and the energy 

for the neutron were then determined using Eqs. (26) and (27). Then W and Q2 were 

chosen within the boundaries of the given distribution, if there was any, or according 

to the default flat distribution. Note that this W does not yet include the Fermi 

motion information. Knowing the beam energy E and according to the Eqs. (1) and 

(2), the electron scattering angle 9e and the final energy E' were then calculated. A 

value for the azimuthal angle, 0e, under a flat distribution was generated. From here 

it obtained the four-momentum for the virtual photon, cf . 

To obtain the four-momenta for the outgoing hadrons ( T V ~  and proton) in the 
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reaction 7*n —> 7r p , the FSGEN used the following definitions: 

= (0,0,Ecm,Ecm); (29) 

ncm = (0, 0,PTcm,-^Tcm); (30) 

(P7rcm> -£'7rcm)- (31) 

Since the square of the four-momentum is frame invariant, 

9cm2 = ~Q2-  (32) 

<m
2 - Mt< - 1% - ptt

2, (33; 

the CM beam energy Ecm and the target neutron's CM momentum Pxcm can be 

determined. Using the constraint  from the invariant variable t ,  

t = (^ab - ̂lab)2 = (9cm ~ , (34) 

= M2  — Q2  — 2(E c mE„ c m  -  E c m |p^cmI C O S  0 1 ,  (35) 

and using a uniform 0* and a uniform (/>* distribution, the ix~ four-momentum was 

determined. The four momentum of the outgoing proton was finally determined 

based on 

rf  = Q V-  -  7 rem icm 1 '"cm "cm* 

Finally 7r^m and p£m were boosted from the CM frame back to the lab frame. 

The D(e, e'-K~pp s)  simulation was used for the exclusive analysis to calculate the 

acceptance and particle detection efficiencies and to model the background. Since 

there was no cross section information included, the simulated data may not match 

the experimental data. In order to correct for this, we weighted each generated event 

by r(W', Q2, cos#*, 0*), which came from the ratio of the kinematics distribution of 

the real data to that of the simulated data. The definition of r is given as: 

r EE r1(W')r2(Q2)r3(cos0l)r4((j) l) ,  (36) 

where r1; r2, r3 and r4 are the distribution ratios of the real data to that of the 

detected simulated data (where the area of the distribution for the simulated data 

has been normalized to that of the real data) as a function of W', Q2, cos0* and 0*, 
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respectively: 

r x(W') = 
data(W') 

simulation(W') '  
(37) 

T2(Q2) = 
data{Q2)  

simulation(Q2) '  
(38) 

r3(cos 6*) = 
data(cos6*) 

simulation(cos 0*)'  
(39) 

rMl) = 
data((f>D 

simulation(</>*) 
(40) 

We understood that extracting a value for r in each four-dimensional bin would be 

better than using the product of the four individual ratios defined above. We would 

have extracted r for each four-dimensional bin if there were enough statistics in the 

experimental data. Figures 46 to 49 show the ratios of the D(e, e.'^~PchAs)P event 

distributions for the 5 GeV real data to the simulated data for W', Q2, cos#* and </>*, 

respectively. Figures 50 to 53 show the same ratios but for D(e, e/7r~pRTPC)p events. 

This weight was used in the calculation of acceptance. In general, the acceptance 

would be given by 

E1 
number of recostructed events _ rec 

number of generated events 1 
gen 

In this analysis, the acceptance was calculated according to: 

A — rec 

gen 

Details about the acceptance calculation will be described later in Section V.6. 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 



70 

1.5 

1 

0.5 

0 

FIG. 46: Ratio of the D(e, e'lx PCLAS)p events for the 5 GeV real data to the simulated 
data as a function of W'. 

1. 

0. 

FIG. 47: Ratio of the D(e, e'lt pCLAS)p events for the 5 GeV real data to the simulated 
data as a function of Q2 .  
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FIG. 48: Ratio of the D(e, e'-ix PCLAS)P events for the 5 GeV real data to the simulated 
data as a function of cos 9*. 
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FIG. 49: Ratio of the D(e, e'ir~pChAS)p events for the 5 GeV real data to the simulated 
data as a function of </>*. 
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FIG. 50: Ratio of the D(e, eV pRTpc)p events for the 5 GeV real data to the simulated 
data as a function of W'. 
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FIG. 51: Ratio of the D(e, eV pRTpC)p events for the 5 GeV real data to the simulated 
data as a function of Q2. 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 

D(e,e'7t'p )p : Real/Sim 5G 
V ' rRTPC/r 

- • pO -881.3 
-

f \ 9  

/ • \ 
p1 3130 
P2 -4685 

- P3 3840 
_ p4 -1864 
- P5 535.4 
_ p6 -84.35 
-

1 \ P7 5.623 

_l I I L_ _J |_ 

W' (GeV) 

D(e,e'7t"p )p : Real/Sim 5G 
x RTPC 

• • pO -0.9952 
/ # p1 1.313 

r \ P2 2.729 
_ • / p3 -2.859 
— / 

"^0153 
/• p5 -0.09593 

i  I * I  i  1  i  i  i  i  1  i  i  i i i i i i i 

Q2 (GeV2) 



73 

D(e,e'rc"p )p : Real/Sim 5G 
x RTPC 

- po 0.6972* 
p1 -0.6687/ 

~ P2 1.302 
- p3 2.175 
— P4 -3.5T4 
- P5 -3.977 
- • • p6 2J593 
- P7 ^3.56 

— / 

• • " • • 

1 • i 1 i i i i 1 i i i i 1 1 1 1 

COS0* 

FIG. 52: Ratio of the D(e, e'-n pRTpc)p events for the 5 GeV real data to the simulated 
data as a function of cos#*. 
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FIG. 53: Ratio of the D(e, e'7r~pRTPC)p events for the 5 GeV real data to the simulated 
data as a function of (f>*. 
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CHAPTER V 

DATA ANALYSIS 

The BoNuS experiment was performed from Oct. 12 to Dec. 24 in 2005. Data 

were collected on a 7 atmosphere gaseous deuterium target with incident electron 

beam energies of 1.1005, 2.1424, 4.2262 and 5.2681 GeV. The 1 GeV data were used 

for calibrations. Table 6 lists the whole run period of the BoNuS experiment, which 

includes calibration and background runs on hydrogen and helium. For some runs 

we used the beam stopper in front of the Faraday Cup (FC). The status of the beam 

stopper is also listed in this table. For this analysis we used the deuterium data 

collected with 2, 4 and 5 GeV beam energy. The trigger was defined by a cluster 

with deposited energy above threshold in the electromagnetic calorimeter together 

with a hit above threshold in the Cherenkov counter for the same sector. The data 

rate was about 0.7 kHz and the dead time less than 25%. 

Several calibrations and corrections were applied to obtain accurate data for the 

final physics analysis. The data processing, calibrations and corrections will be ad­

dressed in the following sections. 

V.l DATA PROCESSING 

The collected data were processed using the CLAS REConstruction and analySIS 

framework (RECSIS). RECSIS consists of several modules designed to reconstruct 

hits from the raw detector data. This program converts the raw detector information 

into momenta, vertices, times and particle information, i.e. charge and mass. During 

the reconstruction of an event, the raw data from all involved detectors are read in 

and then processed by their corresponding modules. The result is then passed to the 

Simple Event Builder module (SEB), which writes all the reconstructed information 

into the output file. Overall, RECSIS is in charge of the following tasks: 

• geometrically match each track in the drift chamber to the corresponding hits 

in the other detectors, for example CC, SC and EC; 

• identify the trigger particle (i.e., the electron) for an event; 
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run_min run_max target stopper beam_energy torus thresholds (mV) 
(in|out) (GeV) (A) CC | ECinner | ECtotal 

49471 49499 D2 out 4.2262 2250 751701200 
49500 49522 D2 out 4.2262 2250 20|70|150 
49523 49640 D2 out 4.2262 2250 751701200 
49642 49663 H2 in 4.2262 2250 751701200 
49664 49691 D2 out 4.2262 2250 751701200 
49692 49798 D2 in 4.2262 2250 751701200 
49799 49807 He in 4.2262 2250 751701200 
49808 49821 He in 5.2681 2250 75| 70| 200 
49822 49927 D2 in 5.2681 2250 751701200 
49928 49938 H2 in 5.2681 2250 751701200 
49939 49943 He in 5.2681 2250 751701200 
49944 50013 He out 5.2681 2250 751701200 
50014 50050 H2 out 5.2681 2250 751701260 
50051 50061 H2 in 5.2681 2250 751701260 
50062 50105 D2 in 5.2681 2250 75|70|260 
50108 50236 D2 in 5.2681 2250 751701260 
50237 50251 H2 in 5.2681 2250 75|70|260 
50252 50268 He in 5.2681 2250 75170| 260 
50269 50283 He in 2.1424 1500 75170| 260 
50284 50290 H2 in 2.1424 1500 75|70|260 
50291 50296 D2 in 2.1424 1500 751701260 
50297 50308 D2 out 2.1424 1500 75170| 260 
50309 50331 D2 out 2.1424 1500 75170| 150 
50333 50340 H2 out 1.1005 1500 75170| 150 
50341 50349 D2 out 1.1005 1500 75170| 150 

TABLE 6: All runs of the BoNuS experiment. The target type, beam energy, torus 
current and trigger thresholds are listed. For some runs we used the beam stopper 
in front of the Faraday Cup (FC). The status of the beam stopper is also listed. 
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FIG. 54: An example of an event reconstructed by RECSIS. The inbending track on 
the top half of the detector corresponds to the electron that triggered the event, the 
outbending track on the lower half corresponds to a positively charged particle. 

• calculate the trigger time and event start time; 

• identify the particle, i.e. electron, 7r~, 7r+, proton, etc., for each reconstructed 

track; 

• build an event and write it to the output file. 

Figure 54 shows an example of an event reconstructed by RECSIS. An "inbending" 

track, in this case the electron, bends toward the beam line. Positive particles bend 

away from the beam line. 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 



77 

V.2 DETECTOR CALIBRATIONS 

In each CLAS experiment, the detectors are calibrated to ensure that experimen­

tal quantities such as time or energy are correctly determined from the raw ADC and 

TDC information. The calibration changes from experiment to experiment and even 

from run to run. For example, the TOF calibration might change due to changes in 

the electronics or wiring; the DC electron drift velocity varies with changes in atmo­

spheric pressure, temperature, humidity and gas mixture, all of which can affect the 

drift time to drift distance relationship. The tasks of data calibration were performed 

by several collaborators. The calibrations of the TOF, DC and EC energy done by 

other collaborators will be summarized briefly. The EC timing calibration performed 

by J. Zhang will be described more thoroughly. 

V.2.1 Time of Flight Calibration 

The calibration of the Scintillator Counters should be carried out first because 

1) the SC provides the start time of each event; 2) all the timing information from 

other detectors in CLAS is relative to the SC time. For these reasons the quality 

of the SC timing calibration is always required to be very accurate since it strongly 

affects all the other time related calibrations, i.e. the DC and EC timing calibration. 

A TOF calibration consists of the pedestal calibration, the TDC cahbration, 

the left-right PMT alignment, the attenuation length calibration and the counter to 

counter calibration. The SC calibration for BoNuS was done by N. Kalantarians. 

For details about the calibration procedure please refer to [67, 68, 69]. 

V.2.2 Drift Chamber Calibration 

The CLAS drift chambers were designed to measure particle momentum with a 

resolution of 0.5% for 1 GeV particles [36], which requires the hit positions along a 

track to be measured very precisely and the magnetic field to be known accurately. 

Before the BoNuS experiment, part of the drift chamber had been pulled out for 

repair, then reinstalled. It is not possible to ensure that a chamber is installed exactly 

at the same position as it was previously located. Therefore a calibration of the DC 
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alignment is very necessary, in addition to the regular drift velocity calibration. 

As described in Section III.3.1, the DC consists of six identical sectors. Each 

sector is divided into three regions. Each region has two superlayers, axial and stereo. 

The schematic view of the Drift Chambers is shown in Fig. 16. Each superlayer 

contains six layers of sense wires except superlayer 1, which has only four layers. 

Each superlayer should be separately calibrated, which yields 34 sets of calibration 

constants. 

The primary purpose of the Drift Chamber calibration is to refine the drift time 

to drift distance conversion to optimize position measurements. The constants for 

the time-to-distance conversion have to be systematically calibrated and checked for 

stability over the course of the experiment. The calibration procedure consists of 

several iterations of running the reconstruction program followed by refitting the 

calibration constants. 

The DC cahbration was done by S. Tkachenko. His calibration was successful in 

realigning the 34 drift cell layers into a straight line and improving the resolution. The 

time residual before and after his calibration is shown in Figs. 55 and 56, respectively. 

More details about this calibration can be found in [63, 70]. 

V.2.3 Electromagnetic Calorimeter Time Calibration 

The Electromagnetic Calorimeter (EC) is an important part of the CLAS detec­

tor. It is used to detect electrons, and in combination with the CC, is usually part of 

the trigger requirement. In addition, the EC was designed to detect neutral particles, 

for example photons, 7r°, 77, and neutrons [41], 

Since the EC time is relative to the SC time, the cahbration of the EC timing 

should always be performed after the SC calibration is finished. The EC timing is 

calibrated by comparing the time measured by the EC to the time expected from 

the TOF for electrons. The expected time of an electron hit in the EC extrapolated 

from the SC time should be: 

T£ = Tt of + ^, (41) 

where TTOF is the time measured by the TOF, and d t lk  is the path-length between 

TOF and EC strips. The time measured by the EC (TEC) is then compared with this 

expected time for each PMT. The EC time calibration constants were adjusted to 
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FIG. 55: DC residuals before calibration for each layer in sectors 1 to 6. 
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keep the difference between expected time and measured time in the EC, defined as 

A^ecsc = 2~ec — , (42) 

as close to zero as possible. This can be checked by fitting the AtECSC for electrons 

with a gaussian function. Figs. 57 and 58 show the AtECSC before and after this 

calibration. One can see that after the calibration, the average values of AiECSC for 

each sector are close to zero. 

V.2.4 Electromagnetic Calorimeter Energy Calibration 

The calibration of the electromagnetic calorimeter energy was done by EC expert 

C. Smith [72], Cosmic ray runs were taken with a special trigger which used a 

threshold of 10% minimum ionizing energy and forced a hit in both the inner and 

outer layers of the EC module. This excludes triggers that would never satisfy the 

pixel cut. The pixel cut simply demands that a single overlapping pixel fires in 

both the inner and outer layers. Since cosmic muons are minimum ionizing, the 

energy deposited depends only on the track length for that pixel, which is fixed by 

geometry By confining the muon track to a single pixel, the mean energy deposited 

in the scintillator, corrected for attenuation, can be related to the response of a single 

PMT. The gain factor for each PMT is then adjusted so that the overall gain of all 

PMTs are matched and signals are properly converted into deposited energy (GeV). 

V.2.5 Cherenkov Counter Calibration 

Normally the Cherenkov counter calibration is done by CC experts. In the case 

of BoNuS experiment, the ADC calibration for the CC detector is not yet done. As 

a result the average number of reconstructed photoelectrons for electrons in each 

sector of the CC detector in the BoNuS experiment is lower than other experiments. 

The number of photoelectrons was used to identify the trigger electrons. In order to 

avoid losing triggers a very loose cut at the hardware threshold was applied. 

The TDC calibration for the CC detector is also problematic. During the data 

analysis, I was able to identify some bugs in the TDC reconstruction for the CC 

detector in the RECSIS code. These bugs have since been fixed and a new TDC 

calibration has been performed by me. This calibration was done by adjusting the 
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calibration constants such that the timing information measured by CC matches that 

of the SC, similar to the method used for EC timing calibration. Because the CC 

TDC information was not used in this analysis, we did not reanalyze the experimental 

data to pick up the correct CC calibration information. However, other members may 

need to reanalyze the data if they plan to use CC TDC related measurements. 

V.2.6 RTPC Calibration 

The calibration of the RTPC detector was done by N. Baillie. In Section IV.2.5 

we described the drift path package that was used in the reconstruction of RTPC 

raw data. This drift path package includes several analytical functions. A lot of 

parameters are used in these functions, eight of which require calibration: the helium 

gas percentage in the He/DME drift gas mixture, the voltage of the cathodes in both 

left and right halves, the Lorentz angle offsets for both left and right halves, RTPC 

readout electronic time offset and the beam positions xb and ys- Calibration data 

were taken for which the RTPC high voltages were turned up high to detect the 

scattered electrons in the RTPC. In these data, the scattered electrons were measured 

in both the RTPC and the CLAS detectors. The 8 parameters were then adjusted 

such that the RTPC reconstruction of the scattered electrons matches that of the 

CLAS. For details about this calibration please refer to [57]. 

V.3 QUALITY CHECKS 

There may exist some runs with problems in the data we collected. In order to 

achieve a high quality analysis result, all such data should be removed as part of 

the data analysis. Therefore quality checks become very important. Based on the 

fact that the probability of scattering an electron from a target depends only on the 

target, beam energy and torus current, we use the ratio of the scattered electrons to 

the total incident electrons to determine the quality of a run. 

Before starting, all known bad runs should be removed from the data. This could 

save a lot of time and energy during the checking procedure. Since we care about 

the fraction of scattered electrons to the total incident electrons, we need to group 

our data based on the following characteristics: 
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• beam energy; 

• target type; 

• the existence of the beam stopper in front of the Faraday Cup (FC); 

• detector configuration, i.e. trigger thresholds and torus current. 

Due to the fact that the beam tune changes each time the target is changed or 

refilled, we usually include only continuous runs in a group to ensure that the beam 

tune is remained unchanged. The beam tune should not make a huge difference 

unless it was really bad. In practice one can check the experiment running logs, 

and plot the fraction mentioned above as a function of time (or run number) and 

look for times when the value changes. Fig. 59 shows the ratio of the good scattered 

electrons to the total charge for various targets: hydrogen (black squares), deuterium 

(red circles) and helium (blue triangles). The ratio varies due to the beam energy, 

50200 49800 50000 49600 
Run Number 

FIG. 59: Ratio of the good trigger electrons to the accumulated charge (in arbitrary 
units) in the FC (without stopper correction) as a function of the run number for 
various targets: the black square points are for hydrogen, the red circle points are 
for deuterium and the blue triangle points are for helium. 

target, the existence of the stopper, beam tune and also the trigger configuration. 

Sometimes one finds some mistakes in the database by looking at these kinds of plots. 

Using this procedure it became clear that some runs were mislabeled in the database. 
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For instance, runs from 50108 to 50132 and run 50340 were marked with the wrong 

target in the database. 

The detailed procedure for checking the quality of the data is the following. For 

each group (data set) mentioned above, we plot the ratio of the good trigger electrons 

to the accumulated charge in the FC (without stopper correction) for that run, 

"N_el/Charge", into a one dimensional histogram, and then fit it with a gaussian 

function for the mean and sigma values. It is important to check the fit by eye 

and adjust the fitted region to make sure the fit is good. If the gaussian fit doesn't 

work we use the arithmetic mean and root mean square (RMS) from the histogram. 

Figure CO shows an example of the 1-D histogram of "X.el/Charge" for runs from 

49692 to 49798. We would like to use a cut at about 3-cr (or RMS) to select good 

D2: 4 GeV With Stopper: [49692,49798] 
Constant 
Mean 
Sigma 

15.85 
47.52 
1.014 

20 

N_el/Charge 

FIG. 60: Ratio of the good trigger electrons to the accumulated charge in the FC 
(without stopper correction) for runs from 49692 to 49798. The red lines indicate 
the cut selecting good runs. 

data, but in most cases the final cut value was slightly different from 3-cr. To find the 

best cut value, we marked those runs whose ratio was close to 3-cr (or RMS) limit, and 

then we tried to understand why this ratio was not at the center of the distribution. 

In practice the CLAS.ONLINE running log books were checked together with the 

database to search for any messages related to those runs. Based on all the available 

information we determined whether the run was bad or not. Finally a flag identifying 

good or bad runs was added to the database. 
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V.4 CORRECTIONS AND CUTS 

V.4.1 Trigger Particle Identification 

Readout of the CLAS detector is triggered by a coincidence between a signal in 

the Cherenkov counter (CC), and the electromagnetic calorimeter (EC). However, 

not all triggers are caused by good electrons, and we have to apply several cuts 

to select good electrons. In this analysis, a good trigger electron must be the first 

particle found in the event with negative charge. The trigger electron is likely to 

have more momentum than other final state particles. If there are several electrons 

identified by RECSIS in an event, the highest momentum one will always be chosen 

as the trigger electron. We also must impose several cuts on the CC and the EC 

detectors, as described in the next several subsections. 

CC cuts 

In CLAS, the Cherenkov counters are used to separate negative pions from elec­

trons. The energy threshold for a pion to generate Cherenkov light is about 2.5 GeV, 

see Section III.3.2. The CC hardware threshold in the BoNuS experiment was set 

high at 75 mV, (cf. Table 6), which corresponds to 1.5 photoelectrons. Looking at 

the distribution of the number of photoelectrons (nphe), one can see that the data 

has a very sharp drop below nphe = 1.5 (cf. Fig. 61). There was no evidence that 

any other cut was needed. Therefore we applied a very loose cut, nphe >1.5. Clearly 

for momentum above 2.5 GeV/c, the CC nphe can no longer be used to reject pions. 

In order to minimize the edge effects and also keep all possible electron candidates, 

we lower the nphe cut to 1.0 for momenta above 3.0 GeV/c (instead of 2.5 GeV/c). 

If one looks at the momentum distribution for electrons and negative pions, es­

pecially for the 4 and 5 GeV data set (cf. Fig. 62), one can see that there are still 

some small fraction of pions with momenta above 3.0 GeV/c. For these electron 

candidates, the geometry matching quantity cc_c2 can be used to remove bad elec­

trons. The variable cc_c2 is the quality of the geometrical matching in the Cherenkov 

counters and the scintillation counters, i.e. the angle between the CC hit and the 

nearest hit in the SC. We required a cut of 0 < cc_c2 < 0.8 (cf. Fig. 63) to ensure 

good electrons. 
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FIG. 61: Distribution of photoelectrons xlO in the Cherenkov counter for the trigger 
electrons identified by RECSIS. The red vertical line indicates the cut for electron 
candidates with momentum below 3.0 GeV/c 
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FIG. 62: Momentum distribution for trigger electrons (black) and negative pions 
(red, with peak value around 0.5 GeV/c) identified by RECSIS. 
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FIG. 63: Number of photoelectrons x 10 as a function of cc_c2 for trigger electrons 
identified by RECSIS. The black lines indicate the cuts. 

EC cuts 

In additional to the CC nphe cut and geometry matching cut, cuts based on 

EC information can also be used to improve the separation between electrons and 

negative pions. It is well known that an electron creates a shower when traveling in 

the EC, whereas a pion just loses energy by ionization. Typically a pion will deposit 

around 2 MeV per centimeter when it passes through the scintillator, so the total 

energy deposited in the detector should be independent of momentum. When an 

electron creates a shower in the EC it usually deposits all of its energy, so the energy 

deposited will be proportional to its momentum. In Fig. 64, the left panel shows 

the energy deposited in the EC inner layers for all negative particles as a function 

of the momentum; the right panel shows the ratio of the energy deposited in all the 

EC layers to the particle momentum for all negative particles as a function of the 

momentum. The contribution from minimum ionizing particles, i.e. pions, is located 

in the lower band of the left plot and in the lower left corner of the right plot. To 

eliminate the pion contribution, we required 

Em > 0.06 

and 

0.15 -I- 0.016p < E to t/p < 0.34. 
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FIG. 64: The energy deposited in the EC inner layer (left) and the ratio of the 
energy deposited in all layers of the EC to the momentum (right) as a function of 
the momentum for all electrons identified by RECSIS under the CC cuts. The lines 
indicate the cuts that were applied to select good electrons. 

We also apply a cut on the energy of the trigger electrons [44] due to the fact 

that we used very high EC hardware thresholds in the BoNuS experiment (cf. Ta­

ble 6). We used three different ECtota\ thresholds, 150, 200 and 260 mV, during data 

collection. The electron energy cuts corresponding to these thresholds are 575, 700 

and 875 MeV/c, respectively. 

In summary, the electron identification includes the following requirements: 

• First particle in an event; 

• Negative charge; 

• CC nphe cut: nphe > 1.5 for P < 3.0 or nphe > 1.0 for P > 3.0; 

• CC geometry matching cut: 0 < cc_c2 < 0.8 ; 

• EC inner energy cut: E in  > 0.06 ; 

• EC total energy cut: 0.15 + 0.016p < E to t/p < 0.34 ; 

• Energy cut due to the EC threshold: 575, 700 and 875 MeV/c corresponding 

to the EC thresholds of 150, 200 and 260 mV, respectively. 
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V.4.2 Electron Identification for Exclusive Analysis 

The electron identification described above can select "golden" electrons. As a 

result it also removes some electrons which might not be bad. The EC total energy 

cut especially removes about 26.6% of electron candidates after the CC cuts and EC 

inner energy cuts have been applied (cf. Fig. 65). 

With (dash) and without (solid) E /p cut 

536901 

*394136 20000 

15000 

10000 

5000 

0.2 0.3 0.1 

FIG. 65: Etat/p distribution for the trigger electrons identified by RECSIS. The red 
dash curve is with EC and CC cuts and the black solid curve is under the same cuts 
except without the Etot/p cut. The entries of both distributions are also shown in 
the up-right corner. The red dash curve is just 73.4% of the black. 

In my analysis, the statistics are so limited that we do not want to lose any 

possible good exclusive events. In order to select the exclusive TT~ reaction, a missing 

mass cut (described in Section V.4.8) will be applied. It is very unlikely for an event 

to satisfy the missing mass cut if one of the final state particles has been misidentified. 

Therefore it does not matter if the EC total energy cut is included or not for this 

exclusive analysis. A close study of this showed that by removing the EC total energy 

cut from electron identification, about 5% of D(e, e'-K~p)p events were gained. Fig. 66 

shows the missing mass distribution for the 5 GeV D(e, e'ix~pcljAS)X events in which 

the electron candidates pass (top left and top right) and do not pass (bottom left 

and bottom right) the EC total energy cut. The plots on the right show only events 

under the exclusive peaks. By comparing the shapes between top left and bottom left 

one can see that the EC total energy cut can be released in this exclusive analysis 

because the missing mass still has a dominant peak at the mass of a proton. By 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 



92 

comparing the exclusive events in top right and bottom right one can see that about 

5% of the events were regained by removing the EC total energy cut. 

Note that the EC total energy cut can be removed only for the exclusive analysis. 

In order to gain statistics, we finally decided not to use the EC total energy cut in this 

analysis. To avoid confusion, I refer to the electron identification with the EC total 

energy cut as the STANDARD electron identification, which was used for inclusive 

analysis. If not specifically indicated, the electron identification for the remaining of 

this text refer to the exclusive electron identification. 

V.4.3 Fiducial Cut for Electrons 

In order to measure the cross section precisely we must know the efficiency of 

all the subsystems of the CLAS detector. The Cherenkov counter in particular has 

regions of inefficiency and events in those regions must be removed. The fiducial 

cut is developed especially for this purpose. Details about the procedure to find the 

fiducial cut can be found in [74] and [75]. To obtain the fiducial cut, we have run 

through the following steps. 

For each sector, we binned the momentum into 12 bins starting from 200 MeV/c 

and with a bin width of 300 MeV/c. Then we selected good electrons using the stan­

dard electron identification to fill the i vs- #dci" histogram for each momentum 

bin. Both cf)^cl and 6>dci were measured at DC Region 1 and 0^cl was converted into 

the sector coordinates (—30° < <ps < 30°), by 

0dd = (^dci) - 60 x (sector - 1) , 

where sector was the DC sector number for this particle from 1 through 6. An 

example of these histograms is shown in Fig. 67. For each histogram, we fitted a 

trapezoid to the distribution of </^cl in each #dci bin to determine the boundary 

values of the fiducial region. Figure 68 shows an example of this trapezoid fitting. 

Then we parameterized the boundary values on the positive side with the function 

0dci(0dci) = o[1.0 - (1.0 + A(#dcl - c)V], (43) 

where a, b, and c are parameters to be fit and A is a constant that was introduced to 

make this function useful for all particles, such as pions and protons. For electrons, 

A is empirically optimized to 0.35. The same procedure was repeated to the negative 
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FIG. 66: Missing mass distribution for the 5 GeV D(e, e'7r~pCLAS)X events for which 
the electron candidates pass (top left and top right) and do not pass (bottom left 
and bottom right) the EC total energy cut. The plots on the right show only events 
under the exclusive peaks. 
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FIG. 67: vs. $dci for electrons with momenta 1.7 < p < 2.0 GeV/c in sector 6. 
The red and black curves makes the boundary for the fiducial region. 

boundary values of ^cl as well. The red and black curves in Fig. 67 indicate the 

fiducial boundary for that particular histogram. The complete fitting results for 

electrons in sector 6 are shown in Figs. 69 and 70. In the end, a fiducial cut look 

up table is created with the values a, b and c for each sector and each momentum 

bin. Since the momentum was binned only up to 3.8 GeV/c, electrons with momenta 

above 3.8 GeV/c would be treated as if the momenta at 3.8 GeV/c. 

V.4.4 Fiducial Cut for Hadrons 

The fiducial cut for electrons is used to remove the low efficiency regions of the 

CC, whereas the fiducial cuts for hadrons are used to define good regions of the DC. 

By repeating the same procedure described above, with A = 1.0 for TT~ and A = 

3.0 for protons, similar fiducial cut look up tables were created for 7r~ and protons. 

Figures 71 and 72 show the fiducial boundary for 7r~ detected in sector 6 in momenta 

range below and above 2.0 GeV/c, respectively Figures 73 and 74 show the same, 
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FIG. 68: Trapezoidal fit to <p^cl distribution for electrons in narrow 6>dci bin in the 
histogram shown in Fig. 67. The red vertical lines indicate the fiducial boundary 
values. 
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FIG. 69: (j)^cl vs. ^dci for electrons with momenta p < 2.0 GeV/c in sector 6. The 
curves are the fiducial boundary. 
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FIG. 70: vs. #dci for electrons with momenta p > 2.0 GeV/c in sector 6. The 
curves indicate the fiducial boundary. 
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except for protons. 

V.4.5 Solenoid geometry 9-z cut 

In the BoNuS experiment, The RTPC detector was placed in the center of a 

solenoid, which providing the magnetic field for the RTPC. A side view of the ge­

ometry of this solenoid is shown in Fig 75. In order to remove particles hitting the 

solenoid, we applied the 0-z correlation cut to all particles seen by CLAS. 

V.4.6 Beam Line and Vertex Correction 

It is necessary to apply cuts on the interaction vertex in order to avoid events 

from reactions in the walls or the inefficient part of the target. Although the designed 

length of the RTPC detector is 20.0 cm, the useful part of the target length is only 

about 16.0 cm, because of an aluminum cover surrounding the entrance part of the 

RTPC for 4.0 cm, as shown clearly in Fig. 76. The vertex distribution of the trigger 

electrons is shown in Fig. 77. There are two peaks which come from the aluminum 

entrance window and the aluminum end cap. The segment from —64.0 to —48.0 cm 

is the valid length used in our analysis. 

During the reconstruction, RECSIS extrapolates the track to the z axis, assuming 

that the beam goes along the z axis. However, the beam might have a small offset 

from the z axis and/or have a very small polar angle with respect to the z axis. The 

effect of this offset can be seen in Fig. 78 (top) where the 0 dependence of the recon­

structed vertex is shown. The z position of the down stream cap of the target straw, 

which is located 14.5 cm downstream from the target center (see Section III.3.6), 

appears shifted depending on the sector, which can not be true. 

The deuterium target of BoNuS is relatively long compared to other CLAS ex­

periments. Therefore we need to determine not only the distance of the beam from 

the z axis, but also the direction of the beam. To define a straight line in space, we 

define a point O(xo,yo,zo = —59.0 cm) which this line goes through. Then the three 

dimensional line function is given as 

x XQ -(- Kxz(z ^0)7 

y = y0 + Kyz(z - z0), 
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FIG. 71: $jcl vs. 0dci f°r with momenta p < 2.0 GeV/c in sector 6. The curves 
indicate the fiducial boundary. 
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FIG. 72: <p s
d c l  vs. #dci for tt with momenta p > 2.0 GeV/c in sector 6. The curves 

indicate the fiducial boundary. 
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FIG. 73: 0jcl vs. d^d for protons with momenta p < 2.0 GeV/c in sector 6. The 
curves indicate the fiducial boundary. 
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FIG. 74: rdcl vs. $dci f°r protons with momenta p > 2.0 GeV/c in sector 6. The 
curves indicate the fiducial boundary. 
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FIG. 75: Side view of the solenoid used in the BoNuS experiment. This solenoid 
can provide up to 4 T magnetic filed. The light green color area indicates the RTPC 
position. Some particles may hit this solenoid before they are detected by CLAS. 
A vertex z dependent 0 cut was applied in order to eliminate particles hitting this 
solenoid. 
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FIG. 76: RTPC target system. There is an aluminum cover surrounding the first 4 
cm of the entrance part, which distorts particles originating from this region. 
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FIG. 77: Vertex 2 distribution for electrons. There are two peaks which come from 
the aluminum entrance window and the aluminum end cap. The blue dash lines 
located at —64.0 cm and —48.0 cm indicate the cut position. 
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FIG. 78: Vertex z distribution for the end cap before (top) and after (bottom) the 
beam line correction as a function of <fr. The vertex range shown here is for the 
aluminum end cap which is located at z ~ 435 mm. 
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where Kx z  and Ky z  are the slopes of the line's projections onto the X-Z and Y-Z 

planes, respectively, and x0 and yo are the beam positions corresponding to 2 = 59.0 

cm. With these four parameters, the beam offset (x,y) corresponding to any arbitrary 

2 can be easily determined. 

The reconstructed vertex zrec in RECSIS for each track is determined under the 

wrong assumption that the beam goes along the z axis. To correct this effect, we 

chose events with multiple particles in the final state and fitted them to determined 

the best z position (Xor) which minimizes x2' 

N 

X ~ ^ {Zcov ' ' ^reej : 144 j 
1 

where zc o r  is the fit parameter (corrected vertex z). To do this we defined: 

XC O R  XQ + KX Z(^ZR E C  •£()), (45) 

2/cor = Vo + Kyz(zrec -^o)) (46) 

/ -^cor cos <ps + yCor sin cj)s 

/i i \ i (47) 
cos(<p - <ps) 

Zcor = Zrec + x'/t&nd, (48) 

where x' is a measure of the distance along the track length which was not taken 

into account in the tracking, (f> is the azimuthal angle and 9 is the polar angle of 

the particle, and <ps is the central azimuthal angle of the sector which the track 

fired, given in degrees by <f)s = (S — 1) x 60.0, where S is the sector number, from 

1 to 6. Minimizing x2  determines these four parameters: x 0 ,  y 0 ,  Kx z  and Ky z .  

This procedure was repeated for each run to generate a vertex correction table. An 

example of the result of this beam line and vertex correction is shown in Fig. 78 

(bottom). The z position of the end cap is aligned to about -435 mm in all 6 

sectors. 

V.4.7 Energy Loss corrections 

When a charged particle travels through matter, it interacts electromagnetically 

with the electrons of atoms in the material and loses energy as a result of this inter­

action. The energy losses are more significant for lower momentum and heavier par­

ticles. The Bethe-Bloch formula describes the energy loss per unit distance traveled 
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very well for heavy particles like kaons, protons, alpha particles and atoms, but not 

for electrons [78]. For electrons, the energy loss is slightly different than the hadrons 

because of the fact that the electrons lose their energy mostly by Bremsstrahlung. In 

order to get a reliable analysis result, we had to make an energy loss correction for 

the particles detected in the event. One way to study energy loss of each detected 

particle is by using simulations. Many particles were generated and run through the 

detector simulation train (BONUS+GSIM+RECSIS, see Chapter IV). Using the 

simulation, we compared the particle's original energy and the reconstructed energy 

and studied its dependence on the reconstructed momentum, 9, 4> and vertex z. Fi­

nally, the kinematic dependence of the correction was parameterized for electrons, 

positive and negative pions, positive and negative kaons, and protons. 

Obtaining a correction table for each particle requires a few steps. The following 

is a detailed procedure for developing the energy loss correction for protons. First 

of all, protons with a flat distribution of vertex z (cm) G [—64,48.0), flat 4> (degree) 

e [0,360.0), flat 9 (degree) G [10,80.0) and flat momentum(GeV/c) € [0.2,6.0) were 

generated and run though the simulation train (BONUS+GSIM+RECSIS) to get 

reconstructed momenta. Bad events needed to be removed from the reconstructed 

output. The following criteria were used to define bad events: 

• Events that cannot pass the solenoid geometry cut (the 9 — z correlation cut, 

see Section V.4.5); 

• Events with a difference between true and reconstructed momenta larger than 

0.08 GeV/c: \ptrue - p)\ > 0.08 ; 

• Events with a difference between true and reconstructed 9 angles larger than 

5.0 degrees: \9true —91 > 5.0 ; 

• Events with a difference between true and reconstructed vertex z larger than 

3.2 cm: \ztrue — z| > 3.2 ; 

• For electrons only, the reconstructed electrons cannot pass the CC fiducial cut. 

All the good particles (using the reconstructed variables) then were binned as follows: 

• momentum: 27 bins, covering from 0.2 to 6.0 GeV/c, with variable bin width 

to ensure that each bin has reasonable statistics; 

• 9: 21 bins, 3 degrees each, from 8.0 to 75.0 degrees; 
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• vertex 2: 8 bins, 2 cm each, from —64.0 to —48.0 cm; 

• 0: currently only 1 bin, from 0 to 360.0 degrees. 

For each four dimensional bin of p, 9 , <j) and z,  we fitted a gaussian function to the 

difference between the true and the reconstructed momentum, 5p = Ptrue ~ P-, to find 

the peak value. This value is the most likely amount of momentum loss for protons 

in that four dimensional bin. Repeat the same fitting for each bin to find out all 

peak values to create a look up table, which contains the enregy losses for every bin. 

Because using this look up tabic was CPU inefficiency due to the fact that variable 

bin width in momentum was used, we parameterized the momentum denpendence of 

the energy loss. For each three dimensional bin of 9, 0 and z, we plotted peak values 

as a function of momentum and fit it with a kinematic correction function: 

where pf is the final (reconstructed) momentum, Kf is the final (reconstructed) kine­

matic energy, Ef is the final (reconstructed) total energy, pi is the initial momentum, 

Ki is the initial kinematic energy, Ei is the initial total energy and m is the mass 

of the particle. This function is an approximation of the integrated Bethe-Bloch 

function and returns four parameters: a, b, c, and d (mass m is a constant). Some­

times there are some special cases need to be dealt with. For instance, some of the 

above three dimensional bin do not have enough momentum values (less than 4) to 

fit Eq. (49), which is a four-parameter-function. For this situation, we set parameter 

a = 0, b = 1 and d = 0 to make the fitting function a constant. In this way, a table 

for a, b, c, and d for each three dimensional bin was generated. 

Repeating the same procedure for , 7r+ and kaons, one can obtain similar energy 

loss correction tables. Since the energy loss behavior for electrons is different from 

other particles, we changed the fit function by setting a = 0 and 6 = 1, which reduces 

Ei = m + Ki; 

Ki = (Kf + amb  l) l /b  + c + din 7; 

v/H? m 

Sp = pi -  p f  = f(a,b,c,d,m, p f),  (49) 
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the fitting function to Ki = c + din7, and matches the physics of electrons' energy 

loss very well. 

El NO O.O >)i-=7,O.Q, 33.Q^e<36.Q, -60.0 z<-58.00 

El AFTER Correction: O.O <|><7Q.O. 33.0 0<36.0, -60.0<z<-58.00 

FIG. 79: The peak values of the difference between the original and the reconstructed 
momentum for electrons versus the reconstructed momentum at 0 < </> < 70, 33 < 
0 < 36, and —60 < z < —58, before (top) and after (bottom) the energy loss 
correction. The red curve in the top plot is the fitted correction function. 

A few examples of the energy loss results are shown in Figs. 79 to 82. Figure 79 

shows dp before (top) and after (bottom) the energy loss correction as a function of 

momentum for electrons at one bin of 0, (p and 2. Figs. 80, 81 and 82 are the same 

as Fig. 79 but is for pions, kaons and proton, respectively. Figure 83 shows the 

overall result of the energy loss correction for all electrons. One can see that before 

the correction (top) 5p is centered at around 3 to 5 MeV/c with a clear momentum 

dependence. After the correction (bottom) Sp is centered close to zero and has no 

dependence on momentum. 

Due to the fact that the torus magnetic field will affect the trajectory of parti­

cles, the energy loss table must be generated for each torus current. In the BoNuS 

experiment the 4 and 5 GeV data were taken with torus current of 2250 A while the 

2 and 1 GeV data were taken with 1500 A. Two sets of tables, one for torus current 

2250 A and another for torus current 1500 A, had been generated. 
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FIG. 80: Same as Fig. 79 but for positive pions. 
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FIG. 81: Same as Fig. 79 but for positive kaons. 
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FIG. 82: Same as Fig. 79 but for protons. 
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FIG. 83: The difference between the original and the reconstructed momentum for 
electrons as a function of momentum before (top) and after (bottom) the energy loss 
correction. 
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V.4.8 D(e, e'i\ p)p Event Selection 

To select a good exclusive event, first we selected events that satisfied 1) a good 

trigger electron (using the electron identification without the EC total energy cut, 

described in Section V.4.1) detected within the CC fiducial region; 2) one additional 

negative particle passing the ir~ fiducial cut; 3) one positive particle passing the 

proton fiducial cut; 4) each of these particles has vertex z position within 2.71 cm 

from the trigger electron. Then we calculated the missing mass for these events, 

which should have a peak at the mass of a proton. In order to determine the peak 

value, width and the background contribution, the missing mass peak is fitted with 

a combined function of gaussian signal and exponential background. The fitted 

gaussian indicated the missing mass peak and width. We selected exclusive TT~ events 

by putting a 2-a missing mass cut on the gaussian peak. Figure 84 shows the missing 

mass distribution with the fitted functions for the 5 GeV D(e, e'Tr~pCLAS)X (top) and 

D(e, e'7r~pRTPC)X (bottom) events. The fit is also used for background subtraction, 

which will be described in detail later. 

Note that the strict missing mass requirement for final events does not require 

more strict identification of the n~ and proton. In summary, the following cuts must 

be applied to select exclusive events: 

• Exclusive electron cut; 

• Electron must pass CC fiducial cut; 

• Fiducial cut for 7r~; 

• Fiducial cut for protons; 

• Solenoid geometry cut (6 — z correlation cut) for electrons, TT~ and protons; 

• RTPC vertex window cut (—64.0 < 2 < —48.0(cm)); 

• Vertex z correlation cut: (|2j — ze/| < 2.71(cm), where i  = n~, p or ps); 

• 2-a missing mass cut. 
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FIG. 84: The missing mass distribution for the 5 GeV D(e, eV~pC h As)p (top) and 
D(e, e'7r~pRTPC)p (bottom) events. Both are fitted with a combined function of gaus­
sian (blue dash-dot-dash curve) plus exponential (red dash line). The black vertical 
lines indicate the 2-a selection cuts for exclusive events. 
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V.5 KINEMATIC COVERAGE AND DATA BINNING 

We binned the data in the following four kinematic variables: W', Q2 ,  cos 9* 

and 0*. Because there are very few neutron cross section results published, we 

wanted to bin the data in the same way as other CLAS experiments. However, our 

limited statistics restricted us from doing that. After looking into the acceptance 

of D(e, e'n~pCLAS)p and D(e,e'ir~pKTPC)p as a function of W', Q2, cos#* and </>*, 

respectively, we finally binned these four kinematic variables as shown in Table 7. 

TABLE 7: Binning information for D(e,e'7r p)p analysis 

variable number lower limit higher limit description 
W' 12 1.15 GeV 2.95 GeV 0.15 GeV each bin 

Q2 6 0.131 GeV2 4.524 GeV2 boundaries at 0.131, 0.379, 0.770, 
1.100, 1.563, 2.660, 4.524 

cos 9* 8 -1.0 1.0 boundaries at -1.0, -0.5, -0.1, 
0.3, 0.55, 0.7, 0.8, 0.9, 1.0 

15 0.0 deg 360.0 deg 24 degrees each bin 

BoNuS has a wide kinematic coverage in W' and Q2 .  For the 5 GeV data set, 

W' covers up to 3 GeV and Q2 covers up to 5 GeV2. Figure 85 shows the kinematic 

bins and the coverage of W' and Q2 for the 5 GeV data. Figures 86 and 87 show 

the same as Fig. 85 but for the 4 and 2 GeV data sets, respectively. Because CLAS 

has a nearly 47r detection capability, the coverage of 9* and 06* in the center of mass 

frame is almost 47r, although most data were at cos#* close to 1. Figures 88, 89 and 

90 show the coverages and bins of cos#* and </>* for the 5, 4 and 2 GeV data sets, 

respectively. 

V.6 ACCEPTANCE CORRECTION 

The acceptance for a four dimensional kinematic bin, W', Q2 ,  cos 9* and 0*, is 

the fraction of events in that bin that are detected. In general, the acceptance was 
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FIG. 86: W' vs. Q2 (top) for the 4 GeV data. The black lines indicate the bins. The 
W' (bottom left) and Q2 (bottom right) distributions are also plotted. 
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FIG. 86: W' vs. Q2  (top) for the 4 GeV data. The black lines indicate the bins. The 
W' (bottom left) and Q2 (bottom right) distributions are also plotted. 
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FIG. 87: W' vs. Q2  (top) for the 2 GeV data. The black lines indicate the bins. The 
W' (bottom left) and Q2 (bottom right) distributions are also plotted. 
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FIG. 88: cos#* vs. (/>* (top) for the 5 GeV data. The black lines indicate the bins. 
The cos 6* (bottom left) and 0* (bottom right) distributions are also plotted. 
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FIG. 89: cos#* vs. 0* (top) for the 4 GeV data. The black lines indicate the bins. 
The cos#* (bottom left) and (bottom right) distributions are also plotted. 
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FIG. 90: cos 6* vs. (top) for the 2 GeV data. The black lines indicate the bins. 
The cos0* (bottom left) and (bottom right) distributions are also plotted. 
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calculated by 
El 

number of recostructed events rpr 
J\ —— 

number of generated events E 1 
gen 

After generating a large amount of simulated events (more than 200 millions events) 

for each beam energy data set, the acceptance A was calculated as the ratio of the 

weighted number of detected events to the weighted number of generated events in 

the same bin: 

mv,  ̂  r «£2?(w'.c2.0:.«) JLr .,m 
m.Q M.)- N^(W,Q^;) ~-^~r • <50> 

generated 

where r is the distribution weight of the generated events (described in Sec­

tion IV.5.2). It is also very interesting to plot the integrated acceptance as a function 

of any one of these four variables W', Q2, and 0*, which is known as the one di­

mensional acceptance A\. In this case, both the Ar<-ietected and iVgenerated are integrated 

over the other three variables, and then the ratio is calculated as before. For example, 

E r,Q\e-,r„) 
A (w>) = ^detected (W ) = Q fad* f51) 

N;^d(W>) E N^d(W>,Q2 ,9;,cf>*y 

Figs. 91 to 94 show the four one dimensional acceptance distributions. However, it 

is the four-dimension acceptance that is used to calculate the cross section in this 

analysis. 

V.7 PARTICLE DETECTION EFFICIENCY 

In this section, the particle detection efficiency for the trigger electron, the fast 

proton detected by CLAS and the spectator proton detected by the RTPC will be 

described. 

V.7.1 Trigger Efficiency 

The trigger efficiency is the fraction of the scattered electrons detected by the 

CLAS. In order to find the trigger efficiency, inclusive events of D(e,e'), D(e,e'ps) 
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FIG. 91: Acceptance for the 5 GeV data as a function of W'. The top panel is 
D(e, e;7T~pCLAS)p and the bottom is for D(e, e'ir~pRTPC)p events. 
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D(e, e'Tr~pCLAS)p and the bottom is for D(e,e'7r~pRTPC)p events. 
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and D(e, e'p5)X were generated using S. Kuhn's event generator according to a model 

of the inclusive cross section. These events were then run through the simulation 

train. Both the experimental data and the simulated data were analyzed. Due to 

the fact that the simulated data had a different integrated luminosity from the real 

data, a scale value, Lr2S, was introduced to scale the simulated data to match the 

real data. The scale value is given by 

LT2s — 
L real 
T .  ' ^sim 

where Lreai and Lsim are the time integrated luminosity for the real data and the 

simulated data, respectively. The trigger efficiency currently used in this analysis is 

implemented in a look up table in bins of electron's momentum and scattered angle. 

The detection efficiency of the trigger electrons, rje, was obtained by taking the ratio 

of the number of events found in the real data to that of the scaled simulation in the 

same bin: 
Ei 
real 

Ve =  
Lr2s E 1 

Figure 95 shows the trigger efficiency (in percentage) in each p-6 bin. 

CLAS Trigger Efficiency x 100: 5G 

FIG. 95: CLAS trigger efficiency for the 5 GeV data is plotted as text in percentage 
for each momentum-theta bin. 
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V.7.2 Proton Detection Efficiency in CLAS 

The CLAS proton efficiency can be obtained through the exclusive analysis by 

using D(e, eV_pCLASpRTPC) events in which all four particles in the final state were 

detected. By taking the ratio of D(e, e'7r~7?CLASpRTPC) to D(e, e'7r~pRTPC)pone can 

obtain the detection efficiency of the CLAS proton, 

D ( e ,  eV PclasPRTPC) 
^ D(e, e'ir~pR T P C)p 

In this analysis, the CLAS proton detection efficiency was determined in p-6 bins. 

Figure 96 shows the proton detection efficiency for the real data (top) and the sim­

ulated data (bottom). One can see that the simulated efficiency is a little bit higher 

than that of the real data. Note that we will correct for the acceptance to calculate 

the cross section, which means that the proton detection efficiency from the simula­

tion will be applied as part of the acceptance. In order to correct for an additional 

inefficiency in CLAS for detecting protons, a ratio of the real data efficiency to the 

simulated data efficiency is required: 

...real 

n? = (52) 
lp 

Fig. 97 shows this ratio. Note that this ratio must be used together with the accep­

tance correction. 

V.7.3 Proton Detection Efficiency in the RTPC 

The RTPC proton detection efficiency can be determined in the same way as the 

proton detection efficiency of CLAS. It can be obtained from: 

D(c,e 7r PCLASPrtpc) 
r?RTPC D{e,e'ir-pChAS)p 

The super ratio of the real data efficiency to the simulated data efficiency is defined 

as ^real 
rf^c = te. (53) 

nsim 
'/ RTPC 

In this analysis, the RTPC proton detection efficiency was found in p-cos0P9 bins. 

Figure 98 shows the RTPC proton detection efficiency for the real data (top) and 
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FIG. 96: The proton detection efficiency in CLAS for the 5 GeV data in each 
momentum-theta bin for the real data (top) and the simulated data (bottom). 
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FIG. 97: Super ratio (in percentage) of the CLAS proton detection efficiency for the 
the 5 GeV real data to that in simulation in p-6 bins. 
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FIG. 98: The RTPC proton detection efficiency in each momentum-cos 0pq bin for 
the 5 GeV real data (top) and for the 5 GeV simulated data (bottom). 
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the simulated data (bottom). Figure 99 shows the super ratio of the real efficiency 

to that of the simulation. For the same reason mentioned above, this super ratio was 

used together with the acceptance correction. 

RTPCEff Ratio Real/Sim, S© 
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FIG. 99: Super ratio (in percentage) of the RTPC proton detection efficiency for the 
5 GeV real data to that in simulation in p-cos 9pq bins. 

V.7.4 7r Detection Efficiency 

The 7r detection efficiency can be given by 

-D(e, e 7r PclasPrtpc) 

D ( e ,  e'pCLASpRTPC)7r 

Currently this efficiency has not yet be implemented, so = 1 was used. 

V.8 BACKGROUND SUBTRACTION 
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In order to select the valid exclusive events, we need to correct for the back­

ground under the missing mass peak. As mentioned earlier we fit the missing mass 

distribution of D(e, eV~pChAS)X and D(e, e'7r~pRTPC)X events with a combined func­

tion of a gaussian signal plus an exponential background. The portion covered by 

the exponential function was treated as background from non-exclusive events. Due 

to the limited statistics we can not determine the fraction of background events for 

each W', Q2, cos 9* and </>*bin. To achieve a reliable result we first look for the 

background dependence on each of these four variables f[ea l{W'), .f-Y^iQ2), 

and /|eal(^*). The four-dimensional background fraction for real data. freal. is then 

found according to 

f™HW CP tr W1M = "'•><«- /'""(ly') /""(Q2) t-M 
j \  (/r*l(w"))</2~l(Q2))(/r'W;)>' 

where ( f ( x ) )  means the event weighted average of f ( x )  over the whole x  range. 

The background defined by the exponential function includes some good events. 

This can be seen by plotting the missing mass distribution for simulated data, which 

contains no background (cf. Fig. 108-115). Clearly the exclusive events fall in a wide 

non-gaussian tail. The background defined by Eq. (54) assumes that the exponential 

is entirely background, while obviously over estimates the real background events. In 

order to find out how many good events were treated as background we went through 

the same procedure with the simulated data. 

Repeating the previous procedure we found the functions /|im(Q2), 

/|im(0*) and /|im(0*). We then determined what fraction of the simulated data 

would be wrongly labeled as background f s ,m: 

„w ,  n2  <r 1 ( /3 ( ,)(/i»„{H/,))(/« i„W2))(/Jtel((ft))- (55) 

Taking into account the fact that a 2-a cut on a gaussian just finds 95.45% of the 

whole exclusive peak, we arrive at the final expression for the background correction: 

B = G°°^ta = (1.0 -r'WtfXAV) + fm(W',Q2,9;,C))/0.9545 , (56) 

where B is defined as the fraction of good exclusive events to all events under the 

missing mass peak. Figures 100 to 107 show the background fits and the resulting 

functions /[eal, eal, f"'a] and /4
real for D(e, e'ir~pCLAS)X events for the real data. 

Figures 108 to 115 show the same background fits except for for the simulated data. 
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indicates the gaussian peak and the red line indicates the total and background fits. 
The black vertical lines indicate the 2-a cut to select exclusive events. Events shown 
here are from the 5 GeV data. 
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FIG. 102: Same as Fig. 100 except for bins in Q2 .  
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FIG. 105: Same as Fig. 101 except as a function of cos#*. 
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FIG. Ill: Same as Fig. 109 except as a function of Q2 .  
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V.9 LUMINOSITY 

In electron scattering physics, the luminosity is defined as the number of beam 

particles per unit time times the number of target nuclei per unit area, usually 

expressed in either CGS units, cm~2s-1, or b_1s_1. The integrated luminosity is the 

integral of the luminosity with respect to time, and is a very important value in cross 

section calculations: 

where N& is the total number of incident electrons, N t a ige t  is the number of target 

nuclei and A is the intersection area of the beam and the target. The details of 

how to calculate the luminosity for the BoNuS experiment will be described in this 

section. 

V.9.1 Charge Calculation 

Nb will be easily known if we have the total incident charge in hand. In Hall 

B, the total charge is usually measured using the Faraday Cup (FC) at the end of 

the beam line (see Section III.2). The total charge for one run can be achieved by 

accumulating all the FC readings. Note that the gain factor of the FC was set to only 

one-tenth of the typical values in order to utilize high beam current in the BoNuS 

experiment, the FC readings need to multiply 10. 

We only need the charge accumulated when the experiment is "live" and this 

quantity is available because the FC scaler is always gated on the "experiment live" 

condition. Sometimes the FC can become too hot while running with high beam 

current. In order to protect this device a stopper (mass shielding) was placed in 

front of it for some BoNuS runs. This stopper blocked most of the incident electrons 

from reaching the FC. To calculate the total charge for the runs with the stopper, 

one needs to know its penetration efficiency, which is the fraction of the number of 

incident electrons that reach the Faraday cup. In CLAS, the Beam Position Monitor 

(BPM), which is placed in front of the target, is another device which can provide the 

beam current information. If there was no stopper in the beam line, the ratio of the 

beam current measured by FC to that measured by the BPM should be very close 

to 1 because very few of the beam electrons are scattered away by the target nuclei. 

target (57) 
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When the stopper is in the beam line, this ratio, (3 is the penetration efficiency of 

the stopper (cf. Fig. 116), 

P 
F c, 

(58) 
BP Mi 

where i is an index for the epics event, FCi is the live gated Faraday Cup signal and 

BPMi is the gated beam current measured by the BPM at the 2H01 position. We 

1.1^-

1 05 ̂  

ra 1 
DC 
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0.9 

%% 

_l_ 
49600 

No stopper 

49800 50000 

• •• 

50200 .50400 
run number 

0.08 

0.06 

ra 
K 

0.04 

0.02 

With stopper 

49600 49800 50000 50200 
run number 

FIG. 116: Ratio of Faraday cup to BPM current for runs without stopper (top) and 
with stopper (bottom). 

expect that the penetration efficiency may depend on beam energy, beam position 

and the target thickness only. Therefore we grouped our data into various data sets 

depending on the those quantities and whether or not the stopper was inserted. 

We would like to have only one value of the penetration efficiency for each data 

set. In the experiment the FC and the BPM gave a reading for each scaler event. 

In each run there are hundreds of epics events. To get a valid effective penetration 

efficiency for one run, the histogram of FC vs. BPM was fit with a straight line. The 

slope of the fitted line is (3. If this fit was not good, the histogram of the ratio of FC 
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current to BPM current was fit with a gaussian function, and the mean value of the 

gaussian was taken as (3. Figures 117 and 118 show examples of these fits for runs 

without and with the stopper, respectively. 

The (3 values for various runs in a data set may fluctuate slightly. These values 

were fitted to determine a constant (3, which was used as the penetration efficiency 

for the whole data set. Figure 119 shows the fitted (3 for 4 GeV runs from 49664 to 

49691, without the stopper. Figure 120 shows the corresponding plot for 4 GeV runs 

from 49692 to 49796, with the stopper inserted. 

Usually we calculate the total charge for one run without the stopper using 

Qrun = J2FC = ̂  (59) 

where qi is the accumulated "live" gated charge for that run, which is given by 

RECSIS. The total charge for a run with the stopper needs to be corrected for the 

penetration efficiency: 

Qrmstopper (60) 

Accumulating the charge for each run in the same data set allowed us to determine 

the total charge for the whole data set. Figure 121 shows the charge for each run 

after the penetration efficiency correction. 

To check if the total charge calculated above is correct or not, we plot the ratio of 

the number of good trigger electrons to the total charge with penetration efficiency 

correction for each run as a function of run number. With the same beam condition 

and the same type of target, these ratios should not vary. Our result is shown in 

Fig. 122. 

V.9.2 Target Pressure Calculation 

The number of target nuclei can be calculated through the ideal gas law, namely 

the Clapeyron equation: 

PV = nRT (61) 

where P is the absolute pressure of the gas, V is the volume, n is the amount of 

substance of the gas measured in moles, R is the gas constant which is equal to 

8.314472 JK-1mol-1 and T is the absolute temperature measured in Kelvins. For a 
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FIG. 117: Distribution of the ratio of FC to BPM for run 49566, without stopper. 
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FIG. 118: Distribution of the ratio of FC to BPM for run 49935, with stopper. 
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FIG. 122: Ratio of the number of electrons to the total charge after the penetration 
efficiency correction has been applied for each run. 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 



148 

deuterium target, the number of nuclei is given by 

^target = 2 n N A  =  ~ ( 6 2 )  

where the factor 2 comes from the fact that a deuterium molecule contains two atoms, 

and Na = 6.02205x 1023/mol is Avogadro's Constant. Ignoring the temperature 

fluctuation of the target system, and choosing the normal room temperature 293 ± 

5 Kelvins, it is very straight forward to calculated Ntaiget if one knows the pressure 

of the target gas. 

As mentioned earlier, we proposed to use a gaseous deuterium target at 7.0 atmo 

sphere and we tried our best to keep this pressure during data taking. Unfortunately, 

the target system was not perfect and there was a slow leak. The target pressure 

dropped down from 98 to about 85 psi in about 72 hours so we had to refill the target 

from time to time. The target pressure was measured in various intervals of 30, 60 

or 120 seconds, and these values were averaged to determine the pressure for each 

run (cf. Fig. 123). There are multiple runs in each data set. In order to determine 
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FIG. 123: The target pressure for all runs. 

the effective target pressure for the whole data set, the pressure for each run was 
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weighted by the trigger count for the same run, N^n: 

end p Nel 
p- « =  E • (63) 

run=begin Yh "^rur run 
run=beqin 

The effective pressures calculated with Eq. (63) for each data set are shown in Table 8. 

TABLE 8: Effective target pressure 

Target Beam (GeV) •Peff (psi) 
H2 1.1 95.350 
D2 1.1 96.041 
H2 2.1 95.156 
D2 2.1 95.104 
He 2.1 95.721 
H2 4.2 95.542 
D2 4.2 95.874 
He 4.2 95.596 
H2 5.3 92.531 
D2 5.3 93.635 
He 5.3 96.693 

V.9.3 Time Integrated Luminosity 

Using the information of beam charge and target pressure calculated above, the 

time integrated luminosity is given by 

NB X Ntarget NB x 2PVNA 2NBPINA 
l= A = ART = • <64) 

where I is the valid target length, which is 16.0 cm. Considering the temperature 

will have a fluctuation of ±5 Kelvins, the uncertainty of this integrated luminosity 

is about 2%. Table 9 shows the integrated luminosity for various BoNuS data sets 

with the deuterium target only. 

V.10 CROSS SECTION CALCULATIONS 
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TABLE 9: Time integrated luminosity for the BoNuS experiment 

Beam (GeV) Luminosity (1034/cm2) 
2.1 10158.4 
4.2 59060.0 
5.3 11303.1 

For an unpolarized electron beam and unpolarized deuteron target, the cross 

section for the exclusive channel D(e,e'ir~p)p is given by 

<95cr „ d2a 

dE'dQedQ; 
= r„ 

ao;' 

with 

_ 
1 V — 9 n /~\o 27r2 E Q2 1 — e' 

d2cr 
= aT + e<xL + >/2e(l + e)crLT cos + ecrTT cos 20*, 

(65) 

(66) 

(67) 
an; 

where I\, is the virtual photon flux and is the differential pion photo-absorption 

cross section. In the above equations, a = 1/137 is the electromagnetic coupling con­

stant. We have introduced the "photon equivalent energy", K1  = (W2  — M2)/2Mn ,  

the laboratory energy necessary for a real photon to excite a hadronic system with 

center of mass energy W. The degree of longitudinal polarization of the virtual 

photon is represented by 

2q2 2^ex-1 
£  =  < 1 +  Q 2 t a n  '  

which is frame independent. 

As described earlier, the data were binned in W\ Q2 ,  cos#* and 0*. The cross 

section was determined as 

N(W',Q\6'„A;) 
a{w',Q\e;,K) (68) 

LA{W\Q\ei,W 

where N(W', Q2 ,0*, </>*) is the number of D(e,e'n~p)p events in the given bin, 

A(W',Q2,Q*,4>*V) is the acceptance of the same bin and L is the time integrated 

luminosity, as given in 64. The statistical uncertainty of the differential cross section 

is given by 

5a(W',Q2 ,  &:,$:) = 
o(W',Q2 ,eiM 

y/N(W',Q2 ,0;,0;)' 
(69) 
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The cross section for the exclusive reaction D(e, e'-K~p)p in each bin is the main 

result of this work. However, we have also studied the 4>* dependence of the cross 

section as described in Chapter VI. 

V.ll RADIATIVE CORRECTIONS 

After the cross section is extracted from the data, one more correction, the radia­

tive correction, needs to be applied. The electron can radiate a photon in the presence 

of the nuclear electromagnetic field which changes the cross section. Electrons can 

radiate real or virtual photons either in the electromagnetic (Coulomb) field of the 

nucleus involved in the reaction (internal bremsstrahlung) or in the electromagnetic 

field of the other nuclei (external bremsstrahlung). Also the electron-target interac­

tion followed by the ionization of the target atoms results in electron energy losses 

(Landau straggling). 

The radiative correction calculation was done by Andrei Afanasev [79]. He es­

timated of the radiative correction to the cross section for pion electro-production 

to be 0.81 ± 0.04, which means we had to divide the experimental cross section 

by 0.81 to recover a leading-order one-photon-exchange cross section. This correc­

tion includes radiation in a soft-photon approximation, which makes the prediction 

model-independent. There may be about 5% additional correction due to hard pho­

ton emission that would depend on the form of the cross section that enters the 

integral. 

V.12 SYSTEMATIC ERROR EVALUATION 

This section describes the systematic errors in determining the cross section. The 

systematic errors may come from different cuts, corrections, algorithms and calibra­

tions. The systematic errors due to the missing mass cut, background subtraction, 

acceptance cut, radiative corrections and particle (electron, tt~ and proton) identifi­

cations are presented below. 

• The electron identification and detection efficiency has uncertainty of about 

8%, as estimated by S. Tkachenko [63], 
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• The missing mass cut was varied to determine the effect of that cut. In general 

a 5% uncertainty was observed, but it varies from bin to bin. 

• The background subtraction was changed by using a 3rd order polynomial fit­

ting function instead of the standard exponential function to fit the background. 

The effect on the cross section varies for each bin. In a few bins the effect is as 

large as 60% but for most bins it is about 5%. 

• The acceptance had a big effect on the measured cross section in each bin. 

To estimate the systematic uncertainty from the acceptance, we recalculated 

the acceptance without the weighting factor described in Sections IV.5.2 and 

V.6. This change should be most critical in regions where the acceptance 

is varying. In general we observed a 10% effect from this change but the 

systematic uncertainty varies from bin to bin. 

• Since the temperature in the hall fluctuated by about ±5 Kelvins, we estimated 

a 2% uncertainty in the luminosity, which eventually would contribute about 

2% uncertainty in the final cross section. 

• The radiative correction calculated by A. Afanasev was estimated to have a 5% 

uncertainty in the cross section. 

TABLE 10: Summary of the systematic errors for the 5GeV data set 

Uncertainty source Uncertainty 
Electron identification and detection efficiency 8% 

Acceptance 10% 
Missing mass cut 5% 

Background subtractions 5% 
Luminosity 2% 

Radiative corrections 5% 
Total 15% 

Table 10 summarizes the systematic errors. In the next chapter we present our 

result for the differential cross section and describe a fitting procedure which we used 

to extract the structure functions aT + saL , crLT and aTT . 
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CHAPTER VI 

PHYSICS RESULTS 

VI. 1 DIFFERENTIAL CROSS SECTION 

The formalism for the differential cross section for 7r~ unpolarized electro-

production has been described in Section V.10. In a given four dimensional (4-D) bin 

of W', Q2, cos 6* and 0*, the differential cross section in this analysis is calculated 

as 

d5aAE'Ane/\n; = J FvdE'dne J ̂ dfl*n .  (70) 

Lets define a correction factor for each event in the D(e, e'ir~pChAS)p or 

D(e,e'n~pKTpC)p reactions as 

B , \ 
Aolas = (71) 

^RTPC R • 0:: • >h • A' l'7~i 

where R = 0.81 is the average radiative correction (see Section V.ll), r/e(pe .  8e) and 

Vir(Pv, 6-k) are the detection efficiencies for the trigger electrons and 7r~, respectively, 

and Tjp{jpp, 0p) and r/RTpC(pps, 6pq) are the detection efficiency super ratios of experimen­

tal to simulated data for the CLAS protons and RTPC protons, respectively. Each of 

these detection efficiencies has its own kinematic dependence. B(W',Q2,cos6*,</>*) is 

the background correction factor, which is the fraction of good data (no background) 

to the total (good + background), as described in V.8. A(W',Q2,cos8*is the 

acceptance of the reaction to which the event belongs. With these definitions, the 

effective number of events detected in the given 4-D bin is given as 

N'ti = E 'A)-
events 
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where A is either Aclas or ARTPC depending on the reaction. Then we have 

" d2a 
N e f f  =  L FvdE'dQe  

= L J  
I  

dE' 
dW' 
dQe 
dW' 

dE' 
dQ2 

dQ2 

dW'dQ• I  d
2a 

dVLt 
dcos 0*d(j>*, 

= L / r„ 

= LT 

7TW 

EE'M, 

d2a 

dW'dQ2  
d2a 

dQt 
dcos 0* <i0* 

dill 
dcos Oldcfrl, 

(73) 

(74) 

(75) 

(76) 

where L is the time integrated luminosity and 

over a given W' and Q2 range: 

7TW' 

is trie virtual photon tlux integrated 

r = / 
- I  

EE'M, 
-dW'dQ 

1 TTW' a E' W'2  - Ml 

2^ ~E 2MnQ2  1 -  e EE'Mn  

a f (W'2  - Ml)W' 

dW'dQ2  

4tTE2M* I  dW'dQ 

a 

8irE2M% 

Q2( 1-e) 

JWJ-MIdW'2dQ2 

(77) 

(78) 

(79) 

(80) 
Q2( 1-e) 

In this analysis, the cross section is considered to be a single value in the given 

bin by which Eq. (76) can be simplified as 

d2a 
£ (1 - A) = LtA(COS0;)A« 

events 
dQt 

or 

d2c 
E (l- A )  

events 

(81) 

(82) 
<9Q* LTA(cosd*)A(f)Z' 

The differential cross sections are calculated according to Eq. (82) for the 2, 4 

and 5 GeV data sets. They are shown as a function of </>* from Figs. 124 to 132 for 

three bins in W' corresponding to interesting areas of the resonance region. Cross 

sections for other W' bins were also extracted but not all of them are shown here. 

Predictions from the MAID07 (black curve) and SAID08 (purple curve) models are 

also shown. Note that the blue triangles corresponding to the D(e, e'lT~pRTPC)p re­

action and that the red squares corresponding to the D(e, e'ir~pCLAS)p reaction. In 

general the two channels are consistent with each other, given the statistical and 

systematic uncertainties. The differential cross sections for the 2 GeV data set show 
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much less strength than predicted by the models, which may indicate a normalization 

or acceptance problem in the data. The results for the 4 and 5 GeV data sets seem 

to qualitatively agree with both models. The acceptance near </>* = 180° is too small 

to pass the acceptance cut in most bins, which causes the differential cross section 

measurements to have a hole in these bins. This may affect the attempts to fit for 

the structure functions aT + eaL , crLT and crTT , which will be described later. 

One can see that the cross section decreases with increasing Q2  in all three res­

onance regions, as expected. The bin centered at W' = 1.230 corresponds to the 

A(1232) resonance and should be well described by the models, which is what we 

see for the 4 GeV data. The 5 GeV data in the A(1232) resonance region show more 

strength than predicted by the models, especially at the forward 8*. The W' = 1.525 

bin covers part of the 2nd resonance region where the Sn(1535) and Di3(1520) are 

particularly strong. Here we see that again the models underestimate the data, espe­

cially for the 5 GeV at the forward 0* angle. This trend is also seen in the W' = 1.675 

bin, which corresponds to the third resonance region (c/. Figs. 129 and 132). 
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0.850 and 0.950, increasing from the bottom to the top panel. The black solid 
curve is the MAID07 prediction and the pink dash line is the SAID08 prediction. 
The red squares and blue triangles represent D(e, e'ir~pCLAS)p and D(e, e'Tr~pRTPC)p 
measurements, respectively. 
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FIG. 125: Differential cross section vs. 0* at W' = 1.525 and various cos 9* and 
Q2 bins for the 2 GeV data set. The cos0* values are 0.100, 0.425, 0.625, 0.750, 
0.850 and 0.950, increasing from the bottom to the top panel. The black solid 
curve is the MAID07 prediction and the pink dash line is the SAID08 prediction. 
The red squares and blue triangles represent D(e, e'-K~pCLAS)p and D(e, e'Tr~pRTPC)p 
measurements, respectively. 
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FIG. 126: Differential cross section vs. <f>* at W' = 1.675 and various cos#* and 
Q2 bins for the 2 GeV data set. The cos#* values are 0.100, 0.425, 0.625, 0.750, 
0.850 and 0.950, increasing from the bottom to the top panel. The black solid 
curve is the MAID07 prediction and the pink dash line is the SAID08 prediction. 
The red squares and blue triangles represent D(e, e/7T~pCLAS)p and D(e, e/7r~pRTPC)p 
measurements, respectively. 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 



159 

Q2=0.93 Q2=1.33 Q2=2.11 Q2=3.59 

•o 

* 

1.5: 
11 

A 
1.5 

2-

0.5 •o 

2.5: 

a 
zs. 

1.5: 

0.5 T3 2 

0.5 

1.5-"6 
0.5 

0.5 •O 2 
f M- 100 200 100 200 100 200 

FIG. 127: Differential cross section vs. (/>* at W = 1.230 and various cos (9* and 
Q2 bins for the 4 GeV data set. The cos#* values are 0.100, 0.425, 0.625, 0.750, 
0.850 and 0.950, increasing from the bottom to the top panel. The black solid 
curve is the MAID07 prediction and the pink dash line is the SAID08 prediction. 
The red squares and blue triangles represent D(e, e'7r~pCLAS)p and D(e, e'n~pRTPC)p 
measurements, respectively. 
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FIG. 128: Differential cross section vs. </>* at W' = 1.525 and various cos6>* and 
Q2 bins for the 4 GeV data set. The cos 0* values are 0.100, 0.425, 0.625, 0.750, 
0.850 and 0.950, increasing from the bottom to the top panel. The black solid 
curve is the MAID07 prediction and the pink dash line is the SAID08 prediction. 
The red squares and blue triangles represent D(e, e'TT~ pCLAS)p and D(e, e'7r~pRTPC)p 
measurements, respectively. 
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FIG. 129: Differential cross section vs. </>* at W' — 1.675 and various cos and 
Q2 bins for the 4 GeV data set. The cos0* values are 0.100, 0.425, 0.625, 0.750, 
0.850 and 0.950, increasing from the bottom to the top panel. The black solid 
curve is the MAID07 prediction and the pink dash line is the SAID08 prediction. 
The red squares and blue triangles represent D(e, e'7r~pCLAS)p and D(e, e'7r"pRTPC)p 
measurements, respectively. 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 



162 

Q2=0.93 Q-2.11 cr=3.59 

* 1  1 ,  

1  1  

| i  

M  

i A K  

2 -  X  

A/k • 
v A, 

•• 
V 140 460 i  1 6 0  2 6 0  

¥ 0.5 

2" 

1.5-

r fy 

FIG. 130: Differential cross section vs. at W' = 1.230 and various cos 6* and 
Q2 bins for the 5 GeV data set. The cos#* values are 0.100, 0.425, 0.625, 0.750, 
0.850 and 0.950, increasing from the bottom to the top panel. The black solid 
curve is the MAID07 prediction and the pink dash line is the SAID08 prediction. 
The red squares and blue triangles represent D(e, e'-n~pc^AS)p and D(e, e' pKTPC)p 
measurements, respectively. 
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t 

t :  + | +  
;; i ; 

iM*-

) 

i' h }ii ' 
•5-

i' .'ti it* • 
,/L. \ / " -Nc c 

4 \/ •>. 
• 4 ^ : 

•8-

6 1 
« • Tt 

i • 
V* 100 200 > 

"A ik: 
5  /• .  \  /  *i \  

y A J ii4 • 
% 100 200 . .38ft ,  % 100 200 .m, 

.4" t 

m:«;»! 
<b 100 200 . . rn > 

FIG. 131: Differential cross section vs. </>* at W' = 1.525 and various cos#* and 
Q2 bins for the 5 GeV data set. The cos#* values are 0.100, 0.425, 0.625, 0.750, 
0.850 and 0.950, increasing from the bottom to the top panel. The black solid 
curve is the MAID07 prediction and the pink dash line is the SAID08 prediction. 
The red squares and blue triangles represent D(e,e'7r~pCLAS)p and D(e, e'7r~pRTPc)p 
measurements, respectively. 
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FIG. 132: Differential cross section vs. <fi* at W' = 1.675 and various cos#* and 
Q2 bins for the 5 GeV data set. The cos#* values are 0.100, 0.425, 0.625, 0.750, 
0.850 and 0.950, increasing from the bottom to the top panel. The black solid 
curve is the MAID07 prediction and the pink dash line is the SAID08 prediction. 
The red squares and blue triangles represent D(e, e'ir~pCLAS)p and D(e, e'7r~pRTPC)p 
measurements, respectively. 
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VI.2 STRUCTURE FUNCTIONS 

The differential cross section for electro-production was presented in Chap­

ter II: 
Q2a 
—— = (aT + e<jL) + V2e(l -t- e)aLT cos </>; + eaTT cos 2^ . 
dill 

We can use the 0* dependence of the cross section to extract the structure functions 

<rT + eaL , aLT and aTT by fitting the cross section with a function 

r\2 

^ = A0 +Ax cos 0; + A2 cos 2<fi*, (83) 
dil* 

where the fit parameters can be easily identified in terms of relevant structure func­

tions: 

AQ = crT + eaL; 

A\ = \/2e(l -I- e)aLT; 

A.*2 —  T *  

By using this procedure the structure functions aT + eaL , oLT and aTT can be deter­

mined for each three dimensional (3-D) bin in W', Q2 and cos#*. In this analysis, 

only those 3-D bins in which there are at least 6 0* bins that contain no less than 3 

detected events after the exclusive cut, as described in Section V.4.8, were fitted to 

determine the structure functions. A sample of this fitting can be found in Fig. 133. 

In this figure, the pink data points represent the cross section for one particular bin 

in the 5 GeV data set. The RTPC and CLAS channels are shown separately. 

These fit results are shown in comparison to MAID07 and SAID08 models in 

Figs. 134 to 149. The cos#* dependence for various Q2 and W' bins for all three 

beam energy data sets are shown. Note that MAID and SAID indicate very dif­

ferent dependence on cos#* in some bins. For many bins the D(e,e'7r~pCLAS)p and 

D(e, e'n pRTPC)p data are consistent with one another. There are significant differ­

ences in some bins that may be due to the accuracy of the fit for that bin. Further­

more, in some of the bins with the biggest discrepancy between the model predictions 

and the data, one sees that one structure function is under predicted by the models 

and another is over predicted. This pattern again suggests a possible problem with 

the fit in those bins. It is interesting to note that the models are reasonably close 

to the data at backward angles, but that at forward angles the discrepancy is quite 
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FIG. 133: The differential cross section vs. 4>* for 1.30 < W' < 1.45,1.563 < 
Q2 < 2.659,0.55 < cos#* < 0.70 for the 5 GeV data set. The top panel is for 
D(e, e'7r~pCLAs)p and the bottom is for D(e, e'n~pRrPC)pevents. The pink points are 
the measured cross sections with statistical errors only. The blue solid curve is the 
global fit function. The black dash-dot-dash line, the red dash line and the green dot 
line are the individual terms of A0, A\ cos (j>* and A2 cos 20*, respectively. 
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pronounced, especially for W' above the A(1232) region. Figures 150 to 158 show 

the structure functions' dependence on W' at various cos#* and Q2 bins for all three 

beam energy data sets. Again one sees that the biggest discrepancy between the 

data and models occurs at forward angles and lower W'. Our results do not show a 

strong peak in the A(1232) resonance region, which may indicate problem with the 

acceptance calculation. 

In general, however, the data and the models show quantitative agreement in 

most bins. The hope is that the addition of these data for the neutron will improve 

the MAID and SAID fits. However, since there are so many more proton data, it is 

not clear how those models will be affected. 
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FIG. 134: Structure functions crT+eerL (bottom), crLT (middle) and crTT (top) vs. cos 6* 
at W' = 1.230 and various Q2 bins for the 2 GeV data set. The black solid curve is the 
MAID07 prediction and the pink dash line is the SAID08 prediction. The red squares 
and blue triangles represent D(e, e'7r~pCLAS)pand D(e, e'n~pRTPC)p measurements, 
D(e, e'7T~pCLAs)p and D(e, e'7r~pRTPC)p measurements, respectively. 
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FIG. 135: Same as Fig. 134 except for W' = 1.375 GeV/c. 
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FIG. 136: Same as Fig. 134 except for W' = 1.525 GeV/c. 
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FIG. 138: Structure functions aT+eaL (bottom), aLT (middle) and crTT (top) vs. cos#* 
at W' = 1.230 GeV/c and various Q2 bins for the 4 GeV data set. The black solid 
curve is the MAID07 prediction and the pink dash line is the SAID08 prediction. 
The red squares and blue triangles represent D(e, e'ir~pChAS)p and D(e, e'7r~pRTPC)p 
measurements, respectively. 
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FIG. 139: Same as Fig. 138 except for W' = 1.375 GeV/c. 
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 



171 

Q2=0.93 

.o-0.5p-
a. 

tf "t 
•1.5: 

0.2: 

_ 0 

tT1 
-0.4 

-0.< 

3 4 

t_ 2 

t 

fn^ 
A 

AH 

0.5 

Q =1.33 

cose* 

5: 

0p f 3 

5: 

-1: 

1 tn 

V 
: 
f * : 
4: 

fi- 1 

0 0 0.5 

• , 
°ii * g I 11 

-0.5 : ' 

-0.5-

Q =2.11 Q2=3.59 

0.5- I 
? *1 

• 4 

/ 

cose* 
0.5 

0.1 

0 

-0.1 

0.05 

0 

0.05 

-0.1 

0.3 

0.2 

0.1 

4 JUL. 

•'1 

0.5 

FIG. 141: Same as Fig. 138 except for W' = 1.675 GeV/c. 

Q2=0.93 Q2=1.33 Q2=2.11 Q2=3.59 

FIG. 142: Same as Fig. 138 except for W' = 1.825 GeV/c. 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 



172 

Q^O.93 Q2=1-33 Q2=2.11 Q2=3.59 
0.2F 

0.5-

-0.S-
-0.4 

-0.S-

0.4 0.2: 
0.4-

0.2: 
0.3-

-0.2--0.4 
-0.2-

i 

0.5-

cose* 
T5T 

cose* 

FIG. 143: Same as Fig. 138 except for W' = 1.975 GeV/c. 
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FIG. 144: Structure functions erT+ecrL (bottom), crLX (middle) and crTT (top) vs. cos 0* 
at W = 1.230 and various Q2 bins for the 5 GeV data set. The black solid curve is the 
MAID07 prediction and the pink dash line is the SAID08 prediction. The red squares 
and blue triangles represent D(e, e'pChAS)p and D(e, e'ir~pRTPC)p measurements, 
respectively. 
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FIG. 145: Same as Fig. 144 except for W* = 1.375 GeV/c. 
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FIG. 146: Same as Fig. 144 except for W' = 1.525 GeV/c. 
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FIG. 148: Same as Fig. 144 except for W' = 1.825 GeV/c. 
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FIG. 149: Same as Fig. 144 except for W' = 1.975 GeV/c. 
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FIG. 150: erT -I- ecrL vs. W at various cos and Q2 bins for the 2 GeV data 
set. The black solid curve is the MAID07 prediction and the pink dash line is the 
SAID08 prediction. The red squares and blue triangles represent D(e, e'7r~pCLAS)p 
and D(e, e'7r~pRTPC)p measurements, respectively. 
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FIG. 151: (7LT vs. W' at various cos and Q2 bins for the 2 GeV data set. The black 
solid curve is the MAID07 prediction and the pink dash line is the SAID08 prediction. 
The red squares and blue triangles represent D(e, e /7r~pCLAS)p and D(e, e'ir~pRTPC)p 
measurements, respectively. 
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FIG. 153: aT + eaL vs. W' at various cos0* and Q2 bins for the 4 GeV data 
set. The black solid curve is the MAID07 prediction and the pink dash line is the 
SAID08 prediction. The red squares and blue triangles represent D(e, e'ir~pCLAS)p 
and D(e, eV~pRTPC)p measurements, respectively. 
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FIG. 154: crLT vs. W' at various cos0* and Q2 bins for the 4 GeV data set. The black 
solid curve is the MAID07 prediction and the pink dash line is the SAID08 prediction. 
The red squares and blue triangles represent D(e, e'Tr~pCLAS)p and D(e, e'Tr~pRTPC)p 
measurements, respectively. 
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FIG. 155: CRTT VS. W' at various cos 9* and Q2 bins for the 4 GeV data set. The black 
solid curve is the MAID07 prediction and the pink dash line is the SAID08 prediction. 
The red squares and blue triangles represent D(e, e'7r_pCLAS)p and D(e, e'7r_pRTPC)p 

measurements, respectively. 
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FIG. 156: aT + ecrL vs. W' at various cos#* and Q2 bins for the 5 GeV data 
set. The black solid curve is the MAID07 prediction and the pink dash line is the 
SAID08 prediction. The red squares and blue triangles represent D(e, e'7r~pCLAS)p 
and D(e, e'7r~pRTPC)p measurements, respectively. 
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FIG. 157: crLT vs. W' at various cos 9* and Q2 bins for the 5 GeV data set. The black 
solid curve is the MAID07 prediction and the pink dash line is the SAID08 prediction. 
The red squares and blue triangles represent D(e, e'7r~pCLAS)p and D(e, e'n~pRTPC)p 

measurements, respectively. 
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FIG. 158: <JTT VS. W' at various cos 0* and Q2 bins for the 5 GeV data set. The black 
solid curve is the MAID07 prediction and the pink dash line is the SAID08 prediction. 
The red squares and blue triangles represent D(e, e'Tr~pChAS)p and D(e, e'-K~pRTPC)p 
measurements, respectively. 
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VI.3 RESULT WITH LOW-MOMENTUM SPECTATOR PROTONS 

As mentioned in Section II.6.1 and Section II.6.2, off-shell effects and final state in­

teractions were predicted to be as small as 20% when requiring the spectator proton's 

momentum to be less than 120 MeV/c and 9pq (the angle between spectator proton 

and the virtual photon) to be larger than 100°. Therefore we define a Very Impor­

tance spectator Proton (VIP) cut as the following. For the D(e, e'Tr~pRTPC)p events 

in which the spectator proton is detected by the RTPC, we require 70.0 < ps < 120.0 

(MeV/c) and 9pq > 100.0°. In the D(e, e'7r~pCLAS)p reaction in which the fast 

proton is detected by CLAS, we require the inferred spectator proton to satisfy 

70.0 < p™fer < 120.0 (MeV/c) and 9™^er > 100.0°, where the inferred quantities 

are calculated based on momentum and energy conservation. The lower limit of the 

spectator momentum cut here was chosen to be 70 MeV/c for comparison between 

the D(e, e/7r~pCLAS)p and the D(e, e'Tr~pRTPC)p reactions. 

The subset of events that satisfy the VIP cut are expected to contain less than 

20% contamination from off-shell and FSI effects. To calculate the diferential cross 

section and structure functions, a new acceptance with VIP cut was calculated. 

By comparing the measurements of D(e, e'ir~pRTFC)p and D(e, e'7T~pCLAS)p with and 

without the VIP cut, one can estimate the reliability of these measurements. Figures 

159 to 167 show the structure functions' dependence on cos#* at various W' and Q2 

bins for all three beam energy data sets. Figures 168 to 176 are the same except 

that they show dependence on W' for various cos#* and Q2 bins. In these figures, 

the black curve is the MAID07 prediction. The measurements with and without the 

VIP cut are consistent in most bins, except at regions of low W' (W' < 1.3 GeV) or 

high cos 9* (cos 9* > 0.8). Again, these may indicate a problem with the acceptance 

calculation at the edge of the kinematics. 
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FIG. 159: <Tt -I- £<7l VS. cos#* at various W' and Q2 bins for the 2 GeV data 
set. The central W' value of the panels from the bottom to the top are 1.230, 1.375, 
1.525, 1.675, 1.825 and 1.975 GeV, respectively. The black solid curve is the MAID07 
prediction. The red square, blue triangle, pink empty circle and green asterisk points 
are measurements of D(e, e'n~pChAS)p, D(e,e'7r~pRTPC)p, D(e. e'7T~pCLAS)pwith VIP 
cut and D(e, e/7r~pRTPC)pwith VIP cut, respectively. 
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FIG. 160: crLT vs. cos#* at various W' and Q2 bins for the 2 GeV data set. The 
central W' value of the panels from the bottom to the top are 1.230, 1.375, 1.525, 
1.675, 1.825 and 1.975 GeV, respectively. The black solid curve is the MAID07 
prediction. The red square, blue triangle, pink empty circle and green asterisk points 
are measurements of D(e, e'7r~pCLAS)p, D(e, e'ir~pRTPC)p, D(e, e'ir~pCLAS)p with VIP 
cut and D(e, e'7r~pRTPC)pwith VIP cut, respectively. 
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FIG. 161: (JTT VS. COS 6* at various W' and Q2 bins for the 2 GeV data set. The 
central W' value of the panels from the bottom to the top are 1.230, 1.375, 1.525, 
1.675, 1.825 and 1.975 GeV, respectively. The black solid curve is the MAID07 
prediction. The red square, blue triangle, pink empty circle and green asterisk points 
are measurements of D(e, e'tt~pCLAS)p, D(e, e'7r~pRTPC)p, D(e, e'7r~pCLAS)pwith VIP 
cut and D(e, e'-n~pKT¥C)p with VIP cut, respectively. 
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FIG. 162: erT + ecrL vs. cos#* at various W' and Q2 bins for the 4 GeV data 
set. The central W' value of the panels from the bottom to the top are 1.230, 1.375, 
1.525, 1.675, 1.825 and 1.975 GeV, respectively. The black solid curve is the MAID07 
prediction. The red square, blue triangle, pink empty circle and green asterisk points 
are measurements of D(e, eV~pCLAS)p, D(e,e'7r~pRTPC)p, D(e, e'7r_pCLAS)pwith VIP 
cut and D(e, e'7r~pRTPC)pwith VIP cut, respectively. 
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FIG. 163: <rLT VS. COS#* at various W' and Q2 bins for the 4 GeV data set. The 
central W' value of the panels from the bottom to the top are 1.230, 1.375, 1.525, 
1.675, 1.825 and 1.975 GeV, respectively. The black solid curve is the MAID07 
prediction. The red square, blue triangle, pink empty circle and green asterisk points 
are measurements of D(e, e'7r~pCLAS)p, D(e, e'n~pRTPC)p, D(e, e'7r~pCLAS)p with VIP 
cut and D(e, e'7r~pRTPC)pwith VIP cut, respectively. 
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FIG. 164: (7TT vs. cos#* at various W' and Q2 bins for the 4 GeV data set. The 
central W' value of the panels from the bottom to the top are 1.230, 1.375, 1.525, 
1.675, 1.825 and 1.975 GeV, respectively. The black solid curve is the MAID07 
prediction. The red square, blue triangle, pink empty circle and green asterisk points 
are measurements of D(e, e'7r~pCLAS)p, D(e, e'ir~pRTPC)p, D(e, e'n~pCLAS)p with VIP 
cut and D(e, e'7r~pRTPC)pwith VIP cut, respectively. 
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FIG. 165: crT + eaL vs. cos#* at various W' and Q2 bins for the 5 GeV data 
set. The central W' value of the panels from the bottom to the top are 1.230, 1.375, 
1.525, 1.675, 1.825 and 1.975 GeV, respectively. The black solid curve is the MAID07 
prediction. The red square, blue triangle, pink empty circle and green asterisk points 
are measurements of D(e, e'7r_pCLAs)p, D(e, e'pRTPC)p, D(e, e'7r~pCLAS)p with VIP 
cut and D(e, e'TT^pRTp^pwith VIP cut, respectively. 
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FIG. 166: crLT vs. cos#* at various W' and Q2 bins for the 5 GeV data set. The 
central W' value of the panels from the bottom to the top are 1.230, 1.375, 1.525, 
1.675, 1.825 and 1.975 GeV, respectively. The black solid curve is the MAID07 
prediction. The red square, blue triangle, pink empty circle and green asterisk points 
are measurements of D(e, e/7r_pCLAS)p, D(e, e'-n~pKTPC)p, D(e, e'Tr~pCLAS)p with VIP 
cut and D(e, e'7r~pRTPC)pwith VIP cut, respectively. 
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FIG. 167: (JTT vs. cos#* at various W' and Q2 bins for the 5 GeV data set. The 
central W' value of the panels from the bottom to the top are 1.230, 1.375, 1.525, 
1.675, 1.825 and 1.975 GeV, respectively. The black solid curve is the MAID07 
prediction. The red square, blue triangle, pink empty circle and green asterisk points 
are measurements of D(e, e'n~pcljAS)p, D(e, e'n~pRTPC)p. D(e, e'7r"pCLAS)pwith VIP 
cut and D(e, e'7r~pRTPC)p with VIP cut, respectively. 
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FIG. 168: erT + ecrL vs. W' at various cos#* and Q2 bins for the 2 GeV data set. 
The black solid curve is the MAID07 prediction. The red square, blue triangle, 
purple empty circle and green asterisk points are measurements of D(e, e'ir~pCLAS)p, 
D(e, e'ir pRTpc)P) D(e,e'7r pCLAs)pwith VIP cut and D(e,e'7r pRTPC)pwith VIP cut, 
respectively. 
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FIG. 169: <rLT VS. W' at various cos#* and Q2 bins for the 2 GeV data set. The 
black solid curve is the MAID07 prediction. The red square, blue triangle, pur­
ple empty circle and green asterisk points are measurements of D(e, e'ir~pCLAS)p, 
D(e,e'ir~pRTPC)p, D(e, e'7r~pCLAS)p with VIP cut and D(e, e'7r_pRTPC)pwith VIP cut, 
respectively. 
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FIG. 170: crTT vs. W' at various cos#* and Q2 bins for the 2 GeV data set. The 
black solid curve is the MAID07 prediction. The red square, blue triangle, pur­
ple empty circle and green asterisk points are measurements of D(e, e'Tt~pCLAS)p, 
D(e,e'7r~pRTPC)p, D(e, e'7r~pCLAS)pwith VIP cut and D(e, e'7r_pRTPC)pwith VIP cut, 
respectively. 
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FIG. 171: aT + saL vs. Wf  at various cos0* and Q2 bins for the 4 GeV data set. 
The black solid curve is the MAID07 prediction. The red square, blue triangle, 
purple empty circle and green asterisk points are measurements of D(e, e'7r~pCLAS)p, 
D(e,e/7r~pRTPC)p, D(e, e'7r~pCLAs)pwith VIP cut and D(e, eV~pRTPC)p with VIP cut, 
respectively. 
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FIG. 172: erLT VS. W' at various cos#* and Q2 bins for the 4 GeV data set. The 
black solid curve is the MAID07 prediction. The red square, blue triangle, pur­
ple empty circle and green asterisk points are measurements of D(e, e'ir~pcljAS)p, 
D(e, e'ir~pRTPC)p, D(e, e'7r_pCLAS)pwith VIP cut and D(e, e'7r-pRTPC)pwith VIP cut, 
respectively. 
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FIG. 173: crTT vs. W at various cos 6* and Q2 bins for the 4 GeV data set. The 
black solid curve is the MAID07 prediction. The red square, blue triangle, pur­
ple empty circle and green asterisk points are measurements of D(e, e'n~pChAS)p, 
D(e,e'7r~pKTPC)p , D(e, e/7r~pCLAS)pwith VIP cut and D(e, e'7r~pRTPC)p with VIP cut, 
respectively. 
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FIG. 174: crT + e<rL vs. W' at various cos^* and Q2 bins for the 5 GeV data set. 
The black solid curve is the MAID07 prediction. The red square, blue triangle, 
purple empty circle and green asterisk points are measurements of D(e, e'7r~pCLAS)p, 
D(e, e'n~pRTpC)p, D(e, e'Tr~pCLAS)p with VIP cut and D(e, e'7r~pRTPC)p with VIP cut, 
respectively. 
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FIG. 175: aLT vs. W' at various cos 9* and Q2 bins for the 5 GeV data set. The 
black solid curve is the MAID07 prediction. The red square, blue triangle, pur­
ple empty circle and green asterisk points are measurements of D(e, e'ir~pChAS)p, 
D(e, e'Tr~pRTPC)p , D(e, e'n~pcljAS)p with VIP cut and D(e, e'7r~pRTPC)p with VIP cut, 
respectively. 
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FIG. 176: ctTT vs. W' at various cos0* and Q2 bins for the 5 GeV data set. The 
black solid curve is the MAID07 prediction. The red square, blue triangle, pur­
ple empty circle and green asterisk points are measurements of D(e, e;7r~pCLAS)p, 
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respectively. 
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CHAPTER VII 

SUMMARY 

The BoNuS experiment was performed with three electron beam energies of 

2.1424, 4.2262 and 5.2681 GeV in Fall 2005 using the CLAS together with a newly 

built RTPC at JLab. A small amount of data with 1.1005 GeV beam energy 

were taken for calibration purposes. The data were collected on a 7 atmosphere 

gaseous deuterium target. The RTPC detector, using GEM technology, allowed us 

to measure the spectator proton with momenta from 67 to 250 MeV/c with a res­

olution of 18% [45], therefore providing two possible ways, D(e, e'7r~pCLAS)p and 

D(e, e'n'pRTPC)p, for studying the exclusive n~ electro-production from the neutron. 

The D(e, e'7r~pCLASpRTPC) reaction was not considered in this analysis due to its ex­

tremely limited statistics. 

The data were calibrated and corrected for beam line position and energy loss. 

Fiducial cuts for each detected particle were applied in order to eliminate regions 

where the detection efficiency is too low or unknown. More than 300 million 

D(e, e'7r~pCLASpRTPC) events were simulated for each beam energy in order to study 

the acceptance. To extract the cross section, corrections for the detection effi­

ciency of trigger electrons, the fast proton measured by the CLAS and the spec­

tator proton measured by the RTPC, as well as the acceptance of D(e,e'7r~pCLAS)p 

or D(e, e/7r~pRTPC)p, the radiative effects and the background determination were 

included. 

A 2-a missing mass cut was used to select exclusive events. The cross sections 

were extracted as a function of W', Q2, cos 6* and 4>* using the 2, 4 and 5 GeV 

beam energy data sets over a large 4-D kinematic range. Although some limited 

measurements of pion production from the deuteron have been done in the past 50 

years, by calculating the ratio of D(e, eV~p)p to D(e, e'-K+n)n, this analysis for the 

first time directly measures the absolute cross section for D(e, e'-n~p)p. 

The statistics of the D(e, e'-n_pRTPC)p channel was about one-fourth of that of the 

D(e, e'lr~pCLAS)p channel, and results for these two measurements were consistent in 

most bins. The structure functions erT + ecrL, <rLT and aTT were extracted by fitting 

the <f>* dependence of the cross section. These structure functions were qualitatively 

in agreement with MAID and SAID models in most bins. However, we show some 
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significant disagreement, especially at low W' in the A(1232) resonance region, and 

at cos 6* close to 1. These regions require further study to make sure acceptance 

issues are not playing a role. 

The off-shell and final state interactions effects were predicted to be as small as 

20% under the VIP cut. Comparison of the data with and without the VIP cut have 

been done for both the D(e,e'Tr~pCLAS)p and the D(e, e'Tr~pKTPC)p cross sections. 

These measurements are consistent in most bins, except at regions of low W' (W' 

< 1.3 GeV) or high cos#* (cosff* > 0.8). These data are among the very few now 

available on the neutron, which is important for inclusion in new MAID and SAID 

fits. Ultimately, we hope these data will contribute to a better understanding of 

nucleon structure. 

The statistics for both D(e, e'7r~pCLAs)p and D(e, e'7r~pRTPC)p channels are limited 

due to the short experiment time and low data acquisition rates of the RTPC. It may 

be interesting to repeat the D(e, e'-K~pCLKS)p analysis using other CLAS data. On 

the other hand, we can also calculate the ratio of D(e, e'-K~p)p to D(e, e'ir+n)n using 

BoNuS and other CLAS data. These analyses may be undertaken in the future. 
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APPENDIX A 

MATERIALS DEFINED IN THE RTPC GEANT4 SIMULATION 

This list specifies all the materials defined in the RTPC GEANT4 simulation program 

(BONUS). 

• Galactic: density = 0.000 kg/m3; temperature = 0.10 K; pressure = 0.00 atm; 

Radiation Length = 204727576.737 pc 

Element: Galactic (Vacuum); Z = 1.0; N = 1.0; A = 1.01 g/mole; Mass Fraction 

= 100.00 %; Abundance = 100.00 % 

• Air: density = 1.290 mg/cm3; temperature = 273.15 K; pressure = 1.00 atm; 

Radiation Length = 285.161 m 

Element: Nitrogen (N); Z = 7.0; N = 14.0; A = 14.01 g/mole; Mass Fraction 

= 70.00%; Abundance = 72.71% 

Element: Oxygen (O); Z = 8.0; N = 16.0; A = 16.00 g/mole; Mass Fraction = 

30.00%; Abundance = 27.29% 

• Deuterium Gas: density = 1.227 mg/cm3; temperature = 300.00 K; pressure 

= 7.50 atm; Radiation Length = 1.027 km 

Element: Deuterium Gas ( ); Z = 1.0; N = 2.0; A = 2.01 g/mole; Mass Fraction 

= 100.00%; Abundance = 100.00% 

• Kapton: density = 1.420 g/cm3; temperature = 273.15 K; pressure = 1.00 atm; 

Radiation Length = 28.576 cm 

Element: Hydrogen (H); Z = 1.0; N = 1.0; A = 1.01 g/mole; Mass Fraction = 

2.64%; Abundance = 25.64% 

Element: Carbon (C); Z = 6.0; N = 12.0; A = 12.01 g/mole; Mass Fraction = 

69.11%; Abundance = 56.41% 

Element: Oxygen (O); Z = 8.0; N = 16.0; A = 16.00 g/mole; Mass Fraction = 

20.92%; Abundance = 12.82% 

Element: Nitrogen (N); Z = 7.0; N = 14.0; A = 14.01 g/mole; Mass Fraction 

= 7.33%; Abundance = 5.13% 

s 
• Ultem: density = 1.270 g/cm3; temperature = 273.15 K; pressure = 1.00 atm; 

Radiation Length = 32.528 cm 
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Element: Hydrogen (H); Z = 1.0; N = 1.0; A = 1.01 g/mole; Mass Fraction = 

8.31%; Abundance = 53.62% 

Element: Carbon (C); Z = 6.0; N = 12.0; A = 12.01 g/mole; Mass Fraction = 

64.11%; Abundance = 34.78% 

Element: Oxygen (O); Z = 8.0; N = 16.0; A = 16.00 g/mole; Mass Fraction = 

21.35%; Abundance = 8.70% 

Element: Nitrogen (N); Z = 7.0; N = 14.0; A = 14.01 g/mole; Mass Fraction 

= 6.23%; Abundance = 2.90% 

• Fused-Quartz: density — 2.200 g/cm*5: temperature — 273.1-5 Iv: pressure 

1.00 atm; Radiation Length = 12.295 cm 

Element: Silicon (Si); Z = 14.0; N = 28.1; A = 28.09 g/mole; Mass Fraction = 

46.75%; Abundance = 33.33% 

Element: Oxygen (O); Z = 8.0; N = 16.0; A = 16.00 g/mole; Mass Fraction = 

53.25%; Abundance = 66.67% 

• Epoxy-Resin: density = 1.268 g/cm3; temperature = 273.15 K; pressure = 1.00 

atm; Radiation Length = 32.338 cm 

Element: Hydrogen (H); Z = 1.0; N = 1.0; A = 1.01 g/mole; Mass Fraction = 

6.30%; Abundance = 46.15% 

Element: Carbon (C); Z = 6.0; N = 12.0; A = 12.01 g/mole; Mass Fraction = 

68.72%; Abundance = 42.31% 

Element: Oxygen (O); Z = 8.0; N = 16.0; A = 16.00 g/mole; Mass Fraction = 

24.97%; Abundance = 11.54% 

• G10FR4: density = 1.700 g/cm3; temperature = 273.15 K; pressure = 1.00 

atm; Radiation Length = 18.418 cm 

Element: Silicon (Si); Z = 14.0; N = 28.1; A = 28.09 g/mole; Mass Fraction = 

28.05%; Abundance = 11.88% 

Element: Oxygen (O); Z = 8.0; N = 16.0; A = 16.00 g/mole; Mass Fraction = 

41.94%; Abundance = 31.18% 

Element: Hydrogen (H); Z = 1.0; N = 1.0; A = 1.01 g/mole; Mass Fraction = 

2.52%; Abundance = 29.71% 

Element: Carbon (C); Z = 6.0; N = 12.0; A = 12.01 g/mole; Mass Fraction = 

27.49%; Abundance = 27.23% 
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• Rohacel71: density =750.000 mg/cm3; temperature = 273.15 K; pressure = 

1.00 atm; Radiation Length = 59.713 cm 

Element: Hydrogen (H); Z = 1.0; N = 1.0; A = 1.01 g/mole; Mass Fraction = 

14.40%; Abundance = 66.67% 

Element: Carbon (C); Z = 6.0; N = 12.0; A = 12.01 g/mole; Mass Fraction = 

85.60%; Abundance = 33.33% 

• Preamplifier-Chip: density = 2.310 g/cm3; temperature = 273.15 K; pressure 

= 1.00 atm; Radiation Length = 15.332 cm 

Element: Hydrogen (H); Z = 1.0; N = 1.0; A = 1.01 g/mole; Mass Fraction = 

5.71%; Abundance = 45.26% 

Element: Carbon (C); Z = 6.0; N = 12.0; A = 12.01 g/mole; Mass Fraction = 

61.69%; Abundance = 41.14% 

Element: Oxygen (O); Z = 8.0; N = 16.0; A = 16.00 g/mole; Mass Fraction = 

24.65%; Abundance = 12.34% 

Element: Silicon (Si); Z = 14.0; N = 28.1; A = 28.09 g/mole; Mass Fraction = 

1.57%; Abundance = 0.45% 

Element: Copper (Cu); Z = 29.0; N = 63.5; A = 63.55 g/mole; Mass Fraction 

= 6.39%; Abundance = 0.81% 

• Cable: density = 3.520 g/cm3; temperature = 273.15 K; pressure = 1.00 atm; 

Radiation Length = 4.629 cm 

Element: Hydrogen (H); Z = 1.0; N = 1.0; A = 1.01 g/mole; Mass Fraction = 

2.06%; Abundance = 40.91% 

Element: Carbon (C); Z = 6.0; N = 12.0; A = 12.01 g/mole; Mass Fraction = 

16.31%; Abundance = 27.27% 

Element: Chlorine (CI); Z = 17.0; N = 35.5; A = 35.45 g/mole; Mass Fraction 

= 24.08%; Abundance = 13.64% 

Element: Copper (Cu); Z = 29.0; N = 63.5; A = 63.55 g/mole; Mass Fraction 

= 57.55%; Abundance = 18.18% 

• Helium-Gas: density = 0.163 kg/m3; temperature = 300.00 K; pressure = 1.00 

atm; Radiation Length = 5.787 km 

Element: Helium Gas (He); Z = 2.0; N = 4.0; A = 4.00 g/mole; Mass Fraction 

= 100.00%; Abundance = 100.00% 
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• Mylar: density = 1.390 g/cm3; temperature = 273.15 K; pressure = 1.00 atm; 

Radiation Length = 31.356 cm 

Element: Hydrogen (H); Z = 1.0; N = 1.0; A = 1.01 g/mole; Mass Fraction = 

6.30%; Abundance = 44.44% 

Element: Carbon (C); Z = 6.0; N = 12.0; A = 12.01 g/mole; Mass Fraction = 

93.70%; Abundance = 55.56% 

• Aluminum: density = 2.700 g/cm3; temperature = 273.15 K; pressure = 1.00 

atm; Radiation Length = 8.893 cm 

Element: Aluminum (Al); Z — 13.0; X — 27.0; A — 26.98 g/mole: Mass Fraction 

= 100.00%; Abundance = 100.00% 

• Stainless-Steel: density = 7.850 g/cm3; temperature = 273.15 K; pressure = 

1.00 atm; Radiation Length = 1.764 cm 

Element: Iron (Fe); Z = 26.0; N = 55.8; A = 55.84 g/mole; Mass Fraction = 

95.43%; Abundance = 95.30% 

Element: Chromium (Cr); Z = 24.0; N = 52.0; A = 52.00 g/mole; Mass Fraction 

= 3.25%; Abundance = 3.49% 

Element: Nickel (Ni); Z = 28.0; N = 58.7; A = 58.69 g/mole; Mass Fraction = 

1.20%; Abundance = 1.14% 

Element: Molydb (Mo); Z = 42.0; N = 95.9; A = 95.94 g/mole; Mass Fraction 

= 0.12%; Abundance = 0.07% 

• DME-Gas: density = 1.871 mg/cm3; temperature = 300.00 K; pressure = 1.00 

atm; Radiation Length = 218.617 m 

Element: Hydrogen (H); Z = 1.0; N = 1.0; A = 1.01 g/mole; Mass Fraction = 

13.00%; Abundance = 66.37% 

Element: Carbon (C); Z = 6.0; N = 12.0; A = 12.01 g/mole; Mass Fraction = 

52.20%; Abundance = 22.41% 

Element: Oxygen (O); Z = 8.0; N = 16.0; A = 16.00 g/mole; Mass Fraction = 

34.80%; Abundance = 11.22% 

• Bonus-Gas: density = 0.470 kg/m3; temperature = 300.00 K; pressure = 1.00 

atm; Radiation Length = 1.036 km 

Element: Hydrogen (H); Z = 1.0; N = 1.0; A = 1.01 g/mole; Mass Fraction = 

9.31%; Abundance = 43.96% 
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Element: Carbon (C); Z = 6.0; N = 12.0; A = 12.01 g/mole; Mass Fraction = 

37.40%; Abundance = 14.84% 

Element: Oxygen (O); Z = 8.0; N = 16.0; A = 16.00 g/mole; Mass Fraction = 

24.93%; Abundance = 7.43% 

Element: Helium Gas (He); Z = 2.0; N = 4.0; A = 4.00 g/mole; Mass Fraction 

= 28.36%; Abundance = 33.77% 

• Copper: density = 8.960 g/cm3; temperature = 273.15 K; pressure = 1.00 atm; 

Radiation Length = 1.436 cm 

Element: Copper (Cu); Z = 29.0; N = 63.5; A = 63.55 g/mole; Mass Fraction 

= 100.00%; Abundance = 100.00% 
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APPENDIX B 

PHYSICS PROCESSES IN THE RTPC GEANT4 SIMULATION 

In the RTPC simulation program, BONUS, the following physics processes have been 

registered: 

• General Physics 

• Ion Physics 

• Electromagnetic Physics 

• Muon Physics 

• Hadron Physics 

General Physics 

Decay is a very general process for all particles. The decay process has been linked 

to all known particles, including baryons, bosons, ions, leptons, mesons, resonances 

and even all the quarks. 

Ion Physics 

In the Ion Physics process, I associated multiple scattering and ionization to the 

general ions. Some special processes have also been linked for the deuteron, triton, 

and alpha and 3He particles. 

• General Ion: Multiple Scattering, Ionization 

• Deuteron: Low Energy Elastic Scattering, Low Energy Inelastic Scattering, 

Multiple Scattering, Ionization; 

• Triton: Low Energy Elastic Scattering, Low Energy Inelastic Scattering, Mul­

tiple Scattering, Ionization; 

• Alpha: Low Energy Elastic Scattering, Low Energy Inelastic Scattering, Mul­

tiple Scattering, Ionization; 

• 3He: Low Energy Elastic Scattering, Low Energy Inelastic Scattering, Multiple 

Scattering, Ionization. 
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Electromagnetic Physics 

Eletric-Magnetic physics usually relevant to photons (7), electrons and positrons. In 

this physics process, I registered the following: 

• 7: Gamma Conversion, Compton Scattering, Photo-Electric Effect, Low En­

ergy Rayleigh Scattering, Low Energy Photo-Electric Effect, Low Energy 

Compton Scattering, Low Energy Gamma Conversion; 

• e~: Multiple Scattering, Ionization, Bremsstrahlung, Low Energy Ionization, 

Low Energy Bremsstrahlung; 

• e+: Multiple Scattering, Ionization, Bremsstrahlung, Annihilation, Low Energy 

Ionization, Low Energy Bremsstrahlung. 

Muon Physics 

In the Muon Physics process, I associated the following processes to fi+. fi~} t+ and 

r-: 

• /i+: Multiple Scattering, Ionization, Bremsstrahlung, Pair Production; 

• fi~: Multiple Scattering, Ionization, Bremsstrahlung, Pair Production; 

• r+: Multiple Scattering, Ionization; 

• r~: Multiple Scattering, Ionization. 

Hadron Physics 

In the Hadron Physics process, I associated various physics processes to various 

hadrons, as described below. 

• 7r+ and 7r~: Low Energy Elastic Scattering, Low Energy Inelastic Scattering, 

High Energy Inelastic Scattering, Multiple Scattering, Ionization; 

• K+ and K~: Low Energy Elastic Scattering, Low Energy Inelastic Scattering, 

High Energy Inelastic Scattering, Multiple Scattering, Ionization; 

• Kl and Kg: Low Energy Elastic Scattering, Low Energy Inelastic Scattering, 

High Energy Inelastic Scattering; 
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• Proton and anti-proton: Low Energy Elastic Scattering, Low Energy Inelastic 

Scattering, High Energy Inelastic Scattering, Multiple Scattering, Ionization; 

• Neutron: Low Energy Elastic Scattering, Low Energy Inelastic Scattering, High 

Energy Inelastic Scattering, Low Energy Fission Model, Low Energy Capture 

Model; 

• anti-neutron: Low Energy Elastic Scattering, Low Energy Inelastic Scattering, 

High Energy Inelastic Scattering, Annihilation Model; 

• A and anti-A: Low Energy Elastic Scattering. Low Energy Inelastic Scattering. 

High Energy Inelastic Scattering; 

• £+ and anti-£+: Low Energy Elastic Scattering, Low Energy Inelastic Scat­

tering, High Energy Inelastic Scattering, Multiple Scattering, Ionization; 

• £~ and anti-E~: Low Energy Elastic Scattering, Low Energy Inelastic Scat­

tering, High Energy Inelastic Scattering, Multiple Scattering, Ionization; 

• S° and anti-S°: Low Energy Elastic Scattering, Low Energy Inelastic Scatter­

ing, High Energy Inelastic Scattering; 

• and anti-S~: Low Energy Elastic Scattering, Low Energy Inelastic Scatter­

ing, High Energy Inelastic Scattering, Multiple Scattering, Ionization; 

• Q~ and anti-fi-: Low Energy Elastic Scattering, Low Energy Inelastic Scat­

tering, High Energy Inelastic Scattering, Multiple Scattering, Ionization. 
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