Spring 1998

Fiber-Reinforced Plastic Composite Beam Stability and Load and Resistance Factor Design Approach

Mojtaba B. Sirjani
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/cee_etds
Part of the Civil Engineering Commons

Recommended Citation
https://digitalcommons.odu.edu/cee_etds/98

This Dissertation is brought to you for free and open access by the Civil & Environmental Engineering at ODU Digital Commons. It has been accepted for inclusion in Civil & Environmental Engineering Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.
FIBER REINFORCED PLASTIC COMPOSITE BEAM STABILITY AND LOAD AND RESISTANCE FACTOR DESIGN APPROACH

By

MOJTABA B. SIRJANI
B. S. May 1984, Old Dominion University
M.S. May 1989, North Carolina A&T State University

A Dissertation Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY
CIVIL ENGINEERING
OLD DOMINION UNIVERSITY
MAY 1998

Approved by:

Dr. Zia Razzaq, Chairman

Dr. Isao Ishibashi

Dr. Gene J.-W. Hou
Fiber Reinforced Plastic (FRP) structural members are rapidly gaining impetus in civil engineering applications. Also, thin-walled open beams with I-shaped, channel, and other types of sections are of practical importance to both structural analysts and designers. This dissertation presents the outcome of a detailed experimental and theoretical investigation of the strength and stability of FRP composite beams. Three- and four-point loading tests are conducted on FRP I- and channel section beams. The behavior of these beams is studied under gradually increasing static loads up to the maximum load-carrying capacity corresponding to either material cracking or flexural-torsional instability. First, the theoretical analysis is formulated using an equilibrium approach based on a system of flexural and torsional differential equations. Next, a central finite-difference scheme is developed and programmed to solve the coupled system of the differential equations of equilibrium. In addition, a buckling load formula is developed for the case of four-point loading based on an energy approach, including the load height effect. The theoretical analysis based on the equilibrium approach is found to be in good agreement with the experimental results. The buckling load formula is also found to be in excellent agreement with the experimental buckling loads. Lastly, a Load & Resistance Factor Design (LRFD)
approach is presented and its use demonstrated by means of practical analysis and design examples.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iii</td>
</tr>
<tr>
<td>NOMENCLATURE</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Background</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Literature Review</td>
<td>1</td>
</tr>
<tr>
<td>1.3 Problem Definition</td>
<td>5</td>
</tr>
<tr>
<td>1.4 Objective and Scope</td>
<td>6</td>
</tr>
<tr>
<td>1.5 Assumptions and Conditions</td>
<td>7</td>
</tr>
<tr>
<td>II. EXPERIMENTAL INVESTIGATION</td>
<td>8</td>
</tr>
<tr>
<td>2.1 Stability and Flexural-Torsional Tests</td>
<td>8</td>
</tr>
<tr>
<td>2.2 Mechanical Properties of Materials</td>
<td>9</td>
</tr>
<tr>
<td>2.3 Apparatus and Test Procedure</td>
<td>11</td>
</tr>
<tr>
<td>2.4 Test Results and Discussion</td>
<td>13</td>
</tr>
<tr>
<td>2.4.1 Minor Axis Flexure</td>
<td>13</td>
</tr>
<tr>
<td>2.4.2 Stability of I-Section Beam</td>
<td>13</td>
</tr>
<tr>
<td>2.4.2.1 Three-Point Loading Through Shear Center</td>
<td>14</td>
</tr>
<tr>
<td>2.4.2.2 Four-Point Loading Through Shear Center</td>
<td>15</td>
</tr>
</tbody>
</table>
IV LOAD AND RESISTANCE FACTOR DESIGN APPROACH
FOR FRP BEAM STABILITY ... 32
 4.1 LRFD Philosophy For FRP Composite Beams 33
 4.2 Maximum Bending Moment versus Beam Length Relations 34
 4.3 LRFD Approach For FRP Composite Beams 36
 4.4 LRFD Analysis Example ... 37
 4.5 LRFD Design Example .. 39
V. COMPARISON OF RESULTS AND CONCLUSIONS 42
 5.1 Comparison of Theory and Experiments 42
 5.2 Load Height Effect ... 41
 5.3 Conclusions ... 41
 5.4 Future Research ... 42
REFERENCES .. 43
TABLES .. 44
FIGURES ... 98
APPENDIX: FINITE-DIFFERENCE PROGRAM FOR SOLVING SYSTEM OF
FRP BEAM DIFFERENTIAL EQUATIONS 198
VITA .. 223
ACKNOWLEDGEMENT

The author wishes to express his sincerest thanks to his advisor Dr. Zia Razzaq, Professor of Civil Engineering, for his continuous guidance, help, cooperation, and moral support throughout the course of this research. The participation of Dr. Ram Prabhakaran, Professor of Mechanical Engineering, in the initial phases of the experimental work is sincerely acknowledged. Special thanks are due to Dr. Isao Ishibashi, Professor of Civil Engineering, and Dr. Gene Hou, Professors of Mechanical Engineering for their helpful input. Also, the assistance provided by Jerry Robertson, Manager of Engineering Workshop at ODU, in the fabrication of test fixtures is sincerely appreciated.

The author wishes to express his gratitude to his parents Mohammed Sadgh Sirjani and Nosrat Sirjani, from Iran, for providing the encouragement to pursue higher education.
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Area</td>
</tr>
<tr>
<td>B</td>
<td>Section width</td>
</tr>
<tr>
<td>D</td>
<td>Section depth</td>
</tr>
<tr>
<td>E</td>
<td>Young’s modulus</td>
</tr>
<tr>
<td>E_T</td>
<td>Tensile Young’s modulus</td>
</tr>
<tr>
<td>E_C</td>
<td>Compression Young’s modulus</td>
</tr>
<tr>
<td>E_t</td>
<td>Tangent Young’s modulus</td>
</tr>
<tr>
<td>I_x, I_y</td>
<td>Moment of inertia about x-axis and y-axis</td>
</tr>
<tr>
<td>I_{xy}</td>
<td>Product of inertia relative to x-axis and y-axis</td>
</tr>
<tr>
<td>I_{wx}, I_{wy}</td>
<td>Warping moment of inertia relative to x-axis and y-axis</td>
</tr>
<tr>
<td>G</td>
<td>Shear modulus of elasticity</td>
</tr>
<tr>
<td>$[K]$</td>
<td>Member global tangent stiffness matrix</td>
</tr>
<tr>
<td>K_T</td>
<td>St. Venant torsion</td>
</tr>
<tr>
<td>M_x, M_y</td>
<td>Bending moments</td>
</tr>
<tr>
<td>M_z</td>
<td>Torsional moment</td>
</tr>
<tr>
<td>M_{sv}</td>
<td>St. Venant torsion resisting moment</td>
</tr>
<tr>
<td>M_w</td>
<td>Resisting warping torsional moment</td>
</tr>
<tr>
<td>ω_n</td>
<td>Normalized unit warping</td>
</tr>
<tr>
<td>${M}$</td>
<td>Moment vector</td>
</tr>
<tr>
<td>P</td>
<td>Applied axial load</td>
</tr>
<tr>
<td>δa</td>
<td>Elemental area</td>
</tr>
<tr>
<td>h</td>
<td>Distance between nodes</td>
</tr>
</tbody>
</table>
n Total nodes
u Deflection due to load in x-direction
v Deflection due to load in y-direction
u_0 Initial member crookedness in x-direction
\phi_0 Initial member crookedness in x-direction
u_{oi} Midspan initial crookedness amplitude in x-direction
\phi_{oi} Midspan initial crookedness amplitude in x-direction
x, y, z Global coordinates
X, Y Centroid coordinates
z_t Nodal distance from end of beam
\Pi Total energy
\{ \delta \} Cross-sectional deformation vector
\epsilon Normal strain
\epsilon_t Tensile strain
\epsilon_c Compression strain
\epsilon_{ut} Ultimate (fracture) tensile strain
\epsilon_{uc} Ultimate (fracture) compression strain
\epsilon_{cr} Tensile cracking strain
\sigma Stress
\sigma_{ut} Ultimate (fracture) tensile strength
\sigma_{uc} Ultimate (fracture) compression strength
\phi Angle of twist
\Phi_x, \Phi_y Bending curvatures
\{ \Delta \} \quad \text{Deformation vector}

\int_{A} \quad \text{Cross-sectional integration}

e^* \quad \text{Imperfection factor}

e \quad \text{eccentricity}
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td></td>
</tr>
<tr>
<td>Tensile coupon tests results for Specimen 1 from flange of I-section (coupon cross-sectional dimensions: 0.8x0.25 in.)</td>
<td>44</td>
</tr>
<tr>
<td>Table 2.2</td>
<td></td>
</tr>
<tr>
<td>Tensile coupon tests results for Specimen 2 from flange of I-section (coupon cross-sectional dimensions: 0.8x0.25 in.)</td>
<td>45</td>
</tr>
<tr>
<td>Table 2.3</td>
<td></td>
</tr>
<tr>
<td>Tensile coupon tests results for Specimen 3 from web of I-section (coupon cross-sectional dimensions: 0.9x0.25 in.)</td>
<td>46</td>
</tr>
<tr>
<td>Table 2.4</td>
<td></td>
</tr>
<tr>
<td>Tensile coupon tests results for Specimen 4 from web of I-section (coupon cross-sectional dimensions: 0.8x0.25 in.)</td>
<td>47</td>
</tr>
<tr>
<td>Table 2.5</td>
<td></td>
</tr>
<tr>
<td>Summary of tensile test results for material of I-section</td>
<td>48</td>
</tr>
<tr>
<td>Table 2.6</td>
<td></td>
</tr>
<tr>
<td>Tensile coupon tests results for Specimen 5 from flange of channel section (coupon cross-sectional dimensions: 1.1x0.25 in.)</td>
<td>49</td>
</tr>
<tr>
<td>Table 2.7</td>
<td></td>
</tr>
<tr>
<td>Tensile coupon tests results for Specimen 6 from flange of channel section (coupon cross-sectional dimensions: 1.0x0.25 in.)</td>
<td>50</td>
</tr>
<tr>
<td>Table 2.8</td>
<td></td>
</tr>
<tr>
<td>Tensile coupon tests results for Specimen 7 from web of channel section (coupon cross-sectional dimensions: 1.0x0.25 in.)</td>
<td>51</td>
</tr>
<tr>
<td>Table 2.9</td>
<td></td>
</tr>
<tr>
<td>Tensile coupon tests results for Specimen 8 from web of channel section (coupon cross-sectional dimensions: 1.1x0.25 in.)</td>
<td>52</td>
</tr>
<tr>
<td>Table 2.10</td>
<td></td>
</tr>
<tr>
<td>Summary of tensile test results for material of channel section</td>
<td>53</td>
</tr>
<tr>
<td>Table 2.11</td>
<td></td>
</tr>
<tr>
<td>Minor axis bending test results for I-beam (in., L=30 in.)</td>
<td>54</td>
</tr>
<tr>
<td>Table 2.12</td>
<td></td>
</tr>
<tr>
<td>Results for FRP I-beam (in.) Test No. IFT3-1 with three-point loading (L=108 in.)</td>
<td>55</td>
</tr>
<tr>
<td>Table 2.13</td>
<td></td>
</tr>
<tr>
<td>Results for FRP I-beam (in.) Test No. IFT3-2 with three-point loading (L=96 in.)</td>
<td>56</td>
</tr>
<tr>
<td>Table 2.14</td>
<td></td>
</tr>
<tr>
<td>Results for FRP I-beam (in.) Test No. IFT3-3 with three-point loading (L=84 in.)</td>
<td>57</td>
</tr>
<tr>
<td>Table 2.15</td>
<td></td>
</tr>
<tr>
<td>Results for FRP I-beam (in.) Test No. IFT3-4 with three-point loading (L=72 in.)</td>
<td>58</td>
</tr>
</tbody>
</table>
Table 2.16 Results for FRP I-beam (in.) Test No. IFT4-1 with four-point loading (L=108 in.) ... 59
Table 2.17 Results for FRP I-beam (in.) Test No. IFT4-2 with four-point loading (L=96 in.) ... 60
Table 2.18 Results for FRP I-beam (in.) Test No. IFT4-3 with four-point loading (L=84 in.) ... 61
Table 2.19 Results for FRP I-beam (in.) Test No. IFT4-4 with four-point loading (L=72 in.) ... 62
Table 2.20 Results for FRP I-beam (in.) Test No. IFT4-5 with four-point loading (L=60 in.) ... 63
Table 2.21 Results for FRP channel beam (in.) Test No. CFT3-1 with three-point loading (L=108 in.) ... 64
Table 2.22 Results for FRP channel beam (in.) Test No. CFT3-2 with three-point loading (L=96 in.) ... 65
Table 2.23 Results for FRP channel beam (in.) Test No. CFT4-1 with four-point loading (L=108 in.) ... 66
Table 2.24 Results for FRP channel beam (in.) Test No. CFT4-2 with four-point loading (L=102 in.) ... 67
Table 2.25 Results for FRP channel beam (in.) Test No. CFT4-3 with four-point loading (L=96 in.) ... 68
Table 2.26 Results for FRP channel beam (in.) Test No. CFT4-4 with four-point loading (L=84 in.) ... 69
Table 2.27 Results for FRP channel beam (in.) Test No. CFT4-5 with four-point loading (L=72 in.) ... 70
Table 2.28 Results for FRP channel beam (in.) Test No. CFT4-6 with four-point loading (L=60 in.) ... 71
Table 2.29 Results for FRP channel beam (in.) Test No. CFT4-7 with four-point loading (L=84 in.)
(centroidal loading; x = -0.5675 in., y = -3.5 in.) 72
Table 2.30 Results for FRP channel beam (in.) Test No. CFT4-8 with four-point loading (L=84 in.)
(loading between centroid and shear center; x = -0.2656 in., y = -3.5 in.)
... 73

Table 2.31 Results for FRP channel beam (in.) Test No. CFT4-9 with four-point loading (L=84 in.)
(loading to the right side of the shear center; x=0.4531 in., y = -3.5 in.)
..74

Table 3.1 Minor axis bending theoretical results for I-beam (in., L = 30 in.) ...75

Table 3.2 Results for FRP composite I-beam (in.) Test No. IFT3-1 with three-point loading (L= 108 in., e = -0.002 in.)76

Table 3.3 Results for FRP composite I-beam (in.) Test No. IFT3-2 with three-point loading (L=96 in., e = -0.002 in.)77

Table 3.4 Results for FRP composite I-beam (in.) Test No. IFT3-3 with three-point loading (L=84 in., e = -0.002 in.)78

Table 3.5 Results for FRP composite I-beam (in.) Test No. IFT3-4 with three-point loading (L=72 in., e = +0.002 in.)79

Table 3.6 Results for FRP composite I-beam (in.) Test No. IFT4-1 with four-point loading (L=108 in., e = -0.0002 in.)80

Table 3.7 Results for FRP composite I-beam (in.) Test No. IFT4-2 with four-point loading (L=96 in., e = -0.00007 in.)81

Table 3.8 Results for FRP composite I-beam (in.) Test No. IFT4-3 with four-point loading (L=84 in., e = -0.0005 in.)82

Table 3.9 Results for FRP composite I-beam (in.) Test No. IFT4-4 with four-point loading (L=72 in., e = -0.0005 in.)83

Table 3.10 Results for FRP composite I-beam (in.) Test No. IFT4-5 with four-point loading (L=60 in., e = -0.0005 in.)84

Table 3.11 Results for FRP composite I-beam (in.) Test No. CFT3-1 with three-point loading (L=108 in., e = 0.0003 in.)85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.12</td>
<td>Results for FRP composite I-beam (in.) Test No. CFT3-2 with three-point loading (L=96 in., e = 0.0003 in.)</td>
</tr>
<tr>
<td>3.13</td>
<td>Results for FRP composite I-beam (in.) Test No. CFT4-1 with four-point loading (L=108 in., e = -0.0003 in.)</td>
</tr>
<tr>
<td>3.14</td>
<td>Results for FRP composite I-beam (in.) Test No. CFT4-2 with four-point loading (L=102 in., e = -0.0005 in.)</td>
</tr>
<tr>
<td>3.15</td>
<td>Results for FRP composite I-beam (in.) Test No. CFT4-3 with four-point loading (L=96 in., e = -0.0001 in.)</td>
</tr>
<tr>
<td>3.16</td>
<td>Results for FRP composite I-beam (in.) Test No. CFT4-4 with four-point loading (L=84 in., e = -0.00009 in.)</td>
</tr>
<tr>
<td>3.17</td>
<td>Results for FRP composite I-beam (in.) Test No. CFT4-5 with four-point loading (L=72 in., e = -0.0009 in.)</td>
</tr>
<tr>
<td>3.18</td>
<td>Results for FRP composite I-beam (in.) Test No. CFT4-6 with four-point loading (L=60 in., e = -0.0005 in.)</td>
</tr>
<tr>
<td>3.19</td>
<td>Results for FRP composite I-beam (in.) Test No. CFT4-7 with four-point loading (L=84 in.; centroidal loading, e = -0.5675 in.)</td>
</tr>
<tr>
<td>3.20</td>
<td>Results for FRP composite I-beam (in.) Test No. CFT4-8 with four-point loading (L=84 in.; loading between centroid and shear center e = -0.2656 in.)</td>
</tr>
<tr>
<td>3.21</td>
<td>Results for FRP composite I-beam (in.) Test No. FT4-9 with four-point loading (L=84 in.; loading to the right side of the shear center e = 0.4531 in.)</td>
</tr>
<tr>
<td>4.1</td>
<td>Summary of Comparison of Peak loads from Flexural-Torsional Experiment Theory</td>
</tr>
<tr>
<td>5.1</td>
<td>Effect of load height on FRP channel beam buckling load</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a. Schematic view of FRP composite beam with three-point loading</td>
<td>98</td>
</tr>
<tr>
<td>1b. Schematic view of FRP composite beam with three-point loading</td>
<td>98</td>
</tr>
<tr>
<td>2. Cross-sectional dimensions of FRP composite I-section</td>
<td>98a</td>
</tr>
<tr>
<td>3. Cross-sectional dimensions of FRP composite channel section</td>
<td>98a</td>
</tr>
<tr>
<td>4. Tensile stress-strain relationship</td>
<td>99</td>
</tr>
<tr>
<td>5. Location and numbers of test specimens for I-section</td>
<td>100</td>
</tr>
<tr>
<td>6. Location and numbers of test specimens for channel section</td>
<td>101</td>
</tr>
<tr>
<td>7. Schematic of FRP composite tension test setup</td>
<td>102</td>
</tr>
<tr>
<td>8. Normal stress-strain relationship based on tensile coupon test for specimen 1 from flange of I-section (see table 2.1)</td>
<td>103</td>
</tr>
<tr>
<td>9. Normal stress-strain relationship based on tensile coupon test for specimen 2 from flange of I-section (see table 2.2)</td>
<td>104</td>
</tr>
<tr>
<td>10. Normal stress-strain relationship based on tensile coupon test for specimen 3 from web of I-section (see table 2.3)</td>
<td>105</td>
</tr>
<tr>
<td>11. Normal stress-strain relationship based on tensile coupon test for specimen 4 from web of I-section (see table 2.4)</td>
<td>106</td>
</tr>
<tr>
<td>12. Normal stress-strain relationship based on tensile coupon test for specimen 5 from flange of channel section (see table 2.5)</td>
<td>107</td>
</tr>
<tr>
<td>13. Normal stress-strain relationship based on tensile coupon test for specimen 6 from flange of channel section (see table 2.6)</td>
<td>108</td>
</tr>
<tr>
<td>14. Normal stress-strain relationship based on tensile coupon test for specimen 7 from web of I-section (see table 2.7)</td>
<td>109</td>
</tr>
<tr>
<td>15. Normal stress-strain relationship based on tensile coupon test for specimen 8 from web of I-section (see table 2.8)</td>
<td>110</td>
</tr>
</tbody>
</table>
16. Cross-sectional schematic view at beam load application about minor axis . 112
17. Overall apparatus to conduct the flexural-torsional tests on FRP composite beams . 113
18. Loading setup with hydraulic jacks . 114
19. Tie rods connection of FRP composite beam . 115
20. Laboratory simulations of simple supports . 116
21. Load (P) at mid span about minor axis . 117
22. Load (P) versus midspan vertical deflection (v_e) about minor axis bending . 118
23. Load (P) versus midspan vertical deflection (e_e) about minor axis bending . 119
24. Moment (M_y) versus (\phi_y) about minor axis bending . 120
25. Cross-sectional schematic view at load application points
 for I-section beam . 121
26. Load (P) versus midspan vertical deflection (v_e) for test NO. IFT3-1 . 122
27. Load (P) versus midspan lateral deflection (u_e) for test NO. IFT3-1 . 123
28. Load (P) versus midspan angle of twist (\phi_e) for test NO. IFT3-1 . 124
29. Load (P) versus midspan vertical deflection (v_e) for test NO. IFT3-2 . 125
30. Load (P) versus midspan lateral deflection (u_e) for test NO. IFT3-2 . 126
31. Load (P) versus midspan angle of twist (\phi_e) for test NO. IFT3-2 . 127
32. Load (P) versus midspan vertical deflection (v_e) for test NO. IFT3-3 . 128
33. Load (P) versus midspan lateral deflection (u_e) for test NO. IFT3-3 . 129
34. Load (P) versus midspan angle of twist (\phi_e) for test NO. IFT3-3 . 130
35. Load (P) versus midspan vertical deflection (v_e) for test NO. IFT3-4 . 131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
36. Load (P) versus midspan lateral deflection (u_c) for test NO. IFT3-4 132
37. Load (P) versus midspan angle of twist (ϕ_c) for test NO. IFT3-4 133
38. Load (P) versus midspan vertical deflection (v_c) for test NO. IFT4-1 134
39. Load (P) versus midspan lateral deflection (u_c) for test NO. IFT4-1 135
40. Load (P) versus midspan angle of twist (ϕ_c) for test NO. IFT4-1 136
41. Load (P) versus maximum strain (ε_c) for test NO. IFT4-1 137
42. Load (P) versus midspan vertical deflection (v_c) for test NO. IFT4-2 138
43. Load (P) versus midspan lateral deflection (u_c) for test NO. IFT4-2 139
44. Load (P) versus midspan angle of twist (ϕ_c) for test NO. IFT4-2 140
45. Load (P) versus maximum strain (ε_c) for test NO. IFT4-2 141
46. Load (P) versus midspan vertical deflection (v_c) for test NO. IFT4-3 142
47. Load (P) versus midspan lateral deflection (u_c) for test NO. IFT4-3 143
48. Load (P) versus midspan angle of twist (ϕ_c) for test NO. IFT4-3 144
49. Load (P) versus maximum strain (ε_c) for test NO. IFT4-3 145
50. Load (P) versus midspan vertical deflection (v_c) for test NO. IFT4-4 146
51. Load (P) versus midspan lateral deflection (u_c) for test NO. IFT4-4 147
52. Load (P) versus midspan angle of twist (ϕ_c) for test NO. IFT4-4 148
53. Load (P) versus maximum strain (ε_c) for test NO. IFT4-4 149
54. Load (P) versus midspan vertical deflection (v_c) for test NO. IFT4-5 150
55. Load (P) versus midspan lateral deflection (u_c) for test NO. IFT4-5 151
56. Load (P) versus midspan angle of twist (ϕ_c) for test NO. IFT4-5 152
57. Load (P) versus maximum strain (ε_e) for test NO. IFT4-5 153

58. Cross-sectional schematic view at load application points (F and G) for channel section beam .. 154

59. Load (P) versus midspan vertical deflection (v_e) for test NO. CFT3-1 159

60. Load (P) versus midspan lateral deflection (u_e) for test NO. CFT3-1 160

61. Load (P) versus midspan angle of twist (ϕ_e) for test NO. CFT3-1 161

62. Load (P) versus midspan vertical deflection (v_e) for test NO. CFT3-2 162

63. Load (P) versus midspan lateral deflection (u_e) for test NO. CFT3-2 163

64. Load (P) versus midspan angle of twist (ϕ_e) for test NO. CFT3-2 164

65. Load (P) versus midspan vertical deflection (v_e) for test NO. CFT3-2 165

66. Load (P) versus midspan lateral deflection (u_e) for test NO. CFT4-1 166

67. Load (P) versus midspan angle of twist (ϕ_e) for test NO. CFT4-1 167

68. Load (P) versus midspan vertical deflection (v_e) for test NO. CFT4-2 168

69. Load (P) versus midspan lateral deflection (u_e) for test NO. CFT4-2 169

70. Load (P) versus midspan angle of twist (ϕ_e) for test NO. CFT4-2 170

71. Load (P) versus midspan vertical deflection (v_e) for test NO. CFT4-3 171

72. Load (P) versus midspan lateral deflection (u_e) for test NO. CFT4-3 172

73. Load (P) versus midspan angle of twist (ϕ_e) for test NO. CFT4-3 173

74. Load (P) versus midspan vertical deflection (v_e) for test NO. CFT4-4 174

75. Load (P) versus midspan lateral deflection (u_e) for test NO. CFT4-4 175

76. Load (P) versus midspan angle of twist (ϕ_e) for test NO. CFT4-4 176

77. Load (P) versus maximum strain (ε_e) for Test No. CFT4-4 177
78. Load (P) versus midspan vertical deflection (v_c) for test NO. CFT4-5 178
79. Load (P) versus midspan lateral deflection (u_c) for test NO. CFT4-5 179
80. Load (P) versus midspan angle of twist (ϕ_c) for test NO. CFT4-5 180
81. Load (P) versus midspan vertical deflection (v_c) for test NO. CFT4-6 181
82. Load (P) versus midspan lateral deflection (u_c) for test NO. CFT4-6 182
83. Load (P) versus midspan angle of twist (ϕ_c) for test NO. CFT4-6 183
84. Load (P) versus midspan vertical deflection (v_c) for test NO. CFT4-7 184
85. Load (P) versus midspan lateral deflection (u_c) for test NO. CFT4-7 185
86. Load (P) versus midspan angle of twist (ϕ_c) for test NO. CFT4-7 186
87. Load (P) versus maximum strain (ε_c) for Test No. CFT4-7 187
88. Load (P) versus midspan vertical deflection (v_c) for test NO. CFT4-8 188
89. Load (P) versus midspan lateral deflection (u_c) for test NO. CFT4-8 189
90. Load (P) versus midspan angle of twist (ϕ_c) for test NO. CFT4-8 190
91. Load (P) versus maximum strain (ε_c) for Test No. CFT4-8 191
92. Load (P) versus midspan vertical deflection (v_c) for test NO. CFT4-9 192
93. Load (P) versus midspan lateral deflection (u_c) for test NO. CFT4-9 193
94. Load (P) versus midspan angle of twist (ϕ_c) for test NO. CFT4-9 194
95. Load (P) versus maximum strain (ε_c) for Test No. CFT4-9 195
96. Discretized I-section .. 196
97. Discretized channel section .. 197
98. Maximum bending moment versus length curves for three-point loading
99. Maximum bending moment versus length curves for four-point loading of I-section FRP composite beams ... 198

100. Maximum bending moment versus length curves for three-point loading of channel section FRP composite beams .. 200

101. Maximum bending moment versus length curves for four-point loading of channel section FRP composite beams .. 201
CHAPTER I.

INTRODUCTION

1.1 Background

Pultruded fiber reinforced plastic (FRP) structural members offer many advantages over conventional construction materials used in civil engineering application. One class of FRP construction materials which is currently used and commercially produced for civil engineering applications is the wide variety of structural shapes such as the I-section, channel section, angle section, and other symmetrical and unsymmetrical open sections. Whereas the existing body of both research and practice-oriented literature provides ample information to engineers for dealing with the analysis and design problems of structural members of most conventional materials such as steel, concrete, aluminum, and timber, there exists a substantial deficiency in the literature for members made from FRP materials. Specifically, engineers need practical analysis and design procedures similar to those recommended by and contained in practical construction specifications such as AISC Load and Resistance Factor Design (LRFD) Specification\(^1\). In general, the procedures need to have a theoretical basis verified by laboratory tests. This dissertation represents a step in that direction.

Two of the cross-sectional shapes of practical importance are the I-section and the channel section. When a structural member with an I- or a channel section is subjected to a gradually increasing bending load about the cross-sectional major axis, the maximum load-carrying capacity may be governed by in-plane cracking moment or by a lateral-torsional

The journal model is Elsevier.
buckling mode at some critical level of loading. It may be possible to predict the behavior of such beams by means of an equilibrium and/or and energy approach. The solution to the corresponding governing lateral and torsional differential equations of equilibrium together with a set of specified boundary conditions, may provide the expected beam response when subjected to gradually increasing static loads. Furthermore, the energy approach may provide a means for beam buckling load formula development. Material cracking can develop due to a fracture of fibers and/or the matrix material, whereafter the overall material stress-strain relationship becomes suddenly discontinuous.

Presented herein is the outcome of a theoretical and experimental study of the flexural and flexural-torsional behavior of I-section and channel section FRP beams subjected to gradually increasing static loads up to the maximum load-carrying capacity. Next, utilizing the procedures formulated, a Load and Resistance Factor Design (LRFD) approach is presented and its practical use demonstrated by means of analysis and design examples.

1.2 Literature Review

A considerable amount of research has been conducted in the past on flexural and flexural-torsional behavior of steel beams such as that by Razzaq and Galambos2,3,4. In contrast, the amount of published research on flexural and flexural-torsional behavior of composite beams is relatively limited.

Baz and Chen (5) determined that the lateral buckling characteristics of flexible composite beams are actively controlled by activating sets of shape memory alloy (NATIONAL) fibers which are embedded along the mid-plane of these beams. This feature is invaluable in building light weight structures that have high resistance to failure due to buckling. Finite element models are developed to analyze the mechanical and thermal
characteristics of the composite beams. The models account for the individual contributions of the matrix, the NATIONAL fibers and the shape memory defect to the overall performance of the composite beams. A system is built to validate the finite element model. The system is used to control the lateral buckling of a composite beam which is 40.6 cm long, 5.1 cm wide and 0.25 cm thick, and reinforced with two 0.55 mm diameter NATIONAL-55 fibers. The results obtained confirm the validity of the developed theoretical model and indicate that the buckled beams can be brought back completely to their unbuckled configuration by proper activation of the shape memory effect. Also, the results obtained suggest that reinforcing the beams with NATIONAL fibers are effective in enhancing their lateral buckling characteristics.

Pollock, Zak, Hinton and Ahmad (6) presented an analysis to determine shear center for anisotropic elastic thin-walled composite beams, cantilevered and loaded transversely at the free end. It was found that twisting may occur for composite beams even if shear forces are applied at the shear center.

Kim and Dharan (7) presented the analysis of a beam under three-point and five-point bending using orthotropic plane elasticity to investigate the inter-laminar shear failure of unidirectional composites. The approach uses Fourier series expansions of the applied concentrated loads, together with Saint Venant’s semi-inverse method in which the stresses are obtained by a non-dimensional stress function.

Xie and Steven (8) presented an explicit formula for correcting finite element predictions of buckling loads for beams. They found a simple formula for exact or very accurate buckling loads of beams with various end restraints at almost no computational cost. This method was also applied to two- and three-dimensional frames and it was found that the
errors in the original finite element predictions of buckling loads were significantly reduced after such a correction.

Beg (9) derived an accurate finite element model for the lateral buckling of closed thin-walled beams. Fourth-order polynomials were assumed for the bending and warping curvatures. The result was that the shape function for the transverse displacements was the polynomial of the sixth degree, and for the warping function the polynomial of the fifth degree. The shape function for torsional rotation was then automatically the polynomial of the sixth degree. Since a mixed variational principle was applied, the axial force became an independent variable and the shape function for a longitudinal tangential matrix and nodal forces were based on the selective Gaussian numerical integration with five nodes for the terms related to bending and warping, and with six nodes for the terms related to torsion.

Barbero and Raftoyiannis (10) studied the elastic buckling modes of pultruded I-beams subjected to various loading conditions. The coupling of lateral and distortional buckling for thin-walled members was investigated. The effect of fiber orientation in the matrix and volume fraction on beam response was investigated by a parametric study.

Craddock and Shing-Chung (11) examined the bending behavior of graphite-epoxy I-beams. The beams used in this study were made of T300/934 graphite-epoxy with three different layers. Short-beam shear tests, and bending deflection contributions were separated using Timoshenko Beam Theory. The equivalent bending stiffness was obtained from the deflection due to bending. The bending stiffness was calculated in transformed-section method developed especially for composites. A comparison of analytical and experimental results indicated that both methods are accurate tools for predicating the bending stiffness of composite material beams.
Chandrashekhara and Bangera (12) studied the flexural analysis of fiber-reinforced composite beams based on higher-order shear deformation theory. The geometric nonlinearity was incorporated in the formulation by considering the von Karman strains. The finite element method was used to solve the nonlinear governing equations by direct iteration. Unlike conventional beam models, the beam model accounts for y-direction strains. It was observed that the solution obtained from the two approaches differs slightly in the case of cross-ply laminates, but there exists a considerable difference in the case of angle-ply laminates. The influence of boundary conditions, beam geometries, and ply orientations on the deflections and stresses of laminated beams was shown both in tabular and graphical form.

Puspita, Barrau and Gay (13) presented the analytical calculation of homogeneous properties and stresses of a beam made up of several orthotropic materials. Tests had been realized with existing solutions such as: classic theory, three-dimensional finite elements and experimental data. It was shown that the proposed analytical method gives good results for beams with a close thin-walled, partitioned section unfilled or filled up with foam.

A review of the existing literature shows that practically little research work has been conducted in the past on the flexural and flexural-torsional response of FRP beams up to the maximum load-carrying capacity. Also, no practical Factor Load and Resistance Design (LRFD) procedures are presented in the past for FRP beams.

1.3 Problem Definition

The main thrust of the present research is to study the flexural and flexural-torsional response of thin-walled open section FRP beams subjected to gradually increasing static loads. The first part of the problem is to conceive, design and build an apparatus to conduct
full-scale flexural and flexural-torsional experiments on FRP I-section and channel section beams. An essential feature of the test setup must be that it should not restrain the possible development of lateral-torsional beam deformations. The second part of the problem is to carefully conduct a series of flexural and flexural-torsional beam experiments including any material cracking. The third part of the problem is to develop a numerical solution algorithm to solve the governing differential equations of flexural and flexural-torsional equilibrium for a beam whose material may exhibit cracking and maximum load-carrying capacity. Furthermore, the numerical analysis must predict the experimental response of the beams within a reasonable tolerance. The fourth and the last part of the problem is to use the analysis to develop a Load and Resistance Factor Design (LRFD) approach for practical analysis and design of FRP beams.

1.4 Objective and Scope

The objective of this research is to develop practical analysis and design procedures for dealing with the flexural and flexural-torsional problems of FRP beams. This objective is largely fulfilled by solving the four different parts of the global problem posed in Section 1.3.

A wide variety of types of beam materials, loading, and boundary conditions may be encountered in practical applications. Although the specific results of the study reported in this dissertation are based on specific materials, loading, and boundary conditions as described below, the LRFD procedure presented can readily be extended to handle other situations.

The experimental results reported are for specific I-section and channel section sizes with varying from 5 feet to 9 feet. The material of the beams is isophthalic polyester. The
loading conditions are shown in Figure 1 and consist of three- and four-point loads increase gradually until the member maximum load-carrying capacity reached. The ends of the test specimens are free to warp, that is, no end plates are used to restrain warping. The theoretical analysis is based on a central finite-difference algorithm for solving fourth-order coupled ordinary differential equations of flexural and flexural-torsional equilibrium including material cracking. A lateral torsional buckling load formula based on an energy formulation and verified experimentally is also presented. A possible LRFD procedure is outlined and its use explained by means of practical FRP beam examples.

1.5 Assumptions and Conditions

The following assumptions and conditions are adopted in this dissertation:

1. Small deflection theory is valid.

2. Beam section is thin-walled and open.

3. The beam ends are simply-supported.

4. Local buckling is neglected for the plate elements forming the beam sections.

5. The beams are slender, the sections are thin-walled, and transverse shear deformations are ignored.

6. The applied static loads are increased gradually up to the member maximum load-carrying capacity.

7. The member end warping is unrestrained.
CHAPTER II.

EXPERIMENTAL INVESTIGATION

2.1 Stability and Flexural-Torsional Tests

A series of experiments are conducted on I- and channel section FRP beams with various lengths. A number of major axis tests are performed on I-section beams which experienced lateral-torsional instability. Although these beams resulted in load-deflection relations which eventually became nonlinear, they did not develop any material cracking. Additional tests on relatively short beams also exhibited lateral-torsional behavior rather than develop any cracking. This was further verified with the help of theoretical analysis which also showed that in order to develop cracking with major-axis loading, the beam span would have to be so small that it could not be considered a regular beam; instead it would become a deep beam -- a problem outside the realm of the present study. A minor flexural test on a small span I-beam, however, exhibited considerable cracking. Next, several stability and flexural-torsional major axis tests are conducted on a channel section beam.

The experimental study is conducted with four main objectives. First, it is considered necessary to observe the experimental behavior of the beams including their response under external loads and possible material cracking at high loads. Second, based on the observed beam behavior, an appropriate theoretical model is established with the goal of capturing the actual response which is presented in Chapter III of this dissertation. Third, the experimental maximum bending moment versus beam clear span relations are compared to those obtained theoretically. Lastly, the results obtained from the study are used as a basis for demonstrating the formulation of a Load and Resistance Factor Design (LRFD) approach for practical problems. Although only I-section and channel section FRP beams are investigated in this
dissertation, the analysis presented can readily be applied, with some modifications, to beams with other types of open cross sections. Figures 1 (a) and 1 (b) show schematically three-point and four-point loading conditions, respectively, adopted for the beam tests. The static load P or the load pair (P, P) is applied gradually until the beam maximum load-carrying capacity is reached. Lateral bracing is provided at the ends A and B, indicated by X marks.

Tests are conducted on beams with clear spans, L, of 5, 6, 7, 8 and 9 ft. Figures 2 and 3 show the cross-sectional dimensions of the FRP I- and channel sections used in the experimental study. The cross-sectional principal centroidal major and minor axes, x and y are also shown in these figures. The tests are conducted with simply-supported flexural and torsionally pinned boundary conditions. For all of the tests with four-point loading, the distance between the loads P and P is kept constant at b = 24 in.

A 4 × 2 × \frac{1}{4} in. cross section is adopted for the I-beam and a 6 × 1 \frac{5}{8} × \frac{1}{4} in. for the channel section. These beams are manufactured, respectively, by IKG Industries, Nashville, TN, and Creative Pultrusions, Inc., Alum Bank, PA.

The experimental measurements consist of the applied load(s) and the resulting beam displacements, rotations, and strains at key locations. The load versus deflection and strain curves are compared, in Chapter IV, to those obtained theoretically.

2.2 Mechanical Properties of Materials

The mechanical properties of the FRP materials are found by conducting ASTM tension tests using a Tinius Olsen testing machine. Figure 4 shows a generic tensile stress-strain relationship for the type of beam FRP material used in this research. In this figure, \(E_r \) is the tensile Young’s modulus; \(\sigma_{ur} \) is the ultimate (fracture) tensile strength and \(\epsilon_{ur} \) is the
ultimate (fracture) tensile strain. The test specimens are cut from the flanges and the web, from the locations shown in Figures 5 and 6 for the I- and channel sections. The specimens numbered I-1 through I-4 are taken from the I-section whereas those numbered C-1 through C-4 are taken from the channel section. Figure 7 shows schematically the setup used to conduct the tension tests.

Tables 2.1 through 2.4 present the tensile coupon test results for Specimens I-1 through I-4 taken from the FRP I-section flanges and the web. Figures 8 through 11 show the tensile stress-strain relationships based on the data given in these tables. Table 2.5 presents a summary of the tensile test results for Specimens I-1 through I-4. Based on these results, the average tensile Young’s modulus E_{11} written as E_T hereafter, the cracking strain ε_{cr}, and the tensile strength σ_{ut} are found to be 2.58×10^6 psi; 0.00999 in./in.; and 25,820 psi; respectively.

To determine the shear modulus, G_{12} written as G hereafter, for the material of the I-section, a torsional moment is applied at the midspan of an 8 ft. long beam by suspending a known weight through a lever arm clamped to the beam top flange while maintaining pinned boundary conditions. A pair of dial gages are used to measure the vertical deflection near the tip of the lever arm and at the beam midspan. This data is then used to obtain the midspan angle of twist. Finally, the value of G is found to be 0.42×10^6 psi based on an analytic relationship between the applied torsional moment and the midspan angle of twist.

Tables 2.6 through 2.9 present the tensile test results for Specimens C-1 through C-4 taken from the channel section flanges and web. The corresponding tensile stress-strain curves are drawn in Figures 12 through 15. Table 2.10 gives a summary of the tensile test results for Specimens C-1 through C-4. Based on these results, the average tensile Young’s
modulus E_r, the cracking strain ε_{cr}, and the tensile strength σ_{ur} are found to be 3.27×10^6 psi; 0.01639 in./in.; and 53,639 psi, respectively.

2.3 Apparatus and Test Procedure

There are two different test setups used for conducting the experimental study. First, the beam flexural testing is carried out through direct utilization of the Tinius Olsen machine and specially fabricated beam end supports.

For flexural testing, the FRP beam ends are simply-supported by 'gripping' the beam end sections with a pair of round vertical bars. A two-part aluminum plate is used to 'grip' the midspan section and to subsequently serve as the loading plate for transmitting the machine load to the beam. The two parts of the loading plate are inter-connected by long screws. Figure 16 shows the load P transmitted to a steel bar which pushes a steel shaft against the loading plate. The flexural test procedure consists of gradually increasing the midspan load, allowing the readings to stabilize for approximately two minutes, and then recording the experimental data. The applied load is read from the load dial of the Tinius Olsen machine. The deflection is measured with a dial gage at the midspan while the tensile and compressive flange strains are measured with electrical resistance strain gages.

To conduct the stability and flexural-torsional tests on FRP beams, a full-scale apparatus is conceived, designed, fabricated, and finally utilized for a series of I- and channel section beam tests. One of the main criteria for the experimental load-application mechanism is that the lateral and torsional deflections not be constrained. This is successfully achieved by devising an apparatus.

Figure 17 shows the overall apparatus designed to conduct the stability and flexural-torsional tests on FRP beams. For the four-point loading, a pair of hydraulic jacks are placed
on top of a fixed-end steel beam, with their pistons pointing upward and pushing against steel plates to transfer the loads to a pair of tie rods attached to each of the plates, as shown in Figure 18. The loads are measured by means of calibrated load cells mounted between each jack and the plate assembly. The tie rods are connected to horizontal steel bars which, in turn, transmit the loads to the FRP beam through its bottom face as shown in Figure 19. The tie rod assemblies allow a test beam to develop lateral and torsional deflections as well as the vertical deflections. Each end of the beam is simply-supported by ‘gripping’ it with a pair of vertical round bars, as shown in Figure 20. In this figure, only the upper and a part of the lower horizontal bars at one of the beam supports are visible. The vertical bars are smaller in diameter and are mounted on the inside of the vertical supports. The distance between the beam end support fixtures can be adjusted to accommodate beams of various clear spans. The loading fixtures do not impose any warping restraints on the test beam. Deflections are measured using dial gages at beam midspan. To measure the vertical deflection, a dial gage is mounted atop the upper flange at the beam midspan. The midspan lateral deflection is measured with a dial gage mounted at web mid-depth. To measure the angle of twist, a 1 ft. long lever arm is clamped to the top flange at the beam midspan. A dial gage is used to measure the vertical deflection near the tip of the lever arm. This data is then used to obtain the midspan angle of twist. The measured dial gage readings are corrected for the unwanted coupling of the vertical, lateral, and torsional deflections. Additional strain gages are mounted at the beam end support locations to monitor any possible support-frame movements. These movements are found to be negligibly small.

The test procedure involves applying the external load (P) or the load pair (P,P) shown in Figure 1(a) and 1(b), through a common source of hydraulic pressure for both
hydraulic jacks shown in Figure 20, and then recording the deflections, strains, and the output from the load cells. The loads are applied in small increments in the linear portion of the load-deflection relationships. In the nonlinear range of these relationships, increments in the horizontal or twisting deflections are used to control the load increments. The FRP beams are allowed to stabilize after each load increment for a period of approximately 2 to 3 minutes before recording the data. For the three-point loading, a single hydraulic jack is utilized above the beam centerline.

2.4 Test Results and Discussion

2.4.1 Minor Axis Flexure

Table 2.11 presents the minor axis flexural test results for a 30.0-inch span I-beam with three-point loading. This table shows the applied load (P), the flexural compression and tension strains recorded using electrical resistance strain gages BSG1 and BSG2 whose locations are shown in Figure 21, and the midspan vertical deflection. The figure shows that the strain gages BSG1 and BSG2 are located at distance of 1/16 in. from the top and bottom of the beam flange tips. The dashed curve in Figure 22 represent the experimental load (P) versus midspan vertical deflection. The load-deflection curve is found to be linear up to the maximum load-carrying capacity of the beam which corresponds to the initiation of cracking at the flange tips. The maximum recorded load is found to be 2,100 lbs. Once the cracking started the beam flexural resistance started to immediately drop as evidenced by the decrease in the load indicated on the Tinius Olsen machine dial. The dashed curve in Figure 23 represents the experimental load (P) versus the average flexural strain based on the absolute value of the compression and tension strains. The experimental M_y versus Φ_y curve for this
beam is shown in Figure 24. The experimental $M_y - \Phi_y$ curve is found to be linear up to the maximum load-carrying capacity, and is shown as the curve from point A to B in Figure 24.

2.4.2 Stability of I-Section Beams

2.4.2.1 Three-Point Loading Through Shear Center

The three-point loading tests (Figure 1a) are conducted using the load application setup shown schematically in Figure 25. A pair of steel tie rods are used to apply upward vertical loads (Q) placed symmetrically about the shear center S which coincides with the centroid C. The resultant, $P = 2Q$, shown in this figure acts at a distance $y_o' = -3.5$ in. above the x axis but passes through the S and C.

Table 2.12 presents the results for a 108-inch span I-beam for Test No. IFT3-1. This table shows the applied load, P, the midspan vertical deflection, lateral deflection, and the angle of twist. The dashed curve in Figure 26 shows the experimental load P versus midspan vertical deflection, v_c. The dashed curve in Figure 27 shows the experimental load P versus midspan lateral deflection, u_c. A reversal in the direction of u_c occurs in the load range from 78 lbs. to the maximum load of 99 lbs. The dashed curve in Figure 28 shows the load P versus midspan angle of twist, ϕ_c.

Tables 2.13 through 2.15 present the experimental results for I-beam test Nos. IFT3-2 through IFT3-4 with a clear span $L = 96, 84, 72$ in., respectively. Figures 29 through 37 show the midspan load P versus deflection curves based on the data given in these tables. The experimental peak loads for these three beams are found to be 147, 174, 265 lbs., respectively. During these experiments, any attempt to apply loads greater than the peak loads resulted in gradually increasing deflections, indicating beam instability.
2.4.2.2 Four-Point Loading Through Shear Center

The four-point loading tests (Figure 1b) are conducted using the load application setup shown schematically in Figure 25. For all of the experiments conducted, the distance between the loads \(P \) and \(P_1 \) is kept constant at \(b = 24 \) in. The value of \(y_o^* \) for these tests is -3.5 in.

Table 2.16 presents the results for a 108 in. span I-beam for Test No. IFT4-1. This table gives the experimental \(P, v_c, u_c, \phi_c \), and the longitudinal flange normal strain, \(\varepsilon_c \), values at \((x,y) = (-0.1875 \text{ in.}, -2.0 \text{ in.})\). The dashed curve in Figures 38 through 40 show the experimental \(P - v_c, P - u_c \), and \(P - \phi_c \) curves, respectively. The dashed curve in Figure 41 dashed shows the \(P - \varepsilon_c \) relationship. Similarly, Tables 2.17 through 2.20 present the experimental results for I-beam Test Nos. IFT4-2 through IFT4-5 with clear span \(L = 96, 84, 72 \) in., respectively. Figures 42 through 57 show the \(P - v_c, P - u_c \), and \(P - \phi_c \) curves based on the data given in these tables. The experimental peak load for these four beams are found to be 114, 125, 190 and 292 lbs., respectively. For these experiments, the beam instability was characterized by the development of relatively large deflections with practically no increase in the beam load resistance.

2.4.3 Stability of Channel Section Beams

2.4.3.1 Three-Point Loading through Shear Center

The three-point loading tests (Figure 1a) are conducted using the load application setup shown schematically in Figure 58. The loading apparatus is the same as described in Section 2.4.2.1. The value of \(y_o^* \) is still kept at -3.5 in.

Table 2.21 presents the results for a 108-inch span channel beam for Test No. CFT3-1. This table shows \(P, v_c, u_c \), and \(\phi_c \) values. The dashed curve in Figure 59 shows the
experimental load P_{vc} curve. The dashed curve in Figure 60 resultants the experimental load P_{uc} curve. An initial reversal in the direction of u_c is noted in this figure at around 160 lbs. whereafter the beam returns to its original direction of motion. The dashed line in Figure 61 dashed shows the experimental P_{ϕ_c} curve. Table 2.22 presents the experimental results for a 96-inch span channel beam for Test No. CFT3-2. Figures 62 through 64 show the P_{vc}, P_{uc}, and P_{ϕ_c} curves.

2.4.3.2 Four Point Loading Through Shear Center

The four-point loading tests (Figure 1b) are also conducted using the load application setup shown schematically in Figure 58. For these experiments $b = 24$ in. and $y_o = -3.5$.

Table 2.23 presents the results for a 108 in. span channel beam for Test No. CFT4-1. give the experimental P, ν_c, u_c, and ϕ_c values. The dashed curves in Figures 65 through 67 the experimental P_{ν_c}, P_{u_c}, and P_{ϕ_c} curves. The maximum load is found to be 136 lbs.

Tables 2.24 through 2.26 present the experimental results for channel beam Test Nos. CFT4-2 through CFT4-4, for $L = 102$, 96, and 84 in., respectively. The dashed curves in Figures 68 through 76 show the midspan load-deflection curves. Based on the data given in these tables, the experimental peak load for these three beams is found to be 160, 198, 300 lbs., respectively. The dashed curve in Figure 77 shows the relationship between P, and the midspan longitudinal normal flange strain, ε_c, near upper flange tip. With reference to the coordinate system, the gage is located at $(x, y) = (0.185 \text{ in.}, y = -3.5 \text{ in.})$.

Tables 2.27 through 2.28 present the experimental results for channel beam Test Nos. CFT4-5 and CFT4-6 with clear span $L = 72$, and 60 in., respectively. Figures 78 through 83 show the midspan load-deflection curves. Based on the data given in these
tables, the experimental peak load for these two beams is found to be 452, and 701 lbs., respectively.

2.4.3.3 Four-Point Loading Away from Shear Center

Three tests are conducted on a 84.0 in. span beam with four-point loading away from the shear center. For each of these tests, the vertical location of the applied load pair \((P,P)\) is defined by \(y = y_p' = -3.5\) in. The horizontal location of the load pair \((P,P)\) is defined by \(x = -0.5675\) in., \(-0.2656\) in., and \(0.4531\) in., Respectively, for Test Nos. CFT4-7 through CFT4-9. These \(x\) values correspond, respectively, to the cross section centroid; a location half-way between the centroid and the shear center; and another location to the right of the shear center as shown in Figure 58.

Table 2.29 presents the results for Test No. CFT4-7. It gives the experimental value of \(P, v_c, u_c, \phi_c,\) and \(\varepsilon_c\) at \((x,y) = (-0.185\) in., \(-3.0\) in.). The dashed curves in Figures 84 through 87 present the \(P-v_c, P-u_c, P-\phi_c,\) and \(P-\varepsilon_c\) curves. The maximum load is found to be 203 lbs. Similarly, Tables 2.30 and 2.31 give the results for Test Nos. CFT4-8, and CFT4-9, respectively. Figure 88 through 95 present the load-deflection and load-strain curves for these tests.
3.1 Prologue

In order to formulate an appropriate mathematical model for the prediction of the behavior of FRP composite beams, a careful study of their experimental response to gradually increasing load(s) is necessary. Three main types of experimental loading conditions and corresponding beam responses are presented in this chapter, namely, in-plane bending with a midspan concentrated load resulting in in-plane deflections involving material cracking, three- and four-point major axis loading through the shear center eventually culminating into flexural-torsional instability, and four-point major axis loading through locations other than the shear center producing in-plane as well as flexural-torsional deflections for the entire range of the applied loading.

For the in-plane bending with resulting in-plane deflections, a single differential equation of equilibrium together with the boundary conditions is found to be sufficient to predict the load-deflection curve. For the flexural-torsional problems, a total of three differential equations of equilibrium are needed together with appropriate flexural and torsional boundary conditions. The first and the second of these equations represent flexural equilibrium in the vertical and horizontal planes while the third equation represents the torsional equilibrium of the beam. For a beam with a general cross section, these three equations of equilibrium are coupled. For singles-symmetric or doubly-symmetric sections of the type considered in this dissertation, the first differential equation becomes decoupled from the remaining two. However, the remaining two equations remain coupled. The main portion of the theoretical solution presented herein is based on a finite-difference scheme.
For the case of four-point loading, an energy based Rayleigh-Ritz procedure is also used to develop an elastic buckling load formula. A comparison of the experimental and theoretical results is presented Chapter IV of this dissertation.

3.2 Cross-Sectional Equilibrium Equations

Figures 96 and 97 show a discretized I- and channel sections, respectively, each with a width B, depth D, and a wall thickness t. Each wall of the cross section is divided into elemental areas. The term \(\delta a \) represents a typical elemental area. For the flexural-torsional problems, a typical cross section is subjected to an in-plane bending moment about the major axis (x), and with or without a torsional moment about the longitudinal axis (z). In addition, the cross section has induced minor axis (y) curvature, and torsional curvature about a centroidal axis, z, normal to the xy plane, giving rise to both minor axis bending strains as well as warping strain. The total normal \(\varepsilon \) at a point (x, y) of the cross section is then given by [10]:

\[
\varepsilon = \Phi_x y - \Phi_y x + \Phi_z \omega_n \tag{1}
\]

in which \(\Phi_x \) and \(\Phi_y \) are the bending curvatures about the x and y axes, respectively, and \(\Phi_z \) is the torsional curvature about the cross-sectional centroid.

The stress-strain relationship is given by:

\[
\sigma = E \varepsilon, \quad \text{for } 0 \leq \varepsilon \leq \varepsilon_{cr} \tag{2}
\]

\[
\sigma = 0 \quad \text{for } \varepsilon > \varepsilon_{cr}
\]

in which \(E \) is the Young’s modulus and \(\varepsilon \) is the normal strain.

If \(M_x \) and \(M_y \) represent bending moments about the x and y axis, respectively, and \(M_z \) the torsional moment, then the cross-sectional equilibrium equations can be written as follows [10]:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
in which \(dA \) is an elemental area of the cross section, \(\sigma \) is the normal stress on the area, \(\int_A \) is cross-sectional integration, \(M_{rv} \) is St. Venant torsion resisting torsional moment, and \(M_w \) is resisting warping torsional moment. The \(M_{rv} \) and \(M_w \) are given by following expressions [10]:

\[
M_{rv} = GK_T \frac{d\phi}{dz}
\]

\[
M_w = -EI_\omega \phi'''
\]

in which \(K_T \) is the St.Venant torsion constant given by:

\[
K_T = \frac{1}{3} \sum_{i=1}^{n} B_i t_i^3
\]

in which \(B_i \) and \(t_i \) are the width and thickness of the i-th plate component of the cross section, and the summation is over all \(n \) plates of the section. The item \(I_\omega \) is called the warping moment of inertia and is given by:

\[
I_\omega = \int_A \omega_n^2 t \, ds
\]
Substituting Equations 6 and 7 into 5 gives:

The specific differential equations of equilibrium for three-point and four-point loading are presented in Section 3.2.1, and 3.2.2, respectively.

3.2.1 Governing Differential Equations for Three-Point Loading

For the three-point loading, the external bending moments \((M_x)_{\text{ext}}\) and \((M_y)_{\text{ext}}\), and the torsional moment \((M_z)_{\text{ext}}\) in the presence of an eccentricity "e" relative to the shear center S of the applied load P, for \(0 \leq z \leq \frac{L}{2}\), are given by:

\[
(M_x)_{\text{ext}} = P z, \tag{11}
\]

\[
(M_y)_{\text{ext}} = 0, \tag{12}
\]

\[
(M_z)_{\text{ext}} = P(u_{\text{max}} - y_o \dot{\phi}_{\text{max}} - u) - Pe \tag{13}
\]

Equations 1 through 10 combined with Equations 11 through 13 and the second-order effects given in Reference 10 finally result in the following differential equations governing the behavior of beams subjected to three-point loading:

\[
B_x v'' + B_{xy} u'' + B_{yy} \dot{v}'' + P z = 0 \tag{14}
\]

\[
B_y u'' + B_{xy} v'' + B_{yx} \dot{v}'' + P z \dot{v} = 0 \tag{15}
\]

\[
C_r \dot{\phi}' - C_w \dot{\phi}''' - B_{wx} u'''' - B_{wy} v'''' - P z u' - P(u_{\text{max}} - y_o \dot{\phi}_{\text{max}} - u) = Pe \tag{16}
\]

where:

\(u_{\text{max}}\) = maximum lateral deflection

\(\phi_{\text{max}}\) = maximum angle of twist

\(B_x = EI_x\)

\(B_y = EI_y\)
\[B_{xy} = EI_{xy} \]
\[B_{\omega x} = EI_{\omega x} \]
\[B_{\omega y} = EI_{\omega y} \]
\[C = G K_t \]
\[C_w = EI_\omega \]

\[I_x, I_y = \text{moment of inertia about x- and y-axis and y-axis} \]
\[I_{xy} = \text{product of inertia relative to x-axis and y-axis} \]
\[I_{\omega x}, I_{\omega y} = \text{warping moment of inertia relative to x- and y-axis, respectively} \]
\[G = \text{shearing modulus} \]

For evaluating these cross-sectional properties, the cracked portions of a beam cross section are considered to be non-existent as implied by the use of Equation 2.

If a beam does not develop any cracking up to its maximum load-carrying capacity, and if the cross section in mono- or doubly-symmetric, the terms \(B_{xy}, B_{\omega x}, \) and \(B_{\omega y} \) in Equations 14-16 become zero. Setting these terms equal to zero in these equations and differentiating Equation 16 once results in:

\[B_x v'' + P z_i = 0 \] (17)
\[B_y u'' + P z_i \phi = 0 \] (18)
\[C_T \phi'' - C_\omega \phi'''' - P z_i u'' = e \] (19)

in which an imperfection factor \(e \) is introduced on the right side of Equation 19 to account for the imperfections in the laboratory beams as well as in the loading mechanisms described in Chapter II. An advantage of the \(e \) factor is that it converts Equations 18 and 19 to nonhomogeneous differential equations thus providing a load-deflection type of output which can more meaningfully be compared with the experimental curves indicating some \(u \) and \(\phi \)
deflections even at small values of the load P. As described in Section 5.1 of this dissertation, $e' \cdot$ was generally found to be relatively small.

3.2.2 Governing Differential Equations for Four-Point Loading

For the case of four-point loading, Equation 17-19 are applicable for the range $0 \leq z \leq a$, where a is defined in Figure 1 (b). In addition, three more differential equations are needed for the range $0 \leq z \leq \frac{L}{2}$. For this latter range, Equations 17-19 can again be utilized by setting $z = a$.

3.3 Boundary and other Conditions

For both the three- and four-point loading cases, the following flexural boundary and symmetry conditions are used:

$$u(0) = u''(0) = v(0) = v''(0) = 0 \quad (20)$$

Also, the torsionally pinned boundary and symmetry conditions are written as:

$$u'(\frac{L}{2}) = v'(\frac{L}{2}) = 0 \quad (21)$$

$$\phi(0) = \phi''(0) = 0 \quad (22)$$

$$\phi'(\frac{L}{2}) = 0 \quad (22b)$$

$$-C_\alpha \phi'''(\frac{L}{2}) - \rho y_\alpha \phi(\frac{L}{2}) = 0 \quad (23)$$
For the four-point loading, the following condition can be obtained by applying Equation 16 at \(z = a \) resulting in:

\[
C_x \phi'(a) - C_w \phi'''(a) - P \omega'(a) - P \left[u \left(\frac{L}{2} \right) - y_o^2 \phi \left(\frac{L}{2} \right) - u(a) \right] = Pe
\]

(24a)

Lastly, the following symmetry condition is also applicable for the four-point loading:

\[
\phi''' \left(\frac{L}{2} \right) = 0
\]

(24b)

3.4 Finite-Difference Formulation

The numerical procedure is based on a central finite-difference scheme applied to the differential equations and the boundary conditions presented in Sections 3.2 and 3.3. For example, Equations 17-19 for the three-point loading are written in the following finite-difference form:

\[
\frac{B_x}{h^2} \left(v_{i-1} - 2v_i + v_{i+1} \right) = -P z_i
\]

(25)

\[
\frac{B_y}{h^2} \left(v_{i-1} - 2v_i + v_{i-1} \right) - P z_i \phi_i = 0
\]

(26)

\[
\frac{C_T}{h^2} \left(\phi_{i-1} - 2\phi_i + \phi_{i+1} \right) - \frac{C_{\omega}}{h^4} \left(\phi_{i-2} + 4\phi_{i-1} + 6\phi_i - 4\phi_{i+1} + \phi_{i+2} \right) - \frac{Pz_i}{h^2} \left(u_{i-1} - 2u_i + u_{i+1} \right) = e^*
\]

(27)

For the four-point loading, Equations 25-27 are first applied in the range \(0 \leq z \leq a \).

Next, Equations 25-27 are modified by replacing the \(z_i \) term by 'a' shown in Figure 1(b), and then applied in the range \(a \leq z \leq \frac{L}{2} \).
The boundary and other conditions in Section 3.3 are similarly expressed in the finite-difference form.

Applying the appropriate governing finite-difference equations at nodes $i = 1, 2, 3, ..., n$ over the range $0 \leq z_i \leq \frac{L}{2}$, together with the boundary and other conditions for the three- or four-point loading condition finally results in the following equation:

$$ [K] \{\Delta\} = \{M\} \tag{28} $$

in this equation, $[K]$ is the global stiffness matrix of the order $3(n + 2)$. The vector $\{\Delta\}$ contains the beam deflections defined as follows:

$$ \{\Delta\} = \{v_1 \ u_1 \ \phi_1 \ v_2 \ u_2 \ \phi_2 \ ... \ v_{n-1} \ u_{n-1} \ \phi_{n-1} \ v_n \ u_n \ \phi_n\}^T \tag{29} $$

and $\{M\}$ is the applied nodal load vector.

The solution procedure involves specifying a load P or a load pair (P, P) and solving Equation 28 for the deflection vector $\{\Delta\}$ directly if no cracking of the beam occurs. If cracking develops, $[K]$ becomes a function of the extent of cracking in which case Equation 28 must be solved iteratively for each load level, for the flexural-torsional experiments conducted, the maximum load-carrying capacity is governed by elastic instability rather than cracking. To determine the instability load, a dimensionally determinant, \bar{D}, of the matrix $[K]$ is first defined as follows:

$$ \bar{D}_p = \frac{D_p}{D_o} \tag{30} $$

in which:

$$ D_o = |[K]_o| \tag{31} $$

$$ D_p = |[K]_p| \tag{32} $$
A finite-difference computer program is developed and is presented in Appendix A of this dissertation. In the program, a beam is considered unstable when D_p becomes nearly equal to zero.

For the beams analyzed in this dissertation, "h" was taken as 3 in. A convergence study showed that this value of h was more than adequate.

For the minor axis flexural test described in section 2.4.1 of this dissertation material cracking eventually controls the member load-carrying capacity. The procedure for generally the in-plane moment-curvature and load-deflection curves when material cracking is present is given in the next section. The experimental results for the 30 in. beam described in Section theoretically.

3.5 Moment-Curvature and Load-Deflection Curves Including Material Cracking

The minor axis experimental moment-curvature curve for the I-section is presented previously in Section 2.4.1 of this dissertation. In order to obtain a minor axis theoretical moment-curvature relation including the effect of material cracking, Equation 1 is need with $\Phi_x = 0$ and $\Phi_z = 0$, to define the total normal strain ε. The normal stress is then obtained form Equation 2. The following steps are used for generating the $M_y - \Phi_y$ relationship:

1. Specify a value of Φ_y.
3. Determine the normal stress using Equation 2.
4. Compute the internal resisting bending moment by using a discretized section and by summing up moment contributions of individual discrete elements.
In the above procedure, elemental cross-sectional areas with $|\varepsilon| > \varepsilon$ are not included in the moment summation process. This is due to the nature of the prescribed Equation 2 which physically means that the cracked portion of the section does not resist any loads.

The 30.0-inch span minor axis flexural test described in Section 2.4.1 resulted in a tensile cracking strain, ε_{crb}, of 0.0134 in./in. extrapolated from the strain gage reading on the specimen tension side at the instant of cracking. Whereas the experimental $M_y - \Phi_y$ curve (AB) in Figure 24 is terminated at B, the theoretical curve obtained using the above procedure has both an ascending as well as a descending part based on using $\varepsilon_{cr} = \varepsilon_{crb}$. This is shown as the curved ABC in the figure. Furthermore, when ε_{cr} form the tension tests described in Section 2.2, that is, with $\varepsilon_{cr} = \varepsilon_{crb} = 0.00999$ in./in., $M_y - \Phi_y$ curve with a lower peak moment is obtained. This is shown as the curve ADE in the figure. For obvious reasons, the experimental peak moment is in agreement with the theory up to point B in Figure 24 when ε_{crb} is used.

To obtain the theoretical load versus midspan deflection curve, the moment-curvature curve ABC in Figure 24 is used together with the following equation:

$$\Phi_i = \nu''_i$$

which takes the following finite-difference form:

$$\nu_{i-1} - 2\nu_i + \nu_{i+1} = h^2\Phi_i$$

The boundary and symmetry conditions are

$$\nu(0) = \nu'(\frac{L}{2}) = 0$$
Applying Equation 34 and nodes 1, 2, 3, ..., n, and utilizing the finite-difference version of Equations 35 leads to a simultaneously system of equations which is solved for the noded \(v_i \) deflections. Figure 22 shows the theoretical load-deflection curve based on this procedure.

3.6 Buckling Load Formula for Four-Point Loading with Energy Approach

An approximate theoretical buckling load formula is developed for the beam problem with four-point loading. The total potential for a thin-walled beam is given by [13]:

\[
\Pi = \frac{1}{2} \int_0^L \left[E I_y (u''\phi) + E I_\omega (\phi''^2) \right] dz + \int_0^a P zu'' \phi dz
\]

\[
\quad + \int_0^{L/2} \left[P a u'' + \frac{P a u''}{2} \phi dz \right.
\]

\[
\left. - \frac{1}{2} P y_0 \phi_p^2 \right]
\]

where \(\phi_p \) is the angle of twist at \(z = a \), that is, at the location of the left side load \(P \) shown in Figure 1(b). The following assumed beam buckled shape satisfies the flexural and torsionally pinned boundary conditions:

\[
u = A \sin \left(\frac{\pi x}{L} \right) \quad (37)
\]

\[
\phi = B \sin \left(\frac{\pi x}{L} \right) \quad (38)
\]

Substituting these expression into Equation 36 and using Raleigh-Ritz procedure leads to the following approximate buckling load, \(P_{cr} \), formula:

\[
P_{cr} = \frac{0.5 \left[f_2 + \sqrt{f_2^2 + 4 f_1 f_3} \right]}{f_1} \quad (39)
\]

\[
f_1 = \frac{1}{16} \left[f(a) - \frac{\pi^2 a^2}{L^2} - \frac{2 \pi a}{L} g(a) \right]^2 \quad (40)
\]
\[f_2 = \frac{\pi^4 E_{11} I_y}{4 L^3} y_0' \sin^2 \left(\frac{\pi a}{L} \right) \]
\[f_3 = \frac{\pi^6 E_{11} I_y}{16 L^4} \left[\frac{\pi^2 E_{11} I_\omega}{L^2} + G_{12} K_T \right] \]
\[f(a) = \frac{\pi a}{L} \sin \left(\frac{2 \pi a}{L} \right) - \sin^2 \left(\frac{\pi a}{L} \right) \]
\[g(a) = \frac{1}{2} \left[\pi \left(1 - \frac{2 a}{L} \right) - \sin \pi \left(1 - \frac{2 a}{L} \right) \right] \]

in which \(I_y, I_\omega, \) and \(K_T \) are the beam minor axis moment of inertia, warping moment of inertia, and St. Venant torsion constant, respectively. Also, \(E_{11} \) and \(G_{12} = G \). The procedure and formulas for calculating \(I_\omega \) and \(K_T \) are given in standard textbooks dealing with stability of structures such as that by Galambos [10]. The term \(y_0' \) accounts for the height of each load \(P \) above or below the shear center \(S \). The sign of \(y_0' \) must be taken with reference the \(x,y \) coordinate system defined previously in this dissertation.

Although the I- and the channel sections of the beams analyzed are divided into 120 and 144 elemental areas, respectively, for the purpose of evaluating the total normal bending and warping strains in order to ascertain whether or not an element is cracked, no material cracking developed either in the laboratory tests or in the theoretical analysis since the normal strains at instability are relatively small compared with \(\varepsilon_{cr} \).

The theoretical results presented in the following sections are based on the finite-differences procedure outlined in Section 3.4. A very small eccentricity \(e \) relative to the shear center is also introduced in the theoretical formulation in order to simulate the unavoidable tiny eccentricity of the applied load \(P \) or the load pair \((P,P)\).
3.7 Beam Stability

3.7.1 I-Section Beams

3.7.1.1 Three-Point Loading

Table 3.2 presents the theoretical results for the I-beam with three-point loading for Test No. IFT3-1. This table presents the P, \(v_c \), \(u_c \), and \(\phi_c \). The load is applied through the shear center with an \(e = -0.002 \) in. The solid curve in Figure 26-28 show the theoretical P-\(v_c \), P-\(u_c \), and P-\(\phi_c \) relations. Tables 3.3 through 3.5 present the theoretical results for the I-beam for Test Nos. IFT3-2 through IFT3-4. Figures 29 through 34 show the theoretical load-deflection curves for these tests.

3.7.1.2 Four-Point Loading

Table 3.6 presents the theoretical results for the I-section beam with four-point loading for Test No. IFT4-1. This table presents the P, \(v_c \), \(u_c \), and \(\phi_c \) values. The value of \(e = -0.002 \) in. Figures 38-41 show the theoretical P-\(v_c \), P-\(u_c \), P-\(\phi_c \), and P-\(\epsilon_c \) curves. Similarly Tables 3.6 through 3.10 present the theoretical results for the I-beam Test Nos. IFT4-2 through IFT4-5. Figures 42 through 57 show the theoretical load-deflection and load-strain curves for these tests.

3.7.2 Channel Section Beams

3.7.2.1 Three-point loading

Table 3.11 presents the theoretical results for the channel section beam with three-point loading for Test No. CFT3-1. This table presents P, \(v_c \), \(u_c \), and \(\phi_c \) values. The value of \(e = -0.0003 \) in. Figure 59-61 show the theoretical Figure 61 shows the theoretical P-\(v_c \), P-\(u_c \), P-\(\phi_c \), and P-\(\epsilon_c \) curves. Similarly, Table 3.12 presents the theoretical results for the
channel section beam for Test No. CFT3-2. Figures 62 through 64 show the theoretical load-deflection curves.

3.7.2.2 Four-Point Loading

Table 3.13 presents the theoretical results for the channel section beam with four-point loading for Test No. CFT4-1. This table presents P, v_0, u_e, and Φ_e values. The value of $e = -0.0003$ in. Figure 65-67 show the theoretical $P-v_0$, $P-u_e$ and $P-\Phi_e$ curves. Similarly, Tables 3.14 through 3.18 presents the theoretical results for the channel section beam for Test Nos. CFT4-2 through CFT4-6. Figures 68 through 83 show the theoretical $P-v_0$, $P-u_e$, $P-\Phi_e$, and $P-e_e$ curves.

3.7.3 Flexural-Torsional Behavior of Channel Beam

Table 3.19 presents the theoretical results for an 84.0 in. span channel beam section with four-point loading applied through the centroid for Test No. CFT4-7. Figure 85-88 show the load-deflection and load-strain curves.

Table 3.20 presents the theoretical results for the 84 in. channel beam section with Test No. CFT4-8 with four-point loading applied between the section centroid and the shear center as described in Section 2.4.3.3. Figure 89-92 show the load-deflection and load-strain curves.

Table 2.21 presents the theoretical results for the 84 in. channel section beam Test No. CFT4-9 loading applied at $x = 0.4531$ in. as described in Section 2.4.3.3. Figure 93-96 show the theoretical load-deflection and load-strain curves.
CHAPTER IV.

LOAD AND RESISTANCE FACTOR DESIGN APPROACH

FOR FRP BEAM STABILITY

4.1 LRFD Philosophy for FRP Composite Beams

The Load and Resistance Factor Design (LRFD) is a probability-based design procedure which requires that none of a prescribed set of limit states be exceeded. For an FRP beam to be used in a routine structural application, the following serviceability limit states must be satisfied:

1. The beam should not develop an overall instability.

2. The maximum beam deflection should be less than a prescribed limit, such as L/360.

3. The beam should not develop material cracking.

4. The beam flange and web should not develop any local buckling.

Additional limit states must be defined if other factors such as fatigue, low or high temperatures, and creep are present. In this dissertation, considerations is given only to the first three limit states. As mentioned in Chapter I, it is assumed that no local buckling occurs. For the beams tested in the laboratory, this assumption was found to be true.

The series loads are converted to the design (fractured) loads by multiplying the service loads by load factors obtained using statistical averages based on measured variations of the loads. Obviously, if a mean value of a type of load, such as the live load, is used in addition to a standard deviation, there will be an associated likelihood or probability of the load not exceeding a certain value. In LRFD, the thought and the computational processes are simplified by establishing a separate load factor for each different load type in such a way that the probability of the actual loads exceeding the factored loads is quite small. Based
on the investigations that eventually led to the LRFD specification for steel structures [11], the dead and live load factors were found to be 1.2 and 1.6, respectively.

The LRFD procedure also requires the use of a set of "resistance factors" to account for the statistical variation in the material mechanical properties as well as the possible structural failure modes such as overall instability, cracking, etc. For steel beams, the resistance factor, \(\phi_j \), for flexure is found to be 0.9.

It should be recognized that the load factors are applied to the external loads, that is, they are not material dependant. Thus, the dead and live load factors of 1.2 and 1.6 are adopted herein. On the other hand, a large number of tests must be conducted on FRP composite beams with a variety of practical loading and boundary conditions in order to ascertain an appropriate resistance factor (\(\phi_j \)) value. The results summarized in Table 4.1 show that the experimental maximum loads are generally higher than the predicted ones. Based on the limit number of tests conducted in this investigation, a resistance factor \(\phi_j \) of 0.9 seems to be both reasonable and generally conservative, and is adopted in this chapter.

Before formulating a LRFD approach for FRP composite beams, it is necessary to first review the beam maximum bending moment (\(M_{\text{max}} \)) versus the beam clear span (L) relations based on both theory and experiments presented in Chapters II and III.

4.2 Maximum Bending Moment versus Beam Length Relations

Figures 4.1 and 4.2 present the maximum bending moment (\(M_{\text{max}} \)) versus unsupported length (L) relations for three- and four-point of I-section beams loading, respectively. For these figures \(y_0 = -3.5 \text{ in.} \); \(E = 2.55 \times 10^6 \text{ psi} \); \(G = 0.42 \times 10^6 \text{ psi} \); \(I_x = 4.41 \text{ in}^4 \); \(I_y = 0.3345 \text{ in}^4 \); \(K_t = 0.0403 \text{ in}^4 \); \(I_w = 1.17 \text{ in}^4 \); \(e = -0.002 \text{ for a } 4\times2\times1 \frac{3}{4} \text{ in. I-section beam.} \)
The solid curve in Figure 98 for the three-point loading is based on the finite-difference analysis presented in Chapter III, the dashed curve in this figure gives the M_{max} - L relations corresponding to limiting midspan vertical deflection of $L/360$. The experimental M_{max} versus L values for Test Nos. IFT3-1 through IFT3-4 given in Table 4.1 are also plotted in this figure. The experimental results from these test are in good agreement with the finite-difference curve.

Figure 99 shows the M_{max} - L relations for four-point loading obtained using the finite-difference analysis, the limiting midspan vertical deflection of $L/360$ using the finite-difference method again, the buckling load formula given by Equation 39, and the experimental results from Test Nos. IFT4-1 through IFT4-5. The finite-difference, buckling load formula, and the experimental results are in good agreement. The theoretical results are found to be on the conservative side as compared with the experimental ones.

Figures 100 and 101 present the M_{max} - L relations for three- and four-point loading, of channel section beams, respectively. For these figures $y_o = -3.5$ in.; $E = 3.23 \times 10^6$ psi; $G = 0.42 \times 10^6$ psi; $I_x = 10.18$ in4; $I_y = 0.43$ in4; $K_r = 0.0455$ in4; $I_o = 2.52$ in4 and $e = -0.003$ ft or a $6 \times 1 \frac{5}{8} \times \frac{1}{4}$ in. I-section beam.

Figure 100 shows the M_{max} - L relation for three-point loading. The curve corresponding to the limiting midspan vertical deflection of $L/360$ does not exist for this case since for the range of L shown in this figure, the beam instability occurs before a deflection of $L/360$ is developed. The two experimental results from Test Nos. CFT3-1 and CFT3-2 are in excellent agreement with the finite-difference curve.

Figure 101 shows the M_{max} - L relations for four-point loading obtained using the finite-difference analysis, the buckling load formula given by Equation 39, and the
experimental results from Test Nos. CFT4-1 through CFT4-6. All of these results are in good agreement, although the experimental results are closer to those calculated using the buckling load formula.

In summary, the theoretical $M_{\text{max}}-L$ relations are in good agreement with the test results.

4.3 LRFD Approach for FRP Composite Beams

As mentioned in Section 4.1, the stability, in-plane deflection, and material cracking are considered as the main LRFD limit states for the beam problem considered in this dissertation. The beam stability limit state is given by:

$$M_u \leq M_R$$

(44)

in which M_u is the factored (ultimate) design buckling moment given by:

$$M_u = \gamma_{DL} M_{DL} + \gamma_{LL} M_{LL}$$

(45)

in which γ_{DL} and γ_{LL} are dead and live load factors, M_{DL} and M_{LL} are the bending moments due to dead and live loads, respectively, and M_R is the internal resisting bending moment given by:

$$M_R = \phi_b M_{\text{max}}$$

(46)

In this equation ϕ_b is taken as 0.9, and M_{max} is the buckling or instability bending moment obtained from appropriate M_{max} versus L relations of the type given in Figure 98 through 101. The γ_{DL} and γ_{LL} values are taken as 1.2 and 1.6.

The given cracking limit state is given by:

$$M_u \leq M_c$$

(47)

in which M_c is the beam cracking bending moment given by:
\[M_c = \frac{\sigma_c}{S} \]

in which \(\sigma_c \) is the material cracking stress and \(S \) is the elastic sectional modulus.

The beam in-plane deflection limit state is given by:

\[v_{max} \leq \frac{L}{360} \]

The above LRFD approach may be used for beams with various types of loading and boundary conditions although the discussions in this chapter are related primarily to the specific cases of three- and four-point loading of I- and channel sections with pinned boundary conditions.

In order to demonstrate the use of the LRFD approach described in this section, practical analysis and design examples are presented in the next two sections for the case of four-point loading (Figure 101) on the channel section beam. A study of Figure 101 indicated that the buckling formula given by Equation 39 is in excellent agreement with the experimental results. Although this figure also shows that the finite-difference \(M_{max} \)-L relation is more conservative, in the two sections to follow, Equation 39 is adopted due to its close agreement with the experiments.

4.4 LRFD Analysis Example

With reference to Figure 1b, the following analysis problem is posed herein:

Determine the buckling load \((P_{cr}) \) and the buckling moment \((M_R) \) of a FRP composite channel beam with the following data.

Section size: \(10 \times 2 \frac{3}{4} \times \frac{1}{2} \) in.

Span, \(L = 144 \) in.
End distance, \(a = 20 \) in.

Load height, \(y^* = 5.0 \) in.

\(E = 2.5 \times 10^6 \) psi

\(G = 0.42 \times 10^6 \) psi

\(I_y = 3.97 \) in\(^4\)

\(I_w = 63.5530 \) in\(^6\)

\(K_T = 0.604167 \) in\(^4\)

Solution:

Using Equations 40 through 42:

\(f_1 = 0.0297993 \)

\(f_2 = 72.2852 \)

\(f_3 = 456822.0 \)

and using Equation 39, the buckling load is:

\(P_{cr} = 2886.04 \) lbs.

The buckling moment is found by combining Equations 39 and 46:

\[M_R = \phi_b \cdot a \cdot P_{cr} \]

in which \(a \cdot P_{cr} = M_{max} \). Assuming a resistance factor \(\phi_b = 0.9 \), the buckling moment is:

\[M_R = 51948.72 \text{ lb-in.} \]

It should be noted that the buckling load \(P_{cr} \) can be increased to 3915.35 lbs, an increase in the buckling load capacity of 35%, if the loads could be applied right at the shear center, i.e.,
with $y_o^* = 0$. The P_{cr} value can be increased to 5311.77 lbs (assuming elastic behavior), an increase in the buckling load capacity of 84.0%, if the load could be applied at $y_o^* = -5.0$ in.

4.5 LRFD Design Example

With reference to Figure 1b, the following design problem is posed herein:

Select a FRP composite channel beam section for service dead and live loads P_D and P_L, respectively, of 208.33 lbs. and 500 lbs. and with the following data:

- Span, $L = 120$ in.
- End distance, $a = 25$ in.
- Load height, $y_o^* = 4.0$ in.
- $E = 2.5 \times 10^6$ psi
- $G = 0.42 \times 10^6$ psi

Solution:

Using dead and live load factors of 1.2 and 1.6, respectively, the buckling load capacity should equal:

$$P_{cr} = 1.2(208.33) + 1.6(500) = 1050 \text{ lbs.}$$

Try 6 x 11/16 x 3/8 in. channel section for which:

- $I_y = 0.52 \text{ in}^4$
- $I_w = 3.5938 \text{ in}^6$
- $K_T = 0.151611 \text{ in}^4$

Using Equations 40 through 42:

- $f_1 = 0.0336719$
- $f_2 = 27.1577$
\[f_3 = 26306.8 \]

and using Equation 39, the buckling load of the trial section is:

\[P_{cr} = 568.27 \text{ lbs} \]

which is well below the design load of 1050 lbs. Even if the design load is applied at the shear center \((y^*o = 0)\), this section would carry only 883.89 lbs and would, therefore, be deemed inadequate. However, if the load is applied at \(y^*o = -4.0 \text{ in.}\), the \(P_{cr}\) value will be 1374.81 lbs which is greater than the design load of 1050 lbs and the same section size would be adequate.

Try 8 x 2 3/16 x 3/8 in. channel section for which:

\[I_y = 1.52 \text{ in}^4 \]
\[I_w = 15.7387 \text{ in}^6 \]
\[K_T = 0.204346 \text{ in}^4 \]

Using Equations 40 through 42:

\[f_1 = 0.0336719 \]
\[f_2 = 79.3841 \]
\[f_3 = 124200.0 \]

and using Equations 39, the buckling load is:

\[P_{cr} = 1074.67 \text{ lbs} \]

which is slightly greater than the design load of 1050 lbs. Therefore, use 8 x 2 3/16 x 3/8 in. FRP. channel section. This section would carry \(P_{cr} = 1920.55 \text{ lbs. at buckling, if the load height is kept at zero, i.e. if } y^*o = 0\). The same section will provide \(P_{cr} = 3432.25 \text{ lbs if } y^*o = -4.0 \text{ in.}\). Of course, it is assumed herein that the beam material will remain elastic.
CHAPTER V.

COMPARISON OF RESULTS AND CONCLUSIONS

5.1 Comparison of Theory and Experiments

The experimental results from the FRP composite beam tests presented in Chapter II are in good general agreement with those predicted theoretically in Chapter III. As evident from the maximum bending moment versus the beam length relations summarized in Chapter IV, the peak loads from the theory and experiment also exhibit good general agreement. The theoretical load-deflection and load-strain curves are generally in excellent agreement in the linear range. In the nonlinear range, the equilibrium-based finite-difference results tend to be on the conservative side in comparison with those from the experiments.

For the I-section beam bent about the minor axis, the peak loads from the theory and experiment differ by about 5%. Table 4.1 summarizes the comparison of experimental and theoretical peak loads, $P_{m\text{ax}}$ and $P_{m\text{ax t}}$. The value of the imperfection factor e' is also listed in this table and is found to be generally small. For the three-point loading of the I-section beams, the $P_{m\text{ax}}/P_{m\text{ax t}}$ ratio varies between 0.95 and 1.25 with an average of 1.04. For the four-point loading of the I-section beams, the ratio varies from 0.77 to 1.00 with an average of 0.88.

For the three-point loading of the channel section beams, the $P_{m\text{ax}}/P_{m\text{ax t}}$ ratios are 0.89 and 0.93. For the four-point loading of the channel section beams, the $P_{m\text{ax}}/P_{m\text{ax t}}$ ratio varies from 0.75 to 0.80. For the flexural-torsional loading, the ratio varies from 0.87 to 0.95.

For the four-point loading of the channel section beams, the ratio of the buckling load from Equation 39 to that obtained experimentally, for Test CFT4-1 through CFT4-6 is approximately in the range from 0.89 to 0.98.
In summary, therefore, a good agreement between the theoretical and the experimental results is found thus making it feasible to use the theory for the formulation of a Load and Resistance Factor Design (LRFD) approach for practical use.

5.2 Load Height Effect

Table 5.1 presents the buckling load P_{cr} obtained using Equation 39, for a $6 \times 1 \frac{5}{8} \times \frac{1}{4}$ in. FRP channel section beam for various values of the load height accounted for by the vertical distance y' from the shear center S. The values of L and "a" are taken in the range from 108 in. to 84 in., and 42 in. to 30 in., respectively. The results in this table show that the buckling load P_{cr} is seriously altered by changing y'.

5.3 Conclusions

The following principal conclusions are drawn from the study of the FRP composite I- and channel section beams:

1. The experimental results are in good agreement with those based on the finite-difference solution to the coupled system of differential equations for flexural and torsional equilibrium.

2. The energy-based elastic buckling formula presented in this dissertation is in excellent agreement with the experimental results from the four-point loading tests on channel section beams.

3. For loading through locations other than the shear center, such as through the centroid, the warping normal strains or stresses could be substantial in comparison with the flexural stresses. For the tests conducted, the warping stresses were found to be over 20% of the flexural stresses.
4. The buckling load of the beam is seriously altered by changing the height of the applied load relative to the shear center. The most disadvantageous loading is on the side of the compression flange, resulting in decreasing buckling loads as the load height is increased above it. The most advantageous loading is on the side of the tension flange, resulting in increasing buckling loads as the load distance is increased by moving away from it. Thus, the FRP structural designers should develop the structural details such that the I-beams and channel beams get loaded on the side of the tension flange, whenever possible.

5. The beam buckling load is very sensitive to the minor axis slenderness ratio.

6. For the major axis beam tests conducted, overall elastic instability dictated the load-carrying capacity.

7. For the flexural-torsional tests, no cracking or local buckling is observed.

8. Based on the experimental and theoretical results presented, a Load and Resistance Factor Design (LRFD) approach is proposed for possible practical use. Extensive testing on a commercial scale needs to be conducted to develop an appropriate statistical data base for establishing a refined value of the resistance factor ϕ.

5.4 Future Research

Additional research needs to be conducted on FRP beams with various other types of the loading and boundary conditions. Also, a wide variety of FRP materials are being produced by the manufacturers in USA and from around the world. Thus, extensive testing of beams made from various FRP materials should be conducted in order to correlate with theory and to develop general LRFD procedures.
REFERENCES

2. Razzaq Z. And Galambos, T.V. Biaxial bending of beams with or without torsion. J. Structural Division, ASCE, 1979, 105

3. Razzaq Z. And Galambos, T.V. Biaxial bending tests with or without torsion. J. Structural Division, ASC, 1979. 105

Table 2.1. Tensile coupon tests results for Specimen 1 from flange of I-section
(coupon cross-sectional dimensions: 0.8x0.25 in.)

<table>
<thead>
<tr>
<th>Obs. No.</th>
<th>Load (lb)</th>
<th>Axial Stress (psi)</th>
<th>Axial Strain (inch/inch)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>400</td>
<td>2000</td>
<td>0.000725</td>
</tr>
<tr>
<td>1</td>
<td>800</td>
<td>4000</td>
<td>0.001488</td>
</tr>
<tr>
<td>2</td>
<td>1200</td>
<td>6000</td>
<td>0.002256</td>
</tr>
<tr>
<td>3</td>
<td>1600</td>
<td>8000</td>
<td>0.003114</td>
</tr>
<tr>
<td>4</td>
<td>2000</td>
<td>10000</td>
<td>0.003929</td>
</tr>
<tr>
<td>5</td>
<td>2400</td>
<td>12000</td>
<td>0.004754</td>
</tr>
<tr>
<td>6</td>
<td>2800</td>
<td>14000</td>
<td>0.005604</td>
</tr>
<tr>
<td>7</td>
<td>3200</td>
<td>16000</td>
<td>0.006470</td>
</tr>
<tr>
<td>8</td>
<td>3600</td>
<td>18000</td>
<td>0.007314</td>
</tr>
<tr>
<td>9</td>
<td>4000</td>
<td>20000</td>
<td>0.008185</td>
</tr>
<tr>
<td>10</td>
<td>4400</td>
<td>22000</td>
<td>0.009083</td>
</tr>
<tr>
<td>11</td>
<td>4800</td>
<td>24000</td>
<td>0.009979</td>
</tr>
<tr>
<td>12</td>
<td>5200</td>
<td>26000</td>
<td>0.010902</td>
</tr>
<tr>
<td>13</td>
<td>5600</td>
<td>28000</td>
<td>0.011843</td>
</tr>
</tbody>
</table>
Table 2.2. Tensile coupon test results for Specimen 2 from flange of I-section (coupon cross-sectional dimensions: 0.8x0.25 in.)

<table>
<thead>
<tr>
<th>Obs No</th>
<th>Load (lbs)</th>
<th>Axial Stress (psi)</th>
<th>Axial Strain (in/in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>400</td>
<td>2000</td>
<td>0.000795</td>
</tr>
<tr>
<td>1</td>
<td>800</td>
<td>4000</td>
<td>0.001424</td>
</tr>
<tr>
<td>2</td>
<td>1200</td>
<td>6000</td>
<td>0.002199</td>
</tr>
<tr>
<td>3</td>
<td>1600</td>
<td>8000</td>
<td>0.002975</td>
</tr>
<tr>
<td>4</td>
<td>2000</td>
<td>10000</td>
<td>0.003748</td>
</tr>
<tr>
<td>5</td>
<td>2400</td>
<td>12000</td>
<td>0.004580</td>
</tr>
<tr>
<td>6</td>
<td>2800</td>
<td>14000</td>
<td>0.005412</td>
</tr>
<tr>
<td>7</td>
<td>3200</td>
<td>16000</td>
<td>0.006275</td>
</tr>
<tr>
<td>8</td>
<td>3600</td>
<td>18000</td>
<td>0.007145</td>
</tr>
<tr>
<td>9</td>
<td>4000</td>
<td>20000</td>
<td>0.008012</td>
</tr>
<tr>
<td>10</td>
<td>4400</td>
<td>22000</td>
<td>0.008900</td>
</tr>
<tr>
<td>11</td>
<td>4800</td>
<td>24000</td>
<td>0.009780</td>
</tr>
<tr>
<td>12</td>
<td>5200</td>
<td>26000</td>
<td>0.010653</td>
</tr>
<tr>
<td>13</td>
<td>5600</td>
<td>28000</td>
<td>0.011545</td>
</tr>
<tr>
<td>14</td>
<td>6000</td>
<td>30000</td>
<td>0.012475</td>
</tr>
<tr>
<td>15</td>
<td>6140</td>
<td>30700</td>
<td>-</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Table 2.3. Tensile coupon test results for Specimen 3 from web of I-section (coupon cross-sectional dimensions: 0.9x0.25 in.)

<table>
<thead>
<tr>
<th>Obs No</th>
<th>Load P (lb)</th>
<th>Axial Str (lb)</th>
<th>Axial Strain (in/in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>400</td>
<td>1778</td>
<td>0.000500</td>
</tr>
<tr>
<td>1</td>
<td>800</td>
<td>3556</td>
<td>0.001170</td>
</tr>
<tr>
<td>2</td>
<td>1200</td>
<td>5333</td>
<td>0.001783</td>
</tr>
<tr>
<td>3</td>
<td>1600</td>
<td>7111</td>
<td>0.002405</td>
</tr>
<tr>
<td>4</td>
<td>2000</td>
<td>8889</td>
<td>0.003070</td>
</tr>
<tr>
<td>5</td>
<td>2400</td>
<td>10667</td>
<td>0.003726</td>
</tr>
<tr>
<td>6</td>
<td>2800</td>
<td>12444</td>
<td>0.004407</td>
</tr>
<tr>
<td>7</td>
<td>3200</td>
<td>14222</td>
<td>0.005086</td>
</tr>
<tr>
<td>8</td>
<td>3600</td>
<td>16000</td>
<td>0.005765</td>
</tr>
<tr>
<td>9</td>
<td>4000</td>
<td>17778</td>
<td>0.006453</td>
</tr>
<tr>
<td>10</td>
<td>4400</td>
<td>19556</td>
<td>0.007154</td>
</tr>
<tr>
<td>11</td>
<td>4800</td>
<td>21333</td>
<td>0.007772</td>
</tr>
<tr>
<td>12</td>
<td>4900</td>
<td>21778</td>
<td>-</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Table 2.4. Tensile coupon test results for Specimen 4 from web of I-section (coupon cross-sectional dimensions: 0.9x0.25 in.)

<table>
<thead>
<tr>
<th>Obs. No.</th>
<th>Load (kN)</th>
<th>Axial Stress (MPa)</th>
<th>Axial Strain (in/in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>400</td>
<td>1778</td>
<td>0.000600</td>
</tr>
<tr>
<td>1</td>
<td>800</td>
<td>3556</td>
<td>0.001270</td>
</tr>
<tr>
<td>2</td>
<td>1200</td>
<td>5333</td>
<td>0.001888</td>
</tr>
<tr>
<td>3</td>
<td>1600</td>
<td>7111</td>
<td>0.002508</td>
</tr>
<tr>
<td>4</td>
<td>2000</td>
<td>8889</td>
<td>0.003170</td>
</tr>
<tr>
<td>5</td>
<td>2400</td>
<td>10667</td>
<td>0.003827</td>
</tr>
<tr>
<td>6</td>
<td>2800</td>
<td>12444</td>
<td>0.004508</td>
</tr>
<tr>
<td>7</td>
<td>3200</td>
<td>14222</td>
<td>0.005187</td>
</tr>
<tr>
<td>8</td>
<td>3600</td>
<td>16000</td>
<td>0.005868</td>
</tr>
<tr>
<td>9</td>
<td>4000</td>
<td>17778</td>
<td>0.006558</td>
</tr>
<tr>
<td>10</td>
<td>4400</td>
<td>19556</td>
<td>0.007250</td>
</tr>
<tr>
<td>11</td>
<td>4800</td>
<td>21333</td>
<td>0.007890</td>
</tr>
<tr>
<td>12</td>
<td>5200</td>
<td>23111</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 2.5. Summary of tensile test results for material of I-section

<table>
<thead>
<tr>
<th>Specimen No.</th>
<th>Section (in)</th>
<th>Location</th>
<th>Young's Modulus, E_y (ksi)</th>
<th>E_y (ksi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1</td>
<td>I-4x2x0.25</td>
<td>Flange</td>
<td>2,452,182</td>
<td>0.011843</td>
</tr>
<tr>
<td>I2</td>
<td>I-4x2x0.25</td>
<td>Flange</td>
<td>2,328,448</td>
<td>0.012475</td>
</tr>
<tr>
<td>I3</td>
<td>I-4x2x0.25</td>
<td>Web</td>
<td>2,813,281</td>
<td>0.007772</td>
</tr>
<tr>
<td>I4</td>
<td>I-4x2x0.25</td>
<td>web</td>
<td>2,744,572</td>
<td>0.007890</td>
</tr>
</tbody>
</table>
Table 2.6. Tensile coupon test results for Specimen 5 from flange of channel section (coupon cross-sectional dimensions: 1.1x0.25 in.)

<table>
<thead>
<tr>
<th>Observ No.</th>
<th>Load (lbs)</th>
<th>Actual Stress (psi)</th>
<th>Actual Strain (in/in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1000</td>
<td>3636</td>
<td>0.001143</td>
</tr>
<tr>
<td>1</td>
<td>2000</td>
<td>7273</td>
<td>0.002180</td>
</tr>
<tr>
<td>2</td>
<td>3000</td>
<td>10910</td>
<td>0.003310</td>
</tr>
<tr>
<td>3</td>
<td>4000</td>
<td>14545</td>
<td>0.004339</td>
</tr>
<tr>
<td>4</td>
<td>5000</td>
<td>18182</td>
<td>0.005473</td>
</tr>
<tr>
<td>5</td>
<td>6000</td>
<td>21818</td>
<td>0.006613</td>
</tr>
<tr>
<td>6</td>
<td>7000</td>
<td>25455</td>
<td>0.007815</td>
</tr>
<tr>
<td>7</td>
<td>8000</td>
<td>29091</td>
<td>0.008984</td>
</tr>
<tr>
<td>8</td>
<td>9000</td>
<td>32727</td>
<td>0.010212</td>
</tr>
<tr>
<td>9</td>
<td>10000</td>
<td>36364</td>
<td>0.011410</td>
</tr>
<tr>
<td>10</td>
<td>11000</td>
<td>40000</td>
<td>0.012595</td>
</tr>
<tr>
<td>11</td>
<td>12000</td>
<td>43636</td>
<td>0.013755</td>
</tr>
<tr>
<td>12</td>
<td>13000</td>
<td>47273</td>
<td>0.014940</td>
</tr>
<tr>
<td>13</td>
<td>14000</td>
<td>50909</td>
<td>0.016250</td>
</tr>
<tr>
<td>14</td>
<td>15000</td>
<td>54545</td>
<td>0.017516</td>
</tr>
<tr>
<td>15</td>
<td>15500</td>
<td>56364</td>
<td>0.018235</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Table 2.7. Tensile coupon test results for Specimen 6 from flange of channel section
(coupon cross-sectional dimensions: 1x0.25 in.)

<table>
<thead>
<tr>
<th>Obs. No.</th>
<th>Load (lb)</th>
<th>Axial Stress (psi)</th>
<th>Axial Strain (in/in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1000</td>
<td>4000</td>
<td>0.001132</td>
</tr>
<tr>
<td>1</td>
<td>2000</td>
<td>8000</td>
<td>0.002325</td>
</tr>
<tr>
<td>2</td>
<td>3000</td>
<td>12000</td>
<td>0.003520</td>
</tr>
<tr>
<td>3</td>
<td>4000</td>
<td>16000</td>
<td>0.004780</td>
</tr>
<tr>
<td>4</td>
<td>5000</td>
<td>20000</td>
<td>0.006096</td>
</tr>
<tr>
<td>5</td>
<td>6000</td>
<td>24000</td>
<td>0.007328</td>
</tr>
<tr>
<td>6</td>
<td>7000</td>
<td>28000</td>
<td>0.008696</td>
</tr>
<tr>
<td>7</td>
<td>8000</td>
<td>32000</td>
<td>0.009984</td>
</tr>
<tr>
<td>8</td>
<td>9000</td>
<td>36000</td>
<td>0.011332</td>
</tr>
<tr>
<td>9</td>
<td>10000</td>
<td>40000</td>
<td>0.012675</td>
</tr>
<tr>
<td>10</td>
<td>11000</td>
<td>44000</td>
<td>0.014000</td>
</tr>
<tr>
<td>11</td>
<td>12000</td>
<td>48000</td>
<td>0.015345</td>
</tr>
<tr>
<td>12</td>
<td>13000</td>
<td>52000</td>
<td>0.016722</td>
</tr>
<tr>
<td>13</td>
<td>13500</td>
<td>54000</td>
<td>0.017502</td>
</tr>
</tbody>
</table>
Table 2.8. Tensile coupon test results for Specimen 7 from web of channel section (coupon cross-sectional dimensions: 1x0.25 in.)

<table>
<thead>
<tr>
<th>Obs. No.</th>
<th>Load (lbs)</th>
<th>Avail Stress (psi)</th>
<th>Avail Strain (in/in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>800</td>
<td>3200</td>
<td>0.000860</td>
</tr>
<tr>
<td>1</td>
<td>1600</td>
<td>6400</td>
<td>0.001776</td>
</tr>
<tr>
<td>2</td>
<td>2400</td>
<td>9600</td>
<td>0.002718</td>
</tr>
<tr>
<td>3</td>
<td>3200</td>
<td>12800</td>
<td>0.003693</td>
</tr>
<tr>
<td>4</td>
<td>4000</td>
<td>16000</td>
<td>0.004661</td>
</tr>
<tr>
<td>5</td>
<td>4800</td>
<td>19200</td>
<td>0.005663</td>
</tr>
<tr>
<td>6</td>
<td>5600</td>
<td>22400</td>
<td>0.006658</td>
</tr>
<tr>
<td>7</td>
<td>6200</td>
<td>24800</td>
<td>0.007392</td>
</tr>
<tr>
<td>8</td>
<td>7000</td>
<td>28000</td>
<td>0.008395</td>
</tr>
<tr>
<td>9</td>
<td>7800</td>
<td>31200</td>
<td>0.009437</td>
</tr>
<tr>
<td>10</td>
<td>9200</td>
<td>36800</td>
<td>0.011005</td>
</tr>
<tr>
<td>11</td>
<td>10000</td>
<td>40000</td>
<td>0.011988</td>
</tr>
<tr>
<td>12</td>
<td>10800</td>
<td>43200</td>
<td>0.012983</td>
</tr>
<tr>
<td>13</td>
<td>11600</td>
<td>46400</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 2.9. Tensile coupon test results for Specimen 8 from web of channel section
(coupon cross-sectional dimensions: 1x0.25 in.)

<table>
<thead>
<tr>
<th>Obs-No</th>
<th>Load (lb)</th>
<th>Axial Strain (in)</th>
<th>Axial Strain (in-in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1000</td>
<td>4000</td>
<td>0.001153</td>
</tr>
<tr>
<td>1</td>
<td>2000</td>
<td>8000</td>
<td>0.002317</td>
</tr>
<tr>
<td>2</td>
<td>3000</td>
<td>12000</td>
<td>0.003500</td>
</tr>
<tr>
<td>3</td>
<td>4000</td>
<td>16000</td>
<td>0.004658</td>
</tr>
<tr>
<td>4</td>
<td>5000</td>
<td>20000</td>
<td>0.005878</td>
</tr>
<tr>
<td>5</td>
<td>6000</td>
<td>24000</td>
<td>0.007056</td>
</tr>
<tr>
<td>6</td>
<td>7000</td>
<td>28000</td>
<td>0.008291</td>
</tr>
<tr>
<td>7</td>
<td>8000</td>
<td>32000</td>
<td>0.009496</td>
</tr>
<tr>
<td>8</td>
<td>9000</td>
<td>36000</td>
<td>0.010743</td>
</tr>
<tr>
<td>9</td>
<td>10000</td>
<td>40000</td>
<td>0.011929</td>
</tr>
<tr>
<td>10</td>
<td>11000</td>
<td>44000</td>
<td>0.013165</td>
</tr>
<tr>
<td>11</td>
<td>12000</td>
<td>48000</td>
<td>0.014365</td>
</tr>
<tr>
<td>12</td>
<td>13000</td>
<td>52000</td>
<td>0.015583</td>
</tr>
<tr>
<td>15</td>
<td>14000</td>
<td>56000</td>
<td>0.016858</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Table 2.10. Summary of tensile test results for material of channel section

<table>
<thead>
<tr>
<th>Specimen No.</th>
<th>Section (in)</th>
<th>Location</th>
<th>Young's Modulus (ksi)</th>
<th>E/δ (in2/in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>C6x1.625x0.25</td>
<td>Flange</td>
<td>3,183,774</td>
<td>0.018235</td>
</tr>
<tr>
<td>C2</td>
<td>C6x1.625x0.25</td>
<td>Flange</td>
<td>3,180,111</td>
<td>0.017502</td>
</tr>
<tr>
<td>C3</td>
<td>C6x1.625x0.25</td>
<td>Web</td>
<td>3,366,224</td>
<td>0.012983</td>
</tr>
<tr>
<td>C4</td>
<td>C6x1.625x0.25</td>
<td>Web</td>
<td>3,360,470</td>
<td>0.016858</td>
</tr>
</tbody>
</table>
Table 2.11. Minor axis bending test results for I-beam (4x2x1/4 in., L=30 in.)

<table>
<thead>
<tr>
<th>Obs No.</th>
<th>Load P (lb)</th>
<th>Bending Strain (in/in)</th>
<th>Midspan Vertical Deflection (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ESE</td>
<td>BSE</td>
</tr>
<tr>
<td>0</td>
<td>200</td>
<td>-0.001162</td>
<td>0.001211</td>
</tr>
<tr>
<td>1</td>
<td>400</td>
<td>-0.00238</td>
<td>0.002519</td>
</tr>
<tr>
<td>2</td>
<td>600</td>
<td>-0.003628</td>
<td>0.003862</td>
</tr>
<tr>
<td>3</td>
<td>800</td>
<td>-0.004905</td>
<td>0.005233</td>
</tr>
<tr>
<td>4</td>
<td>1000</td>
<td>-0.006103</td>
<td>0.006533</td>
</tr>
<tr>
<td>5</td>
<td>1200</td>
<td>-0.007297</td>
<td>0.007780</td>
</tr>
<tr>
<td>6</td>
<td>1400</td>
<td>-0.008623</td>
<td>0.009169</td>
</tr>
<tr>
<td>7</td>
<td>1600</td>
<td>-0.009912</td>
<td>0.010519</td>
</tr>
<tr>
<td>8</td>
<td>1800</td>
<td>-0.011196</td>
<td>0.011802</td>
</tr>
<tr>
<td>9</td>
<td>2000</td>
<td>-0.012555</td>
<td>0.012977</td>
</tr>
<tr>
<td>10</td>
<td>2100</td>
<td>-0.013165</td>
<td>0.013488</td>
</tr>
<tr>
<td>11</td>
<td>2180</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 2.12. Results for FRP I-beam (4"x2"x0.25") Test No. IFT3-1 with three-point loading (L=108in.)

<table>
<thead>
<tr>
<th>Obs. No.</th>
<th>Load (lbs)</th>
<th>Midspan Vertical Deflection (in.</th>
<th>Midspan Horizontal Deflection (in.)</th>
<th>Midspan Angle of Twist (rad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.43477</td>
<td>0.26065</td>
<td>0.027199</td>
</tr>
<tr>
<td>1</td>
<td>35</td>
<td>0.52633</td>
<td>0.24601</td>
<td>0.036671</td>
</tr>
<tr>
<td>2</td>
<td>62</td>
<td>0.59018</td>
<td>0.22118</td>
<td>0.041522</td>
</tr>
<tr>
<td>3</td>
<td>78</td>
<td>0.64805</td>
<td>0.17759</td>
<td>0.039815</td>
</tr>
<tr>
<td>4</td>
<td>99</td>
<td>0.746877</td>
<td>0.91167</td>
<td>0.013170</td>
</tr>
</tbody>
</table>
Table 2.13. Results for FRP I-beam (4"x2"x0.25") Test No. IFT3-2 with three-point loading (L= 96 in.)

<table>
<thead>
<tr>
<th>Obs. No.</th>
<th>Load (lb)</th>
<th>Midspan Vertical Deflection (in.)</th>
<th>Midspan Lateral Deflection (in.)</th>
<th>Midspan Angle of Twist (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.49235</td>
<td>0.12125</td>
<td>0.043470</td>
</tr>
<tr>
<td>1</td>
<td>29</td>
<td>0.53544</td>
<td>0.11695</td>
<td>0.048788</td>
</tr>
<tr>
<td>2</td>
<td>62</td>
<td>0.58726</td>
<td>0.10989</td>
<td>0.054595</td>
</tr>
<tr>
<td>3</td>
<td>88</td>
<td>0.62789</td>
<td>0.08591</td>
<td>0.058924</td>
</tr>
<tr>
<td>4</td>
<td>110</td>
<td>0.66791</td>
<td>0.05431</td>
<td>0.057295</td>
</tr>
<tr>
<td>5</td>
<td>142</td>
<td>0.78980</td>
<td>0.44303</td>
<td>0.006399</td>
</tr>
<tr>
<td>6</td>
<td>147</td>
<td>0.82587</td>
<td>0.34063</td>
<td>-0.01725</td>
</tr>
</tbody>
</table>
Table 2.14. Results for FRP I-beam (4"x2"x0.25") Test No. IFT3-3 with three-point loading (L = 84 in.)

<table>
<thead>
<tr>
<th>Obs. No.</th>
<th>Load (lb)</th>
<th>Midspan Vertical Deflection (in.)</th>
<th>Midspan Lateral Deflection (in.)</th>
<th>Midspan Angle of Twist (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.362000</td>
<td>0.074235</td>
<td>0.014482</td>
</tr>
<tr>
<td>1</td>
<td>13</td>
<td>0.375123</td>
<td>0.074180</td>
<td>0.016502</td>
</tr>
<tr>
<td>2</td>
<td>43</td>
<td>0.413392</td>
<td>0.077311</td>
<td>0.020147</td>
</tr>
<tr>
<td>3</td>
<td>83</td>
<td>0.466050</td>
<td>0.053625</td>
<td>0.024964</td>
</tr>
<tr>
<td>4</td>
<td>110</td>
<td>0.504537</td>
<td>0.033903</td>
<td>0.025561</td>
</tr>
<tr>
<td>5</td>
<td>136</td>
<td>0.543047</td>
<td>0.014821</td>
<td>0.023570</td>
</tr>
<tr>
<td>6</td>
<td>158</td>
<td>0.597874</td>
<td>0.918848</td>
<td>0.011668</td>
</tr>
<tr>
<td>7</td>
<td>174</td>
<td>0.611995</td>
<td>0.939279</td>
<td>-0.01080</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Table 2.15. Results for FRP I-beam (4"x2"x0.25") Test No. IFT3-4 with three-point loading (L = 72 in.)

<table>
<thead>
<tr>
<th>Obs No</th>
<th>Load (lbs)</th>
<th>Midspan Vertical Deflection (in.)</th>
<th>Midspan Lateral Deflection (in.)</th>
<th>Midspan Angle at Twist (rads)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.414212</td>
<td>0.45874</td>
<td>0.031848</td>
</tr>
<tr>
<td>1</td>
<td>59</td>
<td>0.468665</td>
<td>0.455119</td>
<td>0.038027</td>
</tr>
<tr>
<td>2</td>
<td>110</td>
<td>0.505830</td>
<td>0.445474</td>
<td>0.041930</td>
</tr>
<tr>
<td>3</td>
<td>158</td>
<td>0.548825</td>
<td>0.424267</td>
<td>0.418127</td>
</tr>
<tr>
<td>4</td>
<td>201</td>
<td>0.583471</td>
<td>0.396016</td>
<td>0.038664</td>
</tr>
<tr>
<td>5</td>
<td>219</td>
<td>0.600530</td>
<td>0.370348</td>
<td>0.037823</td>
</tr>
<tr>
<td>6</td>
<td>238</td>
<td>0.617770</td>
<td>0.328133</td>
<td>0.021476</td>
</tr>
<tr>
<td>7</td>
<td>249</td>
<td>0.628565</td>
<td>0.286714</td>
<td>0.009120</td>
</tr>
<tr>
<td>8</td>
<td>254</td>
<td>0.641266</td>
<td>0.2333175</td>
<td>-0.007274</td>
</tr>
<tr>
<td>8</td>
<td>262</td>
<td>0.658012</td>
<td>0.1616291</td>
<td>-0.027677</td>
</tr>
<tr>
<td>10</td>
<td>265</td>
<td>0.673112</td>
<td>0.101714</td>
<td>-0.044547</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Table 2.16. Results for FRP I-beam (4"x2"x0.25") Test No. IFT4-1 with four-point loading (L = 108 in.)

<table>
<thead>
<tr>
<th>Obs No</th>
<th>Load P (lbs)</th>
<th>y (in)</th>
<th>θ (in)</th>
<th>ϕ (in)</th>
<th>e (in/in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>13</td>
<td>0.03199</td>
<td>0.00397</td>
<td>0.00092</td>
<td>0.000065</td>
</tr>
<tr>
<td>1</td>
<td>27</td>
<td>0.06099</td>
<td>0.00792</td>
<td>0.00120</td>
<td>0.000121</td>
</tr>
<tr>
<td>2</td>
<td>38</td>
<td>0.13998</td>
<td>0.00447</td>
<td>0.00378</td>
<td>0.000261</td>
</tr>
<tr>
<td>3</td>
<td>48</td>
<td>0.17992</td>
<td>0.01300</td>
<td>0.00553</td>
<td>0.000335</td>
</tr>
<tr>
<td>4</td>
<td>62</td>
<td>0.24682</td>
<td>0.01891</td>
<td>0.00847</td>
<td>0.000455</td>
</tr>
<tr>
<td>5</td>
<td>70</td>
<td>0.32635</td>
<td>0.03812</td>
<td>0.01493</td>
<td>0.000594</td>
</tr>
<tr>
<td>6</td>
<td>72</td>
<td>0.37402</td>
<td>0.06624</td>
<td>0.02601</td>
<td>0.000688</td>
</tr>
<tr>
<td>7</td>
<td>75</td>
<td>0.39189</td>
<td>0.09996</td>
<td>0.02801</td>
<td>0.000763</td>
</tr>
<tr>
<td>8</td>
<td>78</td>
<td>0.41735</td>
<td>0.20025</td>
<td>0.06446</td>
<td>0.000838</td>
</tr>
</tbody>
</table>
Table 2.17. Results for FRP I-beam (4"x2"x0.25") Test No. IFT4-2 with four-point loading (L = 96 in.)

<table>
<thead>
<tr>
<th>Obs No.</th>
<th>Load (lbs)</th>
<th>v_m (in)</th>
<th>v_s (in)</th>
<th>θ (in)</th>
<th>ϵ (in/in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>19</td>
<td>0.01799</td>
<td>0.00098</td>
<td>0.00092</td>
<td>0.000044</td>
</tr>
<tr>
<td>1</td>
<td>34</td>
<td>0.03499</td>
<td>0.00296</td>
<td>0.00110</td>
<td>0.000085</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>0.09499</td>
<td>0.00381</td>
<td>0.00194</td>
<td>0.000213</td>
</tr>
<tr>
<td>3</td>
<td>66</td>
<td>0.13998</td>
<td>0.00467</td>
<td>0.00231</td>
<td>0.000313</td>
</tr>
<tr>
<td>4</td>
<td>77</td>
<td>0.17998</td>
<td>0.00541</td>
<td>0.00323</td>
<td>0.000396</td>
</tr>
<tr>
<td>5</td>
<td>82</td>
<td>0.24494</td>
<td>0.00971</td>
<td>0.00525</td>
<td>0.000538</td>
</tr>
<tr>
<td>6</td>
<td>101</td>
<td>0.31275</td>
<td>0.02189</td>
<td>0.00993</td>
<td>0.000683</td>
</tr>
<tr>
<td>7</td>
<td>106</td>
<td>0.33957</td>
<td>0.02748</td>
<td>0.01331</td>
<td>0.000797</td>
</tr>
<tr>
<td>9</td>
<td>114</td>
<td>0.37539</td>
<td>0.09979</td>
<td>0.04012</td>
<td>0.000853</td>
</tr>
</tbody>
</table>
Table 2.18. Results for FRP I-beam (4"x2"x0.25") Test No. IFT4-3
with four-point loading (L = 84 in.)

<table>
<thead>
<tr>
<th>Obs No.</th>
<th>Load P (lbs)</th>
<th>δ (in)</th>
<th>γ (in)</th>
<th>ϕ (in)</th>
<th>ε (in/in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>29</td>
<td>0.02499</td>
<td>0.00397</td>
<td>0.00120</td>
<td>0.000072</td>
</tr>
<tr>
<td>1</td>
<td>50</td>
<td>0.08496</td>
<td>0.00760</td>
<td>0.00461</td>
<td>0.000233</td>
</tr>
<tr>
<td>2</td>
<td>72</td>
<td>0.12985</td>
<td>0.01698</td>
<td>0.00783</td>
<td>0.000361</td>
</tr>
<tr>
<td>3</td>
<td>93</td>
<td>0.17468</td>
<td>0.02600</td>
<td>0.01139</td>
<td>0.000486</td>
</tr>
<tr>
<td>4</td>
<td>103</td>
<td>0.21723</td>
<td>0.04343</td>
<td>0.01638</td>
<td>0.000602</td>
</tr>
<tr>
<td>5</td>
<td>114</td>
<td>0.25599</td>
<td>0.06919</td>
<td>0.02646</td>
<td>0.000722</td>
</tr>
<tr>
<td>6</td>
<td>119</td>
<td>0.27734</td>
<td>0.10688</td>
<td>0.03954</td>
<td>0.000794</td>
</tr>
<tr>
<td>9</td>
<td>125</td>
<td>0.28840</td>
<td>0.14953</td>
<td>0.05224</td>
<td>0.000863</td>
</tr>
</tbody>
</table>
Table 2.19. Results for FRP I-beam (4"x2"x0.25") Test No. IFT4-4 with four-point loading (L = 72 in.)

<table>
<thead>
<tr>
<th>Obs No.</th>
<th>Load P (lbs)</th>
<th>ε1 (in)</th>
<th>ε2 (in)</th>
<th>δ1 (in)</th>
<th>δ2 (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>24</td>
<td>0.01400</td>
<td>0.00001</td>
<td>0.00129</td>
<td>0.000048</td>
</tr>
<tr>
<td>1</td>
<td>56</td>
<td>0.08199</td>
<td>0.00172</td>
<td>0.00342</td>
<td>0.000217</td>
</tr>
<tr>
<td>2</td>
<td>78</td>
<td>0.11597</td>
<td>0.00436</td>
<td>0.00544</td>
<td>0.000326</td>
</tr>
<tr>
<td>3</td>
<td>99</td>
<td>0.13995</td>
<td>0.00604</td>
<td>0.00683</td>
<td>0.000408</td>
</tr>
<tr>
<td>4</td>
<td>120</td>
<td>0.17986</td>
<td>0.01225</td>
<td>0.00967</td>
<td>0.000544</td>
</tr>
<tr>
<td>5</td>
<td>141</td>
<td>0.22567</td>
<td>0.02095</td>
<td>0.01351</td>
<td>0.000712</td>
</tr>
<tr>
<td>6</td>
<td>158</td>
<td>0.24643</td>
<td>0.02988</td>
<td>0.01666</td>
<td>0.000782</td>
</tr>
<tr>
<td>7</td>
<td>177</td>
<td>0.27729</td>
<td>0.05656</td>
<td>0.02670</td>
<td>0.000910</td>
</tr>
<tr>
<td>8</td>
<td>185</td>
<td>0.29534</td>
<td>0.08572</td>
<td>0.03781</td>
<td>0.000988</td>
</tr>
<tr>
<td>9</td>
<td>190</td>
<td>0.30162</td>
<td>0.11600</td>
<td>0.048827</td>
<td>0.001035</td>
</tr>
</tbody>
</table>
Table 2.20. Results for FRP I-beam (4"x2"x0.25") Test No. IFT4-5 with four-point loading (L = 60 in.)

<table>
<thead>
<tr>
<th>Obs. No.</th>
<th>Load P (lbs)</th>
<th>Midspan Deflection</th>
<th>L1 (in)</th>
<th>D1 (in)</th>
<th>e1 (in/in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>32</td>
<td>0.01200</td>
<td>0.00001</td>
<td>0.00111</td>
<td>0.000056</td>
</tr>
<tr>
<td>1</td>
<td>56</td>
<td>0.03799</td>
<td>0.00091</td>
<td>0.00221</td>
<td>0.000175</td>
</tr>
<tr>
<td>2</td>
<td>88</td>
<td>0.06099</td>
<td>0.00076</td>
<td>0.00379</td>
<td>0.000280</td>
</tr>
<tr>
<td>3</td>
<td>120</td>
<td>0.09099</td>
<td>0.00052</td>
<td>0.00526</td>
<td>0.000403</td>
</tr>
<tr>
<td>4</td>
<td>158</td>
<td>0.12395</td>
<td>0.00513</td>
<td>0.00701</td>
<td>0.000551</td>
</tr>
<tr>
<td>5</td>
<td>190</td>
<td>0.15985</td>
<td>0.01239</td>
<td>0.01004</td>
<td>0.000725</td>
</tr>
<tr>
<td>6</td>
<td>217</td>
<td>0.18071</td>
<td>0.01967</td>
<td>0.01287</td>
<td>0.000821</td>
</tr>
<tr>
<td>7</td>
<td>243</td>
<td>0.20816</td>
<td>0.03672</td>
<td>0.02051</td>
<td>0.000955</td>
</tr>
<tr>
<td>8</td>
<td>260</td>
<td>0.22100</td>
<td>0.07229</td>
<td>0.02563</td>
<td>0.001033</td>
</tr>
<tr>
<td>9</td>
<td>270</td>
<td>0.22721</td>
<td>0.06977</td>
<td>0.03585</td>
<td>0.001079</td>
</tr>
<tr>
<td>10</td>
<td>278</td>
<td>0.23589</td>
<td>0.08683</td>
<td>0.04247</td>
<td>0.001119</td>
</tr>
<tr>
<td>11</td>
<td>286</td>
<td>0.23836</td>
<td>0.11420</td>
<td>0.05240</td>
<td>0.001168</td>
</tr>
<tr>
<td>12</td>
<td>292</td>
<td>0.24180</td>
<td>0.13462</td>
<td>0.06148</td>
<td>0.001239</td>
</tr>
<tr>
<td>13</td>
<td>292</td>
<td>0.24348</td>
<td>0.16000</td>
<td>0.07056</td>
<td>0.001239</td>
</tr>
<tr>
<td>14</td>
<td>292</td>
<td>0.24226</td>
<td>0.18914</td>
<td>0.08438</td>
<td>0.001239</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Table 2.21. Results for FRP channel beam \((6 \times 1 \frac{5}{8} \times \frac{1}{4} \text{ in.})\) Test No. CFT3-1 with three-point loading \((L = 108 \text{ in.})\)

<table>
<thead>
<tr>
<th>Ob No.</th>
<th>Load (lbs)</th>
<th>Max Monotonic Vertical Deflection</th>
<th>Min Monotonic Vertical Deflection</th>
<th>Max Monotonic Lateral Deflection</th>
<th>Min Monotonic Lateral Deflection</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>35</td>
<td>0.019594</td>
<td>0.008848</td>
<td>-0.005334</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>86</td>
<td>0.078041</td>
<td>0.008838</td>
<td>-0.007354</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>131</td>
<td>0.078041</td>
<td>0.003774</td>
<td>-0.007729</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>163</td>
<td>0.155357</td>
<td>-0.010629</td>
<td>-0.004958</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>193</td>
<td>0.274455</td>
<td>0.064145</td>
<td>0.001781</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>209</td>
<td>0.293831</td>
<td>0.040911</td>
<td>0.008651</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>222</td>
<td>0.321353</td>
<td>0.008292</td>
<td>0.018370</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>238</td>
<td>0.359076</td>
<td>-0.044736</td>
<td>0.035747</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>241</td>
<td>0.407363</td>
<td>-0.044736</td>
<td>0.043101</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>243</td>
<td>0.429363</td>
<td>-0.044736</td>
<td>0.055848</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>248</td>
<td>0.460037</td>
<td>-0.0146961</td>
<td>0.070790</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>257</td>
<td>0.480530</td>
<td>-0.193147</td>
<td>0.085881</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>260</td>
<td>0.500533</td>
<td>-0.234303</td>
<td>0.098771</td>
<td></td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Table 2.22. Results for FRP channel beam \((6 \times 1\frac{5}{8} \times \frac{1}{4} \text{ in.})\) Test No. CFT3-2 with three-point loading \((L = 96 \text{ in.})\)

<table>
<thead>
<tr>
<th>Obs. No.</th>
<th>Load (lbs)</th>
<th>Midspan Vertical Deflection (in.)</th>
<th>Midspan Lateral Deflection (in.)</th>
<th>Midspan Angle of Twist (radian)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>46</td>
<td>0.034854</td>
<td>0.004146</td>
<td>-0.000382</td>
</tr>
<tr>
<td>2</td>
<td>96</td>
<td>0.664230</td>
<td>0.007413</td>
<td>-0.000735</td>
</tr>
<tr>
<td>3</td>
<td>155</td>
<td>0.101245</td>
<td>0.011315</td>
<td>-0.001075</td>
</tr>
<tr>
<td>4</td>
<td>203</td>
<td>0.129721</td>
<td>0.112530</td>
<td>-0.001272</td>
</tr>
<tr>
<td>5</td>
<td>243</td>
<td>0.144385</td>
<td>0.002922</td>
<td>-0.001294</td>
</tr>
<tr>
<td>6</td>
<td>270</td>
<td>0.156382</td>
<td>-0.008866</td>
<td>-0.002495</td>
</tr>
<tr>
<td>7</td>
<td>297</td>
<td>0.183497</td>
<td>-0.030791</td>
<td>-0.002795</td>
</tr>
<tr>
<td>8</td>
<td>310</td>
<td>0.190234</td>
<td>-0.057975</td>
<td>0.003785</td>
</tr>
<tr>
<td>9</td>
<td>318</td>
<td>0.197532</td>
<td>-0.073204</td>
<td>0.008202</td>
</tr>
<tr>
<td>10</td>
<td>324</td>
<td>0.199452</td>
<td>-0.095082</td>
<td>0.014085</td>
</tr>
<tr>
<td>11</td>
<td>334</td>
<td>0.202454</td>
<td>-0.129202</td>
<td>0.024486</td>
</tr>
<tr>
<td>12</td>
<td>340</td>
<td>0.205380</td>
<td>-0.014660</td>
<td>0.034592</td>
</tr>
<tr>
<td>13</td>
<td>345</td>
<td>0.217984</td>
<td>-0.192992</td>
<td>0.042605</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Table 2.23. Results for FRP channel beam \((6 \times 1.5 \times \frac{1}{4}\text{ in.})\) Test No. CFT4-1 with four-point loading \((L = 108\text{ in.})\)

<table>
<thead>
<tr>
<th>Obs. No.</th>
<th>Load (lbs)</th>
<th>Midspan Vertical Deflection (in.)</th>
<th>Midspan Vertical Deflection (in.)</th>
<th>Midspan Angle of Deflection (rad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>32</td>
<td>0.04799</td>
<td>0.00598</td>
<td>0.00025</td>
</tr>
<tr>
<td>1</td>
<td>64</td>
<td>0.08397</td>
<td>0.01487</td>
<td>0.00143</td>
</tr>
<tr>
<td>2</td>
<td>80</td>
<td>0.10895</td>
<td>0.02177</td>
<td>0.00202</td>
</tr>
<tr>
<td>3</td>
<td>96</td>
<td>0.12388</td>
<td>0.02850</td>
<td>0.00396</td>
</tr>
<tr>
<td>4</td>
<td>115</td>
<td>0.14859</td>
<td>0.04777</td>
<td>0.00823</td>
</tr>
<tr>
<td>5</td>
<td>131</td>
<td>0.16071</td>
<td>0.07842</td>
<td>0.01590</td>
</tr>
<tr>
<td>6</td>
<td>136</td>
<td>0.15972</td>
<td>0.11969</td>
<td>0.02645</td>
</tr>
</tbody>
</table>
Table 2.24. Results for FRP channel beam \((6 \times 1\frac{5}{8} \times \frac{1}{4} \text{ in.})\) Test No. CFT4-2 with four-point loading \((L = 102 \text{ in.})\)

<table>
<thead>
<tr>
<th>Obs. No.</th>
<th>Load (lb)</th>
<th>Midspan Vertical Deflection (in.)</th>
<th>Midspan Lateral Deflection (in.)</th>
<th>Midspan Angle of Twist (rad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>30</td>
<td>0.02999</td>
<td>0.00195</td>
<td>0.00152</td>
</tr>
<tr>
<td>1</td>
<td>56</td>
<td>0.05499</td>
<td>0.00283</td>
<td>0.00296</td>
</tr>
<tr>
<td>2</td>
<td>85</td>
<td>0.08597</td>
<td>0.00457</td>
<td>0.00399</td>
</tr>
<tr>
<td>3</td>
<td>109</td>
<td>0.11296</td>
<td>0.00531</td>
<td>0.00489</td>
</tr>
<tr>
<td>4</td>
<td>135</td>
<td>0.14495</td>
<td>0.00751</td>
<td>0.00577</td>
</tr>
<tr>
<td>5</td>
<td>156</td>
<td>0.17495</td>
<td>0.00980</td>
<td>0.00645</td>
</tr>
<tr>
<td>6</td>
<td>160</td>
<td>0.18395</td>
<td>0.01195</td>
<td>0.00710</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Table 2.25. Results for FRP channel beam (6\times $1\frac{5}{8} \times \frac{1}{4}$ in.) Test No. CFT4-3 with four-point loading (L = 96 in.)

<table>
<thead>
<tr>
<th>Load No.</th>
<th>Load (lbs)</th>
<th>Midspan Vertical Deflection (in.)</th>
<th>Lateral Deflection (in.)</th>
<th>Midspan Angle of Twist (rad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>32</td>
<td>0.03099</td>
<td>0.00299</td>
<td>0.00008</td>
</tr>
<tr>
<td>1</td>
<td>63</td>
<td>0.05998</td>
<td>0.01092</td>
<td>0.00126</td>
</tr>
<tr>
<td>2</td>
<td>96</td>
<td>0.09090</td>
<td>0.02467</td>
<td>0.00362</td>
</tr>
<tr>
<td>3</td>
<td>128</td>
<td>0.11465</td>
<td>0.04413</td>
<td>0.00757</td>
</tr>
<tr>
<td>4</td>
<td>160</td>
<td>0.14355</td>
<td>0.08252</td>
<td>0.01706</td>
</tr>
<tr>
<td>5</td>
<td>181</td>
<td>0.15875</td>
<td>0.14738</td>
<td>0.03430</td>
</tr>
<tr>
<td>6</td>
<td>198</td>
<td>0.15990</td>
<td>0.22365</td>
<td>0.04775</td>
</tr>
</tbody>
</table>
Table 2.26. Results for FRP channel beam \((6 \times 1.5 \times \frac{1}{8} \text{ in.})\) Test No. CFT4-4 with four-point loading \((L = 84 \text{ in.})\)

<table>
<thead>
<tr>
<th>Obs No.</th>
<th>Load P (lbs)</th>
<th>w (in.)</th>
<th>m (in)</th>
<th>(\Phi_b) (in)</th>
<th>(C_e) (in/in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>102</td>
<td>0.05299</td>
<td>0.00186</td>
<td>0.00262</td>
<td>0.000253</td>
</tr>
<tr>
<td>1</td>
<td>185</td>
<td>0.10499</td>
<td>0.00201</td>
<td>0.00396</td>
<td>0.000457</td>
</tr>
<tr>
<td>2</td>
<td>243</td>
<td>0.14300</td>
<td>0.00336</td>
<td>0.00425</td>
<td>0.000582</td>
</tr>
<tr>
<td>3</td>
<td>273</td>
<td>0.16199</td>
<td>0.00475</td>
<td>0.00452</td>
<td>0.000650</td>
</tr>
<tr>
<td>4</td>
<td>281</td>
<td>0.18699</td>
<td>0.00495</td>
<td>0.00470</td>
<td>0.000674</td>
</tr>
<tr>
<td>5</td>
<td>297</td>
<td>0.19799</td>
<td>0.00696</td>
<td>0.00480</td>
<td>0.000740</td>
</tr>
<tr>
<td>6</td>
<td>300</td>
<td>0.21180</td>
<td>0.01009</td>
<td>0.00520</td>
<td>0.000757</td>
</tr>
</tbody>
</table>
Table 2.27. Results for FRP channel beam (6 x 1\(\frac{5}{8}\) x \(\frac{1}{4}\) in.) Test No. CFT4-5 with four-point loading (L = 72 in.)

<table>
<thead>
<tr>
<th>Obs No</th>
<th>Load (lbs)</th>
<th>Midspan Vertical Deflection (in)</th>
<th>Midspan Lateral Deflection (in)</th>
<th>Midspan Angle of Twist (rad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>51</td>
<td>0.01599</td>
<td>0.00298</td>
<td>0.00101</td>
</tr>
<tr>
<td>1</td>
<td>107</td>
<td>0.03498</td>
<td>0.00592</td>
<td>0.00211</td>
</tr>
<tr>
<td>2</td>
<td>161</td>
<td>0.05796</td>
<td>0.01082</td>
<td>0.00305</td>
</tr>
<tr>
<td>3</td>
<td>214</td>
<td>0.08194</td>
<td>0.01468</td>
<td>0.00381</td>
</tr>
<tr>
<td>4</td>
<td>243</td>
<td>0.09492</td>
<td>0.01657</td>
<td>0.00449</td>
</tr>
<tr>
<td>5</td>
<td>268</td>
<td>0.10689</td>
<td>0.01943</td>
<td>0.00526</td>
</tr>
<tr>
<td>6</td>
<td>302</td>
<td>0.12184</td>
<td>0.02422</td>
<td>0.00637</td>
</tr>
<tr>
<td>7</td>
<td>324</td>
<td>0.13378</td>
<td>0.02903</td>
<td>0.00722</td>
</tr>
<tr>
<td>8</td>
<td>342</td>
<td>0.14170</td>
<td>0.03379</td>
<td>0.00850</td>
</tr>
<tr>
<td>9</td>
<td>353</td>
<td>0.14565</td>
<td>0.03665</td>
<td>0.00919</td>
</tr>
<tr>
<td>10</td>
<td>361</td>
<td>0.15159</td>
<td>0.03948</td>
<td>0.00996</td>
</tr>
<tr>
<td>11</td>
<td>375</td>
<td>0.15752</td>
<td>0.04227</td>
<td>0.01090</td>
</tr>
<tr>
<td>12</td>
<td>385</td>
<td>0.16539</td>
<td>0.04797</td>
<td>0.01218</td>
</tr>
<tr>
<td>13</td>
<td>400</td>
<td>0.17127</td>
<td>0.05116</td>
<td>0.01338</td>
</tr>
<tr>
<td>14</td>
<td>412</td>
<td>0.17806</td>
<td>0.05825</td>
<td>0.01536</td>
</tr>
<tr>
<td>15</td>
<td>425</td>
<td>0.18869</td>
<td>0.06751</td>
<td>0.01837</td>
</tr>
<tr>
<td>16</td>
<td>436</td>
<td>0.19440</td>
<td>0.07293</td>
<td>0.02077</td>
</tr>
<tr>
<td>17</td>
<td>447</td>
<td>0.21358</td>
<td>0.10290</td>
<td>0.06177</td>
</tr>
<tr>
<td>18</td>
<td>452</td>
<td>0.22096</td>
<td>0.12115</td>
<td>0.07554</td>
</tr>
</tbody>
</table>
Table 2.28. Results for FRP channel beam ($6 \times 1\frac{5}{8} \times \frac{1}{4}$ in.) Test No. CFT4-6 with four-point loading ($L = 60$ in.)

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Load (kips)</th>
<th>Midpoint Deflection (in.)</th>
<th>Midpoint Area Deflection (in.)</th>
<th>Midpoint Angle of Twist (rad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>59</td>
<td>0.01199</td>
<td>0.00098</td>
<td>0.00101</td>
</tr>
<tr>
<td>1</td>
<td>115</td>
<td>0.02399</td>
<td>0.00195</td>
<td>0.00203</td>
</tr>
<tr>
<td>2</td>
<td>163</td>
<td>0.03498</td>
<td>0.00389</td>
<td>0.00304</td>
</tr>
<tr>
<td>3</td>
<td>217</td>
<td>0.04896</td>
<td>0.00879</td>
<td>0.00415</td>
</tr>
<tr>
<td>4</td>
<td>279</td>
<td>0.06391</td>
<td>0.01465</td>
<td>0.00534</td>
</tr>
<tr>
<td>5</td>
<td>314</td>
<td>0.07785</td>
<td>0.02147</td>
<td>0.00679</td>
</tr>
<tr>
<td>6</td>
<td>377</td>
<td>0.09275</td>
<td>0.02923</td>
<td>0.00824</td>
</tr>
<tr>
<td>7</td>
<td>431</td>
<td>0.10859</td>
<td>0.03786</td>
<td>0.01038</td>
</tr>
<tr>
<td>8</td>
<td>530</td>
<td>0.12312</td>
<td>0.05611</td>
<td>0.01518</td>
</tr>
<tr>
<td>9</td>
<td>556</td>
<td>0.13286</td>
<td>0.06265</td>
<td>0.01750</td>
</tr>
<tr>
<td>10</td>
<td>578</td>
<td>0.013965</td>
<td>0.06729</td>
<td>0.01922</td>
</tr>
<tr>
<td>11</td>
<td>589</td>
<td>0.14449</td>
<td>0.07102</td>
<td>0.02042</td>
</tr>
<tr>
<td>12</td>
<td>607</td>
<td>0.15027</td>
<td>0.07568</td>
<td>0.02181</td>
</tr>
<tr>
<td>13</td>
<td>618</td>
<td>0.15509</td>
<td>0.07939</td>
<td>0.02301</td>
</tr>
<tr>
<td>14</td>
<td>629</td>
<td>0.15985</td>
<td>0.08405</td>
<td>0.02440</td>
</tr>
<tr>
<td>15</td>
<td>642</td>
<td>0.16457</td>
<td>0.08864</td>
<td>0.02613</td>
</tr>
<tr>
<td>16</td>
<td>655</td>
<td>0.17025</td>
<td>0.09315</td>
<td>0.02802</td>
</tr>
<tr>
<td>17</td>
<td>669</td>
<td>0.17476</td>
<td>0.10057</td>
<td>0.03054</td>
</tr>
<tr>
<td>18</td>
<td>682</td>
<td>0.18110</td>
<td>0.10873</td>
<td>0.03392</td>
</tr>
<tr>
<td>19</td>
<td>693</td>
<td>0.18733</td>
<td>0.11782</td>
<td>0.03739</td>
</tr>
<tr>
<td>20</td>
<td>701</td>
<td>0.19318</td>
<td>0.12855</td>
<td>0.04251</td>
</tr>
<tr>
<td>21</td>
<td>701</td>
<td>0.19861</td>
<td>0.13385</td>
<td>0.04468</td>
</tr>
<tr>
<td>22</td>
<td>701</td>
<td>0.20617</td>
<td>0.14633</td>
<td>0.04992</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Table 2.29. Results for FRP channel beam (6 × 1 \(\frac{5}{8} \times \frac{1}{4} \) in.) Test No. CFT4-7 with four-point loading (L = 84 in.)
(centroidal loading; x = -0.5675, y = -3.0)

<table>
<thead>
<tr>
<th>Obs. No.</th>
<th>Load P (lbs)</th>
<th>(\gamma) (in)</th>
<th>(\alpha) (in)</th>
<th>(\phi) (in)</th>
<th>(\epsilon) (in/in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>27</td>
<td>0.02701</td>
<td>-0.00225</td>
<td>0.00946</td>
<td>0.000084</td>
</tr>
<tr>
<td>1</td>
<td>62</td>
<td>0.05802</td>
<td>-0.00218</td>
<td>0.02042</td>
<td>0.000162</td>
</tr>
<tr>
<td>2</td>
<td>88</td>
<td>0.08962</td>
<td>0.00916</td>
<td>0.03161</td>
<td>0.000239</td>
</tr>
<tr>
<td>3</td>
<td>115</td>
<td>0.11860</td>
<td>0.026767</td>
<td>0.04377</td>
<td>0.000311</td>
</tr>
<tr>
<td>4</td>
<td>142</td>
<td>0.14827</td>
<td>0.05400</td>
<td>0.05940</td>
<td>0.000391</td>
</tr>
<tr>
<td>5</td>
<td>169</td>
<td>0.17641</td>
<td>0.09556</td>
<td>0.07834</td>
<td>0.000466</td>
</tr>
<tr>
<td>6</td>
<td>187</td>
<td>0.20361</td>
<td>0.15054</td>
<td>0.10613</td>
<td>0.000560</td>
</tr>
<tr>
<td>7</td>
<td>203</td>
<td>0.24860</td>
<td>0.22436</td>
<td>0.15370</td>
<td>0.000653</td>
</tr>
</tbody>
</table>
Table 2.30. Results for FRP channel beam \((6 \times 1 \frac{5}{8} \times \frac{1}{4} \text{ in.})\) Test No. CFT4-8 with four-point loading \((L = 84 \text{ in.)})\)

/loading between centroid and shear center; \(x = -0.2656, y = -3.0\)

<table>
<thead>
<tr>
<th>Obs. No.</th>
<th>Load P (lbs)</th>
<th>(y_1) (in.)</th>
<th>(x_1) (in.)</th>
<th>(\phi_1) (in.)</th>
<th>(f_2) (in./lin.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>35</td>
<td>0.02300</td>
<td>-0.00015</td>
<td>0.00682</td>
<td>0.000092</td>
</tr>
<tr>
<td>1</td>
<td>72</td>
<td>0.04889</td>
<td>0.00626</td>
<td>0.01507</td>
<td>0.000164</td>
</tr>
<tr>
<td>2</td>
<td>104</td>
<td>0.07769</td>
<td>0.01119</td>
<td>0.02321</td>
<td>0.000255</td>
</tr>
<tr>
<td>3</td>
<td>136</td>
<td>0.10615</td>
<td>0.02251</td>
<td>0.03271</td>
<td>0.000324</td>
</tr>
<tr>
<td>4</td>
<td>177</td>
<td>0.14588</td>
<td>0.05563</td>
<td>0.04961</td>
<td>0.000439</td>
</tr>
<tr>
<td>5</td>
<td>211</td>
<td>0.18407</td>
<td>0.10787</td>
<td>0.07348</td>
<td>0.000552</td>
</tr>
<tr>
<td>6</td>
<td>243</td>
<td>0.23832</td>
<td>0.21494</td>
<td>0.11344</td>
<td>0.000702</td>
</tr>
</tbody>
</table>
Table 2.31. Results for FRP channel beam ($6 \times 1 \frac{5}{8} \times \frac{1}{4}$ in.) Test No. CFT4-9 with four-point loading ($L = 84$ in.)
/loading to right side of the shear center; $x = 0.4531$, $y = -3.0$)

<table>
<thead>
<tr>
<th>Obs No</th>
<th>Load P (lbs)</th>
<th>x (in)</th>
<th>y (in)</th>
<th>θ (in)</th>
<th>Δ (in/in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>32</td>
<td>0.01805</td>
<td>0.00104</td>
<td>-0.01235</td>
<td>0.000073</td>
</tr>
<tr>
<td>1</td>
<td>64</td>
<td>0.032815</td>
<td>0.00617</td>
<td>-0.01843</td>
<td>0.000130</td>
</tr>
<tr>
<td>2</td>
<td>104</td>
<td>0.054520</td>
<td>0.00457</td>
<td>-0.03123</td>
<td>0.000210</td>
</tr>
<tr>
<td>3</td>
<td>131</td>
<td>0.073995</td>
<td>-0.00793</td>
<td>-0.03754</td>
<td>0.000273</td>
</tr>
<tr>
<td>4</td>
<td>158</td>
<td>0.093382</td>
<td>-0.02922</td>
<td>-0.04232</td>
<td>0.000335</td>
</tr>
<tr>
<td>5</td>
<td>182</td>
<td>0.111590</td>
<td>-0.06401</td>
<td>-0.03765</td>
<td>0.000375</td>
</tr>
<tr>
<td>6</td>
<td>195</td>
<td>0.122299</td>
<td>-0.10265</td>
<td>-0.02765</td>
<td>0.000404</td>
</tr>
<tr>
<td>7</td>
<td>201</td>
<td>0.133494</td>
<td>-0.13601</td>
<td>-0.01543</td>
<td>0.000407</td>
</tr>
<tr>
<td>8</td>
<td>209</td>
<td>0.140133</td>
<td>-0.16553</td>
<td>-0.00232</td>
<td>0.000408</td>
</tr>
<tr>
<td>9</td>
<td>211</td>
<td>0.147355</td>
<td>-0.20652</td>
<td>0.014543</td>
<td>0.000411</td>
</tr>
<tr>
<td>10</td>
<td>217</td>
<td>0.159112</td>
<td>-0.25060</td>
<td>0.041231</td>
<td>0.000406</td>
</tr>
<tr>
<td>11</td>
<td>222</td>
<td>0.170324</td>
<td>-0.29283</td>
<td>0.08565</td>
<td>0.000400</td>
</tr>
<tr>
<td>12</td>
<td>225</td>
<td>0.181351</td>
<td>-0.35453</td>
<td>0.08765</td>
<td>0.000392</td>
</tr>
<tr>
<td>13</td>
<td>233</td>
<td>0.193733</td>
<td>-0.39980</td>
<td>0.11067</td>
<td>-</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Table 3.1 Minor axis bending theoretical results for I-beam
(4×2×0.25 in., L=30 in.)

<table>
<thead>
<tr>
<th>Obs. No.</th>
<th>Load (lbs)</th>
<th>Bending Strain (in/in)</th>
<th>Midspan Deflection (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>200</td>
<td>0.001253</td>
<td>0.115823</td>
</tr>
<tr>
<td>1</td>
<td>400</td>
<td>0.002607</td>
<td>0.231645</td>
</tr>
<tr>
<td>2</td>
<td>600</td>
<td>0.003997</td>
<td>0.347528</td>
</tr>
<tr>
<td>3</td>
<td>800</td>
<td>0.005416</td>
<td>0.463682</td>
</tr>
<tr>
<td>4</td>
<td>1000</td>
<td>0.006761</td>
<td>0.579472</td>
</tr>
<tr>
<td>5</td>
<td>1200</td>
<td>0.008052</td>
<td>0.694845</td>
</tr>
<tr>
<td>6</td>
<td>1400</td>
<td>0.009489</td>
<td>0.820251</td>
</tr>
<tr>
<td>7</td>
<td>1600</td>
<td>0.010887</td>
<td>0.940875</td>
</tr>
<tr>
<td>8</td>
<td>1800</td>
<td>0.012215</td>
<td>1.061523</td>
</tr>
<tr>
<td>9</td>
<td>2000</td>
<td>0.0134311</td>
<td>1.182125</td>
</tr>
<tr>
<td>10</td>
<td>2240</td>
<td>0.034566</td>
<td>1.244830</td>
</tr>
</tbody>
</table>
Table 3.2 Results for FRP composite I-beam (4×2×0.25 in.) Test No. IFT3-1 with three-point loading (L =108 in. e =-0.002 in.)

<table>
<thead>
<tr>
<th>Obs No</th>
<th>Load (lbs)</th>
<th>u_1 (in)</th>
<th>u_2 (in)</th>
<th>u_3 (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>35</td>
<td>0.084202</td>
<td>0.032273</td>
<td>0.003288</td>
</tr>
<tr>
<td>2</td>
<td>62</td>
<td>0.149158</td>
<td>0.132173</td>
<td>0.007682</td>
</tr>
<tr>
<td>3</td>
<td>78</td>
<td>0.187650</td>
<td>0.26673</td>
<td>0.012411</td>
</tr>
<tr>
<td>4</td>
<td>99</td>
<td>0.238172</td>
<td>0.731265</td>
<td>0.027078</td>
</tr>
<tr>
<td>5</td>
<td>124</td>
<td>0.298316</td>
<td>0.782324</td>
<td>0.455208</td>
</tr>
</tbody>
</table>
Table 3.3 Results for FRP composite I-beam (4×2×0.25 in.) Test No. IFT3-2 with three-point loading (L = 96 in. e = 0.002 in.)

<table>
<thead>
<tr>
<th>Obs. No.</th>
<th>Load (lbs)</th>
<th>f_1 (in)</th>
<th>f_2 (in)</th>
<th>f_3 (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>29</td>
<td>0.048999</td>
<td>0.0011043</td>
<td>0.00192</td>
</tr>
<tr>
<td>2</td>
<td>62</td>
<td>0.010475</td>
<td>0.0062660</td>
<td>0.00515</td>
</tr>
<tr>
<td>3</td>
<td>88</td>
<td>0.148689</td>
<td>0.0164246</td>
<td>0.00960</td>
</tr>
<tr>
<td>4</td>
<td>110</td>
<td>9.185862</td>
<td>0.0376788</td>
<td>0.01709</td>
</tr>
<tr>
<td>5</td>
<td>140</td>
<td>0.236551</td>
<td>0.164499</td>
<td>0.06159</td>
</tr>
</tbody>
</table>
Table 3.4 Results for FRP composite I-beam (4×2×0.25 in.) Test No. IFT3-3 with three-point loading (L = 84 in. e =−0.002 in.)

<table>
<thead>
<tr>
<th>Obs No</th>
<th>Load P (lbs)</th>
<th>Midspan Deflection (in)</th>
<th>Moment (in-lb)</th>
<th>Slope (in/ft)</th>
<th>y (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>13</td>
<td>0.015847</td>
<td>0.000999</td>
<td>0.000578</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>43</td>
<td>0.048673</td>
<td>0.012272</td>
<td>0.000215</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>83</td>
<td>0.093950</td>
<td>0.057219</td>
<td>0.000523</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>110</td>
<td>0.124513</td>
<td>0.124412</td>
<td>0.000867</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>136</td>
<td>0.153943</td>
<td>0.257112</td>
<td>0.001458</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>158</td>
<td>0.178846</td>
<td>0.515028</td>
<td>0.002528</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>170</td>
<td>0.196957</td>
<td>0.828617</td>
<td>0.004484</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.5 Results for FRP composite I-beam (4×2×0.25 in.) Test No.
IFT3-4 with three-point loading (L = 72 in. e =+0.002 in.)

<table>
<thead>
<tr>
<th>Obs. No.</th>
<th>Load P (Lbs)</th>
<th>xₘ (in)</th>
<th>zₘ (in)</th>
<th>θₘ (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>59</td>
<td>0.042056</td>
<td>-0.00101</td>
<td>0.0002061</td>
</tr>
<tr>
<td>2</td>
<td>110</td>
<td>0.078410</td>
<td>-0.00436</td>
<td>0.0004804</td>
</tr>
<tr>
<td>3</td>
<td>158</td>
<td>0.112626</td>
<td>-0.01226</td>
<td>0.0009457</td>
</tr>
<tr>
<td>4</td>
<td>201</td>
<td>0.143277</td>
<td>-0.03132</td>
<td>0.0019112</td>
</tr>
<tr>
<td>5</td>
<td>219</td>
<td>0.156821</td>
<td>-0.05033</td>
<td>0.0028267</td>
</tr>
<tr>
<td>6</td>
<td>238</td>
<td>0.169512</td>
<td>-0.09743</td>
<td>0.0050509</td>
</tr>
<tr>
<td>7</td>
<td>249</td>
<td>0.177492</td>
<td>-0.17281</td>
<td>0.0085791</td>
</tr>
<tr>
<td>8</td>
<td>254</td>
<td>0.181057</td>
<td>-0.25225</td>
<td>0.0122866</td>
</tr>
<tr>
<td>9</td>
<td>260</td>
<td>0.186759</td>
<td>-0.32564</td>
<td>0.0246490</td>
</tr>
</tbody>
</table>
Table 3.6 Results for FRP composite I-beam ($4\times2\times0.25 \text{ in.}$) Test No. IFT4-1 with four-point loading ($L = 108 \text{ in.}, e = -0.0002 \text{ in.}$)

<table>
<thead>
<tr>
<th>Obs. No</th>
<th>Load P (lbf)</th>
<th>y (in)</th>
<th>Δy (in)</th>
<th>δ_y (in)</th>
<th>e_y (in/in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>13</td>
<td>0.042641</td>
<td>0.0001079</td>
<td>0.0002253</td>
<td>0.000118</td>
</tr>
<tr>
<td>2</td>
<td>27</td>
<td>0.088570</td>
<td>0.0005550</td>
<td>0.0005945</td>
<td>0.000246</td>
</tr>
<tr>
<td>3</td>
<td>38</td>
<td>0.124663</td>
<td>0.0013279</td>
<td>0.0009679</td>
<td>0.000347</td>
</tr>
<tr>
<td>4</td>
<td>48</td>
<td>0.157459</td>
<td>0.0026763</td>
<td>0.0015575</td>
<td>0.000440</td>
</tr>
<tr>
<td>5</td>
<td>62</td>
<td>0.203397</td>
<td>0.0075414</td>
<td>0.0034399</td>
<td>0.000573</td>
</tr>
<tr>
<td>6</td>
<td>70</td>
<td>0.229623</td>
<td>0.0168320</td>
<td>0.0068500</td>
<td>0.000659</td>
</tr>
<tr>
<td>7</td>
<td>72</td>
<td>0.236203</td>
<td>0.0221151</td>
<td>0.0087663</td>
<td>0.000685</td>
</tr>
<tr>
<td>8</td>
<td>75</td>
<td>0.246045</td>
<td>0.0380550</td>
<td>0.0145222</td>
<td>0.000736</td>
</tr>
<tr>
<td>9</td>
<td>78</td>
<td>0.259167</td>
<td>0.2118480</td>
<td>0.0377166</td>
<td>0.000859</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Table 3.7 Results for FRP composite I-beam (4×2×0.25 in.) Test No. IFT4-2 with four-point loading (L = 96 in. e = -0.00007 in.)

<table>
<thead>
<tr>
<th>OBS. No</th>
<th>Load P (lbs)</th>
<th>Midspan Deflection</th>
<th></th>
<th></th>
<th></th>
<th>C (in./in)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>u (in.)</td>
<td>v (in.)</td>
<td>w (in.)</td>
<td>θ (in.)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>19</td>
<td>0.099480</td>
<td>0.000447</td>
<td>0.000091</td>
<td>0.000122</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>34</td>
<td>0.088544</td>
<td>0.000169</td>
<td>0.000194</td>
<td>0.000220</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>50</td>
<td>0.130212</td>
<td>0.000465</td>
<td>0.000367</td>
<td>0.000325</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>66</td>
<td>0.171880</td>
<td>0.001164</td>
<td>0.000704</td>
<td>0.000435</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>77</td>
<td>0.200527</td>
<td>0.002351</td>
<td>0.001227</td>
<td>0.000518</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>82</td>
<td>0.213548</td>
<td>0.003464</td>
<td>0.001704</td>
<td>0.000516</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>91</td>
<td>0.236899</td>
<td>0.009700</td>
<td>0.004327</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.8 Results for FRP composite I-beam (4×2×0.25 in.) Test No. IFT4-3 with four-point loading (L = 84 in. e =-0.0005 in.)

<table>
<thead>
<tr>
<th>Obs. No</th>
<th>Load P (lbs)</th>
<th>Midspan Deflection</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>r (in)</td>
<td>θ (in)</td>
<td>θ (in)</td>
<td>e (in/in)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>29</td>
<td>0.044762</td>
<td>0.000382</td>
<td>0.000765</td>
<td>0.000126</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>0.071775</td>
<td>0.001397</td>
<td>0.001630</td>
<td>0.000220</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>72</td>
<td>0.111135</td>
<td>0.003956</td>
<td>0.003248</td>
<td>0.000321</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>93</td>
<td>0.143550</td>
<td>0.010730</td>
<td>0.006890</td>
<td>0.000429</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>103</td>
<td>0.158985</td>
<td>0.019311</td>
<td>0.011250</td>
<td>0.000494</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>114</td>
<td>0.175964</td>
<td>0.051026</td>
<td>0.027003</td>
<td>0.000626</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>119</td>
<td>0.185226</td>
<td>0.121519</td>
<td>0.061799</td>
<td>0.000836</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>123</td>
<td>0.189856</td>
<td>3.842665</td>
<td>1.893306</td>
<td>0.001751</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.9 Results for FRP composite I-beam (4×2×0.25 in.) Test No. IFT4-4 with four-point loading (L = 72 in. e = 0.0005 in.)

<table>
<thead>
<tr>
<th>Obs. No.</th>
<th>Load (lbs)</th>
<th>Moment (in)</th>
<th>Shear (in)</th>
<th>Deflection (in)</th>
<th>Rotation (in/in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>24</td>
<td>0.023328</td>
<td>0.000104</td>
<td>0.000400</td>
<td>0.000066</td>
</tr>
<tr>
<td>2</td>
<td>56</td>
<td>0.054433</td>
<td>0.000707</td>
<td>0.001170</td>
<td>0.000156</td>
</tr>
<tr>
<td>3</td>
<td>78</td>
<td>0.075818</td>
<td>0.001679</td>
<td>0.002007</td>
<td>0.000220</td>
</tr>
<tr>
<td>4</td>
<td>99</td>
<td>0.096231</td>
<td>0.003504</td>
<td>0.003221</td>
<td>0.000285</td>
</tr>
<tr>
<td>5</td>
<td>120</td>
<td>0.116643</td>
<td>0.007520</td>
<td>0.005919</td>
<td>0.000358</td>
</tr>
<tr>
<td>6</td>
<td>141</td>
<td>0.137056</td>
<td>0.020326</td>
<td>0.013709</td>
<td>0.000467</td>
</tr>
<tr>
<td>7</td>
<td>158</td>
<td>0.153580</td>
<td>0.139320</td>
<td>0.084328</td>
<td>0.00100</td>
</tr>
<tr>
<td>8</td>
<td>161</td>
<td>0.156497</td>
<td>0.753149</td>
<td>0.447825</td>
<td>0.00353</td>
</tr>
</tbody>
</table>
Table 3.10 Results for FRP composite I-beam (4×2×0.25 in.) Test No. IFT4-5 with four-point loading (L = 60 in. e = -0.0005 in.)

<table>
<thead>
<tr>
<th>Obs No.</th>
<th>Load P (lbs)</th>
<th>Midspan Deflection</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>w_x (in)</td>
<td>w_y (in)</td>
<td>ϕ_x (in)</td>
<td>ϕ_y (in/m)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>32</td>
<td>0.018000</td>
<td>0.000067</td>
<td>0.000033</td>
<td>0.000051</td>
</tr>
<tr>
<td>2</td>
<td>56</td>
<td>0.031501</td>
<td>0.000230</td>
<td>0.000065</td>
<td>0.000090</td>
</tr>
<tr>
<td>3</td>
<td>88</td>
<td>0.050064</td>
<td>0.000678</td>
<td>0.00123</td>
<td>0.00144</td>
</tr>
<tr>
<td>4</td>
<td>120</td>
<td>0.067502</td>
<td>0.001599</td>
<td>0.00214</td>
<td>0.00200</td>
</tr>
<tr>
<td>5</td>
<td>158</td>
<td>0.088877</td>
<td>0.004178</td>
<td>0.00429</td>
<td>0.00276</td>
</tr>
<tr>
<td>6</td>
<td>190</td>
<td>0.106878</td>
<td>0.011098</td>
<td>0.00954</td>
<td>0.00368</td>
</tr>
<tr>
<td>7</td>
<td>217</td>
<td>0.122066</td>
<td>0.056323</td>
<td>0.004263</td>
<td>0.00682</td>
</tr>
<tr>
<td>8</td>
<td>226</td>
<td>0.127129</td>
<td>8.724050</td>
<td>0.635219</td>
<td>0.003436</td>
</tr>
</tbody>
</table>
Table 3.11 Results for FRP composite channel beam (6×1 5/8×0.25 in.) Test CFT3-1 with three-point loading (L = 108 in. e = 0.0003 in.)

<table>
<thead>
<tr>
<th>Obs. No.</th>
<th>Load (lbs)</th>
<th>u (in)</th>
<th>v (in)</th>
<th>(\phi) (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>35</td>
<td>0.028798</td>
<td>-0.000186</td>
<td>0.000301</td>
</tr>
<tr>
<td>2</td>
<td>86</td>
<td>0.070761</td>
<td>-0.001290</td>
<td>0.000855</td>
</tr>
<tr>
<td>3</td>
<td>131</td>
<td>0.107788</td>
<td>-0.003745</td>
<td>0.001636</td>
</tr>
<tr>
<td>4</td>
<td>163</td>
<td>0.134118</td>
<td>-0.007508</td>
<td>0.002645</td>
</tr>
<tr>
<td>5</td>
<td>193</td>
<td>0.158802</td>
<td>-0.015597</td>
<td>0.004660</td>
</tr>
<tr>
<td>6</td>
<td>209</td>
<td>0.171967</td>
<td>-0.025601</td>
<td>0.007080</td>
</tr>
<tr>
<td>7</td>
<td>222</td>
<td>0.182664</td>
<td>-0.044136</td>
<td>0.011511</td>
</tr>
<tr>
<td>8</td>
<td>233</td>
<td>0.191715</td>
<td>-0.091466</td>
<td>0.022774</td>
</tr>
<tr>
<td>9</td>
<td>238</td>
<td>0.195829</td>
<td>-0.162696</td>
<td>0.039691</td>
</tr>
<tr>
<td>10</td>
<td>241</td>
<td>0.198297</td>
<td>-0.292341</td>
<td>0.070468</td>
</tr>
<tr>
<td>11</td>
<td>243</td>
<td>0.199943</td>
<td>-0.602048</td>
<td>0.298558</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Table 3.12 Results for FRP composite channel beam (6×1.5/8×0.25 in.) Test No. CFT3-2 with three-point loading (L = 96 in. e = 0.0003 in.)

<table>
<thead>
<tr>
<th>Obs. No.</th>
<th>Load (Lbs)</th>
<th>M_w (in.)</th>
<th>Δ_y (in.)</th>
<th>ϕ_y (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>46</td>
<td>0.026582</td>
<td>-0.000165</td>
<td>0.000291</td>
</tr>
<tr>
<td>2</td>
<td>96</td>
<td>0.055477</td>
<td>-0.000796</td>
<td>0.000972</td>
</tr>
<tr>
<td>3</td>
<td>155</td>
<td>0.089572</td>
<td>-0.002524</td>
<td>0.001325</td>
</tr>
<tr>
<td>4</td>
<td>203</td>
<td>0.117311</td>
<td>-0.005635</td>
<td>0.002267</td>
</tr>
<tr>
<td>5</td>
<td>243</td>
<td>0.140426</td>
<td>-0.011552</td>
<td>0.003896</td>
</tr>
<tr>
<td>6</td>
<td>270</td>
<td>0.156029</td>
<td>-0.021210</td>
<td>0.006456</td>
</tr>
<tr>
<td>7</td>
<td>297</td>
<td>0.171632</td>
<td>-0.054280</td>
<td>0.015201</td>
</tr>
<tr>
<td>8</td>
<td>310</td>
<td>0.179145</td>
<td>-0.142142</td>
<td>0.037841</td>
</tr>
</tbody>
</table>
Table 3.13 Results for FRP composite channel beam (6x1 5/8x0.25 in.) Test No. CFT4-1 with four-point loading (L = 108 in.; e = 0.0003 in.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>32</td>
<td>0.035904</td>
<td>0.000490</td>
<td>0.000671</td>
</tr>
<tr>
<td>2</td>
<td>64</td>
<td>0.071804</td>
<td>0.002904</td>
<td>0.002008</td>
</tr>
<tr>
<td>3</td>
<td>80</td>
<td>0.089761</td>
<td>0.006256</td>
<td>0.003480</td>
</tr>
<tr>
<td>4</td>
<td>96</td>
<td>0.107713</td>
<td>0.015297</td>
<td>0.007551</td>
</tr>
<tr>
<td>5</td>
<td>115</td>
<td>0.129031</td>
<td>0.218289</td>
<td>0.085593</td>
</tr>
<tr>
<td>6</td>
<td>117</td>
<td>0.131275</td>
<td>16.86569</td>
<td>6.505250</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Table 3.14 Results for FRP composite channel beam (6\times115/8\times0.25 in.) Test No. CFT4-2 with four-point loading (L = 102 in.; e = -0.0005 in.)

<table>
<thead>
<tr>
<th>Obs No</th>
<th>Load P (lbs)</th>
<th>Midspan Deflection</th>
<th>1 (in)</th>
<th>2 (in)</th>
<th>3 (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>30</td>
<td>0.028356</td>
<td>0.000499</td>
<td>0.000864</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>56</td>
<td>0.052931</td>
<td>0.002215</td>
<td>0.002067</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>85</td>
<td>0.081288</td>
<td>0.007844</td>
<td>0.004865</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>109</td>
<td>0.103027</td>
<td>0.025830</td>
<td>0.012587</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>130</td>
<td>0.12287</td>
<td>0.952344</td>
<td>0.391809</td>
<td></td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Table 3.15 Results for FRP composite channel beam (6×1 5/8×0.25 in.) Test No. CFT4-3 with four-point loading (L = 96 in.; e = -0.0001 in.)

<table>
<thead>
<tr>
<th>Obs. No.</th>
<th>Load (lb)</th>
<th>Midspan Deflection</th>
<th>θ_e (in.)</th>
<th>δ_m (in.)</th>
<th>δ_0 (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>32</td>
<td>0.025216</td>
<td>0.007192</td>
<td>0.000155</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>63</td>
<td>0.055643</td>
<td>0.003593</td>
<td>0.000397</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>96</td>
<td>0.075650</td>
<td>0.012908</td>
<td>0.000944</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>128</td>
<td>0.100864</td>
<td>0.057465</td>
<td>0.003179</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>148</td>
<td>0.116628</td>
<td>3.079524</td>
<td>0.149144</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.16 Results for FRP composite channel beam (6×1 5/8×0.25 in.) Test No. CFT4-4 with four-point loading (L = 84 in.; e =-0.00009 in.)

<table>
<thead>
<tr>
<th>Obs. No.</th>
<th>Load (lbs)</th>
<th>$M_{	ext{midspan}}$ (kips ft)</th>
<th>v_1 (in)</th>
<th>v_2 (in)</th>
<th>ϕ_1 (in)</th>
<th>ϕ_2 (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>50</td>
<td>0.018943</td>
<td>0.000282</td>
<td>0.000131</td>
<td>0.000038</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>0.037892</td>
<td>0.001477</td>
<td>0.000346</td>
<td>0.000076</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>150</td>
<td>0.056839</td>
<td>0.005076</td>
<td>0.000798</td>
<td>0.000115</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>200</td>
<td>0.075785</td>
<td>0.021639</td>
<td>0.002569</td>
<td>0.000153</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>233</td>
<td>0.088290</td>
<td>8.303214</td>
<td>0.850028</td>
<td>0.000215</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.17 Results for FRP composite channel beam (6×1 5/8×0.25 in.) Test No. CFT4-5 with four-point loading (L = 72 in.; e = -0.0009 in.)

<table>
<thead>
<tr>
<th>Obs. No.</th>
<th>Load P (lbs)</th>
<th>Midspan Deflection μ</th>
<th>μ (in)</th>
<th>ν (in)</th>
<th>θ μ (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>51</td>
<td>0.010952</td>
<td>0.000164</td>
<td>0.000737</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>107</td>
<td>0.022979</td>
<td>0.000862</td>
<td>0.001843</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>161</td>
<td>0.034576</td>
<td>0.002423</td>
<td>0.003458</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>214</td>
<td>0.045959</td>
<td>0.005740</td>
<td>0.006187</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>243</td>
<td>0.052187</td>
<td>0.009207</td>
<td>0.008759</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>268</td>
<td>0.057556</td>
<td>0.014305</td>
<td>0.012363</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>302</td>
<td>0.064858</td>
<td>0.029783</td>
<td>0.022901</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>324</td>
<td>0.069582</td>
<td>0.059811</td>
<td>0.042942</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>344</td>
<td>0.073878</td>
<td>0.219308</td>
<td>0.148537</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.18 Results for FRP composite channel beam (6\times 1 \ 5/8 \times 0.25 \text{ in.}) Test No. CFT4-6 with four-point loading (L = 60 \text{ in.}; e = -0.0005 \text{ in.})

<table>
<thead>
<tr>
<th>Obs. No.</th>
<th>Load P (lbs)</th>
<th>Midspan Deflection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>w (in)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>59</td>
<td>0.007332</td>
</tr>
<tr>
<td>2</td>
<td>115</td>
<td>0.014292</td>
</tr>
<tr>
<td>3</td>
<td>163</td>
<td>0.020258</td>
</tr>
<tr>
<td>4</td>
<td>217</td>
<td>0.026969</td>
</tr>
<tr>
<td>5</td>
<td>279</td>
<td>0.034675</td>
</tr>
<tr>
<td>6</td>
<td>314</td>
<td>0.039025</td>
</tr>
<tr>
<td>7</td>
<td>377</td>
<td>0.046854</td>
</tr>
<tr>
<td>8</td>
<td>431</td>
<td>0.053566</td>
</tr>
<tr>
<td>9</td>
<td>530</td>
<td>0.065870</td>
</tr>
<tr>
<td>10</td>
<td>548</td>
<td>0.067858</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Table 3.19 Results for FRP composite channel beam (6×1 5/8×0.25 in.) Test No. CFT4-7 with four-point loading (L = 84 in.; centroidal loading, e = 0.5675 in.)

<table>
<thead>
<tr>
<th>Obs. No.</th>
<th>Load P (lbf)</th>
<th>Midspan Deflection</th>
<th>w (in)</th>
<th>h (in)</th>
<th>ϕ (in)</th>
<th>Re (in/in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>27</td>
<td>0.014253</td>
<td>0.000139</td>
<td>0.000480</td>
<td>0.000029</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>62</td>
<td>0.032730</td>
<td>0.000890</td>
<td>0.001338</td>
<td>0.000067</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>88</td>
<td>0.046567</td>
<td>0.002162</td>
<td>0.002299</td>
<td>0.000095</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>115</td>
<td>0.607105</td>
<td>0.004797</td>
<td>0.003922</td>
<td>0.000124</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>142</td>
<td>0.749642</td>
<td>0.010791</td>
<td>0.007180</td>
<td>0.000153</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>169</td>
<td>0.089218</td>
<td>0.031173</td>
<td>0.017515</td>
<td>0.000182</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>187</td>
<td>0.098720</td>
<td>0.142312</td>
<td>0.072509</td>
<td>0.000200</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>193</td>
<td>0.010188</td>
<td>0.677596</td>
<td>1.159608</td>
<td>0.003982</td>
<td></td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Table 3.20 Results for FRP composite channel beam (6×1 5/8×0.25 in.) Test No. CFT4-8 with four-point loading
(L = 84 in.; loading between centroid and shear center e = -0.2656)

<table>
<thead>
<tr>
<th>Obs No.</th>
<th>Load P (lbs)</th>
<th>Midspan Deflection</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>δx (in)</td>
<td>δy (in)</td>
<td>δz (in)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>35</td>
<td>0.018477</td>
<td>0.000111</td>
<td>0.000296</td>
</tr>
<tr>
<td>2</td>
<td>72</td>
<td>0.038010</td>
<td>0.000568</td>
<td>0.000735</td>
</tr>
<tr>
<td>3</td>
<td>104</td>
<td>0.054903</td>
<td>0.001474</td>
<td>0.001327</td>
</tr>
<tr>
<td>4</td>
<td>136</td>
<td>0.071796</td>
<td>0.003446</td>
<td>0.002384</td>
</tr>
<tr>
<td>5</td>
<td>177</td>
<td>0.093441</td>
<td>0.012198</td>
<td>0.006527</td>
</tr>
<tr>
<td>6</td>
<td>211</td>
<td>0.111390</td>
<td>3.157672</td>
<td>1.425375</td>
</tr>
</tbody>
</table>
Table 3.21 Results for FRP composite channel beam (6×1.5/8×0.25 in.) Test
No. CFT4-9 with four-point loading
(L = 84 in.; loading to right side of the shear center from wall, e = 0.4531 in.)

<table>
<thead>
<tr>
<th>Obs No.</th>
<th>Load (lbs)</th>
<th>Midspan Deflection</th>
<th>e (in/in)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>y (in)</td>
<td>δ (in)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>32</td>
<td>0.016893</td>
<td>-0.000158</td>
</tr>
<tr>
<td>2</td>
<td>64</td>
<td>0.033786</td>
<td>-0.000746</td>
</tr>
<tr>
<td>3</td>
<td>104</td>
<td>0.054903</td>
<td>-0.002616</td>
</tr>
<tr>
<td>4</td>
<td>131</td>
<td>0.069157</td>
<td>-0.005497</td>
</tr>
<tr>
<td>5</td>
<td>158</td>
<td>0.083410</td>
<td>-0.012294</td>
</tr>
<tr>
<td>6</td>
<td>182</td>
<td>0.096080</td>
<td>-0.033309</td>
</tr>
<tr>
<td>7</td>
<td>203</td>
<td>0.107167</td>
<td>-1.128954</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Table 4.1 Summary of Comparison of Peak loads from Flexural-Torsional Experiment Theory

<table>
<thead>
<tr>
<th>Serial No</th>
<th>Test No</th>
<th>Length (m)</th>
<th>P_{ex} (lbs)</th>
<th>P_{ex} (lbs)</th>
<th>P_{ex}/T_{th}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IFT3-1</td>
<td>108</td>
<td>-0.002</td>
<td>99</td>
<td>124</td>
</tr>
<tr>
<td>2</td>
<td>IFT3-2</td>
<td>96</td>
<td>-0.002</td>
<td>147</td>
<td>140</td>
</tr>
<tr>
<td>3</td>
<td>IFT3-3</td>
<td>84</td>
<td>-0.002</td>
<td>174</td>
<td>170</td>
</tr>
<tr>
<td>4</td>
<td>IFT3-4</td>
<td>72</td>
<td>+0.002</td>
<td>265</td>
<td>260</td>
</tr>
<tr>
<td>5</td>
<td>IFT4-1</td>
<td>108</td>
<td>-0.0002</td>
<td>78</td>
<td>78</td>
</tr>
<tr>
<td>6</td>
<td>IFT4-2</td>
<td>96</td>
<td>-0.00007</td>
<td>114</td>
<td>91</td>
</tr>
<tr>
<td>7</td>
<td>IFT4-3</td>
<td>84</td>
<td>-0.0005</td>
<td>125</td>
<td>123</td>
</tr>
<tr>
<td>8</td>
<td>IFT4-4</td>
<td>72</td>
<td>-0.0005</td>
<td>190</td>
<td>161</td>
</tr>
<tr>
<td>9</td>
<td>IFT4-5</td>
<td>60</td>
<td>-0.0005</td>
<td>292</td>
<td>226</td>
</tr>
<tr>
<td>10</td>
<td>CFT3-1</td>
<td>108</td>
<td>+0.0003</td>
<td>260</td>
<td>244</td>
</tr>
<tr>
<td>11</td>
<td>CFT3-2</td>
<td>96</td>
<td>+0.0003</td>
<td>345</td>
<td>310</td>
</tr>
<tr>
<td>12</td>
<td>CFT4-1</td>
<td>108</td>
<td>-0.0003</td>
<td>136</td>
<td>117</td>
</tr>
<tr>
<td>13</td>
<td>CFT4-2</td>
<td>102</td>
<td>-0.0005</td>
<td>160</td>
<td>130</td>
</tr>
<tr>
<td>14</td>
<td>CFT4-3</td>
<td>96</td>
<td>-0.0001</td>
<td>198</td>
<td>148</td>
</tr>
<tr>
<td>15</td>
<td>CFT4-4</td>
<td>84</td>
<td>-0.00009</td>
<td>300</td>
<td>233</td>
</tr>
<tr>
<td>16</td>
<td>CFT4-5</td>
<td>72</td>
<td>-0.0009</td>
<td>452</td>
<td>344</td>
</tr>
<tr>
<td>17</td>
<td>CFT4-6</td>
<td>60</td>
<td>-0.0003</td>
<td>701</td>
<td>548</td>
</tr>
<tr>
<td>18</td>
<td>CFT4-7</td>
<td>84</td>
<td>-0.5675</td>
<td>203</td>
<td>193</td>
</tr>
<tr>
<td>19</td>
<td>CFT4-8</td>
<td>84</td>
<td>-0.2656</td>
<td>243</td>
<td>211</td>
</tr>
<tr>
<td>20</td>
<td>CFT4-9</td>
<td>84</td>
<td>0.4531</td>
<td>233</td>
<td>203</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Table 5.1 Effect of load height on FRP channel beam buckling load

<table>
<thead>
<tr>
<th>(y_0^*) (in)</th>
<th>(P_r) (lbs)</th>
<th>For (+(y_0^*))</th>
<th>For (-(y_0^*))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(L = 108)in</td>
<td>(L = 84)in</td>
<td>(L = 60)in</td>
</tr>
<tr>
<td></td>
<td>(a = 42)in</td>
<td>(a = 30)in</td>
<td>(a = 18)in</td>
</tr>
<tr>
<td>0.0</td>
<td>304.87</td>
<td>683.84</td>
<td>2212.11</td>
</tr>
<tr>
<td>0.5</td>
<td>272.32</td>
<td>586.17</td>
<td>1791.88</td>
</tr>
<tr>
<td>1.50</td>
<td>218.46</td>
<td>436.49</td>
<td>1213.95</td>
</tr>
<tr>
<td>2.50</td>
<td>177.19</td>
<td>335.54</td>
<td>878.04</td>
</tr>
<tr>
<td>3.50</td>
<td>147.43</td>
<td>267.41</td>
<td>675.12</td>
</tr>
<tr>
<td>4.50</td>
<td>124.65</td>
<td>220.09</td>
<td>544.01</td>
</tr>
<tr>
<td>5.50</td>
<td>107.29</td>
<td>186.02</td>
<td>453.81</td>
</tr>
<tr>
<td>6.50</td>
<td>93.81</td>
<td>160.60</td>
<td>388.50</td>
</tr>
<tr>
<td>10.50</td>
<td>61.53</td>
<td>102.85</td>
<td>245.11</td>
</tr>
<tr>
<td>100.00</td>
<td>6.53</td>
<td>11.05</td>
<td>26.05</td>
</tr>
<tr>
<td>1000.00</td>
<td>0.67</td>
<td>1.11</td>
<td>2.65</td>
</tr>
<tr>
<td>(10^n)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Figure 1. (a) Schematic view of FRP composite beam with three-point loading
(b) Schematic view of FRP composite beam with four-point loading
Figure 2. Cross-sectional dimensions of FRP composite I-section

Figure 3. Cross-sectional dimensions of FRP channel section
Figure 4. Tensile stress-strain relationship
Figure 5. Location and numbers of test specimens for I-section
Figure 6. Location and numbers of test specimens for channel section
Figure 7. Schematic of FRP composite tension test set up
Figure 8. Normal stress-strain relationship based on tensile coupon test for specimen 1 from flange of I-section (see table 2.1)
Figure 9. Normal stress-strain relationship based on tensile coupon test for specimen 2 from flange of I-section (see table 2.2).
Figure 10. Normal stress-strain relationship based on tensile coupon test for specimen 3 from web of I-section (see table 2.3)
Figure 11. Normal stress-strain relationship based on tensile coupon test for specimen 4 from web of I-section (see table 2.4)
Figure 12. Normal stress-strain relationship based on tensile coupon test for specimen 5 from flange of channel section (see table 2.5)
Figure 13. Normal stress-strain relationship based on tensile coupon test for specimen 6 from flange of channel section (see table 2.6)
Figure 14. Normal stress-strain relationship based on tensile coupon test for specimen 7 from web of channel section (see table 2.7)
Figure 15. Normal stress-strain relationship based on tensile coupon test for specimen 5 from web of channel section (see table 2.8)
NOTE TO USERS

Page(s) missing in number only; text follows. Microfilmed as received.

UMI
Figure 16. Cross-sectional schematic view at beam load application about minor axis
Figure 17. Apparatus for testing FRP beam
Figure 18. Loading setup with hydraulic jacks
Figure 19. Tie rods connection of FRP beam
Figure 20. Laboratory simulations of simple supports.
Figure 21. Load (P) at midspan about minor axis
Figure 22. Load (P) versus midspan vertical deflection (v_e), about the minor axis bending.
Figure 23. Load (P) versus midspan strain (ϵ_c), about the minor axis bending
Figure 24. Moment (M_y) versus (ϕ_y) about minor axis bending
Figure 25. Cross-sectional schematic view at load application points for I-section beam
Figure 26. Load (P) versus midspan vertical deflection (v_c) for Test No. IFT3-1
Figure 27. Load (P) versus midspan lateral deflection (u_c) for Test No. IFT3-1
Figure 28. Load (P) versus midspan angle of twist (ϕ_c) for Test No. IFT3-1
Figure 29. Load (P) versus midspan vertical deflection (v_c) for Test No. IFT3-2
Figure 30. Load (P) versus midspan lateral deflection (u_c) for Test No. IFT3-2
Figure 31. Load (P) versus midspan angle of twist (ϕ_c) for Test No. IFT3-2.
Figure 32. Load (P) versus midspan vertical deflection (v_c) for Test No. IFT3-3
Figure 34. Load (P) versus midspan angle of twist (ϕ_c) for Test No. IFT3-3
Figure 34. Load (P) versus midspan angle of twist (ϕ_c) for Test No. IFT3-3
Figure 35. Load (P) versus midspan vertical deflection (v_c) for Test No. IFT3-4
Figure 36. Load (P) versus midspan lateral deflection (u_c) for Test No. IFT3-4
Figure 37. Load (P) versus midspan angle of twist (ϕ_c) for Test No. IFT3-4
Figure 38. Load (P) versus midspan vertical deflection (v_c) for Test No. IFT4-1
Figure 39. Load (P) versus midspan lateral deflection (u_e) for Test No. IFT4-1
Figure 40. Load \(P \) versus midspan angle of twist \(\phi_c \) for Test No. IFT4-1
Figure 41. Load (P) versus maximum strain (εₐ) for Test No. IFT4-1
Figure 42. Load (P) versus midspan vertical deflection (v_c) for Test No. IFT4-2
Figure 43. Load (P) versus midspan lateral deflection (u_c) for Test No. IFT4-2
Figure 44. Load (P) versus midspan angle of twist (ϕ_c) for Test No. IFT4-2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Figure 45. Load (P) versus maximum strain (ϵ_c) for Test No.IFT4-2
Figure 46. Load (P) versus midspan vertical deflection (v_c) for Test No. IFT4-3
Figure 47. Load (P) versus midspan lateral deflection (u_c) for Test No. IFT4-3
Figure 48. Load (P) versus midspan angle of twist (ϕ_c) for Test No. IFT4-3
Figure 49. Load (P) versus maximum strain (ε_c) for Test No. IFT4-3
Figure 50. Load (P) versus midspan vertical deflection (v_c) for Test No. IFT4-4
Figure 51. Load (P) versus midspan lateral deflection \((u_c) \) for Test No. IFT4-4
Figure 52. Load (P) versus midspan angle of twist (\(\phi_c \)) for Test No. IFT4-4.
Figure 53. Load (P) versus maximum strain (ε_c) for Test No. IFT4-4
Figure 54. Load (P) versus midspan vertical deflection (v_c) for Test No. IFT4-5
Figure 55. Load (P) versus midspan lateral deflection (u_c) for Test No. IFT4-5
Figure 56. Load (P) versus midspan angle of twist (ϕ_c) for Test No. IFT4-5
Figure 57. Load (P) versus maximum strain (ε_c) for Test No. IFT4-5
Figure 58 Cross-sectional schematic view at load application points (F and G) for channel section beam
Figure 59. Load (P) versus midspan vertical deflection (v_c) for Test No. CFT3-1
Figure 60. Load (P) versus midspan lateral deflection (u_c) for Test No. CFT3-1
Figure 61. Load (P) versus midspan angle of twist (ϕ_c) for Test No. CFT3-1
Figure 62. Load (P) versus midspan vertical deflection (\(v_c\)) for Test No. CFT3-2.
Figure 63. Load (P) versus midspan lateral deflection (u_c) for Test No. CFT3-2
Figure 64. Load (P) versus midspan angle of twist \((\phi_c) \) for Test No. CFT3-2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Figure 65. Load (P) versus midspan vertical deflection (v_c) for Test No. CFT4-1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Figure 66. Load (P) versus midspan lateral deflection (u_c) for Test No. CFT4-1
Figure 67. Load (P) versus midspan angle of twist (ϕ_c) for Test No. CFT4-1
Figure 68. Load (P) versus midspan vertical deflection (v_c) for Test No. CFT4-2
Figure 69. Load (P) versus midspan lateral deflection (u_c) for Test No. CFT4-2
Figure 70. Load (P) versus midspan angle of twist (ϕ_c) for Test No. CFT4-2
Load (P), lbs.

200.0
150.0
100.0
50.0

Finite-Difference Curve
Experimental Curve

Midspan Vertical Deflection (v), Radians

Figure 71. Load (P) versus midspan vertical deflection (v) for Test No. CFT4-3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Figure 72. Load (P) versus midspan lateral deflection (u_c) for Test No. CFT4-3
Figure 73. Load (P) versus midspan angle of twist (ϕ_c) for Test No. CFT4-3
Figure 74. Load (P) versus midspan vertical deflection (v_c) for Test No. CFT4-4
Figure 75. Load (P) versus midspan lateral deflection (u_c) for Test No. CFT4-4
Figure 76. Load (P) versus midspan angle of twist (ϕ_c) for Test No. CFT4-4
Figure 77. Load (P) versus maximum strain (ϵ_c) for Test No. CFT4-4
Figure 78. Load (P) versus midspan vertical deflection (v_c) for Test No. CFT4-5
Figure 79. Load (P) versus midspan lateral deflection (\(u_c\)) for Test No. CFT4-5
Figure 80. Load (P) versus midspan angle of twist (ϕ_c) for Test No. CFT4-5
Figure 81. Load (P) versus midspan vertical deflection (v_c) for Test No. CFT4-6
Figure 82. Load (P) versus midspan lateral deflection (u_c) for Test No. CFT4-6
Figure 83. Load (P) versus midspan angle of twist (ϕ_c) for Test No. CFT4-6
Figure 84. Load (P) versus midspan vertical deflection (v_c) for Test No. CFT4-7
Figure 85. Load (P) versus midspan lateral deflection (u_c) for Test No. CFT4-7
Figure 86. Load (P) versus midspan angle of twist (ϕ_c) for Test No. CFT4-7
Figure 87. Load (P) versus maximum strain (\(\varepsilon_c \)) for Test No. CFT4-7
Figure 88. Load (P) versus midspan vertical deflection (v_c) for Test No.CFT4-8.
Figure 89. Load (P) versus midspan lateral deflection (u_c) for Test No. CFT4-8
Figure 90. Load (P) versus midspan angle of twist (ϕ_c) for Test No. CFT4-8
Figure 91. Load (P) versus maximum strain (ϵ_c) for Test No. CFT4-8
Figure 92. Load (P) versus midspan vertical deflection (v_c) for Test No. CFT4-9
Figure 93. Load (P) versus midspan lateral deflection (u_c) for Test No. CFT4-9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Figure 94. Load (P) versus midspan angle of twist (ϕc) for Test No. CFT4-9
Figure 95. Load (P) versus maximum strain (ε_u) for Test No. CFT4-9
Figure 96. Discretized I-section
Figure 97. Discretized channel section
Figure 98. Maximum bending moment versus length curves for three-point loading of I-section FRP composite beams
Figure 99. Maximum bending moment versus length curves for four-point loading of I-section FRP composite beams.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Figure 100. Maximum bending moment versus length curves for three-point loading of channel section FRP composite beams

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Figure 101. Maximum bending moment versus length curves for four-point loading of channel section FRP composite beams.
APPENDIX

FINITE-DIFFERENCE PROGRAM FOR SOLVING SYSTEM OF FRP BEAM DIFFERENTIAL EQUATIONS

This appendix presents a sample listing of the computer program based on the finite-difference formulation given in Chapter III of this dissertation. This program is specially developed to solve the three-point loading problem. The input basically consists of beam geometry and material properties while the output is in the form of the applied load(s) versus deflections, angle of twist, strains, and stresses.
program mphi-I.f

implicit real*8(a-h,o-z)
real*8 xarray(120,5),ixx,iyy,iw,pmax,mmax
*,pext,mext,pincr,mincr,m,pint,mint

integer totnumel,mfl,nfl,mweb,nweb

call input (flwidth,depth,flthick,webthick,mfl,nfl,mweb,
* nweb,pmax,mmax,delta,pincr,mincr,pext,mext,
* pint,mint,AvgAxialStrain,curvature)

call Issection
* (flwidth,mfl,flthick,nfl,flthick,welthick,webthick,
* depth,weldepth,areafl,areawebel,
* mweb,nweb,xabar,yabar,elnum,totnumel,totelarea,xyarray)

call Translate (ixx,iyy,iw,xabar,yabar,totelarea,xyarray,x,y
* ,totnumel,flwidth,depth,darea)

call deformation
* (pincr,mincr,AvgAxialStrain,
* AvgAxialStraindel,curvature,curvaturedel,xyarray,m)

stop
end

subroutine input (flwidth,depth,flthick,webthick,mfl,nfl,mweb,
* nweb,pmax,mmax,delta,pincr,mincr,pext,mext,
* pint,mint,AvgAxialStrain,curvature)

implicit real*8 (a-h,o-z)
real*8 mmax,AvgAxialStrain,curvature,pincr
*,mincr,pext,mext,pint,mint
integer mfl,mweb
flwidth=2.0
depth=4.
flthick=.25
webthick=.25
mfl=16
nfl=2
mweb=28
nweb=2
mmax=50
pmax=0.0
delta=1000
pincr=0.
mincr=0.
pext=0.0
mext=0.
pint=0.
mint=0.
AvgAxialStrain=0.0
curvature=0.0
end

subroutine cross-section
subroutine Isection
* (flwidth, mfl, flthick, nfl, flelwidth, flelthick, webthick,
* depth, webelthick, webeldepth, areaflel, areawebel,
* mweb, nweb, xAbar, yAbar, elnum, totnumel, totelarea, xyarray)

implicit real*8(a-h,o-z)
real*8 xyarray(120,5)
integer elnum,mweb,nweb,mfl,nfl,i,j,totnumel

totnumel=2*mfl*nfl+mweb*nweb
flelwidth=flwidth/mfl
flelthick=flthick/nfl
areaflel=flelwidth*flelthick
webelthick=webthick/nweb
webeldepth=(depth-2*flthick)/mweb
areawebel=webelthick*webeldepth
totelarea=2*areafl+mf*n+areaebelmweb*nweb
xAbar=0.
yAbar=0.
elnum=1

c using upper flange

do 20 i=0,nfl-1
 do 10 j=0,mfl-1
 xyarray(elnum,1)=flelwidth*(j+.5)
 xAbar=xAbar+xarray(elnum,1)*areafl
 xyarray(elnum,2)=depth-flelthick*(i+.5)
 yAbar=yAbar+xarray(elnum,2)*areafl
 xyarray(elnum,3)=areafl
 elnum=elnum+1
 10 continue
20 continue

c calculate the web

do 40 i=0,mweb-1
 do 30 j=0,nweb-1
 xyarray(elnum,1)=(flwidth/2.-webthick/2.)*webelthick*(j+.5)
 xAbar=xAbar+xarray(elnum,1)*areawebel
 xyarray(elnum,2)=(depth-flthick)-webeldepth*(i+.5)
 yAbar=yAbar+xarray(elnum,2)*areawebel
 xyarray(elnum,3)=areawebel
 elnum=elnum+1
 30 continue
40 continue

c calculate the lower flange

do 50 i=0,nfl-1
 do 60 j=0,mfl-1
 xyarray(elnum,1)=flelwidth*(j+.5)
 xAbar=xAbar+xarray(elnum,1)*areafl
 xyarray(elnum,2)=flthick-flelthick*(i+.5)
 yAbar=yAbar+xarray(elnum,2)*areafl
 xyarray(elnum,3)=areafl
 elnum=elnum+1
 60 continue
50 continue

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
subroutine Translate (ixx, iyy, iw, xAbar, yAbar, toтелarea, xyarray, x* , totnumel, flwidth, depth, darea)
implicit real*8 (a-h,o-z)
real*8 xyarray(120,5), ixx, iyy, iw
integer totnumel, i
ixx=0.0
iyy=0.0
iw =0.0
x=xAbar/totelarea
y=yAbar/totelarea

do 70 i=1,totnumel
 xyarray(i,1)=xyarray(i,1)-x
 xyarray(i,2)=xyarray(i,2)-y
 ixx=ixx+xyarray(i,2)**2*xyarray(i,3)
 iyy=iyy+xyarray(i,1)**2*xyarray(i,3)
70 continue
return
end

subroutine deformation
*(pincr, mincr, AvgAxialStrain, * AvgAxialStraindel, curvature, curvaturedel, xyarray, m, flthick)
implicit real*8 (a-h,o-z)
real*8 xyarray(120,5)
*,AvgAxialStraindel,AvgAxialStrain, curvature, flthick
*,curvaturedel,pincr, mincr, m, E, ixx, iyy, iw, s
integer i
E =2.55*10**6
pincr =0.0
moment =0.0
AvgAxialStrain=0.0
xyarray(i,5) =0.0

do ii=1,30
 if (ii.EQ.1) then
 mm=1
 nn=120
 endif
 if (ii.EQ.2) then
 ixx=0.0
 iyy=0.0
 iw =0.0
 mm=17
 nn=120-16
 endif
*
endif

if (ii.GE.3) then
 ix=x=0.0
 iyy=0.0
 iw =0.0

 mm=32+(ii-3)*2+1
 nn=120-32-(ii-3)*2
endif

do i=mm,nn

 x y a r r a y (i,5)=0.0
 x y a r r a y (i,4)=0.0
 m=0.0
 curvture=0.0043715

 ixx=ixx+xyarray(i,2)**2*xyarray(i,3)
 iyy=iyy+xyarray(i,1)**2*xyarray(i,3)
 iw=iw+xyarray(i,1)**2*xyarray(i,2)**2*xyarray(i,3)

 xyarray(i,5)=curvature*xyarray(i,2)

if (abs(xyarray(i,5)).GT.0.008743) then
 xyarray(i,5)=0.0
endif

 xyarray(i,4)=E*xyarray(i,5)
 s=ixx/xyarray(i,2)
 m=xyarray(i,4)*s

 curvture=0.008743/xyarray(i,2)
enddo
write(*,*) , abs(curvature),abs(m)
enddo

return
end
implicit real*8 (A-h,o-z)
real*8 a(23,23), c(23), v(5), u(5), w(5), indx(23), Kt, L
*, Ixe, Iye, Sxye, Isxsye

integer p, num

n = 23
np= 23
p = 0
num = 999999
straincr=0.008743
!
straincr=0.011729
do 99 p=0,num,1
5 do i=1,n
6 do j=1,n
 a(i,j)=0.0
 end do
end do

y = -3.5
E = 2.55*10**6
q = -0.002
Ixe = 4.4116210937500
Iye = 0.33544921875000
Sxye = 0.0
Isxsye = 1.1720790863037
G = 420000.0
Kt = 0.0403
h = 13.5
L = 8.0*h
delta = L/10000
theta = 0.
pi = 3.1415927
Bx=E*Ixe
By=E*Iye
Cw=E*Isxsye
Ct=G*Kt
Bxy=E*Sxye

constN = Bx/h**2
constA = By/h**2
constNY = Bxy/h**2
constC = Ct/(h*h)
constD = Cw/h**4

a(2,2) = constN
a(2,3) = constNY
a(2,5) = -2*constN
a(2,6) = -2*constNY
a(2,8) = constN
a(2,9) = constNY
a(11,5) = constN
a(11,6) = constNY
a(11,8) = -2*constN
a(11,9) = -2*constNY
a(11,11) = constN
a(11,12) = constNY
\[
\begin{align*}
 a_{(8,8)} &= \text{const}N \\
 a_{(8,9)} &= \text{const}NY \\
 a_{(8,11)} &= -2*\text{const}N \\
 a_{(8,12)} &= -2*\text{const}NY \\
 a_{(8,14)} &= \text{const}N \\
 a_{(8,15)} &= \text{const}NY \\
 a_{(3,2)} &= \text{const}NY \\
 a_{(3,3)} &= \text{const}A \\
 a_{(3,5)} &= -2*\text{const}NY \\
 a_{(3,6)} &= -2*\text{const}A \\
 a_{(3,8)} &= \text{const}NY \\
 a_{(3,9)} &= \text{const}A \\
 a_{(12,5)} &= \text{const}NY \\
 a_{(12,6)} &= \text{const}A \\
 a_{(12,8)} &= -2*\text{const}NY \\
 a_{(12,9)} &= -2*\text{const}A \\
 a_{(12,11)} &= \text{const}NY \\
 a_{(12,12)} &= \text{const}A \\
 a_{(15,8)} &= \text{const}NY \\
 a_{(15,9)} &= \text{const}A \\
 a_{(15,11)} &= -2*\text{const}NY \\
 a_{(15,12)} &= -2*\text{const}A \\
 a_{(15,14)} &= \text{const}NY \\
 a_{(15,15)} &= \text{const}A \\
 a_{(1,1)} &= -\text{const}D \\
 a_{(1,4)} &= \text{const}C+(4*\text{const}D) \\
 a_{(1,7)} &= -2*\text{const}C-(6*\text{const}D) \\
 a_{(1,10)} &= \text{const}C+(4*\text{const}D) \\
 a_{(1,13)} &= -\text{const}D \\
 a_{(16,4)} &= -\text{const}D \\
 a_{(16,7)} &= \text{const}C+(4*\text{const}D) \\
 a_{(16,10)} &= -2*\text{const}C-(6*\text{const}D) \\
 a_{(16,13)} &= \text{const}C+(4*\text{const}D) \\
 a_{(16,16)} &= -\text{const}D \\
 a_{(9,7)} &= -\text{const}D \\
 a_{(9,10)} &= \text{const}C+(4*\text{const}D) \\
 a_{(9,13)} &= -2*\text{const}C-(6*\text{const}D) \\
 a_{(9,16)} &= \text{const}C+(4*\text{const}D) \\
 a_{(9,19)} &= -\text{const}D \\
 a_{(17,11)} &= \text{const}N \\
 a_{(17,12)} &= \text{const}NY \\
 a_{(17,14)} &= -2*\text{const}N \\
 a_{(17,15)} &= -2*\text{const}NY \\
 a_{(17,17)} &= \text{const}N \\
 a_{(17,18)} &= \text{const}NY \\
 a_{(14,14)} &= \text{const}N \\
 a_{(14,15)} &= \text{const}NY \\
 a_{(14,17)} &= -2*\text{const}N \\
 a_{(14,18)} &= -2*\text{const}NY \\
 a_{(14,20)} &= \text{const}N \\
 a_{(14,21)} &= \text{const}NY \\
 a_{(18,11)} &= \text{const}NY \\
 a_{(18,12)} &= \text{const}A \\
 a_{(18,14)} &= -2*\text{const}N \\
 a_{(18,15)} &= -2*\text{const}A \\
 a_{(18,17)} &= \text{const}NY \\
 a_{(18,18)} &= \text{const}A \\
 a_{(19,14)} &= \text{const}NY \\
 a_{(19,15)} &= \text{const}A \\
 a_{(19,17)} &= -2*\text{const}NY
\end{align*}
\]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
\[a(19,18) = -2*constA \]
\[a(19,20) = constNY \]
\[a(19,21) = constA \]
\[a(10,10) = -constD \]
\[a(10,13) = constC+(4*constD) \]
\[a(10,16) = -2*constC-(6*constD) \]
\[a(10,19) = constC+(4*constD) \]
\[a(10,22) = -constD \]
\[a(13,13) = -constD \]
\[a(13,16) = constC+(4*constD) \]
\[a(13,19) = -2*constC-(6*constD) \]
\[a(13,22) = constC+(4*constD) \]
\[a(13,23) = -constD \]
\[a(20,14) = -1.0 \]
\[a(20,20) = 1.0 \]
\[a(21,15) = -1.0 \]
\[a(21,21) = 1.0 \]
\[a(22,16) = -1.0 \]
\[a(22,22) = 1.0 \]
\[a(4,4) = 1.0 \]
\[a(4,7) = -2.0 \]
\[a(4,10) = 1.0 \]
\[a(5,5) = 1.0 \]
\[a(6,6) = 1.0 \]
\[a(7,7) = 1.0 \]
\[a(23,13) = -1.0 \]
\[a(23,16) = 2.0 \]
\[a(23,22) = -2.0 \]
\[a(23,23) = 1.0 \]
\[a(12,10) = p*h \]
\[a(15,13) = 2*p*h \]
\[a(16,6) = -p/h \]
\[a(16,9) = 2*p/h \]
\[a(16,12) = -p/h \]
\[a(9,9) = -2*p/h \]
\[a(9,12) = +4*p/h \]
\[a(9,15) = -2*p/h \]
\[a(18,16) = 2*p/h \]
\[a(19,19) = 2*p/h \]
\[a(10,12) = -2*p/h \]
\[a(10,15) = 4*p/h \]
\[a(10,18) = -2*p/h \]
\[a(13,15) = -2*p/h \]
\[a(13,18) = 4*p/h \]
\[a(13,21) = -2*p/h \]
\[a(23,19) = (-2*(h**2) *p*y)/Cw \]

\[\pi = 3.1415927 \]
\[constNYC = 0. \]
\[constAC = 0. \]
\[constTC = 0. \]
\[constCC = 0. \]
\[constDC = 0. \]
\[constGC = 0. \]
\[c(2) = 0.0 \]
\[c(11) = -constNYC*sin(pi/8.)*p*h \]
\[c(8) = -constNYC*sin(pi/4.)*2*p*h \]
\[c(3) = 0.0 \]
\[
c(12) = -\text{constAC}\sin(\pi/8.) + \\
\quad \text{constTC}\sin(\pi/8.) \\
c(15) = -\text{constAC}\sin(\pi/4.) + \\
\quad 2\times\text{constTC}\sin(\pi/4.) \\
c(1) = 0.0 + p\times q \\
c(16) = -\text{constCC}\sin(\pi/8.) - \text{constDC}\sin(\pi/8.) + \\
\quad \text{constGC}\sin(\pi/8.) \\
c(9) = -\text{constCC}\sin(\pi/4.) - \text{constDC}\sin(\pi/4.) + \\
\quad 2\times\text{constGC}\sin(\pi/4.) \\
c(17) = -\text{constNYC}\sin(3\times\pi/8.) - 2\times p\times h \\
c(14) = -\text{constNYC}\sin(\pi/2.) - 2\times p\times h \\
c(18) = -\text{constAC}\sin(3\times\pi/8.) + \\
\quad 2\times\text{constTC}\sin(3\times\pi/8.) \\
c(19) = -\text{constAC}\sin(\pi/2.) + \\
\quad 2\times\text{constTC}\sin(\pi/2.) \\
c(10) = -\text{constCC}\sin(3\times\pi/8.) - \text{constDC}\sin(3\times\pi/8.) + \\
\quad 2\times\text{constGC}\sin(3\times\pi/8.) + p\times q \\
c(13) = -\text{constCC}\sin(\pi/2.) - \text{constDC}\sin(\pi/2.) + \\
\quad 2\times\text{constGC}\sin(\pi/2.) + p\times q \\
c(23) = (-2\times(h**3)\times p\times y\times\theta)/Cw \\
c(5) = 0.0 \\
c(6) = 0.0 \\
c(7) = 0.0 \\
c(4) = 0.0 \\
c(20) = 0.0 \\
c(21) = 0.0 \\
c(22) = 0.0 \\
\]

\text{n} = 23 \\
\text{np} = 23

\text{call ludcmp(a,n,np,indx,d)} \\
\text{do 76 j=1,n} \\
d = d\times a(j,j) \\
\text{continue} \\
\text{determin} = d \\
\text{if (p.EQ.0.) then} \\
\text{determinZ} = determin \\
\text{endif} \\
\text{determinbar} = determin/determinZ \\
\text{if (determinbar.LE.-0.0001) go to 11} \\
\text{call lubksb(a,n,np,indx,c)} \\
\text{do i = 1,n} \\
\text{enddo} \\
v(1) = c(5) \\
v(2) = c(8) \\
v(3) = c(11) \\
v(4) = c(14) \\
v(5) = c(17) \\
u(1) = c(6) \\
u(2) = c(9) \\
u(3) = c(12) \\
u(4) = c(15) \\
u(5) = c(18) \\
w(1) = c(7) \\
w(2) = c(10) \\
w(3) = c(13)
\begin{verbatim}

w(4)=c(16)
w(5)=c(19)

do i=1,5
 enddo

phix5 = c(14)-2*c(17)+c(20)
phiy5 = c(15)-2*c(18)+c(21)
phiw5 = c(16)-2*c(19)+c(22)

straina = 2*phix5-1*phiy5+2*phiw5

if (abs(straina).GE.strainer) go to 11

continue

11 continue

stop

end

c

LU DECOMPOSITION

subroutine ludcmp(a,n,np,indx,d)
 implicit real*8 (a-h,o-z)
 parameter (nmax=100,tiny=1.0E-20)
 dimension a(np,np),indx(n),vv(nmax)
 d=1.
 do 12 i=1,n
 aamax=0.
 do 11 j=1,n
 if (abs(a(i,j)).GT.aamax) aamax = abs(a(i,j))
 continue

 if (aamax.EQ.0.) PAUSE "Singular matrix."
 vv(i)=1./aamax

 continue

 do 19 j=1,n
 do 14 i=1,j-1
 sum=a(i,j)
 do 13 k=1,i-1
 sum=sum-a(i,k)*a(k,j)
 continue

 a(i,j)=sum

 continue

 aamax=0.
 do 16 i=j,n
 sum=a(i,j)
 do 15 k=1,j-1
 sum=sum-a(i,k)*a(k,j)
 continue

 a(i,j)=sum
 dum=vv(i)*abs(sum)
 if (dum.GE.aamax) then
 imax=i
 aamax=dum
 endif

 continue

 if (j.NE.imax) then
 do 17 k=1,n
 dum=a(imax,k)
 a(imax,k)=a(j,k)
 a(j,k)=dum
 endif
 enddo

end

\end{verbatim}
17 continue
 d = -d
 v (i max) = v (j)
 endif
 indx (j) = i max
 if (a (j, j) .EQ. 0.) a (j, j) = tiny
 if (j .NE. n) then
 dum = 1. / a (j, j)
 do 18 i = j + 1, n
 a (i, j) = a (i, j) * dum
18 continue
 endif
19 continue
 return
end

SUBROUTINE LUBKSB

subroutine lubksb (a, n, np, indx, c)
implicit real*8 (a-h, o-z)
dimension a (np, np), indx (n), c (n)
i i = 0
do 12 i = 1, n
 ll = indx (i)
 sum = c (ll)
 c (ll) = c (i)
 if (i i .NE. 0) then
 do 11 j = ii, i - 1
 sum = sum - a (i, j) * c (j)
11 continue
 else if (sum .NE. 0.) then
 ii = i
 endif
 c (i) = sum
12 continue
do 14 i = n, 1, - 1
 sum = c (i)
 do 13 j = i + 1, n
 sum = sum - a (i, j) * c (j)
13 continue
 c (i) = sum / a (i, i)
14 continue
 return
end
program three-point loading for channel beam

implicit real*8(A-h,o-z)
real*8 a(23,23), c(23), v(5), u(5), w(5), indx(23), Kt, L
* ,Ixe,Iye,Sxye,Isxsye

integer p,num

n = 23
np= 23
p = 0
num = 999999
straincr=0.011729

do 99 p=0,num,l
5 do i=1,n
6 do j=1,n
 a(i,j)=0.0
 end do
end do

y = -3.5
E = 3.23*10**6
q = -0.0003

Ixe = 10.1833
Iye = 0.4244
Sxye = 8.326672684688D-17
Isxsye = 2.9639687861

G = 420000.0
Kt = 0.0455729
h = 9.0
L = 8.0*h
delta = L/10000
theta = 0.
pi = 3.1415927

Bx=E*Ixe
By=E*Iye
Cw=E*Isxsye
Ct=G*Kt
Bxy=E*Sxye

constN = Bx/h**2
constA = By/h**2
constNY = Bxy/h**2
constC = Ct/(h*h)
constD = Cw/h**4

a(2,2) = constN
a(2,3) = constNY
a(2,5) = -2*constN
a(2,6) = -2*constNY
a(2,8) = constN
\[
\begin{align*}
\mathbf{a}(2,9) &= \text{constNY} \\
\mathbf{a}(11,5) &= \text{constN} \\
\mathbf{a}(11,6) &= \text{constNY} \\
\mathbf{a}(11,8) &= -2*\text{constN} \\
\mathbf{a}(11,9) &= -2*\text{constNY} \\
\mathbf{a}(11,11) &= \text{constN} \\
\mathbf{a}(11,12) &= \text{constNY} \\
\mathbf{a}(8,8) &= \text{constN} \\
\mathbf{a}(8,9) &= \text{constNY} \\
\mathbf{a}(8,11) &= -2*\text{constN} \\
\mathbf{a}(8,12) &= -2*\text{constNY} \\
\mathbf{a}(8,14) &= \text{constN} \\
\mathbf{a}(8,15) &= \text{constNY} \\
\mathbf{a}(17,11) &= \text{constN} \\
\mathbf{a}(17,12) &= \text{constNY} \\
\mathbf{a}(17,14) &= -2*\text{constN} \\
\mathbf{a}(17,15) &= -2*\text{constNY} \\
\mathbf{a}(17,17) &= \text{constN} \\
\mathbf{a}(17,18) &= \text{constNY} \\
\mathbf{a}(14,14) &= \text{constN} \\
\mathbf{a}(14,15) &= \text{constNY} \\
\mathbf{a}(14,17) &= -2*\text{constN} \\
\mathbf{a}(14,18) &= -2*\text{constNY} \\
\mathbf{a}(14,20) &= \text{constN} \\
\mathbf{a}(14,21) &= \text{constNY} \\
\end{align*}
\]
\[\begin{align*}
a(19,15) &= \text{constA} \\
a(19,17) &= -2\text{constNY} \\
a(19,18) &= -2\text{constA} \\
a(19,20) &= \text{constNY} \\
a(19,21) &= \text{constA} \\
c \quad C \\
a(1,1) &= -\text{constD} \\
a(1,4) &= \text{constC}+(4\text{constD}) \\
a(1,7) &= -2\text{constC}-(6\text{constD}) \\
a(1,10) &= \text{constC}+(4\text{constD}) \\
a(1,13) &= -\text{constD} \\
a(16,4) &= -\text{constD} \\
a(16,7) &= \text{constC}+(4\text{constD}) \\
a(16,10) &= -2\text{constC}-(6\text{constD}) \\
a(16,13) &= \text{constC}+(4\text{constD}) \\
a(16,16) &= -\text{constD} \\
a(9,7) &= -\text{constD} \\
a(9,10) &= \text{constC}+(4\text{constD}) \\
a(9,13) &= -2\text{constC}-(6\text{constD}) \\
a(9,16) &= \text{constC}+(4\text{constD}) \\
a(9,19) &= -\text{constD} \\
a(10,10) &= -\text{constD} \\
a(10,13) &= \text{constC}+(4\text{constD}) \\
a(10,16) &= -2\text{constC}-(6\text{constD}) \\
a(10,19) &= \text{constC}+(4\text{constD}) \\
a(10,22) &= -\text{constD} \\
a(13,13) &= -\text{constD} \\
a(13,16) &= \text{constC}+(4\text{constD}) \\
a(13,19) &= -2\text{constC}-(6\text{constD}) \\
a(13,22) &= \text{constC}+(4\text{constD}) \\
a(13,23) &= -\text{constD} \\
c \quad B.C. \\
a(20,14) &= -1.0 \\
a(20,20) &= 1.0 \\
a(21,15) &= -1.0 \\
a(21,21) &= 1.0 \\
a(22,16) &= -1.0 \\
a(22,22) &= 1.0 \\
a(4,4) &= 1.0 \\
a(4,7) &= -2.0 \\
a(4,10) &= 1.0 \\
a(5,5) &= 1.0 \\
a(6,6) &= 1.0 \\
a(7,7) &= 1.0 \\
a(23,13) &= -1.0 \\
a(23,16) &= 2.0 \\
a(23,22) &= -2.0 \\
\end{align*} \]
\[a(23,23) = 1.0 \]

\[
\begin{align*}
\text{c} & \quad \text{B} \\
& a(12,10) = 0.5p*h \\
& a(15,13) = p*h \\
& a(18,16) = 1.5p*h \\
& a(19,19) = 2p*h \\
\text{c} & \quad \text{C} \\
& a(16,6) = -0.5p/h \\
& a(16,9) = p/h \\
& a(16,12) = -0.5p/h \\
& a(9,9) = -p/h \\
& a(9,12) = +2p/h \\
& a(9,15) = -p/h \\
& a(10,12) = -1.5p/h \\
& a(10,15) = +3p/h \\
& a(10,18) = -1.5p/h \\
& a(13,15) = -2p/h \\
& a(13,18) = +4p/h \\
& a(13,21) = -2p/h \\
\text{c} & \quad \text{B.C.} \\
& a(23,19) = (-h**3)*p*y)/Cw
\end{align*}
\]

\[
\begin{align*}
\pi &= 3.1415927 \\
\text{constNYC} &= 0. \\
\text{constAC} &= 0. \\
\text{constTC} &= 0. \\
\text{constCC} &= 0. \\
\text{constDC} &= 0. \\
\text{constGC} &= 0. \\
\text{c} & \quad \text{A} \\
& c(2) = 0.0 \\
& c(11) = -\text{constNYC}\sin(\pi/8.)-0.5p*h \\
& c(8) = -\text{constNYC}\sin(\pi/4.)-p*h \\
& c(17) = -\text{constNYC}\sin(3\pi/8.)-1.5p*h \\
& c(14) = -\text{constNYC}\sin(4\pi/8.)-2p*h \\
\text{c} & \quad \text{B} \\
& c(3) = 0.0 \\
& c(12) = -\text{constAC}\sin(\pi/8.)+ \\
& \quad \times \text{constTC}\sin(\pi/8.) \\
& c(15) = -\text{constAC}\sin(\pi/4.)+ \\
& \quad \times 2\times\text{constTC}\sin(\pi/4.) \\
& c(18) = -\text{constAC}\sin(3\pi/8.)+ \\
& \quad \times 3\times\text{constTC}\sin(3\pi/4.) \\
& c(19) = -\text{constAC}\sin(4\pi/8.)+ \\
& \quad \times 4\times\text{constTC}\sin(4\pi/8.)
\end{align*}
\]
c

\[
c(1) = 0.0 + 0.5p*q
\]

\[
c(16) = -\text{constCC}\sin(\pi/8.) - \text{constDC}\sin(\pi/8.)
\]

\[
c(9) = -\text{constCC}\sin(\pi/4.) - \text{constDC}\sin(\pi/4.)
\]

\[
c(10) = -\text{constCC}\sin(3\pi/8.) - \text{constDC}\sin(3\pi/8.)
\]

\[
c(13) = -\text{constCC}\sin(4\pi/8.) - \text{constDC}\sin(4\pi/8.)
\]

\[
c(23) = (-2*(h**3)*0.5*p*y*\theta)/Cw
\]

\[
c(5) = 0.0
\]

\[
c(6) = 0.0
\]

\[
c(7) = 0.0
\]

\[
c(4) = 0.0
\]

\[
c(20) = 0.0
\]

\[
c(21) = 0.0
\]

\[
c(22) = 0.0
\]

n = 23
np = 23

call ludcmp(a,n,np,indx,d)
do 76 j=1,n
d=d*a(j,j)
76 continue
deterr=d
if (p.EQ.0.) then
deterr=deterr
endif
deterr=deterr/deterr
if (deterr.LT.-0.0001) go to 11
call lubksb(a,n,np,indx,c)
do i = 1,n
write(*,*) 'displacement, i,c(i) = ',i,c(i)
enddo

v(1)=c(5)
v(2)=c(8)
v(3)=c(11)
v(4)=c(14)
v(5)=c(17)
u(1)=c(6)
u(2)=c(9)
u(3)=c(12)
u(4)=c(15)
u(5)=c(18)
w(1)=c(7)
w(2)=c(10)
\[w(3) = c(13) \]
\[w(4) = c(16) \]
\[w(5) = c(19) \]

\[\text{write}(*,*)\!, p, w(5) \]
\[\text{do } i = 1, 5 \]
\[\text{ write}(*,*)\!, i, v(i), u(i), w(i) \]
\[\text{enddo} \]

\[\text{strain } a = 2v(5) - 1u(5) + 2w(5) \]

\[\text{if (strain GE straincr) go to 11} \]
\[\text{write}(*,*)\!, p, \text{strain} \]
\[99 \text{ continue} \]
\[11 \text{ continue} \]
\[\text{stop} \]
\[\text{end} \]

\[\text{LU DECOMPOSITION} \]

\[\text{subroutine ludcmp}(a, n, np, indx, d) \]
\[\text{implicit real*8 (a-h,o-z)} \]
\[\text{parameter (nmax=100, tiny=1.0E-20)} \]
\[\text{dimension a(np,np), indx(n), vv(nmax)} \]
\[d = 1. \]
\[\text{do 12 } i = 1, n \]
\[\text{aamax} = 0. \]
\[\text{do 11 } j = 1, n \]
\[\text{if (abs(a(i,j)).GT.aamax) aamax=abs(a(i,j))} \]
\[\text{continue} \]
\[\text{if (aamax.EQ.0.) PAUSE "Singular matrix."} \]
\[\text{vv(i)=1./aamax} \]
\[12 \text{ continue} \]
\[\text{do 19 } j = 1, n \]
\[\text{do 14 } i = 1, j - 1 \]
\[\text{sum}=a(i,j) \]
\[\text{do 13 } k = 1, i - 1 \]
\[\text{sum}=\text{sum}-a(i,k)\ast a(k,j) \]
\[13 \text{ continue} \]
\[a(i,j)=\text{sum} \]
\[14 \text{ continue} \]
\[\text{aamax}=0. \]
\[\text{do 16 } i = j, n \]
\[\text{sum}=a(i,j) \]
\[\text{do 15 } k = 1, j - 1 \]
\[\text{sum}=\text{sum}-a(i,k)\ast a(k,j) \]
\[15 \text{ continue} \]
\[a(i,j)=\text{sum} \]
\[\text{dum}=\text{vv(i)}\ast \text{abs(sum)} \]
\[\text{if (dum.GE.aamax) then} \]
\[\text{imax}=i \]
\[\text{aamax}=\text{dum} \]
\[\text{endif} \]
\[16 \text{ continue} \]
\[\text{if (j.NE.imax) then} \]
\[\text{do 17 } k = 1, n \]
\[\text{dum}=a(\text{imax},k) \]
\[a(\text{imax},k)=a(j,k) \]
\[a(j,k)=\text{dum} \]
215

```fortran
17    continue
    d=d
    vv(imax)=vv(j)
    endif
    indx(j)=imax
    if(a(j,j).EQ.0.)a(j,j)=tiny
    if(j.NE.n) then
        dum=1./a(j,j)
        do 18 i=j+1,n
        a(i,j)=a(i,j)*dum
18    continue
    endif
19    continue
end
end

SUBROUTINE LUBKSB

subroutine lubksb (a,n,np,indx,c)
implicit real*8 (a-h,o-z)
dimension a(np,np),indx(n),c(n)
ii=0
   do 12 i=1,n
      ll=indx(i)
      sum=c(ll)
      c(ll)=c(i)
      if (ii.NE.0) then
         do 11 j=ii,i-1
            sum=sum-a(i,j)*c(j)
11        continue
      else if (sum.NE.0.) then
         ii=i
      endif
      c(i)=sum
12    continue
   do 14 i=n,1,-1
      sum=c(i)
      do 13 j=i+1,n
         sum=sum-a(i,j)*c(j)
13    continue
      c(i)=sum/a(i,i)
14    continue
end
```

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
program three-point loading for I-beam

implicit real*8(A-h,o-z)
real*8 a(23,23), c(23), v(5), u(5), w(5), ind(23), Kt, L
*, Ixe, Iye, Sxye, Isxsye

integer p, num

n = 23
np = 23
p = 0
num = 999999
straincr = 0.011729

do 99 p = 0, num, 1
 do i = 1, n
 do j = 1, n
 a(i,j) = 0.0
 end do
 end do
end do

y = -3.5
E = 2.55*10**6
q = -0.002

Ixe = 4.4116210937500
Iye = 0.33544921875000
Sxye = 0.0
Isxsye = 1.1720790863037

G = 420000.0
Kt = 0.0403
h = 13.5
L = 8.0*h
delta = L/10000
theta = 0.
pi = 3.1415927

Bx = E*Ixe
By = E*Iye
Cw = E*Isxsye
Ct = G*Kt
Bxy = E*Sxye

constN = Bx/h**2
constA = By/h**2
constNY = Bxy/h**2
constC = Ct/(h*h)
constD = Cw/h**4

a(2,2) = constN
a(2,3) = constNY
a(2,5) = -2*constN
a(2,6) = -2*constNY
a(2,8) = constN
\[a(2,9) = \text{const}N \]
\[a(11,5) = \text{const}N \]
\[a(11,6) = \text{const}N \]
\[a(11,8) = -2\text{const}N \]
\[a(11,9) = -2\text{const}N \]
\[a(11,11) = \text{const}N \]
\[a(11,12) = \text{const}N \]
\[a(8,8) = \text{const}N \]
\[a(8,9) = \text{const}N \]
\[a(8,11) = -2\text{const}N \]
\[a(8,12) = -2\text{const}N \]
\[a(8,14) = \text{const}N \]
\[a(8,15) = \text{const}N \]
\[a(17,11) = \text{const}N \]
\[a(17,12) = \text{const}N \]
\[a(17,14) = -2\text{const}N \]
\[a(17,15) = -2\text{const}N \]
\[a(17,17) = \text{const}N \]
\[a(17,18) = \text{const}N \]
\[a(14,14) = \text{const}N \]
\[a(14,15) = \text{const}N \]
\[a(14,17) = -2\text{const}N \]
\[a(14,18) = -2\text{const}N \]
\[a(14,20) = \text{const}N \]
\[a(14,21) = \text{const}N \]

\[c \]
\[a(3,2) = \text{const}N \]
\[a(3,3) = \text{const}N \]
\[a(3,5) = -2\text{const}N \]
\[a(3,6) = -2\text{const}N \]
\[a(3,8) = \text{const}N \]
\[a(3,9) = \text{const}N \]
\[a(12,5) = \text{const}N \]
\[a(12,6) = \text{const}N \]
\[a(12,8) = -2\text{const}N \]
\[a(12,9) = -2\text{const}N \]
\[a(12,11) = \text{const}N \]
\[a(12,12) = \text{const}N \]
\[a(15,8) = \text{const}N \]
\[a(15,9) = \text{const}N \]
\[a(15,11) = -2\text{const}N \]
\[a(15,12) = -2\text{const}N \]
\[a(15,14) = \text{const}N \]
\[a(15,15) = \text{const}N \]
\[a(18,11) = \text{const}N \]
\[a(18,12) = \text{const}N \]
\[a(18,14) = -2\text{const}N \]
\[a(18,15) = -2\text{const}N \]
\[a(18,17) = \text{const}N \]
\[a(18,18) = \text{const}N \]
\[a(19,14) = \text{const}N \]
\[
a(19,15) = \text{constA}
\]
\[
a(19,17) = -2*\text{constNY}
\]
\[
a(19,18) = -2*\text{constA}
\]
\[
a(19,20) = \text{constNY}
\]
\[
a(19,21) = \text{constA}
\]
\[
c
\]
\[
a(1,1) = -\text{constD}
\]
\[
a(1,4) = \text{constC}+(4*\text{constD})
\]
\[
a(1,7) = -2*\text{constC}-(6*\text{constD})
\]
\[
a(1,10) = \text{constC}+(4*\text{constD})
\]
\[
a(1,13) = -\text{constD}
\]
\[
a(16,4) = -\text{constD}
\]
\[
a(16,7) = \text{constC}+(4*\text{constD})
\]
\[
a(16,10) = -2*\text{constC}-(6*\text{constD})
\]
\[
a(16,13) = \text{constC}+(4*\text{constD})
\]
\[
a(16,16) = -\text{constD}
\]
\[
a(9,7) = -\text{constD}
\]
\[
a(9,10) = \text{constC}+(4*\text{constD})
\]
\[
a(9,13) = -2*\text{constC}-(6*\text{constD})
\]
\[
a(9,16) = \text{constC}+(4*\text{constD})
\]
\[
a(9,19) = -\text{constD}
\]
\[
a(10,10) = -\text{constD}
\]
\[
a(10,13) = \text{constC}+(4*\text{constD})
\]
\[
a(10,16) = -2*\text{constC}-(6*\text{constD})
\]
\[
a(10,19) = \text{constC}+(4*\text{constD})
\]
\[
a(10,22) = -\text{constD}
\]
\[
a(13,13) = -\text{constD}
\]
\[
a(13,16) = \text{constC}+(4*\text{constD})
\]
\[
a(13,19) = -2*\text{constC}-(6*\text{constD})
\]
\[
a(13,22) = \text{constC}+(4*\text{constD})
\]
\[
a(13,23) = -\text{constD}
\]
\[
c
\]
\[
a(20,14) = -1.0
\]
\[
a(20,20) = 1.0
\]
\[
a(21,15) = -1.0
\]
\[
a(21,21) = 1.0
\]
\[
a(22,16) = -1.0
\]
\[
a(22,22) = 1.0
\]
\[
a(4,4) = 1.0
\]
\[
a(4,7) = -2.0
\]
\[
a(4,10) = 1.0
\]
\[
a(5,5) = 1.0
\]
\[
a(6,6) = 1.0
\]
\[
a(7,7) = 1.0
\]
\[
a(23,13) = -1.0
\]
\[
a(23,16) = 2.0
\]
\[
a(23,22) = -2.0
\]
\[a(23,23) = 1.0 \]

<table>
<thead>
<tr>
<th>B</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(a(12,10))</td>
<td>0.5ph</td>
</tr>
<tr>
<td>(a(15,13))</td>
<td>p*h</td>
</tr>
<tr>
<td>(a(18,16))</td>
<td>1.5ph</td>
</tr>
<tr>
<td>(a(19,19))</td>
<td>2ph</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(a(16,6))</td>
<td>-0.5*p/h</td>
</tr>
<tr>
<td>(a(16,9))</td>
<td>p/h</td>
</tr>
<tr>
<td>(a(16,12))</td>
<td>-0.5*p/h</td>
</tr>
<tr>
<td>(a(9,9))</td>
<td>-p/h</td>
</tr>
<tr>
<td>(a(9,12))</td>
<td>+2*p/h</td>
</tr>
<tr>
<td>(a(9,15))</td>
<td>-p/h</td>
</tr>
<tr>
<td>(a(10,12))</td>
<td>-1.5*p/h</td>
</tr>
<tr>
<td>(a(10,15))</td>
<td>+3*p/h</td>
</tr>
<tr>
<td>(a(10,18))</td>
<td>-1.5*p/h</td>
</tr>
<tr>
<td>(a(13,15))</td>
<td>-2*p/h</td>
</tr>
<tr>
<td>(a(13,18))</td>
<td>+4*p/h</td>
</tr>
<tr>
<td>(a(13,21))</td>
<td>-2*p/h</td>
</tr>
</tbody>
</table>

B.C.

\[a(23,19) = (-h**3)*p*y)/Cw \]

\[\pi = 3.1415927 \]
\[\text{constNYC} = 0. \]
\[\text{constAC} = 0. \]
\[\text{constTC} = 0. \]
\[\text{constCC} = 0. \]
\[\text{constDC} = 0. \]
\[\text{constGC} = 0. \]

<table>
<thead>
<tr>
<th>A</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(c(2))</td>
<td>0.0</td>
</tr>
<tr>
<td>(c(11))</td>
<td>-\text{constNYC}\sin(pi/8.) -0.5ph</td>
</tr>
<tr>
<td>(c(8))</td>
<td>-\text{constNYC}\sin(pi/4.) -p*h</td>
</tr>
<tr>
<td>(c(17))</td>
<td>-\text{constNYC}\sin(3pi/8.) -1.5p*h</td>
</tr>
<tr>
<td>(c(14))</td>
<td>-\text{constNYC}\sin(4pi/8.) -2p*h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(c(3))</td>
<td>0.0</td>
</tr>
</tbody>
</table>
| \(c(12) \) | -\text{constAC}\sin(pi/8.) +
| constTC\sin(pi/8.) |
| \(c(15) \) | -\text{constAC}\sin(pi/4.) +
| 2*constTC\sin(pi/4.) |
| \(c(18) \) | -\text{constAC}\sin(3*pi/8.) +
| 3*constTC\sin(3*pi/4.) |
| \(c(19) \) | -\text{constAC}\sin(4*pi/8.) +
| 4*constTC\sin(4*pi/8.) |
\[c(1) = 0.0 + 0.5p*q \]
\[c(16) = -\text{constCC}\sin(\pi/8.) - \text{constDC}\sin(\pi/8.) + \text{constGC}\sin(\pi/8.) + 0.5p*q \]
\[c(9) = -\text{constCC}\sin(\pi/4.) - \text{constDC}\sin(\pi/4.) + 2\text{constGC}\sin(\pi/4.) + 0.5p*q \]
\[c(10) = -\text{constCC}\sin(3\pi/8.) - \text{constDC}\sin(3\pi/8.) + 3\text{constGC}\sin(3\pi/8.) + 0.5p*q \]
\[c(13) = -\text{constCC}\sin(4\pi/8.) - \text{constDC}\sin(4\pi/8.) + 4\text{constGC}\sin(4\pi/8.) + 0.5p*q \]

B.C.
\[c(23) = (-2\times h^3)\times 0.5p*y*\theta)/Cw \]
\[c(5) = 0.0 \]
\[c(6) = 0.0 \]
\[c(7) = 0.0 \]
\[c(4) = 0.0 \]
\[c(20) = 0.0 \]
\[c(21) = 0.0 \]
\[c(22) = 0.0 \]

\[n = 23 \]
\[np = 23 \]

```
call ludcmp(a,n,np,indx,d)
do 76 j=1,n
d=d*a(j,j)
76 continue
determ=d
if (p.EQ.0.) then
determZ=determ
endif
determbar=determ/determZ
if (determbar.LE.-0.0001) go to 11
call lubksb(a,n,np,indx,c)
do i = 1,n
write(\(*,\*) 'displacement, i,c(i) = ',i,c(i)
```

\[v(1)=c(5) \]
\[v(2)=c(8) \]
\[v(3)=c(11) \]
\[v(4)=c(14) \]
\[v(5)=c(17) \]
\[u(1)=c(6) \]
\[u(2)=c(9) \]
\[u(3)=c(12) \]
\[u(4)=c(15) \]
\[u(5)=c(18) \]
\[w(1)=c(7) \]
\[w(2)=c(10) \]
w(3)=c(13)
w(4)=c(16)
w(5)=c(19)

write(*,*) , p, w(5)
 do i=1,5
 write(*,*) , i, v(i), u(i), w(i)
 enddo

straina = 2*v(5) - 1*u(5) + 2*w(5)

if (straina .GE. straincr) go to 11

c write(*,*) , p, straina
 continue
11 continue
stop
end

LU DECOMPOSITION

subroutine ludcmp(a,n,np,indx,d)
imPLICIT REAL*8 (A-H,O-Z)
PARAMETER (nmax=100, tiny=1.0E-20)
DIMENSION a(np,np), indx(n), vv(nmax)
d = 1.
do 12 i=1,n
 aamax = 0.
do 11 j=1,n
 if (abs(a(i,j)) .GT. aamax) aamax = abs(a(i,j))
11 continue
 if (aamax .EQ. 0.) PAUSE "Singular matrix."
 vv(i) = 1./aamax
12 continue
 do 19 j=1,n
 do 14 i=1,j-1
 sum = a(i,j)
 do 13 k=1,i-1
 sum = sum - a(i,k)*a(k,j)
 13 continue
 a(i,j) = sum
 14 continue
 enddo
 aamax = 0.
do 16 i=j,n
 sum = a(i,j)
 do 15 k=1,j-1
 sum = sum - a(i,k)*a(k,j)
 15 continue
 a(i,j) = sum
 dum = vv(i) * abs(sum)
 if (dum .GE. aamax) then
 imax = i
 aamax = dum
 endif
 do 17 k=1,n
 dum = a(imax,k)
 a(imax,k) = a(i,k)
 a(i,k) = dum
 17 continue
end
SUBROUTINE LUBKSB

subroutine lubksb (a,n,np,indx,c)
implicit real*8 (a-h,o-z)
dimension a(np,np),indx(n),c(n)
i=0
do 12 i=1,n
 ll=indx(i)
 sum=c(ll)
 c(ll)=c(i)
 if (ii.NE.0) then
 do 11 j=ii,i-1
 sum=sum-a(i,j)*c(j)
 11 continue
 if (sum.NE.0.) then
 ii=i
 endif
 c(i)=sum
 endif
12 continue
do 14 i=n,1,-1
 sum=c(i)
 do 13 j=i+1,n
 sum=sum-a(i,j)*c(j)
13 continue
 c(i)=sum/a(i,i)
14 continue
return
end
VITA

Name: Mojtaba B. Siijani
Born: September 28, 1959
Place of Birth: Mashhad Iran
Permanent Address: Rehnamai-18 Palestine-15
 House No. 31
 Mashhad, IRAN

The author was born to Mohammed Sadgh and Nosrat Sirjani in the city of Mashhad, Iran. He completed his early education up to high school in Iran, and then briefly attended Tehran University in 1978. He received B.S. in Mechanical Engineering from Old Dominion University at Norfolk Virginia in May 1984. He finished M.S. in Manufacturing Engineering from North Carolina A&T State University in May 1989. He worked as a design engineer for W.F. Altenpohl, Inc. at High Point, North Carolina from 1987 through 1989. He taught as adjunct assistant professor for the department of technology at Old Dominion University from 1989 through 1992. The author has been teaching at Norfolk State University as assistant professor since 1989. In June, 1993, he entered Old Dominion University to pursue a Ph.D. degree program in Civil Engineering.