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Fig. 4.3. Computational results of MOMCMC on 100 dimensional ZDT2. (a) Solutions in a sample with HYP = 0.328 (largest hypervolume found in
sampling). (b) Solutions in a sample with HYP = 0.310. (c) Solutions in a sample with HYP = 0.302.

point r , is defined as

HYP(S) =


i

VOL(f (ci), r),

where VOL(.) is the Lebesgue measure and f (ci) is the corresponding point of ci in the objective function space. Based on
the definition of the hypervolume indicator, the hypervolume value is solely determined by the non-dominated solutions
and the reference point while the dominated solutions do not contribute. Typically, a higher hypervolume value indicates
that the set of solutions S is closer to the Pareto optimal front and/or more diversified.

Figs. 4.2–4.6 illustrate the computational results of MOMCMC on 100 dimensional versions of ZDT1-4 and ZDT6. The
computation adopts the suggested DE parameters (CR = 0.9 and F = 0.8), a 15% acceptance rate in MCMC and uses a
population of 1024. The reference point is at (1.0, . . . , 1.0). Figures (a) in Figs. 4.2–4.6 show the sets of solutions with the
maximum hypervolume values found during MOMCMC sampling, which exhibit diversified coverage of the Pareto optimal
fronts in all ZDT benchmark functions. Figures (b) and (c) in Figs. 4.2–4.6 depict two samples of solutions with smaller
hypervolume values obtained in MOMCMC sampling after equilibrium is reached, which show that MOMCMC can also
sample solutions near the Pareto optimal front, and the hypervolume values indicate how far the solutions in the sample are
deviated from the Pareto optimal front. Table 4.1 summarizes the sampling performance ofMOMCMCon the ZDT benchmark
functions.

The samples obtained in MOMCMC also reveal the characteristics of the function space formed by the multiple objective
functions. For example, in ZDT6, unlike the other ZDT test functions, solutions inMOMCMC sampleswith lower hypervolume
values aremostly deviated from the Pareto optimal front. This is due to the fact that the distribution of the solutions in ZDT6
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Fig. 4.4. Computational results of MOMCMC on 100 dimensional ZDT3. (a) Solutions in a sample with HYP = 1.042 (largest hypervolume found in
sampling). (b) Solutions in a sample with HYP = 1.028. (c) Solutions in a sample with HYP = 1.017.

Table 4.1
Summary of sampling performance of MOMCMC on
ZDT benchmark functions with population size of 1024.
Reference point is at (1.0, . . . , 1.0).

MaxHYP MeanHYP Standard deviation

ZDT1 0.662 0.653 0.003
ZDT2 0.328 0.310 0.008
ZDT3 1.042 1.027 0.010
ZDT4 0.665 0.660 0.002
ZDT6 0.316 0.300 0.009

functions are non-uniform, where the solution density is lowest at the Pareto optimal front and increases when being away
from the front [23].

4.3. Convergence comparison between MOMCMC and MOSCEM

Fig. 4.7 compares the 100-lag autocorrelation plot of the sample time series produced by MOMCMC and MOSCEM in
100 dimensional ZDT6. The autocorrelation indicates the ‘‘stickiness’’ of the MCMC sampler in local modes [29]. One can
observe that, in the 100-lag plot, the autocorrelation function value in MOMCMC decreases to less than 0.1 while that in
MOSCEM is still as high as about 0.6. One reason is the DE-based proposal scheme produces more adaptive jumps by taking
advantage of current population’s distance and direction information than that of MOSCEM. The other reason is that the
MOMCMC fitness function can differentiate the dominated solutions more precisely by taking dominance significance into
consideration. Consequently, MOMCMC yields a better convergence rate (mixing rate) [30] than MOSCEM.

Better convergence in MOMCMC leads to faster exploration of the solutions near the Pareto optimal front thanMOSCEM.
Fig. 4.8 compares the standard deviations of the best hypervolume values in 10 independent runs using MOMCMC and
MOSCEM in 100 dimensional ZDT1. MOMCMC approaches the optimal hypervolume value (0.6667–1024 points uniformly
distributed on the Pareto optimal front with reference point at (1.0, 1.0)) in much less iterations than MOSCEM, which
indicates significantly more efficient sampling capability in MOMCMC than MOSCEM. Fig. 4.9 shows that MOMCMC also
outperforms MOSCEM in computational time. The main reason is MOMCMC can avoid the costly covariance calculation in
MOSCEM.
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Fig. 4.5. Computational results of MOMCMC on 100 dimensional ZDT4. (a) Solutions in a sample with HYP = 0.665 (largest hypervolume found in
sampling). (b) Solutions in a sample with HYP = 0.661. (c) Solutions in a sample with HYP = 0.656.

4.4. Sampling on complicated function space using small population size

In real-life applications, multiple objective functions can form complex function space with complicated Pareto optimal
front shape. The population size used in themulti-objective sampling/optimization algorithm is a critical parameter. Usually,
a large population size is required in population-based algorithms in order to sufficiently cover the Pareto optimal front in
a complicated multi-objective optimization problem. Unfortunately, employing a large population in sampling is rather
costly. For example, the computation complexity of evaluating domination count requires O(MN2) comparisons in worse
case with population size of N and M objective functions [1]. One of the key advantages of multi-objective sampling is to
enable one to use a relatively small population size to sample the complex function space and obtain multiple independent
samples of solutions to obtain good coverage of the complicated Pareto optimal front.

We consider the following modified ZDT3 functions

f1(x1, . . . , xN) = x1

g(x2, . . . , xN) = 1 + 9 ·

N
i=2

xi
N − 1

h(f1, g) = 1 −

f1/g − (f1/g) sin(200π f1)

f2(x1, . . . , xN) = g · h(f1, g),

whose Pareto optimal front contains 100 separated segments. Fig. 4.10(a) shows one sample obtained fromMOMCMCwith a
small population size of 64 after equilibrium is reached. Since the population size is less than the number of separated Pareto
optimal front segments, a single sample generated by MOMCMC cannot fully cover all Pareto optimal front segments. The
autocorrelation plot in Fig. 4.10(b) shows that the autocorrelation function value decreases to −0.02 at lag 100, suggesting
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Fig. 4.6. Computational results of MOMCMC on 100 dimensional ZDT6. (a) Solutions in a sample with HYP = 0.316 (largest hypervolume found in
sampling). (b) Solutions in a sample with HYP = 0.303. (c) Solutions in a sample with HYP = 0.279.

Fig. 4.7. Comparison of autocorrelation functions between MOSCEM and MOMCMC in 100-dimensional ZDT6.

that the samples generated in MCMC every 100 iterations can be deemed as independent samples. Fig. 4.10(c) shows the
solutions of 10 samples chosen in every 100 lags, which covers all separated Pareto optimal front segments in the modified
ZDT3 functions.
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Fig. 4.8. Comparison of the best hypervolume values in 10 runs using MOMCMC and MOSCEM in 100-dimensional ZDT1.

Fig. 4.9. Comparison of computational times of MOMCMC and MOSCEM in 100-dimensional ZDT1. Both MOMCMC and MOSCEM use a population size
of 1024.

5. Conclusions

In this paper, we present the MOMCMC method, a new Monte Carlo method to address the multi-objective sampling
problem. MOMCMC is a population-based method incorporating a DE-based proposal function into MCMC and measuring
the significance of dominance when estimating fitness of dominated solutions. The acceptance rate is used to control the
solution sampling bandwidth near the Pareto optimal front, so that the MOMCMC sampler cannot only explore solutions at
the Pareto optimal front, but also those close to the front. TheMOMCMCmethodhas demonstrated its sampling effectiveness
in the ZDT test functions, where MOSCEM has certain deficiency. The MOMCMC method is also capable of using small
population size to sample complicated function space.

By using DE to propose new solutions, MOMCMC can avoid costly calculation of parameter covariance of a population
and thus is scalable with the size of population without imposing significant computational overhead to multi-objective
sampling. Therefore, in many multi-objective sampling applications where the most computationally costly part is
calculating the objective functions, the bottleneck lies on objective functions evaluation. Fortunately, in most of these
applications, evaluation of the objective function values of members in a population can usually be carried out in parallel.
As a result, another potential advantage of MOMCMC is its parallelism. Due to the independence of evolving each
individual solution in a population, MOMCMC is particularly suitable for the newly emerging high performance computing
architectures, such as multicore and general purpose GPU [31], in large-scale multi-objective sampling applications. Our
recent implementation of MOMCMC on GPU [32] has shown a speedup of ∼100 by taking advantage of the GPU Single-
Instruction-Multiple-Threads (SIMT) architecture.
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Fig. 4.10. Using MOMCMCwith small population size to sample complicated function space. (a) Solutions of a single sample generated by MOMCMCwith
population size of 64 on themodified ZDT3 functions with 100 separated Pareto optimal front segments. (b) Autocorrelation plot of MOMCMC onmodified
ZDT3 functions with population size of 64. (c) Solutions of 10 samples chosen in every 100 lags usingMOMCMCwith population size = 64 on themodified
ZDT3 functions, which lead to good coverage of the 100 separated Pareto optimal front segments.
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