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Abstract-A simplified two-compartment model for cell-specific chemotherapy is analysed by re- 
formulating the governing system of differential equations as a Schrodinger equation in time. With 
the choice of an exponentially decaying function representing the effects of chemotherapy on cycling 
tumor cells, the potential function V(t) is a Morse-type potential, well known in the quantum me- 
chanical literature; and the solutions are obtainable in terms of confluent hypergeometric functions 
(or the related Whittaker functions). Because the chemotherapy is administered periodically, the 
potential V(t) is periodic also, and use is made of existing theory (Floquet theory) as applied to 
scattering by periodic potentials in the quantum theory of solids. Corresponding to the existence 
“forbidden energy bands” in that context, it appears, that there are “forbidden” or inappropriate 
chemotherapeutic regimens also, in the sense that for <some combinations of period, dosage, and cell 
parameters, no real solutions exist for the system of equations describing the time evolution of cancer 
ceils in each compartment. A similar, but lees complex phenomenon may occur for simpler mathe- 
matical r~presantatjons of the regimen. The purpose of this paper is to identify the existence of this 
phenomenon, at least insofar as this model is concerned, and to examine the implications for clinical 
activities. This new paradigm, if structually stable (in the sense of the phenomenon occurring in more 
realistic models of chemotherapy) may be of considerable significance in identifying those regimens 
which are appropriate for effective chemotherapy, by providing a rational basis for such decisions, 
rather than by “trial and error” (see the statement by Skipper [l] at the conclusion of this paper). 

Ke~ords-Chemoth~apy, Schriidinger equation, Periodic potential, “Forbidden” regimens. 

1. INTRODUCTION 

In a recent paper [2], Panetta and Adam analyzed a two-compartment model of cell-specific 

chemotherapy (see Figure 1). The two compartments represent cycling cells (containing the G1, 

S, G2, and M phases) and resting cells, respectively. While obviously a simplistic model of the 

cell cycle (or, equivalently, a simplistic model of the effects of chemotherapy), the mathematical 

aspects of the model can be investigated in considerable detail, which we set out below. For 

further details of the chemotherapeutic treatment, the reader is referred to [2]. 

The governing system of differential equations is 

where x = (~1, ~2)‘; x1 and 22 represent the cycling and resting (or noncycling) tumor cell mass, 
respectively. The quantity a is the rate at which cycling cells leave the cycling compartment 

(including natural decay or death) minis the cycling cell growth rate, b is the rate at which 

resting cells enter the cycling compartment, and p is the rate at which cycling cells enter the 
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r 7 I I 

Figure 1. The tw+compsrtment model consisting of cycling cells and resting cells. 
The terms a, b, and /L are exit/entry rates defined in the introduction. 

resting compartment. All the quantities (a,&, and p> are nonnegative. The function g(t) is 
continuous in any inter& (7~7, (n + 1)~)~ and describes the effects of ~emotherapy on the cycling 
tumor cells. In the first period, it is defined by 

g(t) = he-“‘, 0<t17, (2) 

where h is the so-called cell-kill parameter, a the drug decay or evacuation rate, 7 is the minimal 
period of the function g(t), and n + 1 is the period number, n = 0, 1,2. . . . 

2. SCHRijDINGER EQUATION FORM FOR (1) 

From equation (l), the following homogeneous second-order differential equation may be de- 
rived for zl(t): 

d2xl 
dt2 + G1(t)% + G2(+1 = 0, (3) 

in general for nr < t I (n + l)~, where 

Gl(t) = a + b + g(t), 

Gz(t) = g’(t) + b(a - p) + bg(t). 
(4 

Note also that 

x2(t) = b-l $ + (a + g(~))~l 
> 

* (5) 

Equation (3) may be cast into a variety of forms; in particular, Whittaker’s differential equation, 
which is closely related to the canonical form of the confluent hypergeometric differential equation 
(see Section 3). For the moment., however, we content ourselves with a reformulation of the 
equation into linear Schrijdinger form. 

Upon substituting form (2) for g(t) into equations (3) and (4), we obtain, under the change of 
dependent variable 

~(4 = xl(t) exp {+(o~} (6) 

the equation 

C&(t) - ;G;(t) - ;G;(t) 

or after some rearrangement 

@Y z-t{K+Le -cd + peBzat) y =I 0, (8) 
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K = b(a - /.A) - $3 + q2, 

L = 32 -a- (n+b)), 

p=+ = _+ 

(9) 

We note the formal similarity between equation (8) and the linear Schrijdinger equation with 

time as the independent variable, namely 

2 + {;\ - v(t)} y = 0, (10) 

wherein i = K is an “energy” associated with a quantum mechanical “particle” in a potential 

well, V(t), in time, where 
V(t) = yse-s”t -- Le-*r, (11) 

The application of “boundary conditions” in time enable us, in principle, to identify the para- 

meter i (which depends only on the details of the cell ~omp~tment entry and exit rates) as an 

eigenvalue, but let us note first some general features of the time-potential (11). V(t) is in the 

form of a Morse-type potential for a molecule (see f3] for details), and as defined here, possesses 

the following properties: 

6) 
(ii) 

V(0) = y2 - L. 

limt+W V(t) = O-, (though, of course, the potential on (0,~) will be periodically 

translated). 

(iii) 

(iv) 

(v) 

V(t,) = 0, where t, = o-r In (2y2,/L). 

V@*) = -(L2/4r2) < 0. 
V"(t*) = La2eCat* > 0 if L > 0, i.e., if 

2>o+a+b. 

(vi) V"(ti) = 0, where ti = t, + o-l In 2. 

(vii) V(ti) = -(3L2/16y2)e 

(viii) V > 0 for t < to = o-l In (r2/L). 

V(t) is sketched in Figure 2. 

y*- L 

Figure 2. The Morse-type potential V(t) = y2evzat - .fkTat (see equation (9)) 
arising from the equation (2) for g(t). This potentiaI on (0,~) is periodically repeated 
in time. 
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3. ANALYTIC SOLUTIONS 

In (8)) we define a new independent variable 

T = ?e-at 
(Y ’ 

and a new dependent variable 
F(T) = T--P/ae0/2)TY, 

FOR (8) 

(12) 

(13) 

where K = -p2 (K < 0 for the choice of parameters used later in Section 5) and 1 = L/2cry. 

Then, (8) becomes 

Tg+(z+l-T) g-(E+;-,)F=O, 

which is Kummer’s canonical form for the confluent hypergeometric equation in which we make 
the following identifications: 

&+1_1 
2 ’ 

,=%+, 
(15) 

(Y ’ 

so ii = (E/2) - 1. Provided E is not an integer [4], there are two linearly independent solutions 

to (14), namely 

1J’r (6, z; T) and T1-“1Fl(6 - E + 1,2 - 2;; T), 

using the standard notation for confluent hypergeometric functions. In terms of y(T(t)), the 
general solution of (8) is 

y(T(t)) = TP/ae-(1/2)T { AF( Zi,Z;T)+PT1-sF(ii-E+1,2-Z; T)}, (16) 

where we have now dropped the “iFi” notation for simplicity. In terms of the original variables, 
from (6), (12), and (16) 

z,(t) = ,-(1/2)(a+b)t,(h12cr)e-at~(~). (17) 

Prom (16), therefore, assimilating constants into A and B, we have two linearly independent 
solutions (if E is neither zero nor an integer) 

yi(t) = e -Pte-(VaFat~ (a, 2;; se-at) , 
(18) 

and 
Y2(t) = ePte-@/We-“t ?I-E+1,2-E;~e-a’ 

> 
, (1% 

from which (17) yields the corresponding zll’(t), zc2)(t). If required, (5) provides the correspond- 

ing expressions for s$i’(t) and z?‘(t). 
An alternative form for the basis solutions (18) and (19) is in terms of Whittaker’s confluent 

hypergeometric functions (Whittaker functions). If in equation (14), we define 

F = T-E/se(‘/2)TW(T), (20) 

then it can be shown after some algebra that W satisfies Whittaker’s differential equation, which 
has the advantage of being self-adjoint 

(l/4) - m2 
T2 (21) 
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where m2 = p2/cx =. If 2m is not an integer, two linearly independent solutions of (21) are 

Wl,,(T) = T(1/2)+me-(1/2)TF 
( 

i - 1+ m; 1 + 2m; T 
1, ) 

, (22a) 

and 

wl,_,(T) = T(1/2)-me-(1/2)TF 
( 

i - 1 - m; 1 - 2m; T) . Pb) 

Whichever form of solution we choose, a necessary condition for effective chemotherapy is, 

from (17), 

zl(t + (n + 1)T) < s1(t + 127) n=0,1,2 )...) (23) 

where the y(t) in (17) b d is ase on the linearly independent solutions in (16) or (22). 

4. THE CHEMOTHERAPEUTIC REGIMENS AS A 
PERIODIC POTENTIAL 

If the potential V(t) is periodic with minimal period 7, i.e., 

V(t + n7) = V(t), n = 0, 1,2, . . . ) t 2 0, (24) 

then the Schrodinger equation (10) is invariant with respect to all translations by integer multiples 

of T, t + t -t TV. If yl(t) and y=(t) are two linearly independent solutions of (lo), then, in 

particular so are yl(t + T) and yz(t + T); indeed, these latter two solutions can be written as 

linear combinations of the former two. From within the solution space spanned by yi and ~2, 

Floquet theory assures us that there are two solutions, Yl(t) and Y=(t) say, with the property 

that 

lqt + T) = xix(t), i = 1,2, 

where each Xi is a constant. It naturally follows that 

Yi(t + nT) = X:x(t), i = 1,2; n = 0, 1,2, . . . . 

Let 

W(Yl(t),Yz(t)) = Yi(V-29) - Yl?)Y&) 

denote the Wronskian determinant. From (25), it follows that 

W(&(t + r),%(t + 7)) = x1,\2w(K, (t),&(t)). 

By a well-known theorem [4], the Wronskian for solutions of (10) is a constant, whence 

xix2 = 1. 

(25) 

(26) 

1127) 

(23) 

(29) 

At this point in the quantum mechanical literature (see e.g., [3]), it is demonstrated, using (26) 

and the concept of an “infinite crystal,” that Xi and X2 are complex numbers with modulus unity 

(Bloch’s theorem). However, the independent variable here is time, and the treatment is finite in 

duration (see comments in [5]), so we are not thus restricted. An obvious constraint is that we 

discard that solution y2 (say) for which X2 > 1, and retain yi for which Xi < 1. This is merely 

the constraint noted in Section 3 (equation (23)). 

It is a straightforward matter to examine (in principle, at least) what implicit constraints 

there may be on other parameters within the model. We will now drop the subscript “1” on Yi(t) 

and Xi and write the former as a linear combination of yi and ~7.. Thus, 

Y(t) = &l(t) + By2(t), O<t<T. (30) 
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In the next period, r I x < 27, on using (25) 

Y(t) = X[Ay$ - T)+ Byz(t - T)]. (31) 

By requiring that Y(t) and Y’(t) must be continuous at t = 7, the condition for nontrivial A 
and B is the standard one, namely 

Yl(T) - XYl(O) Y2(7) - ha(O) 

!I:(~) - XYi(O) Y;(T) - XYL40) = Oy 
(32) 

or 

X2W(0) -I- XJ(O,T) + W(T) = 0, (33) 

where W(0) and W(r) refer to the Wronskians of yr and Ys evaluated at t = 0 and t = 7, 
respectively; J(0, r) is defined by 

4%~) = ~2(0)~~(~) + ~2(~)y~tO) - ~l(O)y~(~) -YI(~)~~~O) = J. (34) 

Note that W(0) = W(T) = W. 
In solving (33) for A, we will retain the root X such that 0 < ReX 5 1. Those parameter values 

such that ReX falls outside the interval [O,l] will be deemed as corresponding to an “ineffective” 
regimen. Let us decompose the solutions of (33) in an obvious manner from 

2WX = -J rt [J2 - 4W2] (1’2) . (35) 

Both roots will be real if J2 2 4W2; both will be negative or positive if in addition, J and W have 
the same or opposite signs, respectively. The roots will be complex conjugates if J2 < 4W2; in 
addition, ReX will be negative or positive if J and W have the same or opposite signs accordingly. 
Since j J/ZWl < 1 automatically, one root will have 0 < ReX < 1 whenever J/W < 0. 

Regardless of whether X is real or complex, an optimal restriction may be obtained by consid- 
ering X = eie (where 0 is a real number which may depend on the model parameters), since for 
X = Reie, (R > 1), one root will be such that j X I= R and the other (of interest here) will be 
such that 1 X I= R-l < 1. Thus, from (35), it follows that 

-J 
COSB = -. 

2w (36) 

Now if the model parameters were such that I& 1 > 1, it would be clear that (36) could not 
be satisfied. This is the mathematical basis for the existence of “forbidden energy bands” in 
solid state physics, and to this end, we examine (33) further by digressing briefly to the physical 
motivating example of electrons in a periodic square lattice [3,6,7]. 

5. THE “EIGENVALUE” i 

From equation (9), we have noted that 

j, = K = b(a - p) - ;(a + b)2. 

It is clear that i < 0, for we may rewrite this ss 

i = - bp+ ;(u-&)~ 
1 
< 0, 

(37) 

(38) 

for a, b,p all positive, justifying the choice of K = -p2 in equation (13). 
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In the qu~tum mech~ica1 problem for a potential well, such negative eigenvalues correspond 

to “bound states” of the system. We may also carry over some of the terminology to advantage 

in the present model. For the Morse potential V(t) described by equation (ll), the minimum 

occurs at t = t, = cr -r In (2r2fL), with value V(t,) = -L2/4y2 (see Figure 3). A bound state 

will be said to occur if 

i E f- I V(k*) I,% @9) 

i.e., if 

which places restrictions on the parameter set {a, b, p, cr}-notice this is independent of the 

dosage h-in p~ticul~r on (Y, if the remainder is prescribed, i.e., either 

or 

- (a c b) (41) 

- (a c b). (42) 

Note also that V(~) is positive or negative according to whether y2 - L is positive or negative, 

i.e., when h is greater than or less than the quantity 

4 - 2(ty i a + b), (43) 

respectively. The minimum of V(t) is actually attained if 7 2 t,. 

V(O 

Figure 3, The Morse potential of Figure 2 with a rectangular potentiai well super- 
imposed upon it. The negative “eigenva;lue” parameter 5 is indicated, as are other 
parameters discussed in Section 5. 

In order to simplify the problem enough to illustrate the implications of the model, we replace 

the Morse potenti~ (drawn in F’igure 3 for V(0) > 0) by a potential well as shown. The well 
depth is V(t,) = -VO, and c = r - b measures the width of the well (b may be chosen zero if 

V(0) < 0). 
In terms of a periodic rectangular butier of height Vi > 0, E (positive in that problem) 

= k-z, Vi -E = K$ > 0, (K2 > 0). 
In terms of the multiplier X = Re i@T (R 5 l), we find from (33) or [S] 

2 

cos kl b cash K;c - (kz-K > -.iL--- 2 
2klKs 

sin kl b sinh K~c = R cos 6~~ (44) 
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For the problem at hand (see Figure 3), E < 0 and VI + -VO, so we substitute E = kf = 
-Kf, K1 > 0 into (44), noting that Kz is now -Vo+Kf < 0, so Kij = -kg < 0 for -VO < E < 0. 

Under these circumstances, a new form of (44) is obtained, namely 

coshKlbcoskac+ (G) sinhKlbsinkzc= Rcost+ (45) 

has no real solution (in terms of E or kl) for some ranges of E, viz., if kyz = rnT, m any integer, 
(45) reduces to 

(-l)“coshK1b = RCOS~T, (46) 

which is, of course, impossible for nonzero real values of the parameters and R 5 1. On the other 
hand, it is clear that, in particular, if kzc = $ and KI is sufficiently small, there are parameter 
ranges for 8, k2, b, T, etc. for which (45) is satisfied. There will, in general, be some ranges of E, 
therefore, for which (45) is satisfied. This is to be contrasted with the case of a barrier with 
E < 0 (as opposed to a well with E < 0), for which (44) becomes 

coshK1bcoshKzc+ (:gz) sinhklbsinhKzc= Rcos.87. (47) 

Since the first term on the left exceeds one for nonzero parameters, and the second term is 
positive, this criterion is never satisfied for real parameters and R 5 1. 

The reason for the existence of forbidden bands in the quantum-mechanical context (which 
is a boundary value problem for y(z)) is that the waves, in traversing the potential V(z) are 
reflected in phase by the potential and so interfere destructively with an “incoming” wave so 
that it is effectively annihilated. In the present context, it appears that the “feedback” from the 
chemotherapy for some ranges of dosage, period and all exit/entry rates is very counterproductive 
to the succeeding segment of the regimen. 

For illustrative purposes, we assign some special values to b, c, KI, and kz in equation (45). 
Firstly, choose b = 7/2 = c. Now 

K,2 = -fi = -E = IEl and k; = -K,2 = V. - IEl. 

Thus, in terms of the variable z = IEl/Vo, Klb = a(~/2) and kg = dm(7/2), the 
left-hand side of equation (45) becomes, upon choosing VOTE = 4, 

cosh&cosG+ ((x- 1/2)/&G)sinh&sinG, (48) 

for 0 < IC < 1 (the limits exist as z approaches O+ and l-, respectively). If we were investigating 
a potential barrier rather than a well, the appropriate domain would be z E (0,l) U(l) CXJ) (so 
written because of two different expressions which occur if E > VO and E < Vo). It can be seen 
from Figure 4 that f(z) > 1 (the “forbidden” region) when z exceeds about 0.57, i.e., for the 
parameters chosen here, fi should be at most 57% of the “depth of the well in Figure 3.” 

Figure 4. The function f(z) defined by equation (48) for 0 < x < 1. When this ex- 

ceeds unity, equation (45) cannot be satisfied for real X, R 5 1 and for the parameters 
chosen. 
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6. PIECEWISEUNIFORM g(t) 

If instead of the form (2), we choose a box-type function for g(t), namely 

SW = 
h, 0 5 t 5 T, 

0, T<~<T, 
(49) 

then the periodic potential in the Schrijdinger equation is correspondingIy different. Indeed, in 

the sense of generalized functions, g’(t) = -hS(t - T) (see Figure 5), so that from (7) 

Gz(t) - ;G:(t) - ;G:(f) = 6(o - cl)-+ bg + $ - &zfb+g)” 

(9 = b(u - p) + bh - Jp + 6 f h)” - $qt - T), OltiT, or (50) 

(ii> = b(a - p) - f (o 4 b)2, T<t<T. (51) 

u/t T 5 

Figure 5. The box function/delta function potential (52) for the piecewise uni- 
form g(t) defined by equation (49). 

As in Section 2, we identify the terms in the Schrodinger equation (10) as 

i, = b(” - /L) - ;(a + b)2 < 0, 

and 

VW = 
$h(a - bf + $h2 + z ‘h6t T), OIt<T, ( - 
o 

> T<t<r. 

The basic potential on (0, r) is thus a rectangular barrier of height Vo = (1/2)h(u - b) -t- (1/4)h2 

(unless h < 2(b- ) a in which case VO is the well depth) and width T with a delta function “spike” 

of strength h/2 at t = T (see Figure 5). Rather than analyse this model in detail at this point, 

we merely decompose this problem into two subproblems, each of which represents an extreme: 

(i) box function potential only, and (ii) delta function potential only. 

(i) Box Function Potential 

This case is easily dealt with if Vi > 0 (i.e., a barrier) because A = E < 0 reduces the problem to 

one previously discussed in Section 5. The relation (44) is neuer satisfied. In quantum mechanical 

terms, all energies are forbidden; in ~emotherapeutic terms (according to this model) no regimen 

works. If VO < 0 and I.,%‘[ < IVol, then the situation reduces to that defined by equation (45), 

namely there exists some range of E for which the regimen will not work effectively. 
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(ii) Delta-function Potential (Shifted to t = T) 

The analysis for this situation is less algebraically intensive than for a piecewise-continuous 
function. In the quantum theoretical literature, a periodic potential of this type is referred to as 
a “Dirac comb” [3,8]. 

F’rom (30) and (311, we obtain, for the equation 

0<t<7, 

K = @l(1/2), and 

Y(t) = AeKt f BemKt, o<t<7, 

Y(t) z.z x [AeK@-‘) + L(e-“+)] , 7 < t < 27. 

At t = T, we must have (i) 
hm& {Y(r + E) - Y(V- - E)} = 0, 

(53) 

(54) 

(55) 

(56) 

and 

Le., (ii) 

Thus, 

and 

Iii {Y’(r + E) - Y’(T - e)} = iii / $(t - r)Yft) dt, 

T-.-E 

hme (Y’(?- + E) - Y’(7 - E)) = iY(r). 

AeKT + Be- KT = X(A + B), 

XK(A - B) - K (AeK” - BemK7) = f (AeKT + Be-“‘). 

It is easily shown, directly or using (33), that 

(57) 

(531 

(591 

x2 - 
( 

2 cash Kr + &sinhKr 
> 

X+1 =O. (60) 

Since 

q=coshKr+&sinhKr21, (61) 

we take the smallest real root 
x = Tj - (q2 - 1)(1’2) 5 1, (62) 

This X is a monotone function of q, decreasing from one as q increases. Since a general requirement 
for effective chemotherapy is that X is as small as possible, this corresponds to making q as large 
as practical constraints on the parameters will permit. (Note that (62) is valid for all 7) 2 ‘1, 
in contrast to subproblem (i) which is never satisfied for Vs > 0.) This can be accomplished 
for given r by increasing K = [bh -t- (1/4)(a - b)2](1’2); in particular, increasing a and b by the 
same amount would increase K and leave Vo (assumed small here to suppress the box function 
contributions) unchanged. Changing a, b, and ~1 may be possible in real terms through the use 
of growth factors (see the discussion in Section 7). Another choice, apparently, to decrease X 
is to increase the period r for given K. This permits more resting cells to move to the cycling 
comp~tment, and thus, be exposed to the ~emotherapeutic regimen, but the submodel is not 
sophisticated enough to incorporate an implicit restriction on the optimal value of r (clearly 
r -+ 00 is inappropriate!). 

What may we infer, in the light of these two submodels, about the full box/delta function 
potential? Recalling that the first submodel implies no regimen is valid, and the second implies 
that all regimens are valid (though differing in efficacy), it seems reasonable to suggest that 
the full potential may exhibit regimes of validity, as does the more realistic potential based on 
exponential decay discussed in Section 2. 
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7. DISCUSSION 
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In this article, we have identified (via several variable rearrangements) a system of ordinary 

differential equations arising in a model of cell-specific chemotherapy, with the linear Schrodinger 

equation of quantum mechanics. However, the independent variable in this equation is time, for 

obvious reasons. Furthermore, reflecting the fact that the chemotherapeutic regimen is periodi- 

cally administered leads to the consideration of a periodic potential V(t). Much work has been 

carried out for periodic spatial potentials V(x) (in solid state physics, for example), and some of 

this material has been adapted for use in the present context. 

Specifically, the exponentially decreasing function g(t) describing the effect of chemotherapy on 

cycling tumor cells in one period gives rise to a Morse-type potential, well known in the quantum 

mechanical literature (see [3] for further references). Solutions to the governing equation can 

be given in terms of confluent hypergeometric functions (equations (18) and (19)) or Whittaker 

functions (equations (22)). By regarding the potential V(t) as periodic, we are led in a standard 

fashion to examine so-calied characteristic multipliers X,, i = I,2 (defined by equation (25)). 

In a spatial boundary-value problem, these Xi are sometimes referred to as eigenvalues, but we 

retain that term for the parameter i which appears in the Schrodinger equation (10). Constraints 

exist for these multipliers Xi (see equations (33), (35), for example); there is an obvious biological 

requirement that the appropriate Xi has modulus less than one (so that the cell population will 

decrease after each treatment). The constraints discussed in Section 4 are completely general, 

and utilize any appropriate pair of linearly independent solutions of the Schrodinger equation. 

Thus, the sets (18), (19), and (22) are both ca.ndidates for detailed examination of parameter 

space. This is not carried out in the present article because only limited information is available 

on the parameters (see [2,9] and below.). Instead, we choose to illustrate here the fundanlental 

implications of the model by fitting a “rectangular well” to the Morse potential V(t) (see Figure 3). 

This has the decided advantage that the constraints on the multipliers Xi can be obtained with 

relative ease. (For a very different application of potential wells and barriers, see [lo]). 

It is shown in Section 5 that the “eigenvalue” i is always negative for the model (11, and that 

the governing constraint equation for the rectangular well is equation (45). This equation cannot 

be satisfied for some ranges of i (or energy E in quantum mechanical terminology). Figure 4 

illustrates a specific example of this feature. In the literature of solid state physics, such regions 

of X-space are referred to as forbidden bands, and arise physically because of coherent reflections 

of “waves” from the potential that destructively interfere with those “‘waves.” In the present 

context, an appropriate interpretation appears to be that for certain choices of the cell exit/entry 

rates a, b, a~nd p (and hence A, via (37)) the chosen dosage and period are such that some type 

of negative feedback arises between a given period of administration and the subsequent one. 

As mentioned above, the information on a, b, and 1-1 is sparse Birkhead et al. [9] give a set of 

parameter values from breast cancer data. For this model. the set corresponds to 

a = 0.195, 

whence from (37) i = -0.016. 

/6 = 0.218, h = 0.050, 

If for this value of i (or other values depending on a, b, or p) and corresponding values of Vo, T 
and to in Figure 3, equation (45) cannot be satisfied, we have an inappropriate, and therefore 

ineffective regimen. Note that while i depends only on the set {a, b, p}, to = LY-’ in (r2/L) and 

Vb = L2/4y2, both depend on the set {a, h, a, h). Thus, in principle, the “external” variables 

o, h, and r may be varied easily to place i in a chemotherapeutically acceptable region such that 

equation (45) (or its analogue for the Morse potential in terms of confluent hypergeometric or 

Whittaker functions) is satisfied. 

However, there is another intriguing possibility regarding the “internal” variables a, b, and p. 

Growth factors increasingly are being used to help make chemotherapeutic drugs more effective. 

Growth factors (or inhibitors) are hormones that can stimulate (or inhibit) the normal cellular 
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proliferation processes. Further information may be found in [11,1‘2) (and also [2] for specifically 
chemotherapeutic applications). They can be used to modify the entry/exit rates from one cell 
compartment to another in order to optimize the cell kill rate. This corresponds to varying the 
“eigenvalue” A, and again could be used to place the regimen (i.e., the full set {a, h, ~,a,b,p)) 

in an acceptable region of parameter space. Conversely, the use of growth factors to enhance 
or optimize the cell kill rate may on occasion render the chemotherapy ineffective by modifying 
some parameters in such a way that equation (45) or its more realistic analogue may no longer 
be satisfied. 

In Section 6, a still simpler form of g(t) is investigated. Thii does not provide as rich a 
structure as the exponential decay model, as might be expected, but it does contain a feature 
that may be expected to be present in more general models of the type discussed in this paper, 
especially if a discontinuity in g(t) occurs for t E (0,~); i.e., in the fundamental domain. The 
two submodels considered represent extremes in the sense that any more realistic model (such 
as that considered in the main body of this paper, based on equation (2)) can be expected to 
exhibit a wide range of behavior, in that some regimens (or parameter sets) are effective (i.e., 

“allowed” by the system) and others are not. This is indeed the case for the exponential decay 
model discussed here. Having established the possibility of such a paradigm, or way of viewing 
the periodic administration of drugs to destroy tumor cells, it will be of great interest to examine 
more detailed models and their domains of parameter validity as more experimental and clinical 
information becomes available. This may eventually provide a rational basis for the “trial and 
error” method so clearly described by Skipper [l]: 

Over 20 years of experimental and clinical experience has demonstrated that intuitive 
or trial-and-error manipulations of doses, schedules, and combination of drugs-without 
guidance as to the effects of each manipulation-are apt to provide little or no improve- 
ment in combination chemotherapy designs. 
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