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Abstract-Prompted by recent clinical observations on the phenomenon of metastasis inhibition 
by an angiogenesis inhibitor, a mathematical model is developed to describe the post-surgical response 

of the local environment to the “surgical” removal of a spherical tumor in an infinite homogeneous 
domain. The primary tumor is postulated to be a source of growth inhibitor prior to its removal 
at t = 0; the resulting relaxation wave arriving from the disturbed (previously steady) state is studied, 
closed form analytic solutions are derived, and the asymptotic speed of the pulse is estimated to be 
about 2 x 10W4 cm/set for the parameters chosen. In general, the asymptotic speed is found to be 
2fi, where D is the diffusion coefficient and y is the inhibitor depletion or decay rate. 

Keywords-Tumor, Metastasis, Growth inhibitor, Diffusion, Relaxation wave. 

1. INTRODUCTION 

In a recent paper by O’Reilly et al. [l], the phenomenon of metastasis inhibition by an angiogenesis 

inhibitor, angiostatin, is discussed. In their animal model, a primary tumor inhibits its remote 

metastases. The authors discuss various existing hypotheses for the observed inhibitory effects, 

and propose that a primary tumor, while capable of stimulating angiogenesis in its own vascular 

bed, may yet inhibit angiogenesis in the vascular bed of a metastasis or other (secondary) tumor. 

The hypothesis involves the competing effects of angiogenic inhibitor and stimulator (released 

by the primary) in the vicinity of a remote metastasis. For the proposed mechanism to work, 

the inhibitor must have a longer half-life in the circulation than the stimulator does; then at the 

secondary location, inhibition occurs despite the presence of growth stimulatory factors. Upon 

surgery, the source of inhibition is removed, and the secondary is free to grow, often rapidly, 

by the usual mechanisms of angiogenesis. The reader is referred to the above paper for further 

details of the observations and the properties of angiostatin. 

Prompted by these clinical observations, we investigate the features associated with an idealized 

%urgical procedure” representing the removal of a spherical tumor in an infinite domain. We 

discuss the resulting initial-value problem as the domain, now bounded internally by a sphere 

of radius R, responds to the evolution of the (previous) steady-state distribution of inhibitor 

released by the primary prior to its removal. The geometry is shown in Figure 1. 

We assume that prior to surgery at t = 0, the source of inhibitor (the tumor) has been present 

for enough time that a steady state concentration C(r) has developed. The “exterior” solution 

C(T; 0) (T > R) is then the initial condition imposed on the boundary value problem at t = 0. 

This solution is established in the Appendix; it matches the ‘Ynterior” solution for r < R obtained 

The authors are grateful to G. Lasseigne for a very helpful discussion on the analytic representation of the solution 

given in the text. 
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Figure 1. Basic geometry of the problem: a spherical tumor of radius R embedded 
in an infinite homogeneous domain for t < 0, and removed at t = 0. 

by Shymko and Glass [2]. They were concerned with the internal distribution of growth inhibitor 

(in various geometries), which enabled them to draw conclusions about the stability or instability 

of tissue “growth”, i.e., whether or not the tissue could reach a stable limiting size, and under 

what circumstances this could occur. 

We do not incorporate the effects of an angiogenic stimulator in this paper. In what follows, 

C(r, t) is the growth inhibitor concentration in T > R, 7 is a depletion rate, D is the coefficient 

of diffusion, and P is a coefficient of permeability (between the tumor and its surroundings). In 

this paper, y, D, and P are all constants (in a subsequent paper, in preparation, we consider 

them to be piecewise constant quantities). Our ultimate concern is the description of C(r, t) at 

any given location corresponding to a metastatic or secondary site. In particular, for T = T* > R, 

and t = t* > 0, we wish to describe f(t) = C(r*,t) and g(r) = C(r, t*). We posit that if the 

concentration C(r, t) falls below a critical value 8, say, then metastatic inhibition ceases, though 

that is not a necessary requirement for our purposes here. We investigate f(t) and g(r) for various 
values of t and T, and estimate the speed of the “relaxation pulse” after removal of the primary 

tumor. 

2. STATEMENT OF THE PROBLEM 

The time-dependent post-surgical problem may be posed as follows: 

RIr<cq t>O, 

Dg+PC=O, r = R, t > 0, 

C(r,O) = pe-ar s F(r), t = 0, RIr<co, 

(1) 

(2) 

(3) 

where LY = (r/D)‘i2. 

3. ANALYSIS OF THE PROBLEM 

3.1. Reformulation and Solution 

Let C(T, t) G T(r, t)e- yt. Note that T(r,O) = C(r,O) = F(r) = (G/r)emaP from equation (3). 

Setting T(r, t) = r-i~(s(r), t), where T = z + R, equations (l)-(3) become 

El211 1 621 
-= -- 
8x2 D bt ’ 

Dau &- P-g 
( > 

21 = 0, 

o<x<oo, t>o, 

x = 0, t > 0, 

(4 

(5) 

u(x,O) = Ge -++w E M(x), o<x<oo, t=o. (6) 
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We introduce the integral transform pair [3] 

(7) 

(8) 

where the kernel, 

K(P,z) = ; 
J 

2 /3 cos(@r) + H sin(@) 

@xF 

is the normalized solution of 

g + p2Y = 0, o<x<co, (9) 

DdY z+ P-g Y=O, 
( > 

x = 0, (10) 

for p E [O,oo) and H = l/R - P/D. 

F’rom equation (4), we find that 

K(P, x)g dx = D-l lrn 
0 

K(&x)$dx = D-‘$@,t), (11) 

the left-hand side of which becomes 

It is reasonable to assume that lim,,, u(z) = 0 and lim,,, u’(x) = 0. These conditions 

imply that 

[ 

K~u dK M 

dz-Uz o 1 = 0 - K(O)u’(O) + u(O)K’(O). 

From equation (5), u’(O) = Hu(0). Al so, using the definition of K(P, x), it follows that 

K&_u!E O” 1 ax dx o 
= u(O) [K’(O) - HK(O)] = 0. 

F’rom equations (9) and (7), 

I O” d2K 

I 

00 
us dx = -0’ UK dx = -/32Z(P, t). 

0 0 

Using this information, equation (11) becomes 

WP, t) 
- = -p2Dqp, t), 

dt 
whence E(p, t) = E(p, O)emDpat. 

Note that from equations (6) and (7)) 

(12) 

where M(5) = (< + R)F([ + R). 
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Finally, using i-i@, 0) = z(P) in (12) and from equation (S), 

s 

co 
u(z,t) = zQ?)e-DBatK(p, z) d/K 

0 
(13) 

Using the definition of K(& <) and equation (6) in v(P) = so” K(P, <)u(<, 0) d<, we find that 

Note that 

so equation (14) reduces to 

m(p) = GemaRm (a + H)P 
&FTiF c2+p2 ’ 

where G is the exterior solution (see the Appendix). 

1 1 1+ q(coth(c&) - 1,‘aR) ’ 

Using equation (15) for 7i7i, equation (13) reduces to 

u(x,t) = zGemaR(cr + H) [I1 + HI4 , 

where 11(/3, z, t) = 
s 

O” @2e-Dfl't~~~(p~) 

0 (B2+a2)(82+H2fPy 

O" 
I2(P,&4 = 

J 

peTDflat sin@) 

0 (B2+(Y2)(p2+H2pp. 

Therefore, we have the solution 

C(r, t) = 
e-yt 2 
--;GeeaR((r + H) [l~(P,r - R, t) + Hl@,r - R, t)] . 

3.2. Nondimensionalization of the Results 

Letting 3 = PR and Z = x/R = r/R - 1 for T 2 R, we have 

where the dimensionless quantities g, Pi, and /?s are defined by 

Dt 
9=jp 

(14) 

(15) 

(16) 

(17) 

(18) 

3.3. Computation of Integrals 

The integrals 1 and 2 in equations (17) and (18), respectively, can be found using Fourier 
transforms. 
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Computation of Integral 1 

We use partial fraction decomposition to obtain 

R 

I1 = P: -0; [i 

w pgg@” COS(@T) dp _ 

0 P2 + 0: s m P,2ewgp2 cos(Pz) dpe 

0 P2 +P22 1 . 

Note that we need only evaluate 

O” 
I= 

e-gp2 cos(&) 
p2 +Q2 dp’ 

where Q = /3; or 0;. 

Then we have 

s 

O” e-go2 cos(@z) 1 
@2+Q2 dp=fzRe 1 _m 

The Fourier transforms are defined as 

T [e-a2z2] = (a&)-l e-E2/4a2, for a > 0, 

andT [Ca2.iX2)] = (:)“‘T. 

Therefore, we find 

-g~Ozeipx d@ = -$$e -x2/49 , 

i.e., T (e-9P2,2z) = F(z), 

& _I @1TQ2 d/3 = 
s 

i.e., T (&,z) = G(z). 

Defining T((e-go2)/(P2 + Q2)) as the convolution F * G, we have 

+? &Tdp] 9 e 

= &/Z&~Re [J_,_e-(rB)“/*e-QIBId/l] 

0 
b-PC)‘/4ge-QB d/j + 

/ 
e-(~-~)2/‘beQP d/J 

-m 1 
e-_(~-8)2/4g + e-(~+P)2/4g ,-QP d/j. 1 

Examining the first term, we note that 

I w e-(~-~)2/4ge-Q~ d/j = I O” ,--1/4g[(d)+4gQP] dp 

0 0 

=e -~2/4ge(z-w)=/49 I O” e-l/4s[P-s+2sQ]2 do 

0 

=e -~2/4ge(-2sQ)2/4g2fi -” ds. 
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From the definition of the complementary error function, i.e., 

Erfc(y) = 2 J; ym e-t’ dt, 
s 

it follows that 

J 
O” ,-(~-@a/4se-QP d@ = ,-22/4g,(z-2gQ)2/4g~~ Erfc 

0 

. (20) 

Similarly, 

J 
co 

e-(x+B)214g,-QP @ = e-x2/4ge(x+%Q)2/4g &jfi Erfc 
(2gzx) 

. (21) 
0 

Substituting the above two equations into equation (19), we obtain 

Finally, it follows that 

Computation of Integral 2 

Using partial fractions as before, 

R2 
I2= pz” __p; o 

[J 

m /3e-gP2 sin(px) O” 

P2 + P: 
dP - 

J 

pe-gfl’ sin(@x) 

P”+@ 
dpe . 

0 1 
Note that we need only to evaluate 

I= J O” pe-gp2 sin(px) dp 

P2+Q2 ’ 
where Q = ,812 or &, 

l0m p l=ii _,/32+Q2 J 
-eAgp2 sin(@x) dp = 5 Im [I 

00 P 
_-oo p+pe-gp2ei8x dp 1 . 

The Fourier transforms are defined as 

y [e-gP] = (A) -1 e-P/49 

and T [$&I = iSgn(<) (~)1’2e-Ql~~. 

Using the convolution theorem again (as with the first integral), we have 

1=iIm [I -m_&ie -(~-812/4g 
$ 

~~sgn(P)e-Ql@l d/j 1 
6” =- 

J 44 -co 

e-(~-P)2/4gSgn(p)e-Ql~l d/j 

b--P)“/4ge-QP d/J _ 
J 

0 
e-(~-P)214seQP dfl 

-00 I 

fi m =- [I ( 4Jji 0 

e-(X-P)2/4g _ e-(X+/3)“/4g ) 1 
e_QP dp . 
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As in the analysis from integral 1, we find 

I = &-x2/49 

w 

m [,(r-2~~)z/4g Erfc ( 2g;; “) _ ,(~+29Q)2/49 Erfc (‘g;; “>1 

= ;egQz [CzQ Erfc (w) -a@ Erfc (w)] . 
So, integral 2 can be expressed as follows: 

TR2 

I2 = 4 (P,” - p:, 

egP:{e-BlrErfc(~~l-~)-e”lxErfc(~~l+~)} 

-eg~~{e-pzxErfc(~~2-~)-eP.xErfc(~~2+~ 

3.4. When t = 0 

Note that, 

and &mm Erfc &PI - 
2 

- =o. 
2fi > 

This implies that the integrals reduce to 

I1 = 2 (p; - p;> 
[ple-Plz - @2e-P2z] , 

7rR2 
I2 = 2(& - pf) 

[e-Plz _ e-BzS] . 

3.5. Summary of Results 

Ultimately we are interested in the solution given by 

C(r, t) = 
e-rt 
-0 111 + Hl21, 
r 

where the following constants are given: 

R = radius of tumor in cm, 

y = depletion rate in s-l (e.g., 2 x 10m3, 10T2), 

P = permeability constant in cm/set (e.g., 10e4), 

D = diffusion coefficient in cm2/sec (e.g., 5 x 10m6), 

X = 0.1 in units of concentration/set, 

and the following are determined relationships: 

PI = aR, 

1 P 
H=R-E, 

0=++H+- 1+ (Da/P)(coth(aR) 1 l/crR) 1 ’ - 

g(t) = $7 
z(r) = (i) - 1, 

13 

(23) 

(24) 

(25) 

and the values for 11 and 12 are given by equations (22) and (23) for t > 0 and equations (24) 

and (25) for t = 0. 
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(4 

(4 

lb) 

Figure 2. The concentration of inhibitor C(r, t) in arbitrary units for various values 
of r in the exterior domain (t in seconds). 

4. THE RELAXATION PULSE 

Note from Figures 2a-2f that the pulse moves outward with decreasing amplitude over the 
time elapsed since “surgery.” To obtain a crude estimate of the speed with which such a pulse 

propagates, we compare Figure 2e, in which the m~imum occurs at t M 460 set for T = 0.2 cm, 

and Figure 2a, in which the maximum occurs at t = Osec for r = 0.1 cm. Therefore, the pqak 

of the pulse moves a distance R (= 0.1 cm) from the boundary of the tumor region in about 

460 seconds, corresponding to an average outward propagation speed of 2.2 x 10m4 cm/set. 
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We can verify this analytically in a nonrigorous fashion as follows: from equation (l), the 

“dependent” variable rC(r, t) satisfies the equation 

&C) - ;(rC) = ~-j&c). 
Unlike in the case of reaction-diffusion equations, this problem does not yield a lower bound for 

the propagation speed, but we can still gain some useful information from (26). The fundamental 

solution or Green’s function for (26) corresponding to a unit delta function source at the origin 

rC(r, t> = & exp - [+$]. (27) 

For a given T value, the maximum y-value will occur when a(rC)/& = 0 (there being no 

minimum), from which it follows that (see [4,5)) 

l-2 
-=4Dy+F. 
t2 

Clearly, this maximum moves radially outward in time with a speed asymptotically equal to 

2fi. In Figure 2, D = 5 x 10d6 cm2/sec and y = 2 x 10m3 cm/set. This asymptotic lower 

bound, which is approximately 2 x 10m4, compares favorably with the estimate from Figure 2a-2e 

found above. The quantity that is being propagated, y = rC, has dimensions of molecules per 

unit area, so it is obviously a measure of surface concentration at different spatial locations. See 

Figure 3 for the behavior of C(r) at different times. 

J 

Figure 3. The concentration of inhibitor C(T, ti) in arbitrary units, i = 1,2,3 in the 

external domain (r in cm). 

5. DISCUSSION 

We have analyzed the space-time behavior of a “pulse” of growth inhibitor (or other substance 

produced by a tumor) when the source of inhibitor is removed, and the surrounding medium 

passively responds to this surgery. It has proven possible to obtain closed form analytic solutions 

to this boundary/initial value problem, though they are very complicated in form. The equations 

are also solved numerically for C(r) at different fixed times after surgery and for C(t) at different 

fixed r-values. In the latter case, it is possible to estimate from the graphs the speed of the 

relaxation pulse, and this agrees very favorably with the asymptotic speed predicted from a 

study of the Green’s function for the problem. An obvious extension of this problem is to include 

the effects of tissue inhomogeneity [6]. 
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APPENDIX 

THE EXTERIOR SOLUTION 

The fundamental equation of interest is 

!$ = DV2C - yC + AS(r), 

which in the diffusive equilibrium approximation reduces to 

= 0, 

Therefore, if (Y = (T/D)‘/~, 

2 
!z+~Fg-~2~=_$ 

= 0, 

for r 5 R, 

for r > R. 

for T 5 R, 

for T > R. 

For the complementary function, we have 

C = t sinh(ar) + f cosh(crr). 

The particular integral must satisfy 

9” - &/ = -xr 
D’ 

which implies that 

Note that C’(0) = 0. 
For r > R, 

C(r) = 4 sinh(ar) + $, for r < R. P-9 

C = F sinh(crr) + F cosh(ar), 

where lim,,, C(r) = 0 implies that 

c = f(cosh(or) - sinh(or)) = :e-ar. (30) 

Continuity of C at T = R implies from equations (29) and (30), that 

$ sinh(aR) + 7 A = g[cosh(rrR) - sinh(aR)]. (31) 

Also, 

DdC z + PC(R) = 0, 
R 

meaning the flux inside the tissue at the bounding surface is equal to the leakage flux. Matching 
DC’( R-) with PC(R+), we have 

sinh(cuR) 
- R 

I 
+ y [cosh(cuR) - sinh(aR)] = 0, 



or from equation (31), 

Post-Surgical Passive Response 

sinh crR 
acoshcrR- R 1 + PsinhcrR 1 = -fl. Y 

Therefore, 

A= 
-PXR/y 

D (crcoshcrR - (sinhcrR)/R) + Psinhc~R’ 

For r I R, 

C(r) = p l- 
PR sinh czr 1 r[D(acoshaR- (sinhaR)/R) + PsinhcrR] . 

Note that 

P P 
D(acoshcrR - (sinhaR)/R) + PsinhoR = sinhcxR{D(crcothcrR - l/R) + P} 

l/ sinh aR 

= D(a/P) cothcrR + 1 - D/PR 

1/ sinh aR 

= 1 + v(cothcrR - l/aR) 

gives the notation of Shymko and Glass [2], where 77 = Da/P and 

From equation (31), 

1 + q(cothaR - l/aR) > ’ 

17 

(32) 

Therefore, for r > R, C(r) = (G/r)e+“, (see equation (3)) 

x R i.e., C(r) = 7-e -a(+R) 1 
1 _ 1 1+ q(cothaR - l/crR) ’ 
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