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Figure 2. Representative 10-day air mass back trajectory analyses (HYSPLIT model) for the Bermuda area during
the FeATMISS cruises (a) 5 August 2003 (summer 2003 cruise): “Saharan air”; (b) 1 August 2003 (summer 2003
cruise): “maritime North Atlantic air”; (c) 30 April 2004 (spring 2004 cruise): “North American air”; and (d) 2 June
2004 (early summer 2004 cruise): “North American/maritime North Atlantic air.”

3.1. Aerosol Iron Solubility in Relation to there are significant differences between the sum-
Aerosol Sources and Loadings mer 2003 cruise and the spring and early summer
2004 cruises. The summer 2003 cruise coincided

[16] In terms of the sources and total atmospheric with the transport of significant plumes of North

loadings of aerosols during our FeATMISS cruises,
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African soil dust over our study region, particularly
later in the cruise period, as revealed by satellite
images, air mass back-trajectory analyses using the
HYSPLIT model (http://www.arl.noaa.gov/
ready.html; see Figures 2a and 2b), and aerosol-
transport simulations by the NAAPS model (http://
www.nrlmry.navy.mil/aerosol/). Relatively high aero-
sol iron concentrations (mean Fer = 11 nmol m )
and high surface water dissolved iron concentra-
tions (~1-2 nM) were observed in association
with this “Saharan dust event” [Sedwick et al.,
2005]. In contrast, the spring 2004 and early
summer 2004 cruises were characterized by rela-
tively low aerosol iron loadings (mean Fer =
0.64 nmol m > and 0.96 nmol m >, respectively)
associated with air masses that had previously
passed over or near the North American continent
(Figures 2¢ and 2d). The NAAPS model simula-
tions for the spring and early summer 2004 cruise
periods suggest that these air masses were carried
from areas impacted by both Asian soil dust
(which had crossed the Pacific and North America)
and North American sulfate aerosols. Differences
in the color of aerosols sampled during our cruises
are consistent with these inferred source regions:
aerosols collected during summer 2003 were
orange-brown in color, as is typical of North
Aftrican soil dust, whereas the spring and early
summer 2004 samples were gray-brown in color,
as is typical of North American and/or Asian
aerosols [Arimoto et al., 2003; Tomza et al., 2001].

[17] A striking result of our aerosol iron solubility
measurements is the apparent hyperbolic relation-
ship between the percent operational solubility of
aerosol iron and the total aerosol iron concentra-
tion. The trend defined by the %Feg versus Fer
data (Figure 3a) resembles a rectangular hyperbola
of the form y = k/x, and there is a significant linear
correlation between %Feg and 1/Fer (r2 = 0.85,
Figure 3b). Calculated %Feg values range from
0.44% to 19% (Table 1), and the %Feg values
decrease sharply from 19% to 2% at the low end of
the observed aerosol iron loadings, as the Fer values
increase from ~0.5 nmol m—3 to ~5 nmol m >
(Figure 3a). Hence the operational solubility of
aerosol iron was highest when total aerosol iron
loadings were low, as is the case for the aerosol
samples collected in spring 2004 and early summer
2004, whereas the aerosol samples collected during
summer 2003 had %Feg values of less than 3%. To
some extent, these results might reflect an en-
hanced dissolution of aerosol iron under conditions
where the mass ratio of leach solution to aerosol
particles is relatively high [Zhuang et al., 1990;

Bonnet and Guieu, 2004] (the so-called “particle-
concentration effect” [Baker et al., 2006a]) as a
result of low aerosol filter loadings. This seems
unlikely, however, given our use of a flow-through
leaching protocol in which the aerosol particles are
continuously exposed to fresh leach solution [Buck
et al., 2006]. Instead, the fact that the highest %Feg
values (>3%) are associated with non-Saharan air
masses suggests that the observed range of %Feg
values reflects real, innate differences in the frac-
tional solubility of iron in our aerosol samples,
rather than artifacts of the aerosol leaching proto-
col. This interpretation implies that the fractional
solubility of iron in aerosols associated with North
American air masses (spring 2004 and early sum-
mer 2004 samples) was significantly elevated rel-
ative to the fractional solubility of iron in Saharan
dust (summer 2003 samples).

[18] The data presented by Baker et al. [2006a] and
Buck et al. [2006] for aerosols collected over the
Atlantic and North Pacific, respectively, define
trends that are qualitatively consistent with our
FeATMISS results; that is, elevated aerosol iron
solubility tends to be associated with low aerosol
iron loadings. Importantly, Baker et al. [2006a]
performed experiments in which they leached sev-
eral different-sized portions of individual aerosol
samples, thereby demonstrating that observed dif-
ferences in operational iron solubility were the
result of differences in the character of the aerosol
samples, rather than artifacts of their leaching
procedure. This and a lack of correlation between
operational iron solubility and either acid species
concentration or net potential acidity of their aero-
sol samples led Baker et al. [2006a] to conclude
that differences in the relative solubility of iron in
aerosols over the Atlantic Ocean are primarily
controlled by the source and chemical nature of
the aerosols, rather than the effects of atmospheric
chemical processing. More recently, however, Baker
and Jickells [2006] have argued that aerosol iron
solubility is controlled by size-sorting of mineral
aerosols during atmospheric transport (“atmospheric
physical processing”) rather than aerosol composi-
tion, based on a reexamination of the data presented
by Baker et al. [2006a, 2006b].

[19] Qualitatively, the observed relationship between
%Feg and Fet for the FeATMISS aerosol samples
(Figure 3a) is not inconsistent with the control of
aerosol iron solubility via atmospheric chemical
processing and/or atmospheric physical processing
of the aerosol particles. However, in the following
sections we will argue that our results are more
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Figure 3. (a) Operational solubility of aerosol iron

(%Feg) versus total aerosol iron concentration (Fet) for
FeATMISS aerosol samples; (b) %Feg versus 1/Fer
for the same samples, showing best fit linear regression
(r* = 0.85). Open circles, summer 2003 cruise; filled
circles, spring 2004 cruise; crosses, early summer 2004
cruise.

compatible with an alternate hypothesis; namely,
that the fractional solubility of iron in aerosols
over the Sargasso Sea is primarily controlled by
the origin and composition of the aerosol par-
ticles, rather than the effects of atmospheric
processing.

3.2. Solubility of Aerosol Iron Over the
Sargasso Sea: A Simple Mixing Model

[20] A simple interpretation of the %Feg versus Fer
trend shown in Figure 3a is that it represents a

mixing line between two air masses characterized
by significant differences in Fer and %Feg. On the
basis of this assumption, we have modeled the
operational solubility and total concentration of
aerosol iron that would result from conservative
mixtures of two air mass end-members, “Saharan
air” and “North American air,” which are distin-
guished by differences in the relative solubility of
iron and the total concentration of iron in their
respective aerosol burdens. Here we introduce
terms to distinguish the relative solubility of iron
in aerosols carried by these two air masses, as is
suggested by the data presented in the preceding
section: the Saharan air end-member carries ““fresh
aerosol minerals” (FAM), primarily North African
soil dust, for which the fractional solubility of iron
is relatively low; whereas the North American air
end-member carries “weathered and anthropogenic
aerosol minerals” (WAAM), a mixture of soil dust
and anthropogenic aerosols, for which the fractional
solubility of iron is relatively high. Here the terms
“fresh” and “weathered” refer to the effects of
atmospheric processing (chemical and/or physical)
on the solubility of aerosol iron prior to the mixing
of the two air mass end-members. Our choice of
the terms FAM and WAAM implies that the
fractional solubility of iron in these two aerosol
“types” may be controlled by the origin and/or
atmospheric processing of aerosol particles,
although we will later argue that source-dependent
composition is the most important factor control-
ling the fractional solubility of iron in WAAM-
type aerosols.

[21] In our mixing model, the Saharan air end-
member contains a relatively high concentration of
FAM (and no WAAM), whereas the North Amer-
ican air end-member contains a relatively low
concentration of WAAM (and no FAM). End-
member air masses are defined by the maximum
and minimum values of %Feg and Fet observed for
our FeATMISS aerosol samples (Table 1): North
American air contains only WAAM, with an oper-
ational iron solubility (%Feg.waam) of 19% and a
total aerosol iron concentration (Fer.waam) of
0.5 nmol m >, whereas Saharan air contains only
FAM, with an operational solubility (%Feg pam)
of 0.44% and a total aerosol iron concentration
(Ferram) of 27.8 nmol m . The %Feg versus Fer
relationship resulting from a conservative mixture
of these two end-member air masses is shown in
Figure 4 (solid curve), together with the data for
our FeATMISS aerosol samples (open symbols).
This simple mixing model is quite successful in
simulating the hyperbolic relationship between
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Figure 4. Modeled %Fegs versus Fer relationship
defined by a conservative mixture of “Saharan” and
“North American” air masses (solid curve; refer to text
for details), together with data for the FeATMISS
aerosol samples (open symbols).

%Feg and Fer defined by our FeATMISS aerosol
data. The %Feg data tend to be slightly lower than
the model predictions at the low end of the Fer
range (~1-3 nmol m ), however, model calcu-
lations using different end-member conditions
(results not shown) indicate that the curvature of
the mixing line at low Fer values (i.e., the sharp
decrease in %Feg with increasing Fer) is highly
sensitive to our choice of values for %Feg waam
and FeT_WAAM.

[22] Strictly speaking, our mixing model describes
a single mixing event, whereas the data points
plotted in Figure 3a and Figure 4 represent discrete
aerosol samples that were collected over time
periods ranging from days to months. Our model
thus constitutes a gross simplification of the mixing
of air masses and their constituent aerosols over the
Sargasso Sea, in that it ignores changes in both the
concentration and composition of aerosols in
Saharan and North American air masses, as well
as likely aerosol contributions from other source
regions, such as Europe and Central America.
Nonetheless, the success of this simple model in
simulating our field data lends support to our basic
premise; namely, that the fractional solubility of
iron in bulk aerosols over the Sargasso Sea is
determined by the relative proportions of iron
associated with two distinct aerosol types: a
FAM-type material for which the fractional solu-
bility of iron is relatively low, and a WAAM-type

material for which the fractional solubility of iron
is relatively high.

3.3. Anthropogenic Combustion Aerosols:
Geochemical Signature and Influence on

the Solubility of Aerosol Iron

[23] The apparent seasonal differences in the oper-
ational solubility of iron in aerosols over the
Sargasso Sea point to the existence of two distinct
aerosol “types,” WAAM and FAM, associated
with air masses arriving from North America and
North Africa, respectively. In this section, we will
show that the WAAM-type aerosols display a
characteristic geochemical signature, owing to the
presence of fossil-fuel combustion products, and
we will argue that these anthropogenic emissions
account for the enhanced solubility of iron in
WAAM-type aerosols, relative to Saharan dust.

[24] Seasonal to interannual variations in the con-
centration and composition of aerosols over the
Sargasso Sea are well documented as a result of
the AEROCE program, for which daily aerosol
samples were collected at Tudor Hill, Bermuda
between 1988 and 1997. These samples were
collected atop a 23-m high tower, on Whatman
41 cellulose filters, using a wind-sector controlled
high-volume vacuum filtration system, and were
subsequently analyzed using neutron activation
analysis [Arimoto et al., 1992, 1995, 2003; Huang
et al., 1999; S. Huang, personal communication,
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Figure 5. Time series record of total aerosol iron
concentrations at Tudor Hill, Bermuda, for the period
1988—1994 (data provided by S. Huang). The summer-
time concentration maxima are typically associated with
the transport of North African (““Saharan”) dust to the
Bermuda region.
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Figure 6. Acrosol mass ratios of (a) Fe/Al and (b) V/Al plotted against total acrosol iron concentration for samples
collected on Bermuda during the AEROCE program between 1988 and 1994 (data provided by S. Huang). Samples
with unusually high ratios of Fe/Al (>10) and V/Al (>0.20) are omitted from the figure.

2005]. The data from the Bermuda AEROCE
samples demonstrate pronounced seasonal-scale
variations in aerosol iron loadings (Figure 5),
whereby maxima in total aerosol iron concentra-
tions are typically associated with the transport of
Saharan dust to the Bermuda region during mid to
late summer [Arimoto et al., 1995; Huang et al.,
1999], as we also observed during the FeATMISS-I
cruise.

[25] The Bermuda AEROCE data also reveal sig-
nificant, seasonal-scale variations in the bulk com-
position of aerosols over the Sargasso Sea. Here we
focus our attention on the Fe/Al and V/AIl mass
ratios of the AEROCE aerosol samples, which are
plotted against total aerosol iron concentrations in
Figure 6. The data plotted in this figure represent
around 800 bulk aerosol samples that were collected
at Tudor Hill during all seasons between 1988 and
1994 (S. Huang, personal communication, 2005),
although a small number of samples with extremely
high Fe/Al and V/Al ratios (4 samples with Fe/Al >

10, and 15 samples with V/Al > 0.20) are omitted
from the figure for the sake of clarity in scaling
the figure. For total aerosol iron concentrations
greater than ~10 nmol m >, most of the AEROCE
samples have Fe/Al and V/Al mass ratios in the
ranges of 0.4—0.7 and 0.001-0.003, respectively.
These mass ratios are similar to those reported for
soil dust from North Africa [Chen and Duce, 1983;
Chiapello et al., 1997; Prospero et al., 2001;
Eglinton et al., 2002; Arimoto et al., 2003; Formenti
et al., 2003; Desboeufs et al., 2005; Stuut et al.,
2005] and for the upper continental crust [7aylor
and McLennan, 1985; Wedepohl, 1995; Li, 2000].
However, for total acrosol iron loadings below ~5—
10 nmol m >, the Fe/Al and V/Al mass ratios
increase sharply to values above 1 and 0.05,
respectively.

[26] Most of the low aerosol iron loadings in the
Bermuda AEROCE data set represent samples
collected during the months of October through
May, when Bermuda is typically impacted by
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Figure 7. Mass ratios of (a) Fer/Alr and (b) V{/Alr
plotted against total iron concentration for FeATMISS
aerosol samples. Open circles, summer 2003 cruise;
filled circles, spring 2004 cruise; crosses, early summer
2004 cruise.

aerosols carried from North America, rather than
Saharan dust [Moody et al., 1995; Huang et al.,
1999]. Thus, in terms of the different aerosol types
that we have proposed to explain the solubility of
iron in our FeATMISS aerosol samples, the
“WAAM-type” aerosols in North American air
masses might be expected to display elevated Fe/Al
and V/Al mass ratios, relative to the “FAM-type”
aerosols in Saharan air masses. In Figure 7, we
have plotted Fer/Alt versus Fer and V1/Alt versus
Fer for the FeATMISS aerosol samples. Although
the highest Fer/Alr ratios correspond to samples
collected during spring 2004 and early summer
2004, when aerosol iron loadings were relatively
low (Figure 7a), most of the Fer/Alr ratios are
within the range of values reported for North
African soil dust and the upper continental crust

(~0.4-0.7). This may reflect the small number of
samples in the FeATMISS data set, although it
should be noted that not all of the AEROCE
samples display elevated Fe/Al ratios at low total
iron loadings (Figure 6a). However, the FeAT-
MISS V1/Alt versus Fer trend closely follows that
of the Bermuda AEROCE data: the V/Alt ratios
increase sharply when total aerosol iron loadings
fall below ~5 nmol m™>, reaching values that are
over ten times higher than those observed during
the summer 2003 cruise (Figure 7b). Importantly,
there is a striking similarity between the plots of
V1/Alr versus Fer (Figure 7b) and %Feg versus
Fer (Figure 3a) for the FeATMISS aerosol sam-
ples, with the highest V/Aly ratios and highest
%Feg values observed in samples collected during
the spring 2004 and early summer 2004 cruises,
when aerosol iron loadings were low. Indeed, there
is a significant linear correlation (r* = 0.73)
between %Feg and Vi/Alr for the FeATMISS
aerosol samples (data not shown). This observation
suggests that the relatively high operational solu-
bility of aerosol iron in North American air masses
is related to the bulk composition, hence origin, of
these aerosol particles, rather than the effects of
atmospheric processing.

[27] What do the elevated V/Al and Fe/Al mass
ratios of the WAAM-type aerosols tell us about
their origin? It is well documented that elevated V/Al
ratios in aerosols, relative to typical crustal values,
are a robust indicator for the presence of fuel-oil
combustion products, since certain crude oils and
their combustion products are known to contain
high concentrations of vanadium [Zoller et al.,
1973; Duce and Hoffiman, 1976; Chen and Duce,
1983; Rahn and Lowenthal, 1984; Arimoto et
al., 1985, 1995, 2003; Nriagu and Pacyna, 1988;
Holmes et al., 1997; Hope, 1997; Huang et al.,
1999; Lighty et al., 2000; Desboeufs et al., 2005;
Jang et al., 2007]. Thus elevated V/Al ratios of
bulk aerosols over the Sargasso Sea are almost
certainly indicative of the presence of anthropo-
genic fossil-fuel combustion products. Similarly,
elevated aerosol Fe/Al ratios may reflect the pres-
ence of fuel combustion emissions, since Fe/Al
mass ratios greater than one are reported for fuel-
oil fly ash, urban aerosols, and exhaust particles
produced by diesel combustion [Desboeufs et al.,
2005; Dwivedi et al., 2006], relative to Fe/Al ratios
in the range of 0.4—0.7 for North African soil dust
and the upper continental crust. These suggestions
are further supported by the elevated V/Mn mass
ratios of the FeATMISS aerosol samples from
spring 2004 and early summer 2004, relative to
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Figure 8. Mass ratio of V/Mnr plotted against total
iron concentration for FeATMISS aerosol samples.
Open circles, summer 2003 cruise; filled circles, spring
2004 cruise; crosses, early summer 2004 cruise.

the summer 2003 samples (Figure 8), given that
Chen and Duce [1983] have linked elevated V/Mn
ratios in aerosols to “anthropogenic emissions”
from North America.

[28] On the basis of the apparent correlation be-
tween the operational solubility of iron and the
proportion of fuel-oil combustion products in our
FeATMISS aerosol samples, we suggest that the
elevated solubility of iron in WAAM-type aerosols
associated with North American air masses reflects
the presence of anthropogenic fuel-combustion
products, which contain iron that is highly soluble
relative to that contained in soil dust. We thus
propose that the source-dependent composition of
aerosols is a primary determinant for the solubility
of aerosol iron over the Sargasso Sea, and perhaps
for the solubility of aerosol iron in general. Strong
support for this hypothesis is provided by the
results of two recent studies. In a laboratory
investigation of potential aerosol source materials,
Desboeufs et al. [2005] found that the operational
solubility of iron in both fuel-oil fly ash and urban
aerosol particles was significantly higher than that
for desert soils, which led them to suggest that
“...in the case of regions where anthropogenic
influence is particularly present, the atmospheric
metals input could be significant for the marine
biosphere if air masses are charged with carbona-
ceous matter.” Also of significance is the field-
based study of Chuang et al. [2005], who observed
that the operational solubility of aerosol iron in the
east Asian atmospheric outflow was proportional to

the concentration of elemental carbon, leading
them to similarly conclude that “...anthropogenic
emissions, as traced by elemental carbon, appear to
be strongly connected to particulate soluble Fe.”
The data of Chuang et al. [2005] further suggest
that the atmospheric concentration of soluble iron
is not related to atmospheric loadings of soil
dust or sulfate, thus implicating the origin of the
aerosols, rather than atmospheric chemical process-
ing, as the primary factor controlling aerosol iron
solubility.

[29] As well as emissions from the burning of fuel
oils, other carbonaceous combustion products are
likely to contribute to the aerosol burden of soluble
iron in the marine atmosphere. Chemical and
toxicological studies of coal fly ash, which can
contain significant proportions of iron [Smith,
1980], indicate that iron present in coal fly ash is
more soluble, and thus more readily available to
human tissues, than the iron present in soil dust
[Lighty et al., 2000; Veranth et al., 2000]. In
addition, aerosols produced by biomass burning
are thought to contain iron that is more soluble than
the iron present in soil dust, as demonstrated by the
recent study of Guieu et al. [2005]. An enhanced
solubility of iron in combustion aerosols, relative
to soil dust, may reflect a number of factors,
including the chemical association of iron with
metal salts and amorphous materials rather than
aluminosilicates; reactions of the aerosol particles
with acidic gases produced during the combustion
process; and the generally smaller size of carbona-
ceous combustion aerosols relative to soil dust
[Lighty et al., 2000; Veranth et al., 2000; Chuang
et al., 2005; Desboeufs et al., 2005; Jang et al.,
2007]. This last point is significant because it
provides a way to reconcile our hypothesis with
the model of Baker and Jickells [2006], who posit
that aerosol iron solubility is primarily determined
by aerosol particle size, provided that their con-
ceptual model is broadened to consider the role of
aerosol source materials in defining the size distri-
bution of marine aerosols.

[30] With regard to ocean biogeochemical model-
ing, an important implication of our hypothesis is
that the wide range of aerosol iron solubility values
reported in the literature may in large part be real,
rather than an artifact of methodological differ-
ences. Therefore, as noted by Baker and Jickells
[2006], discussions concerning the “‘correct” or
“average” value for the fractional solubility of
aerosol iron are moot. Instead, our results imply
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that the fractional solubility of aerosol iron will
vary in space and time.

3.4. Relationship Between the
“Operational” and “Effective” Solubility of

Aerosol Iron

[31] In section 3.2 we have shown that observed
variations in the operational solubility of aerosol
iron over the Sargasso Sea are explained by a
simple mixing model, in which the composition
and solubility of iron in the bulk aerosol reflects a
conservative mixture of two distinct aerosol
“types” borne by air masses from North America
and North Africa, respectively. The operational
solubility of iron in aerosols over other ocean
regions will not necessarily follow the mixing trend
shown in Figure 4, since these aerosols may be
derived from sources other than those that domi-
nate the bulk aerosol in our study region. Within
this conceptual framework, a multicomponent mix-
ing model might allow global-scale estimates of the
operational solubility of aerosol iron, provided that
the source functions, atmospheric transport, and
solubility characteristics can be constrained for
relevant aerosol end-members. However, for such
estimates to be useful within the context of ocean
biogeochemical models, we must be able to relate
operational measurements of aerosol iron solubil-
ity to the effective solubility of aerosol iron in the
surface ocean. The latter is the appropriate variable
for use in biogeochemical models, because it
represents the fraction of aerosol iron that contrib-
utes to the biologically available pool of dissolved
iron in the surface ocean.

[32] As already discussed, a wide variety of leach-
ing/dissolution protocols have been used to esti-
mate the fractional solubility of iron in marine
aerosols. We maintain that none of these methods
(including the leaching method employed in this
study) are able to faithfully mimic the dissolution
of aerosol iron in the surface ocean, where effective
solution/particle mass ratios are large and reaction
times are long, relative to conditions that are
practical in the laboratory. Implicit in the discus-
sion of our operational solubility results is the
assumption that these values provide a robust
indication of the relative solubility of aerosol iron
in the surface ocean. But how do these operational
solubility measurements relate to the true or
“effective” solubility of aerosol iron in the surface
ocean? Our aerosol leaching protocol is based on
the method of Buck et al. [2006], who estimated
the operational solubility of aerosol iron by passing

100 mL of either deionized water or filtered
seawater over filters loaded with freshly collected
aerosols. For aerosols collected over the North
Pacific Ocean, Buck et al. [2006] report that the
mean operational solubility of aerosol iron for
samples leached with deionized water (9 + 8%)
was not significantly different from, although
slightly higher than, the mean operational solubil-
ity of iron for samples leached with filtered sea-
water (6 = 5%). These workers also argue that their
operational solubility estimates are likely higher
than the long-term “net” solubility (equivalent to
our definition of “‘effective” solubility) of aerosol
iron in surface seawater, a suggestion that is not
supported by the results of our study, as described
below.

[33] The combined aerosol and water column iron
data from our FeATMISS cruises allows us to
estimate the effective solubility of aerosol iron in
surface waters of the Sargasso Sea (that is, the
fraction of total aerosol iron that contributes to the
dissolved (<0.4 pm) iron pool in surface seawater)
using a simple, mass balance approach. During the
summer 2003 cruise, we observed an increase of
~0.6 nM in the dissolved iron concentration of
surface waters over a period of 13 days, which we
assume to be the cumulative result of eolian iron
input [Sedwick et al., 2005]. This concentration
change corresponds to an increase of ~12 pmol
m 2 in the inventory of dissolved iron over the
~20 m depth of the surface mixed layer. Over this
same period, we estimate that the total dry depo-
sition of aerosol iron was ~130 umol m—2, based
on a time-integrated total aerosol iron concentra-
tion of 1.33 x 10* pumol m™> s [Sedwick et al.,
2005] and assuming a deposition velocity of
0.01 m s~ for iron-bearing aerosol particles
[Arimoto et al., 2003]. Neglecting the wet deposi-
tion of iron, these estimates require an effective
aerosol iron solubility of ~9% during the summer
2003 cruise. This calculation implies that the mean
operational solubility of aerosol iron based on
deionized water leaches (1.5 + 0.8%) was consid-
erably /less than the effective solubility of aerosol
iron during our summer 2003 cruise, when aerosols
were dominated by FAM-type Saharan dust.

[34] A similar estimate of effective aerosol iron
solubility can be made with data from our FeAT-
MISS cruises in spring 2004 and early summer
2004. During these cruises and the intervening
4-week period, air mass back-trajectory analyses
and NAAPS model simulations suggest that the
aerosols in our study area were mainly composed of
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Asian soil dust and North American sulfate aero-
sols; i.e., WAAM-type materials. During both
cruises, we collected water column samples from
the core of a single mesoscale cyclonic eddy, which
was located to the east of the BATS site on 29—
30 April 2004 (spring 2004 cruise) and, subsequently,
to the southwest of the BATS site on 1-5 June
2004 (early summer 2004 cruise). Analyses of
surface water samples indicate a small but analyt-
ically significant increase of ~0.2 nM in the
concentration of dissolved iron between our late
April and early June cruises, which we attribute to
the cumulative deposition and dissolution of aero-
sol iron. This concentration change equates to an
increase of ~4 pumol m 2 in the inventory of
dissolved iron in the surface mixed layer, which
extended to a depth of ~20 m during both cruises.
In the period between these two cruises, a time
series of weekly bulk aerosol samples was collected
at Tudor Hill, Bermuda, located roughly 200 km
from our shipboard sampling sites. From analysis
of these aerosol samples [Sholkovitz and Sedwick,
2006], we calculate a time-integrated total aerosol
iron concentration of 2.29 x 10°umol m™ s for
the period 28 April to 2 June 2004, which corre-
sponds to a time-integrated dry deposition of
~23 pmol Fe m 2, again using a deposition
velocity of 0.01 m s~ for Fe-bearing aerosols
[Arimoto et al., 2003]. Assuming aerosol loadings
at Tudor Hill to be representative of those in our
shipboard study area (see discussion by Sholkovitz
and Sedwick [2006]), and neglecting wet deposi-
tion of Fe, this Fe dry-deposition estimate may be
directly compared with the estimated increase in
the dissolved iron inventory of the surface mixed
layer between late April and early June 2004
(~4 pmol m™~?). These estimates require an effec-
tive solubility of ~17% for aerosol iron over this
period. Thus the mean operational solubility of
iron for our spring 2004 and early summer 2004
aerosol samples (12 &+ 5%) is slightly less than, but
not significantly different from, our estimate of the
effective solubility of aerosol iron over the period
between these cruises.

[35] There are several assumptions that lend uncer-
tainty to our preceding estimates of the effective
solubility of aerosol iron. We have ignored biolog-
ical uptake and scavenging of dissolved iron,
processes which would remove eolian dissolved
iron from the mixed layer, and we have neglected
wet deposition, a process which would add eolian
dissolved iron to the surface mixed layer. We have
also assumed a constant dry-deposition velocity of
0.01 m's™', which has an uncertainty of at least + a

factor of 3 [Arimoto et al., 2003] and may differ for
WAAM- versus FAM-type aerosol particles
(although in support of this assumption, we note
that Z. Tian et al. (Atmospheric Fe deposition modes
at Bermuda and adjacent Sargasso Sea, submitted to
Geochemistry, Geophysics, Geosystems, 2007)
report empirical estimates of 0.004—0.012 m s~
for the deposition velocity of iron-bearing aerosols
in Bermuda during spring and summer). Nonethe-
less, our estimates suggest that the effective solu-
bility of aerosol iron in the Sargasso Sea is generally
higher than corresponding operational solubility
values, particularly for periods when aerosols are
dominated by FAM-type Saharan dust. Recently,
Chase et al. [2006] have simulated seasonal
changes in the distribution of iron in surface waters
of the Gulf of Agaba (northern Red Sea) using a
one-dimensional model that includes eolian depo-
sition and dissolution, scavenging, and biological
uptake, constrained by water column and aerosol
iron measurements. These authors concluded that
an effective aerosol iron solubility of 2% provides
the best agreement with their observations, a value
that is considerably lower than our estimates of the
effective solubility of iron in aerosols deposited to
the Sargasso Sea. However, in comparing our mass
balance based solubility estimates with the results
of Chase et al. [2006], it should be noted that the
Gulf of Agaba is immediately adjacent to several
major desert dust sources, thus eolian iron fluxes
are likely to be dominated by relatively large soil
dust particles with solubility characteristics that are
quite different from aerosols over the open ocean.

[36] Clearly, an important priority for future field
studies should be to obtain additional estimates of
the effective solubility of aerosol iron, with the aim
of examining the relationship between the effective
and operational solubility of aerosol iron. If such
studies can establish a consistent, quantitative
relationship between these two variables, then
the effective solubility of aerosol iron could
be readily estimated from operational solubility
measurements.

3.5. Relative Solubility of Aerosol Iron in
Wet Versus Dry Deposition

[37] Wet deposition is believed to account for
significant but highly variable fractions of the total
and dissolved iron that enters the surface ocean
[Ginoux et al., 2001; Kim and Church, 2001; Gao
et al., 2003; Luo et al., 2003; Sarthou et al., 2003].
The magnitude of these wet-deposition fluxes is
highly uncertain at the regional scale, owing to a
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Table 2. Iron Data for FEATMISS Rainwater Samples
Collection Date  TDFe,,;,, nM dFe qin, nNM %Fes_rain
25 Jul 2003 137 3.38 2.47
26 Jul 2003 229 8.18 3.58
27 Jul 2003 2,430 18.4 0.76
27 Jul 2003 1,470 182 124
1 Aug 2003 12,300 69.4 0.57
5 Aug 2003 478 6.54 1.37
5 Aug 2003 441 15.3 3.46
4 Jun 2004 1,330 26.4 1.98
4 Jun 2004 1,090 26.0 2.37

lack of appropriate field data, which largely reflects
the patchy and episodic nature of rainfall over the
open ocean [Jickells and Spokes, 2001; Jickells et
al., 2005; Mahowald et al., 2005; Sedwick et al.,
2005]. In this context, the soluble fraction of iron
in wet deposition is an important unknown. The
inorganic and organic acids present in rainwater are
thought to promote the reductive dissolution of
aerosol iron [Zhu et al., 1993; Pehkonen et al.,
1993; Siefert et al., 1994; Spokes et al., 1994;
Spokes and Jickells, 1995; Kieber et al., 2003;
Hand et al., 2004]. On this basis, one might predict
that the fractional solubility of iron in wet deposi-
tion to the Sargasso Sea is considerably higher than
that estimated for dry aerosols at any one time.
However, data from the limited number of rain
samples (9) collected during our FeATMISS
cruises do not support this prediction.

[33] Table 2 presents the concentrations of total-
dissolvable iron (TDFe,,;,) and dissolved iron
(dFeain) in rain samples collected during the
FeATMISS cruises in summer 2003 and early
summer 2004, together with calculated values for
the percent operational solubility of rainwater iron
(%Fes.1ain). The calculated %Feg_,;, values range
from ~0.6% to ~12%, and lie within the range of
operational iron solubility estimates for aerosols
collected during the FeATMISS cruises; all but one
of the %Fes_ ., values are less than 4% (Table 1).
In Figure 9a, we compare the operational solubility
of iron in rainwater with the operational solubility
of iron in aerosols, for samples collected during the
same 24-hour period. In most cases, the %Feg_rain
values are remarkably close to corresponding %Feg
values, with the exception of samples collected on
27 July 2003 (one rain sample has a relatively high
%Feg.rain value) and 4 June 2004 (the aerosol
sample has a relatively high %Feg value). One
caveat that must be considered here is that the
“total iron” concentrations of the rainwater sam-
ples (TDFe,,;,) are unlikely to account for all of the
particulate iron in these samples (see section 2.5),

therefore our calculated %Feg...;, values are likely
to overestimate the relative proportion of dissolved
iron in the rainwater. However, this bias is not
likely to be large, since data presented by Kim et al.
[1999] indicate that ~70% or more of the total iron
in aerosols collected on Bermuda is solubilized
after 2 weeks storage in a solution of dilute (pH 1.3)
hydrochloric acid.

[39] Figure 9b shows the percent operational solu-
bility of rainwater iron (%Fes..;,) plotted against
the total-dissolvable iron concentration (TDFe,,;,)
of our rainwater samples. This figure reveals a
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Figure 9. (a) Operational solubility of iron in rain-
water (%Feg .in) and dry aerosols (%Feg) collected
within corresponding 24-hour periods during FeAT-
MISS cruises. (b) Operational solubility of rainwater
iron (%Feg_.in) plotted against total-dissolvable iron
concentration (TDFe,,;,) for rainwater samples collected
during the FeATMISS cruises. Open circles, summer
2003 cruise; crosses, early summer 2004 cruise (no rain
samples were collected during the spring 2004 cruise).
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trend that resembles the operational solubility data
for the FeATMISS aerosol samples (compare with
Figure 3a), in that the highest %Feg_1,;, values tend
to be associated with low TDFe,,;, concentrations.
These data suggest that aerosol composition may
be the primary determinant for the solubility of
aerosol iron in both dry and wet deposition to the
Sargasso Sea. However, we are lacking the critical
data needed to test this hypothesis, namely, esti-
mates of %Feg i, for rainwater associated with
North American air masses. The factors controlling
the solubility of iron in wet deposition thus remains
an important topic for further studies.

4. Conclusions

[40] In terms of understanding the atmospheric
input of biologically available iron to the surface
ocean, the most significant finding of our study is a
strong inverse relationship between the operational
solubility of iron and the total atmospheric con-
centration of iron in aerosols over the Sargasso
Sea. This relationship appears to reflect source-
dependent differences in the solubility character-
istics of aerosols carried to the Sargasso Sea,
whereby the relative solubility of iron is elevated
in aerosols borne by North American air masses,
relative to Saharan dust. Indeed, we are able to
model the operational solubility of iron in our
aerosol samples as the result of a mixture of two
distinct aerosol “types,” WAAM and FAM, which
are associated with air masses from North America
and North Africa, respectively. On the basis of
compositional trends observed in historical data for
aerosols collected on Bermuda and in our aerosol
data from the Sargasso Sea, we infer that the
elevated solubility of iron in aerosols associated
with North American air masses reflects the pres-
ence of anthropogenic fuel-combustion products,
which contain iron that is highly soluble relative to
Saharan dust. We thus propose that the source-
dependent composition of aerosol particles, specif-
ically, the relative proportion of anthropogenic
combustion aerosols, is a primary determinant for
the fractional solubility of aerosol iron over the
Sargasso Sea. This hypothesis implies that anthro-
pogenic combustion emissions may play a major
role in determining the fractional solubility of iron
in aerosols entering the surface ocean. Noting the
apparent relationship between the V/Al mass ratio
and the operational solubility of iron in our aerosol
samples, we are currently exploring the idea that
the proportion of non-crustal V in bulk aerosols
may be used to predict the relative solubility of

aerosol iron at the global scale (E. R. Sholkovitz
et al., manuscript in preparation, 2007).

[41] An important corollary of our “anthropogenic
iron hypothesis” is that the eolian flux of dissolved
iron to the surface ocean does not necessarily scale
with total aerosol iron deposition, because the
soluble fraction of the total iron deposition can
vary according to the source and composition of
the Fe-bearing aerosols. This result is clearly
illustrated by plotting the atmospheric concentra-
tion of operationally defined soluble aerosol iron
(Fes) versus the total concentration of aerosol iron
(Fet) for our Sargasso Sea aerosol samples
(Figure 10): over a thirty-fold range in total aerosol
iron concentration, there is a less than two-fold
increase in the atmospheric loading of soluble iron.
Such source-driven changes in the relative propor-
tions of soluble aerosol iron might explain why the
concentration of dissolved iron in Atlantic Ocean
surface waters does not vary in proportion to
estimated dust inputs, as noted by Bergquist and
Boyle [2006]. Baker et al. [2006a] have argued that
the flux of soluble iron delivered to the ocean in
non-desert dust aerosols is insignificant, relative to
the inputs of desert dust, which clearly dominate
the total eolian iron flux to the ocean. However,
this argument may need to be reconsidered in light
of our data, which suggest that the relative solu-
bility of iron in anthropogenic aerosols from North
America may be more than an order of magnitude
higher than that for soil dust from North Africa. If
our results are generally representative of Fe-bear-
ing aerosols at the global scale, then anthropogenic
aerosols could conceivably account for a signifi-
cant fraction of the eolian flux of soluble iron to the
surface ocean, particularly in regions far from
major soil-dust sources, such as the Southern
Ocean and the South Pacific. Indeed, on the basis
of their analyses of aerosols collected in southern
Korea, Chuang et al. [2005] have argued that
atmospheric loadings of water-soluble iron in the
east Asian atmospheric outflow are dominated by
anthropogenic aerosols over annual timescales.

[42] Interestingly, our results imply that the present-
day eolian flux of soluble iron to the ocean, hence
the global cycling of iron, could be quite different
from conditions in preindustrial times. Anticipated
increases in fossil fuel combustion during the
coming decades [International Energy Agency,
2006] may be expected to increase the atmospheric
burden of WAAM-type aerosols, whereas the trans-
port of FAM-type soil dust to the ocean is predicted
to decrease over the same period [Mahowald and

17 of 21



i >3 Geochemistry 7
" Geophysics ( |
_ . Geosystems \

SEDWICK ET AL.: FRACTIONAL SOLUBILITY OF AEROSOL IRON 10.1029/2007GC001586

030 1 1 1 1 1
O summer 2003
® spring 2004
7 | X early summer 2004 o [
0.20 -
Feg 1 i
(nmol m-3) x
o
0104x © -
o o
! 3
o
_K)g L
0 T T T T T
0 5 10 15 20 25 30

Fet (nmol m-3)

Figure 10. Atmospheric concentration of operation-
ally defined soluble aerosol iron (Feg) versus total
aerosol iron concentration (Fer) for FEATMISS aerosol
samples. Open circles, summer 2003 cruise; filled
circles, spring 2004 cruise; crosses, early summer
2004 cruise.

Luo, 2003; Mahowald et al., 2006]. Hence contin-
ued anthropogenic fuel combustion has the poten-
tial to exert significant influences on the magnitude
and spatial distribution of soluble iron fluxes to the
surface ocean, with attendant impacts on oceanic
biota and ocean carbon cycling.
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