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ABSTRACT 

MODELING, VISUALIZING, AND UNDERSTANDING 
COMPLEX TECTONIC STRUCTURES ON THE SURFACE AND 

IN THE SUB-SURFACE 

Steven Wild 
Old Dominion University, 2012 

Co-Directors: Dr. Declan De Paor 
Dr. Jennifer Georgen 

Plate tectonics is a relatively new theory with many details of plate dynamics 

which remain to be worked out. Moving plates can interact by divergence, lateral 

sliding, convergence, or collision. At a convergent plate boundary, a lithospheric slab 

of oceanic crust and upper mantle is subducted at a trench and dips down under a 

magmatic arc - either oceanic or continental. Textbooks show a static view of conver­

gent boundaries but plate dynamics require that subduction zones and magmatic arcs 

must migrate with time. Therefore I develop animated models to help convey this 

motion. Also, convergent plate boundaries cannot continue along strike or down dip 

indefinitely without changing. Subduction zones change orientation and eventually 

terminate. They may bend and shear or tear and open a window for asthenospheric 

flow. 

Two different convergent plate boundaries are the primary focus of my studies: 

the Tonga subduction zone where the Pacific plate moving beneath an island arc 

is torn along the Samoan Island Archipelago, and the Andean subduction zone in 

central South America where the Nazca plate moves beneath a continental arc. I 

choose these zones because they exhibit tears or shears, where subduction stops, or 

changes dip suddenly. To examine these features I use several modeling and visual­

ization techniques. COLLADA (COLLabrative Design Activity) models in Google 

Earth and Google Earth Application Programming Interface (API) are used for vi­

sualizing and teaching of plate boundary systems. The testing of COLLADA models 

for geoscience concepts showed positive learning gains. Kinematic models are made 

to study strain rates and possible methods of plate evolution. Dynamic COMSOL 

numerical models are created to probe temperature and flow fields in the subduction 

zone. Animated COLLADA models are designed for different models of subduction 

initiation and development for the Tonga trench for both research and educational 



purposes. The development of these models led to a new hypothesis of this region's 

formation. Using these models and Google Earth materials studies in undergraduate 

classes tested the effectiveness of Google Earth based lab activities for enhancing 

student understanding of geoscience. 

In the central Andean subduction zone, emergent COLLADA models are made 

from mining GeoMapApp (http://www.geomapapp.org) and published contour data 

to demonstrate the unique geometry of the Nazca plate having adjacent subduction 

angles of 10° and 30°. This led to the research question, can the Nazca plate sup­

port this geometry by shearing without tearing? A literature review shows efforts to 

explore this topic by means of hypocenter, teleseismic, and thermal data to have no 

consensus on the topic. To this end a new approach is taken to examine this region 

by applying the methods of kinematic and dynamic modeling to further explore this 

question. These different models of the Andean system lead to the conclusion that no 

major magmatic window could have opened between the flat and steep subduction 

areas given the time and deformation mechanisms available. 

http://www.geomapapp.org
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CHAPTER 1 

INTRODUCTION 

The Earth's outer shell, or lithosphere, is broken into approximately twelve ma­

jor tectonic plates that are in constant motion over the underlying asthenosphere. 

In general, motion at plate boundaries can be divergent (where plates move apart), 

convergent (where one plate is subducted beneath another), conservative (such as 

along a transform fault), or collisional (where the continental portions of two plates 

interact, such as India and Eurasia forming the Himalayas). Evidence of these in­

teractions and motions can be seen in the surface topography of the Earth, such as 

in mountain belts and mid-ocean ridges. Earthquakes are the result of a release of 

energy when two plates or crustal blocks move against each other and are a good 

indicator of plate boundaries. 

This thesis focuses on subduction plate boundaries. A series of kinematic calcu­

lations, as well as two-dimensional and three-dimensional numerical models, are used 

to investigate the dynamics of subduction zones in locations where the downgoing 

plate is believed to have tears or discontinuities. Also, COLLaborative Design Ac­

tivity (COLLADA) models are created using hypoeenter earthquake data to better 

visualize the geometries of subduction zones, to develop possible research questions, 

and to create educational models for teaching tectonic processes. The feasibility of 

COLLADA models in Google Earth and the Google Earth Application Programming 

Interface (API) as an effective learning tool in the geosciences is additionally exam­

ined. Overall, all of these investigations were facilitated by significant improvements 

in data quantity and quality in the study regions, such as seismic hypocentral depths 

(e.g. Anderson et al. [2007]). 

Two different subduction zones are the primary focus of these studies, the Tonga 

trench near the American Samoa islands, and the central Andes in South America 

where the Nazca plate moves beneath continental South America. In the Tonga 

trench there is a tear point near the Samoan islands. On one side of the tear, north 

of Samoa, the Pacific plate continues without subducting, whereas on the other side, 

south of Samoa, it subducts beneath the Australian plate [Sykes, 1966; Frohlich, 

1989]. The trench is also in the process of rollback, wherein the line along which the 
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plate bends into the subduction zone migrates eastward, against the western migra­

tion of the material of the plate, resulting in a marginal basin - the Lau Basin [Uyeda 

and Kanamori, 1979; Moores and Twiss, 1995; Rosenbaum and Lister, 2004]. 

In South America, there are regions of the Nazca plate where subduction oc­

curs at an angle of 30° juxtaposed against regions subducting at 10° [Isacks et al., 

1968; Barazangi and Isacks, 1976; Jordan et al., 1983]. The boundaries between 

these segments may involve tears or shears [Barazangi and Isacks, 1976; Isacks et al, 

1968; Jordan et al, 1983; Cahill and Isacks, 1992]. The question of the whether the 

transition zone at S33° is a torn slab or a slab in a state of continuous deformation 

was first addressed by Barazangi and Isacks [1976], who suggested the plate is torn. 

However, later efforts to explore this question by means of hypocenter [Hasegawa 

and Sacks, 1981; Anderson et al., 2007], teleseismic [Bevis and Isacks, 1984; Bevis, 

1986], and thermal [Springer, 1999; Gutscher, 2002] data have no clear consensus. 

Thus, one of the primary goals of this thesis is to investigate the nature of slab defor­

mation in the Nazca subduction region using kinematic, two-dimensional (2D), and 

three-dimensional (3D) models. 

1.1 KINEMATIC AND DYNAMIC MODELS 

Kinematic modeling is a method used to examine regional geological development 

and to investigate deformational processes. Two kinematic models are developed for 

the Andean subduction transition zone. The first method is to model the region with 

a tear which approximates the zone as two different slabs moving with different dip 

angles. If the bottom of the shallow subducting slab clears the top of the steep slab, 

a window may open and allow material to flow. The size of the window will be de­

termined based on the model as constrained by plate age [Syracuse and Abers, 2006]. 

The second method is to model the transition zone as a region of continuous shear 

deformation, without the development of a "slab window". In both models a matrix 

incorporating general shear and translation is used to describe material motion of 

the system shown by Ramsay [1967]; Simpson and De Paor [1993]; De Poor [1994]. 

Though the methodology of kinematic models has been developed through earlier 

works, it has not been previously applied to study the Nazca plate geometry. 

The second type of modeling used in this thesis is dynamic numerical modeling. 

Subduction zone modeling can be performed to examine scales from whole Earth 
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[Schubert, 1992; Tackley, 2000] to very local systems [ Wada and Wang, 2009; Syra­

cuse et al., 2010]. These models often employ a finite element method to calculate 

system solutions for temperature, flow field, and strains [Springer, 1999; Eberle et al., 

2002; Billen and Hirth, 2005, 2007; Wada et al., 2008; Wada and Wang, 2009]. For 

this research, a multi-physics finite element code called COMSOL is used to solve 

the non-dimensionalized, steady-state conservation equations for mass, momentum, 

and energy. The use of the dynamic models is two-fold. First, 2D models are created 

to explore the impact of three parameters (subduction rate, subduction angle, and 

coupling distance) on subduction zone dynamics. The results of this 2D study form 

a framework to create a multi-angle 3D model. These 2D studies are unique in that 

they include a 10° angle which has not been previously studied within a parameter 

space framework. The 10° model results are necessary for creating the 3D model to 

study the Nazca subduction system. 

The second step in the dynamical modeling is the creation of a multi-angle 3D 

model to study the transition zone between 10 and 30° slabs. Although other studies 

have modeled 3D subduction zone flow patterns (e.g.Billen and Gurnis [2001]; Behn 

et al. [2007]), this is, to the author's knowledge, the first multi-angle model to solve 

fully coupled Navier Stokes and conduction-convection equations for predicted tem­

perature and flow fields for the Nazca plate subduction system. The model-predicted 

temperatures are used to create brittle-ductile maps and first-order approximation 

deformation mechanisms for the slab in the dip angle transition region. Possibilities 

for future work in this modeling effort include adding variable viscosity, allowing the 

boundary conditions of the overriding plate to take different thicknesses, extending 

the geological applications of the 3D models by using different angles in the multi-

angle model to simulate different subduction zones, and comparing the 3D flow field 

results to existing seismic anisotropy data to examine trench-parallel flow. 

1.2 VISUALIZATIONS AND EDUCATIONAL STUDIES 

In addition to studying the geophysics and geodynamics of subduction zones, this 

thesis also includes a study of subduction zone visualization. It is a policy of the 

Geospatial Visualization Research Group at ODU to combine theoretical and nu­

merical studies with classroom-tested visualizations in order to ensure that research 

results translate into learning outcomes. Subduction zones are a natural choice for 

creating visualization tools because the sub-surface nature of the zones are not easily 
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accessible and the time scales on which processes occur is very large, while movement 

rates are on the order of cm/yr. Gobert and Clement [1999]; Gobert [2000] showed 

that plate tectonics is a difficult topic for students to learn because it involves hidden 

mechanical processes that are outside of their direct experience, as well as several 

types of knowledge including spatial, causal, and dynamic. Many concepts must be 

combined to build a rich four-dimensional mental model of the system [Gobert and 

Clement, 1999; Gobert, 2000]. 

Emergent and animated COLLADA models [Arnaud and Barnes, 2006; De Paor, 

2007a,b, 2008a; De Paor et al., 2009, 2010a] in Google Earth and Google Earth API 

are tools that will help researchers to investigate questions about the 3D structure 

of the Tonga region and its evolution with time. Such modeling is important for 

understanding earthquakes and tsunami processes in regions like Tonga. For exam­

ple, plate tectonic processes are responsible for natural disasters like the September 

2009 tsunamigenic earthquake which occurred south of the Pacific islands of Western 

Samoa and American Samoa [Okal et al., 2009; Lay et al., 2010]. Emergent COL­

LADA models are also a good tool to use for displaying data, such as earthquake 

hypocenter data, in a manner that allows the user to examine data from different 

perspectives, an advantage over paper images. 

In addition to being a useful data displaying tool, the animated subduction zone 

models are also tested for use in the classroom and learning outcomes. Google Earth 

as a geoscience learning tool has been shown to have potential by Cruz and Zellers 

[2006]; Whitmeyer et al. [2009]. However, there has been little done to study the ef­

fectiveness of this tool, and this thesis reports on the results of one such study. Future 

work in the area of educational testing could include developing modules for multi­

user interfaces, and using multi-user interface modules with students to measuring 

learning outcomes to measure effectiveness in teaching geosciences concepts. Future 

work in the general use of COLLADA models could be to visualize not only other 

subduction zones but also spreading ridges, transforms faults, and mantle plumes as 

well. The models could also be used for other data types and numerical model out­

puts, like tomography [Tarantola, 1984; Dordevic et al., 2011], heat flow, and deep 

mantle convection. 
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CHAPTER 2 

EMERGENT AND ANIMATED COLLADA MODELS OF 

THE TONGA TRENCH AND SAMOA ARCHIPELAGO: 

IMPLICATIONS FOR GEOSCIENCE MODELING, 

EDUCATION, AND RESEARCH 

In this chapter the creation method and use of COLLaborative Design Activity 

(COLLADA) models for research and as a visualization tool are introduced. The 

main emphasis of this chapter is on the emergence of a new hypothesis by exploring 

various methods in which the Tonga trench region may have developed. My main 

contribution are in developing and creating the 3D time evolved and data models 

for Google Earth and the Google Earth Application Programming Interface (API). 

I was the first to develop animated COLLADA for this purpose. In addition to the 

animated controls GeoMapApp data (http://www.geomapapp.org) is mined to build 

the slab models. The work reported in this chapter has been published in the peer-

review journal Geosphere (see De Paor et al. [2012a]). As a co-author of this paper 

I contributed 40%. 

2.1 ABSTRACT 

We report on a project aimed at developing emergent animated COLLADA mod­

els of the Tonga-Samoa region of the western Pacific for teaching and outreach use 

with Google Earth. This is an area of historical importance to the development of 

plate tectonic theory and is important today owing to neotectonic activity including a 

29 September, 2009 tsunamigenic earthquake. We created three types of models: an 

emergent digital elevation model of the Tonga Slab with associated magmatic arc and 

back-arc basin based on GeoMapApp data-mining (http://www.geomapapp.org); 

animated models of alternative plate tectonic scenarios; and a large scale model 

http://www.geomapapp.org
http://www.geomapapp.org
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that permits users to view the subsurface down to lower mantle levels. Our mod­

els have been deployed in non-science-major laboratory classes and positive learn­

ing outcomes have been documented in an independent study by Gobert et al. 

[2012]. The models have also been made available to colleagues and the public 

via ODU's Pretlow Planetarium and via an outreach and dissemination web site, 

http:// www.digitalplanet.org. In the process of constructing a complete set of tec­

tonic models for the area of interest, we added cases which have not been described in 

the research literature. Thus this study spans the three functions of modern academia 

- research, teaching, and outreach - and the multifaceted aspects of creating, using, 

testing, and disseminating electronic geospatial learning resources. 

2.2 INTRODUCTION 

On 29 September, 2009, a deadly tsunamigenic earthquake occurred south of the 

Pacific islands of Western Samoa and American Samoa, drawing the attention of the 

world to a region of complex oceanic plate tectonics [Okal et al., 2009; Lay et al., 

2010]. The magnitude 8.1 earthquake [USGS, 2009a] occurred near the point where 

the Pacific plate's active western margin turns sharply from a northerly-trending 

convergent boundary to a westerly-trending transverse boundary (Figure 1). 

Historically, tsunamis in this region are associated only with convergent tecton­

ics. The extensional event [USGS, 2009b] on 29 September was in a part of the plate 

subject to significant lithospheric flexure and tangential longitudinal strain, close to 

but not on the active plate boundary. 

Because of the nature of the tectonic setting we created a set of emergent and 

animated COLLADA models [Arnaud and Barnes, 2006; De Paor, 2007a,b, 2008a; 

De Paor et al., 2009, 2010a] in Google Earth that would clearly illustrate the three-

dimensional structure and its temporal evolution. Our purpose was principally in­

struction and outreach, since visualizations have been demonstrated (e.g. Gobert 

[2000, 2005a]) to play a key role in many novices' conceptualization of tectonic move­

ments. In the process of designing instructional visualizations, however, we found 

that attempting to cover all multiple working hypotheses lead us to additional models 

not previously described in the tectonic literature of the region. Our target audience 

was three-fold: (i) the large number of non-major students who study courses involv­

ing plate tectonics as part of their general education requirements in the US under­

graduate education system; (ii) visitors to the Pretlow Planetarium who can view 

http://www.digitalplanet.org


Figure 1. A view of the Tonga - Samoa region from our data-mining source, Ge-
oMapApp (see text) (http://www.geomapapp.org). Red star marks the epicenter of 
the Sept. 29, 2009 tsunamigenic earthquake south of Samoa. Yellow line marks the 
Tonga trench. Red line is center of Lau marginal basin. Blue line is Vitiaz Lineament. 
Principle emergent island names are in green. 

our models beside models of lunar and planetary structures in a museum-style infor­

mal education setting; and (iii) visitors to our web site http://www.digitalplanet.org 

which is sponsored by the NSF for the purpose of disseminating results of our funded 

research. Learning outcomes were tested with the first category only and are re­

ported by an independent study (Gobert et al. [2012] see summary below). Given the 

positive learning gains they recorded, the visualizations could well prove beneficial 

to other groups, including geoscience majors taking courses in structural geology and 

tectonics, geophysics, or geodynamics, and also to citizens ranging from first respon-

ders in earthquake- and tsunami-prone regions to casual museum visitors. 

We chose to create COLLADA models because they can be viewed with the highly 

popular Google Earth virtual globe [De Paor, 2007a], the basic version of which is 

free (the commercial Google Earth Pro can be used to view our models but it is not 

required). Google Earth is both a desktop application and a web browser plug-in that 

http://www.geomapapp.org
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contains many built-in geoscience data sets in its primary database, including surface 

imagery, water bodies, volcanoes, and earthquakes, all of which can be used to study 

subduction zones and marginal basins. In general, Google Earth is most suited for 

studying processes at or above the surface (e.g. De Paor et al. [2007]; Mc Donald 

and De Paor [2008]), however we have developed several techniques for visualizing 

the sub-surface as outlined in detail below (see De Paor and Pinan-Llamas [2006]; 

De Paor and Williams [2006]; Whitmeyer and De Paor [2008]; De Paor and Whit-

meyer [2010]). 

This paper is aimed towards readers with an interest in the tectonics of the re­

gion, as well as those who would wish to use the models we have created in their 

classrooms or informal education settings, and also towards those who wish discover 

how to create their own 3D COLLADA models of global scale processes elsewhere 

for viewing on Google Earth. In the past, modeling was done mainly by computer 

programmers. However just as non-technical people are increasingly contributing to 

Web content (especially via social media such as Facebook that facilitate easy up­

loading of custom content), so also the old distinctions between teacher, researcher, 

and programmer are breaking down as increasing numbers of academics create, test, 

and disseminate their own computer-base learning, research, and outreach resources. 

2.3 GEOLOGICAL BACKGROUND 

The Pacific plate (Figure 2) is formed by the tectonic processes of mantle up-

welling, partial melting, crustal magmatism, and sea-floor spreading on a network 

of current (East Pacific Rise) and past spreading ridges. Unlike the Mid-Atlantic 

Ridge which is symmetrically positioned roughly equidistant from the Atlantic Ocean 

Basin's eastern and western passive margins, the East Pacific Rise is located much 

closer to (in places actually on) the Pacific's eastern active margin along the Amer­

icas. The Pacific plate thus extends westward across thousands of kilometers of 

Earth's surface before encountering the various plates and micro-plates that mark 

the western active margin of the Pacific Ocean Basin. As it moves away from the 

spreading ridge, the plate becomes older, colder, thicker, and denser [Parker and 

Oldenburg, 1973; Yoshii, 1975] and eventually is subducted along the western part 

of the so-called "Pacific Ring of Fire". Owing to variations in strike of the western 

active margin, tectonism varies in style from convergent to transverse, and associated 

marginal basins commonly undergo minor divergent tectonism. 



Figure 2. Google Earth representation of tectonics of Pacific Ocean Basin. 
Red lines mark East Pacific Rise. Northern Tonga trench is shown in yellow and the 
Samoan transform boundary in cyan. Island of Tonga is indicated in green. Modified 
from KML file downloaded from USGS website. 

In this paper, we focus on a study area (Figure 3) covered by longitudes from 

W170° to the Anti-meridian 180°, and by latitudes from S13° to the Tropic of Capri­

corn (S23.5°). The overall structure of the region consists of: 
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Figure 3. Current study area outlined in green. Pacific plate motion direction in 
white. Yellow line marks Tonga trench. Cyan line is Vitiaz Lineament. Red line 
represents a complex region of back-arc spreading. 

• the westward spreading Pacific plate, 

• the older extension of that plate north of American Samoa, 

• The Tonga-Kermadec trench, 

• The Tonga volcanic Arc, 

• The Lau Back-arc Basin, 

• The Lau remnant arc, and 

• the South Fiji Basin. 

A complication occurs south of this study region where a line of seamounts are 

currently subducting near Monowai, resulting in the differentiation of the northern 

Tonga and southern Kermadec trenches. To avoid this complexity, our study is con­

fined to the region north of Monowai. To the west, the Lau Back-arc Basin meets the 

South Fiji Basin which is influenced by subduction of opposite polarity coming from 
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the New Hebrides convergent zone further west. Our study area is thus strategically 

chosen to avoid unnecessary complications. 

In all but the northernmost part of our study area, the ~ 100 million year 

old Cretaceous crust of the Pacific plate meets the recently formed edge of the 

Indo-Australian Plate along a 6-10 kilometers bathymetric depression called the 

Tonga trench [Muller et al., 2008]. A 100 kilometer-thick descending lithospheric 

slab dips westwards under the Lau Basin to form the Tonga Subduction Zone. 

Slab morphology has been determined to various mantle depths by Gudmunds-

son and Sambridge [1998]; Syracuse and Abers [2006] and data are readily avail­

able in the GeoMapApp on-line database [Ryan et al, 2009; GeoMapApp, 2012] 

(http://www.geomapapp.org). The chosen study area is of interest for several 

reasons. It is important for the scientific history of the theory of plate tectonics 

because seismic studies in this region were the basis for the original identification 

of subduction by Isacks et al. [1968]. The relationships illustrated within the dot­

ted parallelogram of Figure 4 (modified slightly from that paper's famous figure) 

were inspired by the Tonga - Samoa region. Furthermore, the Lau Basin is a classic 

teaching example of back- arc spreading due to trench rollback and trench suction 

[Uyeda and Kanamori, 1979; Moores and Twiss, 1995; Rosenbaum and Lister, 2004]. 

In the rollback process, the immaterial line of maximum lithospheric flexure enter­

ing the trench migrates horizontally eastward as material in the plate continues to 

travel westward and turn downwards. This creates a so-called trench suction force 

that extends the overlying arc and causes divergence in the back-arc basin (Figure 

5). Roll-back is a spatio-temporal concept involving different directions and rates of 

movement of material versus immaterial geometries and is thus potentially difficult 

to visualize, even by experts. 

Towards the north, the Tonga trench ends abruptly along the Vitiaz Lineament 

just south of the approximately east-west trending Samoan Archipelago of islands 

and seamounts (Figures 1, 3). Here, the strike of the convergent plate boundary 

turns sharply from north to west, to become parallel to the plate movement vector, 

and the boundary therefore transitions into a transform boundary. North of this lati­

tude and continuing beyond the study area, the Pacific plate forms the ocean floor for 

thousands of kilometers westward, progressively aging from Cretaceous to Jurassic 

before subducting at locations such as the Mariana trench, whereas to the south of 

the Vitiaz Lineament, a six million-year-old Cenozoic marginal basin called the Lau 

http://www.geomapapp.org
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Figure 4. Plate tectonics explained in famous illustration (slightly modified) from 
hacks et al. [1968] (their-Figure 1). Width of Pacific plate not to scale. Asymmetric 
position of East Pacific Rise not shown. Dotted parallelogram marks present study 
area. 

Basin overlies the subducting Tonga Slab [Lupton et al., 2003; German et al., 2006], 

dividing the active Tonga Volcanic Arc to its east from the extinct Lau Arc to its 

west. 

The change from convergent to transform plate margin correlates with geophysi­

cal evidence from Smith et al. [2001] that the lithosphere is in the process of tearing 

just southwest of American Samoa (Figure 6). An instructional analogy can be cre­

ated easily, either by cutting partially through a sheet of paper or wood panel, or by 

holding ones fingers as shown in Figure 6-inset. However, the transition is compli­

cated and obscured because the Vitiaz Lineament has been alternately interpreted as 

a dormant compressional structure dating from times when plate movement vectors 

were different [Pelletier and Auzende, 1996] or a product of rapid eastward tearing 

of the lithosphere [Hart et al., 2004]. 

At the northern end of the Tonga trench, rates of subduction exceeding 20 cen­

timeters per year are amongst the highest documented anywhere on Earth by van der 

Hilst [1995]; Muller et al. [2008]; Bonnardota et al. [2009]. Holt [1995] notes a south-

to-north increase in down-dip velocities of the slab and the widening of the Lau 

Back-arc Basin is consistent with a northward increase in the rate of rollback, reach­

ing as high as 10 centimeters per year. The trench continues along strike to the south 

beyond the study area, where it is known as the Kermadec trench. However, the char­

acter of the downgoing slab varies along strike as revealed by seismic tomography 



13 

Figure 5. COLL ADA models raised above Google Earth surface showing structure 
of study region. Arc, basin, and slab can be selectively shown or hidden. 

(Figure 7). Tomography shows a lithospheric slab dipping steeply all the way down 

to mid-mantle levels (1,600 kilometers out of the mantle total of 2,981 kilometers) 

south of Tonga, whereas in the current study area a shallow segment is imaged in the 

410-660 kilometers transition zone [van der Hilst, 1995; Mussett and Khan, 2008]. 

These depths correspond to the olivine-spinel and spinel-perovskite phase transitions 

which are thought to affect slab density and kinematics. Bonnardota et al. [2009] 

present evidence of slab detachment at intermediate depths. 

The Samoan Archipelago of islands and seamounts that forms the northernmost 

strip of the study area has been interpreted alternatively as attributable to drift 

of the Pacific plate over a deep-seated Samoan hotspot analogous to the Hawaiian 
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Figure 6. Hiding Tonga Arc and Lau Basin reveals how southern (nearer) portion 
of Pacific plate subducts along Tonga trench whilst northern part continues westward 
on Earth's surface. Inset: hand analogy helps some students visualize situation. 
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Figure 7. Seismic tomography of Tonga-Kermadec slab from Mussett and Khan 
[2008]. Note mid-mantle flat-slab developed in north but not in south. 
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hotspot [McDougall, 2010] or as a result of warping and stretching along an east-

west-trending lithospheric monocline in the proximity of the transform boundary and 

tear point [Hart et al., 2004], In either case, the volcanic lineament adds complexity 

and intrigue to the story of this region. 

2.4 COLLADA MODELS IN THE GOOGLE EARTH DESKTOP APP 

To aid with visualization of complex tectonics, we constructed interactive emer­

gent and animated COLLADA models of the Tonga - Samoa region. We include a 

description of the model coding process here both for those readers who are interested 

in how COLLADA works and for those those who might wish to create similar models 

elsewhere. The authors' recent experiences in co-presenting several over-subscribed 

Geological Society of America short courses and workshops on the topic of Google 

Earth modeling with COLLADA point to growing interest in this approach amongst 

geoscience researchers and educators. The following account should be accessible to 

readers without experience in programming languages such as FORTRAN or C. If 

readers can format a Web page with HTML, they can modify the types of scripts 

discussed below to work in their own area of interest (for more details of scripting 

for Google Earth, see Wernicke [2009]; De Paor et al. [2010a]). 

One of the more powerful features of Google Earth is the ability it offers users 

to display their own content [Goodchild, 2008]. Custom content can be added using 

Google Earth's menus or by creating a file written in the Keyhole Markup Language 

(KML), a dialect of XML designed specifically for virtual globes. The basic struc­

ture of a KML file is shown in Figure 8. This script places a default yellow map 

pin in the center of North America. The custom content we are most interested in 

here consists of 3D COLLADA models. Like KML, COLLADA is another dialect of 

XML and is used mainly to add 3D buildings to Google Earth, for example using the 

SketchUp modeling program. Fortunately, the dimensions of COLLADA models can 

be set to regional or global in magnitude so that a program intended for modeling 

buildings can be used to create crustal blocks on the scale of mountains [De Paor, 

2008b,c] or even continents [Dordevic et al., 2009, 2011; De Paor and Whitmeyer, 

2011]. COLLADA models saved in Digital Asset Exchange (DAE) files are recog­

nized and imported by Google Earth. The example in Figure 9 adds a model of the 

Tonga slab as seen in Figure 6. 

To create Figure 6, we digitally mined data from Syracuse and Abers [2006] which 



<7xmi version="1 0"?> 
<kml> 

<Document> 
<Plaoemark> 

<PoW> 
<coonJina»es>-95.45, 37.68,0<fcoordinatec> 

</Point> 
</Ptacemari(> 

</Document> 
</kml> 

Figure 8. An example of code for creating a Placemark in KML. 

<?xmi vefsion="10"?> 
<kml> 

<Placemark> 
<Model> 

<aititudeMode>retativeToSeaF)oor</aKitudeMode> 
<Location> 

<longJtu<Je>85.935848221848</tongitude> 
<latrtude>-18.36255792927627</laHude> 
<altitude>200000</aititude> 

</Locatkxi> 
<Orientabon> 

<heading>21 732</heading> 
<tltXX/Mt> 
<roi>0</ro«> 

</Orientation> 
<Scale> 

<x>0.816<fl(> 
<y>0.778</y> 
<zX).796<te> 

</Scale> 
<Link> 

<href>Wea/ToogaSlab.dae</href> 
</Unk> 

</McxM> 
</Placemark> 

</kml> 

Figure 9. An example of code for a COLLADA model in KML. 
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is openly available on GeoMapApp [GeoMapApp, 2012] 

(http://www.geomapapp.org). GeoMapApp is a free desktop application that gives 

the user a Google Maps-style interface with a wide-range of geological data (Figure 

1 is a screen shot). Among the global data sets made accessible in GeoMapApp are 

earthquake hypocenters (http://www.geomapapp.org). The first step to creating our 

models was to select a rectangular region in GeoMapApp, export the hypocenter 

points, and load them into an Excel file. This file was used to create points with 

correct depth tags for compatibility with KML. Once the points were in the KML 

file, a snapshot of the region of interest was taken in Google Earth. This picture was 

saved as a PNG image file which was then edited with photographic editing soft­

ware. We used the free open-source application called GIMP [GIMP, 2011], however 

owners of a commercial application such as Adobe Photoshop could use it equally 

well. In SketchUp, a rectangle was created with the same dimensions as the area 

from which the Google Earth terrain image was taken. The edited PNG file was 

then used as a so-called texture pasted on the rectangle (that is, an image covering 

a model surface like wallpaper). In the case of the GeoMapApp data, to aid com­

puter memory management, several small sections were exported onto six different 

rectangles. Next, points were dropped to the correct depth beneath the surface. If 

several data were clustered together the deepest one was selected (usually the depths 

were within five kilometers of one another). After all the points were correctly lo­

cated in the z-dimension, the regions were stitched together using geological markers 

and longitude/latitude lines. The data points were then connected into depth profile 

lines. An outline of the surface slab was copied and offset 5 kilometers to simulate 

ocean crustal thickness and a second copy of the slab was offset 100 kilometers to 

create a bounding surface at the bottom of the lithosphere. These slab surfaces were 

intersected by vertical planes on the sides using a SketchUp 'intersect' command to 

complete a solid model. The geo-referenced slab was saved in a DAE file which was 

imported into Google Earth. 

A similar process was used to create 3D models of the arcs and back-arc basin, 

except that these were constrained by the subducting slab geometry, not by seismic 

data. Finally, a KML Placemark containing the model (Figure 9) was replicated 

and a KML TimeSpan element was added to each replica Placemark (Figure 10). 

The begin and end time tags of the Timespan and the model's altitude tag were 

incremented in unison (in KML, the altitude is in meters so "200000" represents an 

http://www.geomapapp.org
http://www.geomapapp.org
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altitude of 200 kilometers.) As the Google Earth slider is moved and a slider value 

is reached, the code responds by changing the elevation of the COLLADA model. 

All tectonic domains were elevated in unison but different domains were placed in 

separate KML Folders so that they could be selectively shown or hidden. 

<?xml version="1 (T?> 
<kml> 

<F1aoemafk> 
<TmeSpan> 

<begin>-100</begin> 
<end>200</enci> 

</TimeSpan> 
<Model> 

<Locafan> 
<longi!ucte> ..</longitiK)e> 
<tatihJde>. ..</latitude> 
<alWude>200000</alttucte> 

</flacemark> 
<Ptac8mark> 

<TimeSpan> 
<begin>-200</begin> 
<end>-300</end> 

</TimeSpan> 
<Modei> 

<LocaSon> 
< longitude* </Iongitude> 
<labtude>.. </labtude> 
<aWkide>300000</aNilude> 

Figure 10. Sample code for emergent COLLADA model in KML. 

Two difficulties were encountered in the above process. First, the study area 

bordered the Earth's Anti-meridian and Google Earth was found to behave erratically 

in this region. We overcame this by draping the famous NASA Blue Marble image 

of the Earth [NASA, 2005] over the Google Earth surface imagery and moving the 

origin of longitude so that the models were safely away from the Anti-meridian (a 

second ground overlay snapped from the Google Earth terrain was superimposed in 

the Tonga region in order to provide local detail) (Figure 11). A side-effect of this 

solution is that the lat/lon grid must be left turned off. The second difficulty was that 
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the time slider technique gave the viewer only one slider control whereas we wanted 

to be able to both elevate and animate the block. Initially, we animated blocks that 

were already elevated to a fixed altitude (see De Poor et al. [2012b] - Moviel) but 

later we switched to the Google Earth API (see next section). 

Figure 11. Sea-floor detail for Tonga region snapped from Google Earth and draped 
over NASA Blue Marble image of Earth. Both were moved through longitude to get 
away from the Anti-meridian, a region where Google Earth has difficulty handling 
models (see text). 

Animating models in Google Earth (Figure 12) was similar to elevating emergent 

models (Figure 10). Instead of incrementing the altitude of a single model, we cre­

ated a sequence of gradually differing models at a constant altitude (a marker was 

used to ensure that models were all exported from the same spot to prevent un­

wanted jittering or wobble) and we changed the name of the linked model file in the 

KML Placemark sequence. This introduced an unanticipated problem. Although the 

images used as textures were relatively small (under 100 Kb), the long sequence of 

models used in this animation proved to be hesitant to load even on a fast computer. 

Google Earth displayed the blank, white-sided model frame first and applied texture 

images after a brief interval. Even though this was less than a second in most cases, 

white flashes interrupted the immersive effect of the animation. Our solution was 

to wait for all frames to load before playing the animation, however this approach 
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is tedious. Hopefully, future versions of Google Earth will cache textures before dis­

playing models or build visualizations in an off-screen bitmap and only move them 

on-screen with completely loaded; this is standard practice in other applications. 

<7*ml version="1.Cr?> 
<kml> 

<Ptecomart> 
<T*neSpan> 

<begin>-100</begin> 
<end>-200</end> 

</TmeSpan> 
<Model> 

<Link> 
<href»Nes/200.dae<Awaf> 

</Placemark> 
<Ptacefnark> 

<T«neSpan> 
<bogin>-200</begin> 
<end>-300</end> 

</T«neSpan> 
< Model > 

<Link> 
<href>fites/300.cta®</href> 

Figure 12. Animated COLLADA model in KML. 

2.5 THE GOOGLE EARTH API AND JAVASCRIPT CONTROLS 

In addition to the well known stand-alone desktop application, Google Earth is 

available as a web browser plug-in that allows one or more instances of the virtual 

globe to be embedded in a Web page and controlled with client-side JavaScript (an 

example of script is shown in Figure 13) or by means of server-side scripts written with 

a scripting language such as PHP, Python, or Ruby. All features do not transfer over 

from the Google Earth desktop application to the Google Earth API - for example, 

there is no sidebar with Places and Layers. However individual features such as 
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tools in the application toolbar may be coded in JavaScript. Content control using 

JavaScript is an advantage to the API. Maps, cross-sections, COLLADA models, 

etc. can be independently controlled and modified. Ease of viewing content is a big 

plus to the Google Earth API. A person wishing to display content no longer has to 

download and launch a file, but can view Google Earth directly in their web browser. 

The Google Earth API is controlled by standard controls found in HTML forms 

(buttons, sliders, menus, text boxes, etc.). This style of control enables the creation 

of more robust user interaction with the content. Thus, in the Google Earth API a 

new control may be added for every user interaction needed. The main controls used 

in our time-evolved models are the elevation control with a slider and visibility and 

time/motion controls with buttons. The slider works by allowing the user to vary 

any KML element over a range of values. It would not be difficult for readers to add 

their own spot quizzes or text areas for gathering student responses, for example. 

<!DOCTYPE html ...> 
<MmL> 

<h»ad> 
<script language3" JavaScript" types"text/)avascript" src=» 

"htlp^Avww.ltons.o<lu.«du/org/planetarium/»teve/Tooga_API/tonga_ro<IJs/openflle4s"> 
</script> 

</head> 
<body> 

<form> 
< Input typ*»"buNon" vak*»="Load CAM 1" ooc#ck="op«nfil*< 1 )"> 

</form> 
</body> 

</html> 

Figure 13. API JavaScript interface. 

For our elevation slider we used an inexpensive commercial product called 

TigraSlider Control [SoftComplex, 2010]. A free version is offered but does not have 

necessary functionality. Were we starting afresh we would use the free native slider 

input built into HTML5 and supported by all new browsers. Such a slider can be 

added to a web page with the single line: 

<input name="slider" type="range " min= "0" max="10" value="5"> and its value 
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can be read with the JavaScript function document.getElementById('slider').value. 

The visibility controls are standard HTML form buttons which enable model compo­

nents to be shown or hidden, thus revealing or obscuring sections of the model behind 

them. A quick method used to accomplish this task was to change the HTML href 

hyperlink to the .dae file. If a model component needed to be invisible, the href link 

was pointed to a non-existent .dae file, thus nothing was loaded. 

2.6 IMPLEMENTATION 

Since 2008 we and our colleagues [Whitmeyer et al, 2011] have been distributing 

geological COLLADA models to a cohort of educators in a variety of universities 

and colleges and we have made them freely available for download both from our 

academic web sites and from www.digitalplanet.org. The animated emergent mod­

els described here, along with similar models in a variety of tectonic settings, have 

been used by us in several undergraduate courses at four east coast universities and 

are available to visitors to the ODU Pretlow Planetarium in an informal education 

setting. During leave-of-absence by De Paor in 2010, co-author Wild developed a 

set of Google Earth API-based laboratory activities including animations using the 

above technique (see Figures 14, 15,16,[ Wild et al., 2011], and movies 1, 2, 3 [De Paor 

et al., 2012b,c,d]. These were combined in a single laboratory class along with sim­

ilar activities addressing the Iceland spreading ridge and hot spot, and presented 

as a test with IRB compliance to 127 non-science-majors as part of a broad survey 

of the solar system. Pre- and post-tests were administered by Wild and analyzed 

by NSF-sponsored independent assessor Gobert, and results are reported by Gobert 

et al. [2012]. Quoting their abstract, these authors "found: 1) overall learning gains; 

2) no differences in learning gains when comparing those with prior coursework in 

Geology or geography to students without this prior coursework; and 3) no differ­

ences in learning gains when comparing males and females." They report a gender 

difference favoring males in terms of items completed during the class period and a 

correlation between students' pre-test and embedded laboratory scores. 

Testing in the informal education setting of a planetarium has not yet been at­

tempted. Here, models can be displayed on a portion of the dome using a peripheral 

LCD projector during planetarium shows and on peripheral computer screens that 

visitors can casual browse. Future plans include eye-tracking studies of such browsing 

as we have recently acquired the necessary equipment. 

http://www.digitalplanet.org
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Figure 14. Google Earth API, COLLADA models manipulated in Google Earth 
instance embedded in web page. Slider, buttons controlled using JavaScript. 

X 

Figure 15. Alternative models of trench rollback and slab kinematics. See text. 
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Figure 16. Block model that can be raised and reorientated while animation is 
running using multiple JavaScript controls. 

2.7 ENHANCED VISUALIZATION USING GOOGLE MARS 

In addition to the emergent COLLADA models described above, we developed 

methods of viewing sub-surface tectonic structures in situ. The radius of Earth's 

outer core (3,500 kilometers) is within 3% of the mean radius of Mars. Consequently 

we can use the Google Mars virtual globe to represent Earth's core- mantle boundary. 

The Martian 3D terrain is turned off and a plain image overlay is used to cover all 

of the built-in Martian surface imagery. At the Earth's core-mantle boundary depth 

of 2,900 kilometers, the peak black-body radiation is white-hot, however white is not 

a suitable color for modeling, therefore we use red or gray overlay images (Figure 

17) to convey temperature or metallicity respectively (an informal poll taken by 

De Paor and Whitmeyer [2011] revealed that ten of the fourteen voters favored the 

red core whereas three favored gray and one white). A spherical COLLADA model 

representing Earth's surface to scale is draped with a semi- transparent PNG image 

of the NASA Blue Marble. Figure 18 shows the core with three slices of the mantle 

under Tonga. The upper part of each slice is textured with seismic tomography from 

Mussett and Khan [2008]. The lower part is colored purple to emphasize the relative 



26 

proportion of the mantle not reached by the tomographic data. Elements of Figures 

17 and 18 are combined in Figure 19, with a circular cut-out revealing the interior. 

All three models can be downloaded from our Web site [Digital-Planet, 2011]. 

P J' S + & 4^ | — it, 

o 

Figure 17. Visualizing subsurface using Google Mars with plain red image overlay 
and Blue Marble COLLADA model of Earth's surface. 

Specific to this study area, inclusion of deep mantle tomography lead us to con­

sider tectonic models of the Tonga subduction system extending beyond the depth 

of the Syracuse and Abers [2006] data. The feature of particular interest in the to­

mographic section is the region of shallow or 'flat' slab dip between 430 kilometers 

and 670 kilometers as discussed below. 
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Figure 18. Slices of crust and mantle shown with seismic tomography from Mussett 
and Khan [2008]. Note flat subduction at mid-mantle levels. Purple represents 
lowermost mantle below limit of tomographic data. Red sphere representing Earth's 
core. 
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Figure 19. Visualization with circular cut-out revealing underlying mantle. Yel­
low, red, and blue lines mark surface tectonic lineaments. Note that Arctic, North 
America, and Russia are seen inverted on inner surface of sphere behind core. 
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2.8 TECTONIC MODELS OF THE TONGA REGION 

Creating learning and outreach resources for the Tonga-Samoa region required 

the assembly of six alternate plate tectonic models including mostly well- established 

but also some novel ideas. To a casual observer, this might seem excessive. Geolo­

gists are so used to viewing two-dimensional cross sections of subduction zones that 

they may not ponder how such zones must change in four dimensions of space and 

time. On a finite spherical Earth, a subduction zone cannot continue along strike 

forever and neither Andean-style magmatic arcs nor Lau-style back arc basins can 

be understood in terms of a steady-state subduction system akin to a descending es­

calator. Yet plate tectonics texts tend to skimp on discussion of complications such 

as lateral terminations or rollback and static illustrations strongly suggest a steady-

state process of subduction at a fixed trench location. By presenting over-simplified 

models of subduction to students and the public we make it impossible for them to 

truly understand the genesis of arcs. 

The rigid Pacific plate is contiguous east of the study area, and its absolute Euler 

pole of rotation lies far away (Figure 20), so the velocity of the sea- floor approaching 

the Tonga trench must be approximately the same as its velocity along the Samoan 

Archipelago north of the subduction zone (web reference [GSI, 2004]). Consequently 

the variables of interest are the absolute and relative velocities of the tear point. Ab­

solute velocities may be stated relative to the global hotspot reference frame whereas 

relative velocities are stated with reference to an arbitrary material point in the 

lithospheric plate. 

2.8.1 MODEL 1: NO TEARING OR SLOW TEARING. 

In this end-member case (Figure 21), the tear point southwest of American Samoa 

is not currently active but rides along passively with the plate, a scenario that results 

in horizontal absolute velocity vectors for all points both on the surface and on the 

slab. This end-member case cannot be the whole story because it does not allow 

subduction to get started in the first place, however, it is a temporary condition 

which is possible at some later time. In order for the slab to move horizontally 

westward, the arc material in front of it must either 1) move west at an equal or 

greater pace, or else 2) deform to form a contractional forearc accretionary wedge or 

a foreland thrust belt, or both (Figure 21). If the tear point propagates eastward 
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Figure 20. Velocity vectors for the Pacific plate from GPS measurements. Web 
reference [GSI, 2004]. 
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more slowly than the plate moves westward then the movement vectors for material 

in the slab will dip westward more shallowly than the dip of the slab itself and the 

scenario will also correspond to Model 1 (Figure 22). 

Figure 21. Structure of Andean Arc oriented to correspond to polarity of Tonga 
Subduction Zone, view north. Green denotes forearc and foreland sedimentary basins. 
Black lines are thrust faults near surface and shear zones at depth. Red denotes 
magmatism. 

The structure of the lithosphere above the Tonga Subduction zone in Model 1 

depends on the absolute velocity of the Australian Plate west of the study area. 

Back-arc spreading west of Tonga could be compatible with Model 1 if the Australian 

Plate drifted west faster than the Pacific plate or if rollback of the opposite-polarity 

New Hebrides Subduction Zone west of Fiji created the necessary extension. As 
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Figure 22. Tear point migrating slowly eastward (white arrow) resulting in dipping 
absolute movement vectors (black). 
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it happens, the direction of absolute plate motion of the Australian Plate is north­

ward, approximately perpendicular to the Pacific plate [Kreemer, 2009; Stadler et al., 

2010], therefore it does not have a significant orthogonal component of movement rel­

ative to the trench and is equivalent to a stationary block for the purposes of this 

model. Furthermore, the New Hebrides structure cannot be responsible for all back-

arc spreading because its influence does not extend beyond the northern end of the 

Lau Basin. Thus, if Model 1 were valid, there ought to be a mountainous magmatic 

arc bordered by forearc and foreland thrust belts, which are shown in Figure 22 but 

not seen in ground truth. If there were ever a period during which the tear point 

drifted passively with the plate or ripped slowly, it could not have lasted long, else a 

large compressional arc would have grown and endured. 

Despite the obvious unlikeliness of Model 1 to an expert (professor), we included 

it amongst our alternatives in order to challenge novices (students) to think of rea­

sons to reject it, or equivalently, to envisage the type of data that would support it 

but are not seen. 

2.8.2 MODEL 2: BAND SAW TEARING. 

Our second model requires an immaterial tear point fixed in an external reference 

frame (Figure 23). The western drift of the Pacific plate can then be compared to 

pushing a sheet of plywood westward through a band saw and holding the north 

side level (Figure 23 inset) whilst letting the south side sag (to include the Samoan 

Archipelago in the analogy, one would add a candle in a fixed location under the 

north side of the sheet close to the band saw). 

The absolute velocity vector of any material point in the slab in this case would 

be directed down-dip, i.e., parallel to the top and bottom of the slab, consequently 

the arc forming above the slab would be under no lateral stress, neither forming an 

Andean-style compressional structure such as a thrust belt nor an extensional struc­

ture such as a back-arc spreading ridge. Nevertheless, the the model would lead to a 

prediction of gradual magmatic arc build up to significant size. 

It is not intuitively obvious that there are two independent questions to be ad­

dressed in this scenario. First, is the Samoan Archipelago a hot-spot trail caused by 

the Pacific plate drifting slowly westward over a fixed hot-spot? And second, has 

the tear point always been located close to the hotspot? If the latter were true, the 

tear point southwest of the youngest island - American Samoa - today would have 
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Figure 23. Model 2: Tear point fixed in external reference frame. Velocity (white 
arrow) equal and opposite to plate velocity. Velocities in slab parallel to dip (black 
arrows). 
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been southwest of the older Western Samoa in the recent past and southwest of the 

oldest Wallis and Futuna Islands before that, with each of these islands presumed 

to have formed over the stationary deep mantle hot-spot before the younger ones 

existed. Thus a test of the hot-spot trail model would be a progression of island 

ages and thermally induced decreasing altitudes or bathymetries, comparable to the 

Hawaiian chain. The hot-spot answer was in doubt because of the occurrence of 

recent vulcanism at both the west and east end of the Samoan volcanic lineament. 

However, studies by Mahoney and Spencer [1991]; Koppers et al. [2003]; Hart et al. 

[2004] have shown plume hot spot activity similar to Hawaii. Recent volcanism along 

the Samoan lineament is seen by them as a separate phenomenon superposed on the 

hot-spot progression and therefore requiring a separate explanation. 

2.8.3 MODEL 3: RAPID ROLLBACK. 

Our third model involves the eastward relative migration of the tear point at 

a faster rate than the westward absolute movement of the Pacific plate over the 

hotspot, resulting in eastward absolute movement of the tear point and absolute 

velocity vectors for material in the slab that are steeper than the slab dip (Figure 

24). An analogy would be the act of cutting cloth by moving a scissor forward 

whilst pulling the cloth backwards towards oneself (students have also suggested a 

comparison with the Michael Jackson moon-walk). In this case, the original tear point 

would have been at the western end of the Samoan Volcanic Lineament, well west of 

the fixed mantle hot-spot and would have migrated rapidly east so that it happens to 

be close to Vailulu'u today. Rapid migration of the tear point could account for the 

superposition of recent vulcanism on the age progression of the Samoan Archipelago 

as discussed above by flexure of the lithosphere close to the line of tearing. If we 

could see into the future, the tear point might continue to migrate east of the current 

hotspot. On the other hand, its current proximity to the hotspot might trap the tear 

in a steady-state phase in the future as represented by Model 2. 

Since relative motion of the tear point is key, Model 3 can also result from modest 

tear velocities in combination with slow plate velocities. In the end- member case 

there is no horizontal component of plate motion and the slab vectors are vertical 

(Figure 25). Clearly the Pacific plate does have a significant horizontal velocity, so 

the end-member case is not practical. 
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Figure 24. Model 3: Rapid eastward migration of tear point (white arrow). Abso­
lute slab velocity vectors steeper than slab dip. Stress in arc causes extension and 
dike intrusions, opening Lau Basin. 
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Figure 25. Model 3 (contd.): Dominance of rollback over horizontal plate motion. 
Steep to vertical absolute velocities in slab (black arrows). Stress in back arc region 
is tensional. 



38 

2.8.4 MODEL 4: DEEP MANTLE ROLLBACK MODEL. 

Model 3 can account for the development of a subduction zone and extensional 

back-arc basin, but we also need to account for the flattening of the slab dip approx­

imately between 400 and 600 kilometers depth. Kincaid and Olson [1987] suggested 

that the subduction system may have initially followed Model 2 (no rollback) and 

that rollback and back-arc spreading may have ensued when the slab hit the 430-

670 kilometers mantle discontinuity after about 10 million years at 7 centimeters per 

year. In this scenario, the slab encounters resistance to subduction due to mid-mantle 

phase and viscosity changes (430 kilometers is marked by the olivine-spinel transition 

whereas the spinel-perovskite transition occurs at 670 kilometers) and it develops a 

bend that itself rolls back (lower white arrows in Figure 26). 

2.8.5 MODEL 5: FOUNDERING FLAT-SLAB MODEL. 

As far as we can ascertain, this fifth model (Figure 27) is not previously described 

in the tectonic literature. In this scenario, the western Pacific plate first cracked 

along the Tonga trench and tore at a point to the west of the Samoan Archipelago 

causing the southern portion to subduct. A magmatic arc built but there was no 

significant back-arc spreading. The seamounts and islands of the Samoan Archipelago 

pierced the plate progressively along a line to the east of the tear point. Islands 

and seamounts aged and subsided as they drifted westward. At about 6 million 

years, the tear point ripped rapidly eastward as in Model 3, superimposing recent 

volcanism of the Vitiaz Lineament and ending in proximity with the hotspot. This 

rapid rollback resulted in a shallow-dipping slab segment at shallow depth with steep-

dipping absolute movement vectors. The flat slab then continued to founder to its 

present mid-mantle level. In the third dimension, the structure involves a near-pole 

rotation (cf. De Paor et al. [1989]) resulting in the narrowing of Lau Basin towards 

the south and widening to the north. At about 2 million years ago, trench rollback 

started a near-pole rotation process about an Euler pole located around S 24. The 

rotation occurred at a rate of 7° per million years. 

2.8.6 MODEL 6: SUBDUCTION STEP-BACK. 

Our final model is one in which subduction initiates in the west under the Lau 

Arc and then instantaneously steps back to the longitude of the Tonga Arc (Figure 
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Figure 26. Deep Mantle Rollback (lower white arrow) may have created flat slab 
segment at about 600 km and also driving surface rollback (upper white arrow). 
White spot marks point where slab started to go flat due to mid-mantle resistance. 



Figure 27. Model 5. Foundered flat slab. See text for discussion. 
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28). There is no back-arc spreading, rather the marginal basin is floored by a broken 

off and abandoned segment of the Pacific plate. This model is established elsewhere: 

it has been proposed to explain part of the evolution of the Mariana system, among 

others. However, diffuse magnetic patterns in the Lau Basin imply [Lawver and 

Hawkins, 1978] that it formed by distributed back-arc spreading driven by trench 

rollback [Uyeda and Kanamori, 1979] and trench suction [Chase, 1978] rather than 

by entrapment of normal oceanic lithosphere behind a newly formed Tonga Arc to 

its east (these different models of marginal basin formation are discussed by Karig 

[1974]). 

Figure 28. Model 6. Subduction step-back. Subduction initiates in west, then steps 
instantaneously to east (oceanward). See text for discussion. 

We leave the task of debating the fine details of alternate models to regional 

tectonic experts. As usual, there are end-member cases that can be rejected but no 

single hypothesis that trumps all others. Under-constrained alternatives help guide 

tectonic experts towards the types of data that need to be collected in the future. 

For instructional purposes, it is useful to present these multiple working hypotheses 
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as an example of the oft-misunderstood process of science (e.g. Brickhouse [1990]; 

Handelsman et al. [2004]). 

2.9 DISCUSSION AND CONCLUSIONS 

Ever since its inception, Google Earth has been adopted with great enthusiasm 

by geoscientists (e.g. Butler [2006]) and it has been widely used in geographical 

and geological education (e.g. Stahley [2006]; Patterson [2007]; Rakshit and Ogneva-

Himmelberger [2008, 2009]). Cruz and Zellers [2006] have established its efficacy 

for the study of landforms. COLLADA models have been used in conjunction with 

Google Earth by De Paor and Whitmeyer [2008]; De Paor et al. [2009]; Selkin et al. 

[2009]; Brooks and De Paor [2009]; Pence et al. [2010]; Whitmeyer et al. [2011]; Gob-

ert et al. [2012]. Anecdotally, students in several of our classes have reacted positively 

to the tactile nature of the process of lifting blocks out of the subsurface. They seem 

to "get it." However, in order to spur further evaluation studies, there needs to be a 

greater cohort of academics who create and distribute learning resources for Google 

Earth using COLLADA and KML. 

Previous studies have documented the benefits of learning with visualizations in 

general by Kali et al. [1997]; Orion et al. [1997]; Reynolds et al. [2005] and specifically 

with Geographic Information Systems by Hall-Wallace and McAuliffe [2002]. There 

are also many studies of the positive role of student research projects in undergrad­

uate education by Libarkin [2001]; Jenkins et al. [2007]. In some cases, instructors 

already know the right answers and by mentoring student inquiry rather than just 

lecturing, they help students to discover those answers. In other cases, questions 

are more open-ended and students discover new findings thereby acting as genuine 

researchers as well as learners. This paper presents a case where construction of 

engaging instructional resources blurred the boundary between academic education 

and research at the instructor level. It is commonly stated that one does not truly 

understand any topic until one is asked to teach it. Clearly, the process of preparing 

course materials is an important aspect of research and with modern methods of data 

mining and data visualization, teachers who are not topic experts have the opportu­

nity to help promote not only their own comprehension but the research community's 

understanding also. 

We a keenly aware of: 1) the potential of complex 3D visualizations such as Google 

Earth to cause visual overload and loss of attention [Rensink et al., 1997; Parkhurst 
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et al., 2002; Martin and Treves, 2008]; and 2) the ease with which students can 

wander off task given simple mouse controls and a whole earth to explore. Adding 

emergent blocks to Google Earth helps solve the first problem by creating salience 

and a focal point for student attention. In separate lab exercises, we use the KML 

NetworkLink and FlyToView elements as a means of geo-fencing (e.g. Rashid et al. 

[2006]); when a student wanders away from the region the KML script automatically 

resets the view angle. Serendipitously, our solution to the Anti- meridian rendering 

problem in Google Earth (above) reduces visual overload by replacing the complexly 

overprinted surface imagery and 3D DEM with the simple NASA Blue Marble image 

of the Earth. Simpson et al. [2011] have taken the concept further by draping a plain 

beige image over all of the Google Earth surface except for the Archean Kaapvaal 

Craton which is their area of interest. 

Given our recent courses, our classroom use of COLLADA models and Google 

Earth have been mainly with non-science majors, Goodchild [2006] has promoted 

the notion that general education requires geospatial reasoning as a "fourth R" in 

addition to reading, writing and arithmetic. Furthermore, there is no reason to be­

lieve that students majoring in geosciences and other geospatial disciplines would not 

benefit also. In a previous small (eight student) class of geoscience majors studying 

structural geology, a student questioned two weeks after the laboratory activity was 

able to correctly estimate crustal thickness as a proportion of the width of a block. 

This student might also have been able to give a numerical answer but evidently had 

developed a useful visually-based mental concept of scale. 

We hope that the electronic media linked this paper will lead to widespread dis­

semination, implementation, and testing of our models in many settings and to the 

development of new COLLADA models in Google Earth by our colleagues in many 

second and third level educational institutions. Since Google Inc. handed control of 

KML to the open-source community, its free availability is ensured for the foreseeable 

future and it has the potential to be truly transformative in the field of geoscience 

modeling, education, and outreach [De Paor, 201 la,b; De Paor and Whitmeyer, 

2011]. 

Having created and developed these visualization tools for exploring tectonic pro­

cesses the next step is to develop and implement tests to study the validity of using 

Google Earth as an educational tool. Only by testing to measure learning outcomes 

can one determine if the visualizations have merit. 
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CHAPTER 3 

TESTING GEOSCIENCE LEARNING WITH GOOGLE 

EARTH 

In this chapter the process of measuring learning outcomes using the COLLADA 

models and Google Earth is described from the creation, implementation, and mea­

suring learning gains. My involvement in the project was in developing the tests for 

the Tonga region, administration of both exams, and helping to develop and score 

the exams. The work reported in this chapter has been published in a GSA Special 

Paper on Google Earth and Virtual Visualizations (see Gobert et al. [2012]). As a 

co-author of this paper I contributed 35%. 

3.1 ABSTRACT 

Two sets of learning activities in Google Earth were developed for use by geo-

science majors and non-science majors. The first activity aimed to foster undergrad­

uate students' understanding of the geography and basic geology of Iceland. We 

tested the efficacy of this activity for learning with 300 undergraduates from a uni­

versity in the southeastern part of the United States. In terms of post- versus pre-test 

scores we found: 1) overall learning gains when collapsing over type of prior knowl­

edge and gender, 2) no differences in learning gains when comparing those with prior 

coursework in Geology or geography to other students without such prior course-

work, and 3) no differences in learning gains when comparing males and females. 

In terms of items completed during the lab exercise, again we found no differences 

by prior coursework (prior Geology, prior geography, or None) and no differences by 

gender. Lastly, moderate positive correlations were found between students' pre-test 

and post-test scores, as well as between students' embedded lab scores and post-test 

scores. 

For the second activity, we developed a laboratory activity about the classic Tonga 

region of the west Pacific in order to support undergraduate students' understand­

ing of: 1) the physical geography of the Tonga Subduction System, 2) the dynamic 
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geological processes involved in plate movement, subduction, magmatic arc evolu­

tion, and trench rollback, and 3) geological processes resulting from subduction, 

including volcanism, and earthquake formation. Using the program called Google 

Sketch-Up, we created 3D COLLADA models that are viewable as 4D animations in 

the Google Earth API (a web based version of Google Earth) to help demonstrate 

several geophysical processes. These animations potentially have a wide range of 

learning application from basic to more abstract ideas. Specifically, the learning ob­

jects created involve the Pacific plate subducting underneath the Australian Plate in 

the Tonga Region; these are designed to help show subduction, active and dormant 

volcanoes, back-arc spreading, trench rollback, and migration of the tear point that 

marks the northern termination of the subduction system. We tested the efficacy 

of this activity with 127 undergraduates from a university in the southeastern part 

of the United States. In terms of post- versus pre- test scores we found: 1) overall 

learning gains, when collapsing over type of prior knowledge and gender, 2) no dif­

ferences in learning gains when comparing those with prior coursework in Geology 

or geography to other students without this prior coursework; and 3) no differences 

in learning gains when comparing males and females. For the lab activity itself, 

we found no differences by prior coursework (Geology/geography versus None) but 

found a gender difference, favoring males, however this learning did not show up 

as statistically significant at post-test (as previously mentioned). Lastly, moderate 

positive correlations were found between students' pre-test and lab scores. 

Data is discussed with respect to Google Earth's utility to convey basic geo-

science principles to non-geology undergraduates and its potential impact on public 

understanding. This is important and aligned with many current educational reform 

efforts [American Association for the Advancement of Science, 1993; National Re­

search Council, 1996], which call for broader scientific literacy. 

3.2 INTRODUCTION 

3.2.1 LEARNING IN THIS DOMAIN: WHY IS IT DIFFICULT? 

The domain chosen for this study is plate tectonics, the lead paradigm for un­

derstanding the origin and evolution of Earth's surface features including continents, 

oceans, and island arcs. This is a difficult topic to learn both because of the hidden 

mechanical processes, which are outside our direct experience, and because it involves 
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several different types of knowledge including spatial, causal, and dynamic knowledge 

[Gobert and Clement, 1999; Gobert, 2000]. Specifically, conceptual understanding in 

this domain requires understanding the spatial arrangement of the various material 

components of the earth (i.e., spatial/static information) as well as understanding the 

movements within these layers and their dynamic causes (i.e., primordial Core) and 

radioactive sources of heat (i.e., mantle) that must escape the earth's deep interior 

[KamLAND Collaboration, 2011], convection of solid material through the mantle 

[ Wilson, 1973], plate movements, divergence and convergence at plate boundaries, 

and the interaction of surface plates with deep mantle plumes [Morgan, 1972]. In ad­

dition to acquiring two types of knowledge (spatial/static and kinematic/dynamic), 

several concepts need to be integrated into a complex causal chain to build a rich 

four-dimensional mental model of the system [Gobert and Clement, 1999; Gobert, 

2000]. From these mental models, predictions and inferences can be made about the 

system's behavior: in the case of plate tectonics, explaining or depicting locations 

of earthquakes and volcanoes, sea-floor spreading, mountain-building, and island arc 

evolution. 

Among the most difficult concepts that we present to students are (i) plate-plume 

interaction as in Iceland [Ito and Lin, 1995], and (ii) trench rollback as in the Tonga 

region [Isacks et al, 1968]. Iceland stands high above sea-level because it marks the 

intersection of the Mid-Atlantic Spreading Ridge and a Deep Mantle Plume emanat­

ing from the core-mantle boundary. Students thus have to visualize two processes 

with very different length and time scales; time scale is particularly difficult to un­

derstand, even for graduate students of Geology [Jacobi et al., 1996]. Tonga is the 

type locality for the process of trench rollback whereby the line along which the plate 

bends into a subduction zone migrates in the opposite direction to the material of the 

plate [Uyeda and Kanamori, 1979; Moores and Tvriss, 1995; Rosenbaum and Lister, 

2004]. At Tonga, for example, the rocks of the Pacific plate move westward whilst 

the trench marking the initiation of subduction migrates east. 

3.2.2 RELEVANT WORK ON LEARNING IN GEOSCIENCE 

Google Earth, a fairly new program (version 1 was released in 2005), constructs 

pictures of the earth by downloading satellite data from a remote terabyte server 

[Lisle, 2006] and rendering them on a virtual globe in real time. The program is 

interactive so that the location and size of the region viewed is under full control of 
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the learner/user; the user can zoom in, pan, and tilt the terrain from any desired 

viewpoint, and the surface imagery communicates information in a format that is 

more intuitive and realistic than paper maps and cross-sections [ Whitmeyer et al., 

2010], This last feature makes them useful for learning and reasoning for experts in 

the domain, as well as for students and lay people, e.g. non-science majors (this is 

addressed more fully later in the paper). 

It is argued that Google Earth is a tool that can help build scientific literacy 

on a broad scale because it and other geo-technologies are ways to give citizens bar 

sic knowledge of geography [Sanchez, 2009] and geoscience [Thompson et al., 2006]. 

Secondly, in addition to basic content knowledge, some researchers claim that work­

ing in Google Earth can hone one's data analysis and interpretation skills, which, 

many argue, are becoming increasingly important in scientific and industrial fields. 

As an extension to this latter point, it has been further argued that the ability to 

use images and spatial technologies is necessary in order to participate in modern 

society [Bednarz et al., 2006] since information and data tends to be displayed in 

spatially-oriented formats. 

To date, there have been a fairly large number of studies that address learning 

in geoscience, but most of these have been conducted with a pre-college population 

[Libarkin and Anderson, 2005], and studies on college students or other adults only 

emerged within the last decade or so [DeLaughter et al., 1998; Trend, 2000; Libarkin, 

2001; Libarkin and Anderson, 2005; Dahl et al., 2005]. Amongst the research on this 

topic with an adult population, the research that is most closely related to the present 

research is the research on learning with visualizations in geoscience [Hall- Wallace 

and McAuliffe, 2002; Thompson et al., 2006; Whitmeyer et al., 2009]. 

With respect to training students in geoscience specifically, recent reform efforts 

emphasize the need to utilize technology in teaching and learning [Stout et al., 1994; 

National Research Council, 1996], which has translated into greater demand for 

technology-based teaching methods [Cruz and Zellers, 2006]. In parallel, there also 

have been demands for greater instructor accountability for students' learning at all 

levels, as decreasing enrollment trends continue in the STEM disciplines [McConnell 

et al., 2006]. Although learning with Google Earth has been touted as having great 

potential for improving students' knowledge about geological phenomena, spatial 

skills, problem-solving, etc., and the fact that, intuitively it appears to have many 

affordances for geoscience learning [Cruz and Zellers, 2006; Whitmeyer et al., 2009], 
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there axe relatively few studies that either characterize the learning processes that 

students engage in while learning with Google Earth, or that address the efficacy of 

learning with Google Earth. 

Characterizing learning processes with Google Earth, it has been noted that 

Google Earth (GE) offers a benefit over more traditional GIS in that Google Earth 

can be implemented into classrooms at any level because it has relatively few tools 

and thus less overhead for the teacher in learning it [Patterson, 2007; Bodzin et al., 

2012]. In terms of the utility of Google Earth for college professors and high school 

teachers, Google Earth only requires a basic knowledge of scripting languages in or­

der to construct materials [Whitmeyer et al., 2010]. For example, Google Earth has 

been used in high school classrooms for virtual exploration of geologic features to 

support students' understandings of geological processes [Fermann, 2006; Stahley, 

2006]. Similarly, [Sanchez, 2009] describes implementations in which a teacher de­

veloped a geological map that encompasses layers of data about earthquakes and 

volcanoes. Here, it was suggested that these help students to identify different as­

pects of oceanic crust formation and understand the mid ocean ridge system. Lastly, 

[Patterson, 2007], who has used Google Earth for middle school instruction, suggested 

that Google Earth's interactive exploration capacity helps students understand the 

spatial context of their location and engage in spatially-oriented learning in an en­

tertaining and meaningful manner. 

In terms of studies that have addressed the efficacy of Google Earth, one study 

compared GE to traditional textbook materials for undergraduates' learning of land-

forms [Cruz and Zellers, 2006]. Findings revealed that students in the GE condition 

gained deeper understanding of the content compared to those in the traditional 

textbook condition. Furthermore, those students who had previous exposure to GE 

performed better than those who did not. Similarly, Martin and Treves [2008] showed 

that GE is effective to help students and the general public (i.e., non-majors) visu­

alize both scientific data and science content in 3D. Martin and Treves stressed the 

importance of promoting active learning, and dissuaded the development of "flashy 

" 3D animations, since students, who by definition lack expertise, do not know what 

is salient in order to engage in knowledge acquisition from information sources [Gob-

ert, 2005a]. Bodzin and Cirucci [2009] similarly, noted that resources such as GE, 

when used in conjunction with appropriately designed instructional materials, show 

much potential in promoting students' spatial thinking. 
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In two innovative studies in which students constructed their own materials using 

GE, learning gains were obtained. First, Whitmeyer et al. [2009] had undergraduates 

use handheld computers to collect lithologic and structural data, and then analyze 

it in order to construct geologic maps of their field areas. This approach, according 

to the authors, familiarizes students with GE tools, and in turn, can be useful in 

improving students' interpretations of field geology. Similar results have been found 

in which students constructed their own representations of geoscientific phenomena 

[Gobert and Clement, 1999; Gobert, 2000; Gobert and Pallant, 2004; Gobert, 2005b]. 

In another study, Thompson et al. [2006] showed students how to create their own 

content in GE. Here, not only did students learn important design elements and 

skills; students reported that these skills were amongst the most important that they 

learned in their geoscience program. 

These last studies described address an important issue underlying learning with 

visualizations; that is, that deep learning with visualizations typically requires ac­

companying materials, scaffolds, etc., in order to support and guide students in their 

learning processes. This is critical since students often do not know what is salient 

within these rich visual information sources [Lowe, 1993] since they present all in­

formation simultaneously (see Larkin and Simon [1987]; Gobert [2005a] for more on 

this topic). 

3.3 RATIONALE 

In our project, we address the learning gains for two different units developed 

in Google Earth. In particular, in each study we address their efficacy for those 

with prior coursework in Geology and geography, compared to non-majors with no 

prior coursework in these domains. Secondly, although it was not part of the original 

design of the research, we compare the learning gains of both males and females, 

since many studies have shown that females lag behind males in their learning of 

geoscience concepts due to their inherent spatial nature and females' oft-reported 

diminished spatial skills [Kahle et al., 1993; Burkam et al., 1997; Dabbs et al., 1998; 

Britner, 2008]. 
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3.4 STUDY 1 

3.4.1 PURPOSE 

In the first study we developed a Google Earth activity to support students' un­

derstanding of the geography and basic geology of Iceland. We tested the efficacy of 

this activity in terms of post- versus pre-test scores for: 1) overall learning gains as 

measured by pre- post-tests, 2) differences in learning gains when comparing those 

with prior coursework in Geology or geography to other students without such prior 

coursework, and 3) differences in learning gains when comparing males and females. 

Lastly, we also compared students' learning on the lab activity itself, i.e., the peda­

gogical activities that were completed as part of the lab. 

3.4.2 METHOD 

Participants. A total of [N = 225] undergraduate students from a southeastern 

university participated in this study as part of their coursework1; age data for the 

participants was not collected. All students were part of the same large lecture; there 

were nine sections of the lab that corresponded to the lecture, from which our data 

was drawn. 

3.4.3 MATERIALS 

3.4.3.1 PRE-TEST/ POST-TEST 

The pre-test and post-test consisted of the same set of 10 questions on basic 

geological and geographical knowledge of Iceland as well as one question asking about 

prior experience studying this topic. Of these questions, 9 were multiple choice, and 

one asked participants to locate Iceland on a provided map. The pre-test served 

to determine a baseline of prior knowledge that a participant had coming into the 

activity, while the post-test determined what knowledge was gained as a result of 

participating in the lab activity. All items were developed by experts in the area 

of geoscience as part of three on-going projects (NSF-CLLI #0837040 [De Paor and 

*Data were collected, coded, and stored in compliance with the requirements as outlined by 
Federal Policy for the Protection of Human Subjects under JMU IRB #11-0114 and ODU IRB 
#10-186. 



51 

Whitmeyer, 2008], NSF-GEO #1034643 [De Paor et al., 2010a], NSF-DUE #1022755 

[De Paor et al., 2010b]). Some examples of items on the pre- and post-test are given 

below; the full set of items is included in Appendix A. 

Q6 What is the principle rock type seen In Iceland? 

(i) limestone 
(I) basalt 
(M) granite 
(tv) marble 

Q9 Which best describes the geological origins of Iceland?: 

(I) Iceland sits on top of both a deep mantle plume and a divergent plate 
boundary 

(H) Iceland Is a fragment of continental crust, Nke Britain and Ireland, that 
detached from the European margin during North Atlantic spreading 

(I) Iceland Is a volcanic island arc forming above a subducVon zone 
(Iv) Iceland is a huge floating mass of tee drifting very stowty away from 

Greenland 

Figure 29. An example of two questions from the pre- and post-test, Iceland activity. 

3.4.3.2 LAB ACTIVITIES FOR ICELAND 

The Iceland lab activity consisted of a series of tasks that were designed to develop 

students' understanding of the geography and Geology of Iceland. Tasks included: 

locating Iceland in Google Earth, specifying its relationship geographically with re­

spect to the Arctic Circle, using the time slider to observe the horizon, asking students 

what they would expect to see here at the Winter Solstice, observing the landscape, 

geological features (e.g. rock types), and other characteristics of Iceland's urban and 

rural landscapes by driving around in a virtual car, observing the formation of the 

Mid-Atlantic ridge by using a time slider, noting how the Mid-Atlantic ridge is dis­

placed across the Gibbs FYacture Zone, and observing the deep mantle plume under 

Iceland. 

3.4.4 PROCEDURE 

Students initially were given consent forms, with verbal explanation, and a track­

ing ID assigned. ID numbers were based on the course lab number, the beginning five 

digits, and then some digits after that given by the lab teaching assistant. Students 

were informed to not use their university identification numbers. Labs and pre/post 
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18.1 WaR for the images to load, then drag the time sflder In older to reveal the deep 
mantle ptame under Iceland. (Fig. 15). 

• Compare the height (thickness) of the plume the the thickness of the Hthosphere: 

• Estimate how deep does the plume extend 

Figure 30. An example of a question asked in the Iceland lab activity. 

tests with university identification numbers were not used and removed from the 

study. Once the consent forms were completed and tracking identification numbers 

administered, each student was given a pre-test. If students finished their pre-test 

early, they were asked to wait quietly while others finished. 

The students worked in groups of 2-4 depending on the lab section, with lab sec­

tions having different numbers of students. Students were encouraged, sometimes 

with help from instructors, to take turns working on the computers. Instructors were 

only allowed to help if students had technical problems but not with lab material 

itself. The students were informed that the lab itself would not be graded as part of 

their lab score, which may have had an effect on the way students answered questions 

or participated during lab. As students completed the labs, they were collected and 

the students were asked to wait for their fellow classmates to finish. 

The last part of the lab consisted of the post-test. The post-test is the same as 

the pre-test. Each student was given a post-test and upon completion was allowed to 

leave the lab. No collaboration was allowed during the pre/post tests. The pre-test, 

lab activity, and post-test were all completed in one, two- hour lab period. 

3.4.5 DATA SCORING 

3.4.5.1 PRE- AND POST-TEST SCORING 

The pre- and post-tests consisted mainly of multiple choice questions and were 

scored on a partial- or full-credit basis. A participant could earn a maximum of 

2 points on each question for choosing the correct answer, 1 point for choosing a 
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partially correct answer, and 0 for choosing an incorrect answer. Some questions had 

more than one possible answer worth 1 point, as shown in Figure 31 below. Answer 

"iii" is worth 2 points, answers "i," "iv," or "v" are each worth 1 point, and answer 

"ii" is worth 0 points. 

Q2 Where to Iceland refaKve to toe Arctic Ode? Scoring 0,2 

(0 Iceland Res entirely toulh ol Vie Aide Circle i « 
(I) Iceland lesenNrety north of tie Arctic Circle * n 
JMH Tk* A - ** • /UmU * - m  «» - ,, m . * - — • ' * "• V (•) Tne AICK urate nucnes ne noiiiern coast or omnora MANN 
(Iv) The ArcicCircie touches the souViem coast or offshore Mands 2 

(v) The Arctic Circle goes tfwoughthe center of Iceland ,v- 1 

v. 1 

Figure 31. Question 2 and its coding scheme for the Iceland activity. 

3.4.5.2 LAB ITEMS SCORING 

The lab activity consisted of 7 open response or "yes/no" questions, which were 

scored on a partial credit basis out of a possible 1, 2, or 3, depending on the question. 

The scoring scheme for a 3-point question is shown below in Figure 32. Each correctly 

circled answer earned 1 point, and the open response portion was scored as 0, .5, or 

1 point based on accuracy and detail. 

44 Visit various parts of Iceland and record your first impressions of the country hare: 

Outside of RsyKJavflt, Is Iceland heavBy populated / developed? 0 (Yes /No| 

Do you see a lot of large-scale agricultural or industrial plant? 0 (Yes /No] 

6 How would you describe the terrain? 

un-developed or under-developed or poor land or barren or isolated or partly farmed or 
grassland or ttindra or equivalent 

Figure 32. Question 4.4 and its coding scheme for the Iceland activity. 

3.4.6 RESULTS 

Data were analyzed to address overall learning gains from the Iceland lab, as 

measured by pre- and post-tests, as well as to test whether there were any learning 
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gain differences due to prior coursework in Geology/geography. Gender differences 

were also analyzed although this was not part of the original design of the study. 

Lastly, data were analyzed with respect to learning during the lab activity itself. 

Each analysis is presented and described in turn. The unit of analysis here was data 

from each individual student. 

Were there differences by prior coursework or gender before the Iceland learning 

activity with Google Earth? First, we addressed if there were any differences on the 

pre-test both by prior coursework and by gender. A univariate analysis of variance 

was computed for each of these analyses. First, the difference between the total 

scores on the pre-test was not statistically different when comparing those with prior 

coursework to those with no prior coursework (F = 1.838, p = .162). Secondly, the 

difference on the total pre-test score was not statistically different when comparing 

males and females (F = 1.890; p = .154). See Table 1 for means and standard 

deviations for each of these analyses2. 

Table 1. Average scores on pre-test by total, gender, and prior coursework for the 
Iceland activity 

Overall Female Male Geolgeog No Geo/Geog 
Mean Pre-test Score 6.69 6.32 7.05 7.44 6.57 

Standard Deviation (SD) 2.95 2.52 3.44 3.37 2.57 

Did the Iceland activity yield differences in overall pre-post comparisons? Next we 

addressed if there were differences in overall post-test scores compared to pre-test 

scores collapsing over both prior coursework and gender categories. A paired t-test 

was computed for this analysis. The difference in overall pre-test score and overall 

post-test score was statistically significant, (t(224) = 13.33, p = .000; X pre = 6.69, 

SD = 2.95; X post = 9.68, SD = 3.58); this result demonstrates that on average, 

students had higher scores on the post-test than on the pre-test. See Table 2 and 

Figure 33. 
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Table 2. Comparing overall scores for pre- and post-test for the Iceland activity 

Pre-test Post-test t ( d f )  P 
Mean Pre-test Score 6.69 9.68 13.329 (224) .000 

Standard Deviation (SD) 2.95 3.58 

Overall Score 
• Pre-test • Post-test 

Figure 33. Overall scores on both pre-test and post-test for the Iceland activity. 



56 

Table 3. Average scores on pre-test and post-test for the Iceland activity by type 
of prior coursework 

Geolgeog No Geo/Geog 
Mean Pre-test Score 7.44 6.57 

Standard Deviation (SD) 3.37 2.57 
Mean Post-test Score 10.78 9.57 

Standard Deviation (SD) 2.95 3.58 

Did type of prior coursework influence learning in the Iceland activity? In order to 

address whether there were differences between the pre- and post-test scores when 

comparing those with prior coursework in Geology or geography to those with no 

relevant prior coursework, a univariate analysis of variance was conducted with the 

total post-test as the dependent variable and type of prior coursework as the inde­

pendent variable; pre-test was used as a covariate. The difference in post-test score 

by level of prior coursework was not statistically significant (F = 2.107; p = .124). 

Thus, both students with prior Geology or geography coursework and those without 

this prior coursework learned approximately the same amount of content knowledge 

from the Google Earth Iceland activity, as measured by the post-test gains. The 

means and standard deviations can be seen in Table 3. 

Were post-test differences by gender yielded for the Iceland activity? In order 

to address whether the overall pattern observed was when comparing males and fe­

males, a univariate analysis of variance was conducted with the total post-test as the 

dependent variable and gender as the independent variable; pre-test was used as a 

covariate. The difference in post-test minus pre-test scores by gender was not signif­

icant (F = .436; p = .647). Thus, both males and females learned approximately the 

same amount of content knowledge, as measured by the post-test, holding the effects 

of the pre-test score constant. The means and standard deviations can be seen in 

Table 4. 

2 Although the means appear different when both comparing males and females, and when com­
paring those with prior relevant coursework to those with no relevant prior coursework, the standard 
deviations associated with these means indicates that the dispersion of scores was large in both cases, 
thus no statistically reliable differences were found for either comparison. 
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Table 4. Average scores on pre-test and post-test for the Iceland activity by gender 

Female Male 
Mean Pre-test Score 6.32 7.05 

Standard Deviation (SD) 2.52 3.44 
Mean Post-test Score 9.37 10.21 

Standard Deviation (SD) 3.30 3.84 

Were there any differences on the lab scores for the Iceland activity when com­

paring by prior coursework or by gender? Next we addressed the differences on the 

lab activity scores both by prior coursework and by gender; in other words, whether 

there was a difference on students' performance in the lab activity by prior course-

work in Geology/geography, or by gender. A univariate analysis of variance was 

computed for each of these analyses. There was no statistically significant difference 

found between the total scores on the lab activity when comparing those with prior 

coursework to those with no prior coursework (F = .069, p = 0.934). Additionally, 

the difference on the total score for the lab activity was not statistically significant 

when comparing males and females (F = 1.109, p = .332). This result demonstrates 

that on average, males and females scored similarly on the lab activity. See Table 5. 

Table 5. Average scores on the Iceland lab activity by gender and prior coursework 

Female Male Geolgeog No Geo/Geog 
Mean Pre-test Score 4.36 4.69 4.51 4.55 

Standard Deviation (SD) 1.62 1.87 1.52 1.77 

Is there a relationship between the pre-test scores, the lab scores, and the post-test 

scores for the Iceland activity? In order to establish whether there was a relation­

ship between these learning measures, a Pearson correlation analysis was conducted 

between all the measures, namely, the pre-test, the lab scores, and the post-test. A 

statistically significant correlation was found between the pre-test and post-test (r 

= 0.483, p = 0.000, (2-tailed)), indicating a moderate, positive relationship between 

the pre-test and the post-test. Another statistically significant correlation was found 
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between the lab scores and the post-test, r = 0.291, p = 0.000, (2-tailed). The Pear­

son correlation values can be seen in Table 6. No statistically significant correlation 

was found between the pre-test score and the lab scores (r =.101, p = .132, (2 tailed). 

The scatterplots for pre-test and post-test, and pre-test and lab scores can be seen 

in Figures 34 and 35, respectively. 

Table 6. Pearson correlation values between pre-test, post-test, and lab scores for 
the Iceland activity. *Significant at the p < 0.01 level 

Pre-test Post-test Lab 
Pre-test 1 0.483* 0.10 
Post-test 0.483* 1.87 2.91* 

Lab 0.101 .291* 1 
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Figure 34. Scatterplot of correlation between total pre-test scores and total post-
test scores for the Iceland activity. 
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Figure 35. Scatterplot of correlation between total lab scores and total post-test 
scores for the Iceland activity. 

3.5 STUDY 2 

3.5.1 PURPOSE 

In Study 2, we developed a laboratory activity focused on the classic Tonga 

region of the west Pacific in order to support undergraduate non-geology majors' 

understanding of: 1) the geographical layout of the Tonga Subduction System, 2) 

the dynamic geological processes involved in plate movement, subduction, magmatic 

arc evolution, and trench rollback, and 3) geological processes related to subduction, 

including volcanism, and earthquake formation. 

3.5.2 METHOD 

A total of [N = 138] undergraduate students from a southeastern university par­

ticipated in this study3; age data for the participants were not collected. All students 

3Data collected, coded, and stored in compliance with requirements outlined by Federal Policy 
for the Protection of Human Subjects under JMU IRB #11-0114 and ODU IRB #10-186. 
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were part of the same large lecture; there were nine sections of the lab that corre­

sponded to the lecture, from which our data were drawn. 

3.5.3 MATERIALS 

3.5.3.1 PRE-TEST/POST-TEST 

The pre-test and post-test consisted of the same set of 11 questions on basic 

geological and geographical knowledge of the American-Samoa/Tonga region as well 

as one question asking about prior experience studying this topic. Of these questions, 

9 were multiple choice, one asked for the order of four listed events, and one asked 

participants to locate American-Samoa/Tonga on a map that was provided to them. 

All items were developed by experts in the area of geoscience as part of three on­

going projects (NSF-CLLI #0837040 [De Paor and Whitmeyer, 2008] , NSF-GEO 

#1034643 [De Paor et al., 2010a], NSF-DUE #1022755 [De Paor et al., 2010b]). The 

pre-test served to determine a baseline of prior knowledge for each participant, while 

the post-test determined what knowledge gains were made after participating in the 

lab activity. 

See Figures 36 and 37 for sample items; all items are shown in Appendix B. 

3.5.3.2 LAB ACTIVITIES FOR TONGA 

The Tonga lab activity consisted of a series of tasks that were designed to develop 

students' understanding of the geology of the Tonga region in the western Pacific 

Ocean. Tasks included: locating the Tonga Region with respect to the Tropic of 

Capricorn, viewing and manipulating virtual block diagrams to observe animations 

of subduction, island arc formation, and trench migration, answering questions about 

the relative location of volcanoes and earthquakes, and answering questions about 

plate movement, trench formation, and plate movement and trench rollback. 

3.5.4 PROCEDURE 

The process of gathering student performance was done in the following manner. 

Students initially were given consent forms, with verbal explanation, and a tracking 

ID assigned. Identification numbers were based on the course lab number, the begin­

ning five digits, and then some digits after that given by the lab teaching assistant. 
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QS Which ofthe following pictures shows the earthquake pattern forth* American-Samoa/Tonga 
region. Where Arepresentsthe Australian Plate and Bis the Pacific Plate. Plate B moves under Plate A. 

WKh9 being deep earthquakes 

f~l Are medium depth earthquakes 

And X representing shadow earthquakes 
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Figure 36. An example of a question from the pre- and post-test for the 
Tonga activity. 

Q2 Name two features are present on the surface during subductfon 
1. 
2. 

Q3 When subductton occurs do the volcanoes form on the down-going plate (on the east side 
of the trench in this case) or the over-riding plate (on the west side of the trench in this case)? 

Figure 37. An example of two questions asked in the pre- and post-test 
for the Tonga activity. 
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Students were informed to not use their university identification numbers. Labs and 

pre/post tests with university identification numbers were not used and removed 

from the study. Once the consent forms were completed and tracking identification 

numbers administered each student was given a pre-test. If students finished their 

pre-test early, they were asked to wait quietly while others finished. 

The lab only has 10 Mac books available for use, thus, students worked in groups 

of 2-4 depending on the lab section, with all lab sections having different numbers of 

students. Students were encouraged, sometimes with help from instructors, to take 

turns working on the computers. Instructors were only allowed to help if students 

had technical problems but not with lab material itself. The students were informed 

that the lab itself would not be graded as part of their lab score, which may have 

had an effect on the way students answered questions or participated during lab. As 

students completed the labs, they were collected and the students were asked to wait 

for their fellow classmates to finish. 

The last part of the lab consisted of the post-test. The post-test is the same as 

the pre-test. Each student was given a post-test and upon completion was allowed to 

leave the lab. No collaboration was allowed during the pre/post tests. The pre-test, 

lab activity, and post-test were all completed in one, two-hour lab period. 

3.5.5 DATA SCORING 

3.5.5.1 PRE- AND POST-TESTS 

The pre- and post-tests consisted mainly of multiple choice questions and were 

scored on a partial- or full-credit basis. A participant could earn a maximum of 

2 points on each question for choosing the correct answer, 1 point for choosing a 

partially correct answer, and 0 for choosing an incorrect answer. Some questions had 

more than one possible answer worth 1 point, as shown in Figure 38 below. Answer 

"iii" is worth 2 points, either answers "i" or "ii" are worth 1 point, and answer "iv" is 

worth 0 points. 

The four choices for the question asking about the participant's prior knowledge 

on the subject were coded for categorization purposes as either 0, 1, 2, or 3. This 

scheme is illustrated in Figure 39. 
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Qf The Tonga Trench's motion relative to the Pacific Plate is Scoring QC 

(i) Moves forward with the Pacific Plate 1. 1 
(N) Stationary (trench does not move). II. 1 
(Hi) Moves afainstPlate Motion. «IL 2 
(iv) There Is no such thing as the Tonga Trench. Iv. 0 

Figure 38. Question 6 and its coding scheme for the Tonga activity. 

Q1 What is your previous experience of toe geology or geography of American- Scoring Q1 
Samoa/Tonga? 

(i) I hav« no significant previous study experience , 0 
(* H<*d a class project about the geotogy or geography of American- ' -• 
Samoa/Tonga "• » 
Oil) I partidpated in a real field trip or a holiday visit ill. 2 
(iv) I am Native to or lived in Vie American-Samoa/Tonga negron for an extended (y, 3 
period 

Figure 39. Question 1 and its coding scheme for the Tonga activity. 

3.5.5.2 LAB ITEMS SCORING 

The lab activity consisted of 13 open response or matching questions, which were 

scored on a partial- or full-credit basis out of a possible 1, 2, or 3, depending on the 

question. These questions ranged on topics covered in the activity including plate 

movement, subduction processes, and trench formation. See Figures 40 and 41. 

Q4 On which side of the trench do we expect to see earthquakes on, the down-going 
plate (on the east side of the trench in this case) or the over-riding plate (on the west 
side of the trench in this case)? 

over-riding plate or west side (lfjt) 

Figure 40. Question 4 and its coding scheme for the Tonga activity. 

3.5.6 RESULTS 

Data were analyzed to address overall learning gains from the Tonga lab, as 

measured by pre- and post-tests, as well as to test whether there were any learning 

gain differences due to prior coursework in geology/geography. Gender differences 
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Q5 Match the depth of the Earthquakes based on their distance from the trench. 
Put one distance for each depth. 

Shallow Earthquakes - v Between Close and Far from Trench 

Mid-Depth Earthquakes- Far From Trench 

Deep Earthquakes—  ̂Close to Trench 

Figure 41. Question 5 and its coding scheme (1 point for each proper match) for 
the Tonga activity. 

were also analyzed although this was not part of the original design of the study. 

The unit of analysis here was data from each individual student. Each analysis is 

presented and described in turn. 

Were there differences by prior coursework or gender before the Tonga learning 

activity with Google Earth? We first addressed if there were any differences on 

the pre-test by prior coursework and by gender; in other words, whether there was a 

difference on students' knowledge going into the pre-test either by prior coursework in 

Geology/geography, or by gender. A univariate analysis of variance was computed for 

each of these analyses. The difference between the total scores on the pre-test was not 

statistically significant when comparing those with prior coursework to those with no 

prior coursework (F = 3.052, p = .051). Secondly, there was no statistically significant 

difference on the total pre-test score when comparing the males and females (F = 

1.831; p = .179; see footnote 1 here). See Table 7 for means and standard deviations 

for each of these analyses. 

Table 7. Average scores on pre-test by total, gender, and prior coursework for the 
Tonga activity 

Female Male Geolgeog No Geo/Geog 
Mean Pre-test Score 0.88 0.80 0.86 0.85 

Standard Deviation (SD) 0.36 0.31 0.25 0.36 
Mean Post-test Score 1.13 1.07 1.03 1.12 

Standard Deviation (SD) 0.37 0.39 0.39 0.35 
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Were differences in overall pre-post comparisons found for the Tonga activity? 

Next we addressed if there were differences in overall post-test scores compared to 

pre-test scores collapsing over prior coursework and gender. A paired t-test was 

computed. The difference in overall pre-test score and overall post-test score was 

statistically significant, (t(136) = 6.591, p = .000; X pre = 0.82, SD = 0.35; X post 

= 1.09, SD = 0.38); this result demonstrates that on average, students had higher 

scores on the post-test than on the pre-test. See Table 8 and Figure 42. 

Table 8. Overall scores for pre- and post-test for the Tonga activity. *Significant 
at the p < .001 level 

Pre-test Post-test t ( d f )  P 
Mean Pre-test Score 0.82 1.09 6.591 (136) 0.000* 

Standard Deviation (SD) 0.35 0.38 

Overall Score 
* Pre-test • Post-test 

Figure 42. Overall scores on both pre-test and post-test for the Tonga activity. 

Were post-test differences by type of prior coursework found for the Tonga ac­

tivity? We addressed whether there were differences between the pre- and post-test 

scores when comparing those with prior coursework in Geology or geography to those 

with no relevant prior coursework. To do this, we conducted a univariate analysis of 
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variance with the total post-test as the dependent variable and type of prior course-

work as the independent variable; pre-test was used as a covariate. The difference 

in post-test score by type of prior coursework was not statistically significant (F = 

.692; p = .502). Thus, both students with prior coursework and those without prior 

coursework learned approximately the same amount of content knowledge from the 

Tonga lab, as measured by the post-test, when holding the pre-test scores constant. 

The means and standard deviations can be seen in Table 9. 

Table 9. Average scores on pre-test and post-test for the Tonga activity by type of 
prior coursework 

Geolgeog No Geo/Geog 
Mean Pre-test Score 0.86 0.85 

Standard Deviation (SD) 0.25 0.36 
Mean Post-test Score 1.03 1.12 

Standard Deviation (SD) 0.39 0.35 

Were post-test differences by gender found for the Tonga activity? In order to 

address whether there were differences when comparing males and females on their 

post-test scores for the Tonga activity, a univariate analysis of variance was conducted 

with the total post-test as the dependent variable and gender as the independent 

variable; pre-test was used as a covariate. The difference in post-test score by gender 

was not significant (F = .545; p = .462). Thus, both males and females learned 

approximately the same amount of content knowledge, as measured by the post-test. 

The means and standard deviations can be seen in Table 10. 

Table 10. Tonga activity results of average scores on pre-test and post-test by 
gender 

Female Male 
Mean Pre-test Score 0.88 0.80 

Standard Deviation (SD) 0.36 0.31 
Mean Post-test Score 1.13 1.07 

Standard Deviation (SD) 0.39 0.39 
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Were there any differences on the lab scores for the Tonga activity when comparing 

groups by prior coursework or by gender? Next we addressed the differences on the 

lab activity scores both by prior coursework and by gender; in other words, whether 

there was a difference on students' performance in the lab activity by prior coursework 

in Geology/geography, or by gender. A univariate analysis of variance was computed 

for each of these analyses. The difference between the total scores on the lab activity 

was not statistically significant when comparing those with prior coursework to those 

with no prior coursework (F = 0.738, p = 0.480); however, the difference on the total 

scores on the lab activity was statistically significant when comparing males and 

females (F = 8.463, p = 0.004). This result demonstrates that on average, males 

outperformed females on the lab activity. See Table 11 and Figure 43. 

Table 11. Average scores on the Tonga lab activity by gender. *Significant at the 
p < 0.005 level 

Female Male P 
Lab Score 9.85 11.07 .004* 

Standard Deviation (SD) 3.40 2.20 

Lab Score 
• Female "Male 

Figure 43. Total lab score by gender for the Tonga activity. 
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Were there any correlations between pre-, lab, and post-test scores? In order to 

establish whether there was a relationship between each of the three scores, a Pearson 

correlation analysis was conducted using the pre-test, post-test, and lab scores. A 

statistically significant correlation was found between the pre-test and lab scores (r 

= 0.384, p = 0.000, (2-tailed)), indicating a moderate, positive relationship between 

pre-test and lab scores. Pearson correlation values can be seen in Table 12. These 

results are depicted in Figure 44. 

Table 12. Pearson correlation values between pre-test, post-test, and lab scores for 
the Tonga activity. *Significant at the p < 0.01 level 

Pre-test Post-test Lab 
Pre-test 1 0.123 0.384* 
Post-test 0.123 1 0.153 

Lab 0.384* 0.153 1 

3.6 DISCUSSION 

3.6.1 SUMMARY OF GOALS AND APPROACH 

In this research and development effort, we report on two studies that examined 

the efficacy for learning with Google Earth lab activities. This involved examining 

students' prior knowledge, their knowledge acquired during the lab activity, and their 

post-test learning gains, thereby examining both the processes (answers to the lab 

exercises) and products of learning (post-test compared to pre-test); an approach 

that is important since it has the potential to inform instruction in the geosciences 

[Libarkin and Anderson, 2005]. 

Our goal in these studies was to compare learning during the lab activity, as well 

as the resulting learning gains by comparing pre- and post-test scores for those with 

prior Geology and/or geography coursework to those with no such prior coursework. 

This research question is important in terms of addressing the efficacy of Google Earth 

as a learning tool for both majors and non-majors since Google Earth is potentially 

important to scientific literacy on a broad scale [American Association for the Ad­

vancement of Science, 1993; National Research Council, 1996]. Our findings suggest 
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Figure 44. Scatterplot of correlation between total lab scores and total pre-test 
scores for the Tonga activity. 
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that Google Earth can be an effective learning tool for non-majors, and thus, it also 

has potential efficacy for scientific literacy on a broad scale. 

We also compared learning gains of males and females, although it was not part of 

the original research design. That is, since there have been a plethora of studies that 

have reported gender differences in science by Maccoby and Jacklin [1974]; McGee 

[1979]; Linn and Petersen [1985]; Halpern and LaMay [2000], and in geoscience in 

particular by Downs and Liben [1991]; Schofield and Kirby [1994]; Kali and Orion 

[1996]; Piburn et al. [2002], it was a research question that we could address in the 

present studies. Similar to the issues around the type of prior knowledge students 

have coming into our studies, addressing whether there are differential learning gains 

yielded by males versus females allows us to address the efficacy of Google Earth as 

a teaching tool for both genders. If gender differences were to be borne out, we as a 

community of educators would need to begin to think about how to scaffold different 

learners to accommodate these differences. 

3.6.2 OVERVIEW OF FINDINGS REGARDING PRIOR COURSE-

WORK 

In the first study, we used an activity developed in Google Earth by Declan 

De Paor and his group (De Paor and Whitmeyer [2008] NSF CLLI #0837040). The 

goal of this activity was to deepen students' understanding of the geography and 

geology of Iceland. The concepts and knowledge targeted here were: specifying Ice­

land's relationship geographically with respect to the Arctic Circle, using the time 

slider to observe the horizon, asking students what they would expect to see here at 

the Winter Solstice, observing geological features (e.g. rock types), observing the for­

mation of the Mid-Atlantic ridge by using a time slider, noting how the Mid-Atlantic 

ridge is displaced across the Gibbs Fracture Zone, and observing the plate-plume 

interaction under Iceland. In the second study, we used an activity, also developed 

by De Paor et al. [2008], which was more difficult than the first activity in terms 

of the geoscience content it targeted. Specifically, the activity consisted of: locating 

the Tonga region with respect to the Tropic of Capricorn; viewing and manipulating 

virtual block diagrams to observe animations of subduction; island arc formation and 

trench migration; and answering questions about the relative location of volcanoes, 

earthquakes, plate movement, trench formation, plate movement, and trench roll­

back. 
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Our results for the two studies were highly similar and thus will be summarized 

together, except for one measure for which significant differences exist. 

Our data for both studies showed that there were overall gains in learning when 

comparing all students' scores. Collapsing over type of prior coursework and gender, 

all students, on average, had higher post-test scores compared to their pre-test scores 

for both the Iceland activity as well as the Tonga activity. Since there were no group 

differences on the pre-test by either type of prior coursework or by gender for either 

the Iceland or the Tonga activities, we can attribute our post-test gains as being due 

to the Google Earth labs for Iceland and Tonga, respectively. 

When analyzing post-test gains by type of prior coursework (geology/geography 

versus no prior coursework in either of these areas), we found that there were no 

significant differences, on average, for those with prior coursework in geology or ge­

ography when compared to those with no prior coursework in these areas for either 

the Iceland lab or the Tonga lab. This suggests that the two Google Earth labs were 

effective as learning activities, regardless of type of prior coursework. 

This finding is important because prior studies that have used traditional meth­

ods of geoscience instruction often do not yield large learning gains [Hall-Wallace 

and McAuliffe, 2002; Libarkin and Anderson, 2005]. Furthermore, our findings are 

commensurate with prior research that showed that rich dynamic visualizations such 

as GIS and Google Earth are successful at remediating students' misconceptions 

about three-dimensional geoscience phenomena such as ocean ridges and tsunamis 

[Hall-Wallace and McAuliffe, 2002] ocean ridges were targeted in our activities in 

both the Iceland and Tonga activity. Findings from our studies suggest that Google 

Earth appears to provide a means of deep learning for students that does not hinge 

on prior coursework, thus our data suggest that GE is a useful tool for undergradu­

ate education, regardless of prior relevant coursework. Thus, in terms of promoting 

scientific literacy, Google Earth may also be very effective with the general public, 

but additional research would need to be conducted since students in this study were 

self-selected by virtue of signing up for the geoscience course from which this subject 

population was drawn, and thus may have been favorably predisposed to this content, 

etc. 

3.6.3 OVERVIEW OF FINDINGS REGARDING GENDER 

When analyzing our post-test gains for each Google Earth activity by gender, we 
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see that males and females gained, on average, about the same amount of content 

from the activities. Furthermore, because there were no differences due to gender 

on the pre-tests scores for either activity (see 1 here), our data suggests that this 

effect is not due to differences that the students had before the activity. One gender 

difference, favoring males, was found for the Tonga lab on the items that were an­

swered as students worked through the lab activity. Specifically, on the Tonga lab, 

the more difficult of the two labs, males outperformed females in terms of the number 

of correct items they answered. However, since there were no significant differences 

by gender yielded on the post-test for the Tonga activity, the differences favoring 

males on the lab items were not robust enough to be reflected in the males' post-test 

understanding. 

These findings are important since many studies have shown that males tend 

to outperform females on spatially-oriented tasks (cf. Maccoby and Jacklin [1974]; 

McGee [1979]; Linn and Petersen [1985]; Halpern and LaMay [2000]). In geoscience 

in particular, few studies regarding gender effects have been conducted by Downs and 

Liben [1991]; Schofield and Kirby [1994]; Kali and Orion [1996]; Piburn et al. [2002] 

although researchers have noted a need to address the relationship of spatial skills 

to specific sciences, rather than as science in the aggregate [Lau and Roeser, 2002]. 

In terms of such studies, Dabbs et al. [1998] found that basic spatial skills contribute 

to geographical knowledge and that men tended to excel at mental rotation, whereas 

women tended to excel at object location. Black [2005] found a relationship between 

specific types of spatial skills, namely mental rotation, and Earth science misconcep­

tions [Black, 2005]. Black [2005] hypothesized that mental rotation is required to 

visualize the position of objects from varying vantage points, and further that this 

is the type of mental rotation needed for understanding both seasonal change and 

phases of the moon, two areas in which significant misconceptions have been found. 

In terms of the present study, we found only one gender difference of the several mea­

sures taken, and as previously stated, this difference favoring males was not robust 

enough to be maintained, as evidenced by the lack of differences due to gender on 

the post-test. Thus, from our data, it appears that Google Earth does not offer a 

differential bias for one gender over another. Furthermore, since Google Earth has 

features that permit students to manipulate the tilt of the Earth in order to view it 

from different vantage points, Google Earth may have provided a means to support 

learners on this difficult task; the study by Black [2005] suggests that this is a strong 
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possibility. 

All told, our data suggest that Google Earth is a useful tool for learners regardless 

of level of prior coursework in geology or geography, and regardless of gender. As 

such, it has the potential to be used to address scientific literacy on a broad scale. 

3.6.4 SCAFFOLDING LEARNING 

As previously stated, all complex learning should be accompanied by orienting 

tasks or scaffolding in order to support students' learning processes. Students, un­

like experts, typically do not know what is salient within rich information sources 

[Lowe, 1993] such as Google Earth, and thus, if unscaffolded i.e., unguided, they 

might not acquire the targeted information as intended. This is particularly true in 

domains in which the medium of information is visual-spatial in nature in which all 

information is presented to the learner simultaneously. This is in direct contrast to 

textual information sources in which the knowledge acquisition processes are guided 

by the structure of the text [Larkin and Simon, 1987; Gobert, 2005a]. In prior work, 

Bodzin and Cirucci [2009] noted that resources such as Google Earth, when used in 

conjunction with appropriately designed instructional materials, show much poten­

tial in promoting students' spatial thinking. Our data, which yielded learning gains, 

also support this. In the present study, a great deal of effort was taken to insure 

that the lab exercises both oriented and scaffolded the students in order to deepen 

their learning. It is doubtful that learning gains would have been found for both 

those with and without prior coursework if the learning activities had not been well 

designed, although the activity with and without its scaffolding and orienting was 

not tested as part of this study. Thus, for those using Google Earth as a pedagogical 

tool at any level of education (K-graduate school), it is important that care is taken 

to guide students' knowledge acquisition processes in order to deepen their learning; 

scaffolding is particularly important when novices are learning with visual informa­

tion sources [Lowe, 1993]. The materials developed by De Paor, Whitmeyer, and 

their colleagues (NSF-CLLI #0837040, [De Paor and Whitmeyer, 2008]; NSF-GEO 

#1034643, [De Paor et al., 2010a]; and NSF-DUE #1022755, [De Paor et al, 2010a]) 

that were used used in the present research provide a good example for how such 

scaffolding is accomplished. 

Though we demonstrated the validity of COLLADA models in Google Earth as 

a viable learning tool, there were still more possibilities for this tool. The current 
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version only allows for one user to interact at a time with the environment. So, the 

next step logical step in developing COLLADA models for education is to create 

multi-user environments where many users can explore and interact with each other 

and the surroundings. This topic will be explored in chapter 4. 
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CHAPTER 4 

AVATARS AND MULTI-STUDENT INTERACTIONS IN 

GOOGLE EARTH - BASED VIRTUAL FIELD 

EXPERIENCES 

In this chapter a discussion of the basic coding framework necessary for creating 

and developing a multi-user Google Earth environment is presented. We discuss some 

of the challenges or pitfalls encountered building the framework. My contribution 

concentrated on building an intuitive user interface and processing the input data. 

The work reported in this chapter has been published in a GSA Special Paper on 

Google Earth and Virtual Visualizations, (see Dordevic and Wild [2012]). As a 

co-author of this paper I contributed 50%. 

4.1 ABSTRACT 

We have developed object-oriented programming methods to enable avatar move­

ment across the Google Earth surface in response to student actions, either on their 

own, or in groups attached to a field vehicle avatar (a Jeep). Students can commu­

nicate using text messages sent from their web page text field to balloons that pop 

up from the avatars' placemarks in Google Earth. Students can be located locally in 

a lab class or at great distances from one another, as in a distance education course. 

Our programming methods help to create a more engaging virtual field trip in 

which the students take the lead and decide where to go rather than simply reading 

text and viewing graphics in a tour designed by their instructor. The user interac­

tivity with avatar in web page embedded Google Earth is controlled by JavaScript 

and PHP. Since the position of each avatar is known it is possible to track their 

movements and offer text-message advice when they stray off-task or wander about 

aimlessly. Our methods will be included in new virtual field trips being developed 

for Iceland, Hawaii, and other locations. 
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4.2 INTRODUCTION 

Google Earth [Google, a] comes in three forms: (i) a stand-alone application 

available for Windows, Macintosh, and Linux platforms, and (ii) a mobile device 

app available for iOS and Android operating systems, and (iii) a web browser plug-

in compatible with a variety of JavaScript-enabled web browsers including Chrome, 

Firefox, and Safari [Google, b]. The plug-in permits the programmer to incorporate 

one or more instance of Google Earth in a web page and to control each with familiar 

Hypertext Markup Language (HTML) interface elements such as buttons, text fields, 

and sliders. This paper focuses on the web browser plug-in form of Google Earth 

because of its extensive JavaScript Application Programming Interface (API) and 

the possibility for client-server-client communication. 

The majority of work done in the area of Google Earth-based virtual field trips 

involves a single person using a computer to view images, read text, etc. see Simp­

son and, De Paor [2010]. Interaction includes following pre-recorded tours or clicking 

on placemarks and reading associated HTML content. Few tools are available for 

users (students, teachers, administrators, etc.) to actually interact with the virtual 

surroundings other than panning and zooming the camera view. What we have done 

is to simultaneously bring multiple users together and allow them to interact and 

explore on the same virtual globe, thereby simulating a real field experience where 

each user would be able to communicate with colleagues and collaborate on collective 

tasks. Interaction in a virtual environment or Google Earth is not new [Roush, 2007; 

Google, b]. However, the hybridization of Google Earth API for a virtual-interactive 

geological environment is. 

To achieve the above goals, designing the client-side application is not sufficient. 

Being able to synchronize multiple client instances of Google Earth over the Internet 

requires server side programming as well. The server has to log and process incoming 

traffic from clients. For this purpose, the PHP scripting language was chosen for its 

flexibility. First, it has the ability to generate HTML pages. PHP scripts can also 

be embedded into HTML pages. Finally, PHP scripts can manipulate MySQL- type 

databases. We might equally have chosen Python or Ruby-on-Rails for this task 

instead of PHP. 

The purpose of this paper is to demonstrate how to implement the programming 

tasks necessary to support user interaction on Google Earth. To this end, we will 
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present the client-server-client communication code with a web-chat example. Pass­

ing of other data, for example avatar location, will be discussed along with server 

polling. Data logging is an extra benefit gained whose usefulness for educators and 

programmers will be explored. The combination of these parts makes creating virtual 

field trips possible. 

4.3 WEB-CHAT EXAMPLE USING AJAX AND PHP 

The backbone of the interactive Google Earth programming is the client-server-

client communication. Once communication is established data such as chat mes­

sages, latitudes, longitudes, etc., may be exchanged among users. Communica­

tion between client and server is done via Ajax [Garrett, 2011]. Ajax enables 

web pages to communicate with a server, send and receive data asynchronously 

without refreshing the page, and therefore avoid reloading Google Earth plug-in 

at every update. The code snippets that handle the Ajax interface (courtesy of 

http://ic0desnip.c0m/search/ajax/l) are in the form of a function, 

function Ajax_Send(GP,URL,PARAMETERS,RESPONSEFUNCTION). 

The function's parameters are as follows: 

• GP represents the type of request (POST or GET); 

• URL is the address of the PHP script that will be executed; 

• PARAMETERS is the string that contains variables and values stored in it 

(var 1 = value 1 &; var 2=value2& var 3=value3); 

• RESPONSEFUNCTION is the function that will be evaluated upon server 

response with XMLHttpRequest.responseText as its argument. 

To help the reader understand this AJAX-based communication, we will first 

explain the data structure and data handling on the server. In the entry string, 

the tag <!@!> separated row variables, and '/n' denoted a new row. PHP retrieved 

variables values from a file containing this entry string with the explodeQ method 

(e.g. the example in Figure 45). 

In our case, the single data packet from the client contains variables that tell the 

server the following: 

http://ic0desnip.c0m/search/ajax/l
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rexampleof data entry on the server in the dataixtfife: */ 

3»JW>«!ito»lt<HI.7P<iti 'MWIHfc 

fPHP script that checks i yourchat box it up to date */ 

/"Takesthetime (in UNIX format] from dent when he did his last update and assign* it to 

fFinds the physical location of the fite wih the conversation from the server and assigns 

R to a array variable $data where every new Ine is Med as the neat element of array •/ 

rChecksthenumberof Ines in (data, V 0, there ia no need to continue execution */ 

ie«HH($data)-0X 

W&& 
} 
fStart a loop over the Sdata ine byRne •/ 

fcrfltoe «»:$»>« <co«rtrtd*ifcltoa MM 

f Separates thecurentlne ($datafS>nel) Into array wherever ha encounters the 

string <!e>, in this case we wi hive $m«KM«eAn̂  « "12992658354478" and SmejsaaeArrll]= 

"mke<+0+>HK+®+>24599<*®+>-39599<+̂ +>2«4941O5.783<+®+X><+C+>O.®OOOO18" •/ 

^SBBSCWRBSBlS. VmSXSBSBk 
/fthereis new enteryin data-txt senditothecfcnt'/ 

} 
fetse, only send the time of the last entry from the dataJxt */ 

Figure 45. Code snippet for data entry on server. 
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• what action is required; 

• the integer value of the last received row from the table that contains chat 

messages and locations of the other avatars; 

• the user name of the client making a chat request; 

• the user's group. Upon arrival of the data packet from the client, the server 

first decides what action to perform. 

For example, if userl (refer to here as the sender) starts a web-chat by sending a new 

message to user2 (the receiver), the data sent from the sender are: 

• user name of the message receiver (can be a single other user or a whole group); 

• content of the message; 

• the name of the sender. 

The code on the client side is a function defined as in Figure 46: 

/"Define string that w being tentto the i€fyer V 

/"Function «i*oking M^WfeRgauê / 

) 

Figure 46. Code for client side sender function. 

The sender makes a connection with the server using the standard XMLHttpRe-

quest protocol [van Kesteren, 2012]. The server then: 

• picks up the string with the variables mentioned above using the 

$_POST['variable name'] (in this case the string is called data) ; 

• cleans it (a standard procedure of filtering clients input so that corrupted, 

incorrectly formatted, or harmful data are not stored in the database); and 

• stores the string into the database. 
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The next step is to ensure that the receiver is notified of the new message. All clients 

periodically query the server for updates by sending their user name, group, and a 

number that tells what database row they last read (lastReceived). The frequency 

of queries is set by the native JavaScript function: setlntervalQ. The time interval 

between successive queries needs to be experimentally determined and fine-tuned. In 

our case, the function called updatelnfoQ queries every 800ms (see Figure 47.): 

rDgfinestring that it being twitto the •oner*I 

1 

function invoking XMLHttpRequeit */ 

> 

Figure 47. Code snippet that checks for updates. 

When the server receives an update request from a client, it passes the query to 

the database with values from the user making the update request: 

• the number (lastReceived) must be smaller than the current queue number in 

the database table; 

• the receiver name must match the client user name making a request for an 

update; 

• the entry must have been posted with a maximum time interval (currently 50 

minutes). 

Entries matching the query are sent to the client who made the request in JSON 

format \json, 1999] by the procedure called echo(). The snippet of PHP code that 

the server uses to do this is shown in Figure 48: 
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/*Qneoftlieewitcliea in ifaMement *1 

/*Cheddnqto aee are all variaMaa in received alriiig defined true: proceed, Mae: aend arror and 

exH'l 
^aaaH>_POHIa^ini»«dT^_fOtl|1—i't$J>Q6Tfaq>0ww^H( 

/•Assign received values to local variables altar cleaning than to prevent corrupted data paaaing *1 

MewUiawfl POOTnemt: 

/•MafcinqlhemySqL query'/ 

irnrmmumannsct•mm <m where 

nmQsm'^um <* "ImMfUm AMD pw»( MOWP^. 4h»e_of_een*«.)n; 
/fJafingthe raoulta o# gugQL? 

3SBR#"" I 
/̂ riling (he mgngg&r array with liatod oaKSteJ? 

%tsaBaa»!ilJH!aig«8[ I%agflatjeigggfe 
> 
Iwe'iwwd 11 nCHn.CCT wniwi FROM war MHEKJOW o—i ON 

MMMLM MMHtidlc 
«yUAmra IMHi Msll MV||Am| I 

SggS^hWafwenwaT; } 

/*>f rtatahan query returned any reault for new chat, echo it wMhlbe online uter list */ 

IH8558BI5i^w!5SIH5B5l55^% 
Maawnw^fnai 

} 
/*Juatecho onBneueerHat*/ 

atoaf 

SBiftR 688Lfl8688l8flk88^ 
> 

» 
>Cv55C5 ™ 

Figure 48. Code snippet of switch statement. 
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Two functions are involved in processing the received data on a receiver's side. 

The first function is sentOkQ, which is the fourth argument (RESPONSEFUNC-

TION) of the Ajax_Send() operation in updatelnfoQ. See Figure 49: 

CStUMMM'MJXXJXXSf 9 

/*Mafca Mire that received data fcotn server is in JSON form* "I 

mm la WCMUlf 

/•Convert received J80N airing to the Object p */ 

/*C heck that fieldaare defined in Object p*/ 

HkiMflf •JmRbbMwI !* teMMf UitaMf vdGWCvOwff vWwCw* 16v5v83C8vvfllDC 

/*UpdalM the laet received row from the chat table*/ 

IMMmmIW4 9 BLIMRBMIWA 
/*Run the function that dynamically poputatee the chat box withncwty arrived menegee*/ 

> 

r... (more function) */ 

} 

Figure 49. SentOk code snippet. 

This function looks for the part of the sent data that contains the message 

(p.message) and passes it to a function called populatingTablesQ. See Figure 50. 

Figure 52 shows two students chatting about differences in rocks in the Andes 

near S33°, which is the result of the completion of the above function that arrived 

from the server see Figure 51. 

4.4 PASSING OTHER DATA: AVATAR MOVEMENT 

Web chat information is not the only type of data that can be sent using the 

above approach. Avatar location and movement are other examples. There are two 

aspects of avatar movement. The first is controlling the movement of one's personal 

avatar using an approach adapted from the Google Earth API sample code called 

'Monster Milk TVuck' [Wikipedia, 2011]. Keyboard input controls the local avatar 

movement and a function responsible for sending of the user's avatar position even 

while the user is stationary is nested in setlntervalQ. 

The second part of the avatar movement is updating positions of non-local avatar's 
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/*maurmta* conL imv tfiM conbim niiyaai Id be nmttad tottis dyt box "Umt * immm" f WlpHln>iWPi WPi91| WWV WWIHRn tlnlVMinM Mr B r̂ H ÎVWll Mr VW .» IVWV^SiflV 

who, afringid of the fteld that the meaaaBC iaooinqtobebewttcd 

/*Qoea through ail Hie dementi of the contend p«»» them to the anonymous function at 

argument n 

ftmflosMf vww8www» " 

/*S£5(̂  the dwetefTKint 

/*Aop>y the tet to that div 

/•Finds the dement who and applies the div element to it 

vKWBKWiwSBBw^w 

•JCiilTdB*ftJCiiMibifc 
> 

) 

} 

Figure 50. PopulatingTables code snippet. 

or everybody but the local avatar. This is accomplished with the same approach for 

data handling used in the web-chat mentioned above. The same timing function that 

updates the avatar position is used to poll the server for updates to the non-local 

avatars' positions (latitude and longitude). The server responds with the changes 

and the data are parsed and all non-local avatar positions are updated on the Google 

Earth terrain accordingly. Figure 53 contains an initial screen shot of two avatars and 

the field vehicle exploring in the Andes. An advantage of the virtual environment 

is that vehicles can travel anywhere - alternatively, a set of horse icons could be 

substituted for the Jeep in this setting! Figure 54 shows an updated position of the 

"steva" avatar. This is the result of the "steva" user: 
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/*GE update with the new message that pops above the head of the avatar that send it 

iiiiiMlil.uiltiijal.tii.M.Mi.'. —»> ( 
PTry to remove any existing balloons fi rat 

tod 

) 
0HPWi 

/•Create balloon and set its content 
4-1m —a-« «j-m —-TBHMOT • OB»0VHHnMNHnMHMWOQVH K 

/•Select the avatar that balloon will be aasociated with 

/'Remove the balloon after 2 second 

Figure 51. Code snippet for chat-message balloon. 

Figure 52. Two students discussing rocks in the Andes. Screenshot of "text bal­
loon" after message is sent from one user to the server and then to the other user. 
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• moving locally; 

• sending position update to the server; 

• server processing update; 

• second user "mladen" getting update from server; 

• "mladen" locally parsing data and updates avatars. 

The current iteration uses a MySQL database type instead of XML which was 

used in the web-chat example. 

Figure 53. Screen shot of two students and the field vehicle. This is a reference 
shot taken on "mladen's" screen to see the "steva" avatar move in Figure 54. The 
region is in the Andes near S33°, as is the region for Figure 54. 

4.5 DATA TRAFFIC 

One challenge in client-server-client communications is polling, which relates to 

the timing of client-server or server-client communication. When the server receives 

more requests than in can fill, it stacks them and responds in order. During the 

response it hands out the most recent data set available. The issue that can arise 

at this moment is the update of the position. A local-user may miss an update of a 

non-local by being ahead in the queue or miss a non-local position update because 
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Figure 54. Second screen shot of user "mladen's" screen. This shot is taken after 
user "steva" has moved locally on his Google Earth. His movement is sent to the 
server and the server then sends the data to user "mladen" . The data are parsed 
locally and the "steva" avatar is moved. The "steva" avatar has moved many times 
to have noticeably changed. 

a non-local user had his position updated twice before the local user received the 

update. The first problem is not so large while highly accurate positions of non-local 

avatars in some small time window are not vital to the virtual geology experience. The 

server is providing updates every 800 milliseconds. The second problem is handled 

by linear interpolation to move the avatars from update to update. The interpolation 

helps minimize skipping a missed point by moving them on a linear path from update 

to update. 

In future iterations we will try to implement new technologies for communication 

that have become available with the draft release of HTML 5 Web socket [Hickson, 

2012]. While currently in the testing phase, A J AX does not create any problems 

in terms of polling, but for scalability it may require migration to more efficient 

solutions that would cut back unnecessary traffic and server load. 

4.6 DATA-LOGGING 

One benefit gained in creating client-server-client communication is data-logging. 

The logging process occurs when users push their data to the server. The data 

recorded are latitude, longitude, and heading of every client (student in this case) with 
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a time stamp and a log of their chat conversations with other students. Recording the 

users' actions has the potential to be useful to both code developers and educators. 

Helping developers debug and optimize the code and therefore enhance to the 

virtual field trip experience is another potential use of logging. Developers can also 

post-track users. Post-tracking is just reviewing the user activity on a map either 

sequentially or as a scatter plot. When developing it becomes important to know 

where and how much time the user spends on tasks. If a developed task is analyzed 

to not be useful in the given context it could be removed or adapted to better suit 

the user. 

Data logging is potentially valuable for teachers as well. The available feedback 

could enable teachers to scaffold their student learning activities, assess learning 

outcomes, and evaluate students for credit if desired [Buckley et al., 2010; Horwitz 

et al, 2010; Sao Pedro et al., 2010; Jacobson and Reimann, 2010]. Here again, post-

tracking of users could be useful to help educators understand the ways in which 

students learn. In future iterations of the application, we will be recording students' 

submitted work such as locations of the sites they chose for data collection and their 

mapping efforts (identification of virtual specimens, drawing of contacts etc.). Also, 

as new tool sets become available for the client on different field trips, we will record 

their interactions within Google Earth. 

4.7 CONCLUSIONS 

Client-server-client communication enables virtual field trip developers to produce 

more interactive, efficient, and engaging learning experiences. Processes of commu­

nication were explored with example code for a web-chat. The first process involved 

a client sending information to the server, the server processing the information, 

and the server returning a result. The second process involved sending a request for 

information update to the server, the server processing the request, and the server re­

turning the information requested. Our program has been demonstrated at national 

meetings by Dordevic et al. [2011] and beta testing with structural geology students 

at ODU took place during the Spring Semester 2012. From early user reactions, we 

are confident that it will be a useful addition to the tools available to instructors 

in the geosciences. We anticipate that in future years, instructors will move away 

from virtual field trips in which the students are passive observers of content created 

by the instructor, towards interactive alternatives that constitute active virtual field 
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work [Ross et ai, 2008]. 

In this chapter the uses of COLLADA models for multi-user education are ex­

plored with an emphasis on developing client-server-client communication which is 

critical for this to occur. In the next chapter the use of COLLADA models is contin­

ued but the application of kinematic modeling are also added. These two modeling 

types are used to examine the unique slab geometry of the Nazca plate. 
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CHAPTER 5 

KINEMATIC AND STRAIN MODELING 

My study of Tonga led to an exploration of other tears in subduction zones which 

led to the Nazca Plate that subducts beneath South America. The Nazca Plate has 

an interesting geometry because of transition zones between two different subduction 

angles. Can these zones accommodate the transition without tearing? In this chapter 

an approach to solve this question is taken by means of kinematic strain modeling. 

Calculations for the tear opening in the Nazca plate geometry at S33° are made. Also, 

strain rates are determined for the model and from earthquake separation distances. 

The strain-rates along with homologous temperatures are used to determine the 

deformation mechanism available based on a deformation mechanism map. This 

chapter will be submitted to a peer review journal in July with co-author D. De 

Paor. 

5.1 ABSTRACT 

In the central Andes, the Nazca Plate is subducted under western South America 

at an angle that varies along strike, suddenly changing from 30° to 10°. The transition 

from so called steep to flat slab subduction has been attributed to either tear faulting 

or distributed shear. Here, we investigate these alternatives using displacement and 

strain analysis and a deformation mechanism map. 

Our conclusions are that (i) the strain rates calculated from subduction speeds 

are in agreement with general geological strain rates and are slow enough to allow 

plastic deformation given the right conditions; (ii) a deformation mechanism map for 

the system indicates relatively high stresses implying that the only plastic mechanism 

possible at the early stages of subduction would be cataclastic flow; (iii) even though 

the plate may deform by tearing initially, the thickness of the lithosphere precludes 

the opening of a window until the region near the end of the flat slab is reached, by 

which time, plastic processes may inhibit the opening of a window. 
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5.2 INTRODUCTION 

On the curved surface of the Earth, subduction zones cannot continue along 

strike indefinitely - they must terminate against other tectonic structures. Termina­

tions sometimes involve tearing of the oceanic lithosphere as at the northern end of 

the Tonga trench [Isacks et al., 1968; Millen and Hamburger, 1998; De Paor et al., 

2012a]. Even within a single, continuous subduction zone, the dip of the downgoing 

lithospheric slab may change along strike, especially when inhomogeneities on the 

ocean crust such as fracture zones or ridges are involved, and tears have again been 

proposed in these settings by Martinod et al. [2010]. A vertical tear fault striking 

in the slab's dip direction may accommodate the change in slab dip and potentially 

open a window through which material and heat can flow from the hot asthenosphere 

beneath the shallow-dipping slab to the cooler mantle wedge above the steep-dipping 

slab [Millen and Hamburger, 1998; Fowler, 2005]. However, it has been suggested 

that lateral changes in slab dip might alternatively be accommodated by formation of 

a lithospheric shear zone involving continuous strain which would not open up such a 

mantle window nor permit lateral material transport [Cahill and Isacks, 1992]. This 

paper quantitatively examines the feasibility of lithospheric shear strain versus tear 

faulting in the central Andes. 

5.3 THE ANDEAN OROGEN 

The Pacific Ocean Basin's southeastern active margin extends the entire length of 

South American from western Venezuela to the Chilean province of Tierra del Fuego 

(Figure 55). Except for its northern and southern extremities, the Andean Orogen 

marks the convergent boundary between the Nazca Plate and the South American 

Plate. The northern end of the mountain range involves the Caribbean Plate as well 

as microplates that interact in a complex structure north of the Carnegie Ridge (an 

excellent animation of this is available at [Carleton College, 2012]). At the other 

end of the orogen, the Antarctic and Scotia Plates interact south of the Chilean 

Ridge. In both of these places, tears in the downgoing slab have been postulated by 

Gutscher et al. [1999]; Espurt et al. [2007]; Russo et al. [2010]; Vargas et al. [2011]; 

see Figures 56 and 57. Between these extremities, the present-day Nazca Plate is 

continuous, but its surface exhibits plateaus at sites of remnant ridges and fracture 

zones (Nazca Ridge, Iquique Ridge, Juan Fernandez Rise, etc.), consequently the 
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subduction geometry is far from cylindrical (Figure 58). 

o 

im 

Figure 55. Volcanic gaps in the Andean Mountain Range correspond to regions 
of "flat slab" subduction (thick yellow lines). From north to south they are the 
Bucaramanga, Carnegie-Peruvian, and Pampean flat slabs. Plateaus on the Nazca 
plate are shown in orange. From north to south, they are the Carnegie, Nazca, and 
Juan Fernandez remnant ridges. Plate boundaries from the USGS. Volcanoes from 
the Google Earth volcanoes layer. 

The Nazca Plate originates at the East Pacific Rise - the Pacific Ocean's main 

spreading ridge (Figure 55). In comparison with the vast Pacific plate to its west, the 

Nazca Plate travels a relatively short distance eastward before converging with and 

subducting under the western margin of the South American continent. Not having 

traveled far or for long, it is relatively warm, light, and buoyant, consequently we 

do not expect the steep dips nor the marginal basins associated with subduction of 

older, colder lithosphere as seen along the western Pacific margin in places such as the 

Marianas trench [Isacks et al, 1968]. Slab dips of about 30° are common along the 
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Figure 56. Model of the northern end of the Andean mountain chain where the 
Bucaramanga Flat Slab is bounded on the southern side by the seismically active 
Caldas Tear Fault. Source: http://www.revistas.unal.edu.co/index.php/ 
esrj /article/ view/27208/28704#f 1. 
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Figure 57. Proposed tear and mantle window associated with the subduction of 
the Chilean Ridge at the southern end of the Nazca Plate. From Russo et al. [2010]. 
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Figure 58. Remnant ridges in the Nazca Plate from Ramos and Folguera [2009]. 
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Andean subduction zone, however in places the downgoing plate has been interpreted 

to have negative buoyancy resulting in shallow to horizontal dips by Kelleher and 

McCann [1976, 1977]; Pilger [1981]; Espurt et al. [2007, 2008]; Manea et al. [2012]. 

Steep and flat are thus relative terms and in the region of interest to this paper, 30° 

is considered steep subduction whereas a 10° dip is termed flat. Flat slab subduction 

was first proposed for the Laramide orogeny by Dickerson and Snyder [1978]; (see 

also http://www.geo.arizona.edu/geo5xx/geo527/Rockies/flatsub.html). 

Although the Andes Mountains appear straightforward on a continental scale 

(e.g. Moores and Tvriss [1995]), the tectonic scenario is quite complex. Much of the 

orogen is marked by active vulcanism as illustrated in Figure 55 where volcanoes 

are represented using the Google Earth™ "volcanoes" layer (see Google [2012]). An-

desitic vulcanism (which is, of course, named after the Andes) occurs above steep 

east-dipping lithospheric slabs and is fed by partial melting in the mantle wedge be­

neath the continental arc as volatiles rise from the descending ocean floor [Fowler, 

2005]. However, there are a number of present-day volcanic gaps in the orogen corre­

sponding to regions where the slab dip is flat [Schellart et al., 2010]. From north to 

south these are labeled (Figure 58) the Bucaramanga, Carnegie, Peruvian, and Pam-

pean Flat Slabs [Ramos and Folguera, 2009]; note that the Pampean is also known 

as the Chilean Flat Slab - [Manea et al., 2012]. In these regions, the shallow dip 

of the subduction zone does not permit a mantle wedge of sufficient volume to feed 

an overlying magmatic-volcanic system. The volcanic gaps coincide with relatively 

wide, Laramide-style, foreland fold and thrust belts verging towards the continental 

interior [Jordan et al., 1983; Allmendinger et al., 1990; Alvarado et al., 2009]. 

The Bucaramanga Flat Slab (Figure 56) is bounded on its south side by the seis-

mically active Caldas Tear Fault [Vargas et al, 2011]. Tear faults have been proposed 

by Gutscher et al. [1999] for each side of the small Carnegie Flat Slab (Figure 59). 

Espurt et al. [2007] proposed a lithospheric tear and mantle window at the south 

end of the Peruvian Flat Slab, near Lima, which corresponds to the subduction of 

the Nazca remnant ridge (Figure 60). Allmendinger and Gubbels [1996] investigated 

crustal shortening by means of pure and simple shear strain as in influence on flat 

slab subduction. 

We here confine our attention to the southernmost, Pampean Flat Slab in Central 

Chile and Argentina (Figure 58), an area where we and/or colleagues have previously 

carried out structural and tectonic field studies [Simpson et al., 2001; Ramos et al., 

http://www.geo.arizona.edu/geo5xx/geo527/Rockies/flatsub.html
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Figure 59. Proposed tears 011 either side of the subducted Carnegie Ridge. From 
Gutscher et al. [1999]; 
http://www.geo.arizona.edu/geo5xx/geos577/ projects/flesch/ 
images/Gutscher%2099%20carnegie.gif. 

2002; Whitmeyer and Simpson, 2003, 2004]. The current fiat slab extends from S27° 

to S33° [Isacks et al., 1968]. Its southern limit, near Santiago, coincides with the 

subduction of the remnant Juan Fernandez Ridge. Wagner et al. [2006] documents 

mantle evidence for eastward progression of a flattening slab. Ramos and Folguera 

[2009] suggested that the steep slabs north and south of the Pampean Flat Slab were 

flatter in the past (Figure 58). Evidently, flat slabs advanced and retreat with time. 

5.4 3D VISUALIZATION 

To visualize the Andean subduction zone interactively, we mined data from Ge-

oMapApp [GeoMapApp, 2012] (http://www.geomapapp.org), a freely available ap­

plication which gives the user a visual interface with a wide-range of geological data 

[Ryan et al., 2009]. One database on GeoMapApp (http://www.geomapapp.org) 

contains earthquake hypocenters from the USGS. The first step was to select a geo­

graphical region and export hypocenter point data to an Excel file (because of their 

number, data were exported as six adjacent rectangular regions). Columns of opening 

and closing angle brackets and KML element names were inserted in the spreadsheet 

http://www.geomapapp.org
http://www.geomapapp.org
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Figure 60. Lithospheric tear and mantle window associated with subduction of the 
Nazca Ridge. From Espurt et al. [2007] 
http://geology.gsapubs.org/content/35/6/515/F4.1arge.jpg. 

and exported as text, thus creating points with KML-formatted tags suitable for im­

port into Google Earth as placemarks. These points were loaded into Google Earth 

and a vertical snapshot of the region was saved as a PNG file (Figure 61). 

Next we launched Google Sketch-Up™(which is now Trimble SketchUp™) and 

created a three-dimensional rectangular block with the same top side dimensions as 

the PNG surface image saved in Google Earth. We applied the PNG as a texture on 

the top surface and left the sides transparent. Using the SketchUp 'move' tool, we 

dropped the GeoMapApp data points into the block until they were at their correct 

depth beneath the surface. If several points were clustered together the deepest 

one was selected (usually these depths were within 5 km of one another). After 

all hypocenter data points were positioned, the regions were grouped together using 

geological markers and longitude/latitude lines. Point data were then connected into 

depth profile lines and joined across similar depths as contours (Figure 62a). Polygons 

were added until the surface was closed to form a depth-profiled slab (Figure 62b). 

http://geology.gsapubs.org/content/35/6/515/F4.1arge.jpg
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Figure 61. Snapshot of the Pampean Flat Slab with hypocenter data from Anderson 
et al. [2007] (white spots). 
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The outline of this top surface of the slab was then copied and lowered orthogonally 

by 5 km to simulate ocean crust thickness. The approximate thickness of the Nazca 

plate can be determined from the age of the plate at the trench. Syracuse and Abers 

[2006] reports the age of the Nazca Plate between 10-40 m.y.. This age can be 

used with the half-space cooling equation for thickness [Turcotte and Oxburgh, 1967; 

Parsons and Sclater, 1977] 

yL = 2.32 yfct (1) 

where k = 1 mm2s~l is the coefficient of thermal conductivity and t is the age or 

time in seconds. Using the ages with Eqn 1 yields thickness values between 42-88 

km. Due to uncertainties, we use a minimum value of approximately 50 km and 

a maximum of 100 km. A second copy was located 100 km below the top surface 

to represent the bottom of the lithosphere and vertical planes were added to create 

a slice of the lithosphere (Figure 63a). Gaps in the mesh were manually filled and 

painted gray for easy identification. 

In addition to GeoMapApp (http://www.geomapapp.org), we mined data from 

publications. Two models were created - one from Cahill and Isacks [1992] and one 

from Anderson et al. [2007] hypoeenter data. The Cahill and Isacks hypocenter data 

were taken from calculated databases. The Anderson data were determined from a 

hypocenter algorithm written by the first author. In both cases, the data were al­

ready separated into contours and these were loaded into Google Earth as described 

above. These two cases covered an area large enough to be concerned about Earth's 

curvature, so a spherical model was constructed and the textures draped in adjacent 

sub-segments. Points on contours were connected dot-by-dot to ensure that lines did 

not depart from the curved surface (this task has been made easier with recent addi­

tions of SketchUp ruby-scripts that can draw lines on curved surfaces - see Trimble 

[2012]). 

After the contours were connected, contour lines were moved to the appropriate 

depth. The number of points in these cases was too great to permit filling in the 

space by connecting polylines manually, instead a feature called "contours" in the 

"SandBox" of the Sketch-Up application was used (Figure 62b). Lines of interest 

were highlighted and the program automatically filled in open spaces. Our models 

are consistent with models from (Cahill and Isacks [1992]-their Figure 6) but have 

the added advantage of interactivity - they can be, zoomed, panned, rotated, and 

http://www.geomapapp.org
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(b) 

Figure 62. (a) SketchUp's Sandbox tool was used to create contours of hypocenter 
depths created in SketchUp. This is a 3D view, (b) Polygonization of (a). 
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(b) 

Figure 63. (a) SketchUp model of slice of Pampean Flat Slab, view southwest. 
Brown denotes crust, red denotes lithospheric mantle. Gray patch is gap in data. 
Region below dotted line omitted from 63b. (b) Steep-flat transition just south 
of 63a , view northwest. Blue is potential tear fault plane roughly at latitude of 
Santiago. Surface form lines show alternative shear interpretation. Gray is gap in 
data. Reference axes: east (green), north (red), up (blue). 
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viewed in any direction in SketchUp. 

The first impression gained from these data-based interactive 3D models of the 

subducting slab is this: traveling down-dip, the flat slab region is a relatively short 

interruption of a dominantly steep-dipping subduction zone (Figure 63). In contrast, 

in other illustrations (e.g. Fromm et al. [2004]- their Figure 1; Kay and Coira [2009] 

p. 273- their Figure 8b; Beck and Zandt [2002] - their Figure 8) the flat portion dom­

inates, only the top of the lithosphere is shown, and the deeper steep slab is omitted. 

When the full thickness of the lithosphere is shown, the flat slab is only moderately 

longer than thick. Its length is 300 km based on the estimates of Barazangi and 

Isacks [1976]; Cahill and hacks [1992]; Anderson et al. [2007]. Note that Jordan 

et al. [1983] shows a flat slab extending to the 600 km tick mark on the horizontal 

axis but that is measured from the trench, not the point flat slab initiation. 

5.5 TRANSITION ZONES - TORN OR SHEARED? 

As outlined above, lateral boundaries between the Andean Flat Slabs and their 

steep neighbors have been interpreted alternately as tears or as zones of continuous 

shear deformation (Figure 63b). Barazangi and Isacks [1976] interpreted teleseismics 

as indicating discrete brittle tears in the Nazca Plate between the regions of different 

dip angle, similar to the tear in the Tonga-Samoa region of the western Pacific [Bevis 

and hacks, 1984]. However, from local seismic data in the boundary region around 

latitude S15°, Hasegawa and Sacks [1981] interpreted the plate to be deformed by 

continuous flexure and not torn. Bevis and hacks [1984]; Bevis [1986] strengthened 

that interpretation by analyzing the distribution of hypocenters using trend surface 

analysis. Tears were thought to be a possibility in aseismic areas within the central 

Andean subduction zone. The tears would occur as separate gaps lying within the 

space of the curved regional trend where no large seismic events are available to con­

firm tear fault activity [Cahill and hacks, 1992]. Zandt et al. [2003] used teleseismic 

data to determine flow being aligned with fluid-filled cracks associated with normal 

faulting Using data from the CHile ARgentina Geophysical Experiment (CHARGE) 

broad-band network, and an earthquake relocation algorithm employed for the first 

time in this region, new hypocenter locations were determined and the possibilities 

for tears or gaps in the plate were presented by Anderson et al. [2007]. Recently, 

thanks to advances in seismology (including the number of stations and improved 

equipment), more earthquake data of higher quality have become available which 
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suggest that the plate does not tear but becomes sheared [Millen and Hamburger, 

1998]. 

The alternative possibilities have implications for the thermal regime surround­

ing the slabs in regions of along-strike dip change (Figure 64a,b). If the slab is torn 

over a sufficient distance, then there is the opportunity for both heat and material 

transfer through a window from the hotter lower mantle below the flat slab to the 

cooler upper mantle above the steep slab. If the slab is not torn, no material flow 

occurs and heat flow is impeded by the relatively cool slab. Shear requires con­

tinuous, crystal-plastic deformation mechanisms, which raises the question whether 

temperature-pressure conditions and the slab's residence time at such conditions can 

accommodate crystal-plastic deformation. An intermediate case is possible if defor­

mation in the transition zone leads to a boudinage-type structure. These different 

possibilities may be thought of as analogous to an open window that allows in heat 

and air, a glazed window that blocks the wind but allows some heat through, and a 

window with plantation shutters that inhibit but do not entirely block material and 

heat flow. 

The nature of the lateral structures at locations of slab dip change will also affect 

the tectonic and volcanic structures visible on the Earth's surface. A tear may be 

expected to cause relatively rapid heat transfer and material flow into the triangular 

wedge of magma genesis above the steep slab and a spill-over of volcanism across the 

surface trace of the transition zone would be expected, whereas a continuous shear 

zone or boudinage structure would serve as either a full or partial barrier to material 

flow and convective heat transfer, resulting in a sharper boundary to the volcanic 

gap as the surface. 

Of course, if the steep and flat parts of the slab diverged continuously with depth, 

then a tear somewhere in the ~ 3,000 km-thick mantle would eventually become 

inevitable. However, seismic data suggest that, in the down-dip direction, the flat 

slab is confined to the region under the foreland thrust belt which is usually estimated 

to be about 300 km on the surface [Ramos et al., 2002]. Farther east and at increasing 

depth, the dip switches back to 30° again (Figure 63a . Two steep segments- one that 

was always steep and one that was temporarily flat - thus have a constant offset and 

any lateral structure will become dormant in the sense that neither further tearing 

nor shearing is necessary to accommodate continued subduction into the lower mantle 

(Figure 64a,b- beyond the words turn down). 
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Figure 64. Tear vs shear at slab dip transition, a) Tear resulting in heat and 
material flow from lower mantle under flat slab to lithospheric mantle over steep 
slab (red arrows), b) Shear results in thinned sheet of lithosphere. Material flow is 
prevented, thermal flux is inhibited (semi-transparent red arrows). Thickness of slab 
not shown. 
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5.6 REFERENCE FRAMES 

At first glance, the obvious geographical reference frame for our model would have 

an origin at the trench, a horizontal axis in the slab dip direction (approximately 

east), a horizontal axis parallel to strike (approximately north), and a vertical axis 

(up). A north-up plane would then contain horizontal traces of the steep and flat slabs 

at different elevations. The problems with this view are that (a) tearing or shearing 

begins after about 100 km of subduction has already taken place, so a better place 

for the origin is where the steep and flat slab begin to rip or shear, and (b) a vertical 

slice along strike does not contain the displacement vector for tearing or shearing, 

so this view would create an element of vertically exaggeration that is a function 

of particular slab dip angles, and the study would be difficult to apply elsewhere, 

especially to steeper dipping slabs. Instead, displacement vectors should join points 

that are equally far down-dip from the original point of tearing or shearing. 

We therefore choose a reference frame with the origin approximately 100 km down 

d i p  from the trench, the x-axis in the direction of the average lithospheric dip 6, the 

y-axis along strike, and the z-axis in the average pole direction, orthogonal to x and 

y (Figure 65a). We call this x-y-z frame the model reference frame- it is related to 

a geographical reference frame (dip direction, strike, up) simply by a rotation about 

strike by an amount equal to the average lithospheric dip d. Planes parallel to the 

non-vertical y-z reference plane are termed profile planes and the two-dimensional 

discussions that follow apply to these profile planes. 

5.7 REGIONS 

Given the discussion above, the problem can be addressed by defining three re­

gions: 

1. The Western Region. This extends from the Andean trench offshore of Chile to 

the point of tear or shear initiation approximately 100 km down the subducting 

slab. Segments of lithosphere that are destined to become flat and steep slabs 

are continuous and uniformly steep-dipping. 

2. The Central Region. After approximately 100 km in the western region, the 

Nazca plate either tears or shears forming steep and flat slab segments. This 

region extends horizontally approximately 300 km perpendicular to strike and 

is the main region of interest. The tear fault offset in the z-direction is expressed 
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Figure 65. a) Geographical (east-north-up) and model (x-y-z) reference frames. 8a 

and 6f are the steep and flat slab dips. 5 is the mean slab dip. a is the half-wedge 
angle. L is the distance from the origin (initiation of the tear) to the profile plane. 
H is half the displacement in that profile plane. Sense-of-shear symbol straddles the 
vertical tear fault plane The origin is on the top of the slab - slab thickness not 
shown, b) Slab thickness shown. 
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as 2H, twice the magnitude of the displacement of either slab from the x-axis. 

This offset is a function of distance L along the x-axis and of the slab dip 

difference. In the present case, the steep slab dip is Sa = 30° and the flat slab 

dip is Sf = 10°. We define the a as half the difference in these dips, so a = 10° 

in this case. 

In the Central Region, the traces of the steep and flat slabs in the y-z profile 

plane are equally distant from the trench as measured along the surface of 

the slab in the down-dip direction, and the displacement vectors of the tear or 

displacement gradients of the shear are parallel to the y-z plane (ignoring slight 

displacement vector curvature due to the scissors effect). 

3. The Eastern Region. Here, the flat slab steepens back up to 30° and is therefore 

parallel to, albeit permanently offset from, the slab segment that was always 

steep. The subducting Nazca Plate moves as a rigid unit in the down-dip 

direction, with no change in the extent of the tear or shear. Eventually, the 

lithosphere becomes plastic and losses its well-define slab geometry (see Kellogg 

et al. [1999]). 

5.8 BASIC CALCULATIONS FOR TEAR 

Tear faulting in the slab is easy to visualize by analogy with a band-saw. If a 

carpenter pushes a thin sheet of plywood through a band-saw, progressively slicing 

it into two parts, these parts may sag by different amounts, creating a very good 

analogy to the torn lithospheric slab. The tear occupies a discrete vertical plane 

striking in the slab dip direction. As subduction progresses, the gap between the 

steep and flat slabs widens linearly by an amount that depends on the difference in 

slab dip and the length of subducted slab since tear initiation. 

If the torn slab were perfectly flat, then it would be a simple matter to determine 

tear fault displacement as a function of distance traveled, L (Figure 65), or as a 

function of time, given the subduction rate. Let a be the half-wedge angle - the 

difference between the steep and mean dip, which is (l/2)(30° -10°) or 10° in this case. 

If the speed of subduction is 7 cm/yr (Figure 66, see Kendrick et al. [2003]; Schellart 

et al. [2010]) and the mean slab length measured along the x-axis is approximately 

L « 300 km (its projection onto the x-axis in this case is equal to its projection onto 

the horizontal), then the duration of flat slab subduction t (i.e., the residence time 
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of material passing through the flat slab) is (1/70)(300 x 106) m.y. or approximately 

4.3 m.y. In that time, the slabs undergo a displacement in the z-axis direction of H, 

H = ±L sin a = (300)(0.174)fcm « 52km (2) 

NA2CA-80AM PLATE MOTION EVALUATED AT TRENCH AXIS 

15r 

AngM 

5 

as 
VELOCITY AZIMUTH {N't) H0MB0NTAL VBDCITY 

Figure 66. Nazca-South America relative plate velocities from Kendrick et al. [2003] 
- their Figure 4. For latitudes S23-300, estimates range from 6.3-8.0 cm/yr. 

Relative to the x-axis, the flat slab is offset upward and the steep slab downward, so 

the tear fault offset at the end of the flat slab is therefore twice H or roughly 104 km. 

This can also be found from the seismic data profiles reported by Cahill and Isaeks 

[1992], 

Let the flat and steep slabs have velocities Vf and va, respectively. They share a 

common speed s = 7 cm/yr, but diverge in direction by 2a. In a time t, the material 

has an x-direction component of motion L, 

L = st cos a (3) 
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Material points do not have a component of motion in the y-direction, but the sign 

of a point's y-coordinate determines the direction of its z-component of motion. Let 

b be a defined using a Boolean expression in square brackets 

b = 1 - 2[y > 0] (4) 

Thus b has the value -1 when the Boolean expression [y > 0] is true (1) and b has 

a value 1 when the Boolean expression [y > 0] is false (0). Displacement in the 

z-direction is then expressed as 

H = bLtana = bst sin a (5) 

If the b-value is positive the material moves upward (positive z-direction) and if 

the b-value is negative the material moves downward (negative z direction). The 

distribution of material points through the region in space and / or time is then 

specified in a single matrix operation using homogeneous coordinates (see De Paor 

[1994]), 

(6) 

where Dij (i,j = x,y,z) are elements of the deformation tensor and f/j are components 

of the displacement vector. In the tear model, there is no penetrative deformation, 

so the deformation tensor is the unit tensor, and the displacement vector is 

expressed in terms of time t, subduction speed s, and sense of displacement b, 

" x>" DX x  DXy Dxz  Ux  X  

y' Dyx Dyy DyZ Uy y 

z' Dzx  Dzy  Dzz  Uz  z 

1 0 0 0 1 1 

" x' ' 1 0 0 st cos a X 

1/ 0 10 0 y 

z' 0 0 1 bst sin a z 

1 0 0 0 1 1 

(7) 

The total tectonic window area A in the Central Region is approximately 

A = (LH) -  A' 

where A' is the area of slab exposed in cross-section in Figure 65b 

50 
A' = 100(s< -

tan 20° ) 

(8) 

(9) 
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Thus A works out at about 18,000 km2. 

The above matrix representation allows us to track points in the system for times 

when the material is in the central region. A MatLab™ script was written to generate 

the 2D time evolution for the tear in the profile plane. The result that is most 

interesting is for L = 300 km. This would represent the maximum amount of offset, 

while the plate no longer subducts at two different angles. In Figure 67, a plot of the 

deformation zone for a subduction dip = 10° and value of st = 100 km, 200 km, and 

300 km are shown. 
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Figure 67. Tear evolution as distance increases down dip for a 50 km wide zone. 
After 300 km the tear height is 100 km. 

5.9 THE SHEAR ALTERNATIVE 

The important question is this: can the tear fault offset in Figure 65 be achieved 

instead by continuous shear strain in the 4.3 m.y. timespan available using crystal-

plastic deformation mechanisms? A shear zone would create a curved monocline 

joining flat- and steep-dipping limbs (Figure 68). In profile, the fold is a Ramsay 
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Type II, or similar fold [Ramsay, 1967]. The fold's down-plunge direction is down-dip 

on the straight limbs so it would be called reclined in the nomenclature of structural 

geology (ibid.). It is a conical reclined monocline widening down-plunge for the 

length of the flat slab (Figure 68) and a cylindrical reclined monocline plunging at 

30° thereafter (after 'turn down' in Figure 64b). 

Figure 68. Shear in the form of a plunging monocline indicated by a curved lattice. 

5.10 DISPLACEMENT AND STRAIN MODELING 

To study shear as a mechanism of accommodating slab dip change, we need a 

strain model. Three different shear regimes are possible, simple, pure, and general 

[Simpson and De Poor, 1993] and in each case the strains may be either homogeneous 

or heterogeneous [Ramsay, 1967]. However a simple, parallel-sided shear zone is not 

possible as the size of shear zone must increase with distance down the subduction 

zone in order to accommodate progressively more offset. Consequently, the shear 

zone must start at zero width and gradually widen along the y-axis as one move in 

the x-direction (or as subduction / time progresses). New material from the adjacent 

borders of the steep and flat slabs gets incorporated in the shear zone progressively 

while material already in the shear zone is subject to further incremented strain. 

The result is a conical fold-shaped shear zone (Figure 68). The widening process is 

analogous to simpler classical models of kink band growth [ Weiss, 1980]. 
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To model strain in this fold, we approximated heterogeneous simple shear using 

symmetrically nested slices of homogeneous simple shear (Figure 69). Simple shear is 

not the most likely strain field as there is no mechanical reason for slip on xz-planes. 

A more physically realistic model would be tangential longitudinal strain, involving 

an element of pure shear with principal axes tangential to the slab [Ramsay, 1967]. 

Given the other approximations involved, however, we can reasonably approximate 

the heterogeneous shear zone by the three slices or if you like, card decks - a central 

slice with the maximum value of shear and two peripheral slices with half that value. 

By considering these slices separately and summing their net effects, we can treat 

the problem as one of homogeneous strain. Differences in stretch along the slab and 

consequently thinning across it will not vary significantly relative to the tangential 

longitudinal strain model. 

Figure 69. Approximation of heterogeneous shear by three slices of homogeneous 
shear. The central slice, representing material that has been in the shear zone longest, 
has undergone twice the shear strain 7 of the marginal slices. 
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5.11 SLAB THICKNESS IN A SIMPLE SHEAR ZONE 

In the current study, we need to consider slip in the z-direction on zy-shear planes 

happening as slab material is translated along the x-direction. A matrix combining 

these displacements and deformations [De Paor, 1994] is: 

v i  r  i o o ux 

2/ 0 1 0 0 

z' 0 7*5, 1 0 

1  J  [  0  0  0  1  
For simple shear in the profile plane, the stretch of the long side of the deformed 

square is (1 -I- 7*y)-1^2 from Pythagoras (Figure TO). This is the stretch of the litho-

spheric slab's top or bottom surface trace in the yz-plane. Simple shear does not 

change the area of the unit square, therefore the stretch perpendicular to the slab 

surface in the yz-plane is (1 -I- l1y)~x^2- This corresponds to the change in thickness 

of a unit lithospheric slab. If the lithosphere is initially 100 km thick, then the final 

thickness zl is given by 100(1 + 7zy)~~1/2 km. 

The amount of slab thinning is a simple function of shear but the amount of shear 

required to accommodate a change in slab dip depends not only on that change (from 

30° to 10° in this case) but also on the width of the shear zone. The widening of the 

shear zone with distance along the x-axis can be expressed in terms of a semi-cone 

angle (5 (Figure 71). The geometry is directly analogous to the classical true/apparent 

dip issue in structural geology. 

A semi-displacement H in the direction of the z-axis can be achieved by shear 

strain jzy, applied to the sides of the heterogeneous shear zone in Figure 69a and 

2jzy, applied in the central zone. This is equivalent to a homogeneous shear strain 7 

7 = \lzy (11) 

We can now express the semi-displacement H in terms of shear strain and shear zone 

width, 

H = iW (12) 

The width in turn depends on the slab length and the conical shear zone's semi-cone 

angle ft. 

W = L taxi ft (13) 

x 

y 

z 

1 

(10) 
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Figure 70. Calculation of slab stretch and thinning in the profile plane. Deformation 
is assumed to be by simple shear in the z direction on shear planes parallel to xz as 
in Figure 68. Stretching along the top or bottom of the slab is given by Pythagoras. 
Thinning of the slab is the inverse, assuming isochoric strain. 
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Figure 71. The amount of shear strain required to accommodate a given semi-offset 
H in the z-direction is a function of shear zone semi-width W in the y-direction as 
well as length L in the x-direction. a) wide zone requires low shear strain, b) narrower 
zone requires higher shear strain, c) a tear fault can be thought of as infinite shear 
strain corresponding to zero shear zone width. 0 is the semi-cone angle of the shear 
zone. Gray marks vertical boundaries. 
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If /? is large, the zone widens rapidly with distance L along the x-axis (or equivalently 

with time given the subduction velocity) and relatively little shear strain is required 

to accommodate a given semi-offset H. A smaller cone angle j3 leads to a high shear 

strain 7 , the limiting case being a cone angle of zero which requires infinite shear 

strain and zero shear zone width, in other words a tear fault! 

Analysis of the model in Figure 63b based on GeoMapApp data 

(http://www.geomapapp.org) plus the models of Cahill and Isacks [1992]; Anderson 

et al. [2007], suggests that a semi-cone angle of 10° is consistent with the 3D slab 

geometry. 

With this 10° semi-cone angle, the shear zone semi-width W must be approxi­

mately 53 km after 300 km movement along the x-axis. To achieve the semi-offset 

H = 52 km in a zone of this width would require a homogeneous shear strain of about 

1. In the heterogeneous shear model of Figure 69, the periphery of the shear zone 

would require a shear strain of | and the center would require a shear strain of §. 

From Figure 70, the stretching along the slab d and the thinning across the slab d' 

would be given by the following equations 

For the periphery, this works out as d = 1.2; d! — 0.8, so a 100 km thick slab would 

be reduced to 80 km. In the center of the heterogeneous shear zone, the equivalent 

stretches are d = 1.8; d' = 0.55 so the 100 km slab is reduced to 55 km thick. Given 

suitable crystal plastic deformation mechanisms, it would certainly be possible for the 

slab to maintain continuity and not boudinage. However, it is questionable whether 

continuous brittle processes such as cataclastic flow could maintain slab cohesion 

during 50% thinning. 

A 53 km wide shear zone is much wider than ductile shear zones recorded else­

where in ophiolitic and continental crust that were formed at depth and later tec-

tonically transport and exhumed at the surface. The latter are rarely more than 10 

km in true thickness [Simpson et al., 2001; Whitmeyer and Simpson, 2003, 2004]. 

However, their rocks employed deformation mechanisms such as basal slip in quartz 

which are not available in the present case. 

(14) 

d' = 1 
(15) 

http://www.geomapapp.org
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Another constraint on shear zone width is provided by geophysical data - the 

contour data from Cahill and Isacks [1992]; Anderson et al. [2007]. The data were 

retrieved using C++ code to look at longitudinal stripes in a latitudinal box. The 

latitudes spanned from S32-34° and the longitudes were taken in 0.5 degree blocks 

from W67.5-69.50. For example, for W68° the values examined were W67.25-68.250 

and S32-34° for the latitudes. This approach was used to give profile-sections along 

the leading edge of the downgoing plate. Next, each earthquake hypocenter which 

fell into this range was compared to all the other hypocenters. The code compared 

separation distances and heights between all pairs. 

Table 13. Values from earthquake data and calculations. Length is travel distance 
from trench 

Source W (km) H (km) L (km) 0(°) a C )  
Anderson S33 16.462 10 250 1.57 1.14 
Anderson S33 42.621 20 250 4.06 2.29 

CI S14 26.262 25 300 2.51 2.39 
CI S14 90.747 50 300 8.60 4.76 
CI S33 32.86 25 250 3.13 2.86 
CI S33 89.453 50 250 8.48 5.71 
x = 300 106 109 300 9.46 10.30 

Useful results obtained from the search included (i) the shortest distance between 

two hypocenters with a non-zero height separation which can be used as the shortest 

width of the shear zone, and (ii) the smallest and largest values for shear strain (the 

ratio of the displacement in z to x). The same process is repeated for S14S-160 and 

W70-730 for the hypocenter data from Cahill and Isacks [1992]. The data region 

interpreted by Anderson et al. [2007] is S30.5S-32.50 for latitude with no restrictions 

for longitudes. The regions chosen were determined by visual examination of the 

contour maps. Results of the search are given in Table 13 where the x = 300 values 

are calculated from basic geometry. 



118 

5.12 DUCTILE DEFORMATION MECHANISMS 

A deformation mechanism map can be used to understand how the system is 

deforming. The map is a plot of normalized stress versus homologous temperatures 

that is contoured for strain rate and divided into regions where different mechanisms 

are allowed. Thus, strain-rates and a homologous temperature are calculated to 

understand how the system may deform. 

Evidence for ductile deformation in often seen in rocks of the continental crust that 

have been buried to 12 km depth or more, strained at a rate of about 1 x 10-14s-1 for 

millions of years, and exhumed as a result of contractional or extensional tectonics. 

A question that arises in this study is whether the temperatures and strain rates 

necessary for ductile deformation are present in the down going slab. 

The strain rate can be calculated from the shear strain required to achieve the 

necessary semi-displacement H. In our heterogeneous shear zone model (Figure 69) 

the higher shear strain in the center of the zone is §. The time available has been 

estimated at 4.3 m.y. and given that there are 31,556,926 seconds in a year, the 

strain rate can be estimate at 1.1 x 10-14s-1. The average strain rate 2.35 x 10~15s_1 

was also calculated using this procedure for the values given in Table 13. These 

values are within the geologically accepted range of realistic strain rates, [Pfiffner 

and Ramsay, 1982], This number along with the homologous temperature can be 

used to determine the deformation mechanisms available. 

The temperature of interest is the homologous temperature given by 

Th = §~ (16) 
-L m 

with T being the temperature of the material, in this case olivine, and Tm representing 

the melt temperature of olivine given by Turcotte and Schubert [2002] 

T» = 2140 + <iilo (17) 

The temperature of the system using a thermal structure for a subduction zone from 

Turcotte and Schubert [2002] gives the subducting material temperature of 873 K at 

a depth of 273 km. The melt temperature can be calculated for this depth using the 

above equation which gives TM = 2686.41 K. This gives a homologous temperature 

of TH = -325. 

Using the strain-rates of 1.1 x lO"14^"1 and 2.35 x 10~15s_1 and the homolo­

gous temperature Th = .325 a location on a deformation mechanism map can be 
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found (Figure 72). For the conditions given the location on the map is in the "plas­

ticity" region which is the engineering term for "inelastic", so the plate can only 

maintain cohesion by cataclastic flow. 
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Figure 72. Deformation mechanism map for olivine. The points of interest (red 
dots) are for strain rates of 1.1 x 10~14s_1 and 2.35 x 10-15s-1 and a homologous 
temperature Tm = .325. Map is from Ashby et al. [1977]. 
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5.13 DISCUSSION AND CONCLUSIONS 

Results show that the slab can accommodate this two angle subduction between 

10 and 30° for the 300 km distance while the slab may deform by cataclastic flow. 

The plate will be thinned to a thickness of 80 to 50 km as a result of this deformation 

but should still allow for a continuous plate to be maintained. Segall and Simpson 

[1986] concluded that ductile shear can nucleate on brittle fractures and we envisage 

such a transition as the slab is subduction. However, even if the deformation is ini­

tially brittle, the thickness of the plate (55 km) prevents a window from opening for 

a distance of 156 kilometers down dip. 

To further our understanding of this subduction zone the goal of building a dy­

namic 3D model in COMSOL is the next step. This would allow for the two subduc­

tion angles to interact with minimal input, other than some physical parameters set 

by Geophysical conditions in the region. Before a 3D model can be built a thorough 

study using 2D models of the parameter space is done to understand which param­

eters influence the Geophysics of the region greatest. These 2D models also are also 

important because they will serve as initial conditions for parts of the 3D model. 
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CHAPTER 6 

2D NUMERICAL MODELING OF SUBDUCTION ZONES 

In this chapter 2D models are used to explore parameter space. This space in­

cludes three important parameters including the subduction angle, the subduction 

rate, and the coupling distance. By changing these variables over a suite of models 

their geophysical impact on the subduction process can be measured. These results 

will help lay a foundation to build a 3D multi-angle subduction model. This chapter 

will be submitted to a peer review journal in the Summer of 2012 with co-author J. 

Georgen. 

6.1 ABSTRACT 

The dynamics of subduction zones are influenced many factors including subduc­

tion angle, convergence rate, mantle viscosity structure, and coupling between the 

downgoing slab and mantle wedge. We use 2D finite element models to assess how 

temperature and velocity fields are affected by subduction angle, for slabs ranging 

from ~45° to ~10° dip. The model domain encompasses a downgoing slab, over­

riding plate, and upper mantle wedge. Models solve the steady-state equations of 

mass, momentum, and energy, neglecting heat production and thermal buoyancy and 

assuming isoviscous mantle flow. Flow in the wedge is driven by kinematic boundary 

conditions. The rigid, overriding plate is assumed to be stationary. As part of a par 

rameter space exploration, convergence rate and frictional coupling between the slab 

and mantle wedge are also varied. The models help to better understand convergent 

geodynamics in a variety of settings. Three main conclusions can be drawn from the 

model suite. First, of the three parameters studied, subduction angle has the largest 

impact on model dynamics. Next, the second most important variable is the sub­

duction rate, and the coupling distance influences the models least. Finally, in the 

subducting Nazca plate, where angles of 10° and 30° are adjacent, the juxtaposition 

of these different angles is likely to be an important control on the geodynamics of 

the convergent margin. 
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6.2 INTRODUCTION 

The early beginnings of subduction zone investigations and models can be found 

with Isacks and Molnar [1969], who showed that earthquakes reflect the geometry 

of subducting slabs. Some of the first analytical models of subduction zones sug­

gested that corner flow in the mantle wedge caused an upward force, but further 

work indicated that the forces balanced to give a realistic predicted subduction angle 

[Batchelor, 1967; McKenzie, 1969; Stevenson and Turner, 1977; Tovish et al., 1978; 

Reid and Jackson, 1981]. The next improvement on the models was to incorporate 

variable viscosity. An early study by Vassiliou et al. [1984] used a wedge viscosity 

that ranged over two to three orders of magnitude. However, with improvements in 

computational power more recent studies using variable viscosity have ranges of four 

to six orders of magnitude [Billen and Hirth, 2005, 2007]. Time-dependent modeling 

was first implemented by Gurnis and Hager [1988] and helped to set the stage for 

dynamic modeling of subduction zones. 

Generally speaking, subduction zone modeling can be performed on two scales. 

The first is global, wherein the modeler examines how subduction processes inter­

act and influence one another on a long-wavelength scale [Schubert, 1992; Tackley, 

2000]. The second is regional. Regional models may investigate generic small-scale 

zones, for example to quantify the effects of changing geodynamic parameters, or they 

may focus on a specific subduction zone. The regional scale is useful for examining 

properties that are more computationally intensive to investigate, including mantle 

layering, phase transitions, slab dehydration, wedge hydration, and mantle melting 

[Wada and Wang, 2009; Syracuse et al., 2010]. 

Billen [2008] identified four general subduction model types: instantaneous, 

fully dynamic, dynamic with kinematic boundary conditions, and coupled kine­

matic/dynamic. The latter three types are time-dependent. The instantaneous model 

involves a solving the conservation equations for mass and momentum. The velocity 

field and pressure can be solved for, if density and viscosity are set and the boundary 

conditions are prescribed. Prom these solutions other physical quantities may be 

determined including plate motions, the geoid, stress orientations, and strain fields 

[Hager, 1984; Zhong and Gurnis, 1992, 1994; Billen and Gurnis, 2001; Billen et al., 

2003]. 

Time-dependent models incorporate the conservation of energy equation as well 

as the mass and momentum equations. Thus, the model may change with time by 
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conduction and advection of heat. In general, the system is solved in the following 

manner. First, the Navier-Stokes equations are solved, including variable viscosity 

and buoyancy, if applicable. Next, temperature structure is calculated using conser­

vation of energy with the velocity field. Time-dependent models often differ from 

instantaneous models because they use simpler initial and boundary conditions. 

Fully dynamic models have no prescribed velocity or applied force boundary con­

ditions. The model is driven only by buoyancy forces [Billen and Hirth, 2007]. In 

dynamic models with kinematic boundary conditions, the top surface of the model 

often has an assigned direction and rate of subduction, with the goal of understand­

ing how plate kinematics and mantle dynamics are related [Kincaid and Sacks, 1997; 

Olbertz et al., 1997; Schmelling et al., 1999; Bellahsen et al, 2005; Stegman et al., 

2006]. Coupled kinematic/dynamic models are used for studying the interaction of 

the mantle wedge, subducting slab, and overriding plate. These models have a set 

velocity field for the downgoing slab, but the flow in the wedge is solved for dynami­

cally. Coupled kinematic/dynamic models can be used to incorporate properties and 

processes that change on local scales, such as melting, dehydration, and variability 

in mineral composition [ Wada and Wang, 2009; Syracuse et al., 2010]. This study 

uses finite element, coupled kinematic/dynamic models to investigate how predicted 

temperature and velocity fields are affected by parameters like subduction angle, sub­

ducting plate velocity, and the frictional coupling between the downgoing slab and 

the mantle wedge. 

6.3 GEOGRAPHICAL AREA 

This study is motivated by the South American subduction zone. The Nazca 

plate, which is generated at the East Pacific Rise, travels a relatively short distance 

before reaching and subducting beneath the South American plate. The Nazca plate 

subduction zone is somewhat unusual because it possesses four distinct regions with 

contrasting downgoing slab angles. From S2-15° , the plate subducts at an angle of 

approximately 10° [Cahill and Isacks, 1992] (Figures 73 and 74). From S15-24°, the 

angle changes to 30°. For S27-33°, the angle returns to 10°. Finally, south of 33°, 

the subduction angle is again 30° [Jordan et al., 1983]. 

Several studies have investigated the structure of the subducting slab in the re­

gions of dip angle transition, but the nature of the transition zones remains to some 

degree an unresolved question. Initially the changes in subduction angle were first 
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Figure 73. Contoured earthquake hypocentral depths from Cahill and Isacks [1992]. 
Contour interval is 25 km. 



(a) (b) 

Figure 74. An elevated COLLADA model of a flat slab region using earthquake 
hypocentral depths from Cahill and Isacks [1992]. Gray region is interpolated. 

interpreted by Barazangi and Isacks [1976] as tears in the Nazca Plate, similar to 

other areas like the Tonga trench in the western Pacific. However, local seismic data 

in the transition region around S15° suggested the plate could be deformed (i.e., in 

continuous flexure) and not torn [Hasegawa and Sacks, 1981]. The idea of the plate 

being deformed and not torn was reinforced by an analysis of teleseismic hypocenters 

using trend surface analysis, in the region of S2-400 by Bevis and Isacks [1984]; Bevis 

[1986]. However, tears were thought to be a possibility in aseismic areas within the 

central Andean Wadati-Benioff Zone [Bevis and Isacks, 1984; Bevis, 1986]. More re­

cently, data from the Chile Argentina Geophysical Experiment (Charge) PASSCAL 

broad-band network, and an updated earthquake relocation algorithm, suggested the 

likelihood of tears or gaps in the plate between S30-360 [Anderson et at., 2007]. 

The unique slab geometries in the South American subduction zone motivate 

this investigation, which uses a series of two-dimensional numerical models is used 

to explore how subduction zone geodynamics vary as the downgoing slab angle is 

changed. The parameters of coupling distance (the distance required for the sub­

ducting slab and the mantle wedge become fully frictionally coupled) and subduction 

rate are explored as well. This parameter space exploration guides construction of a 
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three-dimensional finite element model (Chapter 7), which calculates how juxtapos­

ing different subducting geometries affects mantle temperature and flow fields. The 

calculated temperatures can then be used to make predictions about physical prop­

erties and the deformation style of the Nazca plate in the regions where subduction 

angle changes. 

6.4 NUMERICAL MODEL 

Similar to earlier studies (e.g. Peacock [1991]; Dairies and Stevenson [1992]; Fu-

rukawa [1993]; Peacock and Wang [1999]; van Keken et al. [2002]; Conder [2005]; van 

Keken et al. [2008]) the model domain used in this investigation is a three-component 

system consisting of a rigid overlying plate, a subducting slab, and mantle wedge (Fig­

ure 75). The rigid overlying plate is held stationary, and flow in the mantle wedge is 

driven by a velocity assigned to the downgoing slab. In some previous studies, the 

overriding plate has been treated as a non-fixed boundary that dynamically inter­

acts with the wedge through thermal ablation (e.g. Eberle et al. [2002]). In others, 

however, a rigid overriding plate has been used as a control mechanism to make heat 

flow predictions in the wedge corner region more consistent with observed values (e.g. 

Conder [2005]; van Keken et al. [2008]). The rigid plate treatment allows explicit 

definition of the shallow decoupled (or shear) zone for the downgoing slab [van Keken 

et al., 2002; Conder, 2005; van Keken et al., 2008]. In this investigation, the over­

riding plate is decoupled from the downgoing slab and it is used as a fixed surface 

layer that does not interact with wedge flow. 

As aforementioned, downgoing slab velocity drives mantle flow in the wedge in 

this investigation. The subducting slab is treated as oceanic lithosphere. The motion 

of the downgoing slab induces corner flow in the mantle wedge [Batchelor, 1967; 

McKenzie, 1969; Stevenson and Turner, 1977; Purukawa, 1993; van Keken et al., 

2002]. Corner flow is responsible for the transport of hot material into the tip or 

corner of the wedge and along the subducting slab. Many studies have focused on the 

effects of using different methods to describe the properties of wedge material, such as 

by varying viscosity [Zhong and Gurnis, 1996; Kincaid and Sacks, 1997; Eberle et al., 

2002; van Keken et al., 2002; Billen et ai, 2003; Currie et al., 2004; Billen and Hirth, 

2005; Conder, 2005; Kneller et al., 2005; Billen and Hirth, 2007; van Keken et al., 

2008; Wada et ai, 2008; Wada and Wang, 2009]. In this investigation, the wedge 

is treated as isoviscous, density was assigned a constant value of 3300 kgm-3, and 
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Figure 75. Set-up of model mesh and grid spacing for a 45° model. 
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sources of buoyancy variation (i.e., temperature dependence) were neglected. This 

approach allows the subducting slab to be the main driving force of material and 

heat flow, and permits the effects of varying parameters such as subduction angle to 

be isolated. The validity of the COMSOL code was checked against known solutions; 

see Appendix C for further details. 

6.4.1 GOVERNING EQUATIONS, MESH, AND BOUNDARY CONDI­

TIONS 

The non-dimensionalized, steady-state conservation equations for mass, momen­

tum, and energy were solved using COMSOL Multiphysics finite element software: 

where u is velocity, p is pressure, is density, r] is dynamic viscosity, k is thermal 

diffusivity, and T is temperature. 

The spatial dimensions of the numerical domain (Figure 75) are similar to that 

of van Keken et al. [2008]. The depth (y) of the domain is fixed at 600 km. Domain 

length (x in km) is dependent on the subduction angle by dividing the depth with 

the tangent of the subduction angle and adding 60. The addition of an extra 60 km 

helps to minimize boundary condition effects in the solution. Grid resolution for all 

models varied from 1 to 5 km, with the upper wedge corner always being gridded with 

1 km spacing. Resolution tests for model-predicted wedge temperatures indicate an 

increase in temperature with an increase of wedge resolution, from 623° C for 5 km 

resolution to 776°C for 1 km resolution. Increasing the model resolution below 1 km 

may increase the calculated temperature results somewhat (i.e., by a few degrees). 

However, these changes would not be large enough to have significant geodynamical 

implications when mantle temperatures range over 100-1000°C. The resolutions used 

in this investigation are consistent with Conder [2005]; van Keken et al. [2008]; Wada 

and Wang [2009], which range from 1 km to 15 km. 

Figure 76 and Table 14 summarize the boundary conditions used in the calcula­

tions. In Table 14, continuity equation 1 is defined as: 

V • u = 0 (18) 

—Vp + pg = V • [77 Vu] 

kV 2 T  =  u - V t  

(19) 

(20) 

n(F?I(Vui + (Vux)T) - 7/2(Vu2 + (Vu2)r) - + p2I) = 0 (21) 
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and continuity equation 2 is 

n (qi - Q2) = 0; = -fcVTi (22) 

where n is the normal to the surface, I is the identity matrix, q is the heat flux and 

k is the thermal conductivity. 

For the momentum equations, boundary 1 is a velocity inlet for the slab, with a 

rate of uo = 3, 5, or 7 cm/yr (see below for discussion of slab velocity). Boundary 

2 is a velocity outlet for the slab, with a rate corresponding to the inlet velocity. 

Boundary 13 is a mantle wedge inflow boundary, while boundaries 10 and 12 are 

outflow boundaries. Boundaries 3, 4, 6, and 14 are no-slip and define the rigid 

overriding plate. The remaining boundaries 5 and 7 delineate the slab-wedge interface 

and are assigned a velocity defined by a coupling function: 

u(x) = (———)uQ (23) 
X f c  % c  

where xc = corner location, which is the intersection of the bottom of the overriding 

plate and the downgoing slab; xa = distance along the slab-wedge interface from the 

corner location; x/c = location of full coupling, and uQ = fully-coupled velocity, or 

the velocity of the downgoing slab. The coupling function, which is based upon the 

coupling equation of van Keken et al. [2008], prescribes a gradual build-up to a fully 

coupled velocity between the slab and the mantle wedge, at a defined distance down 

the slab. 

The conduction-convection or energy equations use the following boundary condi­

tions. Boundary 1 is assigned a temperature profile corresponding to 50 Myr oceanic 

lithosphere, using the half-space cooling equation [Turcotte and Oxburgh, 1967; Par­

sons and Sclater, 1977] 

T ( x  =  0, y ) = T s  +  (T0 - Ts)erf(^=) (24) 

where surface temperature Ts is the temperature at y = 0 (273 K), mantle reference 

temperature T0 = 1573 K, and k is thermal diffusivity (0.7272 x 10~6m2s_1) [von 

Keken et al., 2008]. Boundaries 2, 10, and 12 are heat flux outlets. The top of 

the model, boundary 4, is set to Ts. Boundaries 5, 6, 7, 8, 9, and 11 are internal 

boundaries and are set to maintain model continuity. Boundary 13 on the right side 

of the model is set to a temperature of T0 to simulate hot mantle material entering the 

wedge. Boundary 14 is assigned a linear temperature gradient function that ranges 

between TS and Tq. 
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Figure 76. Set-up of model boundary conditions and sub-domains for a 45° model. 



131 

Table 14. General boundary conditions used for 2D subduction models in COMSOL 

Boundary no. Navier-Stokes Conduction-Convection 
1 u = 5^ T = half-space cooling 
2 u = 5^ -n • (-fcVT) = q0 

3 u = 0 Continuity2 

4 u = 0 T = 273 K 
5 u = coupling function Continuity2 

6 u = 0 Continuity2 

7 u = coupling function Continuity2 

8 Continuity1 Continuity2 

9 Continuity1 Continuity2 

10 t?(Vu + (Vu)T) = 0, p = po -n • (-/cVT) = q0 

11 Continuity1 Continuity2 

12 t?(Vu + (Vu)T) = 0, p = po -n • (—fcVT) = q0 

13 7?(Vu + (Vu)T) = 0, p = po T = 1573 K 
14 u = 0 T = linear gradient 

6.5 PARAMETER SPACE 

Many parameters, like subduction angle, convergence rate, coupling length, and 

viscosity, can influence the geodynamics of the subduction process. The three pa­

rameters that were varied in this study axe the subduction angle, coupling length, 

and subducting slab velocity. 

6.5.1 SUBDUCTION ANGLE 

Previous studies have examined a variety of different subduction angles for specific 

zones, using parameters customized to the zone of interest (e.g. Springer [1999]; 

Wada and Wang [2009]; Syracuse et al. [2010]). Here, a general approach was used, so 

that geodynamic trends in subduction zone and wedge processes could be quantified 

as a function of slab angle. Subduction angles are varied from 10° to 45°, in 5° 

increments. This range encompasses the main angles of interest in the subducting 

Nazca plate, which are 10° and 30° at S15° and S33°. 
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6.5.2 COUPLING LENGTH 

As aforementioned, the coupling length (x/c) is the distance downslab from the 

corner location (xc), where the slab and wedge velocities become fully coupled. The 

mechanism of coupling is an important factor in subduction zone geodynamics. In 

previous studies by Zhong and Gurnis [1996]; Kincaid and Sacks [1997]; Gutscher 

[2002]; van Keken et al. [2002]; Billen et al. [2003]; Conder [2005]; Kneller et al. [2005]; 

Billen and Hirth [2007, 2005]; van Keken et al. [2008]; Wada et al. [2008]; Wada 

and Wang [2009] the coupling length or method has been shown to play a key role 

in determining the wedge temperature and therefore subduction-related volcanism 

and mineral composition. In these studies, the coupling was incorporated by means 

of variable viscosity functions and/or by functions prescribing certain slab-wedge 

interactions through boundary conditions. 

The method used in this study (equation 23) allows for a gradual increase of the 

velocity down-slab until the fully coupled velocity value is reached. This method is 

chosen because it allows the coupling distance to be changed while still maintaining 

a consistent dependence on subduction angle, so the model response to both of these 

parameters can be simultaneously explored. The coupling length distances Xfc are 

varied from 14 km to 99 km downslab. 

6.5.3 SLAB VELOCITY 

The third parameter examined was slab velocity ( u o ) ,  which is simply the rate 

at which the subducting slab descends into the mantle. Studies by various authors 

have shown differing results regarding the effect of the slab velocity on subduction 

zone geodynamics, with some finding the velocity changes the model little and oth­

ers showing substantial velocity dependence (e.g. Springer [1999]; Wada and Wang 

[2009]). These differences can largely be attributed to the treatment of the wedge. 

Wada and Wang [2009] used a variable viscosity wedge while Springer [1999] con­

trolled an isotherm in the wedge which was varied systematically to simulate different 

conditions. This study applies subduction velocities of 3, 5, and 7 cm/yr to three 

different subduction angles, 10, 30, and 45°. All models had a coupling length (Xfc) 

of 60 km. 
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6.6 QUANTIFICATION OF MODEL RESULTS 

Three primary measures are used to quantify the differences between the various 

model runs. One measure focuses on the temperature at the corner of the mantle 

wedge, the second quantifies the temperature structure of the shallow portion of the 

subducting slab near the corner point, and the third describes the thermal structure 

of the wedge in a triangular zone near the corner point (Figure 77). All measures are 

similar to those used by van Keken et al. [2008]. 

The first measure used to quantify the temperature of the system is a singular 

point downslab of the corner point at a depth of 60 km, called the X60 point, van 

Keken et al. [2008] use a 45° slab angle, it is referred to as the (60,60) point. In this 

study, however, the description of the point needs to be redefined to account for the 

subduction angle (6): 

The points used in quantification of the slab temperature are determined as fol­

lows. At a given x-distance which depends on the subduction angle (0 ), a vertical 

line is dropped from the slab-wedge interface, similar to a plumb line. The number 

of model grid points defining the line is set to be seven, so jmax = 7 in equation 26, 

below. The use of seven points extends the line for a distance of 36 km, through the 

region of maximum thermal variation at the top of the subducting slab. Depending 

on whether local or regional temperature variations are being quantified, a total of 

either one or seven lines are used. Thus, imax = 1 or 7 in equation 26, below. If one 

line is used then it is selected to be the first, or shallowest, plumb line in the model. 

The reported temperature measure, Taiab, is simply the square root of the sum of the 

squares of the temperatures along the line(s), divided by the number of points: 

The measure of the wedge temperature, TWEDGE, is the square root of the sum 

of the squares of the temperatures in the portion of the wedge nearest the corner 

point. Across all models, the wedge temperatures are sampled to the same depth. A 

variable number of x-points were included, depending on the subduction angle (0): 

(25) 

Z£r* (rfggM, (60 + i(9-6)) + j(6)|)2 

(imax)(jmax) 
(26) 
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Figure 77. Data points used for calculating temperatures of interest for 45° and 10° 
models. Red x's = slab, blue regions are for wedges, and black circles are for X60. 

6.7 RESULTS AND DISCUSSION 

In this study, the two subduction angles of primary interest are 10° and 30°, 

because they are directly relevant to the Nazca plate and the dynamics of South 

American subduction. Thus, these subduction angles will be a focus for the discussion 

of model predictions. Another focus will be the 45° subduction angle, both for 

examining a more general case and for looking at the geodynamics of a higher-angle 

slab. Syracuse and Abers [2006] show 18 of 52 subduction systems studied had 

slab dips within 5° of 45°. In some ways, therefore, the 45° model temperature 

and flow fields can be taken to represent a more general subduction zone system. 

This Results section will first present a general overview of each of the three main 
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parameters (subduction angle, subduction velocity, and coupling distance). Then, 

summary plots of the entire suite of model results will be discussed. 

6.7.1 SUBDUCTION ANGLE 

Model-predicted temperatures vary strongly with subduction angle. For a 10° 

angle, temperatures in the mantle wedge near the corner point are very cold, less 

than 300°C (Figure 78). This is similar to the results found by Gutscher [2002], 

who predicted wedge temperatures of 350-400°C for a shallow subduction angle. 

The model temperatures are also in agreement with observed surface geographical 

features, mainly the lack of volcanism above the region with this shallow subduction 

angle [Gutscher, 2002]. Gutscher [2002] attributed the lack of volcanism to the colder 

temperatures, where the hot mantle material does not travel as far into the corner. In 

contrast, for the 30° subduction angle, wedge temperatures are significantly higher, 

varying between 600 and 700°C (Figure 79). In the 45° model (Figure 80), there are 

increased corner flow and higher temperatures in the wedge than the previous two, 

lower-angle models, suggesting the likelihood of active surface volcanism. Syracuse 

and Abers [2006], in fact, found frequent volcanoes near subduction zones of this 

type. 

o 
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Figure 78. COMSOL model predicted temperature and flow-field for 10° subduction 
angle and couple distance of 60 km. 
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Figure 79. COMSOL model predicted temperature and flow-field for 30° subduction 
angle and couple distance of 60 km. 

6.7.2 SUBDUCTION VELOCITY 

Globally, subduction zone velocities vary from around 1 cm/yr to 9 cm/yr [Schel-

lart et al., 2007]. The segment of the Nazca plate which is of interest in this study 

moves at a rate of 7 cm/yr [Schellart et al., 2007], so model runs for the 10° and 30° 

subduction angle with this slab velocity would best represent the dynamics of the 

Nazca-South American system (Figures 81c, 82c). The general trend observed due 

to a reduction in velocity (from 7 cm/yr to 3cm/yr or 5 cm/yr) is a decrease in the 

model-predicted wedge temperatures (Figures 81a-b-c and 82arb-c), similar to work 

by Wada and Wang [2009]. For example, in the 30° models, the wedge temperature 

changes from ~600°C for 7 cm/yr to ~400°C for 3 cm/yr. The cooler wedge at 

slower subduction rates could increase earthquakes, because more cold material is 

available for interplate coupling and brittle failure to occur [Gutscher, 2002]. The 

general case of 45° exhibits the same trend as seen in the 30°Cases. That is, as the 

velocity decreases, so does the wedge temperature (i.e., from 850°C in the 7 cm/yr 

model to 680°C in the 3 cm/yr case) (Figure 83). 

The method used to examine the role of the coupling distance is to take the 

6.7.3 COUPLING DISTANCE 
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Figure 80. COMSOL model predicted temperature and flow-field for 45° subduction 
angle and couple distance of 60 km. 
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Figure 81. 10° Model predicted temperatures for various slab rates. 
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Figure 82. 30° Model predicted temperatures for various slab rates. 
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Figure 83. 45° Model predicted temperatures for various slab rates. 
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difference between two temperature solutions for different coupling lengths, at the 

same angle and with a slab velocity of 5 cm/yr. For a 10° subduction angle, the 

temperature comparisons for Xfc70-Xfc60 and Xfcl20-Xfc60 show little difference in 

the wedge, only approximately 10°C (Figure 84). However, for the slab, there is a 

large difference of about 60°C for Xfcl20-Xfc60 (Figure 84b). The colder slab tem­

peratures for the longer coupling length could correspond to more earthquakes at 

greater depths, since the slab would remain in the brittle failure regime for a longer 

period of time. 

In contrast to the 10° model, for the 30° model temperature differences occur in 

the wedge as well as the slab for both Xfc7G-Xfc60 and Xfcl20-Xfc60 (Figure 85). 

The farther downslab from the corner point the coupling occurs, the warmer the 

temperature is at the coupling distance: For the Xfcl20-Xfc60 comparison, the tem­

perature difference is 100°C (Figure 85). In the wedge, a cooler region (up to 40°C 

less) develops upslab of the coupling distance as Xfc is increased (Figure 85b). The 

slab also has cooler temperatures as the coupling distance increases, similar to the 

10° system. One implication of these results is that for a 30° system the coupling 

distance may be a strong control on how far inland, if at all, volcanoes may form, 

because an increase in coupling distance delays the temperature increase in the wedge 

and slab. 

In the 45° model case, the longer the coupling distance, the warmer the temper­

ature of the wedge is at the full couple depth (Figure 86). In temperature difference 

plots, cold lobes occur upslab of the coupling point. Both of these trends were pre­

dicted for the 30° case as well. However, temperature differences are more localized 

for the 45° model compared to the 30° model. This may indicate that the 45° system 

is less sensitive to coupling distance than the 30° case, potentially because of the 

increased flow in the corner described earlier (Figures 79 and 80). The greater flow 

in the 45° model brings an increased amount of warm mantle material through the 

corner. So, even when delaying the couple the extra material flow tends to homog­

enize wedge temperatures. Thus, higher flow rates could act to homogenize warm 

mantle temperatures. However, the system would still potentially have an increase 

in earthquakes, if the coupling distance was larger. 

6.7.4 SUMMARY PLOTS OF MODEL RUNS 

In this section, suites of model runs are summarized using the measures of wedge, 
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(b) Xfcl20-Xfc60 

Figure 84. 10° Model predicted temperatures comparison for different coupling 
values. The red x's are the locations used to calculate slab temperatures. 
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Figure 85. 30° Model predicted temperatures comparison for different coupling 
values. The red x's are the locations used to calculate slab temperatures. 
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Figure 86. 45° Model predicted temperatures comparison for different coupling 
values. The red x's axe the locations used to calculate slab temperatures. 
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slab, and X60 point temperatures described above. General trends that emerge from 

the parameter space exploration are presented, and their geodynamic implications 

are discussed. 

For the wedge, there is a direct relationship between subduction angle and temper­

ature (Twedge), over a wide range of subduction angles (10-45°) and coupling lengths 

(10-100 km) (Figure 87). For example, wedge temperature increases from ~ 250°C 

for 10° subduction to ~ 750°C for 45° subduction. The relationship between coupling 

distance and Twe(tge for a given subduction angle is more complex. In the shallow-

angle subduction zones (except 10°), the shorter the coupling length, the lower Twedge 

. However, for steeper subduction angles like 45°, the smaller coupling lengths pro­

duce higher wedge temperature than the longer coupling lengths. For a 45° angle, 

wedge temperature is approximately 780°C for a coupling length of ~20 km, but it 

is approximately 710°C for a coupling length of ~100 km. The cross-over between 

the two coupling length trends occurs at 30°. For higher subduction angles, shorter 

coupling lengths allow for increased corner flow (higher quantity of warmer material) 

to move into the wedge. By delaying the couple, the velocity is slightly lower in the 

corner and less warm material flows into the corner region. 

In the wedge temperature plot (Figure 87), the spread of Twedge with coupling 

distance for a given angle is dependent on the subduction angle. For a 10° angle, the 

spread is very small (8°C). This is consistent with the temperature difference plots 

of Figure 84 which had very little temperature variation between different coupling 

lengths. However, for steeper angles (45°) the spread is much larger (70°C), which is 

also in agreement with the temperature difference plots of (Figure 86). The smaller 

spread for shallower angles (e.g. 10°) can be attributed to lower corner flow in the 

wedge, which causes the wedge to be colder overall and less responsive to velocity 

changes in the wedge. The small spread at 35° may be related to the transition 

from the shallower angles (where heat transfer in the wedge due to conduction in 

the wedge is relatively more important) to the larger angles (where heat transfer in 

the wedge due to conduction is relatively less important). At 35°, the longer couple 

distance is in the middle of the dots, which creates a smaller spread. Focusing on 

just the longer coupling distances at each angle in Figure 87 shows that the longer 

coupling distance systematically moves from hotter to colder temperatures and the 

inversion occurs at 35°. 

For the slab, two methods were employed to examine temperature trends, the 
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Subdudion Angle (°) 

Figure 87. Model predicted wedge temperatures, calculated from equation 27, for 
various angles and coupling lengths. Results shown are for a subduction velocity of 
5 cm/yr. 
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single and multi-line methods. The methods are intended to help quantify the slab 

temperature structure near the slab-wedge corner (single-line method) as well as 

for the slab in general (multi-line method). In general, in the single-line slab 

method correlates positively with subduction angle (Figure 88). Taiab ranges from a 

low value of 320°C for a 15° angle, to 460°C for a 45° degree angle. The 10° model 

is an exception to this trend. It has a temperature of approximately 370°C. The 10° 

model may differ because a significant source of slab heating for this angle is from 

the mantle material beneath the slab. 

As in the case of the wedge temperatures, the response of the single-line slab 

temperature to coupling distance at a given angle is complex. There is a cross-over 

between angles of 15° and 20°. For shallower angles, the shortest coupling lengths 

have the warmest temperatures, although the spread in temperatures as a function 

of coupling length is small (~ 10°C). For higher angles, the longer coupling lengths 

are warmer than the shorter lengths. For example, for a 30° subduction angle, the 

Xfcl20 temperature is 385°C compared to 363°C for Xfc60. An exception is the 45° 

model, which shows the same trend as the 10 and 15° models of having the shortest 

coupling length being the warmest. For the 45° model, single-line Twedge is 464°C for 

Xfc60 but 458°C for Xfcl20. 

These trends may be explained by how different coupling distances alter the 

material flow in the wedge, which indirectly affects the slab. Two effects of coupling 

length in the wedge can be to cause a cool spot to be generated upslab of the coupling 

point, and a warmer spot to develop at the coupling point. Since the single-slab Taiab 

is calculated at the couple point, when a warmer spot is built up at the coupling 

distance, the slab temperature will be higher. This is the effect seen from 20-40°. 

The shallow angles of 10° and 15° are not significantly influenced by the value of 

the coupling distance, and the cold spot generated by the delay is larger than the 

increase at the coupling point. 

The second Ts[ab quantification method incorporates seven sampling lines (Figure 

89). For the multi-line sampling method, the trend with subduction angle is from 

hot temperatures (583-593°C) at 10°, to cool temperatures (469-513°C) at 35°, the 

inversion value, and back to warmer temperatures (471-530°C) at 45° (Figure 89). 

The inversion arises because the slab is heated from below for a longer period when 

the angle is shallow. However, there is balance between heating from below and 

material flow in the wedge. As the angle increases the heating from below decreases 
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SubducMon Antfe (°) 

Figure 88. Model predicted single-line slab temperatures, calculated from equation 
25, for various angles and coupling lengths. Results shown are for a subduction 
velocity of 5 cm/yr. 
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while the material flow in the wedge increases. The corner flow heating of the slab 

shows dominance for angles greater than 35°. This would imply that for the Nazca 

plate, the dominant mechanism for heating is from beneath the slab and not from 

wedge flow. 

When a larger portion of the slab is sampled in the multi-line method, several 

features of the model suite become apparent. One feature involves the variation of 

Taidb with coupling length for a given angle. For all angles, the hottest temperatures 

occur at the shortest coupling distances. The second trend is that the temperature 

difference between the largest and smallest coupling distances increases with subduc­

tion angle, from 10°C at an angle of 10°, to 58°C at an angle of 45°. Compared to 

the single-line method, the multi-line method shows a larger response to change in 

coupling distance. For example, for a subduction angle of 30°, the temperature dif­

ference between the largest and smallest coupling distance was 21°C in the single-line 

method, while for the multi-line method, the difference was 38°C. The larger differ­

ence for the multi-line method may be due to the fact that the single-line method 

samples a limited region near the slab-wedge corner. 

For the X60 point, the overall trend of temperature with subduction angle is sim­

ilar to that of the slab (Figure 90). The inversion or inflection point in the predicted 

temperatures occurs at an angle of 25°. For a given angle, the X60 temperatures are 

higher for a shorter coupling distance. The X60 point, unlike the slab temperature 

measures, seems to be more sensitive to the coupling length even for small angles (10 

and 15°), showing a variance of ~20°C. This could be because the slab temperatures 

measures are averaged over a number of points. 

As discussed earlier, the wedge and slab temperatures are sensitive to the velocity 

of the downgoing slab (Figures 91,92,93). For both the single-line and multi-line slab 

measures, increasing subduction velocity results in a decrease in Tsiab. For example 

the multi-slab measure for a 30° subduction angle decreases from 521 to 509°C as 

velocity is increased from 3 cm/yr to 7 cm/yr (Figures 91,92). The slab temperature 

decrease with velocity can be attributed to plunging cold material downward faster, 

thus giving the material less time to heat up by either convection or conduction. The 

X60 point shows a similar trend to the slab for all angles (Figure 94). 

The wedge temperatures show a more complex relationship with subduction ve­

locity. For the 10° subduction angle, as the velocity increases the temperature de­

creases, from 345°C (3 cm/yr) to 278°C (7 cm/yr) (Figure 93). However, for 30 and 
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Figure 89. Model predicted multi-line slab temperatures, calculated from equation 
25, for various angles and coupling lengths. Results shown are for a subduction 
velocity of 5 cm/yr. 
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Subduebcn Angle (°) 

Figure 90. Model predicted X60 temperatures for various angles and coupling 
lengths. Results shown are for a subduction velocity of 5 cm/yr. 
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45° angles, when the slab velocity increases the temperatures increase, (i.e., for a 45° 

angle, from 675°C for 3 cm/yr to 843°C for 7 cm/yr). This result is related to a 

combination effect of slab heating from below and convection in the wedge. When 

the 10° slab subducts at higher velocities, the cooler slab from the faster subduction 

contributes to the cooling of the wedge. At the same time, corner flow pulls very 

little warm material into the wedge corner. For the higher angle slabs, the faster the 

velocity the more warm material is pulled further into the wedge. 
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Figure 91. Model predicted single-line slab temperature comparison for varying 
subducting velocities and angles. 

6.7.5 IMPLICATIONS FOR NAZCA SUBDUCTION GEODYNAMICS 

One goal of this study was to better understand how each of the parameters inves­

tigated can influence the geodynamics of the Nazca subduction zone. As mentioned 

earlier, the models of most interest are the 10° and 30° simulations, which represent 

adjacent angles in the downgoing Nazca plate at S33°. The 10° model showed sig­

nificant sensitivity to slab velocity. Varying slab velocity from 3 cm/yr to 5 cm/yr 

resulted in temperature changes in the wedge of as much as 67°C (Figure 91,92). 

The single-slab and X60 temperature measures also showed large responses to slab 

velocity, with temperature changes of up to 59°C in the slab and 63°C for the X60 
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Figure 92. Model predicted multi-line slab temperature comparison for varying 
subducting velocities and angles. 
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Figure 94. Model predicted X60 temperature comparison for varying subducting 
velocities and angles. 

point. On the other hand, the 10° models are not sensitive to coupling length. As 

coupling length is varied, the spread in temperature predictions for the wedge, slab, 

and X60 point is a maximum of about 16°C (Figures 87-90). 

For the 30° model, the multi-line Tsiab is sensitive to the coupling length, with 

a temperature variance of 50°C over the range of coupling lengths modeled (Figure 

89). The wedge also shows some sensitivity to coupling length with temperature 

results varying by 30°C (Figure 87). However, the parameter that impacts Twedge the 

most is the slab velocity, with temperatures varying by as much as 190°C. The X60 

and single-line slab temperatures showed less sensitivity to changing the velocity, 

with temperatures varying by about 40° C. The multi-slab temperature was the least 

responsive to velocity, with temperatures changing by only 12°C. 

Overall, the largest changes in temperature came from varying the subduction angles 

themselves. The wedge temperature varied between the two angles by 500°C. The 

single-line slab and X60 temperatures changed by 70 and 60°C, respectively. Again, 

the multi-line method was least responsive to temperature variations, changing by 

only 20°C at most. 

Thus, this study predicts that in a subduction zone such as the Nazca region, 
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where downgoing slabs of two different angles are juxtaposed, the greatest influence 

on predicted mantle temperature fields will be the slab angles. For example, in a 

three-dimensional model of the Nazca region where two boundaries of the model are 

proscribed to be 10° and 30° downgoing slabs, the interaction of the different sub-

duction angles would likely impact the model more than the slab rate or coupling 

distance. Uncertainties in subduction rate of 1 or 2 cm/yr would probably not affect 

the general geodynamics of the system as much as uncertainties in slab angle. 

6.8 CONCLUSIONS 

This investigation uses a series of two-dimensional numerical models to quantify 

the sensitivity of subduction zone geodynamics (specifically, thermal fields) to sub­

duction angle, subduction velocity, and coupling distance. The main conclusions of 

this investigation of are: 

1. Subduction angle has the largest impact on model dynamics. Varying the sub­

duction angle resulted in temperature variations of up to 500°C in the wedge. 

These variations result from the strong dependence of corner flow on subduction 

angle. 

2. The second most important variable is the subduction rate, and the coupling 

distance influences the models least. Varying subduction rate and coupling 

distance resulted temperature changes of a 70°C or less in the wedge for a 

given angle. These relatively smaller changes are due to the angle dictating the 

overall corner flow regime; these other parameters cause variation within the 

angle. 

3. In the subducting Nazca plate, where angles of 10° and 30° are adjacent, the 

juxtaposition of different angles is likely to be an important control on the 

geodynamics of the convergent margin. Uncertainties or errors in the velocity 

of the downgoing plate and the assignment of coupling distance are unlikely to 

qualitatively affect patterns of mantle temperature and mantle flow. 

The results of this chapter can be expanded upon to a create a 3D numerical 

model. Knowing the influence the various parameters have in subduction zone dy­

namics will allow for a better understanding when choosing boundary values for a 

3D system. The 3D model in chapter 7 is designed to study the transition zone slab 

that results from a multi-angle subduction process. 
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CHAPTER 7 

3D NUMERICAL MODELS 

In this chapter a 3D numerical model is used to explore the transition region 

between two different subducting angles. This work builds upon the results of chap­

ter 6 through incorporating the model predicted temperature and flow solutions as 

boundary conditions. The results from the 3D calculations are used in analysis of the 

transition zone by brittle-ductile maps ands ductile-deformation mechanism maps. 

The model predicted results are also examined for changes in flow patterns due to 

the two subduction angle process. This chapter will be part of a paper submitted to 

a peer review journal in the Summer of 2012 with co-author J. Georgen. 

7.1 ABSTRACT 

The downgoing Nazca plate has adjacent subducting angles of 10° and 30°. A 

steady-state, 3D finite element numerical model is used to better understand the 

transition region between the juxtaposed angles. The model space is generated by 

using 2D solutions as boundary conditions for the trench-perpendicular "endcaps" of 

the numerical domain. The overall 3D model contains a rigid overlying plate, two 

subducting slabs (10° and 30°), and a mantle wedge with a geometry that changes 

in the z-direction. Models solve the conservation equations of mass, momentum, and 

energy, neglecting heat production and thermal buoyancy and assuming isoviscous 

mantle flow. Temperature solutions from the 3D models are used in calculations to 

quantify the brittle and ductile zones of the model domain and deformation mecha­

nisms for the slab between the end caps. Three main conclusions can be drawn from 

the model and calculations. First, trench-parallel flow is predicted to occur during 

the subduction process. Also, the uppermost portion of the model space shows a 

continuous brittle section for distances of up to ~ 180-240 km perpendicular to the 

trench. Last, analysis of a region at a distance of 300 km from the trench suggests 

that the slab is mostly in an 'inelastic' state, with a small portion in power law creep. 
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7.2 INTRODUCTION 

The downgoing Nazca plate around S33° has adjacent subduction angles of 10° 

and 30°. Seismic data from Anderson et al. [2007] show a clear distinction between 

these two angles over an along-trench distance of about 100 km. The purpose of 

this study is to investigate mantle geodynamics in the region of subduction angle 

transition using a 3D finite element numerical model. The 3D model is an extension 

of the 2D models discussed in chapter 6. It is generated by using 2D solutions as 

boundary conditions for the trench-perpendicular "endcaps" of the model domain. 

Additionally, temperature solutions from the 3D models are used in calculations 

to quantify the brittle and ductile zones of the model domain. Brittle-ductile maps 

are plots that indicate where a system will fail by either a brittle mechanism or 

a ductile mechanism. Brittle strength laws are generally determined in laboratory 

settings, by measuring the fracture limits of a material like rock under different phys­

ical conditions to develop mathematical relations between stress and failure [Byerlee, 

1978; Sibson, 1981]. Ductile stress rheological laws are determined with statistical 

mechanics and experimental data, and generally involve a power law relation [Karato 

and Wu, 1993; Violay et al., 2010]. In this investigation, brittle and ductile stresses 

are calculated at each point in the 3D model, and the lower of the two values is as­

sumed to be the applicable failure mechanism at that point [Carminati et al., 2005; 

Conder, 2005; Violay et al., 2010, 2012]. The patterns of deformation mechanism are 

then used to discuss the nature of the downgoing Nazca plate in the region where 

subduction angle transitions. 

7.3 DESIGN OF 3D MODEL AND NUMERICAL METHODOLOGY 

As mentioned above, the 3D model is created by using 2D solutions for 10° and 

30° subduction zones as boundary conditions [van Keken et al., 2002, 2008; Conder, 

2005; Peacock and Wang, 1999; Dairies and Stevenson, 1992; Furukawa, 1993; Peacock 

and Wang, 1999]. The total length of the model in the along-trench (z) direction 

is 48 km (Figure 95). The overall 3D model contains a rigid overlying plate, two 

subducting slabs (10° and 30°), and a mantle wedge with a geometry that changes 

in the z-direction. To reduce the computations required, a triangular slice with a 

30° angle is cut out from the subducting slab. This region is of little interest in 

investigating Nazca subduction geodynamics, and the cut allows for a higher mesh 
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resolution in the wedge. 

•z-diraction 48km 

Figure 95. Numerical domain, showing two different subduction angles juxtaposed 
in a 3D model. Red arrowheads indicate direction of increasing value. 

Similar to chapter 6, the non-dimensionalized, steady-state conservation equar 

tions for mass, momentum, and energy were solved using COMSOL Multiphysics 

finite element software with UMFPACK. Chapter 6 provides most of the details of 

the applicable the model equations and parameters, and only differences between 

the 2D and 3D models are discussed here. For example, boundary conditions used 

are similar to the 2D models in chapter 6, with a few exceptions. On the trench-

perpendicular boundaries, the temperature solutions from the 2D models are used 
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for the conduction/convection boundary conditions (see chapter 6 Figures 78 and 

79), and symmetry boundary conditions are used when solving the Navier-Stokes 

equations. Because of numerical constraints, the 10° boundary "endcap" in the 3D 

domain is a shorter subregion (with length 1098 km) of the original, larger, 2D model 

(which was over 3000 km long). Thus, for the wedge inflow/outflow boundary on the 

10° side, the 2D model solutions were mapped to the length of the 3D model in 

the subduction-zone-perpendicular (x) direction. Several ridges (e.g. Nazca Ridge, 

Juan Fernandez Ridge, and Chile Rise) interact with the South American subduction 

boundary. Studies such as Kelleher and McCann [1976, 1977]; Pilger [1981] have in­

vestigated the potential effects of ridge subduction on convergent margin kinematics 

and dynamics. However, it is beyond the scope of the present study to include factors 

relating to ridge subduction, including buoyancy and changes in the crustal thickness 

of the downgoing oceanic plate. 

The angle cut into the slab is assigned to be an inflow boundary, corresponding 

to a downgoing plate with subduction velocity of 7 cm/yr adjusted for the different 

subduction angles. The model is meshed so that the wedge zone has a resolution 

between 5-10 km. Resolution is 10 km elsewhere. This results in 119,000 tetrahedral 

elements in the numerical domain (Figure 96). Use of a coarser mesh with resolu­

tion ranging from 5-20 km yielded maximum temperature differences of 25°C, which 

occurred in non-wedge regions for trench-perpendicular (x) distances of 270 km and 

greater. These relatively minor temperature differences (over the 1300°C range of 

the model) suggest that a mesh of 5-10 km is sufficient to capture the geodynamical 

processes of interest. 

7.4 BRITTLE-DUCTILE TRANSITION TEMPERATURE 

A brittle-ductile transition temperature may be calculated by comparing brittle 

strength to ductile stress at a given point. Two different approaches are used to 

determine brittle strength. The first uses Byerlee's law and the second is from Sibson 

Byerlee [1978]; Sibson [1981]. The ductile stress is calculated according to power-law 

relationships shown by Karato and Wu [1993]; Violay et al. [2010, 2012]; Carminati 

et al. [2005]. 

7.4.1 BRITTLE STRENGTHS 

Byerlee [1978] established a relationship between stress and faulting for various 
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rock types, known as Byerlee's law. For normal stresses (<ry) greater than 200 MPa, 

Byerlee's law is 

r = (<ti — <r3) = 50 + .60<r„ (28) 

Where r is the brittle strength and <xn is the normal stress. In this calculation, the 

overburden stress is used for the normal stress. The overburden stress is simply the 

pressure caused by the rock material overlying a given depth, and it is defined as 

on = <ym = pgy (29) 

where p  is the density of the material (3300 kg m~3), g is gravity ( 9.8 m s ~ 2 ) ,  and 

y is the depth or height of material in meters. 

The second method used to determine brittle strength is Sibson's law [Sibson, 

1981], given in Equation 30 [Carminati et al., 2005]. This law is based on the Navier-

Coulomb frictional criterion and it predicts a linear increase of yield stress with depth. 

In Sibson's law, /3 is a fault type parameter (assigned a value of 3), p is density (3300 

kg m~3), g is gravity (9.8 m s"2), y is depth in meters, and A is a pore-fluid pressure 

ratio, which is the ratio between fluid pressure and lithostatic load. A is 0.4 for low 

fluid pressure and 0.8 for high fluid pressure. A low fluid assumption, or dry upper 

mantle, was used in this study. 

0"i - 03 = 0pgy{ 1 - A) (30) 

7.4.2 DUCTILE STRESSES 

Karato and Wu [1993] presented a relationship between strain rate (e), shear 

stress (a), pressure (P), grain size (d), and temperature (T) for mantle rock 

i - A f Z n l r - p(-^^) (3D 

where A is a pre-exponential factor,p, is the shear modulus, b is the length of the 

Burgers vector, n is the stress exponent, m is the grain size exponent, Ea is the 

activation energy, Va is the activation volume, and R is the gas constant. This 

equation can be modified to solve for a as 

/  « € . < / . _  . E a  —  P V a . ^  i  
*  =  A {  b r  e X p  (  R T  } ) "  ( 3 2 )  

Equation 32 can be used to find stress for either the dislocation or diffusion creep 

regime, depending on the choice of constants as shown in Table 15 [Karato and Wu, 

1993]. 
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Table 15. Parameter Values for Diffusion Creep and Dislocation Creep in a Dry 
Upper Mantle from Karato and Wu [1993] 

Quantity Diffusion Creep Dislocation Creep 
Preexponential factor A, s-1 8.7E(15) 3.5E(22) 

Stress exponent n 1 3.5 
Grain size exponent m 2.5 0 

Activation Energy Ea, kJmol-1 300 540 
Activation Volume Va, m?mol~l 6E(-6) 2E(-5) 

Shear Modulus G, MPa 80 80 
Lattice Spacing b, nm 0.5 0.5 

Grain Size h, mm 3 3 
Gas Constant R, JK~lmol~l 8.3144 8.3144 

The second method of calculating power creep stress from Carminati et al. [2005]; 

Violay et al. [2010, 2012] is given by 

i = DanexP(-^) (33) 

The equation relates the strain rate (e) to a material constant (D), stress exponent 

(n), activation energy (Ea), gas constant (R), and temperature (T). In this investiga­

tion, the value used for the strain rate comes from the kinematic models in chapter 

5, and the other constants are given in Table 16 [Carminati et al., 2005; Violay et al., 

2012]. 

Table 16. Parameter Values for Dislocation Creep from Carminati et al. [2005]; 
Violay et al. [2012] 

Quantity Violay Carminati 
Activation Energy Ea, kJmol-1 

Material Constant D, (MPa~ns~l) 
Gas Constant R, JK~lmol~l 

Stress exponent n 

456 
610 

8.3144 
3.6 

449 
2430 

8.3144 
2.6 

For each point in the model domain, the brittle-ductile transition is calculated 

according to each of the two brittle failure laws and each of the two power-law ductile 
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deformation equations. Thus, a total of four different brittle-ductile transition maps 

are determined for the 3D model. As mentioned above, the brittle-ductile transition 

is taken to be the lower of the two values (brittle failure vs. ductile stress). 

7.5 RESULTS AND DISCUSSION 

7.5.1 MODEL-PREDICTED TEMPERATURES AND FLOW FIELDS 

Slices through the model domain along y-z (or trench-parallel) planes show how 

the predicted temperature and velocity fields of the subduction zone change with 

time (or, equivalently, distance away from the trench) (Figures 97-99). Slices are 

taken at 60 km intervals, and only the y-z components of mantle flow are shown. The 

model-predicted temperatures show a cool region with relatively complex geometry in 

between the 10° and 30° "endcaps." This cooler material is interpreted to correspond 

to the slab region between the two different subducting angles. It is clear that 

the model-predicted slab does not take a linear shape, because of viscous flow and 

material advection due to temperature gradients. 

For the flow fields, close to x = 0 km, the y-z velocity only has components in the 

y-direction. However, as the distance from the trench increases to 60 km, temperature 

variations between the two subducting angles cause flow with a z-direction component 

to occur. The onset of a z-component velocity corresponds to the opening of the 

wedge on the 30° side of the model domain. The multi-directional flow is caused by 

the cooler 30° slab penetrating deeper earlier than the 10° slab. For distances greater 

than x = 60 km, there is always a z-component of velocity present. 

Profiles extracted at constant depths quantify the variation of temperature 

throughout the model space (Figures 100-102). The constant-depth profiles can be 

interpreted to represent how the temperature of mantle material changes at a given 

depth through the course of the subduction process. The selected depths are 150, 

200, 250, and 300 km. In general, depths shallower than 300 km show significant 

variations. For example, for 150 km depth at x = 120 km, subduction of the 30° 

slab is apparent as a ~100°C temperature decrease at z = 48 km (i.e., the 30° angle 

side of the model domain). The shallower 10° slab has little effect on the predicted 

temperature fields at this distance from the trench. By x = 240 km, there is a signif­

icant and roughly linear temperature variation of 800°C at a depth of 150 km. This 

large difference results from the center of the 30° subducting slab passing through 
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Figure 97. Model-predicted temperatures and y-z velocities for x-distances of 0-120 
km from the trench. The left side of each panel (at z = 48 km) corresponds to the 
30° subduction angle and the right side (at z = 0 km) to 10° subduction. 
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Figure 98. Model-predicted temperatures and y-z velocities for x-distances of 180-
300 km from the trench. The left side of each panel (at z = 48 km) corresponds to 
the 30° subduction angle and the right side (at z = 0 km) to 10° subduction. 
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Figure 99. Model-predicted temperatures and y-z velocities for x-distances of 360-
420 km from the trench. The left side of each panel (at z = 48 km) corresponds to 
the 30° subduction angle and the right side (at z = 0 km) to 10° subduction. 
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this plane. 

At a trench-perpendicular distance of x = 300 km, however, there is no longer a 

roughly linear variation of the slab temperature profile at a depth of 150 km. The 

profile is relatively hot on the 10° subduction side (z = 0 km), reflecting hot material 

in the lower portions of the 10° slab. As the z value increases to 36 km the tem­

perature decreases to 600°C, where the cold portion of the 30° subduction region is 

located. For greater along-trench (z) distances, the temperature begins to rise again, 

in accordance with the presence of the mantle wedge. 

At x = 420 km, the subduction of the colder slab material on the 10° side of 

the model is evident depths of 150 km, as the temperature is 200°C cooler at z = 0 

km for this x-distance than at x = 60 km or x = 120 km. The along-profile thermal 

variation is decreased because the majority of the 30° slab has moved past this depth. 

The minimum temperature along the profile, 1000°C, is still located at z = 36 km. 

Overall, the general pattern of temperature variations for 150 km depth is largely 

repeated for the other, greater depths, with the x-distance at which the maximum 

thermal variation along a given profile occurs increasing systematically as a function 

of the profile depth. 

7.5.2 BRITTLE-DUCTILE MAPS 

Brittle-ductile maps provide insight into the deformation mechanism of the mantle 

at a given point in the model domain. As mentioned above, brittle-ductile maps were 

made using all four combinations of brittle and ductile equations. The results from 

using equations 30 and 33 are shown in Figures 103-105, while the results from using 

equations 28 and 33 are shown in Figures 106-108. In both sets of plots, a continuous 

region of brittle material occurs between the two subducting angles in the top portion 

of the model, through a distance of 180 km from the trench. However, at x = 240 

km, Figure 107 shows a ductile region forming at approximately y = 100 km and z 

= 35 km, while Figure 104 indicates a brittle region. For both cases, between x = 

240-300 km, the top portion (y<100 km) of the model domain is predicted to undergo 

brittle failure, while greater depths are primarily ductile. Maintaining brittle failure 

to these depths is in good agreement with reported earthquake hypocenter locations. 

Cahill and Isacks [1992]; Anderson et al. [2007] both find earthquakes on the 30° side 

of subduction at these depths. 

As the distance from the trench increases, the downgoing plate quickly becomes 



168 

1200 

O 1000 

£ 

i 
i 
E 

2001 ' ' • • 
45 40 35 30 25 20 15 10 5 

Length (km) 

(a) x = 0 km 

« 1000 

& 

I £ 
E 
£ 

800 

200 45 40 35 30 25 20 15 10 5 
Length (km) 

(b) x = 60 km 

1200 

0 1000 

2 
| 

1 000 

200 1 1 ' ' 1 1 1 ' ' 
45 40 35 30 25 20 15 10 5 

Length (km) 

(c) x = 120 km 

Figure 100. Model-predicted temperatures at four depths (150 km, 200 km, 250 
km, and 300 km) for x-distances of 0-120 km from the trench. The left side of each 
panel (at z = 48 km) corresponds to the 30° subduction angle, while the right side 
(at z = 0 km) corresponds to 10° subduction. 
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Figure 101. Model-predicted temperatures at four depths (150 km, 200 km, 250 
km, and 300 km) for x-distances of 180-300 km from the trench. The left side of each 
panel (at z = 48 km) corresponds to the 30° subduction angle, while the right side 
(at z = 0 km) corresponds to 10° subduction. 
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Figure 102. Model-predicted temperatures at four depths (150 km, 200 km, 250 
km, and 300 km) for x-distances of 360-420 km from the trench. The left side of each 
panel (at z = 48 km) corresponds to the 30° subduction angle, while the right side 
(at z = 0 km) corresponds to 10° subduction. 
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ductile on the 30° side as the wedge continues to open and to provide hot mantle 

material to heat the top side of the slab. In Figure 108, the slab is predicted to be 

completely ductile by x = 360 km from the trench. However, Figure 105 shows that 

the 30° slab maintains a small region of brittleness over all x-distances modeled. It is 

possible that the conditions shown in Figures 103-105 may overestimate brittleness, 

because earthquakes are not reported to these depths on the 30° side of subduction 

[Cahill and Isacks, 1992; Anderson et al., 2007]. 

7.5.3 DEFORMATION MECHANISM MAP FOR THE SUBDUCTING 

SLAB 

Deformation mechanism maps can be used to show how a system deforms in 

response to stress (Figure 109). The deformation mechanism map is a plot of nor­

malized stress versus homologous temperature (Th) that is contoured for strain rate 

and divided into regions where different mechanisms dominate. The homologous tem­

perature is the mantle temperature divided by the melting temperature of olivine, the 

dominant mineral in the mantle. The melting temperature of olivine was calculated 

from a linear function with depth provided in equation 17 (see chapter 5). Mantle 

temperature can be determined from the 3D model-predicted temperature solutions. 

The strain rates for the 2D systems were calculated previously (see chapter 5). Val­

ues obtained were 1.1 x 10~14s-1 and 2.35 x 10~15s-1. 

To estimate the location of the slab in the model a linear interpolation is made 

between two slab depths of 54 km and 174 km, which represent the y-locations of the 

10° and 30° downgoing plate segments for a subduction age of 4.3 m.y. (Figure 110). 

This is the amount of time required for the slab to move 300 km perpendicular to 

the trench, the distance the two-angle subduction covers, at a rate of 7 cm/yr. The 

function used in the interpolation is given by 

y = —6km + 2.5 (z)km (34) 

The resulting line is shown on a plot of the model-predicted temperatures at x = 

300 km (Figure 110). The homologous temperatures calculated by extracting the 

model-predicted temperatures along this line are provided in Table 17. 

Assuming an average strain rate of 2.35 x 10~15s_1, and using the calculated ho­

mologous temperatures, the interpolated slab line is predominantly in the 'plasticity' 

region in the deformation mechanism map of Figure 109 [Ashby et al., 1977]. Part of 
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Figure 103. Brittle-ductile maps constructed using the rheological laws in equations 
30 and 33 for x-distances of 0-120 km from trench. Blue and red indicate brittle and 
ductile regions, respectively. The left side of each panel (at z = 48 km) corresponds 
to the 30° subduction angle, while the right side (at z = 0 km) corresponds to 10° 
subduction. 



173 

4A 40 36 30 2S 20 13 10 S 
Length (km) 

(a) x = 180 km 

44 40 38 30 2S 20 1S 10 S 
Length (km) 

(b) x = 240 km 

49 40 35 30 25 20 15 10 5 
Langth (km) 

(c) x = 300 km 

Figure 104. Brittle-ductile maps constructed using the rheological laws in equations 
30 and 33 for x-distances of 180-300 km from trench. Blue and red indicate brittle and 
ductile regions, respectively. The left side of each panel (at z = 48 km) corresponds 
to the 30° subduction angle, while the right side (at z = 0 km) corresponds to 10° 
subduction. 
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Figure 105. Brittle-ductile maps constructed using the rheological laws in equations 
30 and 33 for x-distances of 360-420 km from trench. Blue and red indicate brittle and 
ductile regions, respectively. The left side of each panel (at z = 48 km) corresponds 
to the 30° subduction angle, while the right side (at z = 0 km) corresponds to 10° 
subduction. 
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Figure 106. Brittle-ductile maps constructed using the rheological laws in equations 
28 and 33 for x-distances of 0-120 km from trench. Blue and red indicate brittle and 
ductile regions, respectively. The left side of each panel (at z = 48 km) corresponds 
to the 30° subduction angle, while the right side (at z = 0 km) corresponds to 10° 
subduction. 
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Figure 107. Brittle-ductile maps constructed using the rheologieal laws in equations 
28 and 33 for x-distances of 180-300 km from trench. Blue and red indicate brittle and 
ductile regions, respectively. The left side of each panel (at z = 48 km) corresponds 
to the 30° subduction angle, while the right side (at z = 0 km) corresponds to 10° 
subduction. 
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Figure 108. Brittle-ductile maps constructed using the rheological laws in equations 
28 and 33 for x-distances of 360-420 km from trench. Blue and red indicate brittle and 
ductile regions, respectively. The left side of each panel (at z = 48 km) corresponds 
to the 30° subduction angle, while the right side (at z = 0 km) corresponds to 10° 
subduction. 
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Figure 109. Deformation map across slab at x = 300 km. Red line shows the linear 
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et al., 1977]. 
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the line tracing out the deformation history of the slab goes between both brittle and 

ductile deformation mechanisms , which is in agreement with the brittle ductile maps 

of section 5.12. It be noted that the line drawn in Figure 110 does not go exclusively 

through the colder region which most likely defines the slab. The linear function 

is a useful approximation to give a first-order understanding of slab deformation. 

However, if the slab is instead defined based on an isotherm, then there would be 

discrepancies between the simple linear slab and the thermally-defined one. How­

ever, overall the results discussed here are in agreement with the kinematic model 

results in chapter 5 which had the slab in a non-ductile deformation state attributed 

to cataclastic flow. 

Table 17. Homologous temperatures for linear slope profile at x = 300 km 

Depth (km) Along trench distance (z,km) Temperature (K) TH 
174 48 743 .299 
162 42 820 .333 
144 30 894 .368 
132 24 1037 .431 
114 18 1179 .503 
84 12 1112 .482 
72 6 929 .407 
54 0 497 .221 



180 

1200 

1000 

1800 
9 

600 

400 

200 

o 
Q. 
E 
.9 

30 20 
Length (km) 

Figure 110. Linear interpolation for slab in 3D model. 

7.6 CONCLUSIONS 

1. Trench-parallel flow is predicted to occur during the subduction process. This 

viscous flow is a result of thermal gradients across the model space related to 

differential subduction of the two slab angles. 

2. The uppermost portion of the model space shows a continuous brittle section for 

distances of up to ~180-240 km perpendicular to the trench. The variation in 

distance depends on which equations are used for the brittle-ductile transitions. 

After this distance, the plate can maintain continuity but may due so as a 

combination of brittle-ductile behavior. 

3. The results of the linear profile, x = 300 km, used for the deformation mech­

anism map showed the slab to be mostly in an 'inelastic' state, with a small 

portion to be in power law creep. Overall these results are in good agreement 

with the mechanisms determined in chapter 5 which showed the slab to be 

deforming by cataclastic flow as well. 
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CHAPTER 8 

CONCLUSIONS 

In this thesis, several modeling and visualization techniques are used to explore 

the kinematics and dynamics of subduction zones. The geological regions studied 

are the Tonga and central Andean subduction zones, which both possess unique slab 

geometries. The modeling and visualization techniques include COLLADA models, 

kinematic modeling, and two- and three-dimensional finite element numerical mod­

els. 

One visualization technique is building COLLADA models for both regions, us­

ing data mined from GeoMapApp (http://www.geomapapp.org) and the published 

literature. These data models led to questions about the general tectonic history 

of the Tonga region and slab deformation in the Andes. For Tonga, several scenar­

ios are developed with animated COLLADA models. These models are designed to 

challenge the user to say "why" or "why not" based on geological and geophysical 

data. Construction of these engaging instructional resources blurred the boundaries 

between education and research as a new hypothesis emerged for the formation of 

the Tonga region. 

The COLLADA models developed are also used in educational testing to under­

stand their classroom learning benefits. In two studies, students' ability to learn with 

Google Earth lab activities is examined. The studies involve activities developed for 

Iceland and the animated COLLADA models for Tonga. The studies show positive 

learning gains regardless of gender or previous knowledge. That is, the findings sug­

gest that Google Earth can be an effective learning tool for non-majors. Thus, Google 

Earth also has potential efficacy for scientific literacy on a broad scale. To expand 

on the effectiveness of Google Earth as a learning tool, the use of client-server-client 

communication is also discussed in this thesis. Such communications enable virtual 

field trip developers to produce more interactive, efficient, and engaging learning ex­

periences. 

To investigate the unique Nazca plate geometry at S33°, tear and shear kinematic 

models are developed. The tear model assumes two plates moving independently over 

http://www.geomapapp.org
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the zone, resulting in a gap or separation between the two plate segments. For the sec­

ond model, heterogeneous simple shear is approximated using symmetrically nested 

slices of homogeneous simple shear. The models are used to calculate geophysical 

properties like strain rates and deformation mechanisms. The following conclusions 

are reached. First, the slab can accommodate two-angle subduction between 10° and 

30° for the 300 km flat-slab distance, where the slab may deform by predominantly 

cataclastic flow. Second, the plate may thin to a thickness of 50 to 80 km as a result 

of this deformation, but a continuous plate should still be maintained. 

To better understand the influence of parameters like subduction angle, slab veloc­

ity, and slab-wedge coupling on convergent margin geodynamics, a suite of numerical 

finite element models are created for general subduction cases. These models are not 

only used for the general 2D study of subduction processes but also as a framework 

for constructing 3D models of the Nazca plate at S33° as well. The 2D model results 

indicate that model-predicted temperatures show the greatest sensitivity to subduc­

tion angle. Subduction rate exerts the second most important control, while coupling 

length affects the model-predicted temperatures least. Thus, for the building of a 

3D model that juxtaposes two downgoing slab angles, plate dip is likely to be an 

important control on the geodynamics of the convergent margin. 

Finally, a 3D numerical model with two adjacent subduction angles of 10° and 

30° is constructed to study the unique slab dip transition region at S33° in South 

America. The boundary conditions are selected based on or using the solutions of 

the appropriate 2D numerical models. The model-predicted temperatures and flow 

fields are then analyzed in a series of trench-parallel vertical depth slices, to create 

brittle-ductile maps and possible deformation mechanisms of the subducting slab. 

The subducting plate shows a continuous brittle section for a distance between 180-

240 km perpendicular to the trench. Slab temperatures, determined using a simple 

linear depth profile, suggest the slab is mostly in a cataclastic flow state. This is in 

good agreement with the mechanisms determined with kinematic models. 



183 

BIBLIOGRAPHY 

Allmendinger, R. W., and T. Gubbels (1996), Pure and simple shear plateau 

uplift, Altiplano-Puna, Argentina and Bolivia, Tectonophysics, 259, 1-13, doi: 

10.1016/0040-1951(96)00024-8. 

Allmendinger, R. W., D. Figueroa, D. Snyder, J. Beer, C. Mpodozis, and B. L. Isacks 

(1990), Foreland shortening and crustaJ balancing in the Andes at 30° S latitude, 

Tectonics, 5(4), 789-809, doi:10.1029/TC009i004p00789. 

Alvarado, P., M. Pardo, H. Gilbert, S. Miranda, M. Anderson, M. Saez, and S. Beck 

(2009), Flat-slab subduction and crustal models for the seismically active Sier­

ras Pampeanas region of Argentina, Geol. Soc. Am. Mem., 204, 261-278, doi: 

10.1130/2009.1204(12). 

American Association for the Advancement of Science (1993), Benchmarks for Sci­

ence Literacy, Oxford Univ. Press, New York, NY. 

Anderson, M., P. Alvarado, G. Zandt, and S. Beck (2007), Geometry and brittle 

deformation of the subducting Nazca plate, Central Chile and Argentina, Geophys. 

J. Int., 171, 419-434, doi:10.1111/j.l365-246X.2007.03483.x. 

Arnaud, R., and M. C. Barnes (2006), COLLADA: Sailing the Gulf of 3D Digital 

Content Creation, A.K. Peters, Ltd., Wellesley, MA. 

Ashby, M. F., R. A. Verrall, H. H. Schloessin, E. H. Rutter, K. H. G. Ashbee, 

S. H. White, S. A. F. Murrell, and A. Kelly (1977), Micromechanisms of flow and 

fracture, and their relevance to the rheology of the upper mantle, Phil. Trans. R. 

Soc. Lond. A, 288, 59-95, doi:10.1098/rsta.l978.0006. 

Barazangi, M., and B. L. Isacks (1976), Spatial distributions of earthquakes and 

subduction of the Nazca plate beneath South America, Geology, 4, 686-692, doi: 

10.1130/0091-7613(1976)4<686:SDOEAS>2-O.CO;2. 

Batchelor, G. K. (1967), An Introduction to Fluid Dynamics, Cambridge Univ. Press, 

New York, NY. 

Beck, S. L., and G. Zandt (2002), The nature of orogenic crust in the central Andes, 

J. Geophys. Res., 107, 52-53, 10B, doi:10.1029/2000JB000124. 



184 

Bednarz, S. W., G. Acheson, and E. S. Bednarz (2006), Maps and map learning in 

social studies, Soc. Edu., 70, 398-404. 

Behn, M. D., G. Hirth, and P. B. Kelemen (2007), Trench-parallel anisotropy 

produced by foundering of arc lower crust, Science, 317, 108-110, doi: 

10.1126/science. 1141269. 

Bellahsen, N., C. Facenna, and F. Funiciello (2005), Dynamics of subduction and 

plate motion in laboratory experiments: insights into the "plate tectonics" behavior 

of the Earth, J. Geophys. Res., 110, B01401, doi:10.1029/2004JB002999. 

Bevis, M. (1986), The curvature of Wadati-Benioff zones and the torsional rigidy of 

subducting plates, Nature, 323, 52-53. 

Bevis, M., and B. L. Isacks (1984), Hypocentral trend surface analysis: Probing 

the geometry of Benioff zones, J. Geophys. Res., 89(87), 6153-6170, B7, doi: 

10.1029/ JB089iB07p06153. 

Billen, M. I. (2008), Modeling the dynamics of subducting slabs, Ann. Rev. Earth 

Planet. Sci., 36, 325-356, doi: 

10.1146/annurev.earth.36.031207.124129. 

Billen, M. I., and M. Gurnis (2001), A low viscosity wedge in subduction zones, Earth 

Planet. Sci. Lett., 193, 227-236, doi:10.1016/S0012-821X(01)00482-4. 

Billen, M. I., and G. Hirth (2005), Newtonian versus non-Newtonian upper mantle 

viscosity: implications for subduction initiation, Geophys. Res. Lett., 32, 4, L19304, 

doi: 10.1029/2005GL023457. 

Billen, M. I., and G. Hirth (2007), Rheologic controls on slab dynamics, Geochem. 

Geophys. Geosyst., 8, 38, Q08012, doi:10.1029/2007GC001597. 

Billen, M. I., M. Gurnis, and M. Simons (2003), Multiscale dynamic models of the 

Tonga-Kermadec subduction zone, Geophys. J. Int., 153, 359-388. 

Black, A. A. (2005), Spatial ability and Earth Science conceptual understanding, J. 

Geosci. Edu., 53(4), 402-414. 



185 

Bodzin, A., and L. Cirucci (2009), Integrating geospatial technologies to exam­

ine urban land use change: A design partnership, J. Geogr., 108, 186-197, doi: 

10.1080/00221340903344920. 

Bodzin, A., D. Anastasio, and V. Kulo (2012), Designing Google Earth activities for 

learning earth and environmental science, in Teaching Science and Investigating 

Environmental Issues with Geospatial Technology: Designing Effective Professional 

Development for Teachers, edited by J. MaKinster, N. TVautmann, and M. Barnett, 

Springer, New York, NY. 

Bonnardota, M. A., M. Regniera, C. Christovab, C. E. Ruellana, and E. Trie 

(2009), Seismological evidence for a slab detachment in the Tonga subduction 

zone, Tectonophysics, 464(1-4), 84-99, doi:10.1016/j.tecto.2008.10.011. 

Brickhouse, N. W. (1990), Teachers' beliefs about the nature of science and 

their relationship to classroom practice, J. Teach. Educ., ^i(3), 53-62, doi: 

10.1177/002248719004100307. 

Britner, S. L. (2008), Motivation in high school science students: A comparison of 

gender differences in life, physical, and earth science classes, J. Res. Sci. Teach., 

45(8), 955-970, doi:10.1002/tea.20249. 

Brooks, W., and D. G. De Paor (2009), Construction and presentation of Google 

Earth models for undergraduate education, Geol. Soc. Am. Abstracts with Pro­

grams, 47(7), 92. 

Buckley, B. C., J. Gobert, P. Horwitz, and L. O'Dwyer (2010), Looking inside the 

black box: Assessments and decision-making in biologica, Int. J. Learn. Technol, 

5(2). 

Burkam, D. T., V. E. Lee, and B. A. Smerdon (1997), Gender and science learning 

early in high school: Subject matter and laboratory experiences, Am. Educ. Res. 

J., 34, 299-331, doi:10.2307/l 163360 

Butler, D. (2006), Virtual globes: the web-wide world, Nature, 439, 776-778, doi: 

10.1038/439776a. 

Byerlee, J. D. (1978), Friction of rocks, Pure Appl. Geophys., 5(4-5), 615-626. 



186 

Cahill, T., and B. L. Isacks (1992), Seismicity and shape of the subducted Nazca 

plate, J. Geophys. Res., 97, 503-17, B12, doi:10.1029/92JB00493. 

Caxleton College (2012), Website, 

https://wiki.carleton.edu/download/attachments/ 

12228613/Figll.gif?version=l&;modificationDate= 1321753248000. 

Last accessed 07/07/2012. 

Carminati, E., A. M. Negredo, J. L. Valera, and C. Doglioni (2005), Subduction-

related intermediate-depth and deep seismicity in Italy: insights from ther­

mal and rheological modelling, Phys. Earth Planet. Int., 149, 65-79, doi: 

10.1016/j.pepi.2004.04.006. 

Chase, C. (1978), Extension behind island arcs and motions relative to hot spots, J. 

Geophys. Res., 83, 5385-5387, Bll, doi:10.1029/JB083iBllp05385. 

Conder, J. A. (2005), A case for hot slab surface temperatures in numerical viscous 

flow models of subduction zones with an improved fault zone parameterization, 

Phys. Earth Planet. Int., 149, 155-164, doi:10.1016/j.pepi.2004.08.018. 

Cruz, D., and S. D. Zellers (2006), Effectiveness of Google Earth in the study of 

geologic landforms, Geol. Soc. Am. Abstracts with Programs, 38(7), 498. 

Currie, C., K. Wang, R. Hyndman, and J. He (2004), The thermal effects of 

steady-state slab-driven mantle flow above a subducting plate: the Casca-

dia subuction zone and back-arc, Earth Planet. Sci. Lett., 223, 35-48, doi: 

10.1016/j.epsl.2004.04.020 

Dabbs, J. M., E. Jr., Chang, R. A. Strong, and R. Milun (1998), Spatial ability, 

navigation strategy, and geographic knowledge among men and women, Evol. Hum. 

Behav., 19(2), 89-98. 

Dahl, J., S. W. Anderson, and J. C. Libarkin (2005), Digging into Earth Science: 

Alternative conceptions held by k-12 teachers, J. Sci. Edu., 12, 65-68. 

Davies, J. H., and D. Stevenson (1992), Physical model of source region of subduction 

zone volcanics, J. Geophys. Res., 97, 2037-2070, B2, doi:10.1029/91JB02571. 

De Paor, D. G. (1994), Modeling displacement and deformation in a single matrix 

operaiton, J. Struct. Geol., 16, 1033-1037, doi:10.1016/0191-8141(94)90085-X. 



187 

De Paor, D. G. (2007a), The world is (almost) round: An introduction to Google 

Earth science, Frontmatter Technov., 1(1), 10-11. 

De Paor, D. G. (2007b), Embedding Collada models in geo-browser visualizations: 

A powerful tool for geological research and teaching, Eos Trans. AGU, 88 (52), 

IN32A-08. 

De Paor, D. G. (2008a), Enhanced visualization of seismic focal mechanisms and 

centroid moment tensors using solid models, surface bump-outs, and Google Earth, 

J. Virtual Explorer, 29, doi:10.3809/jvirtex.2008.00195. 

De Paor, D. G. (2008b), Using Google SketchUp with Google Earth for scientific 

applications, Google Tech Talk (Dec.), San Francisco, CA. 

http://www.youtube.com/watch?v=6cVJqvsfxvo. 

De Paor, D. G. (2008c), How would you move mount Fuji - and why would you 

want to?, Am. Geophys. Union Ann. Meeting (Dec.), San Francisco, CA. 

De Paor, D. G. (2011a), Google Earth: Visualizing the possibilities for geoscience 

education and research, Geol. Soc. Am. Penrose Meeting (Jan.), Mountain View, 

CA. 

De Paor, D. G. (2011b), Future implementation strategies for using Google Earth 

for geoscience education and presentation, Geol. Soc. Am. Penrose Meeting (Jan.), 

Mountain View CA. 

De Paor, D. G., and A. Pinan-Llamas (2006), Application of novel presentation 

techniques to a structural and metamorphic map of the Pampean orogenic belt, 

Northwest Argentina, Geol. Soc. Am. Abstracts with Programs, 38(7), 326. 

De Paor, D. G., and S. J. Whitmeyer (2008), Collaborative research: Enhancing the 

geoscience curriculum using geobrowsers-based learning objects, Proposal NSF-

CLLI #0837040, Washington, D.C. 

De Paor, D. G., and S. J. Whitmeyer (2010), Geological and geophysical modeling 

on virtual globes using KML, COLLADA, and Javascript, Comput. Geosci., 37, 

100-110, doi:10.1016/j.cageo.2010.05.003. 

http://www.youtube.com/watch?v=6cVJqvsfxvo


188 

De Paor, D. G., and S. J. Whitmeyer (2011), Transforming undergraduate geoscience 

education with an innovative Google Earth-based curriculum, Am. Geophys. Union 

Fall Meeting (Dec.), San Francisco, CA, ED23, 1208428. 

De Paor, D. G., and N. Williams (2006), Solid modeling of moment tensor solutions 

and temporal aftershock sequences for the Kiholo Bay earthquake using Google 

Earth with a surface bump-out, Eos Trans. AGU, 57(52), S53E-05. 

De Paor, D. G., D. C. Bradley, G. E. Eisenstadt, and S. M. Phillips (1989), The 

Arctic Eurekan orogen a most unusual fold and thrust belt, Geol. Soc. Am. Bull., 

101, 952-967, doi:10.1130/0016-7606(1989) 101<0952:TAEOAM>2.3.CO;2. 

De Paor, D. G., J. Daniels, and I. Tyagi (2007), Five geo-browser lesson plans, Eos 

Trans. AGU, 88, IN43A-0904. 

De Paor, D. G., S. J. Whitmeyer, and J. Gobert (2008), Emergent models for teaching 

Geology and Geophysics using Google Earth, Am. Geophys. Union Ann. Meeting 

(Dec.), San Francisco, CA, ED09. 

De Paor, D. G., W. Brooks, M. M. Dordevic, N. Ranashinge, and S. C. Wild (2009), 

Visualizing the 2009 Samoan and Sumatran earthquakes using Google Earth-based 

COLLADA models, Eos Trans. AGU, 90(52), U13E-2088. 

De Paor, D. G., S. Whitemeyer, and G. Watson-Papelis (2010a), Collaborative re­

search: Virtual 4D field education in Google Earth, NSF-GEO #1034643. 

De Paor, D. G., S. J. Whitemeyer, and J. Bailey (2010b), Collaborative research: 

Scaffolding undergraduate geoscience inquiry using new loggable Google Earth 

explorations, NSF-DUE #1022755. 

De Paor, D. G., S. C. Wild, and M. M. Dordevic (2012a), Emergent and animated 

COLLADA models of the Tonga Trench and Samoa archipelago: Implications 

for geosciences modeling, education, and research, Geosphere, 8(2), 491-506, doi: 

10.1130/GES00758.1. 

De Paor, D. G., S. C. Wild, and M. M. Dordevic (2012b), Movie, 

http://www.lions.odu.edu/org/planetarium/steve/GS/Movies/moviel.wmv 

Last accessed 07/07/2012. 



189 

De Paor, D. G., S. C. Wild, and M. M. Dordevic (2012c), Movie, 

http: / / www.lions.odu.edu / org/planetarium/steve/GS/Movies/movie2.mov 

Last accessed 07/07/2012. 

De Paor, D. G., S. C. Wild, and M. M. Dordevic (2012d), Movie, 

http://www.lions.odu.edu/org/planetarium/steve/GS/Movies/movie3.wmv 

Last accessed 07/07/2012. 

DeLaughter, J. E., S. Stein, C. A. Stein, and K. R. Bain (1998), Preconceptions 

abound among students in an introductory earth science course, Eos Trans. AGU, 

79, 429, doi:10.1029/98E000325. 

Dickerson, W., and W. Snyder (1978), Plate tectonics of the Laramide orogeny, in 

Laramide Folding Associated with Basement Rock Faulting in the Western United 

States, vol. 151, edited by V. Matthews, pp. 355-366, Geol. Soc. Am. Mem., Boul­

der, CO. 

Digital-Planet (2011), Earth's interior, Website, 

http://www.digitalplanet.org/DigitalPlanet/iVeK; — June.html. 

Last accessed 07/07/2012. 

Dordevic, M. M., and S. C. Wild (2012), Avatars and multi-student interactions in 

Google Earth - based field experiences, in Google Earth and Virtual Visualizations 

in Geoscience Education and Research: Geological Society of America Special Pa­

per 492, edited by S. Whitmeyer, J. Bailey, D. De Paor, and T. Ornduff, chap. 35, 

Geol. Soc. Am., Boulder, CO, doi:10.1130/2012.2492(22). 

Dordevic, M. M., D. G. De Paor, and S. J. Whitmeyer (2009), Understanding volcan­

ism on terrestrial planets and moons using virtual globes and COLLADA models, 

Geol. Soc. Am. Abstracts with Programs, 41 (7), 260. 

Dordevic, M. M., D. G. De Paor, S. J. Whitmeyer, and M. R. Beebe (2011), An­

imated COLLADA models and virtual field trips featuring volcanism in various 

tectonic settings on planet Earth and other rocky planets and moons, Geol. Soc. 

Am. Abstracts with Programs, 42{5), 420. 

Downs, R. M., and L. S. Liben (1991), The development of expertise in geography: 

A cognitive-developmental approach to geographic education, Ann. Assoc. Am. 

Geogr., 81, 304-327. 

http://www.digitalplanet.org/DigitalPlanet/iVeK


190 

Eberle, M. A., O. Grasset, and C. Sotin (2002), A numerical study of the interaction 

between the mantle wedge, subducting slab, and overriding plate, Phys. Earth 

Planet. Int., 134, 191-202, doi:10.1016/S0031-9201(02)00157-7. 

Espurt, N., P. Baby, S. Brusset, M. Roddaz, W. Hermoza, V. Regard, P. O. An-

toine, R. Salas-Gismondi, and R. Bolanas (2007), How does the Nazca ridge sub-

duction influence the modern Amazonian foreland basin?, Geology, 35, 515-518, 

doi:10.1130/G23237A.l. 

Espurt, N., F. Funiciello, J. Martinod, B. Guillaume, V. Regard, C. Faccenna, 

and S. Brusset (2008), Flat subduction dynamics and deformation of the south 

american plate: Insights from analog modeling, Tectonics, 27, TC3001, doi: 

10.1029/2007TC002175. 

Fermann, E. J. (2006), Google Earth-based lessons and lab activities for earth science 

classes, Poster, Geol. Soc. Am. Ann. Meeting (Oct.), Philidelphia, PA. 

Fowler, C. (Ed.) (2005), The Solid Earth: An Introduction to Global Geophysics (2nd 

ed.), Cambridge Univ. Press, New York, NY. 

Frohlich, C. (1989), The nature of deep-focus earthquakes, Ann. Rev. Earth Planet. 

Sci., 17, 277-54, doi:10.1146/annurev.earth.l7.1.227. 

FYomm, R., G. Zandt, and S. Beck (2004), Crustal thickness beneath the Andes and 

Sierras Pampeanas at 30° S inferred from Pn apparent phase velocities, Geophys. 

Res. Lett., 31, 4, L06625 doi:10.1029/2003GL019231. 

Furukawa, Y. (1993), Depth of the decoupling plate interface and thermal structure 

under arcs, J. Geophys. Res., 98, 20,005-20,013, Bll, doi:10.1029/93JB02020. 

Garrett, J. J. (2011), Ajax: A new approach to web applications, Website, 

http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications 

Last accessed 07/07/2012. 

GeoMapApp, M. S. D. S. (2012), Explore our planet with GeoMapApp, Website, 

http://www.geomapapp.org 

Last accessed 07/07/2012. 



191 

German, C. R., E. T. Baker, D. P. Connelly, J. E. Lupton, J. Resing, S. L. Prien, 

R. D. Walker, H. N. Edmonds, and C. H. Langmuir (2006), Hydrothermal explo­

ration of the Fonualei rift and spreading center and the North East Lau spreading 

center, Geochem. Geophys. Geosyst., 7, Q11022, doi:10.1029/2006GC001324. 

GIMP (2011), GIMP 2.6, Website, 

www.gimp.org 

Last accessed 07/07/2012. 

Gobert, J. (2000), A typology of models for plate tectonics: Inferential 

power and barriers to understanding, Int. J. Sci. Edu., 22(9), 937-977, doi: 

10.1080/095006900416857 

Gobert, J. (2005a), Leveraging technology and cognitive theory on visualization to 

promote students' science learning and literacy, in Visualization in Science Edu­

cation, edited by J. Gilbert, pp. 73-90, Springer-Verlag Publishers, Netherlands. 

Gobert, J. (2005b), The effects of different learning tasks on conceptual understand­

ing in science: teasing out representational modality of diagramming versus ex­

plaining, J. Geosci. Edu., 53, 444-455. 

Gobert, J., S. C. Wild, and L. Rossi (2012), Testing the effects of prior coursework 

and gender on geoscience learning with Google Earth, in Google Earth and Virtual 

Visualizations in Geoscience Education and Research: Geological Society of Amer­

ica Special Paper 492, edited by S. J. Whitmeyer, J. E. Bailey, D. G. De Paor, and 

T. Ornduff, chap. 22, Geol. Soc. Am., Boulder, CO, doi:10.1130/2012.2492(35). 

Gobert, J. D., and J. Clement (1999), Effects of student-generated diagrams ver­

sus student-generated summaries on conceptual understanding of causal and 

dynamic knowledge in plate tectonics, J. Res. Sci. Teach., 36, 39-53, doi: 

10.1002/(SICI) 1098-2736(199901)36: l<39::AID-TEA4>3.3.CO;2-9. 

Gobert, J. D., and A. Pallant (2004), Fostering students' epistemologies of mod­

els via authentic model-based tasks, J. Sci. Edu. and Tech., 13, 7-22, doi: 

10.1023/B:JOST.0000019635.70068.6f. 

Goodchild, M. F. (2006), The fourth R: rethinking GIS education, ArcNews, 28(3), 

1. 



192 

Goodchild, M. F. (2008), The use cases of digital Earth, Int. J. Digit. Earth, 1 (1), 

31-42, doi: 10.1080/17538940701782528. 

Google (a), Google Earth plug in, Website, 

http: / / earth.google.com / support/bin / answer. py? hl=en&answer= 176145 

Last accessed 07/07/2012. 

Google (b), What is Google Earth?, Website, 

http: / / www.google.com/earth/explore / products/plugin. html 

Last accessed 07/07/2012. 

Google (2012), Google Earth, Website, 

http: / / earth.google.com 

Last accessed 07/07/2012. 

GSI (2004), Estimation of Pacific plate motion by GPS, Website, 

http: / / cais.gsi.go.jp/Virtual_GSI/Tectonics/Pacific_GPS/index.html 

Last accessed 07/07/2012. 

Gudmundsson, O., and M. Sambridge (1998), A regionalized upper mantle (RUM) 

seismic model, J. Geophys. Res., 103, 7121-7136, B4, doi:10.1029/97JB02488. 

Gurnis, M., and B. H. Hager (1988), Controls of the structure of subducted slabs, 

Nature, 335(22), 317-321, doi:10.1038/335317a0. 

Gutscher, M. A. (2002), Andean subduction styles and their effect on thermal struc­

ture and interplate coupling, J. S. Am. Earth Sci., 15, 3-10, doi:10.1016/S0895-

9811(02)00002-0. 

Gutscher, M. A., J. Malavielle, S. Lallemand, and J. Y. Collot (1999), Tectonic 

segmentation of the north Andean maxgin: impact of the Carnegie ridge collision, 

Earth Planet. Sci. Lett., 170, 155-156, doi:10.1016/S0012-821X(99)00060-6. 

Hager, B. H. (1984), Subducted slabs and the geoid: constraints on mantle rheology 

and flow, J. Geophys. Res., 89, 6003-6015, B7, doi:10.1029/JB089iB07p06003. 

Hall-Wallace, M. K., and C. M. McAuliffe (2002), Design, implementation, and eval­

uation of GIS-based learning materials in an introductory geoscience course, J. 

Sci. Edu., 50, 5-14. 



193 

Halpern, D. F., and M. L. LaMay (2000), The smarter sex: A critical review of sex 

differences in intelligence, Educ. Psychol. Rev., 12, 229-246. 

Handelsman, J., D. Ebert-May, E. Beichner, P. Bruns, A. Chang, R. DeHaan, J. Gen­

tile, S. Lauffer, J. Stewart, S. M. Tilghman, and W. B. Wood (2004), Scientific 

teaching, Science, 23, 521-522, doi: 10.1126/science. 1096022. 

Hart, S. R., M. Coetzee, R. A. Workman, J. Blusztajn, K. T. M. Johnson, J. M. 

Sinton, B. Steinberger, and J. W. Hawkins (2004), Genesis of the Western Samoa 

seamount province: age, geochemical fingerprint and tectonics, Earth Planet. Sci. 

Lett., 227(3-4), 37-56, doi:10.1016/j.epsl.2004.08.005. 

Hasegawa, A., and I. S. Sacks (1981), Subduction of the Nazca plate beneath Peru as 

determined from seismic observations, J. Geophys. Res., 86(86), 4971-4980, B6, 

doi: 10.1029/JB086iB06p04971. 

Hickson, I. (2012), Html5, Website, 

http://dev.w3.org/html5/spec/Overview.html 

Last accessed 07/07/2012. 

Holt, W. E. (1995), Flow fields within the Tonga slab determined from the mo­

ment tensors of deep earthquakes, Geophys. Res. Lett., 22(8), 989-992, doi: 

10.1029/95GL00786. 

Horwitz, P., J. Gobert, B. Buckley, and L. O'Dwyer (2010), Learning genetics with 

dragons: From computer-based manipulatives to hypermodels, in Designs for 

Learning Environments of the Future: International Perspectives from the Learn­

ing Sciences., edited by M. J. Jacobson and P. Reimann, Springer Publishers, New 

York, NY. 

Isacks, B., and P. Molnar (1969), Mantle earthquake mechanisms and the sinking of 

the lithosphere, Nature, 223, 1121-1124, doi:10.1038/2231121a0. 

Isacks, B., J. Oliver, and L. R. Sykes (1968), Seismology and the new global tectonics, 

J. Geophys. Res., 75(18), 229-246, doi:10.1029 /JB073i018p05855. 

Ito, G., and J. Lin (1995), Oceanic spreading center-hotspot interactions: Constraints 

from along-isochron bathymetric and gravity anomalies, Geology, 23(18), 657-660, 

doi: 10.1130/0091-7613. 



194 

Jacobi, D., A. Bergeron, and T. Malvesy (1996), The popularization of plate tec­

tonics: presenting the concepts of dynamics and time, Public Underst. Sci., 5, 

75-100. 

Jacobson, M. J., and P. Reimann (Eds.) (2010), Designs for Learning Environments 

of the Future: International Perspectives from, the Learning Sciences, Springer 

Publishers, New York, NY. 

Jenkins, A., M. Healey, and R. Zetter (2007), Linking Teaching and Research in 

Disciplines and Departments, Higher Education Academy, York, UK, 

http://www.heacademy.6ic.uk/ research/LinkingTeachingAndResearch_April07.pdf 

Jordan, T. E., B. L. Isacks, R. W. Allmendinger, J. A. Brewer, V. A. 

Ramos, and C. J. Ando (1983), Andean tectonics related to geometry of 

subducted Nazca plate, Geol. Soc. Am. Bull., 94, 341-361, doi: 10.1130/0016-

7606(1983)94<341:ATRTGO>2.0.CO;2 

json (1999), Introducing JSON, Website, 

http://www.json.org/ 

Last accessed 07/07/2012. 

Kahle, J. B., L. H. Parker, L. J. Rennie, and D. Riley (1993), Gender differ­

ences in science education: Building a model, Educ. Psychol., 28, 379-404, doi: 

10.1207/ sl5326985ep2804_6. 

Kali, Y., and N. Orion (1996), Relationship between Earth Science education and 

spatial visualization, J. Res. Sci. Teach., 33, 369-391. 

Kali, Y., N. Orion, and E. Mazor (1997), Software for assisting high school students 

in the spatial perception of geological structures, J. Sci. Edu., 45, 10-21. 

KamLAND Collaboration, K. C. (2011), Partial radiogenic heat model for 

Earth revealed by geoneutrino measurements, Nat. Geosci., 4, 647-651, doi: 

10.1038/ngeol205. 

Karato, S., and P. Wu (1993), Rheology of the upper mantle: A synthesis, Science, 

260(5109), 771-778, doi:10.1126/science.260.5109.771. 

Karig, D. E. (1974), Evolution of arc systems in the Western Pacific, Ann. Rev. Earth 

Planet. Sci., 2, 51-78, doi:10.1146/annurev.ea.02.050174.000411. 



195 

Kay, S., and B. Coira (2009), Shallowing and steepening subduction zones, conti­

nental lithospheric loss, magmatism, and crustal flow under the Central Andean 

Altiplano-Puna plateau, in Backbone of the Americas .-Shallow Subduction, Plateau 

Uplift and, and Rigde and Terrane Collision: Geological Society of America Mem­

oir, edited by S. M. Kay, V. A. Ramos, and W. R. Dickenson, pp. 229-259, Geol. 

Soc. Am. Mem., Boulder, CO, doi:10.1130/2009.1204(ll). 

Kelleher, J., and W. R. McCann (1976), Buoyant zones, great earthquakes, and 

unstable boundaries of subduction, J. Geophys. Res., 81 (26), 4885-4896, doi: 

10.1029/ JB081i026p04885. 

Kelleher, J., and W. R. McCann (1977), Bathymetric highs and development of 

convergent plate boundaries, in Island Arcs, Deep Sea Trenches and Back Arc 

Basins, Maurice Ewing Series, edited by M. Talwani and W. C. Pitman III, pp. 

115-222, Am. Geophys. Union, Washington, D.C.. 

Kellogg, L. H., B. H. Hager, and R. D. van der Hilst (1999), Compo­

sitional stratification in the deep mantle, Science, 283, 1881-1884, doi: 

10.1126/science.283.5409.1881. 

Kendrick, E., M. Bevis, R. Smalley Jr., B. Brooks, R. Barriga Vargas, E. Laurfa, and 

L. P. Souto Fortes (2003), The Nazca - South America euler vector and its rate of 

change, J. S. Am. Earth Sci., 16, 125-131, doi: 10.1016/S0895-9811(03)00028-2. 

Kincaid, C., and P. Olson (1987), An experimental study of subduction and slab 

migration, J. Geophys. Res., 92,832-13,840, B13, doi:10.1029/JB092iB13pl3832. 

Kincaid, C., and I. S. Sacks (1997), Thermal and dynamical evolution of the up­

per mantle in subduction zones, J. Geophys. Res., 102, 12,295-12, B6, doi: 

10.1029/96JB03553. 

Kneller, E., P. van Kekan, K. Shun-ichiro, and J. Park (2005), B-type fabric in 

the mantle wedge: Insights from high-resolution non-Newtonian subduction zone 

models, Earth Planet. Sci. Lett., 237, 781-797, doi:10.1016/j.epsl.2005.06.049 

Koppers, A. A. P., H. Staudigel, M. S. Pringle, and J. R. Wijbrans (2003), 

Short-lived and discontinuous intraplate volcanism in the south pacific: Hot 

spots or extensional volcanism?, Geochem. Geophys. Geosyst., 4,1089, 1-49, doi: 

10.1029/2003GC000533. 



196 

Kreemer, C. (2009), Absolute plate motions constrained by shear wave splitting ori­

entations with implications for hot spot motions and mantle flow, J. Geophys. Res., 

114, 18p., B10405, doi: 10.1029/2009JB006416. 

Larkin, J., and H. Simon (1987), Why a diagram is (sometimes) worth ten thousand 

words, Cognitive Sci., 11, 65-99, doi: 10.1016/S0364-0213(87)80026-5. 

Lau, S., and E. W. Roeser (2002), Cognitive abilities and motivational processes 

in high school students' situational engagement and achievement in science, Edu. 

Assessment, 8, 139-162, doi:10.1207/S15326977EA0802_04. 

Lawver, L. A., and J. W. Hawkins (1978), Diffuse magnetic anomalies in marginal 

basins: their possible tectonic and petrologic significance, Tectonophysics, 45, 323-

968, doi:10.1016/0040-1951(78)90167-1. 

Lay, T., C. J. Ammon, H. Kanamori, L. Rivera, K. D. Koper, and A. R. Hutko 

(2010), The 2009 Samoa-Tonga great earthquake triggered doublet, Nature, 466, 

964-968, doi: 10.1038/nature09214. 

Libarkin, J. C. (2001), Development of an assessment of student conception of the 

nature of science, J. Sci. Edu., 49(5), 435-442. 

Libarkin, J. C., and S. W. Anderson (2005), Assessment of learning in entry-level 

geoscience courses: Results from the geoscience concept inventory, J. Sci. Edu., 

53(4), 394-401. 

Linn, M. C., and A. C. Petersen (1985), Emergence and characterization of sex 

differences in spatial ability: A meta-analysis, Child Dev., 56, 1479-1498, doi: 

10.2307/1130467. 

Lisle, R. J. (2006), Google Earth: A new geological resource, Geol. Today, 82(1), 

29-32, doi: 10.1111/j. 1365-2451.2006.00546.x. 

Lowe, R. (1993), Constructing a mental representation from an abstract technical 

diagram, Learn. Instr., 3, 157-179, doi:10.1016/0959-4752(93)90002-H. 

Lupton, J. E., D. G. Pyle, W. J. Jenkins, R. Greene, and L. Evans (2003), Evidence 

for an extensive hydrothermal plume in the TongarFiji region of the south Pacific, 

Geochem. Geophys. Geosyst., 5, Q01003, doi:10.1029/2003GC000607. 



197 

Maccoby, E. E., and C. N. Jacklin (1974), The Psychology of Sex Differences, Stanford 

Univ. Press, Palo Alto, CA. 

Mahoney, J. J., and K. J. Spencer (1991), Isotopic evidence for the origin of the 

Manihiki and Ontong Java oceanic plateaus, Earth and Planet. Sci. Lett., 104> 

196-210, doi:10.1016/0012-821X(91)90204-U. 

Manea, V. C., M. Perez-Gussinye, and M. Manea (2012), Chilean flat slab subduction 

controlled by overriding plate thickness and trench rollback, Geology, 40, 35-38, 

doi: 10.1130/G32543.1. 

Martin, D. J., and R. Treves (2008), Visualizing geographic data in Google Earth for 

education and outreach, Am. Geophys. Union Fall Meeting, San Francisco, CA, 

IN41B-1145. 

Martinod, J., L. Husson, P. Roperch, B. Guillaume, and N. Espurt (2010), Horizon­

tal subduction zones, convergence velocity and the building of the Andes, Earth 

Planet. Sci. Lett., 299, 299-309, doi:10.1016/j.epsl.2010.09.010. 

Mc Donald, T. B., and D. G. De Paor (2008), Above Google Earth: Teaching and 

research applications of geobrowsers in atmospheric and ionospheric studies, Geol. 

Soc. Am. Abstracts with Programs, 40(2), 9. 

McConnell, D. A., D. N. Steer, K. D. Owens, J. R. Knott, S. Van Horn, W. Borowski, 

J. Dick, A. Foos, M. Malone, H. McGrew, L. Greer, and P. J. Heaney (2006), 

Using concept tests to assess and improve student conceptual understanding in 

introductory geoscience courses, J. Sci. Edu., 54(1), 61-68. 

McDougall, I. (2010), Age of volcanism and its migration in the Samoa islands, Geol. 

Mag., 147, 705-717, doi:10.1017/S0016756810000038. 

McGee, M. G. (1979), Human spatial abilities: Psychometric studies and environ­

mental, genetic, hormonal and neurological influences, Psychol. Bull., 86, 889-918, 

doi: 10.1037//0033-2909.86.5.889. 

McKenzie, D. P. (1969), Speculations on the consequences and causes of 

plate motions, Geophys. J. R. Astron. Soc., 18, 1-32, doi: 10.1111/j. 1365-

246X. 1969.tb00259.x. 



198 

Millen, D. W., and M. W. Hamburger (1998), Seismological evidence for tearing of 

the Pacific plate at the northern termination of the Tonga subduction, Geology, 

26(7), 659-662, doi:10.1130/0091-7613(1998)026<0659:SEFTOT>2.3.CO;2. 

Moores, E. M., and R. J. Twiss (1995), Tectonics, W. H. Freeman and Co., New 

York, NY. 

Morgan, W. J. (1972), Deep mantle convection plumes and plate tectonics, AAPG 

Bull., 56, doi:10.1306/819A3E50-16C5-llD7-8645000102Cl865D. 

Muller, R. D., M. Sdrolias, C. Gaina, and W. R. Roest (2008), Age, spreading rates 

and spreading symmetry of the world's ocean crust, Geochem. Geophys. Geosyst., 

9, Q04006, doi:10.1029/2007GC001743. 

Mussett, A. E., and M. A. Khan (2008), Looking into the Earth: An Introduction to 

Geological Geophysics, Cambridge Univ. Press, Cambridge, UK. 

NASA (2005), untitled, Website, 

http://www.nasa.gov/images/content/136215main_BMarbleStill.jpg 

Last accessed 07/07/2012. 

National Research Council, U. S. (Ed.) (1996), National Science Education Standards, 

National Academy Press, Washington, D.C.. 

Okal, E. A., H. M. Fritz, C. E. Synolakis, J. C. Borrero, R. Weiss, P. J. Lynett, V. V. 

Titov, S. Foteinis, B. E. Jaffe, P. L. F. Liu, and I. C. Chan (2009), Field survey 

of the Samoa tsunami of 29 September 2009, Seismol. Res. Lett., 81(4), 577-591, 

doi: 10.1785/gssrl.81.4.577. 

Olbertz, D., M. J. R. Wortel, and U. Hansen (1997), Trench migration and subduction 

zone geometry, Geophys. Res. Lett., 240(3), 221-224, doi:10.1029/96GL03971. 

Orion, N., D. Ben-Chiam, and Y. Kali (1997), Relationship between Earth-science 

education and spatial visualization, J. Sci. Edu., 4% 129-132. 

Parker, R. L., and D. W. Oldenburg (1973), Thermal model of ocean ridges, Nature, 

242, 137-139, doi: 10.1038/physci242137a0. 



199 

Parkhurst, D., K. Law,, and E. Niebur (2002), Modeling the role of salience in the al­

location of overt visual attention, Vision Res., 42(1), 107-123, doi:10.1016/S0042-

6989(01)00250-4. 

Parsons, B., and J. Sclater (1977), An analysis of the variation of ocean floor 

bathymetry and heat flow with age, J. Geophys. Res., 82(5), 803-827, doi: 

10.1029/ JB082i005p00803. 

Patterson, T. C. (2007), Google Earth as a (not just) geography educational tool, J. 

Geogr., 106(4), 145-152, doi: 10.1080/00221340701678032. 

Peacock, S. (1991), Numerical simulation of subduction zone pressure-temperature-

time paths: Constraints on fluid production and arc magmatism, T. Phys. Sci. 

Eng., 335, 341-353, doi: 10.1098/rsta. 1991.0050. 

Peacock, S., and K. Wang (1999), Seismic consequences of warm versus cool subduc­

tion zone metamorphism: examples from northeast and southwest Japan, Science, 

286, 937-939, doi:10.1126/science.286.5441.937. 

Pelletier, B., and J. M. Auzende (1996), Geometry and structure of the Vi-

tiaz trench lineament (SW Pacific), Mar. Geophys. Res., 18, 305-335, doi: 

10.1007/BF00286083. 

Pence, N., E. Weisbrot, S. J. Whitmeyer, D. G. De Paor, and J. Gobert (2010), Using 

Google Earth for advanced learning in the geosciences, Geol. Soc. Am. Abstracts 

with Programs, 42( 1), 115. 

Pfiffner, O. A., and J. G. Ramsay (1982), Constraints on geological strain rates: 

Arguments from finite strain rates of naturally deformed rocks, J. Geophys. Res., 

87, 311-321, Bl, doi: 10.1029/JB087iB0lp00311. 

Piburn, M. D., S. J. Reynolds, D. E. Leedy, C. M. McAuliffe, J. P. Birk, and J. K. 

Johnson (2002), The hidden Earth: Visualization of geologic features and their 

subsurface geometry, Nat. Assoc. Res. Sci. Teach. Ann. Meeting (Apr.), New Or­

leans, LA. 

Pilger, R. H. (1981), Plate reconstructions, aseismic ridges, and low-angle subduc­

tion beneath the Andes, Geol. Soc. Am. Bull., 92, 448-456, doi:10.1130/0016-

7606(1981)92<448:PRARAL>2.0.CO;2. 



200 

Rakshit, R., and Y. Ogneva-Himmelberger (2008), Application of virtual globes in ed­

ucation, Geogr. Compass, 2(2), 1995-2010, doi:10.1111/j.l749-8198.2008.00165.x. 

Rakshit, R., and Y. Ogneva-Himmelberger (2009), Teaching and learning guide for: 

Application of virtual globes in education, Geogr. Compass, 5(4), 1579-1595, doi: 

10.1111/j.l749-8198.2009.00246.x. 

Ramos, V. A., and A. Folguera (2009), Andean flat slab subduction through time., 

in Ancient Orogens and Modern Analogues, vol. 327, edited by M. B., pp. 31-54, 

Geo. Soc. London Special Publication, London, UK., . 

Ramos, V. A., E. O. Cristallini, and D. J. Perez (2002), The Pampean flat-slab 

of the Central Andes., J. S. Am. Earth Sci., 15(1), 59-78, doi:10.1016/S0895-

9811(02)00006-8. 

Ramsay, J. (1967), Folding and Fracturing of Rocks., McGraw-Hill, New York, NY. 

Rashid, O., I. Mullins, P. Coulton, and R. Edwards (2006), Extending cyberspace: 

Location based games using cellular phones, ACM Comput. Ent., 4 (1), doi: 

10.1145/1111293.1111302, article 3C. 

Reid, I., and H. R. Jackson (1981), Oceanic spreading rate and crustal thickness, 

Mar. Geophys. Res., 5, 165-172. 

Rensink, R., J. O'Regan, and J. Clark (1997), To see or not to see: The need for atten­

tion to perceive changes in scenes, Psychol. Sci., 5(5), 368-373, doi:10.1111/j.l467-

9280.1997.tb00427.x. 

Reynolds, S. J., J. K. Johnson, M. D. Piburn, D. E. Leedy, J. A. Coyan, and M. M. 

Busch (2005), Visualization in undergraduate geology course, in Visualization in 

Science Education, edited by J. K. Gilbert, Springer Inc., Netherlands. 

Rosenbaum, G., and G. S. Lister (2004), Neogene and quaternary rollback evolution 

of the Tyrrhenian sea, the Apennines and the Sicilian maghrebides, Tectonics, 23, 

TC1013, doi:1010.1029/2003TC001518. 

Ross, R. M., D. Duggan-Haas, R. Kissel, and C. Bessemer (2008), Why does the 

Earth look the way it does?, Website, 

http: //www. virtualfieldwork.org/Welcome.html 

Last accessed 07/07/2012. 



201 

Roush, W. (2007), Second earth, Technology Review (Jul./Aug.), 39-48. 

Russo, R. M., J. C. VanDecar, D. Comte, V. I. Mocanu, A. Gallego, and R. E. 

Murdie (2010), Subduction of the Chile ridge: Upper mantle structure and flow, 

GSA Today, 20(9), 4-10, doi:10.1130/GSATG61A.l. 

Ryan, W. B. F., S. M. Carbotte, J. O. Coplan, S. O'Hara, A. Melkonian, R. Arko, 

R. A. Weissel, V. Ferrini, A. Goodwillie, F. Nitsche, J. Bonczkowski, and R. Zem-

sky (2009), Global multi-resolution topography synthesis, Geochem. Geophys. 

Geosyst., 10, Q03014, doi:10.1029/2008GC002332. 

Sanchez, E. (2009), Innovative teaching/learning with geotechnologies in secondary 

education, Edu. Tech. for a Better World, 302, 65-74, doi: 10.1007/978-3-642-

03115-1-7. 

Sao Pedro, M. A., R. S. J. d. Baker, O. Montalvo, A. Nakama, and J. D. Gob-

ert (2010), Using text replay tagging to produce detectors of systematic experi­

mentation behavior pattern, Proceedings of the 3rd International Conference on 

Educational Data Mining, Pittsburgh, PA. 

Schellart, W., J. Freeman, D. Stegman, L. Moresi, and D. May (2007), Evolution 

and diversity of subduction zones controlled by slab width, Nature, 446, 308-311, 

doi: 10.1038/nature05615. 

Schellart, W. P., D. R. Stegman, R. J. Farrington, J. Freeman, and L. Moresi (2010), 

Cenozoic tectonics of Western North America controlled by evolving width of Far-

allon, Science, 329, 316, doi:10.1126/science.H90366. 

Schmelling, H., R. Monz, and D. C. Rubie (1999), The influence of olivine metastablil-

ity on the dynamics of subduction, Earth Planet. Sci. Lett., 165, 55-66, doi: 

10.1016/S0012-821X(98)00249-0. 

Schofleld, N. J., and J. R. Kirby (1994), Position location on topographical maps: 

Effects of task factors, training, and strategies, Cognition Instruct., 12{1), 35-60, 

doi: 10.1207/sl532690xcil201_2. 

Schubert, G. (1992), Numerical models of mantle convection, Ann. Rev. Fluid Mech., 

24, 359-94, doi:10.1146/annurev.fluid.24.1.359. 



202 

Segall, P., and C. Simpson (1986), Nucleation of ductile shear zones on dilatant 

fractures, Geology, 14(1), 56-59, doi: 10.1130/0091-7613(1986). 

Selkin, P. A., D. G. De Paor, J. Gobert, K. B. Kirk, S. Kluge, G. A. Richard, and 

S. J. Whitmeyer (2009), Emerging digital technologies for geoscience education 

and outreach, Geol. Soc. Am. Abstracts with Programs, ^7(7), 165. 

Sibson, R. H. (1981), Controls on low-stress hydro-fracture dilatancy in thrust, 

wrench and normal fault terrains, Nature, 289, 665-667, doi:10.1038/289665a0. 

Simpson, C., and D. G. De Paor (1993), Strain and kinematic analysis in general 

shear zones, J. Struct. Geol., i5(l), 1-20, doi:10.1016/0191-8141(93)90075-L. 

Simpson, C., and D. G. De Paor (2010), Restoring maps and memoirs to four-

dimensional space using virtual globe technology: A case study from the Scottish 

Highlands, in Continental Tectonics and. Mountain Building, edited by R. D. Law, 

R. W. H. Butler, R. E. Holdsworth, M. Krabbendam, and R. A. Strachan, p. 335, 

Geol. Soc. London Special Publication, London, UK. 

Simpson, C., S. J. Whitmeyer, D. G. De Paor, L. P. Gromet, R. Miro, M. A. Krol, and 

H. Short (2001), Sequential ductile through brittle reactivation of major fault zones 

along the accretionary margin of Gondwana in Central Argentina, in The Nature 

and Tectonic Significance of Fault Zone Weakening, edited by R. E. Holdsworth, 

R. A. Strachan, J. F. Macloughlin, and R. J. Knipe, pp. 233-254, Geol. Soc. 

London, London, UK. 

Simpson, C., D. G. De Paor, M. R. Beebe, and J. Strand (2011), Transferring maps 

and data from pre-digital-era theses to Google Earth: A case study from the Vrede-

fort dome, South Africa, in Google Earth and Virtual Visualizations in Geoscience 

Education and Research: Geological Society of America Special Paper 492, edited 

by S. Whitmeyer, J. Bailey, D. De Paor, and T. Ornduff, Geol. Soc. Am., Boulder, 

CO. 

Smith, G. P., D. A. Wiens, K. M. Fischer, L. M. Dorman, S. C. Webb, , and Hilde-

brand (2001), A complex pattern of mantle flow in the Lau backarc, Science, 

292(5517), 713-716, doi: 10.1126/science. 1058763. 



203 

SoftComplex (2010), Tigra slider control, Website, 

htt p: / / www. soft complex, com / products / tigra^slider_cont rol / 

Last accessed 07/07/2012. 

Springer, M. (1999), Interpretation of heat-flow density in the Central Andes, 

Tectonophysics, 306, 377-395, doi:10.1016/S0040-1951(99)00067-0. 

Stadler, G., M. Gurnis, C. Burstedde, L. C. Wilcos, L. Alisic, and O. Ghattas (2010), 

The dynamics of plate tectonics and mantle flow: From local to global scales, 

Science, 559(5995), 1033-1038, doi:10.1126/science.H91223. 

Stahley, T. (2006), Earth from above, Sci. Teach., 73(7), 44-48. 

Stegman, D. R., J. Freeman, W. P. Schellart, L. Moresi, and D. May (2006), Influence 

of trench width on subduction hinge retreat rates in 3-D models of slab rollback, 

Geochem. Geophys. Geosyst., 7, 22, Q03012, doi:10.1029/2005GC001056. 

Stevenson, D. J., and J. S. Turner (1977), Angle of subduction, Nature, 270(24), 

334-336, doi: 10.1038/270334a0. 

Stout, D. L., and E. W. Bierly and J. T. Snow (1994), Scrutiny of undergraduate 

geoscience education: Is the viability of the geosciences in jeopardy?, Am. Geophys. 

Union Chapman Conference (Sept.), Washington, D.C., p. 55. 

Sykes, L. R. (1966), The seismicity and deep structure of island arcs, J. Geophys. 

Res., 71( 12), 2981-3006, doi:10.1029/JZ071i012p02981. 

Syracuse, E. M., and G. A. Abers (2006), Global compilation of variations in slab 

depth beneath arc volcanoes and implications, Geochem. Geophys. Geosyst, 7(5), 

1-18, Q05017, doi:10.1029/2005GC001045. 

Syracuse, E. M., P. van Keken, and G. A. Abers (2010), The global range of 

subduction zone thermal models, Phys. Earth Planet. Int., 183, 73-90, doi: 

10.1016/j.pepi.2010.02.004. 

Tackley, P. J. (2000), Self-consistent generation of tectonic plates in time-dependent, 

three-dimensional mantle convection simulations, Geochem. Geophys. Geosyst., 

1(1), 45, doi:10.1029/2000GC000036. 



204 

Tarantola, A. (1984), Inversion of seismic reflection data in the acoustic approxima­

tion, Geophysics, 49, 1259-1266, doi:10.1190/l.1441754 

Thompson, K., J. Keith, E. H. Swan, and W. K. Hamblin (2006), Linking geoscience 

visualization tools: Google Eaxth, oblique aerial panoramas, and illustrations and 

mapping software, Geol. Soc. Am. Abstracts with Programs, 38(7), 325. 

Tovish, A., G. Schubert, and B. P. Luyendyk (1978), Mantle flow pressure and the 

angle of subduction: non-Newtonian corner flows, J. Geophys. Res., 85, 5892-98, 

B12, doi:10.1029/JB083iB12p05892. 

Trend, R. (2000), Conceptions of geological time among primary teacher trainees, 

with reference to their engagement with geosciences, history and science, Int. J. 

Sci. Edu., 22, 539-555, doi: 10.1080/095006900289778. 

Trimble (2012), Trimble sketchup, Website, 

http: //sketchup. google .com/intl/en/download/rubyscripts. html 

Last accessed 07/07/2012. 

Turcotte, D., and E. Oxburgh (1967), Finite amplitude convective cells and conti­

nental drift, J. Fluid Mech., 28, 29-42, doi:10.1017/S0022112067001880. 

Turcotte, D., and G. Schubert (2002), Geodynamics, Cambridge Univ. Press, New 

York, NY. 

USGS (2009a), Magnitude 8.1 Samoa Islands region., WebSite, 

http://earthquake.usgs.gov/earthquakes/recenteqsww/Quakes/us2009mdbi.php. 

Last accessed 07/07/ 2012. 

USGS (2009b), Magnitude 8.1 Samoa Islands region., Website, 

http: //earthquake, usgs. gov / earthquakes/recenteqsww / 

Quakes/us2009mdbi.php#scitech. 

Last accessed 07/07/2012. 

Uyeda, S., and H. Kanamori (1979), Back-arc opening and the mode of subduction, 

J. Geophys. Res., 84, 1049-1061, B3, doi:10.1029/JB084iB03p01049. 

van der Hilst, R. (1995), Complex morphology of subducted lithosphere in the mantle 

beneath the Tonga trench, Nature, 374, 154-157, doi:10.1038/374154a0. 

http://earthquake.usgs.gov/earthquakes/recenteqsww/Quakes/us2009mdbi.php


205 

van Keken, P., B. Kiefer, and S. Peacock (2002), High resolution models of sub-

duction zones: implecations for mineral dehydration reactions and the transport 

of water into the deep mantel, Geochem. Geophys. Geosyst., 3, 1056, 1-20, doi: 

10.1029/2007JB005190. 

van Keken, P., C. Currie, S. D. King, M. D. Behn, A. Cagnioncle, J. He, R. F. Katz, 

S.-C. Lin, E. M. Parmentier, M. Spiegelman, and K. Wang (2008), A community 

benchmark for subduction zone modeling, Phys. Earth Planet. Int., 171, 187-197, 

doi: 10.1016/j .pepi.2008.04.015. 

van Kesteren, A. (2012), XMLHttpRequest, Website, 

http: //www. w3.org/TR/XMLHttpRequest/ 

Last accessed 07/07/2012. 

Vargas, C. A., P. Mann, and C. Borrero (2011), Field guides for excursions to the 

Nevado del Ruiz volcano and to the Romeral fault system (Colombia), in the frame 

of the neotectonics of arc-continent collision concepts, Earth Sci. Res. J., 15(1), 

47-74. 

Vassiliou, M. S., B. H. Hager, and A. Raefsky (1984), The distribution of earthquakes 

with depth and stress in subducting slabs, J. Geodyn., 1, 11-28, doi:10.1016/0264-

3707(84)90004-8. 

Violay, M., B. Gibert, D. Mainprice, B. Evans, P. Pezard, O. G. Flovenz, and R. As-

mundsson (2010), The brittle ductile transition in experimentally deformed basalt 

under oceanic crust conditions: Evidence for presence of permeable reservoirs at 

supercritical temperatures and pressures in the Icelandic crust, Proceedings World 

Geothermal Congress (Apr.), Indonesia. 

Violay, M., B. Gibert, D. Mainprice, B. Evans, J. Dautria, P. Azais, and P. Philippe 

(2012), An experimental study of the brittle-ductile transition of basalt at oceanic 

crust pressure and temperature conditions, J. Geophys. Res., 117, 1-23, B03213, 

doi:10.1029/2011JB008884. 

Wada, I., and K. Wang (2009), Common depth of slab-mantle decoupling: Recon­

ciling diversity and uniformity of subduction zones, Geochem. Geophys. Geosyst., 

J0(1O), 36, Q10009, doi: 10.1029/2009GC002570. 



206 

Wada, I., K. Wang, J. He, and R. D. Hyndman (2008), Weakening of the subduction 

interface and its effects on surface heat flow, slab dehydration, and mantle wedge 

serpentinization, J. Geophys. Res., 113, 15, B04402, doi:10.1029/2007JB005190. 

Wagner, L. S., S. Beck, G. Zandt, and M. N. Ducea (2006), Depleted litho-

sphere,cold, trapped asthenosphere, and frozen melt puddles above the flat slab 

in central Chile and Argentina, Earth Planet. Sci. Lett., 245, 289-301, doi: 

10.1016/j.epsl.2006.02.014. 

Weiss, L. E. (1980), Nucleation and growth of kink bands, Tectonophysics, 65, 1-38, 

doi: 10.1016/0040-1951 (80)90221-8. 

Wernicke, J. (2009), The KML handbook: Geographic Visualization for the Web, 

Addison-Wesley, Boston, MA. 

Whitmeyer, S. J., and D. G. De Paor (2008), Large-scale emergent cross sections 

of crustal structures in Google Earth, Geol. Soc. Am. Abstracts with Programs, 

40(6), 189. 

Whitmeyer, S. J., and C. Simpson (2003), High strain-rate deformation fabrics 

characterize a kilometers- thick paleozoic fault zone in the Eastern Sierras Pam-

peanas, central Argentina, J. of Struct. Geol., 25, 909-922, doi:10.1016/S0191-

8141(02)00118-9. 

Whitmeyer, S. J., and C. Simpson (2004), Regional deformation of the Sierra de San 

Luis, Argentina: Implications for the paleozoic development of western Gondwana, 

Tectonics, 23, 1-16, TC1005, doi:10.1029/2003TC001542. 

Whitmeyer, S. J., M. Feely, D. G. De Paor, R. Hennessy, S. Whitmeyer, J. Nicoletti, 

B. Santangelo, J. Daniels, and M. Rivera (2009), Visualization techniques in field 

geology education: Modern Pedagogy and Original Research in Western Ireland, 

in Field Geology Education: Historical Perspectives and Modern Approaches, Geol. 

Soc. Am. Special Paper, 461, 105-115. 

Whitmeyer, S. J., J. Nicoletti, and D. G. De Paor (2010), The digital revolution in 

geologic mapping, GSA Today, 20(4), 4-10, doi:10.1130/GSATG70A.l. 



207 

Whitmeyer, S. J., D. G. De Paor, J. Gobert, N. Pence, and E. Liz Weisbrot (2011), 

Enhancing the geoscience curriculum using geo-browser based learning objects, 

Presentation: CCLI/TUES Principal Investigators Conference, Washington, D.C., 

http: / /ccliconference.org/abstracts/638. 

Wikipedia (2011), Monster milktruck, Website, 

http: //en. wikipedia.org/ wiki/Monster-Milktruck 

Last accessed 07/07/2012. 

Wild, S. C., M. M. Dordevic, and D. G. De Paor (2011), Tonga, Website, 

http://www.lions.odu.edu/org/planetarium/steve/GS/API/ 

Last accessed 07/07/2012. 

Wilson, J. T. (1973), Mantle plumes and plate tectonics, Tectonophysics, 19(2), 

149-164. 

Yoshii, T. (1975), Regionality of group velocities of Rayleigh waves in the Pacific and 

thickening of the plate, Earth Planet. Sci. Lett., 25(3), 305-312, doi:10.1016/0012-

821X(75)90246-0. 

Zandt, G. M., J. Leidig, J. Chmielowski, D. Baumont, and X. Yuan (2003), Seismic 

detection and characterization of the Altiplano-Puna magma body, Central Andes, 

Pure Appl. Geophys., 160, 789-807, doi:10.1007/PL00012557. 

Zhong, S., and M. Gurnis (1992), Viscous flow model of a subduction zone with 

a faulted lithosphere: long and short wavelength topography, gravity and geoid, 

Geophys. Res. Lett., 19(18), 1991-1894, doi:10.1029/92GL02142. 

Zhong, S., and M. Gurnis (1994), Controls on trench topography from dy­

namic models of subducted slabs, J. Geophys. Res., 99, 15,683-15,695, B8, doi: 

10.1029/94JB00809. 

Zhong, S., and M. Gurnis (1996), Interaction of weak faults and non-Newtonian 

rheology produces plate tectonics in a 3-D model of mantle flow, Nature, 383, 

245-247, doi: 10.1038/383245a0. 



208 

APPENDIX A 

STUDY 1 - ICELAND PRE- AND POST-TEST 

NSF-TUES: Pre-post Test, Nov 2010 

Note: Your score in this test will not affect your grade. 

Study ID number: Circle one: pre / post 

Q1 What is your previous experience of the geology or geography of Iceland? 

(i) I have no significant previous study experience 

(ii) I did a class project about the geology or geography of Iceland 

(iii) I participated in a real field trip or a holiday visit 

(iv) I am Icelandic or lived in Iceland for an extended period 

Q2 Where is Iceland relative to the Arctic Circle? 

(i) Iceland lies entirely south of the Arctic Circle 

(ii) Iceland lies entirely north of the Arctic Circle 

(iii) The Arctic Circle touches the northern coast or offshore islands 

(iv) The Arctic Circle touches the southern coast or offshore islands 

(v) The Arctic Circle goes through the center of Iceland 
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Q3 Trace the location of Iceland in pencil or felt pen on this map: 

Figure 111. Regional Iceland Map. 

Q4 If you camped out in northern Iceland in mid-summer and looked at the 

northern ocean horizon close to midnight, what would you expect to see, weather 

permitting? 

(i) Continuous sunshine 

(ii) Continuous darkness 

(iii) Darkness except for a brief period of twilight 

(iv) Sunshine except for a brief period of twilight 

Q5 If you camped out in southern Iceland in mid-winter and looked at the south­

ern ocean horizon close to midday, what would you expect to see, weather permitting? 

(i) Continuous sunshine 

(ii) Continuous darkness 

(iii) Darkness except for a brief period of twilight 

(iv) Sunshine except for a brief period of twilight 

Q6 Outside of city and town limits, Iceland is... 

(i) Predominantly forested in fir trees 

(ii) Predominantly industrialized 

(iii) Predominantly farmed for cereal crops 

(iii) Predominantly undeveloped land 
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Q7 Ho much of Iceland is covered in ice all year round? 

(i) about 99% 

(ii) more than 75% 

(iii) about 50% 

(iv) less than 25% 

(iv) about 1% 

Q8 What is the principle rock type seen in Iceland? 

(i) limestone 

(ii) basalt 

(iii) granite 

(iv) marble 

Q9 Which best describes the geological origins of Iceland?: 

(i) Iceland sits on top of both a deep mantle plume and a divergent plate boundary 

(ii) Iceland is a fragment of continental crust, like Britain and Ireland, that detached 

from the European margin during North Atlantic spreading 

(iii) Iceland is a volcanic island arc forming above a subduction zone 

(iv) Iceland is a huge floating mass of ice drifting very slowly away from Greenland 

Q9 What does a glacier look like?: 

(i) A river of rapidly flowing ice 

(ii) a mass of pure white ice 

(iii) a mixture of ice with lots of dirty rock 
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APPENDIX B 

STUDY 2 - TONGA PRE- AND POST-TEST 

NSF-TUES: Pre-post Test, Nov 2010 

Note: Your score in this test will not affect your grade. 

Study ID number: Circle one: pre / post 

Ql What is your previous experience of the geology or geography of American-

Samoa/Tonga? 

(i) I have no significant previous study experience 

(ii) I did a class project about the geology or geography of Araerican-Samoa/Tonga 

(iii) I participated in a real field trip or a holiday visit 

(iv) I am Native to or lived in the American-Samoa/Tonga region for an extended 

period 

Q2 Where is American-Samoa/Tonga region relative to Equator? 

(i) American-Samoa/Tonga region lies entirely south of the Tropic of Capricorn 

(ii) American-Samoa/Tonga region lies entirely north of the Tropic of Capricorn 

(iii) The Tropic of Capricorn touches the northern part of the American-

Samoa/Tonga 

(iv) The Tropic of Capricorn touches the southern part of the American-

Samoa/Tonga 

(v) The Tropic of Capricorn goes through the center of the Araerican-Samoa/Tonga 

region 
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Q3 Circle the location of the Samoa-Tonga region in pencil or felt pen on this 

map: 

Figure 112. Pacific Rim Map. 



213 

Q4 Study Ms sketch map who*: 
a, d * two converging mcknmc pmi. 
V « Ho* of volcanic Wands, 
T • Ina of ooaan trench 

Baaed on the map view above which cross section below describes *>• relative 
plats motion between A and B? Circle cross section (I) of cross section (H). 

A V T B 

Above: cross ssction(l) A Is moving east and subducting under B 

Below: cross section (H) B is moving wast and subduclng under A 

A V T B 
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Q5 Which of the following pictures shows the eaxthquake pattern for the 

American-Samoa/Tonga region. Where A represents the Australian Plate and B 

is the Pacific plate. Plate B moves under Plate A. 

With • being deep earthquakes 

[] Are medium depth earthquakes 

And X representing shallow earthquakes 

• a X 
B A • a X B • a X B 

• a X 
• • X 
• • X 
• • X 
• a X 
• • X 

(a) i 

X  a • 
A X  a • B X  • • B 

X  a • 
X  a • 
X  • • 
X  • • 
X  o • 
X  • • 

(c) iii 

• • X 
A • • x 
" I O X B 

J o ;  2  • x • • X 
•  a  x 
•  a  x • • x 

(b) ii 

. x a • 
A  * o »  B  x  a  •  B  

X  o  9  x a  •  X  •  •  
x a  •  
X  Q «  
x • • 

(d) iv 
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Q6 The Tonga trench's motion relative to the Pacific plate is 

(i) Moves forward with the Pacific plate. 

(ii) Stationary (trench does not move). 

(iii) Moves against Plate Motion. 

(iv) There is no such thing as the Tonga trench. 

Q7 Which volcanic arc is closer to a trench? 

(i) Active Arc closer and Dormant arc further. 

(ii) Dormant Arc closer and Active Arc further. 

Q8 A Convergent Plate Boundary is described as 

(i) two tectonic plates slide by each other side by side 

(ii) two tectonic plates move apart from each other 

(iii) two tectonic plates moving together but they slam into each other 

(iv) two tectonic plates moving together but one goes under the other 

Q9 Put the two events in the correct order 

(i) trench rollback occurs then spreading ridge forms 

(ii) spreading ridge forms and then trench rollback occurs 

Q10 Where is new ocean crust formed? 

(i) Trench 

(ii) Volcanic Arc 

(iii) Spreading Ridge 

(iv) Island Chains 

Qll Put the events in the correct order, using 1 for the first and 4 for the last 

Tear Point Forms -

Spreading Ridge Forms -

Trench Rollback-

Trench Forms-



216 

APPENDIX C 

COMSOL QUANTIFICATION 

C.0.1 NAVIER-STOKES 

To verify the COMSOL solutions a comparison to a analytic solution will be made. 

The Navier-Stokes equations for fluid flow can be checked against the analytic corner 

flow solution by Reid and Jackson [1981] using the corner flow equations developed 

by Batchelor [1967]. The corner flow model is set up by having a rigid plate slide 

against a stationary plate at an angle as shown in Figure 113. 

Dfctanc* (MOkm) -

i 

Outflow on 4 

Rigid Plate 

Inflow on 3 

2 Sliding Rigid Plate tor 2 

Figure 113. Boundary Conditions in COMSOL for code-verification. 

The analytic solution for the x and y velocity components is 

Vl = A(B + Ct*n-'ft + ̂ ?£) 
x x2-\-y2 

(35) 
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- -0 + w) ( 3 6 )  

The constants are dependent on the angle between the plates for 90° the constants 

are 

• B = -$ 

• c = f 

The velocities may be analytically solved for and compared to the COMSOL flow 

field solutions. 

The COMSOL model used for the verification was developed using the non-

dimensional Navier-Stokes equation. The model was a l.lxl size with a length scale 

of 600 km. Figure 113 shows the model set-up with the four boundary conditions. 

The sub-domain setting used a homogeneous medium of non-dimensionalized density 

with a value ^ and all forces set to 0. The only particle motion is due from the 

shearing of the mobile wall which has a non-dimensional velocity of 1308. 

The COMSOL velocity solutions are exported on a predefined 6 km spaced x-y 

grid, shown in Figure 114, which allows direct comparison of the analytical to model 

predicted velocities seen in Figure 115. The grid consists of over 11000 points. The 

method of comparing error is to take the absolute value of the difference between the 

model predicted and analytic value. This results in a total difference of 1900 for Vx 

values and 3400 for Vy values. A plot of the Vx and Vv differences is shown in Figures 

116 and 117. The differences arise in the upper right corner while the Batchelor 

Solution has free boundaries and the COMSOL solution has a zero-pressure point 

in the upper corner, this causes a swirl to develop where the Batchelor solution has 

straight flow, see Figures 114 and 115 . This discrepancy caused in the upper corner 

is a far-model effect which does not impact the lower left corner where the actual 

physics of interest, the corner flow, takes place. As can be seen in Figures 116 and 117 

there is a buffer of 500 km between the corner and region where the swirl develops. 

The effect of the corner swirl was tested in tow subduction models as well, one model 

was the normal model used and a second had a velocity patch on an exit boundary. 

The models had different velocities near the exit boundaries, but the same solutions 

in the corner. Thus, the physics of the COMSOL solution for the Navier-Stokes 

equations can be used with confidence. 
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600 

400 
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0 
0 100 200 300 400 500 600 

distance (km) 

Figure 114. Velocity Field from the COMSOL solution for corner flow 
in a 90° set-up. 

Velocity Plots of COMSOL solution 
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Velocity Plots of analytic solution 
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Figure 115. Velocity Field from the Batchelor solution for corner flow 
in a 90° set-up. 
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Figure 116. Differences in Vx between analytic and COMSOL solution 



Differences between COMSOL and Batch lor in y-vetocity 

100 200 300 400 500 600 
distance (km) 

Figure 117. Differences in Vy between analytic and COMSOL solution 
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C.0.2 CONDUCTION-CONVECTION 

The conduction-convection physics code of COMSOL is checked by comparing 

the results to the analytic solution of the half-space cooling model based on the age 

of the plate [Turcotte and Oxburgh, 1967; Parsons and Sclater, 1977] 

T(x  = 0, y )=T.  + (T 0  - Ts)er/(^=) (37) 

where surface temperature Ts is the temperature at y=0 (273 K), mantle reference 

temperature To = 1573 K, r is the plate age in seconds, and K is thermal diffusivity 

(0.7272 x 10~6m2s_1) [van Keken et al., 2008]). The plate age is found by taking 

the length of the model, 660 km, and dividing by the plate velocity, 7 cm/yr, and 

then converting to seconds. A temperature profile vs. depth may then be created 

and compared to the model-predicted temperature profile of the same value. 

The conduction convection model has the boundary condition shown in Figure 

118. 

This verification has a temperature dependent buoyancy force term added by 

F y  = (T(x) -T 0 )p  (38) 

where To is the reference temperature of 1573K, p is the density 3300 kgm-3, and T(x) 

is the model temperature at the point. Using these parameters the model predicted 

temperature solutions are given in Figure 119 and 120. 

The plots of the temperature profiles for x=0 from the model predicted results and 

equation 37 for y=0 to 600 km are very similar, see Figure 121. 

The largest temperature difference is 36°C, with an expected value of 904° C, 

which results in a 4% error. Temperature differences range from 9-36°C over a length 

of 54 km, which is small compared to the size of the model and to the reference 

temperature of 1300°C. This agreement allows the use of the convection-conduction 

equations in COMSOL with confidence. 
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Dtewica (MOkm) 

1 

4 Sliding Rigid Plate for 4 

T = 0 on 4 

Rigid Plate on 3 

Outflow on 1 3 

Insulated Wall on 1 Insulated Wall on 3 

SuMoiMtn 1 

2 Open Boundary on 2 T = 1300 on 2 

Figure 118. Boundary conditions for conduction convection code check. 
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Figure 119- Model-predicted temperatures for buoyant driven flow. 
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Figure 120. Zoom in of top 100 km of buoyant flow results. 
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Figure 121. Temperature profiles for COMSOL model predicted temperatures at 
x=0 and half-space cooling model (Theory). 
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