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working memory should be the first consideration for the design of instruction. Learning 

is considered to take place through schema construction and automation, therefore the 

second consideration for the design of instruction is the construction and automation of 

schemas. Schemas bring together multiple information elements that can be treated as a 

single element when recalled in working memory. Schemas are constructed by either 

creating a new schema or by extending and modifying existing schemas. Schemas 

become automated with practice allowing both fluid performance on familiar tasks, and 

by freeing working memory capacity, performance on unfamiliar tasks that otherwise 

would be impossible.

Self-Regulated Learning

According to Zimmermann (1989), self-regulated learning refers to how students 

become masters of their own learning processes. Zimmermann explained that self- 

regulated learning is not a mental ability or a performance skill, but rather it is the self- 

directed process through which abilities are transformed into task-related skills; it 

involves active learning in terms of metacognition, motivation, and action control. 

Learners engaged in self-regulated learning have a clear understanding of how and why 

to employ self-regulatory strategies in order to acquire knowledge.

The facilitation of self-regulated learning is a balancing act between necessary 

external support and desired internal regulation (Koedinger & Aleven, 2007). From an 

instructional point of view, there are two ways to externally support self-regulated 

learning within problem-solving processes. Direct external support (i.e., direct 

instruction) facilitates explicit problem-solving strategies, their application, and transfer; 

and an indirect external support facilitates application of already existing problem-
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solving skills. For example, if learners already possess certain problem-solving strategies 

but fail to use this knowledge in a specific situation, it would be reasonable to prompt 

them to apply their existing strategic knowledge effectively. An instructional method for 

indirect support of the regulation of learners’ problem-solving processes is prompting 

(Wirth, 2009). The purpose of prompts is to direct learners to perform a specific activity 

which is contextualized within a particular problem-solving situation (Davis, 2003). 

According to Davis (2003), prompts can be categorized as generic or directed. While 

generic prompts ask learners to reflect on their performed problem-solving activities, 

directed prompts provide them with an expert model of thinking in the problem-solving 

process. Therefore, from self-regulated learning perspective, the goal of an instructional 

strategy intervention is to introduce learners to specific instructional strategies that assist 

in task completion and support learners' self-regulated engagement in tasks so that they 

can learn to manage their cognitive processes during learning. The focus of this study 

was on building expertise in physics. In particular, this study investigated management 

of cognitive load during the process of skill acquisition in complex tasks in physics by 

means of prompts used to guide learners in their problem-solving activities.

Literature Review

Recent instructional design approaches tend to focus on authentic tasks that are 

based on complex real-life experiences. Such tasks require learners to employ and 

integrate their knowledge, skills, and attitudes necessary for effective task performance. 

However, complex tasks pose high cognitive load on learner's cognitive system that, in 

turn, may interfere with learning. Therefore, it is important to integrate knowledge about 

human cognitive architecture into the design of instruction. Cognitive load theory
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(Sweller, 1988) provides designers with an important perspective for choosing 

appropriate instructional methods based on implications of task complexity relative to the 

learner's cognitive system.

Cognitive Load Theory

Cognitive load theory (Sweller, 1988) uses interactions between information 

structures and knowledge about cognition to design instruction. The theory emphasizes 

that working memory capacity is limited when dealing with novel information obtained 

through sensory memory. Cognitive load refers to the processing demands placed on 

working memory at a specific point in time.

Recent changes in cognitive load theory. Cognitive load theory (CLT) 

traditionally differentiated between three types of cognitive load: intrinsic, extraneous, 

and germane; and assumed that these three types of cognitive load are additive. 

Working-memory load may be affected by the complexity of the learning task (intrinsic 

cognitive load) or by the manner in which it is presented (extraneous cognitive load). 

Historically, germane cognitive load was viewed as the remaining working memory 

capacity, which was used for schema construction (Sweller, van Merrienboer, & Paas,

1998); this type of load was thought to occur when learners engage in a deep information 

processing such as mentally organizing the material and relating it to prior knowledge 

(DeLeeuw & Mayer, 2008).

Recently, Sweller, Ayers, and Kalyuga (2011) proposed to differentiate between 

two types of cognitive load imposed by instructional materials: intrinsic (useful) and 

extraneous (wasteful). On the other hand, the authors suggested that working memory 

resources can be divided into two types of resources: germane (i.e., resources devoted to
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intrinsic cognitive process) and extraneous (i.e., resources that deal with extraneous 

cognitive load). Sweller et al. (2011) explained that learner’s working memory could be 

overloaded if the combined intrinsic and extraneous cognitive load exceeds its capacity. 

Sweller and his colleagues emphasized that germane cognitive load is a reflection of the 

amount of load imposed by intrinsic element interactivity and does not independently 

contribute to total cognitive load, thus, they have started using the term germane 

resources rather than germane load. Working memory resources that are actually devoted 

to dealing with intrinsic cognitive load and lead to meaningful learning are defined as 

germane resources.

According to Sweller et al. (2011), the primary goal of CLT is to devise 

instructional procedures that reduce extraneous cognitive load and thus decrease the 

working memory resources that need to be devoted to processing information that is 

extraneous to learning. The working memory resources that are not needed to deal with 

extraneous cognitive load can be redirected to deal with intrinsic cognitive load that is 

germane to the learning process. More efficient and effective learning can be achieved 

by eliminating or minimizing cognitive activities that are not essential for learning 

because they generate unnecessary load (i.e., extraneous cognitive load) typically caused 

by inappropriate instructional formats; and by managing essential for learning load (i.e., 

intrinsic cognitive load) determined by interacting elements of information. Intrinsic load 

should either be reduced or increased depending on available cognitive resources and 

instructional goals.

Some of the techniques recommended for managing intrinsic load on the initial 

stages of learning are segmenting learning tasks into smaller parts causing the learner to
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process less information at a time; pre-training learners in essential definitions and 

procedures prior to the main instructional session; and learning a limited number of 

selected isolated elements of information during an initial stage of instruction followed 

by the next stage of instruction that includes all interactive elements of information in 

their full complexity (Sweller et al., 2011).

Two approaches to managing intrinsic cognitive load on later stages of skill 

acquisition include self-explanations and varying the content or examples in the 

instruction. Intrinsic cognitive load could be productively increased by prompting 

students to self-explain problem-solving steps and procedures using their knowledge of 

domain principles (self-explanation effect; e.g., Renkl & Atkinson, 2003). A second 

strategy is to vary the content of learning task by considering different situations and 

conditions rather than similar ones (variability of worked examples; e.g., Paas & van 

Merrienboer, 1994).

Types of Cognitive Load: A Closer Look. Intrinsic cognitive load traditionally 

refers to the amount of cognitive processing required to comprehend material and 

depends on the number of elements of information that must be processed simultaneously 

and their interactivity (Clark, Nguyen, & Sweller, 2006). Sweller and Chandler (1994) 

explained that the complexity of the instruction increases when instructional content is 

composed of component parts or "elements" and there is a relationship between these 

elements (i.e., the elements "interact" with each other). Sweller and Chandler described 

this phenomenon as element interactivity. Similarly, when van Merrienboer and Sweller 

(2005) described element interactivity they noted that if the number of elements that need 

to be organized in the working memory increases linearly, then the number of their
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possible combinations increases exponentially. Thus, problems or content with high 

element interactivity are more difficult to understand as they may overwhelm working 

memory with intrinsic load and prevent the formation of a schema. Element interactivity 

can be determined by the number of interacting elements that the learner has to process at 

a particular level of expertise (van Merrienboer & Ayers, 2005). For example, learning 

the alphabet has low intrinsic load as learning A is not dependent on learning G. In 

contrast, solving a math story problem typically has high element interactivity as the 

learner must keep several interacting elements in working memory to solve the problem. 

Schemas that are stored in a long-term memory allow learners to process multiple 

elements as one element and decrease working memory load. Since intrinsic cognitive 

load depends on the complexity of the content, it was originally thought impossible to 

alter by instructional intervention (Sweller & Chandler, 1994). However, recent research 

suggests that this type of load can be reduced (Pollock et al., 2002; van Merrienboer et 

al., 2003).

Extraneous cognitive load is controllable and depends on the instructional 

intervention; in particular, extraneous load is determined by the design of the instruction. 

The reduction in extraneous cognitive load is critical when instructions contain materials 

that pose high intrinsic load (Sweller & Chandler, 1994; Paas, Renkl, & Sweler, 2003; 

van Merrienboer & Sweller, 2005). A combination of high intrinsic and high extraneous 

cognitive load may be detrimental to learning because working memory may be 

overloaded. If, in contrast, the intrinsic cognitive load is low due to low element 

interactivity, a high extraneous cognitive load due to poor design features may be less 

harmful. Total cognitive load has to stay within working memory limits. The reduction
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in extraneous cognitive load becomes the initial focus of the design of instruction when 

intrinsic cognitive load is high, as it is the easiest to control. This reduction in total 

cognitive load allows for additional working memory resources that are germane to 

learning to be used for schema development.

Reducing Extraneous Cognitive Load. The following techniques for the 

reduction in extraneous load during information presentation have been extensively 

studied: using integrated text and diagram formats instead o f split-source formats (split- 

attention effect; e.g., Chandler & Sweller, 1991), avoiding presentation of redundant 

information (redundancy effect; e.g., Chandler & Sweller, 1991), and the use of multiple 

modalities to present mutually referring textual and pictorial information (modality 

effect; e.g., Mousavi, Low, & Sweller, 1995). In addition, to support acquisition of 

problem-solving skills, extraneous cognitive load can be reduced by presenting worked 

examples in integrated format prior to practicing problem-solving (worked examples 

effect; e.g., Sweller, 1999).

Another instructional technique for reducing extraneous cognitive load is the use 

of completion problems. Van Merrienboer and Krammer (1987) first suggested the use 

of completion problems to increase the transfer of computer programming skills. 

Completion problems are problems for which a given state, a goal state, and a partial 

solution are provided to learners who must complete that partial solution by providing 

intermediate steps. Completion problems are known to bridge worked examples and 

conventional problems. The completion problem effect indicates that solving completion 

problems yields higher transfer of acquired skills than conventional problem solving. An 

explanation for this effect is that learners who work on conventional problems apply
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means-ends analysis that poses high extraneous cognitive load on learners’ working 

(Sweller, 1988). In contrast, while learners work on completion problems they focus 

their attention on problem states and associated solution steps enabling them to induce 

cognitive schemas, in particular cognitive schemas that allow for transfer of acquired 

skills (van Merrienboer, Shuurman, de Crook, & Paas, 2002). However, most of the 

studies on completion problems provided strong support to the completion problems 

effect but did not collect data on cognitive load (van Merrienboer, 1990; van Merrienboer 

& de Croock, 1992). Paas (1992) first compared the effects of completion problems, 

worked examples, and conventional problems on cognitive load during transfer test 

performance and training performance. Paas found that completion problems or worked 

examples required the same amount of mental effort during training and led to higher 

transfer test performance, combined with lower cognitive load during the test than 

conventional problems.

Maximizing the Use of Germane Cognitive Resources

A more recent development in the design of instructions based on CLT 

considerations is the employment of practices that maximize the use of germane 

cognitive resources (Paas, et al., 2003; Sweller et al., 1998; van Merrienboer & Sweller, 

2005; Clark, et al., 2006). When extraneous and intrinsic cognitive loads are lowered, 

learners may have cognitive capacity freed that can be invested in processes that directly 

contribute to learning (i.e., germane cognitive resources). However, learners are unlikely 

to engage in such activities spontaneously (Renkl, Stark, Gruber, & Mandl, 1998; Renkl,

1999), therefore research efforts should be directed toward identifying instructional 

techniques that stimulate learners to invest cognitive resources in activities relevant for



learning (van Gog & Paas, 2008). One of the methods to induce or activate germane 

resources is to engage learners in self-explanation activity (Clark et. al., 2006). Prior 

studies have established the advantages of self-explanation activity with respect to 

learning outcomes, however, these studies were mostly concerned with self-explanation 

activity during the study of worked examples (Chi, Bassok, Lewis, Reimann, & Glaser, 

1989; Renkl, 1997; Renkl, et al., 1998; Renkl & Atkinson, 2003; Atkinson, Renkl, & 

Merrill, 2003). Aleven and Koedinger (2002) suggested that prompting to self-explain 

during problem solving rather than during example study also fosters learning. Aleven 

and Koedinger reported that problem solving in intelligent tutoring environment can be 

enhanced by prompting learners to self-explain by identifying the underlying problem­

solving principles.

Self-explanation. Chi et al. (1989) found that an instructional strategy requiring 

students to generate and articulate explanations of their own reasoning or understanding 

enhances deeper learning. Self-explanations involve generating comments that contain 

domain-relevant information and provide links beyond the information given. For 

example, the instruction might prompt learner to use self-explanatory strategy by 

directing the student to read a sentence about circulatory system and then explain what 

new information each line provides and how it relates to what was previously read (see 

Chi, DeLeeuw, Chiu, & LaVancher, 1994). The term self-explanation is referred to 

explanations generated by the learner, which could be done by speaking aloud or in one’s 

own head, written or typed. Providing feedback on the correctness of the explanation is 

beneficial. It is important to mention that generating incorrect self-explanations does not 

depress effective performance (Chi et al., 1989). Chi and her colleagues suggested that a
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possible mechanism underlying self-explanations of worked examples is producing a 

qualitative constraint network that represents knowledge of the solution steps, which 

possibly links together general theory and specific application. When a similar problem 

is encountered, qualitative propagation through the constrained network can yield a plan 

for a quantitative solution.

The effect of self-explanations can be explained from a cognitive load theory 

perspective. Learners who use cognitive and metacognitive elaboration strategies invest 

more mental effort, which is utilization of germane cognitive resources that stimulates 

construction of schemas. Renkl and Atkinson (2003) described the use of germane 

cognitive resources for different stages of skill acquisition: in early stages, germane 

resources are used to self-explain illustrated principles and generalize over presented 

worked examples. In later stages, when learners study worked examples in-depth, 

germane resources are utilized by anticipation of solution steps and imagining, and in the 

final stage, these resources are used for problem-solving. Renkl and Atkinson (2003) 

distinguished between the following self-explanation activities that have proven to be 

crucial: principle-based explanations (a learner assigns meaning to operators by 

identifying the principle), explication of goal-operator combinations (a learner assigns 

meaning to these operators by identifying sub-goals), and noticing coherence (a learner 

identifies connections among worked examples, which supports building abstract 

schemas).

Quality o f  self-explanations. Prior research identified considerable differences in 

learners’ ability to self-explain (Chi et al., 1989; Renkl, 1997). In a study by Chi et al. 

(1989), the quality of self-explanations was measured by the number of inferences that
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fill in information gaps in the text. The term “high quality self-explanations” referred to 

generating inferences, integrating statements, and providing comments reflecting deep 

analyses of the text; and the term “low quality of self-explanations” referred as to 

paraphrasing and re-reading statements. Chi et al. found that learners who spontaneously 

generated a larger number of high quality self-explanations while studying incomplete 

worked examples scored significantly higher on post-tests than those learners that 

generated fewer high quality self-explanations. Renkl (1997) fixed the learning time for 

each individual in a study to isolate qualitative differences in self-explanation activities. 

He distinguished between successful and unsuccessful learners in the following main 

points: (1) principle-based explanations; (2) explication of goal-operator combinations; 

(3) anticipative reasoning; and (4) metacognitive monitoring. In addition, Renkl found 

that the successful learners frequently did not provide all of the types of self-explanations 

that were positively related to learning outcomes. According to Renkl, there are two 

types of successful learners: principle-based explainers and anticipated reasoners. 

Principle-based explainers are those who during their self-explanation activity mostly 

assign meaning to operators utilizing both principle-based explanations and explicating 

goal-operator combinations. Anticipated reasoners are those who mainly concentrate 

their effort on solution steps. Principle-based explainers did not frequently anticipate 

solution steps, in contrast to anticipative reasoners, who mainly concentrated their effort 

on solution steps and refrained from frequent principle-based explanations and 

explication of goal-operator combinations. Renkl (1997) identified two groups of 

unsuccessful learners: passive and superficial explainers. The passive explainers 

demonstrated a low level of self-explanation activity. Superficial explainers spend little
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time on studying worked examples. Renkl pointed out that most learners belong to the 

unsuccessful groups.

Prompts to self-explain. Self-explanation activity requires learners to invest 

mental effort into deep processing of information. Studies have shown that most learners 

do not spontaneously provide self-explanations while they study worked examples 

(Renkl, 1997; Renkl, et al., 1998). Renkl et al. (1998) suggested that a learning 

environment that combines the procedure with prompts to self-explain would encourage 

more active processing of worked examples. The authors suggested using prompts to 

elicit principle-based self-explanations at initial stages of learning, followed by 

procedures that induce anticipations to foster far transfer to improve schema formation. 

Similarly, Atkinson, Renkl, & Merril (2003) recommended the use of prompts to sejif- 

explain for teaching skills in complex subject domains because it enhances transfer 

performance and is relatively easy to implement without additional instructional time.

The effect of the described above cognitive load type-specific manipulations need 

to be empirically validated for instructional designers to be able to properly implement 

the proposed interventions into the design of instructions. However, research on cognitive 

load theory has not yet established type-specific measures of cognitive load (Ayers,

2006). In addition, this situation imposes challenges to testing CLT as a theory 

(Beckmann, 2010).

Measuring Cognitive Load

Recently, DeLeeuw and Mayer (2008) investigated separate measures for 

different types of cognitive load. DeLeeuw and Mayer suggested that: (a) response time 

to the secondary task is most sensitive to manipulations of extraneous processing created 

by adding redundant texts; (b) mental effort ratings during learning are sensitive to
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manipulations of intrinsic processing created by sentence complexity; and (c) difficulty 

ratings are most sensitive to differences related to germane processing reflected by 

transfer test performance. Manipulations of intrinsic cognitive load in DeLeeuw and 

Mayer’s (2008) study were realized through the variations in complexity of the sentences 

learners had to process in order to perform the learning task. Beckmann (2010) who 

carefully analyzed DeLeeuw and Mayer’s (2008) study pointed out that some sentences 

were sufficiently complex and adequately prepared learners for performing tasks, while 

other sentences were unnecessary complicated, and therefore posed additional extraneous 

load on learner’s cognitive system. Beckmann concluded that it would be difficult to 

objectively differentiate between sufficiently complex sentences and unnecessarily 

complicated sentences. Beckman questioned whether the DeLeeuw and Mayer’s 

manipulations actually varied sources of extraneous cognitive load, as opposed to 

intended intrinsic, and consequently considered assigned validity of effort ratings with 

regard to intrinsic load less than convincing.

Paas and his colleagues (Paas & van Merrienboer, 1993; Paas, Touvinen, 

Tabbers, & van Gerven, 2003) identified three main indicators of total cognitive load: 

mental effort, mental load, and performance. Mental effort is the cognitive capacity that 

is allocated to accommodate the demands imposed by the specific task (Paas et al, 2003). 

Mental effort could be measured by obtaining from the learner subjective ratings 

provided after the task completion. Mental load reflects total cognitive load imposed by 

a particular task on the learner’s cognitive system. This load depends on task 

characteristics and the learner’s level of expertise (Beckmann, 2010). The third main 

indicator of cognitive load is performance measures, such as posttest scores that directly 

measure learning outcomes.
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The most common measurement of total cognitive load, developed by Paas 

(1992), is a 9-point rating scale for obtaining subjective measures of participant’s 

perceived amount of invested mental effort. The 9-point mental effort rating scale can be 

used for multiple measurements during experiments, such as a single measurement after 

each task. This rating scale has demonstrated high internal consistency with reliability 

coefficient (Cronbach’s alpha) in the range between .83 and .93 in several studies (Paas, 

van Merrienboer, & Adam, 1994; Paas, 1992; Paas & van Merrienboer, 1994; Kester, et 

al., 2004).

The reliance on subjective measures of total cognitive load alone will not provide 

conclusive results about the success in optimizing instructional design (Beckmann, 2010). 

Beckmann (2010) explained that each of the three possible outcomes of manipulations of 

cognitive load: decrease, no change, or increase could indicate both success and failure of 

an instructional intervention from a CLT perspective when only total cognitive load is 

measured. The decrease in total cognitive load does not provide enough information to 

conclude whether the intervention was successful. It signifies that extraneous load was 

reduced; however, does not clarify whether cognitive resources were redirected into 

germane activities. No change either suggests that none of cognitive load types were 

affected by design manipulations, or that extraneous cognitive load was reduced and the 

use of germane resources increased. According to Beckmann, an increase in in mental 

effort ratings indicates a partial success and suggests higher levels of germane activity, 

while the design manipulation failed to reduce sources of extraneous cognitive load. One 

could argue with this statement and suggest that an increase in total load would rather 

indicate that the intervention did more harm than good from a CLT-perspective. For
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CLT-based interventions, reference to objective performance measures combined with 

subjective ratings could help researchers to decide whether an intervention was 

successful (Beckmann, 2010). Based on the assumption that cognitive load 

manipulations enable learners to process information faster and easier, performance 

measures combined with time on task or mental effort invested in the task completion can 

reveal important information about cognitive load (Beckmann, 2010). Learning 

efficiency, suggested by Morrison, Ross, and O’Dell (1988) measured level of 

achievement attained per allocated instructional time for CBI instructions. Efficiency 

scores were computed as a ratio of a total posttest score and lesson completion time. 

Instructional efficiency measure developed by Paas and van Merrienboer (1993) as a 

combination of test performance measures and intensity of mental effort invested into 

task completion is another measure that can provide a good estimator of cognitive load 

and consequently of the effectiveness of an instructional intervention (Sweller et al.,

1998; Beckmann, 2010).

Efficiency of Instructional Condition. Efficiency o f instructional condition 

measure combines measures of test performance with measures of mental effort invested 

to attain this test performance (Paas and van Merrienboer, 1993). This measure can be 

calculated based on two separately obtained measures: participants’ post-test 

performance and 9-point rating scale measures of perceived amount of invested mental 

effort. First, measures of the invested mental effort and performance have to be 

standardized (the mean value has to be subtracted from each participant’s value, and the 

result divided by standard deviation), yielding in each participant’s z-score for the


