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Can otolith elemental signatures record the
capture site of Patagonian toothfish (Dissostichus
eleginoides), a fully marine fish in the Southern
Ocean?

J.R. Ashford, C.M. Jones, E. Hofmann, I. Everson, C. Moreno, G. Duhamel,
and R. Williams

Abstract: Otolith chemistry has been successfully used to reconstruct the environmental history experienced by
estuarine-dependent teleost fish, including movement between estuaries and coastal areas. However, application has
been more limited in species exposed exclusively to oceanic waters, where gradients in physical and chemical proper-
ties are less extreme. To test whether otolith elemental signatures record spatial information in an oceanic species, we
sampled otoliths from Patagonian toothfish (Dissostichus eleginoides) and used an inductively coupled plasma mass
spectrometer (ICP-MS) coupled to a laser ablation system to target the outer otolith edges corresponding to the period
immediately before capture. Using multivariate analysis of variance and multivariate discriminant analysis, we found
that edge signatures discriminated toothfish by geographic region with near complete success: only 5% of fish caught
off South America and in the Antarctic were misclassified to sampling areas in the other region. Moreover, edge signa-
tures showed strong differences between sampling areas within each region: fish captured off South America classified
to sampling areas therein with 79%–84% success, and Antarctic fish classified to sampling areas therein with 50%–
67% success. These results compare favourably with rates of classification for estuarine-dependent fish, demonstrating
that otolith elemental signatures can discriminate the geographic provenance of oceanic and estuarine-dependent fish.

Résumé : La chimie des otolithes permet de retracer avec succès le passé environnemental des poissons téléostéens qui
dépendent des estuaires et, en particulier, leurs déplacements entre les estuaires et les milieux côtiers. La méthode est
cependant plus rarement utilisée chez les espèces qui sont exposées exclusivement aux eaux de l’océan, car les gra-
dients des propriétés physiques et chimiques y sont moins marqués. Afin de vérifier si les signatures des éléments dans
les otolithes enregistrent des renseignements de nature spatiale chez une espèce océanique, nous avons prélevé des
otolithes de la légine australe (Dissostichus eleginoides) et nous avons utilisé un spectromètre de masse à plasma in-
ductif (ICP-MS) couplé à un système d’ablation laser pour cibler les couches externes des otolithes qui correspondent à
la période qui précède immédiatement la capture. Une analyse de variance multidimensionnelle et une analyse discrimi-
nante multidimensionnelle démontrent que les signatures sur les couches externes permettent de discriminer les otoli-
thes d’après la région géographique avec un succès presque complet; seuls 5 % des poissons capturés au large de
l’Amérique du Sud et dans l’Antarctique sont mal classifiés dans des zones d’échantillonnage de l’autre région. De
plus, les signatures des couches externes indiquent de fortes différences entre les zones d’échantillonnage de chacune
des régions : les poissons récoltés au large de l’Amérique du Sud sont placés à 79–84 % dans des zones
d’échantillonnage de la région et ceux de l’Antarctique à 50–67 % dans des zones d’échantillonnage de cette région.
Ces résultats se comparent avantageusement aux taux de classification obtenus chez les poissons associés aux estuaires,
ce qui démontre que les signatures des éléments dans les otolithes permettent de reconnaître l’origine géographique des
poissons océaniques aussi bien que celle des poissons estuariens.

[Traduit par la Rédaction] Ashford et al. 2840
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Introduction

Recent advances in ecology have highlighted the impor-
tance of spatial considerations in population dynamics. For
instance, critical habitats may contribute disproportionately
to recruitment (Beck et al. 2003), and linkage between geo-
graphic areas through migration can fundamentally affect
population dynamics (e.g., Pulliam 1988; Polacheck 1990;
Hanski and Simberloff 1997). Where mortality exceeds re-
cruitment, changes in immigration and emigration may de-
termine local persistence or extinction.

To measure fish movement and link spawning adults to ear-
lier habitat, researchers have historically used genetic markers
and artificial tags. However, genetic markers cannot link fish
to geographic area specifically, but rather to a population, lim-
iting their use for identifying the critical habitats used by fish
that survive to reproduce. Moreover, genetic techniques rely
on identifying unique fixed markers when populations are
known to be separate, usually during spawning. On the other
hand, artificial tags can only link fish to the area where they
were marked or recaptured, and the technique depends on
several assumptions that can be difficult to meet. Moreover,
tagging the number of fish necessary to generate sufficient re-
captures is costly and logistically challenging.

In the last decade, however, new technology has led to
renewed interest in trace and minor element analysis of
otoliths. Because they have similar properties, divalent ele-
ments substitute for Ca in the aragonite lattice of the otolith.
Consistent concentrations of Sr, Ba, and Mn recorded for
fishes between the ambient water, blood plasma, and otolith
suggest that seawater concentrations influence the rate at
which the elements are incorporated into the otolith
(Campana 1999). Moreover, validating studies have estimated
this relationship experimentally by manipulating ambient
Sr/Ca and Ba/Ca and measuring their resulting otolith con-
centrations (Bath et al. 2000). The preferred instrumentation
available to make these measurements is inductively coupled
plasma mass spectrometry (ICP-MS) because of its sensitiv-
ity and mass resolution (Campana 1999). When coupled
with lasers, ICP-MS combines these advantages with the
capacity to sample material at fine spatial scales (Jones and
Chen 2003).

As a result, researchers have successfully used natural ele-
mental markers in otolith growth increments to reconstruct
the environmental history experienced by estuarine-
dependent fish, including movement between oceanic and
estuarine environments (see Thresher (1999) for review).
However, application of laser ICP-MS to exclusively marine
species has been more limited because of the perception that
otolith chemistry is less effective as a natural marker for dis-
criminating between environments offshore, where gradients
in physical and chemical properties are much less pronounced.
Yet earlier studies discriminated between fish from different
capture areas (Thresher 1999), even when they used dis-
solved whole otoliths, which integrated the otolith chemistry
over the entire life history prior to capture (Edmonds et al.
1989, 1991). Furthermore, the environment was sufficiently
heterogeneous between five spawning grounds for elemental
markers deposited in otolith nuclei to discriminate between
Atlantic cod (Gadus morhua) returning as adults (Campana
et al. 1994).

In the Southern Ocean, strong zonal wind stress acting on
surface waters drives the Antarctic Circumpolar Current (ACC)
eastward, and thermohaline variation generates a complex
pelagic environment that is stratified in a polar–temperate
direction and characterized by broad quiescent zones inter-
spersed with fronts (Hofmann 1985; Orsi et al. 1995). The
Subantarctic Front (SAF) and Polar Front (PF) penetrate the
entire water column at the Drake Passage (Nowlin and Clif-
ford 1982). They persist around the Antarctic continent, ap-
pearing stable where they flow over large bathymetric
features (Hofmann 1985; Orsi et al. 1995; Rintoul and
Sokolov 2001) (Fig. 1). Vertical stratification also varies
spatially: Circumpolar Deep Water is more shallow towards
the pole, whereas after sinking in the Polar Frontal Zone,
Antarctic Intermediate Water is found at depth off South
America. Differential exposure to trace elements from wind-
driven, riverine, glacial, and geothermal sources, combined
with biological processes and physical mixing downstream
of sources, leads to environmental gradients in trace ele-
ments (e.g., Nolting et al. 1991; Westerlund and Öhman
1991).

Fish moving within this biogeochemical array may incor-
porate elements as spatially specific signatures in their oto-
liths that would provide a record of movement-at-age when
combined with otolith chronology. Patagonian toothfish
(Dissostichus eleginoides) are distributed on the continental
shelves and shelf breaks of banks and island groups in the
ACC and along western and eastern South America. They
are bentho-pelagic tertiary predators (Eastman 1993) that at-
tain a maximum total length of more than 2 m and live over
50 years (Ashford 2001; Horn 2002). They are managed as
spatially discrete stocks within zones broadly corresponding
to island groups under the Convention for the Conservation
of Antarctic Marine Living Resources (CCAMLR) and the
Exclusive Economic Zones (EEZ) of neighboring national
authorities. Consistent with spatial separation, genetic stud-
ies discounted panmixia and showed heterogeneity between
management areas in different ocean basins (Smith and
McVeagh 2000; Appleyard et al. 2002) and between South
Georgia and the Falkland Islands (Shaw et al. 2004). How-
ever, rather than resulting from separation, this spatial heter-
ogeneity may be the result of movement and mixing of
populations in different proportions. This is difficult to dis-
count using genetic approaches, however, because toothfish
spawning areas are unknown and population-specific mark-
ers remain unidentified. On the other hand, management
zones across the western Indian Ocean showed genetic ho-
mogeneity (Appleyard et al. 2004), suggesting a single pop-
ulation moving between seamounts and islands. But instead,
this may reflect several populations, as movement of only a
few fish between spatially discrete populations can counter-
act divergence through natural selection or genetic drift.

The evidence from tagging studies indicates that most re-
captures were caught near the area of marking (e.g., Wil-
liams et al. 2002), consistent with spatial separation. However,
tagging effort concentrated on sizes corresponding to imma-
ture fish, which are negatively buoyant in D. mawsoni, the
congener of Patagonian toothfish (Eastman 1993; Near et al.
2003). It did not address early stages, which are pelagic
(North 2002), or older stages in which D. mawsoni become
neutrally buoyant at maturity, thereby considerably reducing
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the energy needed to move using currents in the ACC (Ash-
ford et al. 2003). Yet some tagged fish moved considerable
distances (Williams et al. 2002), and similar size-at-age distri-
butions between Kerguelen and South Georgia, despite differ-
ences in diet (Duhamel 1981, Goldsworthy et al. 2002),
suggested that spatial differences due to growth may be ho-
mogenized by movement along the ACC (Ashford et al. 2003).

If it occurs, movement may be only of nonbreeding va-
grants (Sinclair 1988), mixing in their new locality with resi-

dent fish that are reproductively active. Even so, a large rate
of vagrancy will reduce the number of spawners in the source
population, and arriving vagrants may inflate the apparent
number of spawners at their destination area, carrying the
risk of recruitment overfishing. Indeed, restriction of the
breeding population may help explain strong differentiation
in mtDNA where differences in nuclear DNA were not de-
tected (Appleyard et al. 2002). Alternatively, if migrating
fish return to breed in their natal population, variation in

© 2005 NRC Canada
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Fig. 1. Map of the Southern Ocean showing mean position of major fronts: SAF, Subantarctic Front; PF, Polar Front; SACCF, southern
Antarctic Circumpolar Current Front; southern boundary (Bndry) of the ACC is shown as a broken line (Orsi et al. 1995). Detailed
maps of the (a) Atlantic, (b) Indian, and (c) Pacific sectors of the Southern Ocean. Arrows show current direction. Sampling areas:
1, Chile, 1996; 2, Falkland Islands, 1997; 3, Kerguelen, 1996; 4, Macquarie, 1996; 5, South Georgia, 1996; 6, South Georgia, 1997;
7, South Georgia, 1998.
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their mortality or movement would directly affect spawning
biomass. It is unlikely that this effect would be spatially uni-
form: some areas or habitats may be more critical to future
recruitment than others.

To assess these questions using otolith chemistry, research-
ers need to reliably link signatures to geographic area. Once
they are able to do so, they can begin to identify the prove-
nance of captured oceanic fish from otolith material laid
down earlier in the life history and hence study movement
and use of critical habitat. The important first step, however,
is to demonstrate that otoliths do, in fact, record spatially
specific signatures. To test this, we compared otoliths taken
from toothfish caught from five fishing management zones
within two geographic regions around southern South Amer-
ica and in the Antarctic. In contrast to the analyses of whole
otoliths and nucleus signatures undertaken previously for
marine fish using ICP-MS, we used lasers to target the outer
edges of otoliths, which specifically correspond to the envi-
ronment occupied in the period immediately prior to capture,
to validate the use of otolith chemistry in differentiating
known marine habitats.

Materials and methods

Fishery observers collected otoliths between March and
April 1996 from commercial catches of Patagonian toothfish
taken in the Antarctic off the northern continental slope of
South Georgia (United Nations Food and Agriculture Orga-
nization Statistical Subarea 48.3) and off the eastern conti-
nental slope of Kerguelen (Division 58.5.1), both situated on
the Antarctic continental side of the PF in the southern At-
lantic and Indian oceans, respectively (Fig. 1). Otoliths were
also collected from Antarctic fish caught off the west coast
of the Macquarie Island Exclusive Economic Zone (EEZ) lo-
cated between the SAF and PF in the southern Pacific. For
the region around South America, observers sampled fish
from artisanal fishermen returning to Chiloe Island in the
Chilean EEZ, north of the SAF. As fish could not be col-
lected off the Falkland Islands in the same year, observers
sampled again between April and May 1997 off the South
American continental slope north of the Falkland Islands
Conservation Zone (FCZ) and the eastern slope of South
Georgia. Otoliths were also selected randomly from observer
sample sets taken from the slope south of South Georgia in
1998. At each collection, female toothfish between 90 and
110 cm total length were sampled to minimize effects result-
ing from sex and life stage. Off Chile, otoliths could not be
collected before removal of gonads by fishermen, and sex
data were not recorded. All fish were taken from depths
greater than 1000 m, except for those taken at Macquarie Is-
land, where the depths were ~400–500 m.

Otoliths were dried and stored in envelopes and returned
to the laboratory at Old Dominion University. One otolith
was selected randomly from each pair, rinsed in milli-Q wa-
ter, sonicated for 2 min, and rinsed again to remove any sur-
face contamination. After drying, otoliths were ground from
the anterior and posterior sides using a Hillquist Thin Sec-
tion Machine (Hillquist Inc., Denver, Colorado) to produce
thick transverse sections. Final processing was done in a
class-100 clean room. We rinsed all remaining sections in
milli-Q water under a laminar flow hood and lapped each

manually using clean plastic clamps and Mark V Laboratory
polishing film (Mark V Laboratory, East Granby, Connecti-
cut). Each otolith was lapped successively on three pieces of
clean 3 µm film and finished on 0.3 µm film. One otolith
from each treatment was randomly selected and mounted in
random order on a clean petrographic slide using silicon
glue. Two otoliths were damaged during preparation and
were not used in the analysis. The mounted sections were
rinsed, sonicated for 5 min, then rinsed again twice, all in
milli-Q water, and left to dry under a positive flow hood.

We used a Finnegan Mat Element 2 double-focusing
sector-field ICP-MS located at the Laboratory for Isotope
and Trace Element Research (LITER) at Old Dominion Uni-
versity (Norfolk, Virginia) to examine minor and trace ele-
ment signatures. Instrument details are given in Jones and
Chen (2003). Samples were introduced in automated sequence
(Chen et al. 2000) using a New Wave Research EO LUV
266 laser ablation system and a PFA microflow nebulizer.
Ablated otolith material from the sample cell was mixed in
the spray chamber with an aerosol of 1% HNO3 introduced
by the nebulizer, and the mixture was then carried to the ICP
torch. Laboratory calibration standards consisted of known-
concentration multi-element solutions synthesized from stock
single element standards and were similarly introduced to
the spray chamber by the nebulizer as an aerosol before be-
ing carried to the ICP torch. Blanks of 1% HNO3 aerosol
also were introduced to the chamber by the nebulizer. For
quality control, we used dissolved otolith reference material
obtained from the National Research Council of Canada. To
control for operational variability in the laser ICP-MS, a ran-
domized blocks design was used with each petrographic slide
as the blocking factor, considered randomly drawn, with
each sampling area considered a fixed treatment. Blank and
standard readings of count rate (counts·s–1) were obtained
before and after random presentation of the otolith sections
in each block. Readings of reference material were obtained
before sample presentation. To calculate element-to-Ca ra-
tios (Me/Ca), background counts were subtracted from otolith
counts by interpolating between readings taken before and
after each block of otoliths, and the corrected otolith counts
were converted to Me/Ca concentrations using the standards.
To sample the edge, we used a line raster type with a laser
beam of diameter 20 µm, frequency at 10 Hz, and power at
60%, travelling ~900 µm along the proximo-dorsal edge of
the otolith section at 6 µm·s–1 and giving a predicted mean
crater width of 17 µm and crater depth of 105.4 µm (Jones
and Chen 2003). Dwell time was 15.0 ms.

Response variables were concentrations of Mg/Ca, Mn/Ca,
Sr/Ca, and Ba/Ca. Overall, Ba/Ca and Sr/Ca showed a strong
relationship implying some redundancy, but because the re-
lationship was weak for southern Chile, both variables were
included. We applied multivariate analysis of variance
(MANOVA) and discriminant analysis (MDA) and used sep-
arate univariate analyses to examine the behaviour of each
element. Multivariate outliers were identified by plotting ro-
bust squared Mahalanobis distances of the residuals (Di

2)
against the corresponding quantiles (Q–Q plot) of the chi-
square distribution. We checked the assumption of multi-
variate normality analytically using tests (α = 0.05) based on
Mardia’s multivariate skewness and kurtosis measures
(Khattree and Naik 1999) and graphically using Q–Q plots
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of squared Mahalanobis distances (di
2). As data were not

normally distributed, we used a reciprocal transformation to
fulfill the assumption of multivariate normality; univariate
normality followed as a property of multivariate normality
(Khattree and Naik 1999).

For the MANOVA, as variance–covariance matrices were
not equal according to Bartlett’s modification (χ2 = 140.0,
df = 60, α = 0.10), transformed data were normalized using
the square root of the sample dispersion matrix for each
area, allowing the sample mean vectors to float. We tested
six contrasts for departures from null hypotheses of no dif-
ferences in elemental concentrations, using an experiment-
wise α = 0.0083. To test between fish caught in the region
around South America versus the Antarctic region, we used
the following contrasts: (i) 1996, Chile vs. south of SAF
(South Georgia, Kerguelen, Macquarie); (ii) 1997, Falkland
Islands vs. South Georgia. To test between the subset of
sampling areas in the Antarctic, we used contrasts to test
between treatments from 1996: (iii) South Georgia vs.
Kerguelen; (iv) South Georgia vs. Macquarie; (v) Kerguelen
vs. Macquarie. We also tested (vi) the northern slope (1996)
vs. the eastern slope (1997) of South Georgia.

As the MANOVA indicated populations were distinguish-
able from each other, we proceeded to apply MDA. How-
ever, because variance–covariance matrices were not equal
and pooled variance–covariance matrices were therefore in-
appropriate, we used individual variance–covariance matri-
ces instead and applied quadratic MDA (Khattree and Naik
2000). The error rates were estimated by cross-validation,
using equal prior probabilities. Finally, we examined the
data using univariate analysis of variance (ANOVA) (α =
0.05) on transformed data to detect the behaviour of individ-
ual elements, using pairwise comparisons with SNK tests.
The assumption of homogeneity of variance was fulfilled for
all concentrations except Mn/Ca.

In addition to parametric statistics, we examined the data
graphically using nonmetric multidimensional scaling
(nMDS) (Kruskal and Wish 1978; Schiffman et al. 1981).
Because the variables had different absolute magnitudes and
ranges, they were standardized to the same scale. We con-
structed a dissimilarity matrix based on Euclidean distances
from which we created a two-dimensional projection of dis-
tance between individual fish using a convergence criterion
of Stress < 0.01.

Results

Otolith chemistry was significantly different between all
comparisons. Multidimensional scaling showed strong sepa-
ration between fish captured off South America and those
captured in the Antarctic, plotted by year for clarity (Fig. 2).
Fish taken off Kerguelen in 1996 showed considerable over-
lap with those from Macquarie Island, but fish from both
sampling areas separated from those taken in the same year
from South Georgia. South Georgia fish taken from the
southern continental slope in 1998 clearly differentiated from
those taken from the eastern slope in 1997.

The MANOVA showed significant differences between
sampling areas (Pillai’s Trace = 2.95, F = 57.9, P < 0.0001).
Elemental signatures from toothfish caught off South Amer-
ica were significantly different from those of Antarctic fish

(Tables 1 and 2). We also detected significant differences
between fish taken off South Georgia, Kerguelen, and
Macquarie in 1996 and significant differences between fish
taken off the northern and eastern continental slopes of
South Georgia.

The univariate analysis showed significantly higher Sr/Ca
values for fish from the Antarctic region compared with
those off South America. Concentrations of Ba/Ca were sig-
nificantly lower for the Falkland Islands than elsewhere, but
significantly higher at South Georgia in 1996 than at other
areas sampled that year. Fish from Chile and the Falkland Is-

© 2005 NRC Canada
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Fig. 2. Relationships between samples of Patagonian toothfish
(Dissostichus eleginoides) taken from sampling areas in the
Southern Ocean between 1996 and 1998, using nonmetric multi-
dimensional scaling (nMDS) based on Euclidean distances. For
clarity of illustration, samples are separated by year. (a) Samples
taken in 1996: Chile, �; Kerguelen, �; Macquarie, �. (b) Sam-
ples taken in 1997–1998: Falkland Islands, 1997, �; South Geor-
gia, 1997, �; South Georgia, 1998, ×.
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lands had significantly higher concentrations of Mn/Ca than
Antarctic fish in 1996–1997 but were not significantly dif-
ferent from fish taken in 1998 from the southern slope of
South Georgia. Southern slope fish showed significantly
higher Mg/Ca concentrations than all other samples, whereas
fish caught off Macquarie Island showed significantly higher
concentrations of Mg/Ca than all other 1996–1997 samples.

The quadratic MDA successfully classified fish to the re-
gion where they were captured: only four Antarctic fish were
incorrectly classified to South American sampling areas and
three South American fish were incorrectly allocated to Ant-
arctic sampling areas. Within region, fish caught off South
America were classified most successfully, with 79% of
Falkland Island fish and 84% of fish from southern Chile cor-
rectly allocated (Table 3). Moreover, all misclassifications for
Chilean fish were allocated to the Falkland Islands. Classifi-
cation success for Antarctic fish was between 50% and 67%,
but of the fish taken off the northern slope of South Georgia

in 1996, half of the misclassifications were allocated to the
nearest sampling area, on the eastern South Georgia slope in
1997. Similarly, half the misclassifications of Macquarie
fish were to Kerguelen. Nevertheless, 67% of South Georgia
eastern slope fish and 65% of Kerguelen fish were allocated
correctly.

Discussion

Although previous researchers examined whole otoliths
(Edmonds et al. 1989, 1991) and otolith nuclei (Campana et
al. 1994) of marine fish, the present study uniquely used la-
ser ICP-MS to place the otolith elemental signatures in their
geographic context by examining material at the edge of the
sectioned otolith, deposited in the interval immediately prior
to capture. Edge signatures discriminated Patagonian tooth-
fish caught off South America from those caught in the Ant-
arctic with near-complete success, direct evidence that
otolith elemental signatures of exclusively marine fish can
record specific spatial locations. By extension, because oto-
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Year Site n Mean CV

(i) Mg/Ca
1996 Chile 19 75.1 0.61

Macquarie 20 105.6 0.38
South Georgia 17 44.1 0.51
Kerguelen 20 67.4 0.47

1997 Falklands 19 54.6 0.31
South Georgia 18 63.4 0.39

1998 South Georgia 17 290.9 0.73

(ii) Mn/Ca
1996 Chile 19 2.79 2.06

Macquarie 20 0.19 1.68
South Georgia 17 0.15 0.56
Kerguelen 20 0.13 0.73

1997 Falklands 19 0.79 0.69
South Georgia 18 0.27 0.68

1998 South Georgia 17 1.59 1.09

(iii) Sr/Ca
1996 Chile 19 3790 0.24

Macquarie 20 5233 0.15
South Georgia 17 6574 0.24
Kerguelen 20 5520 0.25

1997 Falklands 19 3827 0.14
South Georgia 18 6052 0.29

1998 South Georgia 17 5467 0.36

(iv) Ba/Ca
1996 Chile 19 2.61 0.42

Macquarie 20 2.65 0.38
South Georgia 17 4.51 0.45
Kerguelen 20 2.99 0.64

1997 Falklands 19 1.53 0.25
South Georgia 18 3.84 0.59

1998 South Georgia 17 3.11 0.57

Note: CV, coefficient of variation.

Table 1. Concentrations of trace elements ratioed to Ca
(µmol·mol–1), sampled from the outer edge of the otoliths from
Patagonian toothfish (Dissostichus eleginoides) taken in commer-
cial fisheries at five different sites in the Southern Ocean.

Comparison Pillai’s trace F Pr > F

(i) CH96 vs. SG, K, M96 0.926 373 <0.0001
(ii) FI97 vs. SG97 0.908 295 <0.0001
(iii) SG96 vs. K96 0.757 93 <0.0001
(iv) SG96 vs. M96 0.829 146 <0.0001
(v) K96 vs. M96 0.881 223 <0.0001
(vi) SG96 vs. SG97 0.853 175 <0.0001

Note: Dependent variables: Mg/Ca, Mn/Ca, Sr/Ca, Ba/Ca. α = 0.0083.
Sites: CH, Chile; FI, Falkland Islands; K, Kerguelen; M, Macquarie; SG,
South Georgia. “96" and “97" after the site codes refer to the years 1996
and 1997, respectively.

Table 2. Contrasts from multivariate analysis of variance of
Patagonian toothfish (Dissostichus eleginoides): (i and ii) sam-
ples taken off South America vs. those taken in the Antarctic in
1996 and 1997; (iii–v) between samples taken in the Antarctic in
1996; and (vi) samples taken from the northern vs. the eastern
continental slopes of South Georgia in 1996 and 1997.

Area classified to

Area
sampled CH FI K M SG96 SG97 SG98

CH 84 16 0 0 0 0 0
FI 5 79 11 0 0 5 0
K 0 5 65 10 10 10 0
M 0 0 25 50 5 10 10
SG96 0 6 12 6 53 23 0
SG97 0 5 11 5 11 67 0
SG978 6 0 6 23 6 6 53

Note: Sampling areas: CH, southern Chile, 1996 (n = 19); FI, Falkland
Islands, 1997 (n = 19); K, Kerguelen, 1996 (n = 20); M, Macquarie, 1996
(n = 20); SG96, South Georgia, 1996 (n = 17); SG97, South Georgia,
1997 (n = 18); SG98, South Georgia, 1998 (n = 17). Bold values indicate
rates of correct classification to sampling area.

Table 3. Classification rates (%) from quadratic multivariate
discriminant analysis undertaken for Patagonian toothfish
(Dissostichus eleginoides) taken from sampling areas in the
Southern Ocean, using four response variables (Mg/Ca, Mn/Ca,
Sr/Ca, Ba/Ca).
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lith material once deposited is not reworked (Campana and
Neilsen 1985), otolith growth increments can record tooth-
fish provenance at regional scales over the life history prior
to capture, providing a means to measure movement directly
and test hypotheses of population structure. In contrast, ge-
netic markers can link fish only indirectly to geographic area
at the time of spawning, and artificial tags are costly to use,
are applied only to a proportion of the targeted population,
and can link fish to geographic area only at the time of
marking and recapture.

Moreover, strong differences between sampling areas
within each region indicated edge signatures could record
provenance at finer scales. With only four elements, 79%–
84% of South American fish were correctly allocated to
sampling area, success rates that compared favourably with
the range reported for estuarine-dependent fish on the east
coast of North America. Thus, juvenile weakfish (Cynoscion
regalis) classified to their natal estuaries with 63% success
using trace element data (Thorrold et al. 1998a), whereas
American shad (Alosa sapidissima) classified to natal river
with 90% success (Thorrold et al. 1998b). For Patagonian
toothfish caught in the Antarctic, success rates were still
comparable for Kerguelen fish and those caught off the east-
ern slope of South Georgia in 1997. Lower rates for fish
from Macquarie and the northern and southern slopes of
South Georgia were due largely to misclassification to a sin-
gle other area, respectively, Kerguelen, the eastern South
Georgia slope, and Macquarie, which may be resolved by
the use of other chemical markers (Thorrold et al. 1998a).
Even with only the markers used in this study, few South
Georgia eastern slope fish were classified to the northern or
southern slopes, and few of those caught along the southern
slope were allocated to other South Georgia areas, suggest-
ing that otolith chemistry may be capable of recording dif-
ferences at spatial scales comparable to those achieved for
spotted sea trout (Cynoscion nebulosus) within the Chesa-
peake Bay (Dorval et al. 2005).

However, the fact that Macquarie fish classified to
Kerguelen at similar rates as northern slope to eastern slope
fish at South Georgia argues that the discriminatory power
of the signatures is not simply related to spatial distance, but
instead reflects environmental gradients in trace and minor
element concentrations. Thus, Mn is a scavenged element
(Whitfield and Turner 1987), decreasing with depth in con-
trast to recycled elements like Ba. Deep-water flow patterns
on a global scale mean that enrichment of recycled elements
and uptake of scavenged elements along the direction of
deep-water flow leads to fractionation between ocean basins
(Donat and Bruland 1995). These larger trends are overlaid
by finer-scale spatial differences between and within islands
and seamounts.

For Ba, Dehairs et al. (1992) observed that barite accumu-
lation in the open ocean of the ACC was generally associ-
ated with new production fueled by nitrate. Transport to
depth occurred through surface uptake of dissolved Ba as
barite particles (BaSO4) in association with aggregates of
biogenic debris. On sinking, the aggregates break down
through bacterial activity, freeing enclosed barite crystals to
accumulate at 200–700 m (Stroobants et al. 1991; Dehairs et
al. 1997), where they settle slowly and dissolve at depth,
consistent with the high mean otolith Ba/Ca found in the

South Georgia toothfish in the present study. In contrast,
Dehairs et al. (1992) found that continental shelf areas were
associated with regenerated production dominated by ammo-
nium uptake and little accumulated barite at depth, consis-
tent with the low mean otolith Ba/Ca concentrations found
in the Falkland Island fish.

For Mn, the thermodynamically stable form in oxidising
seawater is insoluble Mn(IV), but Sunda and Huntsman
(1988) suggested that photoreduction of Mn oxides and
photoinhibition of Mn-oxidising microorganisms may main-
tain the dissolved Mn2+ maximum observed at the surface.
Similarly, high dissolved Mn near the benthic layer where
toothfish are caught is associated with effluxes from anoxic
sediments. Upwelling has also been demonstrated in the
wake of oceanic islands (e.g., Gordon et al. 1998); similarly,
Bucciarelli et al. (2001) found the continental shelf zone to
the northeast of Kerguelen to be influenced by enrichment
from lithogenic origin and the resuspension of sediments.
Off the eastern shelf slope, however, where Kerguelen fish
were taken for the present study, they found that concentra-
tions of dissolved Mn decreased abruptly offshore of the
shelf front, below the surface layer and in association with
Antarctic water. On the other hand, authigenic Mn activity
recorded on the eastern side of South America (Anonymous
1989) is consistent with the higher concentrations of Mn/Ca
in the otoliths of Falkland Island fish.

In contrast to estuaries, where Sr/Ca and Ba/Ca are inversely
related because of the exchange of cations in seawater for
Ba adsorbed on river-borne clays (Guay and Falkner 1998),
Sr is quasiconservative in the oceanic environment: concen-
trations vary slightly, probably as a result of biogenic car-
bonate cycling (De Villiers 1999; Müller and de Deckker
2002). If this process were linked to barite formation
(Bernstein et al. 1992), a common transport pathway to
depth would help explain the relationship we found in tooth-
fish between otolith Ba/Ca and Sr/Ca compared with the in-
verse relationship found in estuarine-dependent fish. It
would also help explain the higher otolith Sr/Ca concentra-
tions at Antarctic sampling areas compared with South
American ones.

However, variation in ambient concentrations of oceanic
Sr/Ca are at the limits at which otolith chemistry has so far
been able to resolve experimentally (Bath et al. 2000). An
alternative explanation is that Sr/Ca in toothfish otoliths is
linked to physical variables such as salinity and temperature,
but even though these drive the complex pelagic environ-
ment in the Southern Ocean, their variation at depth is small
compared with shallower and more temperate regions.
Temperature-dependent fractionation may behave differently
at the lower temperatures encountered in the Southern Ocean
(Townsend et al. 1992), but nevertheless, these ranges ap-
proach the demonstrated limits of resolution for otolith
chemistry. For instance, the difference in temperature be-
tween warm Upper Circumpolar Deep Water and colder
Bransfield Strait Water is in the order of 2 °C (Smith et al.
1999) compared with differences almost an order of magni-
tude greater between surface water types off the east coast of
North America. Similarly, the difference between salinities
found in Antarctic Winter Water and the salinity maximum
in Lower Circumpolar Deep Water vary between only ~0.5
and 1.0 ppt. Instead, another explanation is that variation in
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the rate of matrix protein formation linked to somatic
growth may control otolith crystallization (Campana 1999),
accounting for variation in otolith Sr/Ca concentrations. In
consequence, divergent growth rates (Ashford 2001) could
contribute to the differences in otolith Sr/Ca concentrations
between the toothfish sampled in the present study off South
America and that sampled in the Antarctic.

Thus, the spatial variation in toothfish otolith chemistry
appears consistent with environmental structure in the South-
ern Ocean, mediated by physiological processes (Kalish
1989, 1991) such as growth that themselves vary spatially in
rate. As a result, by empirically linking otolith elemental
markers to geographic areas within a species’ distribution,
researchers can identify the provenance of captured oceanic
fish over their entire life history and hence study their prior
movement and use of critical habitat. Because otoliths also
provide a chronology recorded in growth increments, these
life history processes can be related to age and to calendar
year when the capture date is known. Where elemental sig-
natures can demonstrably discriminate areas of interest,
these important advantages make otolith chemistry a valu-
able addition to the suite of tools available to study oceanic
fish and a useful complement to older approaches employing
genetic and artificial markers.
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