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ABSTRACT

FUNDAMENTAL ANALYSIS OF THE
LINEAR MULTIPLE REGRESSION TECHNIQUE FOR
QUANTIFICATION OF WATER QUALITY PARAMETERS
FROM REMOTE SENSING DATA

Charles Henry Whitlock III
014 Dominion University, 1977
Director: Dr. Chin Y. Kuo

Inconsistent results have been obtained from previous experiments
which have applied linear multiple regression techniques to remote
sensing data for quantification of water quality parameters. The
objective of this investigation is to define optical physics and/or
environmental conditions under which the linear multiple regression
should be applicable. To achieve this objective, an investigation
of the signal response equations is conducted and the concept is
tested by application to both analytical test ceses and actual remote
sensing data from a leboratory under controlled conditions.

Investigation of the signal response equations shows that the
exact solution for a number of optical physics conditions is of the
same form as a linearized multiple regression equation, even if
nonlinear contributions are made by such factors as surface reflections,
atmospheric constituents, or other water pollutants. Limitations on
achieving this type of solution are defined. Since the exact solution
is in the form of a linear multiple regression equation, application
of multiple regression techniques to remote sensing and ground truth

data is viewed as a calibration of the exact solution to account for

ii
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daily variations in background constituents.

Least-squares and statistical concepts for performing the
multiple regression analysis are examined. A test for evaluating the
applicability of least-squares techniques to a particular set of data
is defined and criteria for selection of "good" data are established.

From analytical test case results, it is concluded that
constituents with linear radiance gradients with concentration may be
quantified from signals which contain nonlinear atmospheric and
surface reflection effects for both homogeneous and non-homogeneous
water bodies provided accurate data can be obtained and nonlinearities
are constant witl wavelength. It is also concluded that statistical
pereneters must be used which give an indication of bias as well as
total squared error to‘insure that an equation with an optimum
combination of bands is selected for utilization.

From application to laboratory data, it is concluded that the
effect of error in upwelled radiance measurements is to reduce the
accuracy of the least-squares fitting process and to increase the
number of points required to obtain a satisfactory fit. The problem
of obtaining a multiple regression equation that is extremely
sensitive to error is discussed. It is also concluded that the
linearized multiple regression is applicable in situations in which
some types of optical interaction nccur between constituents.

The result of this investigation is an increased understanding

of technique limitations, methematical requirements, ground truth

iii
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requirements, and error effects which should aid in the obtaining of

consistent results from future remote sensing experiments.
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CHAPTER I

INTRODUCTION

Large amounts of sediments and other pollutants are carried
annually in the rivers, lakes, estuaries, and coaestal waters of the
United States. These sediments and pollutants are major determinates
of water quality. Measurement bf marine sediment and pollutant
concentrations is a tedious and expensive effort usually involving
both in situ and‘laboratory work. Efforts have been directed towards
the development of more rapid and economical methods for monitoring
sediment and pollutant concentration in the nation's waters. Many
agencies are investigating the potentiél of using remote sensing
techniques to monitor various water quality parameters because of the
ability of remote sensing to provide synoptic views over large areas.

Specific data needs usually vary among different user organiza-
tions (Kuo and Cheng 1976). Typical water quality parameters of
iﬁterest to user organizations include chlorophyll, phytoplankton,
organic compounds, toxic chemicals, heavy metals, clays, silt, and sand.
For these parameters, the types of information desired are concentra-
tion, qomposition, size distribution, etc. for biological, genlogical,
oceanographic, and sanitation uses. Advanced monitoring systems which
utilize remote sensing data to its fullest adventage are desired for
assessment of the effects of both man-made and natural events such as

storms, floods, etc.. While mnch has been'done toward the use of

1
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remote sensing data for monitoring of water quality parameters
("satellites Helping=—=—-- Problems" 1975), it is clear that additional
research and development of improved data analysis procedures is desired
by meny users (HQ;éiié'1975, for example). Generally the desired use
of remote sensing data is either identification or quentification of
surface sediments and pollutants. In the long term, both identifica-
tion end quantification are desired simultaneously from the same data.
At the present time, however, these two processes are approached by
different techniques. This dissertation is concerned with data
analysis procedures for quantification of water quality parameters that
have already bgen identified and are known to exist within the water
body. Specifically, the study deals with the linear multiple regression
technique as a procedure for defining and calibrating data analysis
algorithms for such instruments as spectrometers and multispectral
scanners. The technique has been utilized by Johnson (1975 and 1976),
and Rogers et al (October 1975) with some apparent success. A more
qpmplete understanding of the limitations, requirements, and precision
of the linear multiple regression technigue is required before it can
be applied by user agencies in an operational menner. In an effort

to gain some insight into these questions, it 1s the objective of this
investigation to define optical physics and/or environmental conditions
under which the linear multiple regression analysis should apply for
quantification of water quality parameters. To achieve this objective,
an investigation of the signal response equations is conducted, and

the concept is tested by application to both analytical test cases and
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actual remote sensing data from a laboratory under controlled
conditions. An improved understanding of technique limitations,
mathematical requirements, groundvtruth requirements, and error

effects is desired as a result of this study.
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CHAPTER II

REMOTE SENSING CONCEPTS AND PRESENT SYSTEMS

There are two types of remote sensing systems capable of monitoring
water characteristics. Active systems are those which emit their own
energy source and monitor variances in the return signal. hadars,
lasers, and microwave radiometers are examples of active remote sensing
systems. Passive systems are those which depend upon the sun's radiation
as the energy source and measure varietions in the upwelled signal
radiated back from the surface of the Earth. Aerial photography,
spectrometers, and multispectral scenners are examples of passive
remote sensing systems. This investigation is concerned with use of
passive systems, in particular spectrometers and multispectral scanners,
as a means for remote sensing of water quality parameters.

Passive remote sensors measure the total upwelled radiance emitted
from the water-atmospheric system as shown in figure 1. Components
which make up the total upwelled radiance include (1) upwelled
radiance from the water, (2) reflected light, and (3) diffuse skylight.
Of these components, only the upwelled light from the water is normally
a function of the constituents in the water, although in some cases,
surface films as a result of water pollutants may influence reflected
radiance. The upwelled light from the water is the result of a

multiple scattering and absorption process in which a small fraction
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(usually less than one percent) of the downwelling light is back-
scattered back up through the water surface. Constituents which
introduce particles or dissolved substances alter the scattering and
absorption characteristics of the mixture which in turn alter the
upwel;ed radiance emitted through the surface of the water. The
upwelled radiance is further modified by diffuse skylight and
reflected sunlight before it reaches the remote sensor. Researchers
are presently seeking methods to separate atmospheric and surface
reflection effects from total remote sensing signals in an effort to
deduce variations in_upwelled spectra caused by variations in water
constituents. The ultimate goal is to devise data amnalysis procedures
from which water constituents may be identified and quantified by
computerized processes.

For ease of computerized analysis, remote sensing systems which
have digital radiance output are desired. For this reasoﬁ, multi-
spectral scanners or spectrometers are normally used to monitor
gpwelled radiance whenever economic conditions allow such systems. As
sketched in figure 2, a spectrometer normally measures the total
radiance {or power) spectrum over the wavelength range of interest.
The measurement is for only one location within the scene of interest,
however. To overcome this limitation, multispectral scenners have
spanwise rotating optics systems such that upwelled radiasnce mey be
measured over a total scene as the aircraft or satellite progresses
along its flight path. Unfortunately, multispectral scanners measure

only a portion of the total upwelled radiance spectrum. Total radiance

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



values at specified bands over tpe wavelength range of interest are
the output of these instruments. Most research is preséntly centered
on the use of multispectral scanners from either aircraft or satellite
for the monitoring of water constituents. It must be noted, however,
that spectrometers may also be utilized for identification and quanti-
fication of marine parameters if one does not require values over a
total scene.

| A number of multispectfal scanner systems are éresently available.
Unfortunately, each system has different band locations and band
‘widths from the other systems available. Figure. 3 shows band locations
and band widths for several of the more well-known systems.. It must
alsd be noted that each system has a different ability to resolve
features on the surface of the earth (spacial resolution). LANDSAT A
and B have spacial resolutions of TO meters, and LANDSAT D will have a
value near 30 meters. NIMBUS G has narrow bandwidths (high spectral
'resolution), but its spaciel resolution is expected to be near 200
meters. Aircraft systems normally have lower spacial resolutions as

é result.of lower flight altitude. From a 2.4 km aititude, the

Bendix Modular Multispectral Scanner (M2S) has a spacial resolution of
7 meters. The NASA Ocean Color Scanner (0CS) has a spacial resolution
of T0 meters from the U-2 aircraft at an altitude of 18.3 km. It

must also be noted that the various scanners have diffefent amount s

of instrument noise in the radiance measurements. Noise in the data

~

may range from 2 percent to 30 plus percent of the water radiance

values depending on the particular scanner being used, the particular
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band under analysis, the instrument gein setting, and the stability of
associated equipment on the day of the experiment. The effects of

noise on the analysis of remote sensing data will be discussed in a

later section.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER III

HISTORY AND RELATED WORK

It has been known for a number of years that differences in water
turbidity or light transmission characteristics can often be detected
by certain aerial photography systems. Some efforts have been success-
ful at quantifying the surface concentrations of ébme water quality
paremeters from photographic data in a limited number of cases (see
Lillesand 1973 and Link 1973, for example). With the launch of the
ERTS-1 satellite (now known as LANDSAT-A), it was recognized by & number
of agencies tha£ the potential exists for monitoring water quality
parameters on a large scale. The use of multispectral scanners such
as that used on LANDSAT-A provide digital radiance data which is
susceptible to computerized processing in large volumes. If
computerized algorithms can be developed which relate remotely-sensed
radiance values to water constituent concentrations, then certain
vater quality parameters mey be monitored over large geographic areas
on a rapid time scale which is not possible with photographic data.

One of the major difficulties in evaluating the potential for
remote sensing of water constituents is the fact that only limited
optical theory is presently available to relate the remote sensing
measurements to concentrations of specific water parameters. Jerlov
(1968) gives the precise formulation of the radiative transfer

equation in an absorbing and scattering medium from which the radiance
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upwelled from the water may be calculated. The radiative transfer
process is treated as a function of the losses caused by absorption
added to the gain caused by scattering. Various approximate solutions
have been formulated (see Jerlov 1968 and McCluney 1974, for example)
for relatively clear ocean waters, but an exact solution to the
radiative transfer equation applicable to all classes of water is
believed to be extremely difficult (Jerlov 1968).  Because of this
difficulty, various researchers (Gordon et al 1975 and Ghovanlou 1976,
for example) have developed optical theory models which use Monte Carlo
techniques to trace movement of photons after entry into the water
from the atmosphere. Such models are often prohibitive for practical
invéstigations because 100,000 separate computer cases may be required
to define the upwelled radiance spectra over a reasonable wavelength
range.

Optical models are also limited at the present time in that they
relate the upwelled radiance to only the optical properties of the water
and not specific constituent concentrations. Monte Carlo optical
models generally compute the upwelled radiance based on the beam
attenuation coefficient, the scattering coefficient, and the’
probability scattering function of the water mixture. Only limited
work has been done to relate these specific optical parameters as a
-group toc concentrations of specific water constituents for the more
turbid waters as found in the coastal and inland United States. For
example, Ghovanlou et al (1973) collected samples from a number ¢f--

East Coast locations and made laser transmission measurements in &
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laboratory. This study was successful in relating beam attenuation
coefficient to constitueﬁg-concentration and defined the scattering
to absorption ratio for a number of different sediments. Whitlock
(1976) used these data to estimate scattering and absorbtion coeffi-
cients as a function of sediment type and concentration. Unfortunately,
the results are limited to one wavelength (540 nm) and values for the
probability scattering function are not available. Thus a éomplete
set of optical parameters is not available for input to a Monte Carlo
model without estimating one parameter. The problem of not having
measured velues of all optical parameters over a wavelength range for
various constituent concentrations is typical and is a major reason
for the present lack of theoretical relations between water constituent
concentration values and upwelled remote sensing radiance measurements.
As a result of the above unknowns, most LANDSAT and other multi-
spectral scanner investigations have approached the problem from a
statistical point of view. The usual analysis is one in which the
radiance values of various wavelengths (or bands) are correlated with
ground truth concentration values of & particular parameter in a
linearized, least-squares-fit menner. When & high value of correlation
coefficient (approaching 1.0) and a low value of standard error
(68 percent of all points for a normally-distributed error band about
the fitted curve) ié‘obtained, it is often assumed that the regression
equation obtained from the least-squares fit can be used to estimate
water constituent concentrations in other areas of the remote sensing

image where no ground truth measurements exist. In the simplest case,
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the regression equation is linear and of the following form:

C=J+ Kx(Radx) (3-1)

where: C = water constituent concentration

J

empirical constant

' KX = empirical constant for- wavelength X
Ra.dX = radiance at wavelength X
(or band X)
When a linearized, least-squares fit is made to more than one parsmeter,
the resulting relation is known as a linearized multiple regression

equation which might be of the following form:
C =J + K,/(Rady) + K (Rady) + .... (3-2)

While statistical data analysis techniques provide only limited
understanding of the optical procesf being monitored, the approach has
5een successful in providing useful\information to agencies which
monitor various water quality parameters. Developments which have led
to multiple regression concepts for analysis of marine remote sensing
deta are reviewed in the following paragraphs.

Klemas et al (1973) noted the ability of the LANDSAT-A multi-
spectral scanner to detect sediment plumes and aquatic fronts with

band 5. At the same time, Wezernak and Roller (1973) demonstrated that

both LANDSAT and aircraft multispectral scanners had the ability to see
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acid-iron wastes, sewage sludge, suspended solids, and major water

mass boundaries in the New York Bight area. Maul (19f3) noted the
ability to detect chlorophyll-A in the ocean and concluded that sea
state is a significant variable that can dominate the upwelled radiance
when weather conditions introduce bubbles, white caps, and foam.

Grew (1973) concluded that it was feasible to distinguish between algae
and sediment from tests conducted at Clear wuLake, Qalifornial Yarger

et al (March 1973) showed that LANDSAT bands 5 and 6 showed strong
correlation with suspended ioad in two Kansas reservoirs but noted
possible problems with atmospheric scatter. Scherz et al (1973)

made simple laboratory measurements of upwelled spectral signatures of
various wster samples and concluded that upwelled radiance positively
correlates with.watér turbidity. Ritchie et al (1974) made spectrometer
measurements of six Mississippi lakes and showed a high linear
correlation éoefficient (r = 0.90) between upwelled radiation and total
suspended solids in the 28 to 242 ppm range. The data were from a
number of different water bodies, and there was a large amount of
scatter in the results (probably the result of different dissoclved
substances and particle compositions in the vafious lakes). It was
later found (Ritchie et al 1975) that the sun angle had an effect on
the correlation of upwelled radiance to total suspended solids.

Turner (1974) made a study of atmospheric effects and concluded that
variations in atmospheric absorption and multiple scattering have a
significant nonlinear effect on values obtained from an aircraft or

satellite remote sensing system. Of particular concern was data taken
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under hazy conditions in which aerosol or moisture content might vary
over the remote sensing scene of interest. In spite of these
difficulties, Christensen and Wezernak (1975) concluded that remote
sensing could serve as an important addition to techniques available
to a regulatory agency for environmental monitoring. Images give good
maps of overall features of turbid and thermal plumes, and surface
films could be detected at wavelengths between 320 and 380 nm. The
above results indicate that remotely-sensed spectral measurements are
quite useful for qualitative evaluation of circulation and transport
patterns.

Of particular concern to agencies charged with environmental
monitoring responsibilities is the requirement to -quantify surface
conéentration values using remote sensing data. One early attempt at
quantification was by Yost et al (1973) which developed additive color

algorithms of the form:
C=J+ K(Re.d.x + RadY) (3-3)

The algorithms produced good results for quantification of suspended
solids for two days in the New York Bight area but were unsuccessful
in quantification of extinction coefficient, chlorophyll-A, and total
particle counts. Yarger et al (1973) showed that sun angle had a
significant effect on upwelled radiance signals a;a formulated a band-

ratio technique which nearly surpressed the effect of unequal

illumination. The band-ratio algorithm was of the form:
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Rad.
C=J +K (=—2) (3-1)

Ra.dY

It was also demonstrated that for a concrete target on the ground, the
band-ratio technique eliminated the effects of variable atmospheric
scattering and absorption. It was noted, lLiowever, that the band-ratio
algorithm did not produce consistent results for experiments conducted
on different'dayé. The reason for the anomalous behavior was
unexplained, ;nd it was believed that variations in water constituents
and surface conditions between days were not cignificant. Bennett

and Sydor (197k4) utilized a linear regression algorithﬁ of the form of
equation (3-1) with LANDSAT band 5 to map turbidity in Lake Superior
to an accuracy of 20 percent. It was noted, however, that factors
which changed the absorption coefficient of the water caused the up-
welled radiance for Superior Bay to be four times lower than that from
Lake Superior waﬁer bearing equivalent suspended load. One of the
most complete investigations recently reported is that conducted by
Yarger and McCauley (1975). That investigation made correlation
studies with 16 LANDSAT overpasses over three Kansas reservoirs
collecting a total of 170 watér samples for ground truth data. It

was concluded that the band-ratio type of algorithm depressed the
effect of seasonal sun angle variation, and that suspended solids
could be quentified with a linear algorithm (equation (3-L4)) to a
standard error of 12 ppm over a range of O to 80 ppm. The radiance-

concentration relationship was nonlinear for conceatrations above
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80 ppm. A good fit to the higher concentration data was obtained with

a smooth polynomial algorithm of the following form:

2 3
Rad Ra Ra
C=J+ Kl(-la-i-{-) + Ka(-—%) + K3(§;?—;) (3-5)

A standard error of 35 ppm cver a range of 0 - 900 ppm was obtained

for suspended solids. Correlation studies with the SKYLAB ﬁultispectral
‘scanner produced similar results, however, these experiments were
limited to suspended solids concentrations less than 100 ppm. The
investigation was unsuccessful in detecting dissolved solids (ranging
to 500 ppm) and algal nutrients (ranging to 20 ppm). Total chlorophyll
was not detectable below 8 ug/%2 but showed a weak correlation for
higher values. Also potassium, phosphate, and nitrate were not
detectable. Bowker and Witte (1975) also made repetitive investiga-
tions with several LANDSAT passes over the lower Chesépeake Bay in
Virginia. Their analysis included linearized correlation studies using
& number of different types of algorithms including single band
(equation (3-1)), color addition (equation (3-3)), color substraction,
band ratios (equation (3-4)), and band mulﬁiplication (c=J+K
(RadeadY)) forms. While the experimental data suffered from tidal

and meteorological effects as a result of time leg between the
satellite overpass and ground truth sampling, it was concluded that
good linear correlations with sediment could be obtained with LANDSAT
band 5 or combinations of band 5 and band 4. Only low correlations

for chlorophyll could be obtained. Results from individual days were
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quite variable indicating the effects of atmospheric, tidal, and
seasonal variations. Unlike the studies of Yarger and McCauley (1975),
the band-ratio type of algorithm did not improve this situation.

Later analysis (Bowker et al 1975) indicated that a color substraction
algorithm (using (Rad5 - Radg)) was highly correlated with total
particles if a daily calibration could be obtained. Band 5 also had
high correlation with water attenuation coefficient at a wavelength

of 535 nm.

It must be noted that several non-statistical approaches have
been attempted in the effort to quantify certain water constituents
from remote sensing data. Williamson et al (1973) developed automatic
data processing routines using only limited computer capability for
mapping of suspended sediment classes. The technique matched reference
spectra from known ground truth to satellite dapa (after corrections
for a standard atmosphere) assuming the following parameters are
constant over the scene of interest:

l. Water constituents

2. Water surface conditions

3. Solar geometry

4. Atmospheric composition
(It should be noted that many of the statistical analysis techniques
make these same assumptions.) It was noted that the technique was
unable to discriminate between various sediment types for concentra-
tions below 25 ppm, but some measure of discrimination was possible

for higher concentrations. Scherz et al (1975) developed a technique
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in which the atmosphere ané water surface noise effects on LANDSAT
data can be removed using distilled water laborsastory measurements and
field measurement of signals from very clear lakes. The approach
made a number of optical and physical assumptions, but a quantitative
calculation for turbidity is made and used for classification of
Wisconsin Lakes.

Most recently, linearized multiple regression'analysis'procedures
have been applied to marine remote sensing data. This technique
provides data analysis algorithms of the form of equation (3-2).

The first known use of multiple regression procedures for marine
data was by Mueller (1974) in performing correlations of ocean color
spectra off the Oregon coast. The technique was used in an jadirect
menner in that dummy variabléé were correlated in the regression
analysis instead of radiange levels from various wavelengths or bands.
The measure@ upwelled radiance spectra was transformed into four
principle components where the principle components are projections
of the obseryed spectra on coordinate axes defined by the first four
orthonormal eigenvectors. The purpose of the transformation was to
reduce 55 bands of spectrometer data to four variables for ease of
manipulation. Two algorithms were developed for Secchi~depth
and Net Equivalent Color concentration with correlation coefficients
of 0.89 and 0.87, respectively. It was noted that the assumption
of linearity of upwelled radiance with concentration was questionable.
Johnson (Merch 1975) was apparently the first to apply multiple

regression analysis in a direct manner using‘actual LANDSAT radiance
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values. Using four data points from the Delaware Bsy, an algorithm
wvas formulated and applied to the Potomac River to produce a
continuously variable map of suspended sediment concentrations.
Unfortunately no ground truth data were available from the Potomac

to test the aécuracy of the algorithm. This study served to introduce
the concept of direct application of multiple regression analysis for
developing data analysis algorithms for quentifying surface concentra-
tions of water constituents. The concept was applied to aircraft
multispectral scanner date in a later experiment in the James River
of Virginia in which 54 ground truth data points were taken near the
time of overpass (Johnson et al June 1975). Linearized radiance-
concentration relationships were assumed and multiple regression
algorithms were developed for suspended sediment and chlorophyll
concentraxioﬁs (Johnson June 1975). For suspended sediment, the
multiple regression algorithm of the form of equation (3-2) hed a
sfandard error of 4.31 ppm over a range of O to 50 ppm. The
correlation coefficient was 0.93. This represented an improvement
over the single band regression algorithm (equation (3-1)) which

had a standard error of L4.76 ppm end a correlation coefficient of
0.89. Use of multiple regression analysis produced a more dramatic
improvement for the chlorophyll-A parameter. Over a range of 0 to

20 mg/m3, the multiple regression algorithm had a standerd error of
1.56 mg/m3 and & correlation coefficient of 0.97, while the single
band regression algorithm had a standard error of 2.6l mg/m3 aﬁd a

correlation coefficient of 0.89. This study suggested the potential
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for multiple regression concepts as an analysis technique for
separating various water constituents from the total wéter scene.
Conducting a mére refined analysis of the same James River data set
(Johnson May 1976 and Johnson and Bahn August 1976), it was found
that correlation coefficients and standard error values were not as
good as the earlier analysis had indicated. For suspended sediment,
a single band regression equation (using band 8) produced a standard
error of 7.16 ppm (r = 0.79),but a multiple regression equation
(using bands 8 and 1) again improved the analysis reducing the
standard error to 5.86 ppm (r = 0.87). Use of the refined data
produced only a slight degradation in the chlorophyll-A results.
A standard error of 1.78 mg/m3 (r = 0.96) was obtained for this
parameter using a multiple regression equation. It was also found
that multiple regression algorithms could be derived which gave high
correlations for Secchi-depth (r = 0.92), inorganic N0, (r = 0.98),
inorgenic NO, (r = 0.99), acidity (r = 0.99), and salinity (r = 0.97).
The high correlation of many of these parameters were not believed
to be a direct result of the scattering attenuation optical process
but rather because of indirect chemical or physical relationships
between the particular parameter and sediment or chlorophyll properties.
Unfortunately the results are for only one data set, and there is no
evidence of the reliability of the ‘analysis technique for different
days on the same water body.

The multiple regression concept has now been accepted by other

investigators and applied to other watgr bodies. Rogers et al (1975)
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applied the concept to define algorithms for 12 water quality parameters
in Saginaw Bay, Michigan. LANDSAT data were ther input to these
algorithms to map the surface concentrations of the 12 water quality
paremeters. The particular parameters mapped were Secchi-depth,
temperature, conductivity, chloride, chlorophyll, sodium, potassium,
magnesium, caleium, total dissolved phosphorus, total phosphorus, and
total kjeldahl nitrogen. Correlation coefficients ranged from 0.99
for total phosphorus to 0.72 for chlorophyll-A. The data were from a
one-day experiment (June 3, 1974) with 31 ground truth stations,
however, ground truth were not synchronous with the satellite overpass.
(Samples were from 3 hours before overpass to 8 hours after.) These
results also suggest that the multiple regression concept has the
capability of monitoring water quality parameters which may not
directly influence water optical characteristics (attenuation
coefficient, scattering coefficient or volume scattering function).
More recent work has applied the concept to a second data set (July
31, 1975) over Saginaw Bay (Rogers et al 1976). In the second
application, the concept was modified %o incorporate the results of
Yarger et al (1973) in which band ratios were believed to suppress

the effects of atmospheric and solar illumingtion variations.

Instead of performing the linear multiple regression analysis with
LANDSAT bands 4, 5, 6, and T, the dnalysis also included the parameters
band 4/band 5, band 4/band 6, band 4/band 7, band 5/band 6, band 5/
band 7, and band 6/bend 7. Thus ten independent variables were

correlated against the ground truth deta. In some cases the optimum
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multiple regression algorithm utilized only band radiances and in other
cases the optimum utilized ratios of band radiances. Seven water
guality paremeters were correlated which included Secchi-depth,
temperature, chloride, conductivity, total kjeldshl nitrogen, total
phosphorus, and chlorophyll-A. Correlation coefficients ranged from
0.94 for temperature to 0.7l for Secchi-depth. Also it was reported
that the June 3, 1974 data set had been reanalyzed using the modified
multiple regression procedure., Specific results were not given,
however, it was reported that the modified multiple regression pro-
cedure gave improved results over the direct multiple.regression
analysis for most water quality parameters for that particular data set.
In addition to the James River and Saginaw Bay tests, additional
experiments have been conducted in the New York Bight and off the
Delaware coast to test linearized multiple regression procedures
for quantification of water constituent concentrations. Two joint
NOAA-NASA experiments have been conducted in the New York Bight
(Johnson September 1976). The first experiment was conducted on
April 13, 1975 in which ground truth were collected at 24 stations
within 2 hours of aircraft scanner overpass. Suspended sediment
and chlorophyll-A data were subjected to direct multiple regression
procedures. For suspended sediment, a single-band regression
equation proved optimum having a standard error of 1.39 mg/%
(r = 0.79) over a range of 0.56 to 8.38 mg/%. A two~band multiple
regression equation proved optimum for chlorophyll-A giving a

standard error of 3.87 mg/m3 (r = 0.83) over a range of 2.2 to
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17.8 mg/m3. These results are somewhat worse than those from the
James River experiment. The reason for the deterioration is not known,
however, a different multispectral scanner with poorer spacial
resolution (but improved signal to noise ratio) was used. Also the
fact that the New York Bight has less turbid waters than the James
River allows deeper penetration depths for remote sensing purposes
(see Whitlock 1976). Deeper penetration depths may allow vertical
concentration gradients to confuse the results. The second New York
Bight experiment was conducted September 22, 1975 for purposes of
testing multiple regression procedures for quantification of sewage
sludge surface concentrations. For suspended solids in the sludge
dumping area, a standard error of 4.11 mg/& (r = 0.96) over a range
of 1.1 to 32.2 mg/% was obtained using a multiple regression equation
with two bands.

One problem with all of the above multiple regression analysis
experiments was that they required a high number of field data samples
nearly synchronous with the multispectral scanner overpass. On
August 28, 1975, an acid waste remote sensing experiment was conducted
off the Delaware coast with only one ground truth boat (Ohlhorst 1976).
In order to obtain data for performing multiple regression procedures,
a number of aircraft overpasses were made as the boat moved %o
different concentrations of acid waste. Each overpass was precisely
synchronous with ground truth sampling, but the process took nearly
8 hours meaning that each ground truth - remote sensing data pair was

for a different solar angle as well as different meteorological and
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atmospheric conditions (the wind and waves increased during the last
half of the experiment). Iron precipate concentrafﬁons from seven
stations at a 0.6 m depth were correlated with the multispectral
scanner data: Both direct and modified multiple regression procedures
were used to correlate the data. Use of band radiances alone gave
results which indicated that the multiple regression equation offered
no improvement over a single-band linear regression equation of the
form of equation (3-1). A standard error of 0.172 mg/L (r = 0.88)
over a range from 0.05 to 1.1 mg/% was obtained. In an attempt to
account for the effects of different illuminations, a normalizing
procedure similar to that suggested by Mueller (197hk) was applied.
For each ground truth location, the radiance levels in all bands

were summarized and then the radiance in each individual band was
divided by this sum. The values for this ratio were then input to
the process, and a multiple regression equation wes developed which
had a standard error of 0.096 mg/f and a correlation coefficient of
0.97. Multiple regression correlation with band ratios as suggested
by Rogers et al (1976) had not been attempted.

Considering all of the above investigations, it may be concluded
that quantification of surface concentrations of marine constituents
from remote sensing spectral data is presently a somewhat unreliable
process. Various types of algoritlims have been attempted which seem
to give good results in some cases and poor results in others. It
must be noted, however, that present-day remote sensing data often

contains an appreciable amount of instrument noise. Few of the above

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2L

investigators discussed the problem, but Williasmson et él (1973)

did indicate noise of from T to i6 percent of the water signal for
early LANDSAT date. Bahn (1976) has indicated that more recent
LANDSAT data has noise levels from 5 to 10 percent of the water signal.
(It should be noted that signals from land objects are seldom badly
influenced by this problem because the received radiance is usually a
high percentage of the dynamic range of the instrument whereas signals
from water bodies are low in magnitude.) Data from aircraft multi-
spectral scenners is quite variable. Depending on ‘the particular
scanner used, noise levels may range from 2 percent to values in
excess of 30 percent of tﬁe water signal (Bahn 1976). In many cases,
smoothing processes are applied to the remote sensing data to suppress
noise, but most published results generally do not discuss this

aspect of the investigation. Also little is published concerning
uncertainties in ground truth values used in the various correlation
studies. Tidal and meteorological effects cause uncertainties when
there is a time lapse between the remote sensor overpass and the
taking of the water sample. Variations in sampling technique and

the present state of art of laboratory anélysis introduce additional
sources of error. It is clear that more highly controlled experiments
and additional indepth investigations must be conducted to test

those date analysis concepts which show promise.
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CHAPTER IV

THEORY

The basic processes which occur during multiple regression
analysis of spectral radiance data can hest be examined by analysis
of the problem from a signal response point of view. The objective of
this analysis is to define those optical physics conditions for which
the linearized multiple regression equation (equation (3-2)) represents
an exact solution to the problem. A single-constituent water mixture
is first discussed with multi-constituent cases analyzed in subsequent

sections.

Single-Constituent Water Mixtures

It is assumed that the polluting constituent (pollutant A) has
an upwelled radiance spectra similar to that shown by Schiebe and
Ritchie (1975) for sediment. It is also assumed that at any wave~
length, the reflected radiance varies in a linear manner with
pollutant A concentration. Assuming linear superposition, the
upwelled radiance near the water surface, Rad, for filtered seawater
plus pollutant A may be expressed as,

Red = A+ B P, (4-1)

A

25
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where:

A = upwelled radiance of filtered seawater.

B = constant giving change in upwelled radiance
due to PA'

Pp = pollutant A concentration.
For a given water mixture of fixed pollutant A concentrgtion, the
constants A and B both vary over the spectral range but are assumed
constant at any particular wavelength. Thus for a single wavelength
band or channel in the spectra, Rad is a linear function of PA'

From these assumptions e hypothetical radiance spectra can be
constructed as shown in figure 4. The upwelled radiance scale is in
arbitrary units for simplicity of analysis in this study. Also
pollutant A concentration values are in arbitrary units (different
from radiance units) for ease of analysis. The spectral profile for
pure water (filtered seawater) was taken from Grew (1973). Also
shown in figure I are 5 spectral bands which will be used in this
analysis.

Equation (4-1) cen be rewritten in terms of sediment concentration

for any one band.

Py =3+ k(Rad) (L-2)
where: b
==A
d =3
=1
k=3
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In the general case where j and k vary with wavelength A,

P, = 3(A) + k()A) Rad(r) (4-~3)

Equations (4-2) and (L4-3) indicate that in the single~constituent
case, sediment concentration may be obtained from measurements in

only one spectral band assuming the constants Jj and k are known.

Dual-Constituent Water Mixtures

If it is now assumed that the filtered seawater contains two
constituents, pollutant A and pollutant B, the upwelled radiance at

any wavelength X may be written as:

Red, = Ay + ByP) + E,Pp (h=))

Equation (L4-4) assumes that there are no chemical, electrical, or
optical interactions between pollutant A and pollutant B, and that

the upwelled radiance varies linearly with concentration of each
constituent. If it is further assumed that the radiance linearity
with concentration is consistent over the wavelength range of interest
and that the spectra of pollutent B (in filtered seawater) is different
than that of pollutant A (see figure 5), then the upwelled radiance

at wavelength Y may be written as:

Red, = Ay + ByP, + E. Py (4-5)
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The requirement that the spectra of pollutant A be different than that

of pollutant B means that:

~

(4-6)
Ey X By

!

If upwelled radiance values are known at wavelengths X and Y,

equations (b4-L) and (L-5) represent two equations with two unknowns

(PA and PB). Multiplying (4-k4) by By and (4-5) by By and
‘substracting,
By(Rady) - By(Redy) = Byhy = Byhy + (Byfty = ByEy)Py (h-7)

Solving for PB:

B - B B B
_ B - By (1-8)

Y X
P = - (Ra. ) + e (Ra. )
B~ BB, - BE, ~ BBy - B dy By, ~ Byl dy

Remembering that AX’ AY’ BX’ By, EX and EY are constants, equation

(4-8) can be written as:

Pp=J' + Ki(Radx) + K%(Rady) (4=9)
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where:

B - B
J' = M = constant

Byfy = Byfiy

Y
! = ————"t———— = constant
KX BXEY - BYEX
Ki BX = constant
ByBy - ByPy
Solving for PA:
Py =J + K (Rady) + K (Rady) - (k-10)

Ay ExByiy L,y
By BoE, - B,B.E ByBy - Byfy

= constant

1 1
=5+
X ByEy - ByByEy

Ky = —L - constant

ByBy = Byfy

= constant

Thus the exact solutions for P, and PB (equations (4-9) and (4-10))
are linear multi-parameter equations of the same form as the
statistician's multiple regression equation (equation (3-2)) if each

constituent has a linear radiance gradient with concentration and

there are no chemical, electrical, or optical interactions.
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Dual=Constituent Water Mixtures in the Presence

of Nonlinear Surface and Atmospheric Effects

The total radiance value received by a remote sensing instrument
includes both surface reflection and atmospheric diffusion effects in
addition to the radiance upwelled through the surface of the water
(see figure 1). Such surface and atmospheric effects may be either
linear or nonlinear with various parameters such as pointing angle,
wind speed, aerosol content, and moisture content. Thus one may be
faced with the problem of trying to extract pollutant concentrations
for pollutants with linear radiance gradients from total radiance
measurements which contain nonlipear components as a result of
variations in unknown surface and atmospheric parameters. For purposes
of this enalysis, it is assumed that these nonlinear radiance
components are independent of the radiance upwelled from the water.
Atmospheric and surface effects may then be superimposed upon the
upwelled radiance from the water to obtain a total signal. At any
wavelength, the total radiance received by the remote sensing instru-

ment may be expressed as:

Rad = A + BPA + EPB + H¢M + I+ LXﬂ (4-11)

where:

A = upwelled radiance of filtered seawater

BPA = upwelled radiance of pollutant A
EP, = upwelled radiance of pollutant B
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H¢M = radiance component from surface reflection

(assumed as a function of some variable such as
¢ which is related to the instrument pointing
angle and the solar elevation angle).

I = radiance component from clear atmosphere.

LXlX = radiance component from atmospheric pollutant X
(assumed as function of X, to the Nth power).

A
Equation (L4-11) assumes that atmospheric and surface reflection
variations are small over the scene of interest and that their effects
may be approximated by power law functions over small variations. If
it is further assumed that a1l nonlinearities are consistent (M and N
values are constant) over the wavelength raﬁge of the remote sensing

measurements, then the total radiance for wavelengths W, X, Y, and Z

may be written:
Rady = Ay + ByEy + BBy 4 B+ Ty + L (-12)

Rady = Ay + ByP) + E.Pp + chpM + Iy + LXXX (4-13)

Rad, = A, + B,P. + E,P_ + H0" + I, + L X (4-14)
Y A Y'B Y YA
- M
Ra.dz -AZ +BZPA+EZPB+HZ¢ + IZ +LZXX (h-15)

Equations (4-12) through (4-15) are four equations with four unknowns
(p,, Pp» ¢M, XX). Solving these equations simultaneously (see Appendix

C), it can be shown that:
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P, =J+ K (Red ) + Ky (Rady) + Ky(Rady) + K, (Rad, ) (4-16)
where:
I=% [=(Byoy zly * Bty ply) (by * Ty)

+ (Byoy ply) (B + Iy)

+ (Byoyy xl + Bty ylg * Byty ply) (Ay + Iy)

= (Byo By + Bty yLy)(Ay + I,)]

constant

£(A,B,E,H,I,L)

1 _
=3 [Byoy gLy * By jLyl = constant

e

£(B,E,H,L)

1 -
=% [_BXOLY,ZNW] = constant

o

f(B,E,H,L)
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l —
7 [-Byo%y xPy = Byt ylg — Bytty gly] = constant

f(B,E,H,L)

_ 1 _ .
Ky =5 [By%y xly * By%y ylyl = comstent

f(B,E,H,L)

D
|

'(BX“Y,éLwa - Byoy zlyPx = By% xMrPy

* Byoy vy~ Bty yleBy * Bty vlyBy

+ Byoy, glyBy — Bty 2By

By = (ay lyBy = oy pIyEy = O xDyBy + Oy xlyFy)

By = (o yLoBy = Oy yLyEy = Oy JLyEy + oy ,LE)

o x = (Dyly = L)

%,z © (LyHy - LyHy)

Oy = (Dyfy - Lfiy)

and,
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Pp =J' + K;I(Raaw) + K)'C(Rad.x) + K,-',(RaaY) + Ké(RadZ) (ﬁ-l’{)
where:

J' = constant = f(A,B,E,H,I,L)

Kj;, = constant = f(B,E,H,L)

Ky = constant = f(B,E,H,L)

Ki = constant = f(B,E,H,L)

Ky = constant = f(B,E,H,L)

Equations (4-16) and (4-1T7) are significant in that they show that the

exact solutions for PA and P are ggain linear multi-parameter

B
equations of the same form as the statistician's multiple regression
equation even if nonlinear atmospheric and surface reflection
variations are present. A major assumption of this analysis is that
the atmospheric and surface nonlinearities are consistent over the

" wavelength range of the measurements and can be approximated by power-
law variations. Again each water constituent is assﬁmed to have a
linear radiance gradient with concéntration and there are no chemical,

electrical, or optical interactions between constituents. Another

important point to note is that if the J,K constants of equations
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(4-16) and (4-17) cen be obtained, the concentrations P, and Py

can be computed without knowledge of the atmospheric and surface
reflection varigbles, ¢ and XA‘ If the nonlinear radiance components
do not follow power law variations, but instead follow other relations
independent of PA and PB (such as power series expansions),
procedures similar to Appendix C can be followed and the exact

solutions for PA end Py will still be in the form of linear

multi-parameter equations.

Multi-Constituent Water Mixtures with Nonlinear

Constituents and Atmospheric Effects

In this case, one is dealing with a situation that is analytically
similar to the previous case with nonlinear surface reflection and -
atmospheric effeets. In both cases, the total radiance received by
the remote sensor is composed of components with linear variations
and components with nonlinear variations. If the water constituent
with a nonlinear radiance variation with concentration is independent
of other constituents (no chemical, electrical, or optical inter-
actions) and the nonlinearity may be approximated as a power law

variation, the total radiance may be expressed as:

_ , Q _
Rad-A+BPA+EPB-f-SPC+I+LX§ (4-18)
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where:
A = upwelled radiance of filtered seawater

BP, = upwelled radiance of pollutant A

A
EPB = upwelled radiance of pollutant B
SPg = ypwelled radiance of pollutant C (assumed as a funetion

of concentration, P., to the Qth power)

C’

I = radiance component from clear atmosphere

Iﬂﬂ = radiance component from atmospheric pollutant XA.

If it is assumed that the nonlinearity of Pc radiance (as well as
that of XA) is consistent over the wavelength range of interest,
then equetion (4-18) cean be written for the wavelengths W, X, Y, and Z.

The resulting equetions are identical to equations (4-12) through

Q
c

procedures of Appendix C are followed, it can again be shown that:

(4=15) except SP; terms are substituted for the H¢M terms. If the

Py = J + K (Rad,) + K_X(Rad.x) + Ky (Rady) + KZ(RadZ) (4-19)
Pp=J'+ K;,(Radw) + Kj'((Rad.x) + K.'!(RadY) + Ké(RadZ) (4L-20)

The J,J' terms are a function of A, B, E, S, I, and L and the K,K'

terms are a function of B, E, S, and L. Again it must be noted that

it is not necessary that the nonlinearity of PC obey a power law
relation as used in this example. Equations of the same form as

(4-19) and (4-20) would result so long as the nonlinearity is consistent

with wavelength end independent of PA and PB' A knowledge of PC or
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X, is not required to compute P, and P, from equations (4-19)

and (4-20) if the J,K constants can be obtained by some means.

Multi-Constituent Water Mixtures

with Optical Interactions

The sbove analyses have assumed mutual independence with no
optical interactions between water constituents. While many types of
optical interactions may oceur, there is at least one type for which
the solution to the signal response equations is still in the form
of a linearized multiple regression equation. That is the case when
a constituent with a linear radiance gradient has its radiance
component modified by the presence of anothér component because of
chemical or physical processes.' Assume, for example, the component
of total radiance contributed by Pp is EPg (see equation (4=k)).
Assume also that there is a constituent PC which when added to
the water modifies the radiance contributed by P, such that the

B
new PB component is EPB + G(Pg)(Pg), where R and T represent
power-law approximations of the nonlinear modifications which may
occur. The total radiance from the water mixture with this type

of interaction would have the following form (ignoring atmospheric

and surface nonlinear components):

= Ry ,.T
Red = A + BP, + EP, + G(PB)(PC) (h-21)
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If it is assumed that the nonlinear modification terms, R and T,
are constant over wavelength, then the total radiance for various

wavelengths may be expressed:

Rady = Ay + ByPy + E Py + GW(PE)(PE) (k-22)
Redy = Ay + B,P, + E,Pp + GX(PS)(Pg) (4-23)
Rady = Ay + ByP, + EyPy + GY(Pg)(Pﬁ) (4-2k)

Multiplying (4-22) by Gy and (4-23) by G, and subtracting:
Gx(Rady) - C,(Ragy) = (G = Guy) + (653, = GByI?,
+ (GyE, - GE P, (k-25)

Multiplying (4-22) by Gy and (4-2k4) by G, end subtracting:

Gy(Rad,)) - G, (Rad,) = (G A, - GuA,) + (GB. ~ GyBy)P,
+ (GyE, ~ GuEy )Py (4-26)

Multiplying (4-25) by (GYBW - GWBY) and (4-26) by (GXBW - GWBX)

and subtracting:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



39
2
(GyByBy — GyGyBy)Rady ~ (GGyBy - GyBy)Rady
2
- (GyGyBy — GyGBy)Rady + (G GyBy - GyBy)Rady
= (Gehy - Gyhy) (GyBy - Gy
- (Gyhy - Gyhy) (GyBy — GyBy)
+L(GygEy - GyBiy) (GyBy - GyBy)
- (GyE. - GEy)(GyB, - G.By)]P, (b-27)
Solving for P_, the solution is also of the form:
= J! 1 1 1 -
Py = J' + Ki(Rad,) + Ky (Rady ) + Ky (Rady) (L-28)
Thus it can be seen that some types of optical interaction may occur
and the exact solution to the signal response equations is still of
the form of a linearized nultiple regression equation. It is
expected that many types of optical interactions may occur in nature,
and it is beyond the scope of this investigation to study the effects
-of all possible situations. Rather it is the purpose of this section
to simply note that mutual independence between water constituents

is a desirable but not a strict requirement for application of multiple

regression concepts.
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The above analyses have defined some optical physics conditions
for which the exact solution to the signal response equations is in the
same form as a linearized multiple regression equation. To summarize,
these conditions are:

1. The constituents of interest must have a linear or near-linear

upwelled radiance gradient with concentration.

2. The degree of nonlinearity in each radiance component must
remain constant at the wavelengths which are used in the
multiple regression equation.

3. Mutual independence between constituents (no electrical,
chemical, or optical interactions) is desirable but not
always required.

An edditional assumption of the analysis is that the mixture
concentration is constant to the depth of penetration of the remote
sensing signal (see Whitlock, 1976). (The impact of this assumption
will be discussed in a later section.) For those situations in
which the above assumptions approximate real-world conditions, the
linearized multiple regression equation is the appropriate form for
computation of constituent concentration from multispectral remote
sensing data in spite.of the presence of nonlinear effects from other

water constituents, surface effects, and atmospheric effects.
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CHAPTER V

LEAST-SQUARES AND STATISTICAL CONCEPTS

Bstimation of Coefficients

It is generally considered that independent variables in a
mathematical equation cause a change in the dependent variables of the
equation. From an optical physics point of view, a change in pollutant
concentration is believed to cause a change in upwelled radiance such

as that given in equation (5-1).
Red = A + BP, (5-1)

From a physical viewpoint, PA is the independent variable and Rad
is the dependent variaeble expressing the actual cause-and-effect
relationship.

From a data analysis viewpoint, the problem must be viewed in an
opposite manner. The regression task is to estimete the J,K
coefficients in which Rad is assumed as fhe independent variable

and P

, 1is the dependent variable such as given in equation (5-2).

Py=1J f K(Red) (5-2)

For a multiple regression analysis, the task is to estimate the J,K

cbefficients in the following multi-parsmeter equation.

b1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



42
Py=J+ KX(RadX) + KY(RadY) + ... (5-3)

In this case, Radx, RadY, ete. are treated as independent variables.
In many real life observations, the so-called "independent variables"
are positively correlated with each other as well as with the dependent
variable which make the answers more difficult to interprete (Snedecor
and Cochran 1967, p. 398). For the remote sensing situation, high
correlations between the independent varigbles should be expected if
the pollutant of interest has a broad spectral signature such as those
shown in figures L4 and 5.

Because of experimental error and a limited number of sample
pairs, a precise estimate of the J,K coefficients is usually not
possible. In this case, the multiple regression equation is

represented as:
Py =J + K/(Rad ) + K (Rad,) + .... + e (5-4)

where e = deviation from the true value of PA

If there are n concentration-radiance sample pairs, the sum of the

squares (SS) of the deviations from the true values is:

n
85= I e/ = I [P} -J-K(Rady) - XKy(Rady) —-1? (5-5)
i=1 i i i
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The least-squares procedure chooses the J,K constants such that SS is
a minimum. Teking the derivative of SS with respect to J and K and
setting it equal to zero, it can be shown in matrix form (see Draper

and Smith 1966, p. 9-59):

b = (Rad'Rad)‘lRad'PA (5-6)
where:
-
J
Ky
b =| K,

a7
e
Ao
P, =| -
PAn
L- ....J
-l Ra; Ra .
G, ey ]
1 Rad., - Ra .« .
) R dYe

Rad =
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Thus given radiance values from several wavelengths (say Rad, and
Rad,) teken over n points where P, values were measured (?A),
values for the J,K constants can be estimated using matrix transpose,
multiplication, and inversion procedures. In performing the least
squares process, three major assumptions concerning the remote
sensing and ground truth data are involved (Daniel and Wood 1971,

p. 7). They are:

1. The correct form of equation has been chosen. (Red is linear

with concentration for all wavelengths involved,)

2, The data are typical and are a representative sample from the
whole range of environmentel combinations.

3. The observations of ground truth concentration values
(dependent varisbles) are uncorrelated and statistically
independent.

Three minor assumptions are:

1. All observations of concentration have the same (but unknown)
variance.

2. The distribution of uncontrolled error is a normal one.

3. All independent variables (Rad values) are known without -
error.

An unwritten assumption is that all the data are "good" without
physical or instrumentation deficiéncies. In the remote sensing case,
this generally means that only those data synchronous with the remote

sensor overpass should be utilized in the least-squares process.
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Time lags between the overpass and ground truth collection cause the
data to be hydraulically inappropriate because of wind and tidal
effects. It may be possible to correct the ground truth data to
account for smell time lags (see Kuo and Blair 1976), but such
procedures have not yet been demonstrated valid in field experiments.
An additional problem is that measurements of the independent
variable (Rad) do contain error. Daniel and Wood (1971, p. 32) note
that when the independent variables have considerable error variance,
the estimate of the K coefficients is biased toward zero. As a rule
of thumb, Daniel (1976) recommends that the least squares analysis
be used if the error variance of the independent variables, (oRad)z’
is less than 0.1 of the mean square scatter about the mean value of
Rad of the experiment. TFor any wavelength, X, this is expressed:

n 2

.Z [(Radx) - Radx]

i=l i

(o )2 < 0.1 (5-7)

Ra.dX n

where:

n
z RadX
== _ i=l
Rady = n
Given an experiment with n observations, straightforward computation
yields the mean square scatter about the mean of Rad. It is often

difficult to estimate the error variance of the Rad measurements,

however. Instrument calibration data may be required. Another
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possibility is to examine the noise in the data. If the data noise is
assumed random with a normal distribution about the true value, then
the maximum deviation from the true value is 3.9(0Rad). The full

range of noise on both‘sides of the true value is 7.8(0Rad) . The
e

. . 2 . . .
error variance is (o, .)°. An estimate of the error variance is then:

Rad

)2 = (full rangg.gf noise)? (5-8)

(cRad

Equation (5-8) assumes no bias in the measurement of Rad. If
equation (5-T7) is satisfied for all wavelengths to be considered in
the regression analysis, the independent variables, Rad, are assumed
to contain minimai error and least-squares estimates of the J,K

coefficients are appropriate.

Measures of Precision

Unfortunately experimental radiance and concentration data contain
errors which in turn cause uncertainties in the estimated values for
the J,K coefficients. While errors in the individual coefficients
are of some concern, the precision of the total regression equation
is of prime concern. The uncertainty in pfediction of concentration
values in other portions of a remote sensing scene using the least-
squares~-fitted equation is required by the environmental engineer.
Various measures of precision will be discussed in the following

sections.
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Correlgtion Coefficient
If least-squares estimates are used for the J,K coefficients, then

A" The measured
i

value at point.'i wused in the least-squares process is f’A . The
i
From Draper and Smith (1966, p. 1k),

the predicted value for PA at any point i is P

mean value of all lgA is f’A.
y 1

the following three statistical parameters are related as:

n _ n A n _
7 ~ = - ~ P - -
I (B =B =L (B =Py )"+ I (P -P) (5-9)
i=1 i i=1 i i i=1l i
where:

n - 2

r (P, - P, )¢ = sS about mean

. A, A

i=1 i

n 5

z (P, - P, ) = SS about regression

A. A.

=1 i i

n _ 2

L (P, - P,)° = SS duc to regression

- A A

i=1 1

The S8 about regression are those deviations between the predicted

A

values, PA’ and the measured values, P

A" if the coefficients are

correct and the total equaticn is a good fit to the data, then S5

. . 2 . o oa
about regression should approach zerc, The ratio r~ 1s defined as:

n -
(P, ~P, )

. . A, A,

2 _ S8 due to regression _ 1=l i i (5-10)
SS about mean n

7 (B -B,)2
. A. A
i=1 i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



L8

If r2 approaches 1.0, then SS sbout regression must approach zero
from equation (5-9). Thus r2 is one statistical measure of the
adequacy of the least-squares-fitting process. Draper and Smith

(1966, p. 26) state that r° measures the proportion of total
variation about the mean value of P,, P,, that is explained by the
regression equation. It is often expressed as a percentage after
multiplication by 100. The square root of r2, r, is defined as

the correlation coefficient (multipie correlation coefficient for a
multiple regression equation) and is a statistical parameter which is
often used as a measure of adequacy. A correlation coefficient of 0.9
means that 81 percent of the total variation about the.mean value is
explained by the regression equation. Similarly, an r value equal
1.0 indicates a precise fit of the predictive equation to the measured
date. One must be careful not‘to rely too heavily on r as a measure
of equation precision, however. When the number of estimated
coefficients in the regression equation equals the number of
experimental observations, an exact solution for the coefficients is
obtained. 1In this case, r will equal 1.0. If, however, there are
errors in the experimental data, the coeffipients will be in error.
Thus r is not a good measure of precision as the number of estimeted
J,K coefficients approach tﬁe number of experimental observations.

For the remote sensing situations,'this means that the number of
ground truth observations should exceed the number of radiance

wavelengths (or bands) in the regression equation by two or more.
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Standard Error
To arrive at other measures of precision, edditional statistical
terminology must be introduced. The number of independent pieces of
information that are required to obtain the SS is defined as the
degrees of freedom. If p equals the number of estimated J,K
parameters and n equals the number of independent observations, then

the degrees of freedom are as follows:

Source Degrees of Freedom
SS due to regression p-1
SS about regression n-p

Mean square values are obtained by dividing SS values by the
appropriate degrees of freedom. The mean square about regression is

. 2
known as the variance, ¢, and may L2 expressed as:

n 2
T (p, -P, )
2 _i=1 M M

o
n-p

(5-11)

The variance is a measure of the deviation between the predicted
values from the least-squares equation and the measured values. The
square root of the variance is known as the standard deviation or
the standard error, ¢. The standard error is a second measure of the
precision of the least-squares estimation process for estimating
the J,K coefficients. From equation (5-11), it is clear that the

smaller the value, the more precise the fitted equation. If an error
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is a sum of errors from several sources, then no matter what the
probability distribution of separate errors may be, their sum will
have a distribution that will tend more and more to the normal
distribution as the number of error components increase by the Central
Limit Theorem (Draper and Smith 1966, p. 17). Thus the standard error,
0, is usually assumed to represent a value within which 68 percent of
all errors are expected to fall if (1) there are an infinite number

of observations and (2) there is minimal error in the independent
variables. Unfortunately there are usually only a small number of
ground truth observations that are synchronous with the remote sensor

overpass for most water quality remote sensing experiments.

F-Test
The F-test is a third method of evaluating the adequacy of the
least-squares-estimation process. Fortunately, the technique is also
believed to give an indication as to the capability of the regression

equation as & predictive tool. The F-ratio is defined as:

- (mean square due to regression) (5-12)
(mean square about regression)

For a multiple regression equation with p estimated coefficients and

n experimentel observations:

p = \2
z (PA - PA)
B (P-l) n A 2 5- 3
L (Py -7 )
i=1 i i
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An alternative expression for F is (from Snedecor and Cochran 1967,

p. 402):

_(n-p) 2

S (p-1) l—r2]

F (5-14)
There is also a critica; F value available from tables which is
based on the degree of freedom parameters as well as the confidence
limit. A confidence limit of 0.95 means that the risk of being
incorrect is no more than 5 percent. The F-test is one in which the
calculated F value from equations (5-13) or (5-14) must be greater
than the critical value for the regression process to be judged
significant within the confidence limit. For example. if the

(Rad,) + Ky(Rady)
multiple regression equation PA =J + KX(RadX) + KY(RadY) has been
obtained from 12 sets of independent observations, the critical F
value for a 95 percent confidence level (F(p - 1, n - p, 0.95))
would be 4.26 from a F-distribution table (braper and Smith 1966,
p. 306). If the computed F value were greater than 4.26, the regres-
sion equation would be judged significant within a 95 percent
confidence level. Draper and Smith (1966, p. 64) state that the
obtaining of a statistically significant regression does not necessarily
mean that the resulting equation will be useful for predictive.
purposes. They note that J.M. Weti suggests the calculated F value
should be at least four times the eritical F value if the regression
equation is to be regarded as a satisfactory predictor. Thus the

F-test for predictive capability is:
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- > ko (5-15)
cr
Total Squared Error
Daniel and Wood (1971, p. 86) recommend the total squared error
as a criterion for goodness of fit. This statistic, called Cp,
measures the sum of the squared biases plus the sum of the squared
random errors for the dependent variables at all n date points.

Given a multiple regression equation with p estimated J,K

coefficients:

RSS
C =—=L_- (n-2p) (5-16)

where:
RSS_ = sum of squares of residuals
P p-term equation
2 _ . . 2
s~ = unbiased estimate of ¢

For purposes of thié analysis, the procedures of Daniel and Wood
(1971, p. 87) are followed. It is assumed that the mean square of the
residual of the multiple regression equatioh containing radiances

from all possible wavelengths (p = Pmax) is an unbiased estimate of

. Equation (5-16) may then be expressed:
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~n 27
iy ")
Cp = = o N 55 (n - 2p) (5—17)
L (B -Fy)
1= 1 1
B~ Ppax
L Jp

max

An equation with a minimum value of ?P would have a minimum total
variance (and average error) when used for predictive purposes. If
the p-term multiple regression equation has negligible bias, then

the expected value of RSSp is [(n - p)s2]. From equation (5-16),
Cp = p when there is zero bias in the fitted equation. When there
is substantial bias, Cp is much larger than p (Daniel and Wood

1971, p. 87). A multiple regression equation which has a low value

of Cp and the ratio Cp/p < 1.0 is considered by Daniel to be a

good fit with negligible bias and useful for prediction purposes.

Selection of Wavelength Combinations

It is usually not known precisely what atmospheric and water
parameters are present when a remote sensing experiment is performed.
It is impossible to measure all parameters which might influence the
total upwelled radiance received by the remote sensor. The usual
case is one in vwhich ground truth measurements are made for only those
parameters of interest. Since all. the factors present which make
up the total sigral are urnrnown, it is not possible to predict how
many wavelengths will be required to separate the desired parameter

from the total mix of factors influencing the signal. Previous
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authors who have utilized direct multiple regression analysis

(Johnson 1975 and Rogers et al 1975) have performed least-squares

fits to various combinations of wavelengths (or bands) using the
stepwise regression process to select a "best" equation for the
parameter of interest. The stepwise regression process (see Draper
and Smith 1966, p. 171l) introduces independent varisbles one at a time
to the regression equation to reduce the residual sum of squares. An
F-test is used to judge the need for adding additional terms.

Daniel and Wood (1971, p. 85) note that stepwise regression can lead
to confusing results whenever the independent variables are highly
correlated (as they are in this case). There are often better equations
with different sets of independent variables that are overlooked by
the stepwise procedure. Daniel and Wood (1971, p. 86) recommend

that the CP statistic be used to select the equation with the
optimum combination of wavelengths or bands. For purposes of this
investigation, regression equations will be computed for all
combinations of wavelengths or bands for which upwelled radiance
values are available. Correlation coefficients, standard errors,
F-tests, CP values, and Cp/p ratios will be computed for each
combination. The selection of a "best" equation will be based on
minimum CP values if the CP/P ratio indicates an unbiased fit

and if values for correlation coefficient, standard error, and F—rat%o

are reasonable.
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CHAPTER VI

ANALYTICAL VALIDATION

It is desirable to validate application of the linearized
multiple regression analysis in the presence of known nonlinearities.
In the usual experimental situation, it is often difficult to know
exactly what nonlinearities are present. For this reason, several
hypothetical sets of data with known nonlinearities were constructed.
Linearized multiple regression analyses were then applied to these
data for both homogeneous and non-homogeneous test cases. The
following sections describe the hypothetical data and results from

the analyses.

Hypothetical Data

For purposes of this analysis, the situation described by
equation (4-11) was assumed. The spectral characteristics assumed
for pollutants A and B are shown in figures 4 and 5, respectively.
As noted previously, the spectra assumed for pollutant A is typical of
a sediment. The spectra for pollutant B is fypical of an algae species
(see Grew 1973). The upwelled radistion component assumed for surface
reflection is shown in figure 6. For this component it was assumed
that the upwelled radiance varies as the cube of ¢ where ¢ is
related to the solar elevation angle and the instrument poihting

angle. High values of ¢ indicate the instrument is looking near the

25
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sun glitter and low values are looking away from the glitter area.
The spectral peaks shown might be caused by a surface film on the water.
The component of upwelled radiance assumed from atmospheric effects
(diffuse skylight) is shown in figure 7. It was further assumed that
XA represents the concentration of some type of fluorescent pollutant
which absorbs atmospheric scatiering in the blue region and enhances
it in the infrared. The modification to clear atmosphere scattering
was assumed to vary as the square of XA concentration.

It was next assumed that the concentrations of pollutant A,
pollutant B, and aerosol XA varied over a remote sensing scene of
interest. The instrument pointing angle, hence ¢, was also

assumed to vary. For the homogeneous case, values for these parameters

at eight locations within the scene were assumed as follows:

Location P P o) X

A B A
1 20 20 20 20
2 10 20 30 4o
3 30 Lo 20 10
L 20 30 10 Lo
5 Lo 10 30 20
6 10 4o 10 30
7 20 10 Lo 30
8 4o 30 ko 10

For each of these eight locations, a hypothetical total upwelled
radiance spectra was constructed using equation (4-11) and the
components from figures 4 through 7. Figure 8 shows a typical total
upwelled radiance spectra constructed during this process. Table 1

shows total upwelled radiance values computed for each of the eight
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locations. Also shown are concentration values for PA and PB
vhich were assumed to have been measured. (Values for ¢ and XA

were assumed not to be known.)

Analysis Results for Homogeneous Case

The date in table 1 were used in the linearized multiple
regression enalysis. Least-squares estimates of the J,K coefficients
for all possible combinations of bands were computed. Since there
were 5 radiance bands, there are 22 - 1 or 31 possible combinations
for each parameter of interest. The J,K coefficient estimates for PA
for each regression equation are shown in table 2. The various
statistical estimates of precision for each combination of bands is
shown in table 3. From table 3, it is evident that there are a number
of band combinatiqns which provide high correlation coefficient,
small standard error, and an F-test greater than 4.0 (at the 95 percent
confidence level). In this case, there are several combinations which
show negligible bias (CP/p near 1.0 or lower). The optimum combination
of bands according to Daniel and Wood (1971) is the one with the
lowest value of CP (bands 1, 3, 4, 5). The correlation coefficient,
the standard error, and the F-test ratio are all satisfactory for this
combination. Referring back to table 2, the optimum linear multiple
regression equation for extracting. PA from the upwelled radiance

data of this scene is:

Py = -26.2 - 0.90(Red;) + 3.73(Rads) - 0.17 (Rad,) - 1.89(Radg) (6-1)
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It took four wavelengths to extract PA from a scene which contained
four variables as expected based on theoretical considerations.
Estimates of the J,K coefficients for PB are given in table L.
The statistical estimates of precision for PB are given in table 5.
In this case there are two combinations of four bands which are
unbiased. DBoth have approximately the same value of CP so the
combination with the highest F-test is considered optimum (bands

2, 3, 4, 5). Referring to table 4, the equation for extracting Pp

from the scene is:
PB = -3.5 + l.l8(Rad2) - h.3h(Rad3) + 14.28(Rad)+) - 1.oh(Rad5) (6-2)

Both equations (6-1) and (6-2) should be accurate predictors.
The standard error for PA is 0.5 units over a total range of values
of 30 units. This means that 2ll predicted values of PA using
equation (6-1) should fall within #1.95 units (3.90) of the true
value. The standard error for PB is 1.1 units indicating that all
predicted velues of Py from equation (6-2) should pe within +4.29
units of the true value. To test these hypotheses,radiance values
for ten additional locations have been genersted. Values assumed for
the variables which influence upwelled radiance at each location are

given below:
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Location PA PB ¢ XA
9 15 38 12 23
10 22 23 18 16
11 37 1k 29 27
12 23 11 33 13
13 38 16 39 34
14 12 29 28 37
15 32 34 - 23 27
16 29 17 17 12
17 14 23 1k 17
18 35 32 11 39

Values for the radiances at each location were computed again using
equation (4-11) and the components from figures 4 through 7. Table 6
gives the radiance values for each location. The values from tables 6
and 1 were input to equations (5-1) and (5-2) for computation of P,
and PB ft each location. Predicted PA and PB values are

compared with the assumed true values in figures 9 and 10. Since all
predicted values are within +3.90 of true values, it is concluded

that the linear multiple regression analysis is & valid approach for
extracting linear water quality parameters in the presence of nonlinear
effects in homogeneous waters provided radiance components are

mutually independent and linearity is constant with wavelength.

Analysis Results for Non-Homogeneous Case

A water body may be considered non-homogeneous if a portion of it
contains constituents which are not contained in other parts. An
industrial effluent in a non-tidal, flowing river represents a typical
non-homogeneous situation. The river may be flowing with various

concentrations of Pp upstream of the industrial plant and outside
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the effluent plume. Within the plume, the waters would contain
various concentrations of both PA and the effluent PB' To simulate
such a situation, a set of hypothetical data has been formulated for
the case when PB is zero. Values assumed for other parameters are

as follows:

Location PA PB ¢ XA
19 15 0 12 23
20 22 0 18 16
21 37 0 29 27
22 23 0 33 13
23 38 0 39 34
24 12 0 28 37
25 32 0 23 27
26 29 0 17 12
27 14 0 1k 17
28 35 0 11 39

Values for upwelled radiances were again computed using equation (b-11)
and the components from figures 4 through 7. Table T shows the
radiance values computed which were assumed to exist for river locations
upstream of the industrial plant and outside the effluent plume.
Next it was assumed that a remote sensing experiment had taken place
in which fi?e ground truth data points were taken outside the plume
(locations 19 through 23 from table 7) and eight points were taken
inside the plume (locations 1 through 8 from table 1). The linearized
multiple regression analysis was then applied to these 13 data points.
Estimates of the J,K coefficients and statistical measures of
precision are given in tebles 8 and 9, respectively, for the river

constituent, PA. The combination of bands 2, 3, 4, and 5 gives the
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lowest value of CP and. is an unbiased estimate. The equation for
extracting PA from the non-homogeneous scene is:

P, = -22.63 - l.56(Rad2) + 4.29(Rad

" - O.28(Radh) - 1.76(Rad5) (6-3)

3)
Tables 10 and 11 give estimates of coefficients and statistical

measures of precision for the industrial effluent, PB' Band

combination 1, 3, 4, and 5 gives the lowest value of CP with an

unbiased estimate. The equation for Pp is:

Py = -3.93 + 0.55(Rad, ) - 3.85(Rad3) + 4.23(Raq)) - O.82(Rad5) (6-4)
To validate the adequacy of equations (6~3) and (6-k), it was assumed
that locations 24 through 28 from table 7 represented independent
points from the river outside the plume and that locations 9 through
18 (table 6) represented independent points from within the plume.
Equations (6-3) and (6-4) were then applied té the 15 independent
points as well as to the 13 points used in the fitting process.
Figures 11 and 12 compare predicted and assumed values for PA and
PB; respectively. In meny cases, the independent points fell on top
of the solid symbols and are hidden from view. Since all predicted
values are within +3.90 of assumed true values, it is concluded that
the linear multiple regression analysis is valid for non-homogeneous

water situations as well as homogeneous cases. The data used in the

fitting process must contain several points from each different water
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the total scene.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62



CHAPTER VII

LABORATORY VALIDATION

The analytical test cases provided validation of the linearized
multiple regression analysis when the data contain nonlinear back-~
ground effects. The hypothetical data set assumed that radiances from
various sources could be superimposed upon each other (mutual
independence) and the data contained minimal experimental error. In
practice, the radiance contributions from various sources are not
always totally independent, and remote sensing experiments always
contain significant errors in the measured ground truth and radiance
values. As & result of these problems, it is desirable to validate .
application of the linearized multiple regression technigue with actual
remote sensing deta under controlled conditions. To achieve this
result, a laboratory facility was constructed such that upwelled
radiance measurements could be made over various controlled water
mixes in the presence of light from a solar simulator. Experimental
error in the measurements was analyzed, and the linearized multiple
regression enalysis was applied to the data. The following sections
describe the lgboratory facility, the test program, and results of

the analysis.
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Description‘of Laboratory Facility
A sketch of the laboratory set-up is shown in figure 13. The

enclosure shown had not been completed at the time of these tests.

To restrict the amount of diffuse light being input to the water, all
tests were conducted at night with the solar simulator as the only
light source. Figures 14 and 15 show photographs of the tank assembly
and solar simulator. The laboratory was designed and constructed to
satisfy the following objectives:

1. Measurement of upwelled radiance spectra under controlled
conditions to determine at which wavelengths signals are
emitted by various marine pollutants.

2. Measurements at various concentration levels to determine the
degree of linearity of upwelled radiance with pollutant
concentration.

It was recognized from the start that the laboratory would not provide
a precise simulation of real-world spectra because (1) the solar
simulator uses a xenon light source with a slightly different spectra
than that of the sun and (2) diffuse skylight is not simulated. It
was believed, however, that the design objectives could be met if t@e
radiance values were normalized against the input solar simulator
spectrum.

An initial study was conducted (Whitlock 1976) to estimate the

range of concentration values for which tank tests are applicable.
Figure 16 shows the results of that study. 2 is the penetration

90
depth from which 90 percent of the upwelled radiance is emitted.
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Figure 16 indicates that sediment concentrations should be greater
than 4 ppm if bottom reflection effects are to be minimized for a tank
which is 3 meters deep.

The illumination geometry on the water surface is shown in
figure 17. There was some concern as to whether or not the 35 em
diameter of the solar spot is adequate to enable the full underwater
multiple scattering process to occur. In a separste study,

Ghovanlou (1976) conducted a study using a Monte Carlo optical model.
Results of that study are shown in figure 18. Upwelled radiance is
shown as a function of solar spot size for three sediment concentrations.
For concentrations of 4 and 6 ppm, the curves are flat for solar
diameters 35 cm or larger indicating that the true underwater multiple
scattering process is allowed to occur. Results show that the 35 cm
solar spot size is not quite large enough for the 2 ppm concentration.
Optical modeling results indicate that the 35 cm spot size (dictated
by mirror diameter) is coﬁpatable with tank depth in that both limit
applicability of the laboratory to test concentrations 4 ppm or
greater.

Another design problem was that of maintaining e uniform,
homogeneous mixture without significant veftical or horizontal
concentration gradients in the tank. The problem is that the larger-
size particles of a sediment mixture tend to settle quite rapidly
unless an adequate degree of turbulence is maintained. Figure 19 is a

schematic diagram showing the circulation system finally selected
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for the tank. Tests were conducted using tracer techniques which
indicate that particle sizes up to 140u (with specific gravity = 2.6)
are maintained in suspension. Transmission measurements with two
concentrations of feldspar soil (particle size less than 60u) indicate
that the meximum deviation at any location in the tank was less than
0.5 ppm. Tests with larger size particles have not yet been conducted
so the maximum capacity of the laboratory in terms of particle size
is not presently known.

In order to be able to compare data taken from different days,
a consistent water mixture is required as a base to which pollutants
are added to achieve various concentrations. The tank holds 3,063
gallons so distilled water is prohibitively expensive. Also tap water
at the Langley Research Center is quite variable, depending upon the
amount and frequency of rain end the building from which the water is
being drawn. To overcome these problems, a filtering-deionization
system has been inserted into the plumbing such that consistent base
water can be achieved. Figure 20 shows the éerformance of that
system. For suspended solids, the fiber filter removes large
sediments and iron particles, and the carbon filter removes small
particles. Suspended solids concentrations ar< consistently less
than 0.5 ppm. Dissolved substances such as minerals and chlorine
are also quite high in tap water. .The deionization system in use with
the laboratory reduces the combined concentration of these constituents

to less than 1.0 ppm.
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The spectrometer used to make upwelled radiance measurements
was the Tektronix J20/7J20 unit with the T313/R7313 oscilliscope
accessory. A photograph of the instrument is shown in figuré 21.
The spectrometer measures power/bandwidth (watts/mnm) over a range
from 380 to 980 nm. Bandwidths (spectral resolution) from 4 to 160 nm
mey be selected depending on the intensity level of the radiation
being measured. For purposes of this investigation, power/bandwidth
velues were divided (normalized) by gray-card reflectance measurements
of the input light source. The result is a normalized upwelled
radiance spectra which is dimensionless. At the time of the tests
described herein, automatic data read-out equipment were not availsable.
Photographs of the oscilliscope images were read by hand. The hand
reduction of data in combination with instrument-oscilliscope noise
introduced several sources for measurement error. Estimates were made
of the effects of various error sources on final normalized radiance

values and are shown below:

Error Source Effect on Normelized Radiance

1. Instrument noise during water

mixture measurements +0.0212
2. Inability to discriminate center of

line of water measurements +0.0106
3. Instrument noise during gray

card measurements +0.,0222
4, TInability to discriminate center of

line of gray card measurements +0.0109
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If the above errors are assumed random, independent, and equal the
standard error, then the standard error of all combined effects is
0.0343. The range of normelized radiance values for water mixtures is
from 0 to 0.6 so the estimated standard error of the lsboratory data
is 5.7 percent of the range of measurement values. While automated
data read-out equipment would reduce the error, it must be noted that
the level of uncertainty of these particular laboratory measurements
is compatable with instrument noise values from present-day aircraft
and satellite remote.sensing systems as previously discussed.

For this investigation, specific values of concentration were
obtained by addition of weighed, dry samples of the constituent to
the water volume of the system (3063 gallons). The systeﬁ was then
allowed to circulate for approximately 15 minutes so that an even
distribution of material would exist throughout the tank. The
estimated standard error of concentration values used in this study
is 5 percent of the quoted value. Quoted values were obtained by

dividing the dry material weight by the water volume.

Test Program

In order to select test materials which had near-linear radiance
gradients with concentration, a series of'single—constituent tests
were first conducted. Figures 22, 23, and 24 show wide-band spectra
(spectral resolution = 160 nm) for the three materials selected for
this investigation. Ball Clay and Feldspar sediments were selected

because of their small particle sizes (Chapman 1976) and their relative
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inertness when mixed both in tap water and with each other (Gjardo 1976).
Rhodamine WT dye was selected because of its wide use in the
environmental engineering field for dispersion and transport studies.
Figure 22 shows a broad spectra in the visible wavelength range
for various concentrations of Ball Clay sediment. The value at
each wavelength represents the average of all radiances
80 nm both to the left and right of the wavelength being read.
Measurements were made at the 160 nm spectral resolution such that
meximum light could be absorbed by the spectrometer in its "factory
calibrated" mode. (The spectrometer can also be operated in a time-
delay integration mode for measurements under low-light conditions
to obtain narrower spectral resolution. Such a mode requires portable
calibration equipment which was not available for these tests.)
Figure 23 for Feldspar sediment shows (1) a pronounced signal at the
lower wavelengths and (2) a much weaker signal than Ball Clay for any
given concentration. Figure 24 for Rhodamine WT dye shows a signal
which is also quite weak in comparison to Ball Clay but has a very
pronounced peak at red wavelengths. The inconsistent curves below
500 nm and above T80 nm are believed to be the result of measurement
uncertainty. The standard error of measurement, ORad’ is estimated
to be approximately 0.0343 for these tests as previously discussed.
The radiance values of figures 22 through 24 were cross-plotted
versus concentration at various wavelengths. Figure 25 indicates that
Ball Clay sediments are near-linear at all wavelengths for concen-

trations greater than 9 mg/%. Figure 26 shows Feldspar to be quite
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linear for all concentrations at all wavelengths. Rhodamine WT
dye (figure 27) is nonlinear at all wavelengths where it has a signal.
Following the single-constituent tests, a series of dual-
constituent tests were conducted using various concentrations of Ball
Clay and Feldspar sediments. It was believed that these two sediments
in combination would provide an interesting test of the linearized
multiple regression analysis because (1) both sediments have near-
linear radiance gradients, and (2) the Feldspar has a low signal
magnitude in comparison to the Ball Clay. While both sediments have
different spectra and for that reason should be easy to separate, it
was believed that these data would provide a somewhat severe test of
the multiple regression process. The radiance measurement uncertainty

(9aq

component caused by Feldspar sediments (compare

= 0.0343) is an appreciable portion of the upﬁelled radiance
Opgq With figure 23).
The analytical test case previously discussed showed that a

constituent with a low magnitude of radisnce (Pg) could be accurately
separated in the presence of one with high-radiance values (PA) if
near-perfect data are available. It was questionable as to whether the
linearized multiple regression process would operate as well on
constituents with low upwelled radiation in the presence of significant

measurement errors. The mixtures selected for testing and analysis

are shown below:
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Test Number Ball Clay Feldspar
(ppm) (ppm)
1 129 17
2 173 T
3 9 35
4 9 69
5 52 69
6 52 173
T 173 173
\ 8 9 17
’ 9 17 17
10 129 73
11 52 17
12 173 35
13 17 69
1L 17 35
15 52 35
16 173 52

Over the total wavelength range, five bands were selected at which

to measure upwelled radience. The bands selected were:

Band Number Wavelength Range Center Wavelength
(nm) (nm)
1 340-~500 420
2 460-620 540
3 540-T00 620
l 620-780 T00
5 700-860 780

A limited number of bands was selected because both present and near-
future satellite systems will have only a few bands in the visible
and near-infrared wavelength regions (figure 3). The measured values
for normalized radiance in each of the five bands for each mixture

combination is shown in table 12.
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Following the dusl-constituent measurements, a series of tests
were conducted with various mixtures of three constituents, Ball Cleay,
Feldspar, and Rhodamine WT dyes. The objective was to add a third
constituent which had nonlinear radiance gradients with concentration
and was known to also have some optical interaction with the sediments.

The mixtures selected for testing and analysis are shown below:

Test Number Ball Clay Feldspar Rhodamine WT

(ppm) (ppm) (ppb)

1 9 17 3k
2 9 17 1052
3 9 35 3k
N 17 35 34
5 9 35 1052
6 17 35 1052
T 17 35 190
8 17 52 190
9 17 52 535
10 52 52 535
11 17 52 1052
12 52 52 1052
13 173 129 34
14 173 129 190
15 52 129 535
16 129 129 535
17 173 129 535
18 52 129 1052
19 129 129 1052
20 173 129 1052
21 173 173 34
22 173 173 190
23 173 173 535
2L 129 173 1052
25 173 173 1052
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Values for the normalized upwelled radiance at the same five bands

as the dual-constituent tests are shown in table 13.

Results of Analysis

Dual~Constituent Mixtures
Before analysis of the dual-constituent data could proceed, a
test was first be made to see if measurements were accurate enough
for application of the least-squares technique. Following the
recommendation of Daniel (1976), a comparison of the error variance
with the mean square scatter about the mean of the independent
variables was used for this purpose. Using table 12 data, the mean

square scatter about the mean was computed for the various bands and

compared with (GRad)z' For example in band 1, the calculations are:
16 p
L [(Rad;) - Rad ]
i=1 i =
16 = 0.017315 (7-1)
From previous discussion, (oRad)2 = 0.00117. The ratio of the error

variance to the mean square scatter about the mean for this band
equals 0.067. Since this value (and values for other bands) is less
than 0.1, it is concluded that the measurement uncertainty is small
enough in comparison to the range of values for least squares
techniques to be used. |

On analysis of the data, a general philosophy was adapted in

which it was decided that only a minimum number of points would be
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be used in estimating the J,K coefficients. The resulting multiple
regression equetion would then be applied to the unused data in an
effort to test the predictive accuracy of the equation. For the dual-
constituent laboratory data, eight of the test points in table 12 were
first selected for analysis. Least-squares estimates of the J,K
coefficients were performed and the various statistical measures of
precision were computed. These results were discarded, however,
because the correlations with Feldspar concentration were so poor that
the F-test ratio never exceeded 1.0. It was concluded that the
experimental error associated with these tests was large'enough such
that eight points were not enough for an adequate least-squares
estimate of the J,K coefficients for Feldspar.

A multiple regression analysis using 12 of the 16 points was
next attempted. All points in table 12 were used except test numbers
1l, 3, 7T and 15. Again the regression was performed on all band
combinations. Estimates of the J,K coefficients and statistical
measures of precision for Ball Clay sediment are given in tables 1k
and 15, respectively. Coefficient estimates and statistical parameters
for Feldspar sediment are given in tables 16 and 17, respectively.
These data were considered acceptable because some band combinations
did give F-test ratios greater than 1.0 for both sediments.

Considering first the results obtained for Ball Clay sediment,
review of table 15 indicates that high correlation coefficients,
reasonable standard error values, and high F-test ratios may be obtained

for a number of band combinations, but the fits may contain large
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amounts of bias as indicated by Cp/p. The combination of bands 2, L,
end 5 contains the lowest total squared error which is unbiased.
Referring to table 14, the multiple regression equation for Ball Clay

concentration using this combination of bands is:
C = -56.8 + 1537.4(Rad,) + T167.1(Rad)) - 12198.9(Rad5) (7-2)

The statistical estimates of precision for this equation are:
r = 0.98

15.6 ppm

n

o

(F/F_ ) = 16.9
cr .95

Cp/p = 0.5

All of these values are considered acceptable so it is assumed the
equation (7-2) will have good predictive capability. Equation (7-2)
was then applied to the radiance data in téble 12 (including those
points not used in the fit) and the results are shown in figure 28.
Most points are within the +3.90 limits and it would usually be
concluded that equation (7-2) is a reasonable predictive equation.
The one point which falls outside the 3.90 limit brings up an
interesting point when dealing with a low number of date points. The

fitting of a multiple regression equation to a set of data does not
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preclude the possibility that the equation which is obtained mey be
quite sensitive to small errors in measurement of the independent
varigbles. Equations which compute differences between measured
parameters sometimes have this problem. When one is deeling with a
small size data set, it is possible that some measurements outside
the set may have a slightly larger error than those points used in
the fitting process. If the derived multiple regression equation has
very large coefficients,then it is possible that a predicted point
will fall outside the #3.90 limit. If, however, a larger number of
points is used in the fitting process, the points with maximum error
would presumsbly be included, and the calculated value of ¢ would be
larger and more accurate. In the case of the point (test number T)
which falls outside the limit in figure 28, simple calculations

indicate an error in Rad. of 0.004 would give a predicted value of

5
C=1l1 ppm which is well with the +3.90 limit. Such a value of
measurement error is quite possible since the estimated value of
Opag = 0.0343. It is concluded that equation (7-2) is quite sensitive to
errors in the independent varisbles. The fact that the other three
independent points fell within the band may be a strong indicator
that equation (7-2) is a good predictive equation if accurate radiance
data can be obtained.

Review of table 17 for Feldspar sediment indicates that the
combination of bands 3, 4, and 5 produce an equation which contains

the lowest total squared error and is unbiased. From table 16, the

equation for Feldspar concentration using this band combination is:
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C = 62.2 - 22’-&2.6(3&6.3) - 10981.2(Red) ) + 196714.3(Rad5) (7-3)

The statistical estimates of precision for this equation are:

r = 0.89

Q
L}

24.0 ppm

(F/F ) = 2,39
cr '95

Cp/p = 0.8

The .effect of instrument error on a low-radiating constituent like
Feldspar appears to be one in which reduced values of the correlation
coefficient and higher values for standard error are obtained. The
F-test ratio is greater than 1.0 but does not meet the Wetz criteria
(see Draper and Smith 1966, p. 64) for being a good predictor at the
95 percent confidence level. (The confidence level could be reduced
to some value below 90 percent to produce '}?/Fcr > 4.0, however.)

The radiance data in table 12 were applied to equation (7-3), and the
results are shown in figure 29. All values fall within the +3.90
limits in spite of the fact that equation (7-3) is sensitive to

small measurement errors as was the equation for Ball Clay. It
should be noted that if Ra.d.5 is changed by 0.004 to improve the Ball
Clay prediction, the calculation for Feldspar is also improved further

suggesting that test number T may contain a bad data point.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



T8

Summarizing the results of analysis of the dual-constituent
laboratory data, the effect of instrument error in measurement of the
radiance data is to degrade the accuracy obtained from the multiple
regression analysis. The inaccuracies obtained in these tests are not
believed to be caused by lack of fit because the radiance gradients for
both constituents are known to be linear with concentration (figures
25 and 26). The constituents are non-reactive with each other in
tap water (Gjardo 1976), and the principle of linear superposition
seems to give a fair approximation to their total combined signal
(Ofelt 1976). It should be noted that values of standard error in
comparison to the range of values of the experiment are similar to those
obtained By Johnson (May 1976) in an actual field experiment. Whether
or not such levels of uncertainty are acceptable to the environmental
engineering community depends upon the particular use to which the
data will be put. Accuracy requirements for various data uses are

beyond the scope of this investigation.

Three-Constituent Mixtures
A comparison of the error variance with the mean square scatter
about the mean for the independent variables was made using the data
in teble 13. Mean square scatter values about the mean are larger
than for the dual-constituent tests while the estimated error variance
is the same. The criteria for use of least-squares procedures is easily

satisfied.
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A multiple regression analysis using 12 of the 25 points in
table 13 was performed. The points used in the least-squares
fitting process were test numbers 1, 3, 5, 6, 8, 10, 13, 15, 18, 20,
21 and 23. The regression was performed on all band combinations.
Estimates of the J,K coefficients and statistical measures of precision
for both the Ball Clay and Feldspar sediments are given in tables 18
through 21. The 1l2-point regression analysis was considered acceptable
because band combinations existed which gave good estimates of
precision for all statistical parameters for both sediments.

Review of table 19 for Ball Clay sediment indicates that the
lowest value of total squared error is obtained for band combinations
2, 3, and k. The fit is also unbiased for this combination which has

for its multiple regression equation (table 18):

C = -b.1 + 243.4(Rad,) - 613.7(Rad3) + 918.0(Rad),) (1-4)

The statistical estimates of precision for this equation are:
r = 0.98

= 6.8 ppm

Q
i

(F/F_) = 105.7
.cr .95

Cp/p = 0.8
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All values are acceptable so it is assumed that equation (7-4) will
have good predictive capability. It should be noted that the K
coefficients of equation (7-4) are not as large as those for the
dual-constituent results so the equation should not be as sensitive

to small errors in radiance values. Results of applying the radiance
data from table 13 to equation (7-4) are shown in figure 30. All 13
independent data points fall within +3.90 (some are hidden by the dark
symbols). It is thus concluded that equation (7-4) is a good
predictive equation and that the linearized multiple regression analysis
apparently works in spite of the fact that there is a reaction between
Ball Clay and Rhodamine WT dye (Loper 1976). Sorption of the dye by
the clay probably changes the absorption and scattering characteristics
of the clay which in turn cause a change in the upwelled radiance
spectra. The precise nature of the optical interaction is presently
not known and would be difficult to measure (Loper 1976). A probable
change in the upwelled radiance spectra is the only reason known at
this time for the obtaining of a reduced value of standard error under
that of the dual-constituent tests.

As a result of the Rhodamine WT dye, application of linearized
multiple regression analysis to the Feldspar data proves quite
interesting. Review of teble 21 indicates that an unbiased estimate
with minimum total squared error is obtained when only band 3 is

present. The regression equation in this case is (table 20):
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C=-8.0+ 361.h(Rad3) (7-5)

The statistics for this equation are:

. 0.92

L2
]

Q
1

23.8 ppm
(F/F ) = 11.2
cr .95

c.=0
D

C/p=0
o’ P

Results of applying the radiance data from table 13 to equation (7-5)
areshown in figure 31. Agein all 13 independent points fall within
+3.90 (four points are completely hidden by the black symbols). It
must be concluded that equation (7-5) is a good predictor and that
epplication of the linearized mulfiple regression analysis is a success.
It is somewhat troublesome to understand why only one band was
required to quantify Feldspar when there were three constituents
in the water. According to previously developed theory, at least
three bands should be required to separate the effects of Feldspar
from those of the rest of the mixture. The issue is further
complicated by the fact that Band 3 (540 nm to 700 nm) is in the
precise region where Rhodamine WT has its strongest signal (figure 24)
and where Ball Clay is also quite strong (figure 22). Without

optical interactions, the Feldspar signal in band 3 should be completely
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confused by Rhodamine WT and Ball Clay effects since there are not
strong correlations between the concentration values of each constituent.
Loper (1976) notes that quartz-like materials such as Feldspar have
negligible scrﬁtion of Rhodamine WT in comparison to the sorption by
clay soils. He suggests that the modification to scattering and
absorption characteristics of the Ball Clay may make it such that Ball
. Clay upwelled radiance is reduced at band 3 wavelengths enabling the
presence of Feldspar to be more clearly seen. While such an explana-
tion may be physically possible, detailed high-spectral-resolution
tests of Rhodamine WI dye in the presence of a number of different
sediments are required to define the optical interactions which are
occurring. Such studies are beyond the scope of this investigation
although they would probably be of national benefit because of the
heavy use of Rhodamine WT dye in pollution studies. The important
point to be made from the three-constituent test results is that the
linearized multiple regression technique apparently works in the
presence of at least some optical interactions. It is believed that

a number of different types of interaction may occur, and it is beyond
the scope of this investigation to determine and test all possible
situations as discussed previously.

As an additional exercise, it was decided to test application of
the multiple regression technique for quantification of a pollutant
with a nonlinear radiance gradient. Referring back to equation (4-18),
it can be seen that the signal response equation is linear in Pg.

Review of the single~constituent data for Rhodamine WT dye (figure 27)
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suggests that an approximate value for @ might be obtained by

fitting a power law equation to the measured values. Upon performing
such an operation, it was found that values from Q = 0.1 to 0.25

could be fitted through the data because of experimental uncertainty.

A value of Q = 0.2 appeared to give the best fit to the data for
bands 2, 3, and 4 where Rhodamine has a strong signal. Results showing
this fit are presented in figure 32.

The Rhodamine WT dye values previously presented for the three-
constituent tests were used for the nonlinear multiple regression
analyses. The same 12 points as for Ball Clay and Feldspar sediment
analysis were utilized to estimate coefficients and statistical

parameters for an equation of the following form:
Q- T4+ % (Red. ) + K (Rad. ) + cem—em -
C* = J + K, (Rad;) + K,(Rad,) + (1-6)

Since an optical interaction had apparently occurred, it was not
assured that Q = 0.2 wes the correct value. Therefore, Q@ was
varied from 0.25 to 0.05. Nondimensional .statistical parameters for

the "best" equation for each value of Q are shown below:

0 0.25 0.20 0.15 0.10 0.05

r 0.99 0.99 .99 0.99 0.99

(F/F ) 20.12 20.43  20.6L 20.52 20.19
cr .95

cP 4.0 4,0 4,0 .o 4.0

Cp/p 0.8 0.8 0.8 0.8 0.8
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While no significant differences exist between the statistical
parameters, the equation for Q = 0.15 was arbitrarily selected
because of its slightly larger F-test value. Tables 22 and 23 give
estimates of equation coefficients and statistical measures of
precision for Rhodamine WT dye concentrations to?the 0.15 power. The
equation with the "best" fit is:

C0.15

= 1.605 ~ T.679(Rad) - 3.972(Red,) + 17.582(Red;) - T.376(Red,)
(7-7)

Results of applying equation (7-7) to the 25 three-constituent test

points are shown in figure 33. With such a large nonlinearity,

figure 33 presents a distorted picture of predictive accuracy.

Raising the computed and actual Rhodamine WT concentrations to unity

power gives a more accuraste picture as shown in figure 34, From

figures 33 and 34, it is concluded that multiple regression procedures

can be used to quantify constituents with nonlinear radiance gradients,

and the technique mey be applied to any number of constituents so long

as each constituent is related to optical.changes in the water body

and other technique limitations are not violated.
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FIELD EXPERIMENT CONSIDERATIONS

Analytical and laboratory cases have been used to perform a
limited validation of linearized multiple regression analysis for
quantification of marine constituents under a variety of environ-
mental and optical conditions. Both analytical and laboratory
tests are quite valuable for investigating specific areas of concern
under controlled conditions. No matter how many controlled tests
are conducted, final validation of the technique must come through
use of field experiments. Unfortunately such experiments are quite
expensive and beyond the scope of this investigation. As previously
discussed, field experiments which utilize multiple regression analysis
have been conducted by severel investigators (Johnson, May 1976, Rogers
et al 1976, Johnson, September 1976, and Ohlhorst 1976). Only mixed
success has been obtained from these experiments. Some of the incon-
sistent field results may in fact be explainable based on various
limitations which have been uncovered by the investigation described
herein. It is the purpose of this section to recommend procedures
which should be used for future field experiments to improve the
opportunity for consistent results.

The linearized multiple regression analysis should never be applied
blindly to a set of data without a background knowledge concerning

the constituent of interest, hydraulics of the water body, and
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measurement uncertainties. This extreme caution is recommended so
that false results are not publisheé concerning the technique. The
linearized ﬁultiple regreésion analysis has strong theoretical
foundation for & number of environmental conditions and careful
application should yield useful results. The technique should be
applied only to those constituents for which accurate ground truth
values can be obtained. The present state of art of laboratory
analysis may eliminate multiple regression analysis as a possibility
for some constituents of interest. Also the technique should only
be applied to those constituents whose radiance gradients are known
to be near-linear with concentration. Controlled laboratory or field
tests may be required to determine this property.

Prior to the remote sensing field experiment, measurements
should be made to determine geographic locations to obtain the widest
possible range for ground truth measurements of the constituent of
interest. A time interval for hydraulic consistency should be
established such that ground truth data are not included in the
analysis if large water mass movements haﬁe occurred between the times
of remote sensor overpass and the taking of water samples. Within
the time interval for hydraulic consistency, as many points as
possible should be obtained with as near a uniform distribution of
concentration values as technicall& feasibility. From a statistics
point of view, the number of points should be greater than the number

of remote sensor bands plus one. Because of experimental measurement
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errors, it is recommended that the number should be much larger than
that minimum statistical value. The precise number of points required
is a function of the error magnitudes in both the independent and
dependent variables. Multi-dimensional parametric stﬁdies are
required to assess the minimum number of points required for various
combinations of error and ranges of values. Until such studies are
available, the experimenter must take as many points as possible and
hope that enough are obtained. Care should be taken that all ground
truth points used in the analysis are from the same water depth.
The effect of vertical concentration gradients will be minimized, and
the resulting multiple regression equation will be an algorithm for
concentration at a particular depth if the assumption is made that
vertical concentration gradients near the surface are constant over
the scene of interest. For the situation in which a substance is
introduced into part of the water body (such as an industrial outfall),
a number of points both inside and outside the plume must be obtained
to insure against false correlation as a result of non-homogeneity.
Once remote sensing data are in hand; an analysis to estimate
error variance of the remote sensing measurements based on instrument
noise and calibration deta is required. The estimate of error
variance must then be compared with the mean square scatter about
the mean of the experimental radiaﬁce values as previously discussed.
Only if an order of magnitude or greater difference exists can the
linearized multiple regression analysis using least-squares technigques

be utilized.
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All data which is outside the time interval for hydraulic
consistency and therefore not hydraulically appropriate should be
immediately eliminated from the analysis. A review of the sediment
levels and water depth of each station should be conducted and compared
with order of magnitude estimates of remote sensing penetration depth
(see Whitléck 1976). Those points whose remote sensing penetration
depth épproach the values for water depth must be removed from the
analysis to eliminate confusion due to bottom reflection effects. A
correlation study should be conducted between the various ground truth
parameters measured to understand the possibilities of false
correlation. In many cases, the hydraulics of the water body under
analysis meke it nearly impossible to obtain measurements which are
totally uncorrelated with each other.

For analysis of the data, it is recommended that regression
equations and statistical parameters be computed for all possible band
combinations. The decision as to whicl: equation is optimum should be
based on satisfactory values for all statistical parameters, however,
the ratio of CP/p is particularly important because it is an
incication of bias in the fitting process. Results obtained in this
investigi.ica indicate that good values may be obtained for the
correlation coefficient; the standard error, and the F-test ratio but
the fit may be extremely biased which is not desirable. If posgible,
the analysis should be conducted with less than the total number qf
stations obtained such that some points will be available for

independent check calculations. All predicted values in other locations
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of the remote sensing scene must be accompan'ieé. by the estimated value
of standard error. Finally repetitive experiments should be conducted
for the constituent of interest in the water body of interest.
Confidence must be established in use of the linearized multiple
regression analysis under a variety of atmo‘spheric, wind, wave, and

seasonal conditions.
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CHAPTER IX

SUMMARY AND CONCLUSIONS

The objective of this investigation has been to define optical
physics and/or environmental conditions under which the linear multiple
regression analysis should apply for quentification of water quality
parameters. To achieve this objective, an investigation of the signal
response equations has been conducted and the concept hasvbeen tested
by application to both analytical test cases and actual remote sensing
dgta from a laboratory under controlled conditions. As a result of
this investigation, an improved understanding of technique limitetions,
mathematical requirements, ground truth requirements and error
effects has been obtained.

Investigation of the signal response equations shows that the
exact solution for a number of optical physics conditions is of the
same form as & linearized multiple regression equation, even if
nonlinear contributions are made by such factors as surface reflec-
tions, atmospheric constituents, or other water pollutants.

Limitations on achieving this type of solution and (1) the constituent
of interest must have & linear radiance gradient with concentration,
(2) the degree of nonlinearity in each of the other components which
meke up the total signal must be constant for the wavelengths used

in the multiple regression equation, and (3) mutual independence

between constituents with no electrical, chemical, or optical
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interactions is desired but not always required. Mixture concentra-
tion also must be constant over the penetration depth of the remote
sensing signal, or the vertical concentration gredient must be
essentially constant near the surface and all concentrations measured
at the same depth. Since the exact solution to the signal response
equations under the above conditions is in the form of a linear
multiple regression equation, the application of linearized multiple
regression analysis to remote sensing and ground truth data may be
viewed as a calibration of the exact solution to account for daily
variations of background constituents in both the atmosphere and water
environment.

To obtain a "calibrated" equation using multiple regression
techniques, least-squares procedures are used to estimate coefficients
of the equation. In order to use least-squares techniques, the error
variance of the upwelled radiance measurements must be at least an
order of magnitude smaller than the mean square scatter about the
mean of the experimental radiance data. In addition, ground truth
observations must be uncorrelated and stafistically independent over
the range of values for which the final regression equation will be
utilized. All data used in the least-squares process must be "good"
in that (1) the constituent of interest is measured accurately,

_(2) the data are hydraulically appropriate, and (3) the remote sensing
penetration depth at all points is less than the water depth. For
non-homogeneous water bodies such as those with industrial outfalls,

a number of ground truth points is required from each water mass to
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insure correct correlation of the total scene. From a statistics
point-of-view, the minimum number of ground truth locations required
is the number of wavelengths (or bands) at which upwelled radiance is
being measured plus two. As a result of experimental uncertainty, it
is concluded that the total number of ground truth points should be
significantly larger than the minimum number if possible.

From snalytical test case results, it is concluded that
constituents with linear radiance gradients may be quantified from
signals which cbntain nonlinear atmospheric and surface reflection
effects for both homogeneous and non-homogeneous mixtures provided
accurate data can be obtained and nonlinearities are constant with
wavelength. In addition, it was observed that high correlation
coefficients, low values of standard error, and acceptable F-test ratios
could be obtained for various band combinations, but the fits could
contain a large amount of bias. It is concluded that statistical
parameters must be used which give an indication of bias as well as
total squared error to insure that an equation with the optimum
combination of bands is selected for utiiization.

From dual-constituent laboratory results, it is concluded that
the effect of error in the upwelled radiance measurements is to reduce
the accuracy of the least-squares f{itting process and to increase the
number of ground truth points required to obtain a satisfactory fit.
It was also observed that the least-squares fitting process does not

preclude the possibility that the multiple regression equation
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obtained may have large coefficients and be extremely sensitive to
small errors in radiance measurement. If the fit is obtained with a
low number of ground truth points, it is possible that the estimated
value of standard error is not applicable to predicted values using
the equation.

From three-constituent laboratory results, it is concluded that
the linearized multiple regression analysis is applicable for
constituents with linear radiance gradients which experience some
types of optical interaction when combined with other constituents.
It definitely can be said that the analysis will not apply for all
types of optical interactions however, it is believed that satisfactory
results may be obtained for a number of different situations. The
area of optical interactions for usual water pollutants has received
only limited attention by the scientific community. It is recommended
that fundamental studies be conducted in this area for various
constituents of interest. Research on this problem may explain why
high correlations have been obtained with certain "invisible"
constituents in previous field experimenfs.

It is recognized that the analytical test cases and analysis of
laboratory data conducted in this study have provided only limited
validation of the linearized multiple regression concept. While a
number of additional laboratory tests could be conducted, the only
way to finally validate the concept for use with a particular

constituent is with carefully conducted field experiments. Based
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on the experience of this study, it is believed that the technique
has strong potential for future application. It will be particularly
applicable when advanced remote sensing and ground truth systems

are developed which have improved accurécy. The concept has strong
theoretical support from consideration of the signal response
equations and is applicable without precise knowledge of atmospheric
and water surface paremeters. It further allows for some variation
in atmospheric and surface reflection effects over the scene of
interest which is a severe limitation for several other data analysis
concepts. For those water constituents with nonlinear radiance
gradients (versus concentration), the method may be modified and
utilized if the nature of the nonlinearity is knowm.

The most serious problem with the multiple regression concept is
the present lack of knowledge  concerning possible limitations caused
by the requirement that the nonlinearity of various radiance components
must be constant over the wavelength range of interest. Based on
the success of some of the previous field experiments, it appears that
there is & wide range of wind, wave, solar elevation, and atmospheric
conditions for which the linearity requirement is satisfied. On the
other hand, there may be extremes in environmental conditions or
particular water constituents which cause large varistions in
linearity. Repetitive field experiments under a variety of

environmental conditions are required to answer this question.
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It is also recommended that multi-dimensional analytical studies
be conducted to better define ground truth requirements for applica-
tion of the multiple regression analysis. Parametric variation of
such parameters as dependent variable error, independent variable
error, range of values, number of points, degree of homogeneity, and
number of constituents may enable the construction of charts based
on normalized paremeters which would aid the potential experimenter
in assessing the number of ground truth stations required for
expectéd levels of uncertainty in both remote sensing and ground
truth data. Such information would also be of interest in the

development of future in-situ water monitoring systems.
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APPENDIX B

LIST OF SYMBOLS

A = upwelled radiance of filtered seawater

B = constant giving change in upwelled radiance due to PA

b = matrix given by equation (5-6)

c = constituent concentration

Cp = statistical parameter hased on sum of squared biases plus
the sum of squared random errors as defined in equation (5-1T)

E = constant giving change in upwelled radiance due to PB

e = deviation from true value

F = gtatistical parameter as defined in equation (5-12)

or = critical value of F

G = constant giving change in upwelled radiance due to optical
interaction between Py and P, as given in equation (4-21)

H = constant giving change in upwelled radiance due to ¢

I = uypwelled radiance from clear atmosphere

J,J}j = constants in regression equation

K,K}k = constants in regression equation

L = constant giving change in upwelled radiance due to atmospheric
pollutant XA

M = arbitrary power expressing upwelled radiance nonlinearity
with ¢

N = arbitrary power expressing upwelled radiance nonlinearity
with X

A
n = number of ground truth points with measured concentration and

upwelled radiance values
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concentration of pollutant A
measured ground truth value of PA

mean value of ground truth values of PA
concentration of pollutant B
concentration of pollutant C

number of estimated J, K coefficients in regression equation

arbitrary power expressing upwelled radiance nonlinearity
with PC

arbitrary power expressing upwelled radiance nonlinearity
with PB in optical interaction with PC

upwelled radiance at & particular wavelength or band
sum of square of residuals in p-term regression equation

correlation coefficient as defined by the square root of
equation (5-10)

constant giving change in upwelled radiance due to PC
sun of squares
unbiased estimete of 02

arbitrary power expressing upwelled radiance nonlinearity
with Pc in optical interaction with PB

concentration of atmospheric pollutant

thickness of water layer from which 90 percent of the upwelled
radiance is measured

expression defined by equation (C-10)
expression defined by equation (C-10)
expression defined by equétion (c-10)
expression defined by equation (C-15)

expression defined by equation (C-15)
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0 = expression defined by equation (c-19)

0] = variable which is related to the instrument pointing angle
and the solar elevation angle

g = gtandard error of water constituent concentration

02 ' = variance of water constituent concentration

°Rad = gtandard error of upwelled radiance measurement

(GRad)2= variance of upwelled radiance measurement

A = wavelength

Subscripts:

i = éround truth observation number

Prax = quant%ty for equation with maximum number of estimated
coefficients

w = value of wavelength

X = value of wavelength

Y = value of wavelength

Z = value of wavelength
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APPENDIX C

SOLUTION TO SIGNAL RESPONSE EQUATIONS

Under the assumptions of this study, the equations for total

radiance at wavelengths W, X, Y, and Z may be written:

Rady = by + BFy + BFy 4 Eh ¢ Ty + I
Rady = Ay + ByPy + Ex?ﬁ + HX¢M g Lxxﬁ
Rady = Ay + ByP) + EyPp + HX¢M tly Lyxﬁ

o | M
Rad, = A, = B,P, + EP, + Hd' + I, + szﬂ

Multiplying (C-1) by Ly and (C-2) by Ly eives:
M
LyRady = Ly + LByPy + LRy + Lol + LT, + LIX)
M
Lfedy = Lyly + LByR, + LEPy + g + LTy + Ll
Subtracting (C-6) from (C-5):
LyRedy - L Redy = Ly(Ay + I) = Ly(Ay + Iy)
+ (LyBy - LBy)Py + (LB, - LEy )Py

+ (LH, - LWHX)¢M
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Performing similar operaiions first on equations (C-3) and (C-k),

and second, on equations (C-1) and (C-3), one obtains:

L,Redy - LyRad, = L,(A, + I,) - Ly(4, +1,)

+ (LgBy - LyB )Py + (LBy - LyEy )Py

+ (LHy - Lo )¢ (c-8)
LyRedy - LyRady = Ly(Ay + I) = Ly(ay + Iy)

* (gl - Ty e + (LR, - LTy

+ (L = LH )¢ (c-9)

Equations (C-7), (C-8), and (C-9) represent three equations with

three variables (P,, Pg» ¢). For convenience let:

(Lyly = LyHy) = oy «
(LgHy - LyHy) = oy o ? (c-10)
(Lo = LHy) = oy y J

Multiplying (C-T) by Oy and (C-8) by oy x» ome obtains:
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oty = Oy ety = gyl + 1
- oy gly(Ay +Iy)

+ (oy plyBy = Oy lyBy)By

* oy glyBy = Oy Py )Py

+ oy o o8 (c-11)

O, xlgRedy - Oy xlyRedy = oy xlg(by + Iy)
- oy yly(Ag + Ip)
+ {ogy xUzBy = % xlyBy)Pp
+ (o xlgBy = oy 2 )Py

+ aY,Zaw,Xd)M (c-12)

Subtracting (C-12) from (C~11):

Oy glyRady = Oy glyRady = oy yl Rady *+ oy yLyRed, =
+ oy gyl + Iy = oy ply(Ay + Iy)
- Oy gy Ty) * oy Ty (Ag + Tp)
+ oy pLyBy - oy plyBy = Oy ylyBy * oy yLyBg )Py

+ (GY,ZLXEW - oy LBy = oy LBy O‘W,XLYFZ)PB (c-13)
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Performing similar operations on (C-8) and (C-9):

U, yhgRedy = %y, ylyRedy = Oy gLyRedy + oy slyRady =
* oy, ylplhy * Ty) - oy ply(hy + T
" o, ylyldg * Tp) * oy ply(hy + Iy)
* (o ylgBy - Oy ylyBs - Oy gy * Oy glyPy )Py
* (o gy = Oy, yiyBy - Oy glyfy Oy Ry )Py (C2M)

Equations (C~13) and (C-14) represent two equations with two variables

(PA and PB). For convenience, let:

e

(o pLyEy = Oy pLyPy = O ylgBy + o yIyEr) = By
(o yIgBy = 0 yIyBy = oy LB, + oy JLuE) = By

(c-15)

To solve for P

s mltiply equation (c-13) by By and equation (c-14)

by BW:
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Byoy glyRedy = Byoy ,LiRady - Byoy yLyRedy + Byoy yLyRad, =
+ Byoy pLylay + I) - Bx“i,sz(Ax * Iy)
= Byt Ly (Ay + Iy) + Byoy yLy (A + L)
+ (Byay oLyBy = Byoy LyBy = ByOy xlyBy + Byoy yLyBy )Py

+ (ByB,)Pg (c-16)

By, ylgfedy = By yLyRed, = Byoy pLyRedy + Bty glyRedy =
+ By, ylp(By * Ty) - Byoy ply(Ay + I)
- Bty yiy(Bg * Tp) + Byoy ply(Ay + Iy)
+ (Buoy ylgBy = Bty yIyBy = Buoy LBy + Buoy JL.By)P,

+ (BB, )P, (c-17)

Subtracting equations (C-17) from (C-16) and collecting like terms:

(Byay jLy + Byoy gLy)Redy - (Byoy L. )Redy
- (Bx“w,xl'z + By vz t Bw“Y,sz)Rady
+ (Byoy 4y + By y yLy)Redy =

(Byay Ty *+ Byoy Ly) (g + Iy) = (Byoy L) (Ay + Ty)
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- (Byory xly * Byt y,yTg * Bty gl Ay + Ty)
+ (Byty xby = By, yly) (g + Tp) + (Bicly gl

Byoy zliBx = By xUzBy * By%,x'yPz

B, vhBy * Bty vy * By, 2lyBy

By 7 LiBy )Py (c-18)

For convenience, let:

(Byoy ZLyBy = Bydy sIyBy = By xlzBy * By xTyBy
- Bty ylBy * Bty vIvBr * By 2lyvBy

- By glyBy) = © (c-19)
Rearranging:
A= Kw(Ra.dw) + 'Kx(Radx) + KY(_RadY) + KZ(RadZ) (c-20)

where:
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=% (Byoy oy * Byy ply) Ay + Ty
+ (Bpay ply) (g + Ty)
+ (Byoyy Dy * By vl + Bty o0y (Ay + Iy)

- (Byoyy xBy = By, yly) (47 * T5)]

Ky = % [Byoy 2Ly * Byoy 2y

Ky = § (B By = Bty By — By Ty

Ky = % [Byony xLy * Byt ylyl
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Ground Truth P
Location

20
10
30
20
Lo
10
20
ko

-3 O\ £W N K

RADIANCE AND GROUND TRUTH DATA

TABLE 1

FOR HOMOGENEQUS TEST CASE

20
20
Lo
30
10
ko
10
30

Radl

25.5
22.9
28.6
19.0
33.2
20.2
35.8
42.6

Ra.d2

27.2
25.2
30.4
23.1
34.8
22.6
36.4
42.8

Rad3

30.3
29.0
35.7
29.7
40.3
26.9
38.1
47.6

Radh

33.8
34.1
43,

36.9
L4o.4
36.0
39.0
52.6

Rad

20.3
24,4
2305
21.9
25.1
20.9
30.3
3%.0
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TABLE 2

ESTIMATES OF J,K COEFFICIENTS

FOR HOMOGENEOUS TEST CASE

FOR PA

Bands Used
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TABLE 3

ESTIMATES OF PRECISION

FOR HOMOGENEQOUS TEST CASE

FOR PA

c
p/p

)
cr .95

(F/F

Bands Used
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TABLE b4

ESTIMATES OF J,K COEFFICIENTS

FOR HOMOGENEOUS TEST CASE

Bands Used

ooooooooooooooooooooooooooooooo
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TABLE 5

ESTIMATES OF PRECISION

FOR HOMOGENEOUS TEST CASE

FOR PB

c
P/p

)
cr .95

(F/F

Bands Used
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TABLE 6

RADIANCE DATA FOR HOMOGENEOUS TEST CASE

GrcI)'und T.'ruth Rza.d..L Ra.d2 Rad3 Ra.d,4 Rza.d5
ocation

9 23.3 25.9 28.9 37.1 20.7

10 27.7 28.7 31.3 35.2 20.2

11 31.6 34.1 39.2 40.5 25.1

12 33.9 34.8 35.5 36.1 24.1

13 37.8 40.0 kh.9 46.8 32.2

1k 23.6 26.8 29.9 36.7 2k.1

15 28.0 30.9 36.7 43.4 24.6

16 28.2 30.2 33.5 35.6 20.1

17 24.3 26. 27.8 32.1 18.6

18 22.7 27.3 35.8 42,7 24.1
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TABLE T
RADIANCE AND GROUND TRUTH DATA

FOR NON-HOMOGENEOUS TEST CASE

Gr;und '?'ruth P A PB Ra.dl Ra.d.2 Ra.d3 Ra.d.,1L Ra.d.5

ocation
19 15 0 23.1 25.3 26.3 25.2 16.4
20 22 0 27.5 28.3 29.8 28.0 17.6
21 37 0 31.5 33.9 38.2 36.1 23.5
22 .23 0 33.9 3h.7 34.8 32.6 22.8
23 38 0 37.7 39.7 43. 41.8 30.4
24 12 0 23.9 26. 28.0 28.3 21.1
25 32 0 27.8 30.4 34k 32.7 20.7
26 29 0 28.1 29.9 32.4 30.2 18.1
27 14 0 2.2 25.9 26.2 24.8 16.1
28 35 0 22.5 26.8 33.6 32.6 20.5
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TABLE 8

ESTIMATES OF J,K COEFFICIENTS

FOR NON-HOMOGENEOUS TEST CASE -

Bands Used
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TABLE 9
ESTIMATES OF PRECISION
FOR NON-HOMOGENEOUS TEST CASE

FOR PA

Bands Used r o (F/Fcr) o5 Cp Cp/p

3706. 1853.2
3152. 1576.1
1960. 980.5
5258. 2629.3
6092. 3046.4

.

1 0.77 7.3 3.23

2 0.81 6.8 k.19

3 0.88 5.3 8.10

h 0.64 8.7 1.61

5 0.57 9.4 1.08

1,2 0.87 5.9 3.65 2243, T47.9
1,3 0.90 5.3 5.00 1754. ~ 585.0
1,k 0.79 7.3 2.09 3309. 1103.2
1,5 0.77 7.6 1.76 3673. 1224.6
2,3 0.90 5.3 .88 1790. 596.7
2,k 0.82 6.8 2.50 20LL, 981.4
2,5 0.82 6.8 2.50 2940. 980.0
3,4 0.89 5.4 L.78 1822. 607.4
3,5 0.98 2.5 26.4T 389. 129.7
L,5 0.64 9.1 0.87 5253. 1751.1
1,2,3 0.90 5.5 3.23 1739. 434.8
1,2,4 0.87 6.3 2.36 2221, 555.3
1,2,5 0.91 5.3 3.6k 1578. 394.6
1,3,4 0.94 L. 5,54 1101. 275.3
1,3,5 0.99 0.6 345.91 15. 3.8
1,k4,5 0.87 6.3 2.31 2260. 565.2
2,3,k 0.95 4.0 6.95 899. 224.9
2,3,5 0.99 0.8 175.10 33. 8.3
2,k4,5 0.91 5.2 3.77 1533. 383.4
3,4,5 0.98 2.2 23.71 280. 70.1
1,2,3,4 0.96 3.9 5.71 T48. 149.7
1,2,3,5 0.99 0.6 231.81 17. 3.4
1,2,4,5 0.97 3.1 - 8.89 Lok, 98.9
1,3,4,5 0.99 0.5 312.53 12. 2.4
2,3,4,5 0.99 0.4 627.48 4 0.9
1,2,3,4,5 0.99 0.4 452.69 6 1.0
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TABLE 10

ESTIMATES OF J,K COEFFICIENTS

FOR NON~HOMOGENEOUS TEST CASE

Bands Used
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TABLE 11

ESTIMATES OF PRECISION

FOR NON-HOMOGENEQUS TEST CASE

FOR Py
Bands Used r o (F/Fcr) C:p Cp/p
.95

1 0.31 15.5 0.23 3355. 1677.7
2 0.30 15.5 0.22 3367. 1683.8
3 0.11 16.2 0.03 3660. 1829.9
L 0.49 14,2 0.71 2820. 1k10.2
5 0.12 16.2 0.03 3651. 1825.7
1,2 0.31 16.3 0.13 3353. 1117.8
1,3 0.57 1h.1 0.58 2510. 836.7
1,4 0.92 6.5 7.10 537. 179.1
1,5 0.67 12.8 0.97 2065. 688.2
2,3 0.68 12.5 1.07 1969. 656.2
2,4 0.96 5.0 13.28 305. 101.8
2,5 0.70 12.2 1.16 189k, 631.4
3,4 0.99 2.1 80.1% 49, 16.2
3,5 0.46 15.2 0.32 2939. 979.7
4,5 0.76 11.1 1.66 1567. 522.3
1,2,3 0.83 10.1 1.69 1165. 291.2
1,2,h 0.99 2.9 29.1h 91. 22.9
1,2,5 0.71 12.6 0.81 1816. sk, 2
1,3, 0.99 2.1 58.15 L, 11.0
1,3,5 0.68 13.2 0.67 1986. 496.6
1,4,5 0.93 6.6 ‘5,01 493, 123.4
2,3,k 0.99 2.1 54,42 b7, 11.8
2,3,5 0.77 11.5 1.11 1517. 379.2
2.4,5 0.96 5.1 8.88 29k, 73.5
3,k4,5 0.99 1.5 111.83 21. 5.2
1,2,3,b 0.99 2.0 48.38 37. 7.3
1,2,3,5 0.89 8.9 1.91 T9%. 158.8
1,2,k4,5 0.99 3.0 20.17 90. 18.1
1,3.4,5 0.99 0.8 27h.T2 L. 0.8
2,3,k4,5 0.99 0.9 255.71 5. 0.9
1,2,3,4,5 0.99 0.9 186.73 6. 1.0
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TABLE 12
RADIANCE AND CONCENTRATION DATA

FOR DUAL~CONSTITUENT TESTS

Test Ball Clay Feldspar Radl Ra.d2 Ra.d3 Ra,d)1L Ra.d5
Number (ppm) (ppm)

1 129 17 0.297 0.310 0.290 0.220 0.156

2 173 17 0.360 0.390 0.369 0.297 0.205

3 9 35 0.075 0.058 0.047 0.03% 0.023

i 9 69 0.11% 0.100 0.081 0.058 0.0k2

5 52 69 0.229 0.213 0.198 0.142 0.102

6 52 173 0.315 0.30k 0.267 0.202 0.1hL7

T 173 173 0.477 0.518 0.496 0.395 0.285

8 9 17 0.072 0.063 0.047 0.036 0.024

9 17 17 0.099 0.092 0.0T4+ 0.056 0.038

10 129 73 0.420 0.452 0.425 0.332 0.235

11 52 17 0.189 0.178 0.153 0.107 0.076

12 173 35 0.369 0.391 0.364 0.286 0.200

13 17 69 0.14k2 0.124 0.105 0.077 0.056

14 17 35 0.094 0.087 0.072 0.049 0.032

15 52 35 0.171 0.161 0.145 0.09% 0.068

16 173 52 0.378 0.420 0.380 0.281 0.200
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Test Ball Clay

Number {ppm)
1 9
2 9
3 9
L 17
5 9
6 17
7 17
8 i7
9 17

10 52
11 17
12 52
13 173
1k 173
15 52
16 129
17 173
18 52
19 129
20 173
21 173
22 173
23 173
24 129
25 173

TABLE 13

»

RADIANCE AND CONCENTRATION DATA

FOR THREE-CONSTITUENT TESTS

Feldspar
(ppm)

17
17
35
35
35
35
35
52
52
52
52
52
129
129
129
129
129
129
129
129
173
173
173
173
173

Radl

0.094
0.039
0.105
0.121
0.04k
0.054
0.116
0.138
0.099
0.177
0.059
0.113
0.406
0.388
0.232

0.359

0.359
0.147
0.2k6
0.299

.0.459

0.432
0.387
0.260
0.290

Rad2

0.096
0.093
0.100
0.127
0.100
0.101
0,13k
0.148
0.148
0.192
0.105
0.133
0.428
0.347
0.230
0.323
0.300
0.155
0.213
0.263
0.470
0.379
0.322
0.225
0.250

Rad3

0.094
0.140
0.097
0.120
0.143
0.154
0.155
0.167
0.190
0.252
0.165
0.212
0.437
0.429
0.30L
0.439
0.440
0.245
0.355
0.h4Lk
0.475
0.495
0.464
0.376
0.420

Ra.dh

0.053
0.078
0.056
0.080
0.078
0.099
0.091

0.101-

0.110
0.170
0.102
0.154
0.370
0.390
0.218
0.362
0.ko7
0.188
0.313
0.426
0.395
0.Lkok
0.415
0.33k4
0.386

124

Rad

0.028
0.027
0.033
0.04T
0.029
0.03¢
0.045
0.052
0.050
0.090
0.04k
0.080
0.260
0.256
0.128
0.220
0.256
0.095
0.188
0.256
0.267
0.267
0.267
0.197
0.24k4
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TABLE 1k
ESTIMATES OF J,K COEFFICIENTS
FOR DUAL~-CONSTITUENT MIXTURES

FOR BALL CLAY SEDIMENT

W

Bands Used Jd K K K Kh

1 2 3 5
1 -38.6 480.53 0. 0. 0 0.
2 -28.7 0. 432.67 0. 0 0.
3 -22.7 0. 0. 451.68 0. 0.
L -18.9 0. 0. 0. 571.T0 0.
5 -18.2 0. 0. 0. 0 803.90
1,2 10.7 -1462.21 1709.52 0. 0 0.
1,3 25.4 -=1195.25 0. 1535.61 0. 0.
1,k 10.5 -=598.95 0. 0. 1254.52 0.
1,5 18.2 -7ThL8.87 0. 0. 0. 2017.5k
2,3 -11.6 0. ~739.88 1220.43 0. 0.
2,k -15.9 0 -118.62 0. 726.83 0.
2,5 -26.3 0. 328.7T 0. 0. 193.78
3,k -18.2 0. 0. -75.52 666.89 0.
3,5 -30.2 0 0. 131k4.64 0. ~1545.45
4,5 -18.7 0. 0. 0. 4829.20 -6035.00
1,2,3 21.1 -1400.87 835.25 854.23 0. 0.
1,2,k 15.6 =-1386.44 1347.28 0. 390.36 0.
1,2,5 13.5 -1463.01 159L.42 0. 0. 215.98
1,3,k 26.0 -127hk.L41 0. 1898.30 -367.98 0.
1,3,5 17.8 -1195.39 0. 2399.50 0. -1546.89
1,k4,5 -51.1  66L4.16 0. 0. 7123.71 -10360.73
2,3,k ~-12.5 0. -484,76 616.85 Lh28.20 - 0.
2,3,5 -16.4 0. -1090.38 2T7Lk0.k4l 0. =-2069.87
2,4,5 -56.8 0. 1537.39 0. 7167.0 -12198.87
3,4,5 -36.2 0. 0. 1901.18 5547.13 -10449.23
1,2,3,k 21.5 -1409.12 T92.64 oTh.82 -87.08 0.
1,2,3,5 16.3 =1326.64 533.25 1821.35 0. =1290.57
1,2,4,5 -5k, -61.11 1560.61 0. 6991.25 -11893.93
1,3,4,5 -35.8 -9.33 . 0. 1906.45 5516.88 -10400.69
2,3,4,5 -55. 0. 1391.06 239.57 T035.01-12168.42
1,2,3,4,5 -51.9 -84.22 1hol.94% 27h.13 6773.67 -11T43.80
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TABLE 15
ESTIMATES OF PRECISION
FOR DUAL-CONSTITUENT MIXTURES .

FOR BALL CLAY SEDIMENT

Bands Used r o] (F/Fcr) Cp Cp/p
.95
1 0.91 30.6 9.20 21. 10.5
2 0.93 26.5 12.96 1k, 6.9
3 0.93 25.8 13.7h 13. 6.3
L 0.9% 25.4 1k4.28 12. 6.0
5 0.93 26.7 12.71 1k, 7.1
1,2 0.96 21.1 12.72 6. 2.1
1,3 0.96 20.9 12.95 6. 2.1
1,4 0.95 24.0 9.57 10. 3.h
1,5 0.94 25.5 8.37 12. )
2,3 0.9% 26.7 T.4o 1k, b7
2,4 0.94 26.7 7.52 1k, L,6
2,5 0.93 27.9 6.80 16. 5.2
3,4 0.9k 26.7 T.49 1k, L7
3,5 0.94 26.5 T.66 1k, 4,5
b,5 0.96 21.2 12.56 T. 2.2
1,2,3 0.96 21.5 8.53 8. 1.9
1,2,h4 0.96 21.9 8.26 8. 2.0
1,2,5 0.96 22.3 7T.92 8. 2.1
1,3,k 0.96 22.0 8.16 8. 2.0
1,3,5 0.97 21.1 8.81 7. 1.8
1,k4,5 0.96 21.6 8.51 8. 1.9
2,3,h 0.94 28.2 4,70 16. 3.9
2,3,5 0.94 27.0 5.17 1k, 3.5
2,4,5 0.98 15.6 16.89 2. 0.5
3,4,5 0.98 17.3 13.55 3. 0.9
1,2,3,4 0.96 23.0 5.53 10. 1.9
1,2,3,5 0.97 22.3 5.90 9. 1.8
1,2,4,5 0.98 16.7 . 10.97 L, 0.8
1,3,4,5 0.98 18.5 8.79 5. 1.1
2,3,4,5 0.98 16.6 10.99 L, 0.8
1,2,3,4,5 0.98 18.0 7.09 6. 1.0
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Bands Used J

31.k
38.2
Lo.5
42,1
4o.5
-36.2
-67.9
-b5.4
-58.4
~11.4
O0T.h
21.4
28.4
50.4
41.6
3 ~T70.9
L -50.3
5 "53'7
L -68.8
5 _57-9
5 36.9
L -11.1
D -10.0
5 2.7
5 62.2
3,k -Th.6
3,5 -61.2
4,5 4o0.2
L,5 13.8
4,5 56.3
3,4,5 10.5
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L 4
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TABLE 16

ESTIMATES OF J,K COEFFICIENTS

FOR DUAL~CONSTITUENT MIXTURES

FOR FELDSPAR SEDIMENT

5
95.75
0

0.

0.

0.
2758.13
2607.12
1783.59
2040.53

0.

0.

0.

0.

0.

0.
2552.56
2538.10
2763.20
2800.78
2697.31
96.34

0.

0.

0.

0.
2631.57
2401.33

82L . Lk
1110.08

0.
109k4.65

K5

65 73

0.

0.
-2342.77

0.

0.

0.
3457.28
1392.70
T76.99

0.

0.

0.
58T.22
-1290.86
-1613.46

0.

0.

0..
3381.27

4141.38
-1253 L6

995 .69
1202.50
~1566.70
. 0.
1430.40
288.88

ks

0.
0.
62.15
0.
0.
0.
-2383.78
0

0.
~3530.07
0.

0.
1479.19
-1081.50

0.
-2862.81
0.

0.
~-2858.70
-3529.41

0.
-3350.24
-6h96 Th

-22&2 63
-4018.76

0.
-2869.59
-2756.Th
-3205.94

0.

0.
71.81

0.

0.

0.
-1961.52

o.

-17&9 51

—1792 50
0.
-10134.35
0.
0

481.8k

0.
-9801.54
-127.58

0.
-12040.46
-10981.22
834.71

0.
-9668.56
-7382.94

-10520.86
-7123.97

127

Ks
0.
0.
0.
0.
115.41
0.
0.
0.
-3191.53
0.
0.
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TABLE 17

ESTIMATES OF PRECISION

FOR DUAL-CONSTITUENT MIXTURES

FOR FELDSPAR SEDIMENT

c
p/p

)
er’ o5
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TABLE 18

ESTIMATES OF J,K COEFFICIENTS

FOR THREE-CONSTITUENT MIXTURES

Bands Used J
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FOR BALL CLAY SEDIMENT
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TABLE 19

ESTIMATES OF PRECISION

FOR THREE-CONSTITUENT MIXTURES

FOR BALL CLAY SEDIMENT

C
p/p

)
cr .95

(F/F

Bands Used
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TABLE 20
ESTIMATES OF J,K COEFFICIENTS
FOR THREE-CONSTITUENT MIXTURES

FOR FELDSPAR SEDIMENT

Bands Used Ky K

J K X, K3 5
1 15.2 356.39 0. 0. 0. 0.
2 9.8 0. 372.46 0. 0. 0.
3 -8.0 0. 0. 361.40 0. 0.
L 14.6 0. 0. 0. 355.23 0.
5 25.9 0. 0. 0. 0. 503.1k4
1,2 22.4 572.63 -244.10 0. 0. 0.
1,3 -6.8 30.92 0. 332.95 0. 0.
1,k 12.4 119.53 0. 0. 247.26 0.
1,5 21.8 104.68 0. 0. 0. 363.12
2,3 -8.1 0. -32.75 387.98 0. 0.
2,4 11.0 0. T72.20 0. 298.97 0.
2,5 244 0. 22,84 0. 0. 476.53
3,k ~18.2 0. 0. 545.13 =185.57 0.
3,5 -24.9 0. 0. 557.80 0. -285.00
4,5 13.4 0. 0. 0. 398.90 -62.97
1,2,3 -.5 209.92 -189.45 321.54 0. 0.
1,2,4 15.8 232.27 -108.89 0. 230.27 0.

. 1,2,5 25.6 273.00 ~156.23 0. 0. 319.96
1,3,4 -17.5 13.36 0. 525.88 -178.55 0.
1,3,5 -30.4 119.53 0. 565.97 0. -456.42
1,h4,5 -34.5 542.32 0. 0. 1234.98 -197L.86
2,3,h ~25.5 0. -91.99 738.84 =306.07 0.
2,3,5 -24.6 0. -7.97 559.68 0. -278.37
2,4,5 -15.2 0. 229.90 0. 815.83 -922.L4k
3,4,5 -25.4 0. 0. 579. 6k -47.38 -2L48.62
1,2,3,k4 -24.8 360.29 -403.18 875.10 -524.22 0.
1,2,3,5 -31.8 L67.00 -320.10 665.10 0. -688.39
1,2,k4,5 -31.8 607.L6 -67.98 0. 1212.11 -1950.36
1,3,4,5 -36.1 495.23 . 0. 86.62 1095.69 -1836.62
2,3,4,5 -23.2 0. -170.47 862.74 -5Thk.50 298.00
1,2,3,4,5 -33.7 523.68 -235.30 L9, 07 433.77 -1173.33
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TABLE 21
ESTIMATES OF PRECISION
FOR THREE-CONSTITUENT MIXTURES

FOR FELDSPAR SEDIMENT

Bands Used r o - (®/ Fcr) CP Cp/p
.95

1 0.88 28.9 6.95 3. 1.7
2 0.8+ . 33.6 4.63 T. 3.7
' 3 0.92 23.8 11.17 0. 0.1
L 0.90 26.1 8.99 1. 0.6
5 0.90 27.2 8.10 2. 1.1
1,2 0.89 29.5 3.95 5. 1.6
1,3 0.92 25.1 5.88 2. 0.6
"1,k 0.91 26.6 5.10 3. 0.9
1,5 0.90 28.3 4,38 L, 1.3
2,3 0.92 25.1 5.89 2. 0.6
2,4 0.91 27.1 4.89 3. 1.0
2,5 0.90 28.7 4,25 L. 1.k
3,4 0.92 24.8 6.08 2. 0.5
3,5 0.92 24.6 6.17 1. 0.5
4,5 0.90 27.5 .71 3 1.1
1,2,3 0.93 25.9 3.89 3. 0.8
1,2,4 0.91 28.0 3.22 5. 1.1
1,2,5 0.90 29.6 2.81 6. 1.3
1,3,k 0.92 26.3 3.75 L. 0.9
1,3,5 0.93 25.5 _ 4,03 3. 0.8
1,k4,5 0.94 2k.0 L. 6k 2. 0.6
2,3,k 0.93 25.9 3.89 3. 0.8
2,3,5 0.92 26.1 3.83 3. 0.9
2,4,5 0.92 27.4 3.38 L. 1.1
3,4,5 0.92 26.0 3.83 3. 0.9
1,2,3,k4 0.94 - 25.7 2.98 L, 1.1
1,2,3,5 0.94 25,2 3.13 L, 0.8
1,2,4,5 0.94 25.5 : 3.04 L, 0.8
1,3,4,5 0.94 25.6 3.02 4, 0.9
2,3,4,5 0.93 27. 2.54 5. 1.1
1,2,3,4,5 0.94 27.1 2.04 6 1.0
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TABLE 22

ESTIMATES OF J,K COEFFICIENTS

FOR THREE-CONSTITUENT MIXTURES

FOR RHODAMINE WT DYE
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TABLE 23
ESTIMATES OF PRECISION
FOR THREE-CONSTITUENT MIXTURES

FOR RHODAMINE WT DYE

Bands Used r o (F/Fcr) cP Cp/p
.95
1 0.31 0.51 0.21 263. 131.5
2 0.33 0.50 0.24 258. 129.2
3 0. 0.53 0. 201. 1454
L 0.01 0.53 0. 291. 145.4
5 0.11 0.53 0.02 287. 143.7
1,2 0.3k 0.53 0.1k 259. 86.2
1,3 0.96 _ 0.15 13.28 16. 5.3
1% 0.86 0.29 2.92 73. 24.5
1,5 0.76 0.37 1.4 122. 4o.7
2,3 0.84 0.31 2.49 83. 27.8
2,k 0.73 0.39 1.17 136. k5.2
2,5 0.61 0.44 0.64 181. 60.2
3,k 0.07 0.56 0. 291. 97.1
3,5 0.66 0.h2 0.83 161. 53.8
4,5 0.93 0.20 T.03 33. 11.0
1,2,3 0.96 0.16 8.59 17. 4.3
1,2,k 0.86 0.30 1.91 T2. 18.1
1,2,5 0.76 0.39 0.88 123. 30.9
1,3,k 0.97 0.13 12.17 11. 2.8
1,3,5 0.98 0.12 15.59 8. 2.0
1,4,5 0.94 0.21 h.73 32 8.1
2,3,4 0.93 0.22 4,16 37. 9.2
2,3,5 0.95 0.18 6.26 2k 6.1
2,4,5 0.93 0.21 L.h1 35 8.7
3,L4,5 0.94 0.20 5.08 30 7.5
1,2,3,4 0.99 0.09 20.64 L 0.8
1,2,3,5 0.99 0.10 17.71 5. 1.0
1,2,4,5 0.95 0.20 3.69 29 5.8
1,3,L4,5 0.98 0.12 11.05 9 1.8
2,3,4,5 0.96 0.19 L. 42 2k 4.8
1,2,3,4,5 0.99 0.10 13.34 6. 1.0
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Figuré 1.- Ol;tical processes involved in passive remote sensing of water parameters.
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Figure 1h.- View of tank and partial enclosure from solar simulator.
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Figure 15.- View of solar simulator.
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Figure 22.- Wide-band spectra for Ball Clay sediment.
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Figure 24.- Wide-band spectra for Rhodamine WT dye.
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Figure 25.- Continued.
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Figure 26.- Concluded.
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Figure 28.- Comparison of calculated and actual Ball Clay concentration
for dual-constituent mixture tests.
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Figure 29.- Comparison of calculated and actual Feldspar concentration
for dual-constituent mixture tests.
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Figure 30.~ Comparison of calculated and actual Ball Clay concentrations
for three~constituent mixture tests.
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Figure 31.- Comparison of calculated and actual Feldspar concentration
for three-constituent mixture tests.
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Figure 32.- Power-law fit to Rhodemine WT data.
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