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Cutting of Stanford Bunny Mesh: 20,133 Nodes
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Fig. 10. Timing results are provided for the bunny mesh cutting experi-
ment. (a) Update rates are shown for the augmented and CG methods as
a cut is advanced. (b) The allocation of computation time to steps of the
augmented method is shown.

The differences between the results for the beam and brick meshes
are even more pronounced for the cutting experiment than for the
deformation experiment. Figure 7(a) shows that the augmented
method outperformed CG in the beam-cutting experiments, pro-
viding updates in the range 49—145Hz in the time period before
the refactorization completed. CG provided updates in the range
0.26-172Hz for the same cutting steps, but failed to converge to
any solution for seven of those steps. However, CG provided con-
sistently better performance for the brick mesh cutting experiment,
as shown in Figure 7(b). The zig-zag appearance of the CG results
was caused by the connectivity pattern of nodes in the tetrahedral
brick mesh. Periodically, nodes with a higher degree of connectivity
were cut. These cutting steps required a larger number of changes to
the stiffness matrix and resulted in periodically slower CG solution
times. The connectivity pattern is illustrated in Figure 8.

Figure 9 shows that the beam vs. brick performance trend held
over a variety of mesh sizes. The augmented method provided the
fastest updates when cutting a beam mesh, maintaining an update
rate over S0Hz even with a relatively large cut in a 25,600 node
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Fig. 11. (a) The maximum number of GMRES iterations required by the
beam and brick meshes of a specific size. (b) Relative residual norm versus
cut depth. For a solution & to the system Ax = b, relative residual norm is
defined as ||[Ax — b2/ ||b]|2-

mesh. Particularly for the larger beam meshes, CG was often unable
to provide any solution. However, CG reliably provided the fastest
updates when cutting a brick mesh.

Results from the bunny mesh-cutting experiment are shown in
Figure 10. Here, we find that the nonpreconditioned augmented
method performed best, with a minimum update rate of 14Hz dur-
ing the period before refactorization completes. As seen in some
of the previous experiments, the update rate provided by the aug-
mented method diminishes as the size of the cut and complexity of
the attendant remeshing grows. However, the augmented method
is still faster than the 0.3-6.8Hz update rate provided by precondi-
tioned CG in this experiment. Figure 10(b) shows that the bulk of the
computation time is spent in the GMRES iteration of Step 2 in the
bunny mesh-cutting experiment. The dominance of the GMRES it-
erations in the distribution of computing time is also a feature of the
experiments with beam and brick meshes. However, Figure 11(a)
demonstrates that the number of GMRES iterations needed for con-
vergence does not grow with model size.
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Cutting of Eye Mesh: 16,176 Nodes
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Fig. 12. Timing results are provided for the eye meshes of (a) 4,444 nodes
and (b) 16,176 nodes.

Results from the eye mesh-cutting experiments are shown in
Figure 12, and those from the brain mesh-cutting experiments are
shown in Figure 13. Here, we show that the augmented method
outperformed the CG method with and without preconditioning.
However, the update rate for the brain meshes remains lower than
desired for interactive simulation. Further reduction of the solution
times for large, dense meshes is a priority for future work.

The experimental results also indicate that the augmented so-
lution method does not lead to problems with solution accuracy.
Figure 11(b) shows that the relative error of the computed solutions
remains flat as a brick mesh is cut and increases only gradually as
the less stable beam mesh is cut.

5. CONCLUSIONS AND FUTURE WORK

There are two primary reasons for the disparity between the beam
mesh and brick mesh results. First, the beam meshes have a higher
percentage of surface nodes, resulting in sparser matrix factors and
smaller closure sizes, as shown in Figure 4. Smaller closures result
in faster execution of the augmented solution steps, particularly the
GMRES iterations in Step 2. Thus, we see that the structure of a
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Fig. 13. Timing results are provided for the brain meshes of (a) 23,734
nodes and (b) 50,737 nodes.

mesh is an important factor in determining whether the augmented
method will be a particularly efficient solution method for a given
problem. In general, the augmented method is particularly attractive
for meshes that have greater amounts of surface area relative to their
volume.

The second reason for the wide disparity in results is that the brick
meshes had particularly well-conditioned stiffness matrices, while
the beam meshes had more poorly conditioned stiffness matrices.
Iterative methods can converge very slowly or fail to converge at
all when systems are not sufficiently well conditioned. In contrast,
the direct solution approach provided by the augmented factors
is more robust in poorly conditioned scenarios. We conclude that
the augmented method is particularly appropriate when a problem
would benefit from the robustness of a direct solution approach, but
also needs the flexibility to update the system due to cutting or other
changes.

In summary, we have demonstrated the feasibility of using aug-
mented matrices to provide fast updates for finite-element models
undergoing cutting and deformation. The augmented method has
been experimentally shown to offer advantages both in speed and
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reliability for certain classes of problems. We plan to explore the
applicability of this method to a wider range of problems in future
work. One particular application to investigate is surgery simulation,
for which there is evidence that viscoelastic and hyperelastic ma-
terial models are often appropriate for soft-tissue modeling [Fung
1993; Lapeer et al. 2010; Marchesseau et al. 2010]. Nonlinear ma-
terial models can require stiffness matrix updates at each timestep,
even without cutting. However, in the case of tool-tissue interac-
tion, acceptable nonlinear accuracy might possibly be achieved by
updating the stiffness of a subset of only the most deformed ele-
ments or those closest to the contact area. This raises the interesting
possibility of using the augmented matrix method for fast updates
of nonlinear materials.

Another direction for future investigation is inspired by the vari-
ety of recent publications that have reported acceleration of solution
methods via GPU implementations [Dick et al. 2011b; Courtecuisse
et al. 2010b; Joldes et al. 2010; NVIDIA 2015]. Our augmented
matrix solution method could likely be similarly accelerated if the
triangular solves and/or GMRES algorithm were implemented in a
way that makes efficient use of GPU processing.

APPENDIX

Graph theory concepts relied on in the discussions of sparsity and
complexity are outlined here. Included are the definitions and the-
orems referenced in Section 3.3. Note that, in this discussion, the
matrix A is nonsymmetric. We apply these results to the lower
and upper triangular factors of the stiffness matrix K, although the
results here are more general.

Definition 1. An n X n sparse matrix A can be represented by
a directed graph G(A) whose vertices are the integers 1, ..., n and
whose edges are

{G.j):i # j. and Ay # O).
This set of indices is called the structure of A.

Definition 2. The transitive reduction of a directed graph G(L)
is the graph obtained by removing edges (i, j) whenever there is a
directed path (that does not use the edge (7, j)) joining vertices i
and j. An elimination tree of a Cholesky factor L is the transitive
reduction of the directed graph G(L) (in this case, it is a tree rather
than a directed acyclic graph) [Liu 1990].

Definition 3. The structure of a vector x with n components is
struct(x) := {i : x; # 0},

which can be interpreted as a set of vertices, W, of the directed
graph of G(A) such thati € W if and only if x; # 0 when solving
Ax = bor Ay = x. In this article, for a vector x, closure, (x) refers
to closure 4 (struct(x)).

Definition 4. Given a directed graph G(A) and a subset of its
vertices denoted by W, we say that W is closed with respect to A if
there is no edge of G(A) that joins a vertex not in W to a vertex in
W; that is, v; € W and A;; # 0 implies that v; € W. The closure
of W with respect to A is the smallest closed set containing W,

closure , (W) := ﬂ{U : W C U, and U is closed},

which is the set of vertices of G(A) from which there are directed
paths in G(A) to vertices in W.
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THEOREM 1. Let the structures of A and b be given. Whatever
the values of the nonzeros in A and b, if A is nonsingular, then

struct(A'b) C closure 4 (b) .
The proof of Theorem 1 can be found in Gilbert [1994].

THEOREM 2. Suppose that we need only some of the components
of the solution vector x of the system Ax = b. Denote the needed
components by X. If A is nonsingular, then the set of components in
b needed is closure 47 ().

PROOE. Let values be given for which A is nonsingular. Renumber
the vertices of G(AT) so that closure ;7 (%) = {1, 2, ..., k} for some
k < n.Then, Ax = b can be partitioned as

(e 2)(2)-(¢)

where B is k x k. By the definition of closure,r (%), there is no
edge (i, j) with i € closure,7(%) and j ¢ closure,T(X). Therefore,
D = 0. Then, By = d. Since A is nonsingular, B is also nonsin-
gular. Thus, X can be computed by solving only By = d, which
implies that only closure s 7 (%) is needed to compute the components
int. O

THEOREM 3. Let A = LLT be a Cholesky factorization and W
be a subset of vertices in G(L). If r is the root of the elimination
tree T of L, then

closure; (W) = U{r :T> v},
veW

where r=>"v is the path from r to v in T, including all intermediate
vertices along the path.

PROOF.

1) U,ewl{r="Tv} C closure, (W):
For any edge between a node v and its parent u in 7', there is
an edge (¢, v) in G(L). By definition, if v € closure, (W), then
u € closure; (W). Since W € closure, (W), all ancestors of W
must be in closure; (W).

(i) closurer (W) C |, owir =" v}:
If a node u ¢ |J,.yw{r =" v}, there must be a path from a
node w € |, y{r =7 v} to u. Hence, there is also a directed
path from w to u in G(L). Since L is lower triangular, there is
no cycle in G(L). Hence, there is no directed path from u to w
and u ¢ closure, (W). 0O
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