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ASSESSMENT AND APPLICATIONS OF THE CONVERSION OF CHEMICAL 
ENERGY TO MECHANICAL ENERGY USING MODEL ROCKET ENGINES  

 

Abstract 
 
To provide the first-year engineering students with a hands-on experience in an engineering 
application using both chemistry and physics, this team project uses a set of chemical and physical 
energy concepts and MS Excel based analysis. The main objective of the project is to calculate 
how much of the potential maximum possible chemical energy is converted into propulsion when 
using model rocket engines with solid fuel. The secondary objective is to determine the effects of 
increasing conversion rates on the performance of a model rocket. The solid fuel or propellant used 
in common model rocket engines is black powder. Compared to composite and hybrid engines, 
engines with black powder are cheaper and easier to ignite. Affordability of this propellant has 
made it possible to test fire many engines of different sizes.  In addition, solid model rocket engines 
provide a good analogy to solid rocket boosters used in some of today’s launch vehicles.  Rockets 
are momentum engines; thus, it is unusual to consider them in terms of energy, but energy is felt 
by observers even in model rocket launches.  Total impulse is the measure of momentum imparted 
to the vehicle and depends on several processes including the chemical energy of the propellant 
and the useful kinetic energy of the exhaust.  The project centers around calculation of the total 
energy released by the combustion of the reactants in model rocket engines of various types (A 
through F).  The propulsion energy is a small fraction of the total energy released during 
combustion where a significant part of the total is lost heat.  Many students enjoyed this activity 
as they learned how to code several sets of chemical balance and physical energy equations using 
MS Excel.  Each team wrote a detailed technical report that explains the overall project.  They 
used field pictures and the graphs to illustrate various parts of the project.   They also included an 
essay on alternative propulsion means to explore the outer Solar system and beyond.   An 
anonymous learning survey was developed, implemented, and analyzed to assess the educational 
effect of this project.  The survey results and anecdotal evidence show this was a good and a 
challenging learning experience that was also too demanding for some of the students.  
 
 
Introduction 

Experiential learning is a well-documented [8, 9, and 17] and a well recognized part of Kolb’s 
experiential learning cycle/spiral [5, 10, and 12] that is used as a powerfull pedagogical strategy 
in many engineering programs. Project-based learning (PBL) pedagogy is well accepted in 
education. It is also emphasized as one of the high priority education methods/pedagogies required 
in early engineering education. Model rocketry can be viewed as miniature astronautics, 
technological recreation, and an educational tool.   A model rocket is a combined miniature version 
of a real launch vehicle [27 and 28].  A model rocket is a very convenient metaphor to illustrate 
many important engineering concepts and principles in a fun and exciting way.  Once a model 
rocket leaves the launcher, it is a free body in air.  Model rockets have been used as student projects 
for decades.  Many publications [1, 2, 4, 7, 13, 15, 18, 20, 21, 23, 24, and 25] report engineering 
projects in the same general area.   Mathematical and physical aspects of model rocketry are 
reported in references 3, 6, 14, 16, 19, and 31. This paper describes a successfull implementation 



of PBL in an introduction class using the conversion of chemical energy into propulsion as its 
focus instead of the flight based focus found in earlier publications.  Hence, this paper is the first 
its kind in model rocket literature. The practical experience described in this paper is realization 
centered.   

Curricular Context 

ENGN 110 is an introduction to engineering and technology course designed to “introduce a 
variety of engineering and technology disciplines” through a series of engineering projects. The 
course emphasizes teamwork, design, testing, communication and presentation skills, as well as 
discovery, creativity, and innovation. This is a one-semester, 2 credit-hour course required for all 
engineering and engineering technology programs at the university. The described practical 
chemistry and physics related engineering experience presents one of the major modules (team 
project) in this course.     

Educational Goals, Activities, and Outcomes 

Educational goals of this project include increased excitement for engineering resulting in 
increased retention, motivational preparation for further studies in engineering, and gaining an 
insight into what engineers do. The practical experience consists of several exciting and 
“explosive” activities. There are several project learning outcomes that stem from project 
educational goals that are reinforced/implemented through project activities. The project learning 
outcomes include 1) development of teamwork skills, 2) increased appreciation for current and 
future coursework in physics and chemistry, 3) an early understanding of the role of experimental 
and analytical approaches to engineering problem solving, 4) development of written 
communication skills through writing technical team reports, 5) development of MS Excel 
programming skills directly applicable to a real-life like project and 6) increased appreciation for 
engineering by experiencing a real life like hands-on engineering project from start to finish. These 
outcomes are closely related to ABET-EAC Criterion 3, 1-7 student learning outcomes, 
specifically outcome 1 - an ability to identify, formulate, and solve complex engineering problems 
by applying principles of engineering, science, and mathematics, outcome 3 - an ability to 
communicate effectively with a range of audiences, outcome 5 – an ability to function effectively 
on a team whose members together provide leadership, create a collaborative and inclusive 
environment, establish goals, plan tasks, and meet objectives, and outcome 6 – an ability to develop 
and conduct appropriate experimentation, analyze and interpret data, and use engineering 
judgment to draw conclusions.    

This project also sought to dispel the following popular misconception for the potential rocket 
scientists in the class: a rocket needs to push against something to work!  Before the space 
programs, many believed that rockets might not work in space, but they do even better than in air.  
Rockets work because of Newton’s third Law that all forces come in pairs: exert a force in one 
direction and automatically there is an equal and opposite force. Another way to look at it is that 
momentum (mass x velocity) is always conserved when the net force is zero. Before a model rocket 
is ignited, it has zero momentum. When it is ignited, hot gases are expelled to the rear of the rocket 
having some total momentum (a vector in one direction). To maintain zero net momentum, the 
rocket has an equal momentum magnitude but in the opposite direction through the force called 
thrust.  The rocket shoots out a lot of hot gases and some combustion particles. The mass of 
everything expelled is not much but they move very fast. The rearward momentum is large, and it 



is necessary to add up all the individual masses times their different speeds to get the total. Since 
momentum is always conserved when the net force is zero, an equal momentum in the opposite 
direction must occur. This forward momentum is made up of a large rocket mass times a slower 
average speed than the average exhaust speed. Therefore, the total forward and rearward moments 
cancel each other out. The final speed of the rocket is found by dividing the total momentum for 
the exhaust or the opposite rocket momentum by the mass of the rocket. This simple explanation 
ignores gravity and air resistance.   In this project, many model rockets were launched, and the 
students clearly observed that expelled gases push against something (the launch pad) only during 
the brief ignition and lift-off moment.   In Figure 12, model rocket ZE-1’s flight trajectory shows 
the rocket thrusting without having to push against anything for up to 53 meters. 

 Energy Source for Propulsion for Model Rocket Engines   

Figure 1. The main idea of the team project 

 

Figure 1 illustrates the main idea of the project.  Black powder is ignited to generate heat.  In turn, 
some of the heat is converted into a fundamental propulsion input of impulse through conservation 
of momentum.  Impulse is an implied input and it is defined as the area under the burn time and 
thrust curve as explained in Sarper et al. [26].   How does the conversion in Figure 1 occur? The 
project centers around this question.   Figure 2 shows 40% to 70% of the available chemical energy 
is converted into propulsion in actual chemical rockets.   This project seeks to teach students how 
to assess the conversion rate for black powder-based model rocket engines in a fun and exciting 
way using experimentation, chemistry, physics, and MS Excel programming.   Obviously, today’s 
space bound rockets use chemical means other than black powder. 
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Figure 2.  Typical energy distribution of a chemical rocket [29]  
 
Figure 3 lists the names and the proportions of the reactants of black powder fuel manufactured by 
the Estes Corporation located in Penrose, CO.  The manufacturing process remains essentially the 
same as the one developed by Mr. Estes in the 1960s.  The first author has visited the plant several 
times.  

 

 
Figure 3. Black Powder Composition of Engines [30] 

Figure 4 shows the cross section of a typical engine with black powder as its fuel.  Fuel grain or 
black powder usually represents about half of the mass of an engine.  Delay and ejection charges 
are also made of black powder. 
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Figure 4.  Components of an Estes Model Rocket Engine [11] 

Motor vs. Engine  

Is the propulsive unit an engine or a motor?  Both terms are used by the manufactures and the 
users for decades interchangeably.   Reference 11 provides a good clarification for this 
historical confusion: “To be technically correct, nearly all amateur rockets from the smallest 
to the largest use motors.  According to the American Heritage Dictionary, a motor is 
"something, such as a machine or an engine that produces or imparts motion" and an engine 
is "A machine that converts energy into mechanical force or motion."  A machine is "A 
device consisting of fixed and moving parts that modifies mechanical energy and transmits it 
in a more useful form."  …….    A solid propellant rocket motor has no mechanical moving 
parts.  The only thing moving is the igniter as it is ejected out the nozzle and the gas and 
propellant particles resulting from combustion of the propellant.  There are no moving parts 
like there is in your car engine”.  This paper uses the term ”engine” although it appears that 
the term “motor” is the correct one. 
 
Practical Experience: Static Engine Testing 

Figure 5 and Equation 1 show the reactants and the products of black powder reaction or explosion.   
Samples shown were obtained from the Chemistry department, but no actual mixing of the 
reactants was performed.   The reactants in Figure 5 are in a compressed format as a fuel grain in 
Figure 4.  Before any rockets were launched, many engines of different sizes were static fired as 
shown in Figure 6.  The students were able to see and/or feel the products (especially the gases) of 
reaction in Figure 5 after most of the firings. 
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Figure 5. The black powder reaction  

In Figure 6, an F engine is seen when thrusting (left) and ejecting (right) 

 

Figure 6.  Static engine testing 
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Figure 7 shows the activities involved before and after static engine testing.  For each engine, the 
difference in mass value was calculated by recording pre and post firing masses. The difference 
includes the fuel as well as the other consumables except the tube shown in Figure 4. Hence, 
published fuel mass values were used in the calculations shown later. 

 

Figure 7.  Sample of engines used for testing and launching 

Each student turned in an early MS Excel homework using the data from about 50 firings of various 
engine types.  They calculated the net change in mass of each engine and compared the change 
with published fuel only mass to estimate the percent of the change that represents the fuel mass.  
It was also observed that idential engines varied somewhat in overall mass and the net change in 
mass. 

Practical Experience: Model Rocket Launches 

Two types of model rockets were used: the large rocket (B&D model) powered by a D12-5 engine 
and small rocket (Skytrax model) powered by a B6-4 engine.  Each rocket can also be powered by 
other engines that have higher or lower impulse ratings.   Figure 8 shows some of the large rockets 
during the launch mass recording process. Figure 10 shows a large (left) rocket and a small (right) 
rocket during the lift-off stage.   Each rocket was fitted by an altimeter to collect flight data. Figure 
9 shows the altimeter and its insertion under the nose cone of the large rocket. The large rocket 
does not have a dedicated payload section and the altimeter was hung under the nose cone. In 
Figure 10 (right), altimeter can be seen inside the payload section of the small rocket. 



 

Figure 8. Some of the large (B&D) rockets and a Falcon 9 rocket (not used) 

 

 

Figure 9.  The onboard altimeter used on both rocket types 

-



 

Figure 10.  Lift-off of large (B&D) and small (Skytrax) rockets  

Dozen of rockets of both sizes were launched (Figure 11) in order to get some “perfect” flights. A 
“perfect” flight is the case when flight data reported by an on-board altimeter matches or nearly 
matches with the theoretical flight performance values as calculated using “rocket science” 
equations. This is indeed a rare event that helps instill the fact that analytical methods are useful 
and students will be able to predict a system’s behavior using the knowledge gained during the 
STEM studies. Many things can and do go wrong not just with the model, but  with real-life rocket 
launches. The students were able to observe many launches with bad outcomes due to many 
forseen (high winds, nearby trees) and unforseen (sudden wind gust after the launch) problems.   
Two “perfect” flight data sets were used in this project: large rocket with the serial number ZE-1 
and the small rocket Skytrax-3. This paper only uses the ZE-1 data for illustrations. Figure 12 
shows downloaded flight profile of this rocket with a launch mass of 226 grams including a 45.50 
gram D12-5 engine with an estimated 21 grams of black powder fuel. Figure 13 shows how an on-
line rocket science tool [22] can be used to predict the ideal performance of this rocket using all 
known input values shown. The students made extensive use of this on-line tool to classify each 
launch as “perfect”, marginal, or poor. 



 

Figure 11. Model rockets ascending (small & large) 

As seen in Figure 12, rocket ZE-1 achieved an apogee of 134.70 m. vs. a predicted apogee of 
134.90 m. in Figure 13. At the burn-out point, the maximum actual speed of 197.50 kph (54.87 
m/s) matches with the predicted maximum speed of 54.85 m/s in Figure 13.  The rocket reached 
the apogee after 5.10 – 1.50 = 3.60 s of coasting while the predicted duration is 4.00 s of coasting.   
Predicted (44.17) and actual (53.10) burn-out altitudes do not match well, however.   The flight of 
rocket ZE-1 is still a “perfect” flight as the apogee match is the top priority.  In Figure 13, published 
average impulse value of 16.84 N-s was used, but the actual impulse can vary from 16 to 18.  There 
is no way to know the actual impulse value unless a destructive test described in Sarper et al. [26] 
is carried out.  The nominal thrust or burn-time for a D12-5 engine is 1.65 s, but rocket ZE-1 
experienced an unusually short (1.50 s) burn-time.  Unlike the unknown actual impulse, the actual 
burn-time can be entered in Figure 13.  

In Figure 12, propellant is consumed at the burnout point and no thrust force is available to push 
the rocket which continues to ascend while losing speed (negative acceleration).   At the apogee, 
the velocity is 0 before the descent begins. A parachute is successfully ejected in 85% of the flights.  
In this case, delay time for ejection was 5.05 s after the burnout time of 1.50 s or at time = 6.55 s 
on the x axis.  The delay fuel (a simple timer) in Figure 4 starts burning as soon as the main fuel 
is consumed at the burnout.    Ejection charge explodes out to eject the parachute after this time-
out. For engine D12-5, average thrust is 12 Newtons and the average delay is 5 seconds.  The total 
flight time is about 33 seconds.   Ejection happens before the apogee in about 20% of the launches.  
Such flights are never “perfect”. Failed ejection is a serious concern even for small rockets because 
rockets then act like a ballistic missile and crash with a high terminal velocity. 

.I 



 

Figure 12.   Flight  profile of  large rocket ZE-1    
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Figure 13.  Prediction of performance of the large rocket ZE-1 [22] 

 

The Variables and the Equations 

Table 1 shows the variables using the metric system. Vf refers to the exhaust velocity of the gases 
and the particles expelled, not the velocity of the rocket.  Equation 1 is the fundamental black 
powder reaction in Figure 5.   Equations 2 and 7 and 3 and 6 are the same. 

 

 

 

 

 

 

Rocket Altitude Calculator (Flash ver. 0.9) ©( Help ) 

Rocket Mass: [180.50 1
grams ~ ( Calculate Single Stage or Booster ) 

- lb . ➔ 9 

Drag Coefficient: [. 93 1 (typically 0.75) ( Calculate Upper Stage ) 

Body Tube: § tomized 1 
( Select Tube ) ( Calculate Optimum Mass ) 

Diameter: [_§1 1cm Peak Altitude: [ _ 134.91 meters 
-

Frontal Area: Q£_G9 1cm2 Peak Altitude: I 442.5lfeet 

Coast Time: [ 4lseconds 
Motor:~ 

1 

( Select Motor ) 
Burnout Vel: I 54.851 m/sec Total Impulse (N-sec): § 4 I 

Burnout Alt: I 44.17 I meters Burn Time (sec): [.2i I 
~ 

Motor Mass (grams): [45.5 I 

Propellant Mass (grams): [ 21.1 I 

Number of Motors in Cluster: [ 1 I 

Site Elevation: [o 1 meters( ft. ➔ m ) -
Temperature: [21 l oc ( ° F ➔ °C) Air Density: [ 1.21 kg/m3 



 

Table 1. Definition of the Variables 

 

 

   
Calculation of the conversion efficiency of chemical energy to mechanical energy  
 
The heat of reaction (also known as enthalpy of reaction) is the change in the enthalpy of a 
chemical reaction that occurs at a constant pressure. It is a thermodynamic unit of measurement 
useful for calculating the amount of energy per mole either released or produced in a reaction.  
Many students seemed to be well informed of these concepts. When a process occurs at constant 

I0KNO 3 + 3S + 8C- > 2K2CO3 + 3K2SO4 + 6C0 2 + SN2 (1) 

I 
vf = - (2) 

mp 

1 2 
Ep = 2mp Vf (3) 

Ep 
~=- ~ 

E e 

Ep (new) = -Ef (new) * E e* 1000 (5) 

Vt = ( 2E P ) i ( 6) 
. mp 

I = Vf * mp (7) 

IS/% = lnew - !base (g) 
ha se 



pressure, the heat involved (either released or absorbed) is equal to the change in enthalpy.  For 
KNO3, for example, the value of 494.50 kJ is published.  Figure 14 shows the MS Excel worksheet 
for energy calculations all teams developed for this project. 

The spreadsheet in Figure 14 shows reaction of potassium nitrate, sulfur, and carbon to form 
potassium carbonate, potassium sulfate, carbon dioxide, and nitrogen. The lines below the reaction 
in the spreadsheet are molecular weight of each reactant and product; molar coefficients from the 
reaction equation; total grams of each reactant and product assuming the reaction is run at full 
scale (i.e. 10 moles of KNO3, 3 moles of sulfur, etc.); total mass of reactants (which is also total 
mass of products); published values of the heat of formation of each reactant and product (note 
that elements in their most stable state have heat of formation = 0); Calculation of the molar 
coefficient times the heat of formation - these values are used to calculate the heat of reaction. 
 
The heat of reaction is defined as sum of heats of formations for all products minus sum of heats 
of formation for all reactants, or [(products - reactants)].  Note that for any stable compound, the 
heat of formation is negative.  So, for example, the delta H (formation) values should all be 
negative, like -494.50 kJ/mol for KNO3.   Also note that heat of formation is defined as the energy 
change accompanying formation of one mole of any pure substance directly from its constituent 
elements, with all substances present in the reaction in their standard states.  Because of this 
definition, the heat of formation for any element in its standard state is zero.  A large negative heat 
of formation (for a compound) means the compound is relatively stable.  As seen in Figure 14, the 
heats of formation of both potassium carbonate and potassium sulfate are much larger (and they 
are negative) than the heat of formation of potassium nitrate.  But comparing different substances 
by their heats of formation is just a qualitative argument, because there are atoms present in KNO3 
that are not in K2CO3 and vice versa. So, it is not an accurate quantitative argument. 

In Figure 14, the total mass of the reactants and the products is 1203 grams for the full reaction. 
Heat of formation per mole values are taken from the tables to calculate the total heat of formation 
for each compound on both sides. Then, the net heat energy is found via [(products - reactants)]: 
[(2300.40 + 4313.10 + 2361) - 4945] = -4029.50 kJ for the full reaction. The 4029.5 kJ value is 
the amount of heat released (the reaction is exothermic) when run at "full scale" (i.e. 10 moles of 
KNO3, 3 moles S, etc.). Note that the negative values indicate that all the compounds (whether 
reactant or product) are formed exothermically from their elements. The minus sign tells that the 
heat is released. The term ("released") implies that the heat is given off and therefore the sign of 
delta H is understood to be negative.   Since the amount of the propellant is only 21 g., the actual 
net heat energy is (21/1203)*(-4029.50) = -70.34 kJ after each D12-5 engine is ignited.      

How is this net energy used? The exhaust velocity is 16.84/0.021 = 801.90 m/s (Eq. 2). This speed 
corresponds to a kinetic energy of 0.50*(0.021)*(801.90)2 =  6752.04 J (Eq. 3) or 6.75 kJ.  This 
means only 6.75 kJ of the available 70.34 kJ of chemical heat energy is used for propulsion.   The 
conversion efficiency then is 6.75/70.34 = 9.60% for engine D12-5.  

 



 

            Figure 14.  Calculation of the efficiency of the conversion of chemical energy to mechanical energy for the D12-5 engine  
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1011.00 

-494.50 

-4945.00 

801.90 

675204 

6.75 

9.60"/a 

32.00 12.00 13820 17420 44.00 28.00 

3 8 2 3 6 5 

96.00 96.00 276.40 522.60 264.00 140.00 

1203 .00 1203.00 

0.00 0.00 -1150.20 -1437.70 -393.50 0.00 

0.00 0.00 -2300.40 -4313.10 -2361.00 0.00 

Per 1203.00 grams: -4029.50 

Per 21.00 grams: -70.34 

• denotes an implial aiua,tion without an aiua,tion numlx:r in 1he paper 

OLiy 9 .60"/a of 1he available 70.34 kJ of energy was usal for JIUPlllsion. 

grams/mot 

moles 

grams 

grams 

DHf (kJhnol) 

DHf(kl) 

DHrxn(kl) 

Dlln■ (kJ) 



Table 2 shows calculated efficiencies of all common engines tested in this project.   The composite 
engines were not used, but they appear to have high conversion efficiencies comparable to 
chemical fuels used for real rockets as depicted in Figure 2. Note that burn-time is not used in 
efficiency calculations, but included here as it is a major input for other calculations. 

Table 2. Conversion of chemical energy efficiency of common engines 

 

 

Flight performance predictions with improved theoretical conversion rates 

This part of the project dealt with the question of “if we can improve the conversion rate of the 
available chemical energy to mechanical energy, what are the benefits of this?”.  As in most 
engineering systems, improvements can be made.  There was a class discussion on how to make 
and implement improvements, but these were clearly beyond scope of this class.  If heat losses can 
be reduced with better insulation, the conversion rates in Table 2 should improve.  The main 
purpose of this part of the project was to teach students 1) it is possible to make predictions using 
analytical means only at first, 2) their STEM education will make it possible to do so without 
modifying a single engine, 3) actual changes in real practice would happen after much discussion 

Engine Fuel Impulse Propellant Burn time Conversion
Type Type (N-s) Mass (g) (s) Efficiency (%)

1/4A3T-3 Black Powder 0.63 0.83 0.25 8.46
1/2A3T-2,4 Black Powder 1.25 2.00 0.36 5.83
1/2A6-2 Black Powder 1.25 2.60 0.33 3.45
A3T-4 Black Powder 2.50 3.30 1.01 8.57
A8-0 Black Powder 2.15 3.84 0.53 4.68
A8-3,5 Black Powder 2.50 3.30 0.73 8.57
A10T-0 Black Powder 1.88 3.57 1.06 4.14
A10T-3,P Black Powder 2.50 3.80 0.85 6.46
B4-2,4 Black Powder 4.29 6.00 1.03 7.63
B6-0 Black Powder 4.90 5.60 0.86 11.43
B6-2,4,6 Black Powder 4.33 5.60 0.86 8.92
C6-0,3,5,7 Black Powder 8.82 10.80 1.86 9.96
C11-0,7 Black Powder 8.80 12.00 0.81 8.03
D11-P Black Powder 17.49 24.50 1.86 7.61
D12-0,3,5,7 Black Powder 16.84 21.10 1.65 9.60
E9-0 Black Powder 27.87 35.80 3.09 9.05
E12-0,4,6,8 Black Powder 27.24 35.90 2.44 8.59
E16-0,4,6,8 Black Powder 33.38 40.00 2.09 10.40
F15-0,4,6,8 Black Powder 49.61 60.00 3.45 10.21
E30-4,7 Composite 33.56 17.80 1.02 53.06
F26FJ-6 Composite 62.19 43.10 2.31 31.08
F50T-4,6 Composite 76.83 37.90 1.43 61.34



and management approval, 4) cost of any improvement must be considered along with its benefit, 
5) they should always consider adding a “what-if” analysis in their future technical reports as this 
is something most managers will appreciate even if they did not ask for it. 

Figure 15 shows the application of the on-line rocket altitude calculator [22] if, somehow, a full 
conversion efficiency of 100% is achieved when launching rocket ZE-1.   At 100 % conversion 
rate, the total chemical energy of 70.34 kJ or 70340 J is available for propulsion using equation 5.  
Using equation 6,  Vf =  [(2*70340)/(0.021)]0.5 =  2588.26 m/s which, using equation 7, correponds 
to I = 2588.6 * 0.021 = 54.35 N-s of impulse.  Compared to the nominal impulse of 16.84 N-sec, 
this new theoretical impulse represents (Equation 8) an increase of (54.35 – 16.84)/16.84  or 
222.76% over the value possible with the current 9.60% conversion efficiency.  Figure 17 shows 
therotical impulse increases as a function of hypotetical energy conversion increases for D12-5 
and B6-4 engines. 

 

Figure 15.  Prediction of performance of the large rocket ZE-1 at 100% conversion rate  

Figure 16 shows application of equations 5 through 8 at increasing energy conversion rates for 
engine D12-5.  The last four columns in Figure 16 are obtained using the rocket altitude calculator 
[22] by simply entering the corresponding impulse value.  Figures 18, 19, and 20 show the potential 
improvements in flight performance as functions of increasing chemical energy conversion rates 
of both engine types. The students found this part of the project particulary interesting and exciting.      
There were class discussions on the concepts illustrated in Figures 18-20. 

Rocket Altitude Calculator (Flash ver. 0.9) @( Help ) 

Rocket Mass : [180.50 l grams ~ ( Calculate Single Stage or Booster ) 
lb. ➔ 9 

Drag Coefficient: [-93 I (typically 0. 75) ( Calculate Upper Stage ) 

Body Tube: [customized I ( Select Tube ) ( Calculate Optimum Mass ) 

Diameter : [5.007 1cm Peak Altitude: [ _ 387 1 meters 
-

Frontal Area : [19.69 l cm2 Peak Altitude: [ __ 1269.8Ifeet 

Coast Time: [ _ 5.71 seconds 
Motor : [012 I ( Select Motor ) 

Total Impulse (N-sec) : [54.35 I Burnout Vel : [ _ 153.951 m/sec 

Burnout A lt: [ 141 .22 I meters Burn Time (sec) : [1.5 _J 
Motor Mass (grams) : [45.5 _J 

Propellant Mass (grams) : [21. 1 _J 
Number of Motors in Cluster: [1 I 

Site Elevatio n: [o I meters( ft. ➔ m ) 

Temperature: ~ 1 l ac ( OF ➔ oc ) Air Density: [ 1.21 kg/m3 



 

Figure 16.    Performance prediction of the large rocket ZE-1 at increasing conversion rates   

Engine 

Impulse(]) 

PropeHantMass (m) 

Equation* 

Convei:sion Efficiency 

9.60% 

15.00% 

20.00% 

25.00% 

30.00% 

35.00% 

40.00% 

45.00% 

50.00% 

55.00% 

60.00% 

65.00% 

70.00% 

15.00% 

80.00% 

85.00% 

90.00% 

95.00% 

100.00% 

Dl2-5 

16.84 

0.021 

Equations 

Propulsion Eneigy (J) 

6752.04 

10551.06 

14068.08 

17585.10 

21102.12 

24619.14 

28136.16 

31653.18 

35170.20 

38687.22 

42204.24 

45721.26 

49238.28 

52755.30 

56272.32 

59789.34 

63306.36 

66823.38 

70340.40 

Equalion6 Equation 7 

Exhaust Velocity (m/sec) Impulse (N-sec) 

801.90 16.84 

1002.43 21.05 

1157.50 24.31 

1294.13 27.18 

1417.65 29.77 

1531.23 32.16 

1636.96 34.38 

1736.26 36.46 

1830.18 38.43 

1919.50 40.31 

2004.86 42.10 

2086.72 43.82 

2165.49 45.48 

2241.50 47.07 

2315.01 48.62 

2386.26 50.11 

2455.44 51.56 

2522.72 52.98 

2588.26 54.35 

USING TIIE ON-LINE ROCKET MOTION CALCULATOR 

Equation 8 For Rocket ZEl Launch mass: 226 gr witha45.50 grmgine 

Impulse Increase Apogee(m) B umoutAl1itude (m) Burnout Speed (m/sec) Coast 1ime (sec) 

0.00% 134.70 44.17 54.84 4.00 

25.01% 176.10 56.60 68.98 4.40 

44.34% 204.70 65.89 79.23 4.70 

61.38% 227.90 73.86 87.81 4.90 

76.79% 247.30 80.89 95.22 5.00 

90.95% 264.20 87.24 101.81 5.10 

104.13% 279.00 93.04 107.73 5.20 

116.52% 292.20 98.38 113.11 5.30 

128.23% 304.20 103.36 118.07 5.30 

139.37% 315.30 108.05 122.68 5.40 

150.01% 325.40 112.46 126.96 5.40 

160.22% 334.80 116.64 130.99 5.50 

170.04% 343.70 120.63 134.80 5.50 

179.52% 351.90 124.41 138.80 5.50 

188.69"/o 359.70 128.06 141.80 5.60 

197.57% 367.10 131.53 145.04 5.60 

206.20% 374.00 134.87 148.13 5.60 

214.59"/o 380.70 138.12 151.11 5.60 

222.76% 386.70 141.19 153.89 5.10 



 

 
 
Figure 17. Impulse increase vs. chemical energy conversion efficiency rate 
 
 

 
 
Figure 18. Altitude values vs. chemical energy conversion efficiency rate 
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Figure 19. Burnout speed vs. chemical energy conversion efficiency rate 
 

 
 
Figure 20. Coast time vs. chemical energy conversion efficiency rate 
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Essay on other propulsion methods 

Each team also had to research other propulsion methods and write an English composition type 
essay.  Students were encouraged to discuss the state-of-the-art proposed, and theorized propulsion 
methods such as liquid chemical propulsion, ionic propulsion, solar sails, and even warp drives. 

Assessment and Evaluation of Course Educational Objectives 
 
Students received a practical introduction to many engineering concepts they will encounter in 
their later studies.   The instructor scheduled additional project help sessions on most Friday 
afternoons as the class time was not long enough due to other topics that were covered. Also, for 
most of the students, this was their first meaningful encounter with MS Excel. While most of the 
students rose to the challenge, a few of them found this project to be too difficult. 

As mentioned earlier, there were several educational goals expected of this project: 1) development 
of teamwork skills, 2) increased appreciation for current and future coursework in physics and 
chemistry, 3) an early understanding of the role of experimental and analytical approaches to 
engineering problem solving, 4) development of written communication skills through writing 
technical team reports, 5) development of MS Excel programming skills applied to a real-life like 
project and 6) increased appreciation for engineering by experiencing a real life like hands-on 
engineering project from start to finish. These educational goals were either fully accomplished or 
it is too soon to tell as in the case of goal 6 that also seeks to improve retention. 

An anonymous exit survey (shown in Figure 21) using a 5-point Likert scale was completed by 80 
of the 95 students in 5 sections. The results are shown in red using mean and standard deviation 
format.  Most of the freshmen felt this project was a good learning experience for all the goals 
above.     90 of the 95 students were freshmen in their first or second semester of study.  Most of  
students (about half) planned to major in mechanical engineering.  It appeared that there were big 
differences among the students with respect to their degree of college preparedness.  It was evident 
that those who were less prepared academically were not able to contribute to the group effort as 
much. Those with strong high school chemistry and AP physics backgrounds enjoyed and 
understood this project much better than those with weaker backgrounds.     

 
 
 



Please rate the following questions: 
 

1. Working with model rocket engines was (3.94/1.09).  
1 = boring, 2 = somewhat boring, 3 = OK, 4 = somewhat exciting,   5 = very exciting 

2. From this project I learned (3.19/0.81) about chemical propulsion and its conversion into 
mechanical energy. 
1 = nothing, 2 =  little, 3 = something, 4 = much, 5 = very much 

3. By performing calculations using Excel I became (4.15/0.81) with coding in Excel. 
1 =  less proficient,  2 = somewhat less proficient, 3 = neither less nor more proficient,  
4 = somewhat proficient,  5 = very proficient 

4. By performing calculations using the online model rocket calculator, I became  
(3.38/0.76) with rocket science. 
1 =  less proficient,  2 = somewhat less proficient, 3 = neither less nor more proficient,              
4 = somewhat proficient,  5 = very proficient. 

5. Static engine testing and physical model rocket launches, and the calculations were 
(3.94/0.97) in gaining some understanding of rocket science. 
1 = unhelpful, 2 = somewhat unhelpful,  3 = neither unhelpful nor helpful,  4 = helpful,             
5 = very helpful.  
 

 
Figure 21. Students’ Opinion Survey and the Results (in Red)  

 
Conclusions     
 
This detailed project not only introduced the concepts of chemical and mechanical energy, but also 
provided a real life like calculations for the conversion of these two energies using black powder-
based model rocket engines.   Students learned and programmed many engineering and science 
topics they will study soon.  Concepts of chemical balancing, Newton’s laws, impulse, thrust, 
propulsion, and chemical heat of formation were studied analytically and experimentally in a fun, 
drawn out, challenging, and sometimes frustrating team environments. Students enjoyed 
conducting experiments with engines and rockets.  For some, this project was too overwhelming 
while many of them enjoyed the challenges of this project and its many tasks including writing a 
major team technical report. A students’ attitude assessment survey was designed, implemented, 
and analyzed. Overall, students felt this was a very exciting real life like worthwhile learning 
experience that taught them the usefulness and importance of chemistry, physics, and 
programming in engineering projects.  

 

 

 

 

 

 



References: 

 
1. Abate, M., et al., “Correlation Between Simulated, Calculated, and Measured Model 

Rocket Flight”, http://www.drew.edu/govschool/wp-content/uploads/sites/99/T1-Final-
Paper.pdf 

2. Boyer, L., Ravindra, K, George, J., and Mitchell, K.,, “Innovative Rocket Model Project 
for Sophomore Aerospace Engineering Students”, Paper 1922, Proceedings of National 
ASEE Conference, 2007. 

3. Brubaker, M., “Measuring the Trust of a Model Rocket”, Physics Teacher, 12, 488-491. 
4. DeMar, J. S., “Model Rocket Drag Analysis using a Computerized Wind Tunnel”, National 

Association of Rocketry Research & Development Report No. 52094, 1995. 
5. Dewey, J., Experience and Education, Macmillan, N.Y., 1939. 
6. Dooling, T. A., “An Eight-Parameter Function for Simulating Model rocket Engine Trust 

Curves”, Physics Teacher, 45, 280-283, 2007.  
7. Gregorek, G.M., “Simplified Model Rocket Drag Analysis”, IAA Student Journal, 

December 1973. 
8. Harb, J. N., Durrant, S. O., and Terry, R. E.,” Use of the Kolb Learning Cycle and the 

4MAT System in Engineering Education,” Journal of Engineering Education, 82, 70-77, 
1993. 

9. Harb, J. N., Terry, R. E., Hurt, P. K., and Williamson, K. J., Teaching Through the Cycle: 
Application of Learning Style Theory to Engineering Education at Brigham Young 
University, 2nd Edition, Brigham Young University Press, 1995. 

10. Henry, X. X. D., Zhang, L., Nagchaudhuri, A., Mitra, M., Hartman, C. E., Toney, C. A., 
and Akangbe, A. A., “Experiential Learning Framework for Design and Development of 
Environmental Data Acquisition System Enhances Student Learning in Undergraduate 
Engineering Courses,” 2015 ASEE Conf. Proceedings, Seattle, WA, Paper ID 11520, 2015.  

11. https://www.jacobsrocketry.com/rocketry_overview.htm 
12. Itin, C. M., “Reasserting the Philosophy of Experiential Education as a Vehicle for 

Change in the 21st Century,” The Journal of Experiential Education, 22, 91-98, 1999. 
13. Jayaram, S., Boyer, L., George, J., Ravindra, K., and Mitchell, K., , “Project-based 

introduction to Aerospace Engineering Course: A Model Rocket”, Acta Astronautica, 66, 
1525-1533, 2010. 

14. Jenkins, R. A., “Measuring Model Rocket Acceleration”, Physics Teacher, 31, 10-15, 
1993. 

15. Karbon, K, “Numerical Methods for Model Rocket Altitude Simulation- A Comparative 
Study of Accuracy and Efficiency”, NAR Report No. 72175, 1998,   
https://www.apogeerockets.com/downloads/PDFs/numeric_methods.pdf 

16. Keeports, D., “Numerical Calculation of Model Rocket Trajectories”, Physics Teacher, 
28, 274-280, 1990. 

17. Kolb, D. A., Experiential Learning: Experience as the Source of Learning and 
Development, Prentice Hall, Englewood Cliffs, N.J., 1984. 

https://www.jacobsrocketry.com/rocketry_overview.htm


18. Malewicki, D., “Model Rocket Altitude Prediction Charts Including Aerodynamic Drag”, 
Technical Report No. TR-10, Estes Industries, Inc., Penrose, CO, 1967 

19. Nelson, R. A., “Mathematical Analysis of a Model Rocket Trajectory”, Physics Teacher, 
14, 287-293, 1976. 

20. Newman, D.J. and Amir, A.R., “Innovative First Year Aerospace Design Course at 
MIT”, Journal of Engineering Education, 90, 375-381, 2001. 

21. Reiland, R.J., “A Realistic Model Rocket Program for a Small Programmable 
Calculator”, Calculators/Computers Magazine, 2, 72-74, 1978. 

22. Rocket Altitude Calculator available at 
http://www.unm.edu/~tbeach/flashstuff/RocketAltitudeFixedSize.html 

23. Rojas, J. I, Prats, X., Montlaur, A., and Garcia-Berro., E.,, “Model Rocket Workshop: A 
Problem-Based Learning Experience for Engineering Students”, International Journal of 
Emerging Technologies in Learning, 3, 70-77, 2008. 

24. Sarper H. and Vahala, L. , “Use of Single Stage Model Rockets to Teach Some 
Engineering Principles and Practices to First Year Engineering and Engineering 
Technology Students”, Paper 13360, Proceedings of 2015 National ASEE Conf., Seattle, 
WA, 2015. 

25. Sarper, H., Landman, D., and Vahala, L., “First Year Project Experience in Aerospace: 
Apogee Determination of Model Rockets with Explicit Consideration of Drag Effect”, 
Proceedings of 2016 National ASEE Conf., New Orleans, LA, Paper ID 15726, 2016. 

26. Sarper, H., Landman, D., Jaksic, N., Stuart, B., and Vahala, L.,” Impulse Calculation of 
Model Rocket Engines from Experimental Data”, Proceedings of 2019 National 
ASEE Conf., Tampa, FL, Paper ID 25051, 2019. 

27. Stine, H. “The Handbook of Model Rocketry”, 7th edition, J. Wiley, 2004.  
28. Stine, H., “Forty Years of Model Rocketry – A Safety Report”, NAR, 1997. 
29. Sutton, G. P. and Biblarz, O., Rocket Propulsion Elements. Wiley, Hoboken, N.Y. 2017. 
30. https://estesrockets.com/wp-

content/uploads/SDS/Estes_Model_Rocket_Engines_Motors_Greater_Than_30.pdf 
31. Weiss, M., et al., “Using a Model Rocket-Engine Test Stand in a Calculus Course”, The 

Mathematics Teacher, 95, 516-519, 2002. 
 

https://en.wikipedia.org/wiki/Douglas_Malewicki
http://www.unm.edu/%7Etbeach/flashstuff/RocketAltitudeFixedSize.html
https://estesrockets.com/wp-content/uploads/SDS/Estes_Model_Rocket_Engines_Motors_Greater_Than_30.pdf
https://estesrockets.com/wp-content/uploads/SDS/Estes_Model_Rocket_Engines_Motors_Greater_Than_30.pdf

	Assessment and Applications of the Conversion of Chemical Energy to Mechanical Energy Using Model Rocket Engines
	Original Publication Citation

	Motor vs. Engine

