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The cytotoxic synergy of 
nanosecond electric pulses and low 
temperature leads to apoptosis
Claudia Muratori, Andrei G. Pakhomov, Elena C. Gianulis, Sarah Damsbo Jensen & 
Olga N. Pakhomova

Electroporation by nanosecond electric pulses (nsEP) is an emerging modality for tumor ablation. Here 
we show the efficient induction of apoptosis even by a non-toxic nsEP exposure when it is followed by 
a 30-min chilling on ice. This chilling itself had no impact on the survival of U-937 or HPAF-II cells, but 
caused more than 75% lethality in nsEP-treated cells (300 ns, 1.8-7 kV/cm, 50-700 pulses). The cell death 
was largely delayed by 5-23 hr and was accompanied by a 5-fold activation of caspase 3/7 (compared 
to nsEP without chilling) and more than 60% cleavage of poly-ADP ribose polymerase (compared to 
less than 5% in controls or after nsEP or chilling applied separately). When nsEP caused a transient 
permeabilization of 83% of cells to propidium iodide, cells placed at 37 °C resealed in 10 min, whereas 
60% of cells placed on ice remained propidium-permeable even in 30 min. The delayed membrane 
resealing caused cell swelling, which could be blocked by an isosmotic addition of a pore-impermeable 
solute (sucrose). However, the block of swelling did not prevent the delayed cell death by apoptosis. The 
potent enhancement of nsEP cytotoxicity by subsequent non-damaging chilling may find applications 
in tumor ablation therapies.

High amplitude electric pulses of nanosecond duration (nsEP) have been recently proposed as a new local and 
minimally invasive modality to treat tumors. Advantages of nsEP over other ablation methods include preser-
vation of the extracellular matrix and reduced collateral damage to healthy tissue; relative simplicity of the treat-
ment; and fast recovery.

The cytoxicity of nsEP has been demonstrated in multiple cancer cell types in vitro1–6. In early studies, the 
massive externalization of phosphatidylserine (PS) in response to nsEP was interpreted as a sign of apoptosis7–9, 
and apoptosis was considered the prevalent mechanism of cell death induced by nsEP. Indeed, several groups 
have shown apoptosis in nsEP-treated cells using different apoptotic hallmarks such as activation of caspase, DNA 
fragmentation, cytochrome C release in the cytoplasm, and poly-ADP ribose polymerase (PARP) cleavage6,8,10,11. 
However, later studies revealed that nsEP open pores in the plasma membrane12–15 and cause an increase in 
intracellular calcium concentration, thus inducing scramblase activation and PS externalization16,17. Moreover, 
nsEP-induced PS externalization occurs within seconds after exposure, which is too fast for an organized apop-
totic process12,18–20. In view of these data, the use of PS externalization as a sign for induction of apoptosis by nsEP 
has become debatable.

More recently, several groups including ours reported that cells exposed to nsEP swell and may die because 
of necrosis within the first several hours after the treatment5,6,10,21–23. Necrosis is caused by the presence of long 
lived nanopores and colloid-osmotic imbalance which leads to cell swelling and membrane rupture. Alternatively, 
nsEP can evoke osmotically-independent, delayed necrotic death mediated by an abrupt and Ca2+-dependent 
expansion of plasma membrane pores24.

While the induction of apoptosis occurs in response to nsEP, has been documented beyond doubt, the balance 
of apoptotic and necrotic processes, and how this equilibrium is influenced by the exposure parameters, remain 
poorly understood.

Despite this incomplete knowledge, nsEP have already been successfully used for cancer ablation in animal 
models and in human trials21,25–28. For instance, 300 ns pulses caused complete remission with no recurrence of 
murine melanomas in one treatment28. In humans, 100 ns pulses caused regression of basal cell carcinoma lesions, 
with no scarring and no significant side effects27. One major obstacle to a wider use of nsEP in the clinic is the 
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limited output voltage of the existing pulse generators, which limits the size of the ablation zone thus requiring 
multiple electrode insertions and exposures when treating bigger tumors.

In the present study we show that the cytotoxicity of nsEP can be greatly increased by a brief cooling after 
exposure to electric pulses. When neither nsEP alone nor cooling alone affected cell survival, their combination 
triggered apoptosis and culminated in 75% cell loss at 23 hr. The likely cause of this strong synergy was ham-
pered resealing of electroporated cells at lower temperatures, which aggravated the disruption of cell homeostasis. 
However, the facilitation of the colloid-osmotic swelling played little or no role in the induction of the delayed 
cell death.

Materials and Methods
Cell lines and media. In most of the experiments we used U-937 (human monocyte lymphoma) cells. This 
cell line was chosen because the response of U-937 to electric pulses has been extensively investigated by several 
groups in the field including ours5,6,20,24,29,30. U-937 and HPAF-II (human pancreatic adenocarcinoma) cells were 
obtained from ATCC (Manassas, VA). U-937 grow in suspension and were cultured in RPMI-1640 medium 
(Sigma-Aldrich, St. Louis, MO). HPAF-II grow in a monolayer and were kept in EMEM medium (ATCC). Both 
growth media were supplemented with L-glutamine (ATCC), 10% (v/v) fetal bovine serum (Atlanta Biologicals, 
Norcross, GA), 100 U/ml penicillin and 0.1 mg/ml streptomycin (Mediatech Cellgro, Herdon, VA).

nsEP exposure methods. Cell samples were exposed to nsEP in 1 mm gap electroporation cuvettes 
(BioSmith, San Diego, CA) at room temperature.

U-937 cells were resuspended at 1.2 to 5 ×  106 cell/ml in fresh RPMI medium. For certain experiments, the 
medium was supplemented with 25 mM HEPES to maintain the pH 7.4 while outside the incubator. 100-μ l sam-
ples were loaded in the electroporation cuvettes and subjected to either nsEP or sham exposure.

Trapezoidal pulses of 300 ns duration and 700 V amplitude from an AVTECH AVOZ-D2-B-ODA genera-
tor (AVTECH Electrosystems, Ottawa, Ontario, Canada) were delivered to electroporation cuvettes via a 50- 
to 10-Ohm transition module (AVOZ-D2-T, AVTECH Electrosystems) modified into a cuvette holder. Pulse 
trains of predetermined duration, at the selected repetition rate of 100 Hz, were triggered externally from a model 
S8800 stimulator (Grass Instrument Co., Quincy, MA). The pulse amplitude and shape were monitored using a 
500 MHz, 5 GS/s TDS 3052B oscilloscope (Tektronix, Wilsonville, OR, USA).

nsEP exposure of HPAF-II cells without detachment from the substrate was accomplished by growing the cells 
on glass coverslips with an indium tin oxide (ITO) conductive layer, and loading these coverslips in EMEM-filled 
electroporation cuvettes24. The ITO layer was deposited on one side of glass coverslips (#0 thickness, 8 mm 
diameter) by Diamond Coatings (Halesowen, UK). For better cell adherence, the ITO surface was treated with 
poly-L-ysine. Cells were seeded at 3 ×  104 cells per coverslip and cultured overnight in the growth medium. Cells 
were exposed to 700 pulses (300 ns, 100 Hz) at 600 V, which generated practically uniform electric field of 1.8 kV/cm  
at the coverslips surface31.

Post-nsEP treatment protocols. Immediately following nsEP exposure, cuvettes were placed on ice or in 
a water bath at 37 °C for 30 min. The temperature of the samples in the different settings was measured using a 
thermocouple thermometer (Pysitemp, Clifton, NJ). The temperature of the samples by the end of 30-min incu-
bation on ice and in the water bath averaged 1.6 and 36.1 °C, respectively.

To block cell swelling we used sucrose, a nanopore-impermeable sugar, which was shown to prevent the 
osmotic water uptake caused by nsEP32. U-937 cells (5 ×  105/sample) were exposed to nsEP in complete RPMI 
medium plus 25 mM HEPES and immediately afterward mixed 7:3 with an isosmotic water solution of sucrose 
(290 mOsm/kg, 280 mM) to yield the fractional osmolality due to sucrose of 87 mOsm/kg. Samples were moved 
to the different temperatures for 30 min and then diluted 5X with fresh medium. Parallel controls were diluted 
the same way, but with an isosmotic meso-erythritol solution instead of sucrose. Meso-erythritol is a small sugar, 
which does not prevent water uptake and therefore served as a control for the equivalent dilution of the medium33.

Propidium iodide permeability assay. Permeability to propidium iodide (PI) was used to measure the 
kinetics of plasma membrane resealing after nanoelectroporation. Immediately after nsEP exposure all samples 
were diluted 1:1 with RPMI and placed at 37 °C in the water bath or on ice. At 0, 10, or 30 min post exposure, 20 μl 
of each cell sample was mixed with an equal volume of 50 μ g/ml PI (Sigma) in PBS and placed at 37 °C for 5 min. 
Cell samples were loaded into a counting chamber of Cellometer Vision (Nexcelom Bioscience LLC, Lawrence, 
MA) and both bright field transillumination and fluorescence images were acquired. The cell diameters and PI 
fluorescence intensity of 300–500 cells per sample were measured from the image and logged using Cellometer 
software. Images were generated using Grapher 11 (Golden Software, Golden, CO).

Viability assays. After exposure to nsEP, cell survival was measured either every hour for 23 hr, using the 
luminescence-based metabolic cell viability assay Real Time-Glo MT (Promega Corporation, Madison, WI), or at 
23 hr, using a resazurin-based metabolic assay Presto Blue (Life Technologies, Grand Island, NY).

To monitor cell survival over 23 hr, U-937 cells were exposed to nsEP in complete RPMI medium with 25 mM 
HEPES and then incubated on ice or in the water bath at 37 °C for 30 min. Next, the cells were seeded in triplicates 
in white-wall 96-well plates, the Real Time-Glo reagent was added, and samples were kept in the incubator with 
5% CO2 for 1 hr. Plates were then sealed from the sides with parafilm and luminescence was acquired every hour 
using a Synergy 2 microplate reader set at 37 °C (BioTek, Winooski, VT). The triplicate data were averaged, cor-
rected for the background, and considered as a single experiment.

For the Presto blue assay, immediately following the incubation on ice or at 37 °C in the water bath, 
the cell samples were moved to a 96-well plate (for U-937 cells) or to a 48-well plate (for the HPAF-II on the 
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ITO-coverslips) and incubated for 22 hr before the addition of the Presto Blue reagent for 1 hr. The plate was read 
with the Synergy 2 microplate reader, with excitation/emission settings at 530/590 nm.

Caspase 3/7 activity. Caspase activation was measured at 4.5 hr after nsEP using Caspase -Glo 3/7 assay 
from Promega Corporation, concurrently with measuring cell viability in the same samples. We first recorded 
fluorescence (Presto Blue/viability) and then added the Caspase -Glo 3/7 assay according to manufacturer’s 
instructions. Briefly, after the post-nsEP treatments, U-937 cells were plated and incubated at 37 °C in 5% CO2 
humidified air. The Presto Blue reagent was added 1 hr before measurement. Finally, cell samples were lysed with 
the Caspase-Glo 3/7 reagent and incubated at room temperature for 1 hr before recording the luminescence 
signal. As a positive control for apoptosis induction, U-937 were treated with 10 μ m staurosporine for 4.5 hr. All 
conditions were done in triplicates, the data were averaged, corrected for the background, and considered as a 
single experiment.

Western blot and quantification of Poly-ADP Ribosome Polymerase (PARP) cleavage. Cleavage 
of PARP-1 in fragments of 89 and 24 kDa is an established hallmark of apoptosis34,35. This cleavage is executed by 
caspases 3 and 7, proteases activated during apoptosis. Both the full-length 116 kDa PARP and its 89 kDa frag-
ment can be detected together by immunoblotting allowing for the quantitation of the apoptotic fraction of cells 
from the relative amounts of intact and cleaved PARP.

The Western blot procedure was described in detail previously5. At 4.5 hr after nsEP treatment, 5 ×  105 cells 
per sample were lysed in a buffer containing 20 mM HEPES (pH 7.5), 200 mM NaCl, 10 mM EDTA, 1% Triton 
X-100, supplemented with the SIGMAFAST cocktail of protease inhibitors (Sigma). Proteins in the lysate were 
separated by electrophoresis on a NuPAGE 4–12% Bis-Tris SDS-polyacrylamide gel (Life Technologies) and then 
transferred to Immune-Blot Low Fluorescence PVDF membrane (Bio-Rad Laboratories, Hercules, CA). The 
membranes were blocked in the Odyssey blocking buffer for 1 hr at room temperature (LI-COR Biosciences, 
Lincoln, NE). The primary rabbit anti-PARP polyclonal antibody (Roche Diagnostics GmbH, Mannheim, 
Germany) was diluted 1∶ 2,000 in the Odyssey blocker with 0.2% Tween-20. The secondary donkey anti-rabbit 
IgG (H+ L) antibody, conjugated with an infra-red fluorophore IRDye-680LT (LI-COR Biosciences), was diluted 
1∶ 20,000 in the same buffer. The membranes were incubated at room temperature with primary and secondary 
antibodies for 2 hr and 1 hr, respectively.

The membranes were imaged using Odyssey 9120 Infrared Imaging System (LI-COR Biosciences) in the 
700 nm channel. The images were quantified using MetaMorph software (Molecular Devices, Foster City, CA).

The fraction of the cleaved PARP (K, %) was calculated as: K =  100 ×  1.3S/ (1.3S +  L) where L and S are the 
fluorescence intensities of the 116 kDa full-length PARP and of the 89 kDa PARP fragment, respectively. The coef-
ficient 1.3 was used for S mass correction. As a positive control, apoptosis was induced using 10 μ M staurosporine 
for 4 and 6 hr.

Statistical analysis. Data are presented as mean + /−  SE for n independent experiments. Statistical analyses 
were performed using a two-tailed t-test where p <  0.05 was considered statistically significant. Statistical calcu-
lations, including data fits, and data plotting were accomplished using Grapher 11 (Golden Software).

Results
Post-nsEP cooling induces cell death. To study the effect of temperature on cell survival after EP expo-
sure, U-937 cells were exposed at room temperature (RT) to 50, 300-ns, 7 kV/cm pulses delivered at 100 Hz. 
Immediately after the exposure, samples were either placed on ice, or moved into a 37 °C water bath. Parallel 
sham-exposed samples were incubated at the different temperatures the same way. In 30 min, all cell samples were 
plated and cell survival was measured every hour (from 2 to 23 hr post exposure) using the luminescence-based 
metabolic viability assay Real Time-Glo MT (Fig. 1A). Already at 2 hr post exposure the survival of pulsed cells 
exposed to transient cooling was diminished. It kept declining over time to about 25% of the starting level, 
whereas the same nsEP treatment alone or the same cooling alone caused no cell death and did not decelerate 
cell growth.

The synergistic effect between nsEP and cooling was confirmed when using a different cell line, different pulse 
parameters, a different exposure procedure, and survival assay (Fig. 1B). Cell survival was measured at 23 h post 
exposure of U-937 cells in suspension (50 pulses, 300 ns, 7 kV/cm, 100 Hz) and of HPAF-II cells on ITO coverslips 
(700 pulses, 300 ns, 1.8 kV/cm, 100 Hz). In both these cell lines, nsEP exposure alone had little if any effect on cell 
survival, whereas its combination with cooling caused 70–80% cell loss (p <  0.001).

Cooling nsEP treated cells blocks membrane resealing and induces cell swelling. A logical 
explanation for the cytotoxicity of cooling in nsEP-treated cell treatments could be the inhibition of membrane 
resealing. Prolonging the leaky membrane condition leads to a potentially fatal imbalance in cellular homeostasis. 
Indeed, a temperature dependence of the resealing process after the conventional electroporation with micro- or 
millisecond pulses has been documented in several studies36–40.

The time course of membrane resealing after a nsEP insult (50 pulses, 300 ns, 7 kV/cm, 100 Hz) was assessed 
by propidium iodide (PI) entry and osmotically-driven swelling in U-937 cells. Immediately after the exposure, 
83 + /− 1.2% cells were permeable to PI suggesting the opening of PI-permeable pores in the cell plasma mem-
brane (Fig. 2A,B). At 10 min post exposure, cells incubated at 37 °C were already impermeable to PI whereas 67 
+ /− 1.4% of the cells incubated on ice remained permeable (p <  0.001). The effect of cooling became even more 
prominent at 30 min when cells displayed profound swelling and 60 + /− 5.5% of them remained permeable to PI 
(Fig. 2A–C). Cooling after nsEP exposure caused a drastic morphologic change (Fig. 2C) which resembled what is 
observed in cells after a hypotonic stress41. The reason for the post-nsEP swelling in the isosmotic medium is the 
presence of the large intracellular solutes, which remain membrane impermeable after nsEP, thereby creating a 
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colloid-osmotic gradient to attract water42–44. The modal diameter of nsEP-treated cells incubated on ice increased 
to 16.5 μ m compared to 12.8 μ m in cells incubated at 37 °C (Fig. 2C).

Figure 1. Effect of cooling after nanoelectroporation on survival of different cell types. (A) Changes of cell 
survival in U-937 cells subjected to either sham or nsEP exposure (50 pulses, 300 ns, 7 kV/cm, 100 Hz) followed 
by a 30 min incubation either at 37 °C or on ice. The survival was monitored from 2 to 23 hr using a Real Time-
Glo metabolic assay; the luminescence in “sham+ 37 °C” group at the earliest timepoint (2 hr) was taken as 
100%. Mean + /−  s.e for n =  3–6. (B) Cell survival is profoundly reduced by nsEP+ cooling, but not by nsEP 
alone. The survival was measured at 23 hr after nsEP exposure by the Presto blue assay and expressed in % to 
sham-exposed parallel control at 23 hr. The nsEP exposure was 50, 300 ns pulses, at 7 kV/cm, 100 Hz for U-937 
cells (left panel) and 700, 300 ns pules at 1.8 kV/cm, 100 Hz for HPAF-II cells (right panel). Mean + /−  s.e. for 
n =  6–8, *p <  0.001.

Figure 2. Cooling after nsEP exposure delays membrane resealing causing cell swelling . U-937 cells were 
exposed to 50, 300 ns pulses (100 Hz, 7 kV/cm) at room temperature, followed by incubation either on ice or 
at 37 °C. The medium containing PI was added either immediately after nsEP (“time 0”), or after 10 or 30 min 
of incubation at different temperatures. (A) Effect of post-nsEP incubation time and temperature on PI uptake 
and cell diameter in individual cells. Data for samples not treated with nsEP (sham-exposed negative control) 
are shown in black in all panels. For a positive control, cells were permeabilized with 40 μ g/ml digitonin for 
5 min. Horizontal dashed lines show the fluorescence threshold to identify PI-positive cells. (B) The fraction of 
PI-positive cells after different treatments. Mean + /−  s.e. for n =  3, *p <  0.001 for the effect of cooling vs 37 °C. 
(C) Post-nsEP cooling for 30 min causes cell swelling (right image and histogram). Filled bars in the histogram 
show the distribution of cell diameters in sham-exposed control samples. Cells in left panels (nsEP followed 
30 min at 37 °C) were not different in appearance or size from the controls. Scale bar: 50 μ m. The histogram data 
are 300–500 cells measured per sample from 3 independent experiments.
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Sucrose inhibits swelling but fails to prevent cell death caused by cooling after nsEP. Several 
studies reported necrosis due to the colloid-osmotic cell swelling as a predominant mechanism of cell death after 
exposure to nsEP5,6,10,21–23. This mechanism could be blocked by isosmotic addition of a nanopore-impermeable 
solute (such as sucrose) to the growth medium32. Here we employed the same approach to test if the uncontrolled 
swelling is responsible for death of cells subjected to cooling after nsEP.

Immediately after nsEP exposure (50 pulses, 300 ns, 7 kV/cm, 100 Hz), U-937 cell samples were mixed with a 
sucrose or meso-erythritol solution to yield the fractional osmolality due to the sugars of 87 mOsm/kg. In con-
trast to sucrose, smaller meso-erythritol is a pore-permeable solute, which is not expected to prevent swelling33; 
therefore it served as a control for possible effect of the dilution of the growth medium. The samples were kept 
at 37 °C or on ice for 30 min, then aliquots were collected to assess cell diameters. The remaining volumes were 
diluted 5X with RPMI medium and cell survival was monitored continuously for 23 hr. Sham-exposed control 
samples were subjected to the same temperature incubation and media dilutions.

Although the dilution of RPMI with sucrose completely prevented cell swelling (Fig. 3A) and improved early 
cell survival (Fig. 3B; between 2 and 5 hr), it did not prevent the delayed cell loss seen when combining nsEP 
with cooling. At 23 hr after nsEP exposure and cooling the cell survival was similar in the presence or absence of 
sucrose (Figs 1A and 3B).

To summarize, the presence of sucrose prevented the osmotic water uptake, cell swelling and early cell 
death from the membrane rupture after nsEP exposure followed by cooling, but the rescued cells died later on 
nonetheless.

Cooling after nsEP exposure induces apoptotic cell death. The prevalence of the cell death delayed 
by as much as 5–15 hr after nsEP, as well as the lack of protection when cell swelling and membrane rupture were 
inhibited, suggested nsEP followed by cooling could have triggered apoptosis. Indeed, we documented strong 
activation of caspase 3/7 and PARP cleavage in U-937 cells after nsEP (50 pulses, 300 ns, 100 Hz, 7 kV/cm) when 
it was followed by a 30 min cooling (Fig. 4). The activity of caspase 3/7 at 4.5 hr after nsEP was increased 5-fold 
by cooling, despite the concurrent 25% cell loss; caspase activation could be even more pronounced than in 
staurosporine-treated positive controls (Fig. 4A,B).

Figure 3. Sucrose inhibits cell swelling (A) but does not prevent cell death (B) caused by combining nsEP with 
cooling. U-937 cells were exposed to 50, 300 ns pulses (100 Hz, 7 kV/cm) in the RPMI medium and immediately 
diluted with isosmotic media containing either meso-erythritol or sucrose; see text for more details. The 
samples were placed in the water bath at 37 °C or on ice for 30 min, continued by incubation at 37 °C. Parallel 
sham controls were treated the same way. (A) The effect of sugars on cell diameter after nsEP+ 37 °C (left panel) 
or nsEP +  ice (right panel) (B) The effect of sugars on cell survival during 23 hr after nsEP +  37 °C (left panel) 
or nsEP +  ice (right panel). The data were normalized to the luminescence value in “sham+ 37 °C” group at the 
earliest time point (2 hr). Mean + /−  s.e. n =  3.
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Another employed hallmark of apoptosis, PARP cleavage, is an intrinsically ratiometric assay, which enables 
to quantify the ratio of apoptotic and non-apoptotic cells. More than 60% of PARP was cleaved at 4.5 hr after nsEP 
and cooling; the same nsEP exposure without cooling and the same cooling without preceding nsEP exposure 
had no effect (<10% of cleaved PARP, Fig. 4C). Same as with the previous assay, the efficiency of nsEP+ cooling 
in inducing apoptosis was comparable or slightly higher than the effect of staurosporine.

Overall, these data demonstrate that cooling after a non-lethal nsEP exposure triggers apoptotic death in most 
cells.

Discussion
This study is the first to show that a brief cooling after nsEP exposure can profoundly increase the cytotoxic effect 
by the induction of apoptosis. The combined effect is strong even when neither cooling nor nsEP applied sepa-
rately diminish cell survival, thus highlighting the strong synergistic effect of the two modalities. Cooling may 
assist nsEP-based ablation therapies by allowing to lower pulse voltage and number, or to increase the distance 
between electrodes without losing the ablation efficiency. Lowering the voltage may help to minimize side effects 
such as pain, involuntary muscle contractions, and the risk of arrhythmia when treatments are done in the prox-
imity of the heart.

Cooling nanoporated cells might also help to overcome the diverse cytotoxic efficiency of nsEP among dif-
ferent cell types4,6,20,45. A recent study shows that the LD50 varied profoundly across several commonly used cell 
types, increasing from 51 J/g for Jurkat to 1861 J/g for HeLa cells20. These results suggest that the same abla-
tion protocol may kill one type of cancer but prove very inefficient for another type. This difference might be 
due to many reasons including plasma membrane physiology or composition, and different abilities to repair 
nsEP-induced damage.

Restoring the plasma membrane barrier function is mandatory for the cell to survive electroporation. 
Interestingly, temperature has been shown to affect the cell membrane resealing. Indeed, in this condition nsEP 
triggered mostly apoptotic cell death.

Figure 4. Cooling of nsEP-exposed cells induces caspase 3/7 activation and PARP cleavage. U-937 cells were 
exposed to 50, 300 ns pulses (100 Hz, 7 kV/cm) and immediately incubated at 37 °C, or placed on ice for 30 min 
and then in the incubator. Panels (A,B) show, respectively, the activity of caspase 3/7 and cell survival at 4.5 hr 
after nsEP with or without cooling. For a positive control, apoptosis was induced by incubation with 10 μm 
staurosporine for 4.5 hr. Panel C shows a representative Western blot for intact and cleaved PARP (116 and 
89 kDa, respectively) and the quantification of the cleaved fraction at 4.5 hr after nsEP exposure.; For a positive 
control, apoptosis was induced with 10 μ m staurosporine. Mean + /−  s.e. n =  6–9 (A,B) or n =  3 (C). *p <  0.001 
for the difference of nsEP +  cooling from nsEP +  37 °C.
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Our data show that cooling nsEP-treated cells blocks membrane resealing and induces massive cell swelling. 
This result is consistent with earlier findings using conventional electroporation36–40; for example, Kinosita and 
Tsong showed that at 3 °C the permeabilized state of electroporated erythrocytes can be maintained for 20 hr40. 
While it was most logical to expect that the loss of cell volume control leads to necrosis (by swelling culminating 
in membrane rupture), our experiments showed that it was not the case. In addition to the necrotic cell death seen 
at about 2 hr post exposure, cooling pulsed cells caused a gradual cell loss that reached maximum at 23 hr after 
treatment. The long term cell death correlated with a strong activation of caspases and cleavage of PARP denoting 
the activation of the apoptotic cell death pathway.

The relatively low level of cell death seen at 2 hr after exposure suggests that, once placed in the incubator, 
cells, which underwent nsEP +  cooling treatment, reseal and regain control over their size. A critical question is 
therefore what triggers apoptosis in these cells. Alterations in the homeostasis of several physiological ions have 
been shown to influence apoptosis. Several studies have documented an increase of intracellular Ca2+ concentra-
tion during apoptosis46,47. Both Ca2+ release from the endoplasmic reticulum (ER) and Ca2+ influx through Ca2+ 
release-activated Ca2+ channels have been proposed to activate programmed cell death48. The rise of cytosolic 
Ca2+ caused by permeabilization of the plasma membrane or ER is one the best established effects of nsEP49–53; 
however, the effect of Ca2+ overload by nsEP was an abrupt opening (or expansion) of plasma membrane pores 
and necrotic death24. The role of Ca2+ in the induction of apoptosis by nsEP+ cooling has yet to be explored.

Also, the efflux of K+ from cells was shown to play a pivotal role in apoptosis54. Most cells maintain an osmotic 
balance through the continuous activity of the Na+/K+ ATPase pump, which creates an intracellular environment 
high in K+ and low in Na+ 55. Prolonged K+ efflux is a known effect of conventional electroporation56 and proba-
bly contributes to nsEP effects as well.

As nsEP affect also intracellular membranes, cooling may increase cell death by prolonging the permeabilized 
state of intracellular organelles. NsEP have recently been shown to permeabilize nuclear envelope57 and mithoc-
ondria membrane58. Mithocondria play a crucial role in apoptotic cell death59. The disruption of the mithocon-
dria barrier function causes the release of apoptosis-inducing proteins such as cytochrome c and cooling after 
electroporation may augment the release.

Various cellular stress responses and cell death modalities are triggered in response to anti-cancer therapy60. 
Among these, apoptosis has been shown to induce immunogenic cell death (ICD), a death pathway, which stim-
ulates anti-cancer immune response61,62. ICD is characterized by the release of damage-associated molecular pro-
teins, which induce a pro-inflammatory immune response once exposed on the cell surface or secreted. Among 
them, calreticulin exposed on the surface of dying cancer cells is essential for the immunogenicity of apopto-
sis63–65. It has recently been shown that calreculin translocates to the cell surface in response to nsEP66. Thus, 
apoptosis induced by cooling may cause ICD and potentially stimulate an anti-cancer immune response.

Combining nanoelectroporation with cooling may considerably improve local tumor ablative therapies. 
Therefore, future work will aim at demonstrating the benefit of this treatment for tumor ablation in vivo.
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