Old Dominion University

ODU Digital Commons

Computer Science Theses & Dissertations Computer Science

Summer 1993

A Framework for Data Sharing in Computer Supported
Cooperative Environments

Mohamed Youssef Eltoweissy
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_etds

6‘ Part of the Computer Sciences Commons

Recommended Citation

Eltoweissy, Mohamed Y.. "A Framework for Data Sharing in Computer Supported Cooperative
Environments" (1993). Doctor of Philosophy (PhD), Dissertation, Computer Science, Old Dominion
University, DOI: 10.25777/jp8f-1w57

https://digitalcommons.odu.edu/computerscience_etds/103

This Dissertation is brought to you for free and open access by the Computer Science at ODU Digital Commons. It
has been accepted for inclusion in Computer Science Theses & Dissertations by an authorized administrator of
ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/computerscience_etds
https://digitalcommons.odu.edu/computerscience
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds/103?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

A FRAMEWORK FOR DATA SHARING IN
COMPUTER SUPPORTED COOPERATIVE
ENVIRONMENTS

by

Mohamed Youssef Eltoweissy
B.S. June 86, Alexandria University, Alexandria, Egypt
M.S. July 89, Alexandria University, Alexandria, Egypt

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the
Requirements for the Degree of

Doctor of Philosophy
Computer Science

Old Dominion University

August 1993

Approved by:

Dr. Hussein Abdel-Wahab, Advisor

A S B

Dr. Ravi Mukkamala

Dr. Stewart Shen

Dr. Shunichi Toida

14
Dr. Hany El-Sayed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To My Parents

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Concurreny control is an indispensable part of any information sharing system. Co-
operative work introduces new requirements for concurrency control which cannot
be met using existing applications and database management systems developed
for non-cooperative environments. The emphasis of concurrency control in con-
ventional database management systems is to keep users and their applications
from inadvertently corrupting data rather than support a workgroup develop a
product together. This “insular” approach is necessary because applications that
access the database have been built with the assumptions that they have exclu-
sive access to the data they manipulate and that users of these applications are
generally oblivious of one another. These assumptions, however, are counter to
the premise of cooperative work in which human-human interaction is emphasized
among a group of users utilizing multiple applications to jointly accomplish a com-
mon goal. Consequently, applying conventional approaches to concurrency control
are not only inappropriate for cooperative data sharing but can actually hinder
group work. Computer support for cooperative work must therefore adopt a fresh
approach to concurrency control which does promote group work as much as pos-
sible, but without sacrifice of all ability to guarantee system consistency. This
research presents a new framework to support data sharing in computer supported
cooperative environments; in particular, product development environments where
computer support for cooperation among distributed and diverse product devel-
opers is essential to boost productivity. The framework is based on an exten-
sible object-oriented data model, where data are represented as a collection of
interrelated objects with ancillary attributes used to facilitate cooperation. The
framework offers a flexible model of concurrency control, and provides support for
various levels of cooperation among product developers and their applications. In

addition, the framework enhances group activity by providing the functionality to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

implement user mediated consistency and to track the progress of group work. In
this dissertation, we present the architecture of the framework: we describe the
components of the architecture, their operation, and how they interact together to

support cooperative data sharing.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgments

First, I thank God for His countless bounties and for directing me along the route
to every success I reached and may ever reach.

My deepest appreciation goes to my advisor, Dr. Hussein Abdel-Wahab, for
giving me the opportunity to become involved in research on computer supported
cooperative work. It has been a fruitful experience. His insight, constructive
comments, and valuable suggestions are reflected in the work described in this
dissertation. I feel even more obliged to thank him for our excellent interaction
and mutual understanding,.

I would also like to express my sincere gratitude to the members of my commit-
tee Drs. Ravi Mukkamala, Stewart Shen, Shunichi Toida. Their genuine advice
and discussions were essential for the development of this study. A word of appre-
ciation also goes to Dr. Hany El-Sayed for his participation in the committee.

Special thanks are due to Dr. Larry Wilson, chairman of my examination
committee, who generously offered me guidance and counseling while pursuing my
research.

I also wish to extend my thanks to all my friends. In particular, I would like
to thank Ashraf Wadaa and Osman Zeineldine for the ideas that emerged from
our discussions, and Nahil Sobh, Ferasat Shah, Ibraheem Sharafeldine, and Hamid
Oloso for the wonderful time we spent together in meetings, exercises, and travels.

The words fall far short from expressing my indebtedness to my beloved parents,
my brother, and my sisters for their constant encouragement, endurance, and
emotional support.

Finally, this work would not have been possible without the unfading support
and perseverance of my wife and the overwhelming love and tender of my sons

Youssef and Abdarrahman who made my everyday life more enjoyable.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

1 Introduction

1.1
1.2
1.3
14

Motivation v o e e e e e e e e e
Objectives i e e
Contributions v v v i e e e e e e e

Outline of Dissertation

2 Background

2.1

2.2

2.3

2.4

Computer Supported Cooperative Work
2.1.1 Elements of a CSCW environment.
2.1.2 Classification of CSCW systems
Product Development o .
2.2.1 The conventional approach
2.2.2 The concurrent engineering approach
Data Sharing in Product Development Environments
23.1 Datafiles
2.3.2 Databases
Concurrency Control Research

2.4.1 Split-transactions, commit-serializability, and participation

domains e e e e e e e e e e e

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4.3 Nested transactions with predi'cates and versions
2.4.4 Cooperative transaction hierarchy
2.4.5 Lazy consistency
2.4.6 Coordination consistency
2.4.7 | Operation transformation
248 Remarks
3 Toward a Computer Supported Cooperative Environment
3.1 High Level System Model
3.1.1 Product developers,
3.1.2 Applications o e
3.1.3 The database management system.
3.2 Conventional Applications
3.3 Conventional Database Management Systems
3.3.1 Workspaceso e
3.3.2 Updates in workspaces
3.33 Commitandabort
3.3.4 Check-out and check-in.,
3.4 Limitations of Conventional Environments
3.5 Features of a Cooperative Environment
3.5.1 Noexclusiveaccess
3.5.2 Up-to-date knowledge about changes to shared data
3.5.3 Applications adapt to changes
3.5.4 Use of differential updates
3.5.5 Extensibility and integration L.
3.5.6 Multiple levels of cooperation
3.5.7 Dynamic workspace hierarchy
3.5.8 User mediated consistency

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vil

45

47
48
48

3.5.9 Moniroting work statuso 0oL 67

3.6 The Proposed Framework 68
3.6.1 Features of the framework 69
3.6.2 Architecture and operation 73

4 The Object Model 74

4.1 The Object-Oriented Approach 75
4.1.1 Objects v o v it e e e 75
4.1.2 Types . . o i e e e 7
4.1.3 Messages oo e e e 78

4.2 The Proposed Object Model 79
4.2.1 Theobjectschema 79
4.2.2 Relationships among objects 83
423 Derivedslots 0. 85
4.2.4 Operations on objects 87
4.2.5 Dependencies among objects L. 89

4.3 Example L 91

5 The Cooperative Database Management System 93

5.1 Architecture of the Cooperative Database Management System . . . 93

5.2 Functionality of the Database Object Manager 96
5.2.1 Connecting agents to the DOM 96
5.2.2 Creating and destroying workspaces 97
5.2.3 . Workspace selection.o oo 98
5.2.4 Constraint specification., 100
5.2.5 Collision recording 101
5.2.6 Work status monitoring L. 103
5.2.7 Committing and aborting workspaces 104

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2.8 Object check-out and check-in 111
5.2.9 Managing object references. oo L 116
5.2.10 Updating objects in workspaces 117

5.3 Rules Maintained by the DOM 119
6 Apgents 124
6.1 Architectureof an Agent o oL 124
6.2 Functionality of the Application Object Manager 127
6.2.1 Services from the Co-DBMS 127
6.2.2 Object check-out and check-in 129
6.2.3 Reading objectsincache 130
6.2.4 Updating objects incache L. 132
6.2.5 Handling update notifications 137
6.2.6 Handling updatefocus 143
6.2.7 Checking update dependencies of derived external slots . . . 146
6.2.8 Committing updates to workspace. 148

6.3 Rules'maintained by the AOM 151
7 Developing Applications for Cooperative Environments 155
7.1 Cooperative Applications 156
7.1.1 Requirements of a co-application 156
7.1.2 Converting existing applications to co-applications 157

7.2 Message Handling 158
7.3 Levels of Cooperation 160
731 L?VY level of cooperation, 161
7.3.2 Medium level of cooperation 161
7.3.3 High level of cooperation 162
7.3.4 Other levels of cooperation 163

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74 Conclusion e 163

8 Conclusion and Future Work 165
8.1 Features of the Framework 166
8.1.1 Support provided by the Co-DBMS 166

8.1.2 Support provided by agents 167

8.2 Research contributions 168

8.3

8.2.1 Object model for cooperative product development databases 168

8.2.2 Flexible model of concurrency control 169

Future Work 170

831 Prototype of the framework 170

8.3.2 Application of domain-specific semantics 171

8.3.3 A framework for handling shared messages 172
X

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

3.2
3.3

High Level Interaction Model 49
Workspace Hierarchy, 63
Modified High Level Interaction Model 70
Architecture of the Co-DBMS 95
Architectureof an Agent, 125

X1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

5.1 Extended Objects 106

6.1 Reading Values of Objectsin Cache 131

6.2 Procedures to Update Objects 134

6.3 Handling Update Notifications 139

6.4 Update Interests and their Corresponding Updates 145

6.5 Computing Differential Updates 149
Xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

Group work is a natural context for our activity: we benefit from prior
work of other people, we cooperate actively with colleagues, we ezchange
views and participate in discussions, we engage in joint decision mak-

ing, we communicate our completed work to others, and so forth.

It is this context in which computer systems and their associated software are
used. Yet, most existing software applications are developed to support only in-
dividual work in isolation. Little or no support is provided for communication,
coordination, and information sharing activities that users are often engaged in.
Hence, there is a legitimate need for computer facilities that understand and sup-

port these group activities.

Recent technological innovations in portable computing, user interfaces, and
computer networking make it feasible to explore and develop new computer facil-
ities that will help us work together more efficiently and conveniently [52]. The
field that deals with the development of such facilities and its relevant research

issues is generally termed Computer Supported Cooperative Work [26].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A principal concern in computer supported cooperative work (or CSCW) is
how to store, maintain, and access data in work group settings. This dissertation
argues that existing applications and the database management systems they use
are inadequate for data sharing in cooperative environments; in particular, product
development environments such as computer-aided design and manufacturing (or
CAD/CAM) and computer-aided software engineering (or CASE). In a nutshell,
cooperative product development will require each user to be as “aware” as possi-
ble of other users actions. This concept cannot be offered by existing applications
and the database management systems they use. Supportive arguments are also

included in [28, 5, 40, 31, 42, 44, 16, 6, 68, 17, 33, 56, 12], to name a few.

Our research investigates the data sharing requirements of cooperative product
development environments. After identifying the restrictions imposed by conven-
tional applications and database management systems, we propose a new frame-
work that alleviates some of these restrictions and provides data sharing function-

ality needed to support cooperative development efforts.

The work in this dissertation presents the architecture of the framework; it
describes the components of the architecture, their operations, and how they in-
teract together to support data sharing in cooperative product development envi-

ronments.

1.1 Motivation

The development of complex artifacts presents a strong case for the necessity of
cooperation [48, 5, 6, 68]. Product development projects, such as VLSI design or

software development, involve a group of developers working together to accom-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

plish a common goal, which is the overall product that integrates the work done
by different members of the product development group. Cooperation is necessary
because no single developer has sufficient expertise, resources, or information to
carry out a large scale project. Also, different developers may have different ex-

pertise for performing parts of the overall product.

Complex products are usually divided into simpler partitions, which can them-
selves be further divided resulting in a hierarchy of sub-products. Work on the sub-
products is then distributed among members of the product development group.
Each group member may be responsible for only part of the overall product. Group
members cooperate, sharing the results of their activities as the overall product
emerges from the results of the sub-products. Following this approach to product
decomposition, members of the product development group will work on parallel

but related aspects of the product.

A session within a product development project would consist of the steps taken
by a product developer at a workstation using applications, such as a graphical
editor or a circuit simulator, to manipulate (inter-related) objects in the database.
The sessions are generally long and interactive, and their content may be dynam-
ically determined and incompletely pre-specified. That is, the sequence of opera-
tions in a session is not a program that is defined statically or specified precisely
before the product developer begins working. The work in product development is

creative, experimental, incremental, and iterative.

During the course of the project, contributions will come from developers in
different areas of specialization. These developers will interact with each other,

and with the database, in order to exchange information pertinent to the substance

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of their work (e.g., the common set of database objects, comments, and questions),
the procedures of their work (e.g., the common view of the development process
established by agreement on sharable paradigms), and the interpersonal relation-
ships that underlie the work project (e.g., the possibility that one partner is not
pulling his or her fair share). As a result of this information exchange, different

product developers will have some degree of awareness of each others’ work.

Product developers usually perform their tentative work in their local (or pri-
vate) workspaces. They release their contributions to other members of the group
at intervals rather than continuously. Furthermore, due to the size of the project,
product developers cannot always be fully aware of the impact of changes they
make on the global consistency of the product; aspects of consistency are defined
by requirements, constraints, rules of design, policies, etc. As a result, the efforts
of one product developer may conflict with those of another. Hence, members of
a product development group arve typically concerned about the timely availability
of information related to the project and about how the decisions made by others

influence their current work.

The conflicts that arise among product developers must be resolved in order to
advance the current state of the product to the next refinement level. In general,
a situation of conflict, in a product development environment, is one in which it
seems temporarily impossible to have a consensus view among product developers
as to what a part should look like. An important aspect of cooperative product
development is that the willingness to cooperate facilitates the conflict resolu-
tion process. Agreement is usually reached between product developers in discord
through negotiation where intervention by the Project Leader may help in resolving

the conflict.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The question now is: Do conventional applications and the database manage-
ment systems they use provide adequate support for cooperative product develop-

ment? The answer is NO.

Evidently, the concept of “work integration” and the “awareness” property
intrinsic to cooperative product development stand in sharp contrast with the
assumptions that users are “unrelated” and “isolated” from one another, which
underlie most conventional applications and database management systems; the
conventional approach is at once too restrictive and inadequate for the needs of

cooperative work, in particular the need for cooperative data sharing.

Conventional applications work in isolation of one another. Applications have
traditionally been built with the assumption that an application which accesses
database objects has exclusive access to those objects. Designers of conventional
applications did not consider the fact that other applications might be needed to
perform operations on related aspects of the same product. Consequently, if an
application has some data objects in its read set, other applications should not
be allowed to change those objects concurrently. Otherwise, the integrity of the
application’s results might be adversely affected. It follows that, at any given time,
the applications that one user can employ strongly depend on which applications
are presently in use by this and by other users. But this is quite restrictive in
a cooperative product development environment, where product developers may
have multiple applications run concurrently to complete the product as a team. A
new approach is, therefore, needed in which an application would react to changes

to its read set due to concurrent operations by other applications.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Likewise, conventional database management systems also go to great lengths
to isolate people from one another in order to reduce interference or premature
release of changes. In general, conventional database management systems use
transactions as the unit of interaction between an application and the database.
The conventional approach to ensuring database consistency in face of concurrent
access is to ensure that each transaction on its own preserves consistency, and that
each transaction is atomic (i.e., indivisible) with regards to permanence, recovery,
and concurrency control [19, 61, 7, 2, 25]. That is, the result of a transaction
that commits are stable over time, the result of a transaction that fails are re-
instated completely or not at all, and the concurrency control scheme interleaves
the operation sequences of transactions to generate schedules that are serializable
(i.e., equivalent to a serial schedule in which transactions are executed one at a
time). Since a partially executed transaction may violate consistency constraints,
its results are never revealed to other transactions. On the other hand, the re-
sults of a committed transaction are permanent and globally visible to any other
transaction. If an operation of a transaction conflicts with another operation of a
concurrently executing transaction, one of the transactions involved in the conflict
is either suspended or aborted. If the decision is to abort a transaction, then all

of its effects must be removed from the system.

The aforementioned criteria, adopted by conventional database management
systems to preserve consistency, are well suited to business applications such as
banking and airline reservation in which users are isolated and unrelated, trans-
actions are relatively short programs that are statically defined and independent
of each other during development and execution, and atomicity of transactions
is of paramount importance. Conventional database management systems do not

support any other kind of consistency preserving criteria, for example, verification

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

protocols for designs. Moreover, the transaction processing schemes employed by
these systems are not tailorable by programmers to more closely suit the needs of
a particular application [28, 68, 32]. If long, incremental, and interactive product
development activities are managed in the same way, they can impose severe limits

on concurrency and hinder group work.

We can now contrast some fundamental characteristics of cooperative product

development activities with those of conventional database transactions.

o Changes made during a transaction are not visible to other transactions
until the transaction commits. Shielding a user from seeing the intermediate
states of others’ transactions is, however, in direct opposition to the goals
of cooperative product development, where there is the urge to make each
develope.r’s actions visible to others; two developers might be modifying parts
of the same object concurrently with the intend of integrating these parts; in
this case, they might need to view each others’ partial results to make sure

they are not modifying the parts in a way that would make their integration

difficult.

e Conventional database management systems suspend and abort transactions
in service of concurrency control, and use rigid standardized methods of con-
flict resolution. The long-lived, and dynamically determined product devel-
opment activities, however, cannot be suspended or aborted without inef-
ficiency and loss of a significant amount of work. The product developer
would definitely oppose deleting all of the work that might have lasted for
hours. He or she might, however, cooperate with other developers to reverse

the effects of some operations explicitly in order to regain consistency [22].

o Non-serializable schedules may be accepted in a product development envi-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ronment, since the primary concern is the correctness of the product rather
than the sequence of steps that led to the product [5]; developers may ex-
change shared objects back and forth in a way that cannot be accomplished

by a serial schedule.

e In conventional database management systems, consistency constraints are
enforced . uniformly on all transactions at all times. In contrast, product
development activities may involve constructing hypothetical future states,

the enforcement of constraints on these future states may often be deferred.

e In the course of a large-scale project, product developers often examine a
great deal of material which provides general background to their work. If
this material is treated as “read” from the point of view of serializability, too

many conflicts arise to be acceptable [31].

To summarize, in product development environments the need for cooperation
prevails. Current product development environments use conventional applica-
tions and database management systems. The “nsular” approach to data sharing
adopted by conventional applications and database management systems, however,
constrains cooperation and thus impedes the progress of development. Overcom-
ing these limitations poses formidable challenges to researchers and developers
of systems that support cooperative work; what is needed is a new approach to
generate a shared environment that unobtrusively offers up-to-date group context
and appropriate levels of awareness among individuals and groups. Hence, our

motivation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.2 Objectives

The broader goal of our research is to provide computer support for cooperation
among people working together to achieve their common goals. This entails the
support for communication, coordination, and information sharing among differ-
ent groups and among members of the same group. In this dissertation, we focus
on data sharing in product development environments, where cooperation among
distributed and diverse product developers is essential for success, and where the
characteristics and requirements of cooperation cannot be satisfied using conven-
tional applications and database management systems, as shown in the previous
section. We aim at promoting parallel cooperating activities as much as possi-
ble, but without sacrifice of all ability to guarantee system consistency. Specific

objectives are stated as follows.

o To find appropriate types, representation, and granularity for data and meta

data present in the cooperative development process.

o To define a suitable representation model to capture, maintain, and support
the integration and common visibility of products (and/or sub-products) as
developers from different perspectives engage in product development using

a suite of applications.

e To develop concurrency control mechanisms that acknowledge the nature of
cooperative product development as lengthy, interactive, dynamically deter-

mined, and incompletely pre-specified.

o To develop facilities that actively support and control data sharing among ap-
plications and higher level interactions among cooperative developers, rather

than only prevent them.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.3 Contributions

Toward our objectives, we further investigated the characteristics of cooperative
product development environments, identified several new requirements for data
sharing in these environments, and generated a list of desired features that would
provide the specific requirements. We then aimed at developing enough conceptual
structure and mechanisms to exhibit these features. The outcome of this research

includes the following.

e An extensible object-oriented data model suitable for cooperative

product development environments

Objects in the model have descriptive attributes and may have links to other
objects. The attributes may be single- or multi-valued, may be other ob-
jects (nested object structure), or may have their values derived from other
objects. Derived attributes may either have their values automatically com-
puted when the objects from which they are derived are modified or have
the users employ their applications of choice to adapt to these modifications.
An important addition to the object model are control attributes. These
attributes are attached to objects for the specific purpose of enhancing con-

currency and cooperation.

Being object-oriented with the aforementioned characteristics makes the data
model powerful enough to describe the complex data that often dominate
product development environments and provide the basis for cooperation
support.

o A flexible model of concurrency control

The model allows users and their applications to reveal intermediate results

without compromising consistency. It also promotes user mediated consis-

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tency (for example, users are notified of changes to objects in which they
might be interested, they could dynamically define consistency requirements
and negotiate to resolve conflicts). In addition, the model also supports dif-

ferent levels of intra- and inter-group cooperation.

This increased concurrency and cooperation, among individuals and among
groups, can increase productivity, reduce product turnaround time, and,
equally important, support concurrent engineering methodologies [63] by in-

volving multiple disciplines throughout the entire development process.

¢ A framework for data sharing in cooperative product development

environments

Our approach is to augment both the applications and the database man-
agement system with the functionality needed to support cooperation. The
framework includes agents and a cooperative database management
system. Each application is encapsulated into an agent which provides the
local context for that application. This context is modified both internally
by the application itself and externally as a result of changes to relevant ob-
jects in the database by other agents. Agents access the database through
the cooperative database management system. The cooperative database
management system provides, among other features, a dynamic workspace
hierarchy for tentative updates and a set of mechanisms to facilitate user

mediated consistency and to allow users to track work progress.

1.4 Outline of Dissertation

The remainder of this dissertation consists of chapters 2 through 8.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Background — presents a walk through computer supported co-
operative work. It defines fundamental concepts such as CSCW and groupware. It
identifies the key elements of CSCW systems and explains how can CSCW systems
be classified based on these, as well as other, elements. The chapter also presents
a brief account for the evolution of product development process from the con-
ventional sequential approach to the cooperative concurrent engineering approach
and from the use of files to represent and share data to the use of databases.
Fundamental work done to enhance concurrent database access in cooperative en-

vironments is also included in this chapter.

Chapter 3: Toward a Computer Supported Cooperative Environ-
ment — introduces an abstract model of interaction. This model is the setting
upon which our work, in the rest of this dissertation, is based. The chapter mo-
tivates our research by describing the characteristics of couventional applications
and database management systems in a product development environment; these
characteristics limit the amount of concurrency which can exist in the conven-
tional environment. The chapter also discusses features which are needed in order
to support cooperative work, but which conventional environments lack. Finally,
the chapter proposes a framework to provide the needed features and gives a high

level view of the framework.

Chapter 4: The Object Model — defines the object-oriented data model
used for the representation of data. The chapter presents an overview of the
object-oriented approach to data modeling. It describes the different types of ob-
jects involved, the relationships that could exist among objects, and the different

operations on objects. The object model provides the foundation for later chapters.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: The Cooperative Database Management System — presents
the architecture of the cooperative database management system (or Co-DBMS),
describes what functionality it adds to an object-oriented data store in order to
overcome the weaknesses discussed in Chapter 3, presents the programmatic in-
terface between agents and the Co-DBMS, and summarizes the rules maintained

by the Co-DBMS.

Chapter 6: Agents — presents the architecture of an agent, describes what
functionality it adds to an application through a set of software modules termed
the application object manager (or AOM). The chapter also presents the
interface between an application and the AOM, and summarizes the rules main-

tained by the AOM.

Chapter 7: Cooperative Applications — identifies what is required of an
application for it to participate in the system. An application that satisfies those
requirements is termed cooperative application (or co-application). The
chapter also elaborates what minimal alterations are needed to upgrade an ex-
isting application to a co-application, and discusses various levels of cooperation

attainable through the coordination of the co-application with the AQM.

Chapter 8: Conclusions and Future Work — presents a final assessment,

the significance of this work, and future directions of our research.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2
Background

Modern Civilization is entering a new phase, accompanied by a shift from the
paradigms of an industrial society to the paradigms of an information society. In
this new phase, the axiom that “information is power” and should therefore be
doled out with extreme caution is replaced with the new axiom that “mnformation
sharing is power” and everyone should therefore have access to the information
they need to perform their jobs. This emanates from the simple reality that, to
be competitive in today’s global economy, it will take the cooperative efforts of

people with different skills to create innovative solutions and innovative products.

Today, the success of most projects relies on the cooperative activities of peo-
ple. This requires that people communicate, jointly coordinate their activities, and
share information and ideas more than ever. The focus of computing in the new
information society is on groups, not just individuals. Consequently, any mech-
anisms or policies to adopt should enable people to work together transcending

boundaries of time, space, and functional organization [13].

Computer Supported Cooperative Work (or CSCW) has recently been

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

established as the field that focuses on the role of computers to support coopera-
tive work. Researchers and developers, in this field, make use of advances in the
enabling technologies; mainly portable computing, user-interfaces, and computer
networking, to connect disparate information systems, link products with one an-

other, and promote inter-person communication.

CSCW promises major positive impact on many application domains. One
such domain is product development. Evidently, effective cooperation among
members of an interdisciplinary product development group is the key to success.
This is because the demand for more and more complex products that exploit
technological édvall(:es is making it extremely difficult, if not impossible, to assign
the responsibility of generating these products to one person or even a group of
people who are isolated from one another. Instead, people should be empowered
to work both concurrently and cooperatively to pursue their common goal. CSCW
provides the needed computer support. Ellis et al. in [16] give useful insights into

cooperative computer-based activities:

e concurrent work occurs naturally and spontaneously when the restriction

that only one person can access a document at any given time is removed;

e concurrent work can be confusing at times, but conflicts are surprisingly

infrequent;

¢ learning the strategies of, and acquiring knowledge from, other group mem-

bers is a natural consequence of concurrent, cooperative activities;

¢ members of a group become familiar with more aspects of the result when
they work cooperatively, than if they had worked independently on well-

partitioned tasks;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e the fact that many people, having diverse skills, participate to achieve a

common shared goal tends to improve the overall quality of the result.

Unfortunately, while cooperative work has been acknowledged as an effective ap-
proach to product development, its wide scale adoption has been impeded by the
insular approach to data sharing that plagues existing applications and database
management systems, (see Chapters | and 3 for details). Consequently, a new ap-
proach is required to achieve the needed concurrency and cooperation for effective

product development. Hence, our work in this dissertation.

This chapter provides the background. Here, we introduce fundamental con-
cepts relevant to computer supported cooperative work, cooperative product devel-
opment, and cooperative data sharing. We also review research efforts, pertinent
to data sharing, which we view as significant contributions toward the realization

of cooperative environments.

2.1 Computer Supported Cooperative Work

In recent years, there has been a tremendous surge of interest in providing computer
support for many kinds of cooperative work activities. The phrase computer-

supported cooperative work was coined by Greif and Cashman [26] in 1984 as:

“Computer-assisted coordinated activity such as problem solving and

communication carried out by a group of collaborating individuals.”

CSCW involves contributions from a variety of disciplines. In CSCW commu-
nity, input comes from social scientists attempting to expand our understanding
of the requirements that group processes and interactions impose on applications
and to evaluate the impact of technology on group performance, computer scien-

tists and electrical engineers exploring new concepts and facilities for developing

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

computer and communication applications, application builders aiming at creating
useful tools for group work, and practitioners trying to combine the diverse sys-
tems, applications, and knowledge about work groups to determine how changes
can be made to the ways groups work so that future group work is more produc-

tive. This cross fertilization has made the field a vibrant one.

CSCW applications are commonly known as groupware [34, 29, 4]. The term

groupware was coined by Peter and Trudy Johnson-Lenz [36] in 1982 as follows:

“GROUPWARE = intentional GROUP processes and procedures to
achieve specific purposes + soft WARE applications designed to support

and facilitate the group’s work.”

Groupware is distinguished from normal software by the basic assumption it
makes: groupware makes the user aware that he/she is part of a group, while
most other software seeks to hide and protect users from each other. Groupware
is software that accentuates the multiple user environment, coordinating and or-
chestrating things so that users can “see” each other, yet do not conflict with each

other.

CSCW and groupware mark a paradigm shift for computer science, one in
which human-human rather than human-machine coordination, communication
and problem solving are emphasized. This paradigm shift has resulted from a

number of converging phenomena:

e the desire to extend personal computing technology to support group inter-

action and computing, sometimes known as workgroup computing;

e the technological opportunities afforded by pervasive computer networking,

which has led to widespread use of electronic mail and computer conferencing;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

¢ The merging of computing and telecommunications, and the search for new

multi-media communication applications that usefully consume significant

bandwidph.

This section identifies fundamental elements of a CSCW environment, proposes
a framework for classifying CSCW systems, and highlights several research issues

relating to aspects of cooperative work.

2.1.1 Elements of a CSCW environment

As we begin to focus on CSCW environments, we must address the three key areas
of information sharing, communication, and coordination, in conjunction with the

group and its activities. We assert that:

Effective cooperation support entails the support for information shar-
ing, coordination of activitics, and communication in group, rather than

individual, context.

The group and its activities

Members of a group participating in a given project often engage in a continu-
ous cycle of planning, implementing, monitoring, and modification activities vital

to the success of the project.

An integrated multi-perspective environment should evolve to encompass the
various private perspectives (personal), the various shared perspectives (sub-group)
and the public perspective (group or organization) involved in accomplishing the

multitude of group activities.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Development of applications and the way they are used by group members
must change to support an integrated multi-perspective approach required for
“group operation”. Access to applications and services should be facilitated in
a transparent manner across the organization. To achieve this end, the integration
of existing applications and the development of new applications within an inte-
grated framework are essential. Both existing applications and new applications
must be wrapped and/or encapsulated into a federated, heterogeneous integration
framework where applications are no longer associated directly with an individual
or discipline but at the service of group members scattered across the computing
network. In this integrated network, mechanisms should be provided to describe

what services are available to users and in what form.
Facilities for information sharing

The functionality to support cooperative work should enable members of a
group to cooperatively share information. This means that some information that
would have remained implicit throughout an individual project must become ex-
plicit so that it can be communicated to other members of the group. Repositories

of information should be provided for private, shared, and public use.

Traditionally, each application produced and worked with its own data held in
the applica,tioﬁ’s specific format in disk files that are controlled by the application.
Consequently, information generated by a group is stored in heterogeneous data
formats and in various legacy databases scattered across the organization. Inte-
gration of applications of the same class are promoting the creation of database
systems that support the operation of applications within their class. Further de-

velopments must provide a broader integration in which a network of databases can

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

support inter-operability between heterogeneous systems. Part of the process re-
quires developing common data representations and standardization of the variety
of data exchange and data modeling supported by applications in the cooperative

environments.

Current information systems, database systems in particular, must also un-
dergo some changes. The emphasis of current database technology is to keep people
from inadvertently corrupting data rather the have a workgroup build something
together. As an example consider two designers working with a CAD database.
Seldom are they able to simultaneously modify different parts of the same object
at the same time and be aware of each other’s changes; rather they must check
the object out then back in and tell each other what they have done. Many tasks
require an even finer granularity of sharing. What is needed is a shared environ-
ment that unobtrusively offers up-to-date group context and explicit notification

of each user’s actions when appropriate.
Facilities for Coordination

In addition to information sharing, members of a work group must also co-
ordinate their joint activities. Coordination refers to the functionality needed
for the group work to progress towards mutually agreed upon goals. Coordina-
tion is critical for effective functioning of multi-perspective groups. These groups
must influence each other so that high quality product is produced within a short
turnaround. The major concern here is how to coordinate group activities and
resolve conflicts between participants’ simultaneous operations such that the coor-
dination overhead does not burden the group and dampen its effectiveness. CSCW

demands a fresh approach to control which is specifically tailored for cooperative

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

work.

In conventional environments, coordination and maintenance of the “current
state” of the product is done by the project leader using a virtual workspace that
may be composed of paper files, computer archives, tools for project management
and so on. Increase in the use of computers and the addition of the “computer
supported group work” dimension to the conventional environment adds another
dimension to the need of a virtual common workspace to maintain and manage the
“current state” of the product. This virtual common workspace must be accessi-
ble to all group members, thus providing common visibility of activities and data.
This workspace can be the place used by group members to negotiate and reach
consensus about their design decisions. It can also be the place used for planning
and scheduling of activities, notifying other group members of changes, managing
constraints across multiple perspectives, and other coordination and project man-

agement activities.

Another important requirement needed for efficient coordination of activities is
organization history management. For example, in a design project, it is desirable
to capture the design intent and evolution of a product from conceptual design to
retirement. Corporate history is useful for designing future products and docu-
menting existing ones. Indexing, linking, and storing various types of documents,
and archiving decisions reached in meetings among group members are some of

the problems that need to be addressed in this context.

Facilities for communication

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The requirements to cooperatively share information and coordinate activi-
ties imply that group members must communicate with each other. Communica-
tion refers to the functionality needed to support exchange of information among
members of a group. We envisage that computer mediated communication would
achieve a great deal of success when it derives most of its character from the ways

in which people interact (e.g., face-to-face interaction, mail, etc.).

Transition to an integrated multi-discipline environment calls for several changes
in the flow of data and information exchanged between applications and among

group members:

e an increase in the bandwidth of communication between applications, among

group members, and between applications and group members;
e an increase in the degree of “automation” of data and information exchanged,;
e a change in the granularity, type and format of data being exchanged.

In conventional environments most of the information exchange takes place face-
to-face among users employing traditional computer utilities like electronic mail.
Communication and sharing of data between applications is minimal. There is a
need for facilities that support data sharing and communication between applica-

tions and higher level interaction between group members.

2.1.2 Classification of CSCW systems

A wide variety of CSCW systems have been developed reflecting the many different
views of cooperation. The potential benefits of CSCW systems is better understood
in a framework for classifying these systems. The most widely used classification

of CSCW systems distinguishes them in terms of their abilities to bridge time and

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to bridge space [16, 66]. This can be a useful aid in quickly categorizing and later
recalling applications, but it has limitations and many researchers have extended
it. For example, Nunamaker et al. [59] elaborate it by asking whether “different
places” represent different individuals or whole sub-groups. Grudin [30] introduces
yet another useful refinement addressing the overly diverse different time, different
place activities. Rather than the traditional 2x2 grid, Grudin defines a 3x3 grid
to differentiate activities that occur at different but predictable times and places,
and different unpredictable times and spaces. Noting the interdependencies among

activities, Johansen [35] calls for “any time, any place” support.

Other approaches to classifying CSCW systems are described in [16, 66, 13,
46, 30]. Ellis et al. [16] and Rodden [66] presented taxonomies of CSCW systems
based upon application-level functionality. They basically categorized CSCW sys-
tems into message systems, conferencing systems, meeting rooms, co-authoring and
augmentation, and coordination systems. Dyson [13] classified CSCW systems in
terms of managing the work process or the work content, and in terms of center-
ing the control with the users, with a centralized work agent, or with the work
itself. Kydd et al. [46] examined the behavior of CSCW systems based upon their
predicted ability to reduce the uncertainty and/or resolve equivocality that occurs
during group work. Grudin [30] took a broad-based view of CSCW. He suggested
that rather than thinking of CSCW as a discipline or a convergence of disciplines,
it is more profitably viewed as a forum to which researchers and developers come
to exchange ideas. Grudin describes six contexts from which researchers and devel-
opers come: activity, group, organizational, technological, research/development,

and social.

In this section, we present a framework for classifying CSCW systems based

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

on the five key elements of group work: activity, group context, communication,
coordination, and information sharing. The parameters selected for each of these
elements comprise, what we view as, their distinguishing characteristics pertinent

to group work.

Activity

e Scope:
the scope of the activity being examined can range considerably; it can focus
on a broad application domain, such as product development, education,
or banking. A more restricted focus can cut across such domains, such as
meeting management, decision support; further refinements are exemplified

by the examination of different kinds of meetings and activities within them

[53].

o Structure:
activities involved in solving creative problems, such as those tackled by
brain-storming, are usually unstructured; on the other hand, prespecified

tasks often impose specific structure on their respective activities.
Group context

s Size:
groups can range from two co-authors working together on a paper, to the
hundreds of thousands of subscribers of a particular newsgroup. Nunamaker
et al. [59] note that meeting dynamics and support differ when the number

of participants reaches about 7.

o Purpose and duration:

a group can be organized around a specific narrowly-defined task, such as

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

writing a document, or can be organized as a team, a project, or an organi-

zation; these correlate with another variable; the group lifespan.

Homogeneity:

Sorgaad [69] identified group homogeneity as a key parameter; groups may
consist of peers, such as a group of software engineers; alternatively, a group
can span vertical levels of management. such that all of the people in an
institution who sign off on employment authorizations; groups can be hori-
zontally mixed, as when support is developed for a newspaper team consisting

of reports, editors, proofreaders, and administrators.

Cohesiveness:
group interactions vary substantially in the degree they are marked to con-
flict or by shared purpose and agreement; even members of a professionally

homogeneous group may have collisions over resources or positions.

Structure:
management styles vary widely; a simple, hierarchical structure can govern
a production group, a consensus, facilitated style can govern a task force, a

newsgroup may go entirely unmanaged.

Communication

o The form of interaction:

CSCW systems can be conceived to enhance communication within syn-
chronous interactions, where people interact in real time, or asynchronous
interactions, where members contribute at different times; creative problems
require group members to cooperate synchronously since the creative input
of each group member is required to generate a strategy for tackling the task;

in contrast, prescriptive tasks have a previously formulated solution strategy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where group members take on particular roles and work in an asynchronous

manner often without the presence of other group members.

o The geographical nature of interaction:
CSCW systems can be conceived to help a face-to-face group, or a group that
is distributed over many locations; using this classification, CSCW systems
are either remote or co-located. This division is much logical as physical and
is concerned with the accessibility of users to each other rather than their

absolute physical proximity.

Coordination

The control mechanism within a CSCW system is an additional means of clas-
sification which highlights the level of automation each CSCW system provides.
The degree of freedom allowed by each type of system provides depth to the classi-
fication discussed thus far. A significant area of research in CSCW systems hinges
on the amount and form of control CSCW systems provide. Two predominant con-
trol mechanisms have emerged: conversation-based control and procedure-based

control.

o Conversation-based control:
this is based on the observation that people coordinate their activities via
their conversation [77]; the underlying theoretical basis for many systems
embracing the conversation model is speech act theory which has developed
from the linguistic work of Austin [3], and considers language as a series of
actions; for example, The Coordinator [77] is based on a set of speech acts
(i.e., requests, promises, etc.) and contains a model of legal conversational
moves (e.g., a request has to be issued before a promise can be made); as users

make conversational moves, typically through electronic mail, the systems

26

.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tracks their requests and commitments.

o procedure-based control:

1. agent-centered:

a user builds his own agent - something as simple as a macro or some
calendar rules, or as complex as an expert system to execute rules he/she
devices for interacting with other group members and data; the system
he/she designs sees him/her as the center, and everything else as the
outside world; he/she receives data and requests (commands) from the
outside, and sends data, responses and requests back; tasks are usually
modeled using Al modeling techniques and an inference engine is used

to generate and execute task plans.

object-centered:

where coordination knowledge is stored centrally and often routed by
means of forms; the archetype here is the document (or the form) that
knows how to mail itself, display itself, update itself from other sources;
here, the users write instructions that follow the work around; the object
may even send itself out of the system and rely on someone to send it
back; the problem is the closure: what happens if the document wonders
around and gets lost? who tracks it down? this approach does not offer
a high level of representation of the cycle of work to be completed,
but depends instead on a model in the user’s or programmer’s mind;
validation of work completion depends on the users rather than the

system.

Process-centered:

concentrates on the representation of concurrency as a means of de-

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

scribing systems; process centered sees the work domain as a whole,
and manages work from end to end as a single, complex activity from a
central vantage (virtual or physical); its model of the domain includes
users, data and applications, the cycle of work and the state of the ac-
tivity; if user-centered has a user agent and object centered has object
agents, then process centered is closer to a group agent, working on
behalf of the entire group; the distinction between object-centered and
process-centered is subtle: one focuses on the work steps, and the other

on the work cycle.

Information sharing

The shared workspace identifies the way in which information is shared and
constitutes another means to classifying CSCW systems. Users could cooperate

through shared storage, shared application, or messages passing.

o Shared storage:
users interact by sharing data stored in, for example, shared memory, network

files systems, and database systems.

o Shared applications:
users interact with the same application program at the same time; this is
generally carried out either by providing additional facilities that would effec-
tively convert a single-user application (collaboration transparent software)
into one that can be used by a group of remote users, or by constructing new

applications that can interact with multiple users simultaneously.

o Message passing:
CSCW systems utilizing message passing are often termed “ structured” or

“active” message systems and assume an asynchronous and remote mode

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of cooperation; the assumption underlying these systems is that members
of a group cooperate by exchanging messages; these systems are based on
the principle of extending the a mount of machine processible semantic in-
formation available by adding syntactic structure to the existing message

structures.

2.2 Product Development

This section presents the evolution of the product development process from the
conventional sequential approach to the more advanced concurrent engineering

approach that promotes cooperation among product development groups.

2.2.1 The conventional approach

A product development process, following the conventional approach, is comprised
of a sequence of phases starting with marketing studies for the need of a new prod-
uct, the identification of requirements and the development of the specifications,
followed by several phases in which the product is gradually defined. At the end,
a product is manufactured, placed in service, and maintained [48]. Earlier design
decisions may limit the range of design decisions which are possible in the final
phases. Feedback from the effect of new design decisions are propagated upstream,
and previous design decisions may be revised. The conventional product develop-

ment process is sequential but includes a set of iterative cycles.

It has been indicated that much interaction between different product devel-
opers with different specializations takes place between phases in the product de-
velopment process [8]. Product developers from different specializations interact,

cooperate, negotiate, and commit design decisions in each of the product develop-

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ment phases. At each stage work by different perspectives is synchronized, reaching
consistency among perspectives, and then moving on to a new phase in the product
development process. Work may proceed for long periods of time where inconsis-

tency between different disciplines may prevail.

The conventional approach to the development of applications is to support the
single-specialization product development activities. Powerful applications are be-
ing realized to address well-structured problems with well-understood theoretical
frameworks within a given area of specialization. Computers are helping the indi-
vidual, but they may be complicating the work of the group. Computers promote
the distributed way of working but they still do not provide support for the basic
set of operatiohs required by a group of cooperating product developers: human-
human communication, human-assisted activity coordination, and cooperative data

sharing.

2.2.2 The concurrent engineering approach

A new design methodology is gaining acceptance within industry, government, and
academia. This methodology is known as concurrent engineering (or CE). The
commonly accepted definition of CE was published by the Institute for Defense

Analysis [76], and is stated as follows:

“CE is a systematic approach to the integrated, concurrent design of
products and their related processes, including manufacture and sup-
port. This approach is intended to cause the developers, from the out-
set, to consider all elements of the product life cycle from conception

through disposal...”

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The ideas of CE have been around for many years, but because they stand in
contrast to the current practice of sequential product development, CE is gaining
momentum as part of the strategy to meet the demand from competitive interna-
tional markets for the development of more complex products of higher qualities

in shorter times [64].

CE implies a significant change in the ways products are developed and sus-
tained. In conventional sequential development practices, information flows one
way: from design to manufacturing. It is a cyclic process, each phase goes through
one or more re-design and test cycles to account for the effect of process on the
design. CE, on the other hand, promotes a dynamic, interactive feed forward of
the knowledge gained and created during the product development process. In
this approach, specification changes and new requirements are propagated down-
stream by providing simultaneous access to the current design state to all product
developers who contribute with design decisions during the product development
life cycle; conflicts in manufacturing and logistics perspectives are propagated up-

stream, similarly.

CE promotes freer and richer interchange of information between a group of
product developers who can contribute to making a better and cheaper product in
a shorter time. One approach to promote this group organization is to develop a
computing environment that facilitates cooperation and concurrency of activities
among the product developers conforming the group. We call this environment,
a cooperative product development environment, and the development of
such an environment is the target of our research. In this dissertation, in partic-
ular, we address data sharing issues relevant to cooperative product development

environments.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3 Data Sharing in Product Development En-
vironments

Effective sharing of data is central to cooperation. The representation model of
data is a determining factor in realizing such effectiveness [49, 50]. This section
describes the evolution of product development environments in recent years from

the use of data files to the use of databases.

2.3.1 Data files

Most existing product development applications were developed by different ven-
dors with different goals, and before the importance of inter-operability was rec-
ognized. For this reason, emphases were placed on the functionality of that one
application, that is, on the manipulations of data which the application would
perform. The fact that other applications might perform manipulations on related
aspects of the product, or even that other application exist, was not initially con-

sidered.

The applications that resulted from this insular philosophy have their own
private repositories of data [48]. These repositories are collection of files. The
semantics of the contents of these files are unknown to all but the one application
which uses those files and for which the file format was developed. Thus, inter-
relationships among the data sets of different applications, which may represent
multiple aspects of the same product, are ignored and it is impossible to auto-
matically maintain consistency among their views. Instead correspondence among
various files must be manually maintained. Doing so in a setting of concurrent
development, that is, involving a number of product developers, is a complex,

time-consuming, and error-prone task.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Many vendors have recently made public the formats of files used by their ap-
plications. This openness has motivated the creation of a new market, that of
“application integration”, in which translation utilities or filters are developed

to convert from one vendor’s file format to another’s.

Absence of communication among application vendors during development of
applications has resulted in a large number of file formats. In order to reduce
the number of file formats in use and to encourage the creation of filters, various
standards committees are actively defining standard file formats which implement
common views. The advantage of having applications which use standard file
formats along with the filters to translate among the various formats is that an
application will not require modifications to be used collectively with other appli-

cations and therefore the investments in existing application suites are preserved.

The application integration approach is indeed a positive step toward inter-
operability and thus sharing of efforts among a group of product developers. A
major problem, however, exists that prevents the acceptance of the approach as
a universal solution to share data in product development environments: that of
the coarse granularity of change, namely at the level of an entire file. Limiting the
granule size at the level of files inhibits support for performing incremental anal-
yses on the evolving product. Change notifications to interested parties are also
restricted to a coarse level of detail; that is a file. Furthermore, since concurrent
updates to different parts of the same file by two or more product developers will
result in inconsistencies, and the unit used is the file, two or more activities can

proceed concurrently only to the extent that they involve different unrelated files.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3.2 Databases

In the data-file approach to data representation in product development environ-
ments, emphases were placed on the use of a particular application at a particular
time and on translating data into a format suitable for that application. The
usefulness of these applications is thus limited, because the data they manipu-
late are not integrated. The data management needs of the product development
environment are extensive and complex [50, 68]. The need in the product develop-
ment environment for capabilities which traditionally have been associated with a
database management system, such as structured information, an integrated data
model, access 6011trol, and concurrency control, has become apparent in the past

few years [48, 27].

Placing data in a database makes them available for use by many applications
and product developers. The database provides the same programmatic interface
and integrated data model to all applications. Applications read and update the
data in the database, and during their operation cache their own views of those
data; such a view enables the application to efficiently perform its task. Each
application derives the view it needs from the integrated data model offered by the
database. Conversely, when an application needs to induce change in the database,
it must first translate updates from its view to the integrated data model before
submitting them to the database. Thus, in the database approach, there exist
filters, similar to those used in the data-file approach, to translate from the data
model offered by the database to and from the view employed by the application.
A filter is application-dependent and is developed by the application vendor rather

than by an application integrator, and is thus part of the application.

A database offers several advantages over the use of data files to store data

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

used in product development:

o the integrated data model of the database is advertised; any application

vendor is free to develop applications which adhere to that model;

o a database accepts incremental updates: thus, an application that updates
a portion of a product need not re-enter the entire product; instead it can
submit only those updates which represent the delta of change effected by

the application on the product;

o the database serves as central point where access control specifications can

be stored;

o a database management system typically includes techniques to ensure high
availability of data in the event of hardware failures, and the ability to roll-

back to previous states or undo recent changes.

The use of existing database management systems, however, does not go without
problems. One major problem emanate from the methods used to control concur-
rent access to shared data. In Chapter 1, we discussed some characteristics of the
conventional approach to concurrency control, employed in existing applications
and database management systems, which severely restrict cooperation. Further
examination of these characteristics, as well as others, is presented in Chapter 3.
The next section reviews some recent research efforts aiming at enhancing concur-

rency and promoting cooperation.

2.4 Concurrency Control Research

Recently, vigorous research has been conducted to overcome the limitations of the

conventional approach to concurrency control. In this section, we present seven

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

recent research studies dealing with problems closely related to our work. The
first five studies suggest the use of extended transaction models for long-running
cooperative activities, the sixth study deals with coordinating change to a set of
files in a software development environment, while the seventh, and last, study

concentrates on real-time group text editing,.

2.4.1 Split-transactions, commit-serializability, and par-

ticipation domains

Split-transactions were proposed by Pu et al. in [62]. They were proposed
mainly for supporting open-ended activities. These activities are characterized by
(1) uncertain duration, (2) uncertain developments (actions cannot be foreseen at
the beginning), and (3) dependency on other concurrent activities. Pu et al. define
a notion of consistency called commit-serializability. The basic idea of commit-
serializability 1s that all sets of database actions included in a set of concurrent
transactions are performed in a schedule that are serializable when the actions are
committed. The schedule, however, may include new transactions that result form
splitting (or joining) the original transactions. Splitting a transaction divides an
ongoing transaction into two or more serializable transactions by dividing the ac-
tions and the resources between the new transactions. The resulting transactions
can proceed independently from that point. Also, these transactions behave as
if they had been independent all along while the original transaction disappears
entirely as if it had never existed. Thus splitting a transaction can be applied only

when it is possible to generate serializable transactions.

The main purpose of split transactions is to commit one of the split trans-
actions and release useful results from the original transactions. The other split

transaction continues. Three advantages accrue: (1) dynamic restructuring of

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

transactions: users are allowed to restructure their long transactions dynamically;
(2) adaptive recovery: committing part of the work done by a transaction which
then will not be affected by subsequent failures; and (3) reducing isolation: releas-

ing resources by committing part of a transaction.

The split and join operations do not support interaction between concurrent
activities, if used solely. For this reason, Kaiser in [37] combined these operations
with the notion of participation domains. A participatic'm domain defines a
group of transactions as participants in a specific domain. A transaction is placed
in a domain in order to share partial results with other transactions in the same
domain in a non-serializable manner, but it must be serializable with respect to

all transactions not in the domain.

2.4.2 Proclamation-based concurrency control

Jagadish and Shmeuli in [33] presented a transaction model which aimed at pro-
viding a framework for transactions to cooperate without sacrificing serializability
as a notion of correctness. Cooperation typically requires one transaction relying
on certain behavior by another transaction. Jagadish and Shmeuli stated that,
while this reliance is usually based on some higher level knowledge, it can often be
reduced to a reliance on a particular update behavior; in particular, a transaction
may be able to predict, at least partially, what value it will write for a particular
data item X well in advance of the transaction completing its computation and
committing; another transaction, wishing to read X, may be able to perform useful
computation even if it does not know the exact value of X, but instead merely

that X belongs to some set of values.

In Jagadish and Shmeuli’s model, transactions, as in the conventional model,

37

.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are flat, deterministic, and are assumed to transform consistent states into consis-
tent states. Transactions are also monotonic; if each read operation of a transaction
is made to read a subset of what it actually reads then each update operation will

produce a subset of the values it actually produces.

Transactions cooperate by issuing proclamations. A proclamation is an (im-
plicitly or explicitly specified) set of values, one of which the transaction promises
to write when it commits. So, a proclamation offers incomplete information con-
cerning fubure database states. A transaction, upon finding unavailable a data
item that it wishes to access, may request the current item-holder for a proclama-
tion. The transaction can compute with the incomplete information provided in

the proclamation, and can commit after writing conditional multi-values.

Jagadish and Shmeuli provided theoretical basis for the proclamation model
and they outlined an implementation strategy, including a lock-based transaction

manager and a transaction compiler extension to handle sets of values.

It is to be noted that, if no proclamations are issued, Jagadish and Shmeuli’s
model degenerates to the conventional flat transaction model based on serializ-
ability. Using proclamations, however, enhances concurrency without requiring
detailed knowledge of the semantics of the particular application. Extensions of
Jagadish and Shmeuli’s model to include nested transactions warrant further in-

vestigations.

2.4.3 Nested transactions with predicates and versions

Korth and Speegle in [41] presented a formal model that allows mathematical char-

acterization of correctness without serializability. They called the model “Nested

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Transactions with Predicates and Versions (or NT/PV)”. The model com-
bines three features that lead to enhancing concurrency over the serializability-
based models: (1) multi-level transactions, (2) explicit consistency predicates, and

(3) versions of objects.

The database in Korth and Speegle’s model is a collection of entities, each
of which has multiple versions (i.e., multiple values). The versions are persis-
tent and not transient like in the traditional multi-version scheme [7]. A specific
combination of versions of entities is termed a unique database state. A set of
unique database states that involve different versions of the same entities forms
one database state. In other words, each database state has multiple versions. The
set of all versions that can be generated from a database state is termed the version
state of the database. A transaction in Korth and Speegle’s model is a mapping
from a version state to a unique database state. Thus, a transaction transforms
the database from one consistent combination of versions of entities to another.
Counsistency constraints are specified in terms of pairs of input and output pred-
icates on the state of the database. A predicate which is a logical conjunction
of comparisons between entities and constants, can be defined on a set of unique
states that satisfy it. Each transaction guarantees that if its input predicate holds
when the transaction begins, its output predicate will hold when it terminates.

(Compare this with the assumed consistency of conventional transactions.)

A transaction in Korth and Speegle’s model is a quadruple (T, P, I, 0), where
T is the set of subtransactions, P is a partial ordering on these subtransactions, /
is the input predicate on all database states, and O is the output predicate. The
input and output predicates define three sets of data items related to a transac-

tion: (1) the input set, (2) the update set, and (3) the fixed point set, which is

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the set of entities not updated by the transaction. Given this specification, Korth
and Speegle define a parent-based execution of a transaction as a relation on the
set of subtransactions T that is consistent with the partial order P. The relation
encodes dependencies between subtransactions based on their three data sets. This

definition allows independent executions on different versions of database states.

Finally, Korth and Speegle defined a new multi-level correctness criteria: An
execution is correct if at each level, every subtransaction can access a database
state that satisfies its input predicate and the result of all the subtransactions
satisfies the output predicate of the parent transaction. But since determining
whether an execution is in the class of correct executions is NP complete, Korth
and Speegle consider subsets of the set of correct executions that have efficient

protocols. (See [41] for more details.)

korth and Speegle’s model is not readily applicable in cooperative environments.
This is because the input and output predicates of a transaction are defined against

the global database state and cannot be tailored to the task at hand.

2.4.4 Cooperative transaction hierarchy

The cooperative transaction hierarchy concept was introduced by Nodine and
Zdonik in [58] for supporting cooperative applications like CAD. Serializability
in the conventional transaction model restricts cooperation between transactions
by not allowing the transactions to exchange information through accessing (i.e.,
reading and updating) common data. To overcome this problem, Nodine and
Zdonik proposed to structure a cooperative application as a rooted tree called a
cooperative transaction hierarchy. The external nodes of the hierarchy repre-

sent the transactions associated with the individual designers. An internal node is

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

called a transaction group, and contains a set of members (i.e., children) that co-
operate to perform a single task. The term cooperative transactions in the model
refers to the transactions with the same parent in the transaction tree. Cooperative
transactions need not be serializable; instead, the transaction group (i.e., parent)
of the cooperative transactions defines a set of rules, denoting patterns and con-
flicts, that regulate the way the cooperative transactions should interact with each
other. Patterns and conflicts are defined in terms of a set of finite-state machines
(or FSMs). A FSM specifies, for a set of objects, the operations allowable for each
cooperative transaction, and the allowable ways of interleaving the operations of

related cooperative transactions.

The main contribution of cooperative transaction hierarchies is the substitu-
tion of a notion of user-defined correctness for the notion of of correctness defined
by serializability. The notion of user-defined correctness criteria allows different
parts of a shared task to use different correctness criteria that are suitable for
their own purposes. Because isolation is not required, the cooperative transaction
hierarchies allow close cooperation between transactions and also help to alleviate

the problems caused by long-lived transactions.

Several extensions of the basic model have been proposed. Skarra [68], in-
stead of using FSM, used a more complex, Turing-complete grammar to define
patterns and conflicts in a transaction group. Nodine et al. [57] discussed a model
of operation-based recovery in addition to synchronization. Finally, Heiler et al.
[32], in addition to the execution of individual requests, added the execution of
sub-requests and defined an architecture that exploits the facilities of an Object

Management System.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Applying the correctness criteria, in the models above, depends on a recognizer
and a conflict detector to enforce semantic patterns and conflicts. The recognizer
and the conflict detector must be constructed for each application. The utility
of cooperative transaction hierarchies is further limited due to following two as-
sumptions: (1) cooperative transaction hierarchies mirror organizational units, or
decomposition of the product, or decomposition of the development process; (2)
a cooperative transaction hierarchy is determined a priori and is fixed throughout
the design process. The work in this dissertation, as will be shown in the following

chapters, relaxes these restrictions.

2.4.5 Lazy consistency

Narayanaswamy and Goldman in [56] addressed the problem of resolving global
conflicts introduced by local changes in cooperative software development. The
aim of their work was to identify the technical basis to support such resolutions.
Narayanaswamy and Goldman stated that, in cooperative software development,
the basis should be a network wide notification of proposed changes, rather than

actual changes to objects.

The proposed change notifications happen within the context of a larger trans-
actional unit called an evolution step, which corresponds to a single goal of the
programming team. Dependencies between objects are used to define who has a
stake in each proposed change. Support is provided for affected programmers to
approve or reject each proposed change. It follows that, within the context of an
evolution step, programmers can ezplicitly state when the system is expected to

be in a consistent state, and when it is tolerable for it to be in an inconsistent state.

The causal relationships between proposed changes are maintained so that pro-

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

grammers’ negotiations can be supported. Using these concepts, the authors de-
fined a notion of consistency called lazy consistency which supports a process
of gradually making each evolution step internally consistent and consistent with

respect to other volatile steps that might be pursued concurrently.

Narayanaswamy and Goldman’s model allows a great deal of concurrency within
a single evolution step. Work on inter-step consistency, however, is still in progress.
It is also worth mentioning that, an evolution step, following Narayanaswamy and
Goldman’s model, has a flat structure; it represents a single goal with no support

for multiple goals or sub-goals.

2.4.6 Coordination consistency

Harrison et al. in [31] presented a formal model of concurrent development, in
which development consists of a collection of modification activities that change
files, and merges that combine the changes. They defined a weaker than serializ-
ability notion of consistency called coordination consistency that ensures that
changes are not inadvertently destroyed and that the changes of each modification

activity are correctly propagated to subsequent modification activities.

In Harrison et al.’s model, an artifact is represented by a set of files kept in a
master store. Development consists of modification activities and merges. A mod-
ification activity is a set of changes, made in isolation in a separate store. Multiple
modification activities can occur concurrently, each in its own store. For the the
set of changes made during a modification activity to become visible outside its
store, that store must be merged with other stores. Ultimately, all changes that
are to become part of the artifact must be merged into the master store. The basic

aspect of coordination consistency is ensuring that the developing artifact remains

43

.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

consistent in the face of concurrent modifications without reference to the details

of the artifact.

Harrison et al. based their work on the premise that: during the course of
development, much material is examined that can nonetheless be changed without
adversely affecting the work in progress. An underlying assumption is that the

work of various developers is loosely coupled.

A drawback of Harrison et al.’s approach is their use of files as the granularity
of change. As mentioned in Section 2.3.1, the use of files inhibits performing incre-
mental analyses on the evolving product and impedes cooperation. The authors
do not mention how merges will be carried out. In addition, their conditions for
collisions correspond to those where changes are to the same object in both activ-
ities. In our work, as presented in this dissertation, we allow a more open-ended
definition of a collision, with applications and people deciding when a collision has

arisen.

2.4.7 Operation transformation

Ellis et al. in [14, 16] described an algorithm for ensuring precedence and con-
vergence properties in real-time CSCW systems. No transaction or locking is
involved. Instead, operations are transformed when necessary; the algorithm must

know some semantics of the operations.

The model assumes data replication at all sites and global operations; an oper-
ation executed at one site must be executed at all sites. The proposed concurrency
control algorithm is based on the following premise: instead of executing 000,

at one site and 0,00, at the other, we execute 000, and 000, where O} and

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0 are transformed operations obtained from the original operations O; and O,
respectively and o is the composition operation. O; and O} are calculated so that

0100, when applied to a site object has the same effect as 0500;.

Operation transformation has been used in the GROVE editor [15]. In that
context, each user has his/her own copy of the editor, and when an operation is
requested, this copy locally performs the operation immediately. It then broad-
casts the operation along with a state vector indicating how many operations it
has recently processed from other workstations. Each editor copy has its own state
vector, with which it compares incoming state vectors. If the received and local
state vectors are equal, the broadcast operation is executed as requested; other-
wise it is transformed before execution. The specific transformation is naturally
dependent on the operation type (e.g., an insert or a delete) and on the log of

operations already performed.

The assumptions of full data and application replication and the use of only
transformable global operations restrict the applicability of Ellis et al.’s algorithm
to specific application domains which can exhibit this kind of behavior and which
require tightly coupled cooperation among users. If such application domains exist,

then employing Ellis et al.’s algorithm could enhance their responsiveness.

2.4.8 Remarks

We presented several new approaches that address the differences between con-
currency control requirements in cooperative environments and conventional data
processing environments. Surveys of many other approaches exist in [28, 6, 17].
Although all of the approaches presented in [28, 6, 17] and this dissertation fulfill

at least one of the concurrency control requirements, none of them provides ad-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

equate support for all requirements. Many of the approaches, especially those in
[28], have a relatively narrow, domain-specific scope. Moreover, the technical sup-
port for communications and concurrency control, especially in approaches that
achieve higher levels of concurrency and cooperation, is more often tightly inte-
grated into the domain-specific functions of the system. The framework described
in this dissertétion, in contrast, is intended to provide mechanisms that render a
more general and encompassing solution. Our work, in addition, addresses several
important issues that are, so far, barely addressed by the multitude of existing
models of data sharing managers in cooperative environments. These issues in-

clude:
e the interface to the applications;
e the interface to the underlying DBMS;
o active participation of the system in handling notifications;
e access to the status of work in progress.

The following chapters describe our work.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Toward a Computer Supported

Cooperative Environment

This chapter motivates our research by describing the characteristics of conven-
tional applications and database systems in a product development environment;
these characteristics limit the amount of concurrency which can exist in the con-
ventional environment. The chapter also discusses features which are needed in

order to support cooperative work, but which conventional environments lack.

Section 3.1 introduces an abstract model of interaction. That model is the
setting upon which our work, in the rest of this dissertation, is based. Sections 3.2
and 3.3 discuss the operation of conventional applications and database systems
in a product development environment. Section 3.4 shows the limitations of the
conventional environment that render it inadequate for cooperative work. Next,
Section 3.5 discusses features of a cooperative product development environment
which compensate for weaknesses of the conventional approach. Finally, Section
3.6 proposes a framework to provide the features discussed in Section 3.5 and

gives a high level view of the framework. Later chapters present in detail what

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

data model is used by the framework, what services the framework provides, how
the components of the framework operate, what rules are adopted by the various

components, and what levels of consistency are guaranteed.

3.1 High Level System Model

At the highest level, an environment for product development consists of product
developers employing applications to access and manipulate data stored by the
database management system. See Figure 3.1. Each of these components is

discussed below.

3.1.1 Product developers

A product developer is a human who is involved in the development of one or
more products. Product developers may assume different roles throughout the
development process. A developer’s role determines his or her right to update

specific objects in the database.

3.1.2 Applications

An application consists of application code, internal state, and a translator from
and to the data model offered by the database. Applications are used by product
developers to access and manipulate objects in the DBMS. Applications provide
a user interface to the users who use them. The DBMS can be used only indi-
rectly through applications. Applications are independent. They jointly access the
DBMS, but each application is unaware of the existence of other applications. A

product developer can employ multiple applications simultaneously.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Product
Developer

Use

Application

Access

C VvV >

—D Reference
—-O Ownership

Figure 3.1: High Level Interaction Model

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1.3 The database management system

The DBMS offers applications the ability to access and make persistent changes
to data stored in an object store. Since applications, rather than the DBMS, offer
a user interface for product developers, then the DBMS needs to provide only a
programmatic interface to the stored data for use by applications. It is to be noted
that the DBMS need not be physically centralized, the use of “the DBMS” is not
meant to exclude multi-DBMSs [18] or distributed DBMSs [11], but rather to refer

to the aggregate functionality of the database system being used.

Data are stored in an object store. The DBMS has work areas called workspaces,
in which tentative updates are made. When those updates are no longer tenta-
tive, they are committed to the object store. Before an application can update
an object in a workspace, the application must check-out that object into that
workspace. This action indicates an intent of the application to update that ob-
ject in the workspace. Intent to update an object is released when the object is

checked-in.

3.2 Conventional Applications

The operation on data of a conventional application consists of recursions of the

following five steps.

e Reserve
Before an application can manipulate database objects, it must secure write
locks on the objects to be updated, and read locks on objects that will be

used during the course of its operation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e Load

An application utilizes data structures particularly defined for its efficient op-
eration. Since different applications perform different tasks, the data struc-
tures selected to maximize that efficiency are application dependent. The
database offers one integrated data model for applications; data must be ac-
cessed and stored using this data model. No single data model can efficiently

support the multitude of representations required by different applications

[10].

Applications interact with the database using the common data model, as
defined by the database schema. If the database offers an object data model,
then the contents of the application’s data structures are derived from the
objects read from the database, and the updates from an application must

be presented as updates to objects.

After the appropriate locks have been acquired, an application loads from
the database those objects which it needs to access for read or update. If
a translation is needed between the view offered by the database and the
data structures used by the application, then it is the responsibility of the

application to secure this translation.

Manipulate

After loading the desired data, these data are manipulated (in the appro-
priate application’s format). It may be impossible to predict the duration
of this step; data manipulation may extend over a period of several hours,
days, maybe even weeks or months. In other words, operations on objects

by applications in a product development environment are often long-lived

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[5, 6.

e Unload
After the application has manipulated the data to the satisfaction of the
person who initiated the application, the internal state of the application is
translated to changes to objects in the database and these generated changes
are sent to the database. These objects then assume their new state in the

database.

¢ Release
After an application has finished its manipulation of objects, it should release
the locks it acquired in the first step, so that other applications can acquire

locks on those objects.

3.3 Conventional Database Management Sys-
tems

This section presents the concept of workspaces in database management systems
used in product development. The reasons for having workspaces are explained.
The section also describes how objects are conventionally manipulated in these

workspaces.

3.3.1 Workspaces

A conventional product development database contains a public area and a set
of work areas (or sub-databases) called workspaces [10, 54]. Stable products are
placed in the public area of the database. All updates to data are encapsulated

within workspaces.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Public area

The public area contains the collection of approved data. In engineering terms,
approved data means data that have undergone several levels of verification and
authorization by some group of people involved in the product development process
(e.g., the developer, the group leader, and the project manager). Data that have
not reached full approval have to be marked as so, in order that derived objects be
also regarded as tentative and subject to the final approval of the data they were
derived from. The size of the schema is usually a problem, since it comprises of
a very large number of objects. Even if there were no data quality limitations to
updating the full database, the sheer size of the schema and the data volume in a
large project make it impossible to allow direct updates to the public area other

than the integration of final designs [10].
Workspaces

The length of interactive engineering transactions, the different levels of data
quality, and the desire to narrow the focus to some subset of objects, each repre-

sents a powerful reason to generate workspaces [74].

A workspace is a region in the database which holds copies of objects. Appli-
cations make changes only to objects in workspaces. These updates are tentative;
an application automatically commits changes to the public area when the desired
state is achieved. Instead of committing changes in a workspace, the changes can
be aborted, which means that updates since the last commit are discarded and the

view offered by the workspace is the same as that offered by the public area.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3.2 Updates in workspaces

Copies of objects in the workspaces hold the tentative state of the objects. A
workspace offers a view of objects, which is the collective state of the objects. The
view of the objects offered by a workspace is the view of the objects in the public
area modified by some update delta; this delta is the concatenation of all updates
(modifications, creations, and deletions) in that workspace since the last commit.
Each workspace has an associated transaction log which records what updates have
been performed to objects in the workspace. The transaction log is useful in the

event that one or more updates must be undone.

3.3.3 Commit and abort

Let Viy(t) and Vp(t) represent the views offered by workspace W and the pub-
lic area P at time ¢, respectively. Let u; represent the iy, update to W, and
AUw(t) =< uy, uy, ..., Uy, > represent the list of all updates applied to W through
time ¢ since the most recent commit at time #yrencommie- Then the semantics of

update, commit, and abort are as follows.

e Suppose workspace W is created at time #4541, then
Vw (t itiat) = VP(tmitial)s (3.1)
and
AUw (t pitia) =<>, (3.2)

that is to say, the initial state of objects in the workspace is the same as that

of the public area at initialization time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e Forall ¢ 2 {nitial,
Vin(t) = Ve(t) + Alw(2), (33)

in other words, the state of objects in the workspace is the same as that in

the public area except for updates made to objects in the workspace.

o If update u occurs at time t,, then
AUw(tu) = AUw(tu -+ <u>, (3.4)

which is to say that updates have a commulative effect on the workspace and

each previous update is a prefix to its successor update.

¢ Suppose updates to W are committed at time feoommi-

Then, for all ¢, tyrevcommit < t < teommit,

Ve(t) = Ve(tprevcommit)- (3.5)
Furthermore,

Viw (tcommit) = Ve(tcommit) = Ve(tcommit — 1) + AUw (tcommie — 1)(3.6)
and

AUw (teommit) =<>, (3.7)

in other words, updates in the workspace have no effect on the public area
until the updates are committed, and all updates are applied atomically at

commit time (i.e., either all or none of the updates are involved in a commit).

o |
(&

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e Suppose updates to W are aborted at time %4504, then
Viw (tavore) = Ve(tabort) = Ve (tpreuCommit) (3.8)
and
AUw (tabore) =<>, (3.9)

in other words, aborting changes in the workspace causes them to be dis-

carded.

3.3.4 Check-out and check-in

Before an application can read or update an object in a workspace, it must check-
out that object into that workspace. Check-out is an association among applica-
tions, workspace, and object(s). Check-out may be made either for read or update
access. An object may be checked-out for update access by only one application
at any given time. Furthermore, checking-out an object for update access excludes
read access by different applications. Thus in the conventional product develop-
ment environment, the check-out of an object O for update in workspace W by
application A is an ezclusive write-lock on O given to A. This limits updates to O
to occur only in W and only by application A, and checking-out for read access is

a shared read-lock.

The act of check-in releases the intent to read or update an object which
was checked-out. Check-in is the inverse of check-out. An application must apply

internal updates to the workspace or abort them before it checks-in objects.

[
[=>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4 Limitations of Conventional Environments

As described above, in a conventional environment, the database system offers the
protocol of check-out and check-in which ensures that different threads of activity
which may be interrelated are not run concurrently, or are scheduled in a way that
has the same effect as though the threads’ execution times do not overlap — this is
called serial schedule [61]. Using this protocol, applications have exclusive access
to database objects for the duration of their operation. This is necessary because
applications have been built to assume that data in their read set, that is, those
data upon which it has predicated its operation, are not changed by users external
to the application. Allowing other applications to change those data might ad-

versely affect the integrity of the application’s results.

But these characteristics are counter to the premise of cooperative product
development, in which multiple users use multiple applications to complete the
work as a team. Thus, a conventional database and conventional applications are

inadequate in a cooperative environment.

3.5 Features of a Cooperative Environment

This section explains those features of a cooperative environment which support

cooperative work and which are not offered by the conventional environment.

3.5.1 No exclusive access

As mentioned earlier, when an application checks-out an object for update, the
database grants the application exclusive access to that object. This approach to

access control has its origin in business transaction processing systems which em-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

phasize a large number of short, simple transactions issued on behalf of users who
are oblivious of one another. Users requesting the transactions are not allowed to
assume that the state will be retained across transactions. By contrast, in product
development environments such as computer-aided design or software development,
developers or development groups share some concrete, often complex, conceptual
artifacts for long periods of time. During the development process, different prod-
uct developers interact together, and with the database, to achieve their common
goals. Conventional techniques to controlling concurrent access in a DBMS are
inadequate in a cooperative environment, since a database management system
for product development must permit activities of undetermined length which do
not have all their operations known a priori and which do not preclude access to

data by many other transactions.

Consider, for example, a computer-aided design environment. It is not feasible
to have exclusive access to the entire design since many designers work on over-
lapping aspects of it simultaneously. Even exclusive access to only one portion of
a design is also limiting: parts of a design are interrelated, and it may be useful to
have two or more applications share updates to the same portion of a design. For
example, some designers may wish to share updates to the same portion, or one
designer might want to run several applications simultaneously on the same design
data; applications must not be constrained to be invoked in a serial fashion. With-
out exclusive access, there must be other mechanisms which permit applications

to maintain views of the design consistent with the database.

3.5.2 Up-to-date knowledge about changes to shared data

Keeping an application informed of the ways in which its read set has changed

enables it to adjust its view to match the changing state of the database. Ap-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

plications should not be expected to have knowledge of the semantics of other
applications, however. Thus a central mechanism is needed which will notify an
application when data it has cached are changed by other agents. That mechanism

is part of our framework.

3.5.3 Applications adapt to changes

Even with a mechanism that guarantees applications that they are notified of
changes to database objects, in order for an application to interact harmoniously
with other applications, it must respond to these notifications in a proper fashion.
This includes not only making its cache of data consistent with the database, but
possibly undoing or making compensating changes to updates it had performed
but not yet committed to the database. Exactly what an application does depends
upon the semantics of the application and the data. How notifications should, in

general, be handled by an application is discussed in Chapters 6 and 7.

3.5.4 Use of differential updates

In a product development environment, most applications, when they execute,
make incremental rather than sweeping changes to the product [6, 9]. But if an
application submits its updates to the database as “the new state of the product”
rather than “the differential changes applied to the product”, the incremental in-
formation is lost. Incremental information can be lost in a similar fashion when a

workspace is committed to the public area.

Incremental information is useful because it enables notifications of changes
which are sent to other applications to take the form of a small rather than a large
delta. A small delta can more easily be handled by an application. Applications

in the cooperative product development environment will update the database by

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

submitting a list of differential updates in order to preserve knowledge of incre-

mental changes.

3.5.5 Extensibility and integration

Extensibility refers to the ease of incorporating new capabilities (such as new
applications) in the environment [72]. Applications must share an open-ended
environment which can be extended to accommodate new applications without
necessitating change to existing applications or other parts of the environment.
Furthermore, it must accommodate sets of applications which are tightly coupled;
such as two applications sharing updates to the same objects, as well as loosely
coupled; such as the applications under the control of different designers working

on different aspects of the design.

Another principal quality sought in the development of cooperative product
development environments is integration. Integration refers to consistent inter-
faces, easy context switching, and efficient communication between applications.
Interaction with the environment should be in a uniform way. In addition, appli-
cations should share information among themselves, assuring that users are not
obliged to supply the same information multiple times, nor needlessly paying for
computation of available information. Environment components should be shared
whenever possible as well, to keep the size of the environment down, and to prevent

performance penalties due to excessive paging and thrashing.

Several investigations have underscored the importance of extensibility and in-
tegration in product development environments, however, they have also indicated
that there are some fundamental tensions between them: a tightly integrated en-

vironment is easiest to achieve if the environment is limited in scope and static

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in its content and organization; conversely, broad and dynamic environments are
typically loosely coupled and hence impose excessive burdens on users [60, 72].
Consequently, efforts should be directed toward maximizing both extensibility and

integration while putting into consideration the trade-off between them.

3.5.6 Multiple levels of cooperation

Product developers use separate workspaces when the objects checked-out into
those workspaces are unrelated, or when integration of objects into a parent ob-
ject is being deferred. At other times, when product developers want to work on
very closely related parts of the product, any partitioning may seem artificial and
may impose an unacceptable overhead. In this case, product developers should be
granted the ability to access the same objects in the same workspace. When prod-
uct developers share access to some object, the views of the applications employed

by the product developers should be kept synchronized with that of the workspace.

It is to be noted that such a constructive utilization of applications is based on
the premise that users sharing access to the same objects are willing to communi-
cate among each other to reconcile their differences and coordinate their conflicting
activities. This concept of cooperation among users is absent in the conventional

environments, however, it should be intrinsic to cooperative environments.

3.5.7 Dynamic workspace hierarchy

The notion of a workspace, as presented in the previous section, can be generalized
to a hierarchy [38, 1, 20, 54, 74]. Workspace hierarchies support our view that a
complete product comes to existence step by step through cooperation. At the top
of the hierarchy is the root workspace W,,.. Every workspace W, except W,oot,

has a superior workspace Superior(W), and every workspace W, except those at

6l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the leaves, has one or more inferior workspaces Inferior(W). See Figure 3.2. The
root workspace is the actual global database used to store archived products, li-
braries of components, fully validated designs, relationships among key features
associated with the development process, processes for building the product, com-
puter code, life cycle considerations, project organizations, etc. The workspace
hierarchy supports the co-existence of different states of the same object. At any
given time during the development process, the root workspace will contain the
most recently released public collection of database objects (i.e., the omega re-
lease). “Super”-workspaces, that is, those closer to Wy, hold data which is more
correct, stable, or public. The state of a design in a “sub”-workspace has a lesser

degree of validation, is more tentative, or is less public.

The root workspace always exists. Other workspaces are dynamically created
and destroyed. A sub-workspace may be created in order to separate unrelated
projects or to create a work area with consistency requirements less stringent than
those of the root workspace. In addition, a product developer or a group of prod-
uct developers may also create sub-workspaces in order to encapsulate tentative
or experimental updates, or narrow the focus to some subset of objects. Users
can move into the context of the workspace hierarchy and examine the objects

contained there.

Let W; and W; be workspaces. We define the < relation between workspaces

to be the reflexive and transitive closure of the descendant relation as follows.

VV‘iSWiv

If W; < W; then W; < Superior(W;),

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Application

WI'OOt
=
w1 W2
w11 w12 w21

Application

Application

Application

Figure 3.2: Workspace Hierarchy

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IfW, < W, and W; # W, then W; is sub-workspace(W;), and W; is super-
workspace(W;).

The workspace hierarchy has invariants and semantics of commit and abort that

are completely analogous with those presented in Section 3.3.3, given workspace

W 3& Wroot-

Along with the workspace hierarchy comes a generalized model for check-out
and check-in. An object can be updated only in the workspace in which it is
currently checked-out for update. (The rules of check-out and check-in will be

described in detail later.)

In a database system which offers two levels of workspace: public and private (or
experimental), the actions of check-out and check-in of an object strictly alternate
[44]. The two-level workspace hierarchy does not allow for a natural representation
of hierarchical tasks in which groups of users participate [20]. What is needed is
a dynamic hierarchy of workspaces for users or user groups which permit a sub-
workspace to be created at any time. In that sub-workspace, a subset of objects
can be checked-out and ezperimentally updated without affecting the state of those
objects in the superior workspace. When a set of updates is deemed acceptable,
the objects can be checked-in and the changes are committed atomically to the

superior workspace.

3.5.8 User mediated consistency

It has been recognized that one needs to create more flexible notions of consis-
tency when dealing with product evolution. For example, Sutton [70] points out

that when it comes to software development there are many reasons why one can-

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

not enforce consistency in the same way that one might in conventional database

systems:

o it is difficult to discern and/or articulate all the constraints a-priori for a

software system;

¢ automatic detection of all consistency violation (let alone automatic repair)

is completely unrealistic;
e it is not always clear when one must check for consistency violations or where.

The functionality for dynamic constraint specification and collision records provide

one answer to the above problems.

Constraint specifications

As previously stated, constraints among data must at some point in the develop-
ment process be ascertained to be valid. One restriction which is intended to limit
the propagation of potentially incorrect modifications to a design is the require-
ment that the validity of designated constraints of a design be ascertained before
changes can be committed to a workspace. In conventional environments, this task
is performed manually. The manual method is error prone; a user may forget to
invoke tools to check consistency, or may be tempted to give intuitive (and maybe

incorrect approval of the updates performed).

The proposed workspace hierarchy model offers constraint specifications in
workspaces. A constraint specification is an attachment to a workspace that
names a constraint in objects which must be known to be valid within an applica-
tion’s cache or in an inferior workspace before the application or inferior workspace

can commit to that workspace. Constraint specifications are inherited by super-

65

.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

workspaces.

Constraint specifications can be used to enforce some subset of constraints
in certain workspaces in order to guarantee a known degree of consistency within
that workspace. Different constraint specifications can also be assigned to different
workspaces depending on the degree of correctness required. For example, a pub-
lic workspace might have strict requirements, whereas an experimental workspace
might have none. In essence, constraint specifications allow the exploitation of

different correctness criteria for different groups and individuals.

A constraint specification does not determine how a constraint is to be vali-
dated, nor when. It is merely a restriction of committing changes to a workspace
which is based upon the status of constraints. Other mechanisms are needed to
control when to fire consistency checkers. The concept of cooperation motivates

users intervention to amend constraint violation [28].

Collision records

Another crucial issue is that of collision handling. Even when users are benevolent
and attempt to cooperate, there may be times when one user will make a change
to an object that another user cannot understand, cannot adapt to, or considers
an error, and therefore is unacceptable. We refer to this situation as a collision.
Collisions may be identified when updates are applied to a shared workspace, or
when an attempt is being made some time later to integrate a new version of a

product.

When a collision occurs, a product developer or his/her application may wish

to register its disapproval of the update in an effort to obtain corrective actions or

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

an explanation. This is done with a collision record that references the product
developers involved in the collision, the update which caused the collision, and the
application which performed the update. The product developers normally will
try to resolve the collision between themselves. If they cannot, then resolution of
the collision is the responsibility of a mediator. A collision resolution is a record
that some action has been taken on behalf of the collision. A record of collisions
and their resolutions should be kept for each workspace both in order to provide a
history and to enable product developers and/or mediators to browse unresolved

collisions [65].

In order to confine the out-spread of collisions, the cooperative product devel-
opment environment should prohibit a workspace from committing to its superior
workspace if it contains unresolved collisions. The conventional environment offers

no support for collisions.

Collision records and constraint specifications provide our approach to imple-

ment user mediated correctness criteria.

3.5.9 Moniroting work status

(Collision records are part of what is referred to here as work status. Other examples

of work status include information pertaining to:
¢ the workspace hierarchy;
e the product developers participating in the different tasks;
o the active applications in different workspaces;

¢ the objects checked-out by different applications in different workspaces.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The ability to both access and track changes in work status is important for co-
operating product developers since it provides a degree of “awareness” of what
others are doing and hence it helps in monitoring the progress of the work and
assists in coordinating the diverse efforts of the product developers participating
in the process. As a result, supporting product developers with the ability to ac-
cess and track changes in work status should be an integral part of a cooperative

environment.

3.6 The Proposed Framework

The two preceding sections have described in what ways conventional databases
and applications are inadequate for an environment that supports cooperation
among product development groups. Enhancements to alleviate these deficiencies
have also been proposed. Realizing these enhancements motivates our work. The

remainder of this dissertation provides our framework for the enhanced capabilities.

The framework presents a software layer that resides between the data store
and the applications which manipulate those data, thereby acting as an interme-
diary between the application and the data store. The framework is divided into
two main components: the Agent and the Cooperative Database Manage-
ment System (or Co-DBMS). The agent consists of the application plus a set
of software modules called the Application Object Manager (or AOM). The
Co-DBMS consists of an object-oriented data store with associated schema plus
a set of software modules called the Database Object Manager (or DOM).
Operationally, the application within the agent invokes libraries of the agent which
have been linked with the application - the AOM; the AOM interacts with the
DOM in the Co-DBMS; and the DOM invokes functionality of the data store.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The model of interaction, described in Section 3.1, is modified as follows: prod-
uct developers'use agents to access and manipulate data stored by the Co-DBMS.
See Figure 3.3. The modified model also assumes that product developers can (in-
formally) communicate together to expose and reconcile differences in viewpoints.
The assumption that applications are independent still holds. However, awareness
of other applications is provided indirectly through messages received by an appli-
cation, through its AOM, from the Co-DBMS (or more precisely, from the DOM
within the Co-DBMS, as will be explained later) as a result of the actions of other

agents.

3.6.1 Features of the framework

In order to provide services which are needed in cooperative environments, the

framework exhibits the following features.

e Object-oriented data store
All persistent data are stored in and are accessible from the Co-DBMS. In
order both to control access to portions of data and to make manageable the
amount of data which is transferred between agents and the Co-DBMS, data
are divided into a large number of interconnected objects. Objects follow
the object-oriented approach; each object has a type, an identity, an internal
state, and a programmatic interface to access and change that state. The
object model used by the framework is presented in Chapter 4. This object

model constitutes the formal basis of our work.

e Support for varying degrees of cooperation

Facilities provided by the framework accommodate sets of applications which

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Informal
Communications

Product
Developer

Agent

Application

Access

Co-DBMS

—D Reference
—O Ownership

Figure 3.3: Modified High Level Interaction Model

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are tightly coupled (such as a schematic editor and a simulator which are be-
ing used éimultaneously by one product developer) as well as those which are
loosely coupled (such as applications under the control of different product

developers working on different aspects of the same artifact).

¢ Use of notification
The Co-DBMS tracks updates to shared data. Unlike a conventional database
in which the guarantee given to an application is that it has exclusive access
to data, the Co-DBMS instead guarantees only that an agent will receive
asynchronous notifications to maintain a view consistent with the database.
Cooperating members of a group communicate informally; the DOM formal-

izes asynchronous communication between the Co-DBMS and the agents.

e Extensibility and integration
The framework is independent of the semantics of particular applications
within agents, so that new applications can be added to the environment
without necessitating modification to the Co-DBMS or the agent software.
In order to track changes to data in which the application is interested, each
application informs its AOM of the set of updates in which it is interested.
When an event occurs which matches an interest, the application which reg-
istered the interest is sent a local notification. If another agent updates
an object in which an application is interested, the AOM in the agent of
that application will be sent an external notification by the Co-DBMS.
The AOM offers a uniform programmatic interface and associated protocols,
with which applications can create, destroy, commit, and abort workspaces,

check-out and check-in objects, and access and update data.

e Dynamic workspace hierarchy

The Co-DBMS offers a hierarchy of workspaces and associated check-out and

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

check-in protocols with which to encapsulate tentative changes to objects.
Although many users may have permission to update the same object, that
object can be checked-out in at most one workspace at any time. Thus if two
users wish to update some object at the same time they must do so within

the same workspace.

¢ Enforcing constraint specifications

The Co-DBMS enforces consistency specifications attached to workspaces.

e Collision mechanism
The framework offers applications a mechanism to register collisions and
their resolutions, and prevents updates in an inferior workspace from being
committed to its superior workspace if there are unresolved collisions in the
inferior workspace. The framework does not enforce a particular policy of
collision resolution but rather provide a vehicle for instituting policy by al-
lowing applications both to decide which changes constitute collisions and to

determine what is done in the event of a collision.

¢ Work status monitoring
The framework gives applications access to the work status. Work status is

maintained by the Co-DBMS and made available to all agents.

¢ Automatic agent cache consistency
Agents cache objects which they are accessing in an extended object cache
(explained in Chapter 5), which is the agent’s local object workspace. A
cache may grow stale, however, when another agent updates those objects.
The AOM in the agent processes update notifications from the DOM in the
Co-DBMS and ensures that the cache stays consistent with the Co-DBMS

in the face of updates by other applications.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e Automatic invalidation of constraints
It is unreasonable to assume that applications will understand the impact
of updates they make on all constraints associated with the product and its
development process. The set of constraints may grow over time, for exam-
ple, as the data model evolves. For this reason the AOM is responsible for

invalidating constraints whose validity may have been disturbed by updates.

¢ Efficiency
Modules of the AOM are directly linked with the application in an agent.
When these modules are invoked by an application, the CPU of the worksta-
tion running the agent is used. The DOM manipulates and controls access to
data in workspaces, but the manipulation of data are performed by the indi-
vidual applications, each with its own set of special-purpose data structures

which enable it to perform its task efficiently.

3.6.2 Architecture and operation

Remaining chapters of this dissertation present in detail the architecture and oper-
ation of the DOM and the AOM, explain what capabilities they add to the DBMS
and applications, respectively, and show how these capabilities provide what is

needed in cooperative product development environments.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

The Object Model

The notion of an object from object-oriented programming languages (OOPLs) and
object-oriented databases (OODBs) provides a way to describe all of the complex
data that are usually required in cooperative product development environments
such as CAD/CAM and CASE [10, 39, 67, 50, 44, 55, 17]. Applications in these
environments manipulate data that are often complex and intricately connected
by numerous consistency constraints. For example, in software development, the
notion of an object is sufficiently powerful to describe things as diverse as program
modules, test cases, compilation, specifications, and documentation, so it provides
a natural uniform way of describing the artifacts and processes of software engi-

neering.

In this chapter, we propose a data model for cooperative product development
environments, intended for applications such as VLSI circuit design, mechanical
parts design, and software development. The context for our data model is object-

oriented in which data are broken into a collection of interrelated objects.

This chapter describes the characteristics of the object-oriented data model,

T4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

presents and explains the schema language which is used to define a specific data
model, and discusses the ways in which objects may be related to one another.
It then enumerates what operations can be performed on objects, and offers a

detailed example of a simple schema from the software development domain.

4.1 The Object-Oriented Approach

There are three basic concepts to object-oriented modeling: objects, types, and
messages. Briefly, objects are the building blocks that combine data and processes
to perform a specialized role in the system; a type is a template for similar objects;
while, messages represent the interface that allows objects to interact without
having to understand or interfere with others’ internal processes [73]. In this
section, we describe each of these concepts with emphases on the characteristics

that serve our model.

4.1.1 Objects

Although there is no common definition of object, we present here a working
definition for the purposes of our work. An object is an entity that encapsulates
state and behavior into a self-contained package. Every object has the capability
of storing data, which define the state of the object. The behavior of an object
defines the ways in which the object’s state can be affected. Objects are created
and destroyed dynamically. The lifetime of an object is independent of the lifetimes
of other objects, (except in some case of the object being owned by another object;
this case will be explained later in the chapter). Objects have three key properties:

identity, state, and operations (or methods). Each of these is described below.

e Object identity: every object is an abstraction that has an identity that

is independent of the values of any of its properties or relationships to other

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

objects. This identity is captured by a unique, immutable object identifier
(OID). Basically, an OID is an arbitrary numerical value, that is automat-
ically assigned and maintained by the system, and the system ensures its
uniqueness. The OID is used as a handle with which a client of the database

system (such as an agent) can reference and access the corresponding object.

e State: objects of the same type are specified and distinguished by their
state, which may (or may not, for some kinds of objects) change over time.
The state of an object is captured and maintained in named slots (or vari-
ables). Each object has an array of slots to store state data. A slot’s value

can be specified to be either single or multi-valued.

Each slot has a name, type and value. Slot names are unique within an
object type. The slot type designates the type of the value that can be as-

signed to that slot in instances of the object type in which this slot is declared.

A slot of one object can be referenced by another object (described below).
Each slot, however, is owned by exactly one object and is not shared. More-

over, updates to a slot must be done through the object which contains it.

e Operations: an operation (or method) is a mapping from some input ob-
jects to output objects. The mapping is performed in response to messages
sent by other objects. Operations are applied to create or destroy objects, to
access their attributes, to compute results, to test constraints, or to trace re-
lationships to other objects. An operation is executed only when the correct
type of message is received from the right source object. Ouly the object’s

operations can access its state.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Operations are embedded within objects rather than operating as free-standing
entities. Each operation that can be applied to an object has a name, an op-
tional set of parameters, and a body (implementation). Operation names
(and parameters) are known externally. The body is known only to the
containing object. The body is a procedure, written in some programming
language, that is executed (by the containing object) when the correspond-
ing operation is triggered. This procedure, which can access or change the
state of the object, performs the mapping from inputs to outputs, and may
have messages sent to other objects from within. The object processing an

operation, first completes that operation before receiving any more messages.

4.1.2 Types

Objects are associated with types (or classes). A type is an abstraction that al-
lows the user to encapsulate similar objects. An object type is simply a template
for those objects exhibiting similar characteristics, and it defines the aspects of
objects that are the same for all the actual realizations (objects) of that type.
Consequently, the object type determines what slots the objects of that type have,
and the operations to be applied to those objects. Objects of a given type are called
instances of that type. Instances of a type are related to that type through the
“is-a” relationship. For example, all objects whose state and behavior correspond
to the common notion of rectangle, are instances of type “rectangle.” Similarly,

one can have types layout, queue, etc.

Many different types can be defined to serve different purposes. The various
types, however, are not defined in isolation. Rather, they are defined as special

cases of each other, forming what is known as a type hierarchy. For example, the

(i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

collection of products a company offers could all be defined as specialized versions
of more general products, all of which could be considered special cases of the more
general type product. Formally, these special cases are known as sub-types. The

types of which they are special cases, in turn, are known as their super-types [73].

The advantage of defining types in a hierarchy is that, through a mechanism
called inheritance [73], sub-types share all the characteristics of their super-types.
For example, a “NAND gate” would inherit all the operations and variables of its

super-type “Gate”.

4.1.3 Messages

An object-oriented computation proceeds by messages sent from one object to
another. By convention, the object sending the message is called the sender and

the object receiving the message is called the receiver.

Structurally, a message consists of thre