
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Computer Science Theses & Dissertations Computer Science

Summer 1993

A Framework for Data Sharing in Computer Supported A Framework for Data Sharing in Computer Supported

Cooperative Environments Cooperative Environments

Mohamed Youssef Eltoweissy
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_etds

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Eltoweissy, Mohamed Y.. "A Framework for Data Sharing in Computer Supported Cooperative
Environments" (1993). Doctor of Philosophy (PhD), Dissertation, Computer Science, Old Dominion
University, DOI: 10.25777/jp8f-1w57
https://digitalcommons.odu.edu/computerscience_etds/103

This Dissertation is brought to you for free and open access by the Computer Science at ODU Digital Commons. It
has been accepted for inclusion in Computer Science Theses & Dissertations by an authorized administrator of
ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/computerscience_etds
https://digitalcommons.odu.edu/computerscience
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds/103?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

A FRAMEWORK FOR DATA SHARING IN
COMPUTER SUPPORTED COOPERATIVE

ENVIRONMENTS

by
Mohamed Youssef Eltoweissy

B.S. Ju n e 86, Alexandria University, Alexandria, Egypt
M.S. July 89, Alexandria University, Alexandria, Egypt

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Computer Science

Old Dominion University

August 1993

Approved by:

Dr. Hussein Abdel-Wahab, Advisor

Dr. RaVi Mukkamala

Dr. Stewart Shen

Dr. Shunichi Toida

Dr. Hany El-Sayed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Tfl !My Taunts

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Concurreny control is an indispensable part of any information sharing system. Co

operative work introduces new requirements for concurrency control which cannot

be met using existing applications and database management systems developed

for non-cooperative environments. The emphasis of concurrency control in con

ventional database management systems is to keep users and their applications

from inadvertently corrupting data rather than support a workgroup develop a

product together. This “insular” approach is necessary because applications that

access the database have been built with the assumptions that they have exclu

sive access to the data they manipulate and tha t users of these applications are

generally oblivious of one another. These assumptions, however, are counter to

the premise of cooperative work in which human-human interaction is emphasized

among a group of users utilizing multiple applications to jointly accomplish a com

mon goal. Consequently, applying conventional approaches to concurrency control

are not only inappropriate for cooperative data sharing but can actually hinder

group work. Computer support for cooperative work must therefore adopt a fresh

approach to concurrency control which does promote group work as much as pos

sible, but without sacrifice of all ability to guarantee system consistency. This

research presents a new framework to support data sharing in computer supported

cooperative environments; in particular, product development environments where

computer support for cooperation among distributed and diverse product devel

opers is essential to boost productivity. The framework is based on an exten

sible object-oriented data model, where data are represented as a collection of

interrelated objects with ancillary attributes used to facilitate cooperation. The

framework offers a flexible model of concurrency control, and provides support for

various levels of cooperation among product developers and their applications. In

addition, the framework enhances group activity by providing the functionality to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

implement user mediated consistency and to track the progress of group work. In

this dissertation, we present the architecture of the framework: we describe the

components of the architecture, their operation, and how they interact together to

support cooperative data sharing.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgments

First, I thank Cod for His countless bounties and for directing me along the route

to every success I reached and may ever reach.

My deepest appreciation goes to my advisor, Dr. Hussein Abdel-Wahab, for

giving me the opportunity to become involved in research on computer supported

cooperative work. It has been a fruitful experience. His insight, constructive

comments, and valuable suggestions are reflected in the work described in this

dissertation. I feel even more obliged to thank him for our excellent interaction

and mutual understanding.

I would also like to express my sincere gratitude to the members of my commit

tee Drs. Ravi Mukkamala, Stewart Shen, Shunichi Toida. Their genuine advice

and discussions were essential for the development of this study. A word of appre

ciation also goes to Dr. Hany El-Sayed for his participation in the committee.

Special thanks are due to Dr. Larry Wilson, chairman of my examination

committee, who generously offered me guidance and counseling while pursuing my

research.

I also wish to extend my thanks to all my friends. In particular, I would like

to thank Ashraf Wadaa and Osman Zeineldine for the ideas that emerged from

our discussions, and Nahil Sobh, Ferasat Shah, Ibraheem Sharafeldine, and Hamid

Oloso for the wonderful time we spent together in meetings, exercises, and travels.

The words fall far short from expressing my indebtedness to my beloved parents,

my brother, and my sisters for their constant encouragement, endurance, and

emotional support.

Finally, this work would not have been possible without the unfading support

and perseverance of my wife and the overwhelming love and tender of my sons

Youssef and Abdarrahman who made my everyday life more enjoyable.

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

1 Introduction 1

1.1 M otivation.. 2

1.2 O b jectives.. 9

1.3 C o n trib u tio n s ... 10

1.4 Outline of D isse rta tio n .. 11

2 Background 14

2.1 Computer Supported Cooperative Work ... 16

2.1.1 Elements of a CSCW environm ent... 18

2.1.2 Classification of CSCW sy s te m s ... 22

2.2 Product Developm ent.. 29

2.2.1 The conventional approach ... 29

2.2.2 The concurrent engineering a p p ro a c h ... 30

2.3 Data Sharing in Product Development E nv iro n m en ts 32

2.3.1 D a t a f i l e s ... 32

2.3.2 D a ta b a se s ... 34

2.4 Concurrency Control R esearch... 35

2.4.1 Split-transactions, commit-serializability, and participation

d o m a in s ... 36

2.4.2 Proclamation-based concurrency c o n t r o l 37

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

‘2.4.3 Nested transactions with predicates and versions..................... 38

2.4.4 Cooperative transaction h ie ra rchy .. 40

‘2.4.5 Lazy c o n s is te n c y .. 4‘2

‘2.4.6 Coordination consistency.. 43

‘2.4.7 Operation transformation ... 44

‘2.4.8 R em ark s .. 45

3 Toward a Computer Supported Cooperative Environment 47

3.1 High Level System Model .. 48

3.1.1 Product developers.. 48

3.1.2 A pplications... 48

3.1.3 The database management system .. 50

3.2 Conventional A p p lica tio n s .. 50

3.3 Conventional Database Management Systems 52

3.3.1 W o rk sp aces... 5*2

3.3.2 Updates in w orkspaces.. 54

3.3.3 Commit and a b o r t .. 54

3.3.4 Check-out and check-in.. 56

3.4 Limitations of Conventional E n v iro n m en ts .. 57

3.5 Features of a Cooperative E nvironm ent... 57

3.5.1 No exclusive a c c e s s .. 57

3.5.2 Up-to-date knowledge about changes to shared d a t a 58

3.5.3 Applications adapt to ch an g es... 59

3.5.4 Use of differential u p d a te s ... 59

3.5.5 Extensibility and in teg ra tion .. 60

3.5.6 Multiple levels of c o o p e ra tio n ... 61

3.5.7 Dynamic workspace h ie ra rc h y ... 61

3.5.8 User mediated consistency .. 64

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.5.9 Moniroting work s ta tu s ... 67

3.6 The Proposed F ra m e w o rk ... 68

3.6.1 Features of the fram e w o rk ... 69

3.6.2 Architecture and opera tion .. 73

4 The Object Model 74

4.1 The Object-Oriented A p p ro a c h ... 75

4.1.1 O b j e c t s .. 75

4.1.2 T y p e s ... 77

4.1.3 M essages.. 78

4.2 The Proposed Object Model .. 79

4.2.1 The object s c h e m a .. 79

4.2.2 Relationships among o b je c ts ... 83

4.2.3 Derived slots .. 85

4.2.4 Operations on objects ... 87

4.2.5 Dependencies among o b je c ts ... 89

4.3 E x am p le .. 91

5 The Cooperative Database Management System 93

5.1 Architecture of the Cooperative Database Management System . . . 93

5.2 Functionality of the Database Object M anager.................................... 96

5.2.1 Connecting agents to the D O M ... 96

5.2.2 Creating and destroying w orkspaces.. 97

5.2.3 . Workspace selection... 98

5.2.4 Constraint specification.. 100

5.2.5 Collision re c o rd in g ...101

5.2.6 Work status m o n i to r in g ... 103

5.2.7 Committing and aborting w orkspaces..104

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2.8 Object check-out and check-in .. I l l

5.2.9 M anagingobjectreferenc.es... 116

5.2.10 U pdatingobjectsinw orkspac.es... 117

5.3 Rules Maintained by the DOM ... 119

6 Agents 124

6.1 Architecture of an A g e n t.. 124

6.2 Functionality of the Application Object Manager 127

6.2.1 Services from the C o-D B M S..127

6.2.2 Object check-out and check-in .. 129

6.2.3 Reading objects in c a c h e ...130

6.2.4 Updating objects in c a c h e ... 132

6.2.5 Handling update n o tif ica tio n s ...137

6.2.6 Handling update f o c u s ..143

6.2.7 Checking update dependencies of derived external slots . . . 146

6.2.8 Committing updates to workspace.. 148

6.3 Rules maintained by the A O M .. 151

7 Developing Applications for Cooperative Environments 155

7.1 Cooperative A pplications.. 156

7.1.1 Requirements of a co-application .. 156

7.1.2 Converting existing applications to co-applications.................... 157

7.2 Message H andling... 158

7.3 Levels of C ooperation... 160

7.3.1 Low level of co o p e ra tio n ...161

7.3.2 Medium level of coopera tion ..161

7.3.3 High level of cooperation ...162

7.3.4 Other levels of cooperation... 163

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.4 Conclusion.. 163

8 Conclusion and Future Work 165

8.1 Features of the Fram ew ork...166

8.1.1 Support provided by the C o-D B M S...166

8.1.2 Support provided by a g e n t s ..167

8.2 Research co n trib u tio n s ...168

8.2.1 Object model for cooperative product development databases 168

8.2.2 Flexible model of concurrency c o n tro l..169

8.3 Future W ork ... 170

8.3.1 Prototype of the fram e w o rk .. 170

8.3.2 Application of domain-specific, s e m a n tic s171

8.3.3 A framework for handling shared m essages..................................172

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List o f Figures

3.1 High Level Interaction Model ... 49

3.2 Workspace H iera rch y ... 63

3.3 Modified High Level Interaction M o d e l .. 70

5.1 Architecture of the C o-D B M S ... 95

6.1 Architecture of an A g e n t ..125

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List o f Tables

5.1 Extended O b je c ts ...106

6.1 Reading Values of Objects in C a c h e ..131

6.2 Procedures to Update O b je c ts ..134

6.3 Handling Update N otifications..139

6.4 Update Interests and their Corresponding Updates 145

6.5 Computing Differential U p d a te s .. 149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

Group work is a natural context fo r our activity: we benefit from prior

work o f other people, we cooperate actively with colleagues, we exchange

views and participate in discussions, we engage in joint decision mak

ing, we communicate our completed work to others, and so forth.

It is this context in which computer systems and their associated software are

used. Yet, most existing software applications are developed to support only in

dividual work in isolation. Little or no support is provided for communication,

coordination, and information sharing activities tha t users are often engaged in.

Hence, there is a legitimate need for computer facilities that understand and sup

port these group activities.

Recent technological innovations in portable computing, user interfaces, and

computer networking make it feasible to explore and develop uew computer facil

ities that will help us work together more efficiently and conveniently [52]. The

field that deals with the development of such facilities and its relevant research

issues is generally termed C o m p u te r S u p p o rte d C o o p e ra tiv e W ork [26].

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A principal concern in computer supported cooperative work (or CSCW) is

how to store, maintain, and access data in work group settings. This dissertation

argues tha t existing applications and the database management systems they use

are inadequate for data sharing in cooperative environments; in particular, product

development environments such as computer-aided design and manufacturing (or

CAD/CAM) and computer-aided software engineering (or CASE). In a nutshell,

cooperative product development will require each user to be as “aware” as possi

ble of other users actions. This concept cannot be offered by existing applications

and the database management systems they use. Supportive arguments are also

included in [‘28, 5, 40, 31, 42, 44, 16, 6, 68, 17, 33, 56, 1‘2], to name a few.

Our research investigates the data sharing requirements of cooperative product

development environments. After identifying the restrictions imposed by conven

tional applications and database management systems, we propose a new frame

work that alleviates some of these restrictions and provides data sharing function

ality needed to support cooperative development efforts.

The work in this dissertation presents the architecture of the framework; it

describes the components of the architecture, their operations, and how they in

teract together to support data sharing in cooperative product development envi

ronments.

1.1 M otivation

The development o f complex artifacts presents a strong case for the necessity of

cooperation [48, 5, 6, 68]. Product development projects, such as VLSI design or

software development, involve a group of developers working together to ac.com-

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

plish a common goal, which is the overall product that integrates the work clone

by different members of the product development group. Cooperation is necessary

because no single developer has sufficient expertise, resources, or information to

carry out a large scale project. Also, different developers may have different ex

pertise for performing parts of the overall product.

Complex products are usually divided into simpler partitions, which can them

selves be further divided resulting in a hierarchy of sub-products. Work on the sub

products is then distributed among members of the product development group.

Each group member may be responsible for only part of the overall product. Group

members cooperate, sharing the results of their activities as the overall product

emerges from the results of the sub-products. Following this approach to product

decomposition, members o f the product development group will work on parallel

but related aspects o f the product.

A session within a product development project would consist of the steps taken

by a product developer at a workstation using applications, such as a graphical

editor or a circuit simulator, to manipulate (inter-related) objects in the database.

The sessions are generally long and interactive, and their content may be dynam

ically determined and incompletely pre-specified. T hat is, the sequence of opera

tions in a session is not a program that is defined statically or specified precisely

before the product developer begins working. The work in product development is

creative, experimental, incremental, and iterative.

During the course of the project, contributions will come from developers in

different areas of specialization. These developers will interact with each other,

and with the database, in order to exchange information pertinent to the substance

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of their work (e.g., the common set of database objects, comments, and questions),

the procedures of their work (e.g., the common view of the development process

established by agreement on sharable paradigms), and the interpersonal relation

ships tha t underlie the work project (e.g., the possibility that one partner is not

pulling his or her fair share). As a result of this information exchange, different

;product developers will have some degree o f awareness o f each others ’ work.

Product developers usually perform their tentative work in their local (or pri

vate) workspaces. They release their contributions to other members of the group

at intervals rather than continuously. Furthermore, due to the size of the project,

product developers cannot always be fully aware of the impact of changes they

make on the global consistency of the product; aspects of consistency are defined

by requirements, constraints, rules of design, policies, etc. As a result, the efforts

of one product developer may conflict with those of another. Hence, members of

a product development group are typically concerned about the timely availability

of information related to the project and about how the decisions made by others

influence their current work.

The conflicts tha t arise among product developers must be resolved in order to

advance the current state of the product to the next refinement level. In general,

a situation of conflict, in a product development environment, is one in which it

seems temporarily impossible to have a consensus view among product developers

as to what a part should look like. An im portant aspect of cooperative product

development is that the willingness to cooperate facilitates the conflict resolu

tion process. Agreement is usually reached between product developers in discord

through negotiation where intervention by the Project Leader may help in resolving

the conflict.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The question now is: Do conventional applications and the database manage

ment systems they use provide adequate support for cooperative product develop

ment? The answer is NO.

Evidently, the concept of “work integration” and the “awareness” property

intrinsic to cooperative product development stand in sharp contrast with the

assumptions th a t users are “unrelated” and “isolated” from one another, which

underlie most conventional applications and database management systems; the

conventional approach is at once too restrictive and inadequate for the needs of

cooperative work, in particular the need for cooperative data sharing.

Conventional applications work in isolation of one another. Applications have

traditionally been built with the assumption that an application which accesses

database objects has exclusive access to those objects. Designers of conventional

applications did not consider the fact that other applications might be needed to

perform operations on related aspects of the same product. Consequently, if an

application has some data objects in its read set, other applications should not

be allowed to change those objects concurrently. Otherwise, the integrity of the

application’s results might be adversely affected. It follows that, at any given time,

the applications that one user can employ strongly depend on which applications

are presently in use by this and by other users. But this is quite restrictive in

a cooperative product development environment, where product developers may

have multiple applications run concurrently to complete the product as a team. A

new approach is, therefore, needed in which an application would react to changes

to its read set due to concurrent operations by other applications.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Likewise, conventional database management systems also go to great lengths

to isolate people from one another in order to reduce interference or premature

release of changes. In general, conventional database management systems use

transactions as the unit of interaction between an application and the database.

The conventional approach to ensuring database consistency in face of concurrent

access is to ensure that each transaction on its own preserves consistency, and that

each transaction is atomic (i.e., indivisible) with regards to permanence, recovery,

and concurrency control [19, 61, 7, 2, 25]. T hat is, the result of a transaction

that commits are stable over time, the result of a transaction that fails are re

instated completely or not at all, and the concurrency control scheme interleaves

the operation sequences of transactions to generate schedules tha t are serializable

(i.e., equivalent to a serial schedule in which transactions are executed one at a

time). Since a partially executed transaction may violate consistency constraints,

its results are never revealed to other transactions. On the other hand, the re

sults of a committed transaction are permanent and globally visible to any other

transaction. If an operation of a transaction conflicts with another operation of a

concurrently executing transaction, one of the transactions involved in the conflict

is either suspended or aborted. If the decision is to abort a transaction, then all

of its effects must be removed from the system.

The aforementioned criteria, adopted by conventional database management

systems to preserve consistency, are well suited to business applications such as

banking and airline reservation in which users are isolated and unrelated, trans

actions are relatively short programs tha t are statically defined and independent

of each other during development and execution, and atomicity of transactions

is of paramount importance. Conventional database management systems do not

support any other kind of consistency preserving criteria, for example, verification

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

protocols for designs. Moreover, the transaction processing schemes employed by

these systems are not tailorable by programmers to more closely suit the needs of

a particular application [‘28, 68, 32]. If long, incremental, and interactive product

development activities are managed in the same way, they can impose severe limits

on concurrency and hinder group work.

We can now contrast some fundamental characteristics of cooperative product

development activities with those of conventional database transactions.

• Changes made during a transaction are not visible to other transactions

until the transaction commits. Shielding a user from seeing the intermediate

states of others’ transactions is, however, in direct opposition to the goals

of cooperative product development, where there is the urge to make each

developer’s actions visible to others; two developers might be modifying parts

of the same object concurrently with the intend of integrating these parts; in

this case, they might need to view each others’ partial results to make sure

they are not modifying the parts in a way that would make their integration

difficult.

• Conventional database management systems suspend and abort transactions

in service of concurrency control, and use rigid standardized methods of con

flict resolution. The long-lived, and dynamically determined product devel

opment activities, however, cannot be suspended or aborted without inef

ficiency and loss of a significant amount of work. The product developer

would definitely oppose deleting all of the work that might have lasted for

hours. He or she might, however, cooperate with other developers to reverse

the effects of some operations explicitly in order to regain consistency [22].

• Non-serializable schedules may be accepted in a product development envi-

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ronment, since the primary concern is the correctness of the product rather

than the sequence of steps th a t led to the product [5]; developers may ex

change shared objects back and forth in a way that cannot be accomplished

by a serial schedule.

• In conventional database management systems, consistency constraints are

enforced. uniformly on all transactions at all times. In contrast, product

development activities may involve constructing hypothetical future states,

the enforcement of constraints on these future states may often be deferred.

• In the course of a large-scale project, product developers often examine a

great deal of material which provides general background to their work. If

this material is treated as “read” from the point of view of serializability, too

many conflicts arise to be acceptable [31].

To summarize, in product development environments the need for cooperation

prevails. Current product development environments use conventional applica

tions and database management systems. The “insular” approach to data sharing

adopted by conventional applications and database management systems, however,

constrains cooperation and thus impedes the progress of development. Overcom

ing these limitations poses formidable challenges to researchers and developers

of systems tha t support cooperative work; what is needed is a new approach to

generate a shared environment that unobtrusively offers up-to-date group context

and appropriate levels of awareness among individuals and groups. Hence, our

motivation.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.2 Objectives

The broader goal of our research is to provide computer support for cooperation

among people working together to achieve their common goals. This entails the

support for communication, coordination, and information sharing among differ

ent groups and among members of the same group. In this dissertation, we focus

011 data sharing in product development environments, where cooperation among

distributed and diverse product developers is essential for success, and where the

characteristics and requirements of cooperation cannot be satisfied using conven

tional applications and database management systems, as shown in the previous

section. We aim at promoting parallel cooperating activities as much as possi

ble, but without sacrifice of all ability to guarantee system consistency. Specific

objectives are stated as follows.

• To find appropriate types, representation, and granularity for data and meta

data present in the cooperative development process.

• To define a suitable representation model to capture, maintain, and support

the integration and common visibility of products (and/or sub-products) as

developers from different perspectives engage in product development using

a suite of applications.

• To develop concurrency control mechanisms th a t acknowledge the nature of

cooperative product development as lengthy, interactive, dynamically deter

mined, and incompletely pre-specified.

• To develop facilities that actively support and control data sharing among ap

plications and higher level interactions among cooperative developers, rather

than only prevent them.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.3 Contributions

Toward our objectives, we further investigated the characteristics of cooperative

product development environments, identified several new requirements for data

sharing in these environments, and generated a list of desired features that would

provide the specific requirements. We then aimed at developing enough conceptual

structure and mechanisms to exhibit these features. The outcome of this research

includes the following.

• An extensible object-oriented data model suitable for cooperative

product development environments

Objects in the model have descriptive attributes and may have links to other

objects. The attributes may be single- or multi-valued, may be other ob

jects (nested object structure), or may have their values derived from other

objects. Derived attributes may either have their values automatically com

puted when the objects from which they are derived are modified or have

the users employ their applications of choice to adapt to these modifications.

An im portant addition to the object model are control attributes. These

attributes are attached to objects for the specific purpose of enhancing con

currency and cooperation.

Being object-oriented with the aforementioned characteristics makes the data

model powerful enough to describe the complex data that often dominate

product development environments and provide the basis for cooperation

support.

• A flexible model of concurrency control

The model allows users and their applications to reveal intermediate results

without compromising consistency. It also promotes user mediated consis-

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tency (for example, users are notified of changes to objects in which they

might be interested, they could dynamically define consistency requirements

and negotiate to resolve conflicts). In addition, the model also supports dif

ferent levels of intra- and inter-group cooperation.

This increased concurrency and cooperation, among individuals and among

groups, can increase productivity, reduce product turnaround time, and,

equally im portant, support concurrent engineering methodologies [63] by in

volving multiple disciplines throughout the entire development process.

• A fram e w o rk fo r d a ta sh a r in g in co o p e ra tiv e p ro d u c t d ev e lo p m en t

e n v iro n m e n ts

Our approach is to augment both the applications and the database man

agement system with the functionality needed to support cooperation. The

framework includes ag en ts and a co o p e ra tiv e d a ta b a se m a n a g e m e n t

sy s te m . Each application is encapsulated into an agent which provides the

local context for that application. This context is modified both internally

by the application itself and externally as a result of changes to relevant ob

jects in the database by other agents. Agents access the database through

the cooperative database management system. The cooperative database

management system provides, among other features, a dynamic workspace

hierarchy for tentative updates and a set of mechanisms to facilitate user

mediated consistency and to allow users to track work progress.

1.4 O utline of D issertation

The remainder of this dissertation consists of chapters 2 through 8.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C h a p te r 2: B ack g ro u n d - presents a walk through computer supported co

operative work. It defines fundamental concepts such as CSCW and groupware. It

identifies the key elements of CSCW systems and explains how can CSCW systems

be classified based on these, as well as other, elements. The chapter also presents

a brief account for the evolution of product development process from the con

ventional sequential approach to the cooperative concurrent engineering approach

and from the use of files to represent and share data to the use of databases.

Fundamental work done to enhance concurrent database access in cooperative en

vironments is also included in this chapter.

C h a p te r 3: T ow ard a C o m p u te r S u p p o rte d C o o p e ra tiv e E n v iro n

m e n t - introduces an abstract model of interaction. This model is the setting

upon which our work, in the rest of this dissertation, is based. The chapter mo

tivates our research by describing the characteristics of conventional applications

and database management systems in a product development environment; these

characteristics limit the amount of concurrency which can exist in the conven

tional environment. The chapter also discusses features which are needed in order

to support cooperative work, but which conventional environments lack. Finally,

the chapter proposes a framework to provide the needed features and gives a high

level view of the framework.

C h a p te r 4: T h e O b je c t M o d e l - defines the object-oriented data model

used for the representation of data. The chapter presents an overview of the

object-oriented approach to data modeling. It describes the different types of ob

jects involved, the relationships that could exist among objects, and the different

operations on objects. The object model provides the foundation for later chapters.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C h a p te r 5: T h e C o o p era tiv e D a ta b a se M an ag em en t S y stem - presents

the architecture of the cooperative database management system (or Co-DBMS),

describes what functionality it adds to an object-oriented data store in order to

overcome the weaknesses discussed in Chapter 3, presents the programmatic in

terface between agents and the Co-DBMS, and summarizes the rules maintained

by the Co-DBMS.

Chapter 6: Agents - presents the architecture of an agent, describes what

functionality it adds to an application through a set of software modules termed

the application object manager (or AOM). The chapter also presents the

interface between an application and the AOM, and summarizes the rules main

tained by the AOM.

Chapter 7: Cooperative Applications - identifies what is required of an

application for it to participate in the system. An application that satisfies those

requirements is termed cooperative application (or co-application). The

chapter also elaborates what minimal alterations are needed to upgrade an ex

isting application to a co-application, and discusses various levels of cooperation

attainable through the coordination of the co-application with the AOM.

Chapter 8: Conclusions and Future Work - presents a final assessment,

the significance of this work, and future directions of our research.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Background

Modern Civilization is entering a new phase, accompanied by a shift from the

paradigms of an industrial society to the paradigms of an information society. In

this new phase, the axiom that “information is power” and should therefore be

doled out with extreme caution is replaced with the new axiom that “information

sharing is power” and everyone should therefore have access to the information

they need to perform their jobs. This emanates from the simple reality that, to

be competitive in today’s global economy, it will take the cooperative efforts of

people with different skills to create innovative solutions and innovative products.

Today, the success of most projects relies on the cooperative activities of peo

ple. This requires that people communicate, jointly coordinate their activities, and

share information and ideas more than ever. The focus of computing in the new

information society is on groups, not just individuals. Consequently, any mech

anisms or policies to adopt should enable people to work together transcending

boundaries of time, space, and functional organization [13].

C o m p u te r S u p p o r te d C o o p e ra tiv e W ork (o r C S C W) has recently been

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

established as the field that focuses on the role of computers to support coopera

tive work. Researchers and developers, in this field, make use of advances in the

enabling technologies; mainly portable computing, user-interfaces, and computer

networking, to connect disparate information systems, link products with one an

other, and promote inter-person communication.

CSCW promises major positive impact 011 many application domains. One

such domain is product development. Evidently, effective cooperation among

members of an interdisciplinary product development group is the key to success.

This is because the demand for more and more complex products tha t exploit

technological advances is making it extremely difficult, if not impossible, to assign

the responsibility of generating these products to one person or even a group of

people who are isolated from one another. Instead, people should be empowered

to work both concurrently and cooperatively to pursue their common goal. CSCW

provides the needed computer support. Ellis et al. in [16] give useful insights into

cooperative computer-based activities:

• concurrent work occurs naturally and spontaneously when the restriction

tha t only one person can access a document at any given time is removed;

• concurrent work can be confusing at times, but conflicts are surprisingly

infrequent;

• learning the strategies of, and acquiring knowledge from, other group mem

bers is a natural consequence of concurrent, cooperative activities;

• members of a group become familiar with more aspects of the result when

they work cooperatively, than if they had worked independently 011 well-

partitioned tasks;

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• the fact tha t many people, having diverse skills, participate to achieve a

common shared goal tends to improve the overall quality of the result.

Unfortunately, while cooperative work has been acknowledged as an effective ap

proach to product development, its wide scale adoption has been impeded by the

insular approach to data sharing that plagues existing applications and database

management systems, (see Chapters 1 and 3 for details). Consequently, a new ap

proach is required to achieve the needed concurrency and cooperation for effective

product development. Hence, our work in this dissertation.

This chapter provides the background. Here, we introduce fundamental con

cepts relevant to computer supported cooperative work, cooperative product devel

opment, and cooperative data sharing. We also review research efforts, pertinent

to data sharing, which we view as significant contributions toward the realization

of cooperative environments.

2.1 Com puter Supported Cooperative Work

In recent years, there has been a tremendous surge of interest in providing computer

support for many kinds of cooperative work activities. The phrase computer-

supported cooperative work was coined by Greif and ('ashman [26] in 1984 as:

“Computer-assisted coordinated activity such as problem solving and

communication carried out by a group of collaborating individuals.”

CSCW involves contributions from a variety of disciplines. In CSCW commu

nity, input comes from social scientists attem pting to expand our understanding

of the requirements tha t group processes and interactions impose on applications

and to evaluate the im pact of technology on group performance, computer scien

tists and electrical engineers exploring uew concepts and facilities for developing

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

computer and communication applications, application builders aiming at creating

useful tools for group work, and practitioners trying to combine the diverse sys

tems, applications, and knowledge about work groups to determine how changes

can be made to the ways groups work so that future group work is more produc

tive. This cross fertilization has made the field a vibrant one.

CSCW applications are commonly known as g ro u p w are [34, 29, 4], The term

groupware was coined by Peter and Trudy Johnson-Lenz [36] in 1982 as follows:

“GROUPWARE = intentional GROUP processes and procedures to

achieve specific purposes + softWARE applications designed to support

and facilitate the group’s work.”

Groupware is distinguished from normal software by the basic assumption it

makes: groupware makes the user aware that he/she is part of a group, while

most other software seeks to hide and protect users from each other. Groupware

is software that accentuates the multiple user environment, coordinating and or

chestrating things so that users can “see” each other, yet do not conflict with each

other.

CSCW and groupware mark a paradigm shift for computer science, one in

which human-human rather than human-machine coordination, communication

and problem solving are emphasized. This paradigm shift has resulted from a

number of converging phenomena:

• the desire to extend personal computing technology to support group inter

action and computing, sometimes known as workgroup computing;

• the technological opportunities afforded by pervasive computer networking,

which has led to widespread use of electronic mail and computer conferencing;

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• The merging of computing and telecommunications, and the search for new

multi-media communication applications tha t usefully consume significant

bandwidth.

This section identifies fundamental elements of a CSCW environment, proposes

a framework for classifying CSCW systems, and highlights several research issues

relating to aspects of cooperative work.

2.1.1 Elements of a CSCW environment

As we begin to focus on CSCW environments, we must address the three key areas

of information sharing, communication, and coordination, in conjunction with the

group and its activities. We assert that:

Effective cooperation support entails the support fo r information shar

ing, coordination of activities, and communication in group, rather than

individual, context.

The group and its activities

Members of a group participating in a given project often engage in a continu

ous cycle of planning, implementing, monitoring, and modification activities vital

to the success of the project.

An integrated multi-perspective environment should evolve to encompass the

various private perspectives (personal), the various shared perspectives (sub-group)

and the public perspective (group or organization) involved in accomplishing the

multitude of group activities.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Development of applications and the way they are used by group members

must change to support an integrated multi-perspective approach required for

“group operation”. Access to applications and services should be facilitated in

a transparent manner across the organization. To achieve this end, the integration

of existing applications and the development of new applications within an inte

grated framework are essential. Both existing applications and new applications

must be wrapped and/or encapsulated into a federated, heterogeneous integration

framework where applications are no longer associated directly with an individual

or discipline but at the service of group members scattered across the computing

network. In this integrated network, mechanisms should be provided to describe

what services are available to users and in what form.

Facilities for information sharing

The functionality to support cooperative work should enable members of a

group to cooperatively share information. This means tha t some information that

would have remained implicit throughout an individual project must become ex

plicit so tha t it can be communicated to other members of the group. Repositories

of information should be provided for private, shared, and public use.

Traditionally, each application produced and worked with its own data held in

the application’s specific format in disk files that are controlled by the application.

Consequently, information generated by a group is stored in heterogeneous data

formats and in various legacy databases scattered across the organization. Inte

gration of applications of the same class are promoting the creation of database

systems tha t support the operation of applications within their class. Further de

velopments must provide a broader integration in which a network of databases can

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

support inter-operability between heterogeneous systems. Part of the process re

quires developing common data representations and standardization of the variety

of da ta exchange and data modeling supported by applications in the cooperative

environments.

Current information systems, database systems in particular, must also un

dergo some changes. The emphasis of current database technology is to keep people

from inadvertently corrupting data rather the have a workgroup build something

together. As an example consider two designers working with a CAD database.

Seldom are they able to simultaneously modify different parts of the same object

at the same time and be aware of each other’s changes; rather they must check

the object out then back in and tell each other what they have done. Many tasks

require an even finer granularity of sharing. W hat is needed is a shared environ

ment tha t unobtrusively offers up-to-date group context and explicit notification

of each user’s actions when appropriate.

Facilities for Coordination

In addition to information sharing, members of a work group must also co

ordinate their joint activities. Coordination refers to the functionality needed

for the group work to progress towards mutually agreed upon goals. Coordina

tion is critical for effective functioning of multi-perspective groups. These groups

must influence each other so that high quality product is produced within a short

turnaround. The m ajor concern here is how to coordinate group activities and

resolve, conflicts between participants’ simultaneous operations such that the coor

dination overhead does not burden the group and dampen its effectiveness. CSCW

demands a fresh approach to control which is specifically tailored for cooperative

‘20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

work.

In conventional environments, coordination and maintenance of the “current

state” of the product is done by the project leader using a virtual workspace that

may be composed of paper files, computer archives, tools for project management

and so on. Increase in the use of computers and the addition of the “computer

supported group work” dimension to the conventional environment adds another

dimension to the need of a virtual common workspace to maintain and manage the

“current state” of the product. This virtual common workspace must be accessi

ble to all group members, thus providing common visibility of activities and data.

This workspace can be the place used by group members to negotiate and reach

consensus about their design decisions. It can also be the place used for planning

and scheduling of activities, notifying other group members of changes, managing

constraints across multiple perspectives, and other coordination and project man

agement activities.

Another important requirement needed for efficient coordination of activities is

organization history management. For example, in a design project, it is desirable

to capture the design intent and evolution of a product from conceptual design to

retirement. Corporate history is useful for designing future products and docu

menting existing ones. Indexing, linking, and storing various types of documents,

and archiving decisions reached in meetings among group members are some of

the problems that need to be addressed in this context.

Facilities for communication

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The requirements to cooperatively share information and coordinate activi

ties imply that group members must communicate with each other. Communica

tion refers to the functionality needed to support exchange of information among

members of a group. We envisage that computer mediated communication would

achieve a great deal of success when it derives most of its character from the ways

in which people interact (e.g., face-to-face interaction, mail, etc.).

Transition to an integrated multi-discipline environment calls for several changes

in the flow of data and information exchanged between applications and among

group members:

• an increase in the bandwidth of communication between applications, among

group members, and between applications and group members;

• an increase in the degree of “automation” of data and information exchanged;

• a change in the granularity, type and format of data being exchanged.

In conventional environments most of the information exchange takes place face-

to-face among users employing traditional computer utilities like electronic mail.

Communication and sharing of data between applications is minimal. There is a

need for facilities tha t support data sharing and communication between applica

tions and higher level interaction between group members.

2.1.2 Classification of CSCW systems

A wide variety of CSCW systems have been developed reflecting the many different

views of cooperation. The potential benefits of CSCW systems is better understood

in a framework for classifying these systems. The most widely used classification

of CSCW systems distinguishes them in terms of their abilities to bridge time and

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to bridge space [16, 66]. This can be a useful aid in quickly categorizing and later

recalling applications, but it has limitations and many researchers have extended

it. For example, Nunamaker et al. [59] elaborate it by asking whether “different

places” represent different individuals or whole sub-groups. Grudin [30] introduces

yet another useful refinement addressing the overly diverse different time, different

place activities. Rather than the traditional ‘2x2 grid, Grudin defines a 3x3 grid

to differentiate activities that occur at different but predictable times and places,

and different unpredictable times and spaces. Noting the interdependencies among

activities, Johansen [35] calls for “any time, any place” support.

O ther approaches to classifying CSCW systems are described in [16, 66, 13,

46, 30]. Ellis et al. [16] and Rodden [66] presented taxonomies of CSCW systems

based upon application-level functionality. They basically categorized CSCW sys

tems into message systems, conferencing systems, meeting rooms, co-authoring and

augmentation, and coordination systems. Dyson [13] classified CSCW systems in

terms of managing the work process or the work content, and in terms of center

ing the control with the users, with a centralized work agent, or with the work

itself. Kydd et al. [46] examined the behavior of CSCW systems based upon their

predicted ability to reduce the uncertainty and/or resolve equivocality that occurs

during group work. Grudin [30] took a broad-based view of CSCW. He suggested

that rather than thinking of CSCW as a discipline or a convergence of disciplines,

it is more profitably viewed as a forum to which researchers and developers come

to exchange ideas. Grudin describes six contexts from which researchers and devel

opers come: activity, group, organizational, technological, research/development,

and social.

In this section, we present a framework for classifying CSCW systems based

‘23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

on the five key elements of group work: activity, group context, communication,

coordination, and information sharing. The parameters selected for each of these

elements comprise, what we view as, their distinguishing characteristics pertinent

to group work.

Activity

• Scope:

the scope of the activity being examined can range considerably; it can focus

on a broad application domain, such as product development, education,

or banking. A more restricted focus can cut across such domains, such as

meeting management, decision support; further refinements are exemplified

by the examination of different kinds of meetings and activities within them

[53].

• Structure:

activities involved in solving creative problems, such as those tackled by

brain-storming, are usually unstructured; on the other hand, prespecified

tasks often impose specific structure on their respective activities.

Group context

9 Size:

groups can range from two co-authors working together on a paper, to the

hundreds of thousands of subscribers of a particular newsgroup. Nunamaker

et al. [59] note that meeting dynamics and support differ when the number

of participants reaches about 7.

• F’urpose and duration:

a group can be organized around a specific narrowly-defined task, such as

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

writing a document, or can be organized as a team, a project, or an organi

zation; these correlate with another variable; the group lifespan.

• Homogeneity:

Sorgaad [69] identified group homogeneity as a key parameter; groups may

consist of peers, such as a group of software engineers; alternatively, a group

can span vertical levels of management, such tha t all of the people in an

institution who sign off 011 employment authorizations; groups can be hori

zontally mixed, as when support is developed for a newspaper team consisting

of reports, editors, proofreaders, and administrators.

• Cohesiveness:

group interactions vary substantially in the degree they are marked to con

flict or by shared purpose and agreement; even members of a professionally

homogeneous group may have collisions over resources or positions.

• Structure:

management styles vary widely; a simple, hierarchical structure can govern

a production group, a consensus, facilitated style can govern a task force, a

newsgroup may go entirely unmanaged.

Communication

• The form of interaction:

CSCW systems can be conceived to enhance communication within syn

chronous interactions, where people interact in real time, or asynchronous

interactions, where members contribute at different times; creative problems

require group members to cooperate synchronously since the creative input

of each group member is required to generate a strategy for tackling the task;

in contrast, prescriptive tasks have a previously formulated solution strategy

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where group members take on particular roles and work in an asynchronous

manner often without the presence of other group members.

• The geographical nature o f interaction:

CSCW systems can be conceived to help a face-to-face group, or a group that

is distributed over many locations; using this classification, CSCW systems

are either remote or co-located. This division is much logical as physical and

is concerned with the accessibility of users to each other rather than their

absolute physical proximity.

Coordination

The control mechanism within a CSCW system is an additional means of clas

sification which highlights the level of automation each CSCW system provides.

The degree of freedom allowed by each type of system provides depth to the classi

fication discussed thus far. A significant area of research in CSCW systems hinges

on the amount and form of control CSCW systems provide. Two predominant con

trol mechanisms have emerged: conversation-based control and procedure-based

control.

• Conversation-based, control:

this is based on the observation that people coordinate their activities via

their conversation [77]; the underlying theoretical basis for many systems

embracing the conversation model is speech act theory which has developed

from the linguistic work of Austin [3], and considers language as a series of

actions; for example, The Coordinator [77] is based on a set of speech acts

(i.e., requests, promises, etc.) and contains a model of legal conversational

moves (e.g., a request has to be issued before a promise can be made); as users

make conversational moves, typically through electronic mail, the systems

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tracks their requests and commitments.

• procedure-based control:

1. agent-centered:

a user builds his own agent - something as simple as a macro or some

calendar rules, or as complex as an expert system to execute rules lie/she

devices for interacting with other group members and data; the system

lie/she designs sees him /her as the center, and everything else as the

outside world; he/she receives data and requests (commands) from the

outside, and sends data, responses and requests back; tasks are usually

modeled using Al modeling techniques and an inference engine is used

to generate and execute task plans.

2. object-centered:

where coordination knowledge is stored centrally and often routed by

means of forms; the archetype here is the document (or the form) that

knows how to mail itself, display itself, update itself from other sources;

here, the users write instructions that follow the work around; the object

may even send itself out of the system and rely on someone to send it

back; the problem is the closure: what happens if the document wonders

around and gets lost? who tracks it down? this approach does not offer

a high level of representation of the cycle of work to be completed,

but depends instead on a model in the user’s or programmer’s mind;

validation of work completion depends on the users rather than the

system.

3. Process-centered:

concentrates on the representation of concurrency as a means of de-

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

scribing systems; process centered sees the work domain as a whole,

and manages work from end to end as a single, complex activity from a

central vantage (virtual or physical); its model of the domain includes

users, data aud applications, the cycle of work and the state of the ac

tivity; if user-centered has a user agent and object centered has object

agents, then process centered is closer to a group agent, working 011

behalf of the entire group; the distinction between object-centered and

process-centered is subtle: one focuses 011 the work steps, and the other

011 the work cycle.

Information sharing

The shared workspace identifies the way in which information is shared and

constitutes another means to classifying CSCW systems. Users could cooperate

through shared storage, shared application, or messages passing.

• Shared storage:

users interact by sharing data stored in, for example, shared memory, network

files systems, and database systems.

• Shared applications:

users interact with the same application program at the same time; this is

generally carried out either by providing additional facilities that would effec

tively convert a single-user application (collaboration transparent software)

into one tha t can be used by a group of remote users, or by constructing new

applications that can interact with multiple users simultaneously.

• Message passing:

CSCW systems utilizing message passing are often term ed “ structured” or

“active” message systems and assume an asynchronous and remote mode

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of cooperation; the assumption underlying these systems is that members

of a group cooperate by exchanging messages; these systems are based on

the principle of extending the a mount of machine processible semantic in

formation available by adding syntactic structure to the existing message

structures.

2.2 Product Developm ent

This section presents the evolution of the product development process from the

conventional sequential approach to the more advanced concurrent engineering

approach tha t promotes cooperation among product development groups.

2.2.1 The conventional approach

A product development process, following the conventional approach, is comprised

of a sequence of phases starting with marketing studies for the need of a new prod

uct, the identification of requirements and the development of the specifications,

followed by several phases in which the product is gradually defined. At the end,

a product is manufactured, placed in service, and maintained [48]. Earlier design

decisions may limit the range of design decisions which are possible in the final

phases. Feedback from the effect of new design decisions are propagated upstream,

and previous design decisions may be revised. The conventional product develop

ment process is sequential but includes a set of iterative cycles.

It has been indicated that much interaction between different product devel

opers with different specializations takes place between phases in the product de

velopment process [8]. Product developers from different specializations interact,

cooperate, negotiate, and commit design decisions in each of the product develop-

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ment phases. At each stage work by different perspectives is synchronized, reaching

consistency among perspectives, and then moving 011 to a new phase in the product

development process. Work may proceed for long periods of time where inconsis

tency between different disciplines may prevail.

The conventional approach to the development of applications is to support the

single-specialization product development activities. Powerful applications are be

ing realized to address well-structured problems with well-understood theoretical

frameworks within a given area of specialization. Computers are helping the indi

vidual, but they may be complicating the work of the group. Computers promote

the distributed way of working but they still do not provide support for the basic

set of operations required by a group of cooperating product developers: human-

human communication, human-assisted activity coordination, and cooperative data

sharing.

2.2.2 The concurrent engineering approach

A new design methodology is gaining acceptance within industry, government, and

academia. This methodology is known as co n c u rre n t en g in ee rin g (o r C E). The

commonly accepted definition of CE was published by the Institute for Defense

Analysis [76], and is stated as follows:

“CE is a systematic approach to the integrated, concurrent design of

products and their related processes, including manufacture and sup

port. This approach is intended to cause the developers, from the out

set, to consider all elements of the product life cycle from conception

through disposal...”

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The ideas of CE have been around for many years, but because they stand in

contrast to the current practice of sequential product development, CE is gaining

momentum as part of the strategy to m eet the demand from competitive interna

tional markets for the development of more complex products of higher qualities

in shorter times [64].

CE implies a significant change in the ways products are developed and sus

tained. In conventional sequential development practices, information flows one

way: from design to manufacturing. It is a cyclic process, each phase goes through

one or more re-design and test cycles to account for the effect of process on the

design. CE, on the other hand, promotes a dynamic, interactive feed forward of

the knowledge gained and created during the product development process. In

this approach, specification changes and new requirements are propagated down

stream by providing simultaneous access to the. current design state, to all product,

developers who contribute with design decisions during the product development

life cycler, conflicts in manufacturing and logistics perspectives are propagated up

stream, similarly.

CE promotes freer and richer interchange of information between a group of

product developers who can contribute to making a better and cheaper product in

a shorter time. One approach to promote this group organization is to develop a

computing environment that facilitates cooperation and concurrency of activities

among the product developers conforming the group. We call this environment,

a co o p e ra tiv e p ro d u c t d ev e lo p m en t en v iro n m en t, and the development of

such an environment is the target of our research. In this dissertation, in partic

ular, we address data sharing issues relevant to cooperative product development

environments.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3 D ata Sharing in Product Developm ent En

vironm ents

Effective sharing of data is central to cooperation. The representation model of

data is a determining factor in realizing such effectiveness [49, 50]. This sectiou

describes the evolution of product development environments in recent years from

the use of data files to the use of databases.

2.3.1 Data files

Most existing product development applications were developed by different ven

dors with different goals, and before the importance of inter-operability was rec

ognized. For this reason, emphases were placed on the functionality of that one

application, tha t is, on the manipulations of data which the application would

perform. The fact that other applications might perform manipulations on related

aspects of the product, or even that other application exist, was not initially con

sidered.

The applications that resulted from this insular philosophy have their own

private repositories of data [48]. These repositories are collection of files. The

semantics of the contents of these files are unknown to all but the one application

which uses those files and for which the file format was developed. Thus, inter

relationships among the data sets of different applications, which may represent

multiple aspects of the same product, are ignored and it is impossible to auto

matically maintain consistency among their views. Instead correspondence among

various files must be manually maintained. Doing so in a setting of concurrent

development, that is, involving a number of product developers, is a complex,

time-consuming, and error-prone task.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Many vendors have recently made public the formats of files used by their ap

plications. This openness has motivated the creation of a new market, that of

“application,integration”, in which translation utilities or filters are developed

to convert from one vendor’s file format to another’s.

Absence of communication among application vendors during development of

applications has resulted in a large number of file formats. In order to reduce

the number of file formats in use and to encourage the creation of filters, various

standards committees are actively defining standard file formats which implement

common views. The advantage of having applications which use standard file

formats along with the filters to translate among the various formats is that an

application will not require modifications to be used collectively with other appli

cations and therefore the investments in existing application suites are preserved.

The application integration approach is indeed a positive step toward inter

operability and thus sharing of efforts among a group of product developers. A

major problem, however, exists that prevents the acceptance of the approach as

a universal solution to share data in product development environments: that of

the coarse granularity of change, namely at the level of an entire file. Limiting the

granule size at the level of files inhibits support for performing incremental anal

yses on the evolving product. Change notifications to interested parties are also

restricted to a coarse level of detail; that is a file. Furthermore, since concurrent

updates to different parts of the same file by two or more product developers will

result in inconsistencies, and the unit used is the file, two or more activities can

proceed concurrently only to the extent that they involve different unrelated files.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3.2 Databases

In the data-file approach to data representation in product development environ

ments, emphases were placed on the use of a particular application at a particular

time and on translating data into a format suitable for that application. The

usefulness of these applications is thus limited, because the data they manipu

late are not integrated. The data management needs of the product development

environment are extensive and complex [50, 68]. The need in the product develop

ment environment for capabilities which traditionally have been associated with a

database management system, such as structured information, an integrated data

model, access control, and concurrency control, has become apparent in the past

few years [48, 27].

Placing data in a database makes them available for use by many applications

and product developers. The database provides the same programmatic interface

and integrated data model to all applications. Applications read and update the

data in the database, and during their operation cache their own views of those

data; such a view enables the application to efficiently perform its task. Each

application derives the view it needs from the integrated data model offered by the

database. Conversely, when an application needs to induce change in the database,

it must first translate updates from its view to the integrated data model before

submitting them to the database. Thus, in the database approach, there exist

filters, similar to those used in the data-file approach, to translate from the data

model offered by the database to and from the view employed by the application.

A filter is application-dependent and is developed by the application vendor rather

than by an application integrator, and is thus part of the application.

A database offers several advantages over the use of data files to store data

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

used in product development:

• the integrated data model of the database is advertised; any application

vendor is free to develop applications which adhere to that model;

• a database accepts incremental updates: thus, an application that updates

a portion of a product need not re-enter the entire product; instead it can

submit only those updates which represent the delta of change effected by

the application on the product;

• the database serves as central point where access control specifications can

be stored;

• a database management system typically includes techniques to ensure high

availability of data in the event of hardware failures, and the ability to roll

back to previous states or undo recent changes.

The use of existing database management systems, however, does not go without

problems. One major problem emanate from the methods used to control concur

rent access to shared data. In Chapter 1, we discussed some characteristics of the

conventional approach to concurrency control, employed in existing applications

and database management systems, which severely restrict cooperation. Further

examination of these characteristics, as well as others, is presented in Chapter 3.

The next section reviews some recent research efforts aiming at enhancing concur

rency and promoting cooperation.

2.4 Concurrency Control Research

Recently, vigorous research has been conducted to overcome the limitations of the

conventional approach to concurrency control. In this section, we present seven

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

recent research studies dealing with problems closely related to our work. The

first five studies suggest the use of extended transaction models for long-running

cooperative activities, the sixth study deals with coordinating change to a set of

files in a software development environment, while the seventh, and last, study

concentrates 011 real-time group text editing.

2.4.1 Split-transactions, commit-serializability, and par

ticipation domains

Split-transactions were proposed by Pu et al. in [62]. They were proposed

mainly for supporting open-ended activities. These activities are characterized by

(1) uncertain duration, (2) uncertain developments (actions cannot be foreseen at

the beginning), and (3) dependency on other concurrent activities. Pu et al. define

a notion of consistency called commit-serializability. The basic idea of commit-

serializability is that all sets of database actions included in a set of concurrent

transactions are performed in a schedule tha t are serializable when the actions are

committed. The schedule, however, may include new transactions that result form

splitting (or joining) the original transactions. Splitting a transaction divides an

ongoing transaction into two or more serializable transactions by dividing the ac

tions and the resources between the new transactions. The resulting transactions

can proceed independently from that point. Also, these transactions behave as

if they had been independent all along while the original transaction disappears

entirely as if it had never existed. Thus splitting a transaction can be applied only

when it is possible to generate serializable transactions.

The main purpose of split transactions is to commit one of the split trans

actions and release useful results from the original transactions. The other split

transaction continues. Three advantages accrue: (1) dynamic restructuring of

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

transactions: users are allowed to restructure their long transactions dynamically;

(2) adaptive recovery: committing part of the work done by a transaction which

then will not be affected by subsequent failures; and (3) reducing isolation: releas

ing resources by committing part of a transaction.

The split and join operations do not support interaction between concurrent

activities, if used solely. For this reason, Kaiser in [37] combined these operations

with the notion of p a r tic ip a tio n dom ains. A participation domain defines a

group of transactions as participants in a specific domain. A transaction is placed

in a domain in order to share partial results with other transactions in the same

domain in a non-serializable manner, but it must be serializable with respect to

all transactions not in the domain.

2.4.2 Proclamation-based concurrency control

Jagadish and Shmeuli in [33] presented a transaction model which aimed at pro

viding a framework for transactions to cooperate without sacrificing serializability

as a notion of correctness. Cooperation typically requires one transaction relying

on certain behavior by another transaction. Jagadish and Shmeuli stated that,

while this reliance is usually based on some higher level knowledge, it can often be

reduced to a reliance on a particular update behavior; in particular, a transaction

may be able to predict, at least partially, what value it will write for a particular

data item X well in advance of the transaction completing its computation and

committing; another transaction, wishing to read X , may be able to perform useful

computation even if it does not know the exact value of X , but instead merely

that X belongs to some set of values.

In Jagadish and Shmeuli’s model, transactions, as in the conventional model,

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are flat, deterministic, and are assumed to transform consistent states into consis

tent states. Transactions are also monotonic; if each read operation of a transaction

is made to read a subset of what it actually reads then each update operation will

produce a subset of the values it actually produces.

Transactions cooperate by issuing p ro c la m a tio n s . A proclamation is an (im

plicitly or explicitly specified) set of values, one of which the transaction promises

to write when it commits. So, a proclamation offers incomplete information con

cerning future database states. A transaction, upon finding unavailable a data

item that it wishes to access, may request the current item-holder for a proclama

tion. The transaction can compute with the incomplete information provided in

the proclamation, and can commit after writing conditional multi-values.

Jagadish and Shmeuli provided theoretical basis for the proclamation model

and they outlined an implementation strategy, including a lock-based transaction

manager and a transaction compiler extension to handle sets of values.

It is to be noted that, if no proclamations are issued, Jagadish and Shmeuli’s

model degenerates to the conventional flat transaction model based on serializ-

ability. Using proclamations, however, enhances concurrency without requiring

detailed knowledge of the semantics of the particular application. Extensions of

Jagadish and Shmeuli’s model to include nested transactions warrant further in

vestigations.

2.4.3 Nested transactions with predicates and versions

Korth and Speegle in [41] presented a formal model tha t allows mathematical char

acterization of correctness without serializability. They called the model “N es ted

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Transactions with Predicates and Versions (or N T /P V)”. The model com

bines three features that lead to enhancing concurrency over the serializability-

based models: (1) multi-level transactions, (2) explicit consistency predicates, and

(3) versions of objects.

The database in Korth and Speegle’s model is a collection of entities, each

of which has multiple versions (i.e., multiple values). The versions are persis

tent and not transient like in the traditional multi-version scheme [7]. A specific

combination of versions of entities is termed a unique database state. A set of

unique database states that involve different versions of the same entities forms

one database state. In other words, each database state has multiple versions. The

set of all versions that can be generated from a database state is termed the version

state of the database. A transaction in Korth and Speegle’s model is a mapping

from a version state to a unique database state. Thus, a transaction transforms

the database from one consistent combination of versions of entities to another.

Consistency constraints are specified in terms of pairs of input and output pred

icates on the state of the database. A predicate which is a logical conjunction

of comparisons between entities and constants, can be defined on a set of unique

states th a t satisfy it. Each transaction guarantees tha t if its input predicate holds

when the transaction begins, its output predicate will hold when it terminates.

(Compare this with the assumed consistency of conventional transactions.)

A transaction in Korth and Speegle’s model is a quadruple (T , P , I , 0), where

T is the set of subtransactions, P is a partial ordering on these subtransactions, I

is the input predicate on all database states, and 0 is the output predicate. The

input and output predicates define three sets of data items related to a transac

tion: (1) the input set, (2) the update set, and (3) the fixed point set, which is

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the set of entities not updated by the transaction. Given this specification, Korth

and Speegle define a parent-based execution of a transaction as a relation on the

set of subtransactions T tha t is consistent with the partial order P. The relation

encodes dependencies between subtransactions based on their three data sets. This

definition allows independent executions on different versions of database states.

Finally, Korth and Speegle defined a new multi-level correctness criteria: An

execution is correct if at each level, every subtransaction can access a database

state tha t satisfies its input predicate and the result of all the subtransactions

satisfies the output predicate of the parent transaction. But since determining

whether an execution is in the class of correct executions is NP complete, Korth

and iSpeegle consider subsets of the set of correct executions that have efficient

protocols. (See [41] for more details.)

korth and Speegle’s model is not readily applicable in cooperative environments.

This is because the input and output predicates of a transaction are defined against

the global database state and cannot be tailored to the task at hand.

2.4.4 Cooperative transaction hierarchy

The cooperative transaction hierarchy concept was introduced by Nodine and

Zdonik in [58] for supporting cooperative applications like CAD. Serializability

in the conventional transaction model restricts cooperation between transactions

by not allowing the transactions to exchange information through accessing (i.e.,

reading and updating) common data. To overcome this problem, Nodine and

Zdonik proposed to structure a cooperative application as a rooted tree called a

c o o p e ra tiv e tra n s a c tio n h ie ra rch y . The external nodes of the hierarchy repre

sent the transactions associated with the individual designers. An internal node is

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

called a transaction group, and contains a set of members (i.e., children) that co

operate to perform a single task. The term cooperative transactions in the model

refers to the transactions with the same parent in the transaction tree. Cooperative

transactions need not be serializable; instead, the transaction group (i.e., parent)

of the cooperative transactions defines a set of rules, denoting patterns and con

flicts, that regulate the way the cooperative transactions should interact with each

other. Patterns and conflicts are defined in terms of a set of finite-state machines

(or FSMs). A FSM specifies, for a set of objects, the operations allowable for each

cooperative transaction, and the allowable ways of interleaving the operations of

related cooperative transactions.

The main contribution of cooperative transaction hierarchies is the substitu

tion of a notion of user-defined correctness for the notion of of correctness defined

by serializability. The notion of user-defined correctness criteria allows different

parts of a shared task to use different correctness criteria that are suitable for

their own purposes. Because isolation is not required, the cooperative transaction

hierarchies allow close cooperation between transactions and also help to alleviate

the problems caused by long-lived transactions.

Several extensions of the basic model have been proposed. Skarra [68], in

stead of using FSM, used a more complex, Turing-complete grammar to define

patterns and conflicts in a transaction group. Nodine et al. [57] discussed a model

of operation-based recovery in addition to synchronization. Finally, Heiler et al.

[32], in addition to the execution of individual requests, added the execution of

sub-requests and defined an architecture that exploits the facilities of an Object

Management System.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Applying the correctness criteria, in the models above, depends on a recognizer

and a conflict detector to enforce semantic patterns and conflicts. The recognizer

and the conflict detector must be constructed for each application. The utility

of cooperative transaction hierarchies is further limited due to following two as

sumptions: (1) cooperative transaction hierarchies mirror organizational units, or

decomposition of the product, or decomposition of the development process; (2)

a cooperative transaction hierarchy is determined a priori and is fixed throughout

the design process. The work in this dissertation, as will be shown in the following

chapters, relaxes these restrictions.

2.4.5 Lazy consistency

Narayanaswamy and Goldman in [56] addressed the problem of resolving global

conflicts introduced by local changes in cooperative software development. The

aim of their work was to identify the technical basis to support such resolutions.

Narayanaswamy and Goldman stated that, in cooperative software development,

the basis should be a network wide notification of p ro p o sed changes, rather than

actual changes to objects.

The proposed change notifications happen within the context of a larger trans

actional unit called an ev o lu tio n s te p , which corresponds to a single goal of the

programming team. Dependencies between objects are used to define who has a

stake in each proposed change. Support is provided for affected programmers to

approve or reject each proposed change. It follows that, within the context of an

evolution step, programmers can explicitly state when the system is expected to

be in a consistent state, and when it is tolerable for it to be in an inconsistent state.

The causal relationships between proposed changes are maintained so that pro-

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

grammers’ negotiations can be supported. Using these concepts, the authors de

fined a notion of consistency called lazy con sis ten cy which supports a process

of gradually making each evolution step internally consistent and consistent with

respect to other volatile steps th a t might be pursued concurrently.

Narayanaswamy and Goldman’s model allows a great deal of concurrency within

a single evolution step. Work on inter-step consistency, however, is still in progress.

It is also worth mentioning tha t, an evolution step, following Narayanaswamy and

Goldman’s model, has a flat structure; it represents a single goal with 110 support

for multiple goals or sub-goals.

2.4.6 Coordination consistency

Harrison et al. in [31] presented a formal model of concurrent development, in

which development consists of a collection of modification activities that change

files, and merges that combine the changes. They defined a weaker than serializ-

ability notion of consistency called co o rd in a tio n co n s is te n cy that ensures that

changes are not inadvertently destroyed and that the changes of each modification

activity are correctly propagated to subsequent modification activities.

In Harrison et al.’s model, an artifact is represented by a set of files kept in a

master store. Development consists of modification activities and merges. A mod

ification activity is a set of changes, made in isolation in a separate store. Multiple

modification activities can occur concurrently, each in its own store. For the the

set of changes made during a modification activity to become visible outside its

store, that store must be merged with other stores. Ultimately, all changes that

are to become part of the artifact must be merged into the m aster store. The basic

aspect of coordination consistency is ensuring that the developing artifact remains

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

consistent in the face of concurrent modifications without reference to the details

of the artifact.

Harrison et al. based their work on the premise that: during the course of

development, much material is examined that can nonetheless be changed without

adversely affecting the work in progress. An underlying assumption is that the

work of various developers is loosely coupled.

A drawback of Harrison et al.’s approach is their use of files as the granularity

of change. As mentioned in Section 2.3.1, the use of files inhibits performing incre

mental analyses on the evolving product and impedes cooperation. The authors

do not mention how merges will be carried out. In addition, their conditions for

collisions correspond to those where changes are to the same object in both activ

ities. In our work, as presented in this dissertation, we allow a more open-ended

definition of a collision, with applications and people deciding when a collision has

arisen.

2.4.7 Operation transformation

Ellis et al. in [14, 16] described an algorithm for ensuring precedence and con

vergence properties in real-time CSCW systems. No transaction or locking is

involved. Instead, operations are transformed when necessary; the algorithm must

know some semantics of the operations.

The model assumes data replication at all sites and global operations; an oper

ation executed at one site must be executed at all sites. The proposed concurrency

control algorithm is based on the following premise: instead of executing 0 ^o 0 2

a t one site and OioO] a t the other, we execute 0'2oO\ and OjoO -2 where 0 \ and

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0!2 are transformed operations obtained from the original operations 0 \ and 0 2

respectively and o is the composition operation. 0 \ and 0'2 are calculated so that

0 \ 0 O2 when applied to a site object has the same effect as 0!2oOj.

Operation transformation has been used in the GROVE editor [15]. In that

context, each user has his/her own copy of the editor, and when an operation is

requested, this copy locally performs the operation immediately. It then broad

casts the operation along with a state vector indicating how many operations it

has recently processed from other workstations. Each editor copy has its own state

vector, with which it compares incoming state vectors. If the received and local

sta te vectors are equal, the broadcast operation is executed as requested; other

wise it is transformed before execution. The specific transformation is naturally

dependent on the operation type (e.g., an insert or a delete) and on the log of

operations already performed.

The assumptions of full data and application replication and the use of only

transformable global operations restrict the applicability of Ellis et al.’s algorithm

to specific application domains which can exhibit this kind of behavior and which

require tightly coupled cooperation among users. If such application domains exist,

then employing Ellis et al.’s algorithm could enhance their responsiveness.

2.4.8 Remarks

We presented several new approaches that address the differences between con

currency control requirements in cooperative environments and conventional data

processing environments. Surveys of many other approaches exist in [28, 6, 17].

Although all of the approaches presented in [28, 6, 17] and this dissertation fulfill

at least one of the concurrency control requirements, none of them provides ad-

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

equate support for all requirements. Many of the approaches, especially those in

[28], have a relatively narrow, domain-specific, scope. Moreover, the technical sup

port for communications and concurrency control, especially in approaches that

achieve higher levels of concurrency and cooperation, is more often tightly inte

grated into the domain-specific functions of the system. The framework described

in this dissertation, in contrast, is intended to provide mechanisms that render a

more general and encompassing solution. Our work, in addition, addresses several

im portant issues that are, so far, barely addressed by the m ultitude of existing

models of data sharing managers in cooperative environments. These issues in

clude:

• the interface to the applications;

• the interface to the underlying DBMS;

• active participation of the system in handling notifications;

• access to the status of work in progress.

The following chapters describe our work.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Toward a Com puter Supported

Cooperative Environment

This chapter motivates our research by describing the characteristics of conven

tional applications and database systems in a product development environment;

these characteristics limit the amount of concurrency which can exist in the con

ventional environment. The chapter also discusses features which are needed in

order to support cooperative work, but which conventional environments lack.

Section 3.1 introduces an abstract model of interaction. That model is the

setting upon which our work, in the rest of this dissertation, is based. Sections 3.2

and 3.3 discuss the operation of conventional applications and database systems

in a product development environment. Section 3.4 shows the limitations of the

conventional environment th a t render it inadequate for cooperative work. Next,

Section 3.5 discusses features of a cooperative product development environment

which compensate for weaknesses of the conventional approach. Finally, Section

3.6 proposes a framework to provide the features discussed in Section 3.5 and

gives a high level view of the framework. Later chapters present in detail what

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

data model is used by the framework, what services the framework provides, how

the components of the framework operate, what rules are adopted by the various

components, and what levels of consistency are guaranteed.

3.1 H igh Level System M odel

At the highest level, an environment for product development consists of p ro d u c t

d ev e lo p ers employing ap p lica tio n s to access and manipulate data stored by the

d a ta b a se m an ag em e n t sy stem . See Figure 3.1. Each of these components is

discussed below.

3.1.1 Product developers

A product developer is a human who is involved in the development of one or

more products. Product developers may assume different ro les throughout the

development process. A developer’s role determines his or her right to update

specific objects in the database.

3.1.2 Applications

An application consists of application code, internal state, and a translator from

and to the data model offered by the database. Applications are used by product

developers to access and manipulate objects in the DBMS. Applications provide

a user interface to the users who use them. The DBMS can be used only indi

rectly through applications. Applications are independent. They jointly access the

DBMS, but each application is unaware of the existence of other applications. A

product developer can employ m ultiple applications simultaneously.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Product
Developer

Use

Application

Access

DBMS

Reference

Ownership

Figure 3.1: High Level Interaction Model

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1.3 The database management system

The DBMS offers applications the ability to access and make persistent changes

to data stored in an object store. Since applications, rather than the DBMS, offer

a user interface for product developers, then the DBMS needs to provide only a

programmatic interface to the stored data for use by applications. It is to be noted

tha t the DBMS need not be physically centralized, the use of “the DBMS” is not

meant to exclude multi-DBMSs [18] or distributed DBMSs [11], but rather to refer

to the aggregate functionality of the database system being used.

Data are stored in an o b je c t s to re . The DBMS has work areas called w orkspaces,

in which tentative updates are made. When those updates are no longer tenta

tive, they are c o m m itte d to the object store. Before an application can update

an object in a workspace, the application must check-ou t that object into that

workspace. This action indicates an intent of the application to update that ob

ject in the workspace. Intent to update an object is released when the object is

checked-in.

3.2 Conventional Applications

The operation on data of a conventional application consists of recursions of the

following five steps.

• R eserve

Before an application can manipulate database objects, it must secure write

locks on the objects to be updated, and read locks on objects that will be

used during the course of its operation.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Load

An application utilizes data structures particularly defined for its efficient op

eration. Since different applications perform different tasks, the data struc

tures selected to maximize tha t efficiency are application dependent. The

database offers one integrated da ta model for applications; data must be ac

cessed and stored using this data model. No single data model can efficiently

support the m ultitude of representations required by different applications

[10].

Applications interact with the database using the common data model, as

defined by the database schema. If the database offers an object data model,

then the contents of the application’s data structures are derived from the

objects read from the database, and the updates from an application must

be presented as updates to objects.

After the appropriate locks have been acquired, an application loads from

the database those objects which it needs to access for read or update. If

a translation is needed between the view offered by the database and the

data structures used by the application, then it is the responsibility of the

application to secure this translation.

• Manipulate

After loading the desired data, these data are manipulated (in the appro

priate application’s format). It may be impossible to predict the duration

of this step; data manipulation may extend over a period of several hours,

days, maybe even weeks or months. In other words, operations on objects

by applications in a product development environment are often long-lived

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[5, 6J.

• U n load

After the application has manipulated the data to the satisfaction of the

person who initiated the application, the internal state of the application is

translated to changes to objects in the database and these generated changes

are sent to the database. These objects then assume their new state in the

database.

• R elease

After an application has finished its manipulation of objects, it should release

the locks it acquired in the first step, so that other applications can acquire

locks on those objects.

3.3 Conventional Database M anagement Sys

tems

This section presents the concept of workspaces in database management systems

used in product development. The reasons for having workspaces are explained.

The section also describes how objects are conventionally manipulated in these

workspaces.

3.3.1 Workspaces

A conventional product development database contains a p ub lic a re a and a set

of work areas (or sub-databases) called w orkspaces [10, 54]. Stable products are

placed in the public area of the database. All updates to data are encapsulated

within workspaces.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Public area

The public area contains the collection of approved data. In engineering terms,

approved data means data that have undergone several levels of verification and

authorization by some group of people involved in the product development process

(e.g., the developer, the group leader, and the project manager). Data tha t have

not reached full approval have to be marked as so, in order that derived objects be

also regarded as tentative and subject to the final approval of the data they were

derived from. The size of the schema is usually a problem, since it comprises of

a very large number of objects. Even if there were no data quality limitations to

updating the full database, the sheer size of the schema and the data volume in a

large project make it impossible to allow direct updates to the public area other

than the integration of final designs [10].

Workspaces

The length of interactive engineering transactions, the dilferent levels of data

quality, and the desire to narrow the focus to some subset of objects, each repre

sents a powerful reason to generate workspaces [74].

A workspace is a region in the database which holds copies of objects. Appli

cations make changes only to objects in workspaces. These updates are tentative;

an application automatically commits changes to the public area when the desired

state is achieved. Instead of committing changes in a workspace, the changes can

be aborted, which means tha t updates since the last commit are discarded and the

view offered by the workspace is the same as th a t offered by the public area.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3.2 Updates in workspaces

Copies of objects in the workspaces hold the tentative state of the objects. A

workspace offers a view of objects, which is the collective state of the objects. The

view of the objects offered by a workspace is the view of the objects in the public

area modified by some update delta; this delta is the concatenation of all updates

(modifications, creations, and deletions) in that workspace since the last commit.

Each workspace has an associated transaction log which records what updates have

been performed to objects in the workspace. The transaction log is useful in the

event that one or more updates must be undone.

3.3.3 Commit and abort

Let Vw{t) and Vp(t) represent the views offered by workspace W and the pub

lic area P at tim e t,, respectively. Let u,- represent the i th update to W, and

A Uw{t) = < t/i, U2 , ..., > represent the list of all updates applied to W through

time t since the most recent commit at time tprevc 0mmit■ Then the semantics of

update, commit, and abort are as follows.

• Suppose workspace W is created at time then

V w { t In i t ia l) — In i t ia l) 1 ('^ "1)

and

A l J w { t In i t ia l) —

that is to say, the initial state of objects in the workspace is the same as that

of the public area at initialization time.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• For all t ^ t initial ,

Vw(t) = Vp(t) + &Uw (t), (3.3)

in other words, the state of objects in the workspace is the same as th a t in

the public area except for updates made to objects in the workspace.

• If update u occurs at time t.u, then

&Ow{tu) = y(f,„ — 1)+ < 11 > , (3.4)

which is to say tha t updates have a commulative effect on the workspace and

each previous update is a prefix to its successor update.

• Suppose updates to W are committed at time tc ommtt•

Then, for all t)tpre.vCommit ^ ^ ^Commits

— Vp{t"pr£vGominit)' (3.o)

Furthermore,

Commit') = Commit) = Commit 1) "b AUw {t Commit 1) (•!. 6)

and

A U\Y (t Commit) = < > , (3.7)

in other words, updates in the workspace have no effect on the public area

until the updates are committed, and all updates are applied atomically at

commit time (i.e., either all or none of the updates are involved in a commit).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Suppose updates to W are aborted at time t,Abort, then

Abort) — A bor t) — V p f t p r e v C o m m i t) ('hb)

and

A U w {tA b o r t) = < > , (3 -9)

in other words, aborting changes in the workspace causes them to be dis

carded.

3.3.4 Check-out and check-in

Before an application can read or update an object in a workspace, it must check

o u t tha t object into that workspace. Check-out is an association among applica

tions, workspace, and object(s). Check-out may be made either for read or update

access. An object may be checked-out for update access by only one application

at any given time. Furthermore, checking-out an object for update access excludes

read access by different applications. Thus in the conventional product develop

ment environment, the check-out of an object 0 for update in workspace W by

application A is an exclusive write-lock on 0 given to A. This limits updates to O

to occur only in W and only by application A , and checking-out for read access is

a shared read-lock.

The act of check-in releases the intent to read or update an object which

was checked-out. Check-in is the inverse of check-out. An application must apply

internal updates to the workspace or abort them before it checks-in objects.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4 Lim itations o f Conventional Environm ents

As described above, in a conventional environment, the database system offers the

protocol of check-out and check-in which ensures that different threads of activity

which may be interrelated are not run concurrently, or are scheduled in a way that

has the same effect as though the threads’ execution times do not overlap - this is

called serial schedule [61]. Using this protocol, applications have exclusive access

to database objects for the duration of their operation. This is necessary because

applications have been built to assume that data in their read set, tha t is, those

data upon which it has predicated its operation, are not changed by users external

to the application. Allowing other applications to change those data might ad

versely affect the integrity of the application’s results.

But these characteristics are counter to the premise of cooperative product

development, in which multiple users use multiple applications to complete the

work as a team. Thus, a conventional database and conventional applications are

inadequate in a cooperative environment.

3.5 Features of a Cooperative Environment

This section explains those features of a cooperative environment which support

cooperative work and which are not offered by the conventional environment.

3.5.1 No exclusive access

As mentioned earlier, when an application checks-out an object for update, the

database grants the application exclusive access to that object. This approach to

access control has its origin in business transaction processing systems which em-

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

phasize a large number of short, simple transactions issued on behalf of users who

are oblivious of one another. Users requesting the transactions are not allowed to

assume tha t the state will be retained across transactions. By contrast, in product

development environments such as computer-aided design or software development,

developers or development groups share some concrete, often complex, conceptual

artifacts for long periods of time. During the development process, different prod

uct developers interact together, and with the database, to achieve their common

goals. Conventional techniques to controlling concurrent access in a DBMS are

inadequate in a cooperative environment, since a database management system

for product development must perm it activities of undetermined length which do

not have all their operations known a priori and which do not preclude access to

data by many other transactions.

Consider, for example, a computer-aided design environment. It is not feasible

to have exclusive access to the entire design since many designers work on over

lapping aspects of it simultaneously. Even exclusive access to only one portion of

a design is also limiting: parts of a design are interrelated, and it may be useful to

have two or more applications share updates to the same portion of a design. For

example, some designers may wish to share updates to the same portion, or one

designer might want to run several applications simultaneously on the same design

data; applications must not be constrained to be invoked in a serial fashion. W ith

out exclusive access, there must be other mechanisms which permit applications

to maintain views of the design consistent with the database.

3.5.2 Up-to-date knowledge about changes to shared data

Keeping an application informed of the ways in which its read set has changed

enables it to adjust its view to match the changing state of the database. Ap-

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

plications should not be expected to have knowledge of the semantics of other

applications, however. Thus a central mechanism is needed which will notify an

application when data it has cached are changed by other agents. That mechanism

is part of our framework.

3.5.3 Applications adapt to changes

Even with a mechanism tha t guarantees applications that they are notified of

changes to database objects, in order for an application to interact harmoniously

with other applications, it must respond to these notifications in a proper fashion.

This includes not only making its cache of data consistent with the database, but

possibly undoing or making compensating changes to updates it had performed

but not yet com mitted to the database. Exactly what an application does depends

upon the semantics of the application and the data. How notifications should, in

general, be handled by an application is discussed in Chapters 6 and 7.

3.5.4 Use of differential updates

In a product development environment, most applications, when they execute,

make incremental rather than sweeping changes to the product [6, 9]. But if an

application submits its updates to the database as “the new state of the product”

rather than “the differential changes applied to the product” , the incremental in

formation is lost. Incremental information can be lost in a similar fashion when a

workspace is committed to the public area.

Incremental information is useful because it enables notifications of changes

which are sent to other applications to take the form of a small rather than a large

delta. A small delta can more easily be handled by an application. Applications

in the cooperative product development environment will update the database by

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

submitting a list of differential updates in order to preserve knowledge of incre

mental changes.

3.5.5 Extensibility and integration

Extensibility refers to the ease of incorporating new capabilities (such as new

applications) in the environment [72]. Applications must share an open-ended

environment which can he extended to accommodate new applications without

necessitating change to existing applications or other parts of the environment.

Furthermore, it must accommodate sets of applications which are tightly coupled;

such as two applications sharing updates to the same objects, as well as loosely

coupled; such as the applications under the control of different designers working

011 different aspects of the design.

Another principal quality sought in the development of cooperative product

development environments is integration. Integration refers to consistent inter

faces, easy context switching, and efficient communication between applications.

Interaction with the environment should be in a uniform way. In addition, appli

cations should share information among themselves, assuring tha t users are not

obliged to supply the same information multiple times, nor needlessly paying for

computation of available information. Environment components should be shared

whenever possible as well, to keep the size of the environment down, and to prevent

performance penalties due to excessive paging and thrashing.

Several investigations have underscored the importance of extensibility and in

tegration in product development environments, however, they have also indicated

tha t there are some fundamental tensions between them: a tightly integrated en

vironment is easiest to achieve if the environment is limited in scope and static

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in its content and organization; conversely, broad and dynamic environments are

typically loosely coupled and hence impose excessive burdens on users [60, 72].

Consequently, efforts should be directed toward maximizing both extensibility and

integration while putting into consideration the trade-off between them.

3.5.6 Multiple levels of cooperation

Product developers use separate workspaces when the objects checked-out into

those workspaces are unrelated, or when integration of objects into a parent ob

ject is being deferred. At other times, when product developers want to work on

very closely related parts of the product, any partitioning may seem artificial and

may impose an unacceptable overhead. In this case, product developers should be

granted the ability to access the same objects in the same workspace. When prod

uct developers share access to some object, the views of the applications employed

by the product developers should be kept synchronized with tha t of the workspace.

It is to be noted that such a constructive utilization of applications is based on

the premise that users sharing access to the same objects are willing to communi

cate among each other to reconcile their differences and coordinate their conflicting

activities. This concept of cooperation among users is absent in the conventional

environments, however, it should be intrinsic to cooperative environments.

3.5.7 Dynamic workspace hierarchy

The notion of a workspace, as presented in the previous section, can be generalized

to a hierarchy [38, 1, 20, 54, 74]. Workspace hierarchies support our view that a

complete product comes to existence step by step through cooperation. At the top

of the hierarchy is the root workspace Wroot. Every workspace W, except ITroot,

has a superior workspace Superior(W), and every workspace IT, except those at

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the leaves, has one or more inferior workspaces Inferior(W). See Figure 3.2. The

root workspace is the actual global database used to store archived products, li

braries of components, fully validated designs, relationships among key features

associated with the development process, processes for building the product, com

puter code, life cycle considerations, project organizations, etc. The workspace

hierarchy supports the co-existence of different states of the same object. At any

given tim e during the development process, the root workspace will contain the

most recently released public collection of database objects (i.e., the omega re

lease). “Super”-workspaces, tha t is, those closer to Wr00t, hold data which is more

correct, stable, or public. The state of a design in a “sub”-workspace has a lesser

degree of validation, is more tentative, or is less public.

The root workspace always exists. Other workspaces are dynamically created

and destroyed. A sub-workspace may be created in order to separate unrelated

projects or to create a work area with consistency requirements less stringent than

those of the root workspace. In addition, a product developer or a group of prod

uct developers may also create sub-workspaces in order to encapsulate tentative

or experimental updates, or narrow the focus to some subset of objects. Users

can move into the context of the workspace hierarchy and examine the objects

contained there.

Let and Wj be workspaces. We define the < relation between workspaces

to be the reflexive and transitive closure of the descendant relation as follows.

< Wi,

If Wi < Wj then Wi < Superior (Wj),

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Application

Application

Application Application Application

root

Figure 3.2: Workspace Hierarchy

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

If Wi < Wj and W{ ^ Wj then Wi is $ub-workspace(Wj), and Wj is super-

work$pace(Wi).

The workspace hierarchy has invariants and semantics of commit and abort that

are completely analogous with those presented in Section 3.3.3, given workspace

W ± WTOOi.

Along with the workspace hierarchy comes a generalized model for check-out

and check-in. An object can be updated only in the workspace in which it is

currently checked-out for update. (The rules of check-out and check-in will be

described in detail later.)

In a database system which offers two levels of workspace: public and private (or

experimental), the actions of check-out and check-in of an object strictly alternate

[44]. The two-level workspace hierarchy does not allow for a natural representation

of hierarchical tasks in which groups of users participate [20]. What is needed is

a dynamic hierarchy of workspaces for users or user groups which permit a sub

workspace to be created at any time. In that sub-workspace, a subset of objects

can be checked-out and experimentally updated without affecting the state of those

objects in the superior workspace. When a set of updates is deemed acceptable,

the objects can be checked-in and the changes are committed atomically to the

superior workspace.

3.5.8 User mediated consistency

It has been recognized that one needs to create more flexible notions of consis

tency when dealing with product evolution. For example, Sutton [70] points out

that when it comes to software development there are many reasons why one can-

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

not enforce consistency in the same way that one might in conventional database

systems:

• it is difficult to discern and/or articulate all the constraints a-priori for a

software system;

• autom atic detection of all consistency violation (let alone automatic repair)

is completely unrealistic;

• it is not always clear when one must check for consistency violations or where.

The functionality for dynamic constraint specification and collision records provide

one answer to the above problems.

Constraint specifications

As previously stated, constraints among data must at some point in the develop

ment process be ascertained to be valid. One restriction which is intended to limit

the propagation of potentially incorrect modifications to a design is the require

ment tha t the validity of designated constraints of a design be ascertained before

changes can be committed to a workspace. In conventional environments, this task

is performed manually. The manual method is error prone; a user may forget to

invoke tools to check consistency, or may be tempted to give intuitive (and maybe

incorrect approval of the updates performed).

The proposed workspace hierarchy model offers constraint specifications in

workspaces. A constraint specification is an attachm ent to a workspace that

names a constraint in objects which must be known to be valid within an applica

tion’s cache or in an inferior workspace before the application or inferior workspace

can commit to that workspace. Constraint specifications are inherited by super-

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

workspaces.

Constraint specifications can be used to enforce some subset of constraints

in certain workspaces in order to guarantee a known degree of consistency within

that workspace. Different constraint specifications can also be assigned to different

workspaces depending on the degree of correctness required. For example, a pub

lic workspace might have strict requirements, whereas an experimental workspace

might have none. In essence, constraint specifications allow the exploitation of

different correctness criteria for different groups and individuals.

A constraint specification does not determine how a constraint is to be vali

dated, nor when. It is merely a restriction of committing changes to a workspace

which is based upon the status of constraints. Other mechanisms are needed to

control when to fire consistency checkers. The concept of cooperation motivates

users intervention to amend constraint violation [28].

C ollision reco rd s

Another crucial issue is that of collision handling. Even when users are benevolent

and attem pt to cooperate, there may be times when one user will make a change

to an object that another user cannot understand, cannot adapt to, or considers

an error, and therefore is unacceptable. We refer to this situation as a collision.

Collisions may be identified when updates are applied to a shared workspace, or

when an attem pt is being made some tim e later to integrate a new version of a

product.

When a collision occurs, a product developer or his/her application may wish

to register its disapproval of the update in an effort to obtain corrective actions or

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

an explanation. This is done with a co llision reco rd th a t references the product

developers involved in the collision, the update which caused the collision, and the

application which performed the update. The product developers normally will

try to resolve the collision between themselves. If they cannot, then resolution of

the collision is the responsibility of a mediator. A collision resolution is a record

that some action has been taken on behalf of the collision. A record of collisions

and their resolutions should be kept for each workspace both in order to provide a

history and to enable product developers and/or mediators to browse unresolved

collisions [65].

In order to confine the out-spread of collisions, the cooperative product devel

opment environment should prohibit a workspace from committing to its superior

workspace if it contains unresolved collisions. The conventional environment offers

no support for collisions.

Collision records and constraint specifications provide our approach to imple

ment user mediated correctness criteria.

3.5.9 Moniroting work status

Collision records are part of what is referred to here as work status. Other examples

of work status include information pertaining to:

• the workspace hierarchy;

• the product developers participating in the different tasks;

• the active applications in different workspaces;

• the objects checked-out by different applications in different workspaces.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The ability to both access and track changes in work status is im portant for co

operating product developers since it provides a degree of “awareness” of what

others are doing and hence it helps in monitoring the progress of the work and

assists in coordinating the diverse efforts of the product developers participating

in the process. As a result, supporting product developers with the ability to ac

cess and track changes in work status should be an integral part of a cooperative

environment.

3.6 The Proposed Framework

The two preceding sections have described in what ways conventional databases

and applications are inadequate for an environment that supports cooperation

among product development groups. Enhancements to alleviate these deficiencies

have also been proposed. Realizing these enhancements motivates our work. The

remainder of this dissertation provides our framework for the enhanced capabilities.

The framework presents a software layer that resides between the data store

and the applications which manipulate those data, thereby acting as an interme

diary between the application and the data store. The framework is divided into

two main components: the A gent and the C o o p e ra tiv e D a ta b a se M an ag e

m e n t S y s te m (o r C o-D B M S). The agent consists of the application plus a set

of software modules called the A p p lic a tio n O b je c t M an ag e r (o r A O M). The

Co-DBMS consists of an o b je c t-o r ie n te d data store with associated schema plus

a set of software modules called the D a ta b a se O b je c t M an ag e r (o r D O M).

Operationally, the application within the agent invokes libraries of the agent which

have been linked with the application - the AOM; the AOM interacts with the

DOM in the Co-DBMS; and the DOM invokes functionality of the data store.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The model of interaction, described in Section 3.1, is modified as follows: prod

uct developers use agents to access and manipulate data stored by the Co-DBM S.

See Figure 3.3. The modified model also assumes that product developers can (in

formally) communicate together to expose and reconcile differences in viewpoints.

The assumption that applications are independent still holds. However, awareness

of other applications is provided indirectly through messages received by an appli

cation, through its AOM, from the Co-DBMS (or more precisely, from the DOM

within the Co-DBMS, as will be explained later) as a result of the actions of other

agents.

3.6.1 Features of the framework

In order to provide services which are needed in cooperative environments, the

framework exhibits the following features.

• O b je c t-o rie n te d d a ta s to re

All persistent data are stored in and are accessible from the Co-DBMS. In

order both to control access to portions of data and to make manageable the

amount of data which is transferred between agents and the Co-DBMS, data

are divided into a large number of in te rc o n n e c te d o b jec ts . Objects follow

the object-oriented approach; each object has a type, an identity, an internal

state, and a programmatic interface to access and change that state. The

object model used by the framework is presented in Chapter 4. This object

model constitutes the formal basis of our work.

• S u p p o r t for v a ry in g deg rees o f c o o p e ra tio n

Facilities provided by the framework accommodate sets of applications which

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Informal
Communications

Product
Developer

Use

Agent

Application

Access

V
Co-DBMS

Reference

Ownership

Figure 3.3: Modified High Level Interaction Model

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are tightly coupled (such as a schematic editor and a simulator which are be

ing used simultaneously by one product developer) as well as those which are

loosely coupled (such as applications under the control of different product

developers working on different aspects of the same artifact).

• U se o f no tifica tion

The Co-DBMS tracks updates to shared data. Unlike a conventional database

in which the guarantee given to an application is tha t it has exclusive access

to data, the Co-DBMS instead guarantees only that an agent will receive

asynchronous notifications to maintain a view consistent with the database.

Cooperating members of a group communicate informally; the DOM formal

izes asynchronous communication between the Co-DBMS and the agents.

• E x te n s ib il ity an d in te g ra tio n

The framework is independent of the semantics of particular applications

within agents, so that new applications can be added to the environment

without necessitating modification to the Co-DBMS or the agent software.

In order to track changes to data in which the application is interested, each

application informs its AOM of the set of updates in which it is interested.

When an event occurs which matches an interest, the application which reg

istered the interest is sent a local n o tif ica tio n . If another agent updates

an object in which an application is interested, the AOM in the agent of

that application will be sent an e x te rn a l n o tif ic a tio n by the Co-DBMS.

The AOM offers a uniform programmatic interface and associated protocols,

with which applications can create, destroy, commit, and abort workspaces,

check-out and check-in objects, and access and update data.

• D y n am ic w orkspace h ie ra rc h y

The Co-DBMS offers a hierarchy of workspaces and associated check-out and

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

check-in protocols with which to encapsulate tentative changes to objects.

Although many users may have permission to update the same object, that

object can be checked-out in at most one workspace at any time. Thus if two

users wish to update some object at the same time they must do so within

the same workspace.

• E n fo rc in g c o n s tra in t spec ifica tions

The Co-DBMS enforces consistency specifications attached to workspaces.

• C o llision m echan ism

The framework offers applications a mechanism to register collisions and

their resolutions, and prevents updates in an inferior workspace from being

committed to its superior workspace if there are unresolved collisions in the

inferior workspace. The framework does not enforce a particular policy of

collision resolution but rather provide a vehicle for instituting policy by al

lowing applications both to decide which changes constitute collisions and to

determine what is done in the event of a collision.

• W o rk s ta tu s m o n ito rin g

The framework gives applications access to the work status. Work status is

maintained by the Co-DBMS and made available to all agents.

• A u to m a tic agen t cache con sis ten cy

Agents cache objects which they are accessing in an e x te n d e d o b je c t cache

(explained in Chapter 5), which is the agent’s local object workspace. A

cache may grow stale, however, when another agent updates those objects.

The AOM in the agent processes update notifications from the DOM in the

Co-DBMS and ensures that the cache stays consistent with the Co-DBMS

in the face of updates by other applications.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Automatic invalidation of constraints

It is unreasonable to assume th a t applications will understand the impact

of updates they make on all constraints associated with the product and its

development process. The set of constraints may grow over time, for exam

ple, as the data model evolves. For this reason the AOM is responsible for

invalidating constraints whose validity may have been disturbed by updates.

• Efficiency

Modules of the AOM are directly linked with the application in an agent.

When these modules are invoked by an application, the CPU of the worksta

tion running the agent is used. The DOM manipulates and controls access to

data in workspaces, but the manipulation of data are performed by the indi

vidual applications, each with its own set of special-purpose data structures

which enable it to perform its task efficiently.

3.6.2 Architecture and operation

Remaining chapters of this dissertation present in detail the architecture and oper

ation of the DOM and the AOM, explain what capabilities they add to the DBMS

and applications, respectively, and show how these capabilities provide what is

needed in cooperative product development environments.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

The Object M odel

The notion of an object from object-oriented programming languages (OOPLs) and

object-oriented databases (OOI)Bs) provides a way to describe all of the complex

data that are usually required in cooperative product development environments

such as CAD/CAM and CASE [10, 39, 67, 50, 44, 55, 17]. Applications in these

environments manipulate data that are often complex and intricately connected

by numerous consistency constraints. For example, in software development, the

notion of an object is sufficiently powerful to describe things as diverse as program

modules, test cases, compilation, specifications, and documentation, so it provides

a natural uniform way of describing the artifacts and processes of software engi

neering.

In this chapter, we propose a d a ta m odel for cooperative product development

environments, intended for applications such as VLSI circuit design, mechanical

parts design, and software development. The context for our data model is o b je c t-

o rien ted in which data are broken into a collection of in te r re la te d o b jec ts .

This chapter describes the characteristics of the object-oriented data model,

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

presents and explains the schema language which is used to define a specific data

model, and discusses the ways in which objects may be related to one another.

It then enumerates what operations can be performed on objects, and offers a

detailed example of a simple schema from the software development domain.

4.1 The O bject-O riented Approach

There are three basic concepts to object-oriented modeling: o b je c ts , ty p e s , and

m essages. Briefly, objects are the building blocks that combine data and processes

to perform a specialized role in the system; a type is a tem plate for similar objects;

while, messages represent the interface that allows objects to interact without

having to understand or interfere with others’ internal processes [73]. In this

section, we describe each of these concepts with emphases on the characteristics

that serve our model.

4.1.1 Objects

Although there is no common definition of object, we present here a working

definition for the purposes of our work. An o b je c t is an entity that encapsulates

s ta te and b eh av io r into a self-contained package. Every object has the capability

of storing data, which define the state of the object. The behavior of an object

defines the ways in which the object’s state can be affected. Objects are created

and destroyed dynamically. The lifetime of an object is independent of the lifetimes

of other objects, (except in some case of the object being owned by another object;

this case will be explained later in the chapter). Objects have three key properties:

identity, state, and operations (or methods). Each of these is described below.

• O b je c t id e n tity : every object is an abstraction that has an identity that

is independent of the values of any of its properties or relationships to other

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

objects. This identity is captured by a unique, immutable o b je c t id en tifie r

(O ID). Basically, an O il) is an arbitrary numerical value, that is autom at

ically assigned and maintained by the system, and the system ensures its

uniqueness. The OID is used as a handle with which a client of the database

system (such as an agent) can reference and access the corresponding object.

• S ta te : objects of the same type are specified and distinguished by their

s ta te , which may (or may not, for some kinds of objects) change over time.

The state of an object is captured and maintained in n a m e d slo ts (o r v a ri

ab les). Each object has an array of slots to store state data. A slot’s value

can be specified to be either single or multi-valued.

Each slot has a n am e , ty p e and value. Slot names are unique within an

object type. The slot type designates the type of the value that can be as

signed to that slot in instances of the object type in which this slot is declared.

A slot of one object can be referenced by another object (described below).

Each slot, however, is owned by exactly one object and is not shared. More

over, updates to a slot m ust be done through the object which contains it.

• O pera tions: an operation (or method) is a mapping from some input ob

jects to output objects. The mapping is performed in response to messages

sent by other objects. Operations are applied to create or destroy objects, to

access their attributes, to compute results, to test constraints, or to trace re

lationships to other objects. An operation is executed only when the correct

type of message is received from the right source object. Only the object’s

operations can access its state.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Operations are embedded within objects rather than operating as free-standing

entities. Each operation that can be applied to an object has a n am e, an op

tional set of p a ra m e te rs , and a b o d y (implementation). Operation names

(and param eters) are known externally. The body is known only to the

containing object. The body is a procedure, written in some programming

language, that is executed (by the containing object) when the correspond

ing operation is triggered. This procedure, which can access or change the

state of the object, performs the mapping from inputs to outputs, and may

have messages sent to other objects from within. The object processing an

operation, first completes that operation before receiving any more messages.

4.1.2 Types

Objects are associated with types (or classes). A type is an abstraction that al

lows the user to encapsulate similar objects. An object type is simply a tem plate

for those objects exhibiting similar characteristics, and it defines the aspects of

objects tha t are the same for all the actual realizations (objects) of that type.

Consequently, the object type determines what slots the objects of that type have,

and the operations to be applied to those objects. Objects of a given type are called

in s ta n ces of tha t type. Instances of a type are related to tha t type through the

“is-a” relationship. For example, all objects whose state and behavior correspond

to the common notion of rectangle, are instances of type “rectangle.” Similarly,

one can have types layout, queue, etc.

Many different types can be defined to serve different purposes. The various

types, however, are not defined in isolation. Rather, they are defined as special

cases of each other, forming what is known as a ty p e h ie ra rch y . For example, the

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

collection of products a company offers could all be defined as specialized versions

of more general products, all of which could be considered special cases of the more

general type product Formally, these special cases are known as su b -ty p es . The

types of which they are special cases, in turn, are known as their su p e r- ty p e s [73].

The advantage of defining types in a hierarchy is that, through a mechanism

called in h e ri ta n c e [73], sub-types share all the characteristics of their super-types.

For example, a “NANI) gate” would inherit all the operations and variables of its

super-type “Gate” .

4.1.3 Messages

An object-oriented computation proceeds by m essages sent from one object to

another. By convention, the object sending the message is called the sen d e r and

the object receiving the message is called the rece iv er.

Structurally, a message consists of three parts: the identity of the receiver, the

operation name the receiver is being asked to carry out, and a list of (optional)

parameters that the receiver may need to perform the requested operation. Two

special object types are generally recognized: ANY - to indicate any from the uni

verse of object types; and SELF - to indicate the object that issued the message

itself.

Using messages to carry out interactions between objects confers the same

benefits as in real world - namely, it protects the internals of objects from outside

intrusion, and it protects all the other objects from having to contain information

about the structure of any one object. Another benefit of using messages is po ly

m o rp h ism [73] - because objects are defined independently of one another, the

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

same nam e can be used for different operations in different objects. To illustrate

polymorphism, consider, for example, the message “add” : sent to a purchase order,

it might mean add a new line item; meanwhile, if it is sent to an account object,

it could be an instruction to increase the current balance.

4.2 T he Proposed Object M odel

The object model we propose adopts the object-oriented approach (desrcibed in

Section 4.1). In addition, objects in our model are related through various rela

tionships. In this sectiou, we describe the object schema, the different relationships

among objects, and the operations on objects.

4.2.1 The object schema

The particular data model offered by the database system will depend on the

application domain chosen and upon design decisions made by the person(s) who

define(s) the data model. The data model in use, th a t is, the object types, the

structure and types of their slots, and the operations applied is described by the

schem a. The syntax of a schema is presented below in Backus-Naur Form (BNF).

• The schema consists of a number of declarations of object types.

<Schem a> ::= <schemaDecl>

<schemaDecl> ::= <objectTypeD ecl> | <objectTypeDecl> <schemal)ecl>

• A declaration of an object type specifies the name of the object type followed

by declarations of the slots that will capture the s tate of objects of that type.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<objectTypeDecl> ::= <objectTypeName> { <.Slots> }

<Slots> ::= <slotDec.l> | <slotDecl> ; <Slots>

• Object types are named by identifiers, or character strings chosen by the

person who defines the data model. Object type names are unique within

the database.

<objec.tTypeName> ::= identifier

• The declaration of a slot consists of a slot name, followed by the type of

the value tha t can be assigned to that slot in instances of the object type in

which this slot is declared.

<slot[)ecl> ::= <slotNam e> : <slotType>

• Slots are named by identifiers. A slot name is unique within an object type.

<slotN am e> ::= identifier

• A slot’s value either can be assigned any of a specified type, or can be the

result of a computation applied to the values of other slots (a derived slot).

<slotType> ::= < typel)ecl> | derived <derivationDecl>

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• A slot’s value can be specified to be either of a basic ty p e (e.g., logical,

integer, real, string, etc.), an o b je c t ty p e , in which case the value is a sub

object of the object which owns the slot, a se t of values of a specified type,

or a re fe ren c e to another object of a specified type.

<typel)ecl> ::= <basicType> | <objectTypeName> | se t <typel)ecl>

| re fe ren c e <objectTypeName>

There are im portant differences between a slot’s value being a sub-object,

and its value being a reference to another object: in the former case, the

lifetime of the sub-object is tied to that of the containing object in that the

sub-object is created or destroyed when the containing object is created or

destroyed, respectively; in the case of a reference to an object, the lifetimes

of the referencing and referenced objects are unrelated, in this case, refer

ential integrity is enforced, however, which means that an object cannot be

destroyed if another object references it.

• We present here four basic types: logical (true or false), in te g e r and rea l

(numeric), and s tr in g (array of characters). It is to be noted, however, that

these types are merely examples. Other types might be added and are absent

only for the sake of simplicity.

<basicType> ::= logical | in teg e r | re a l | s tr in g

• The computation of a derived slot value either can be the responsibility of

the agents (ex te rn a l) or can be automatically carried out by the system

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(d irec t) . In the former case, the computation applied to the values of other

slots to obtain the derived slot value is usually arbitrary and may be poten

tially complex. In the later case, on the other hand, the computation is fairly

simple such as having the value of the derived slot to be equal to another

object or a slot of another object.

<derivationDecl> ::= e x te rn a l <externalSpec> | d ire c t <directSpec>

• To explicitly s ta te tha t the value of a slot, representing some aspect of the

object, depends 011 the values of other slots in a way th a t might require

some arbitrary computation, we introduce the concept of d e riv e d e x te r

na l slots. The system does not have the capability to automatically keep

these derived values current. Such derivations are the responsibility of the

users. The schema, however, indicates in the <externalSpec> the slot names

[<slotN&mes>] upon which the d e riv ed ex te rn a l slot depends.

<externalSpec> ::= <typeDec.l> [<slotNames>]

<slotNames> <slotNam e> | <slotName> , <slotNam es>

• The value of a derived slot can be directly computed from sub-objects or

referenced objects. The <derivationformula> specifies how that value is to

be obtained. For simplicity, we only consider cases where the value of the

derived slot is a copy of sub-objects or referenced objects; the d e riv ed d i

re c t slot may assume the value of the slot of a sub-object, which, in case of

a set-valued slot, would result in a set of values, or it can be the result of

following a reference to another object. (Derived slots are presented in detail

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in Section 4.2.3.)

<directSpec> ::= <derivationformula>

<derivationformula> ::= <slotN am e> . <slotName> | <slotName>j"

Where X .S denotes slot S is a sub-object of slot X and X 'l denotes a refer

ence to slot X.

4.2.2 Relationships among objects

Although objects are independent entities with their own separate identities, ob

jects can be related to each other via relationships. Relationships are one of the

most fundamental parts of any da ta model. From one point of view, they are what

distinguish databases from file systems [50]. The participation of objects in a rela

tionship is defined by mappings, where a relationship has a mapping for each one

of the object types it relates. Relationships among objects are expressed through

object slots.

In this subsection, we will elaborate two ways in which objects can be related

to one another: co m p o sitio n and re fe ren ce . We view these as being crucial to

cooperative product development environments.

C o m p o sitio n

It is possible for an object X to be nested within another object Y , as defined

by the data model. In this case the nested object X is said to be a sub-object

of Y that is contained in Y , and Y is said to be the owner (or container) object.

A sub-object is related to its owner object by the is -a -p a r t-o f relationship. An

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

object can be a sub-object in either of two ways: it can be the value of the slot

of another object, or it can be a member of a set-valued slot of another object.

Set-valued slots are useful when the number of constituent objects cannot be de

termined in advance [48, 73]; an example is a design which contains some number

of components.

An object which is composed of other objects can itself be nested in an object.

Thus recursive nesting of objects can give objects a hierarchical structure. Object

composition is acyclic. A given sub-object can have at most one owner, and its

owner (if it has one) is fixed for the lifetime of that object. Having the lifetime

of a sub-object to be tied to its owner, implies that when an object is created,

sub-objects are also created (except in the case of a set-valued slot, that would

initially be empty); when an object is destroyed, so are its sub-objects (and in the

case of a set-valued slot, all sub-objects in that set).

Of particular interest is the object tha t is not contained in any other object.

This we refer to as a base o b je c t. A base object has a lifetime which is indepen

dent of any other object. It follows, from the above presentation, tha t if object X

is not a base object, it is contained in a single other object Y , where X C Y. We

then say that X is a sub-object of Y. Accordingly,

the database can be viewed as a collection of base objects that can be

linked together through references.

References are explained next.

References

When an object is contained in another object, it is accessible only through its

owner. Also, composition provides a way to tying an object’s lifetime to that of

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the container object. There is another way to make an object accessible to another

object: through a reference . A reference is a handle to an object by which the

object can be accessed by other objects. References to an object are stored in the

slots of another object. If an object X or a sub-object of X references object Y

or a sub-object of Y , then X is said to reference Y, denoted re ference(X ,Y) .

Abstractly, we can view an object as having two types of slots: descriptive slots -

describing characteristics of the object components, and reference slots - linking

the object to other objects. In addition, each slot, whether descriptive or reference,

may be set-valued.

References are useful because they perm it sharing of information. In a CAD

database, for example, components within one or more designs may reference the

same design because instances of th a t design appear multiple times within the

parent design(s). The referenced object represents a common substructure of all

objects which reference it. Another benefit of references is that the referenced ob

jects can change in size and composition without affecting the referencing objects.

When an object is destroyed, all references it has to other objects are also

destroyed. “R e fe re n tia l in te g rity ” is enforced, however, an object cannot be

destroyed if there are references to it. Unlike composition, an object is free to have

any number of references to it, also object references may be cyclic.

4.2.3 Derived slots

Sometimes the value of a slot S may be related to other slots - called source slots

- in that if any of those slots change, then the value in S may also need to change

in order to stay current with its source slots. Such a slot is called a d e riv e d slot.

Derived slots are used as a means of explicitly specifiyiug the the semantics of the

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

relationships among different objects. A derivation specification is designated

for each derived slot. In our data model we distinguish two types of derived slots:

derived direct and derived external slots. The rest of this section explains the

semantics of both types.

Direct derivation

In general, the value of a slot can be specified to be the same as that of another

object, or the sub-object(s) of an object, or the result of following a reference to

another object, or some combination of the preceding. The derivation specification

of a derived direct slot consists of a set of source objects and a derivation function

determining how the value is to be obtained from this set. The value of derived

direct slots, unlike derived external slots (see below), always stay current with

respect to their source slots and this currency is maintained by the system.

External derivation

The above stated derivation functions are simple and can be quickly recomputed

when one of the source slots change. There are some cases, however, where the

computations may be arbitrary and potentially complex [56]. Consider, for exam

ple, the case where the derivation function has to run design consistency checking

and/or perform some analysis. Our solution in this case, is to have the derivation

specification include only the source slots and leave the computation to be car

ried out by the tools most preferred by the users. We identify this special case

of derived slots as derived external slots. Which tools to use might as well be

mentioned in the specification, however, this may be less accommodating to users’

preferences to using particular tools.

In addition to the above usage of derived external slots, they can also be utilized

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in situations where it is difficult to determine automatically when a given change

to an object necessitates a change to a potential dependent. Therefore, derived

external slots provide us with the ability to define a weaker notion of dependency;

capturing only tha t the dependent object might require change, but defining neither

the circumstances under which a change is absolutely required nor the nature of

the change.

4.2.4 Operations on objects

Base objects can be created and destroyed. Updates to the state of an object are

accomplished by making updates to its slots. Updates are performed by applica

tions on their own cached copies of objects, as will be described in Chapter 6. In

this section, we present those operations tha t create and destroy base objects, and

describe what updates on slots of objects are permissible for each type of slots.

Operations on base objects

Create

Base objects are created (instantiated) by means of the Create operation. The

newly created object is given a unique Oil); its slots assume default values. Orig

inally, the identity of the created object is only known to its creator. It may,

however, be passed to other objects as part of an attribute list in a message.

Destroy

A base object removal is accomplished via the Destroy operation. When an ob

ject is destroyed, all of its bound sub-objects are destroyed. Referential integrity

requires tha t an object can be destroyed only if it is not referenced by another

object. In the case of a group of objects participating in a circular reference, the

circularity must be broken by changing one or more of the references before any

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

object in the group can be removed. Before physical removal, a clean up takes

place.

Restore

A base object can be restored before clean up. This means that the effect of

previously destroying the object has been undone. The only restriction is that

references to non-existing objects are nullified. Restoring an object is similar to

creating a new one, except that the identity and state of the restored object are

the same as those before the object was destroyed.

Operations on object slots

Basic slot

The only operation available on a basic slot is that of assignment of a value v to

slot S:

X .S := v, where v is of the appropriate basic type.

Sub-object

If ,S is a sub-object of X , then the updates possible on S are those possible on any

slot of S , as described in this section.

Set of sub-objects

If S is set-valued, then any of the following updates is possible:

create new member in X .S

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

destroy member Y E X .S

restore member Y E X .S

update Y E X .S , as described in this section.

Reference

If S is a reference to another object, then either that reference can be destroyed

or replaced with a different reference:

X .S := n il , which nullifies any existing reference, or

X .S := IV , which assigns a reference to object Y to slot S.

Derived direct slot

No updates are permissible on a derived direct slot, since its value is automatically

assigned whenever any of its source slots changes.

Derived external slot

A derived external slot S of object X is assigned a value as follows:

X .S := v , where v is of the appropriate basic type.

4.2.5 Dependencies among objects

Let X , Y, and Z be base objects. We define the dependson relation between base

objects as the transitive closure of references'.

Let depend$on(Ol, 02) denote object 01 depends on object 02. Then we have

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

dependson(X , X),

dependson(X,Y) and re ference(Y ,Z) implies dependson(X , Z)

Given the definition of dependson, we now define “sources of X ” sources(X)

and “dependents of X ” dependents{X) as follows:

sources(X) = {all Y : dependson(X, V)},

dependent•s(X) = {all Z : dependson{Z, X)}.

Finally, we define “object group of X ” objectgroup(X) as:

obj ect.gr oup(X) = { all Y : Y £ (sources(X) U dependent,s(X))}.

The dependson relation, and subsequently references, are of particular impor

tance to defining conflicts in a principled manner. The dependson relation is used

in our model to explicitly depict the fact that if an object is changed, then its

dependents might need to be altered as well. The state of object Z can be affected

by the change in the s ta te of object X o n ly if dependson(Z, X), or alternatively

Z 6 dependents(X). The use of the dependson relation in concurrency control

will be explained in detail in Chapters 5 and 6.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3 Exam ple

This section gives a simplistic example of a schema and associated objects. The

example is chosen from the software development domain. O ther schemata will be

used for other domains.

S chem a

In this schema, a program is built from subroutines and libraries. Subroutines

are either contained locally or are external to the program. The executable code of

a program is the result of linking compiled subroutines with libraries. Subroutines

are compiled from their source code, and libraries contain compiled object code.

This example makes use of three object types, five derived direct slots, and two

derived external slots.

P ro g ra m

{

suboroutineRefs: se t re f Subroutine

libraryRefs: se t r e f Library

subroutineLocals: se t Subroutine

subroutineExternals: d e riv ed d ire c t suboroutineRefsf

subLocalsObjCode: d e riv e d d ire c t subroutineLocals.objCode

subExternalsObjCode: d e riv ed d ire c t subroutineExternals.objCode

libraries: d e r iv e d d ire c t library Refs |

libObjectCode: d e riv e d d ire c t libraries.objCode

executable: d e riv e d e x te rn a l b y te s

[subLocalsObjCode, subExternalsObjCode, libObjectCode]

}

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A program’s executable code is computed from compiled subroutines and li

braries. If the object code associated with a subroutine or library changes, the

executable is out-dated and must be recomputed.

S u b ro u tin e

{
srcCode: A S C II

objCode: d e riv ed e x te rn a l b y te s [srcCode]

}

A subroutine has two parts: source code, and object code computed from the

source code. If the source code of a subroutine changes, its object code is marked

out-dated and must be recomputed. The “ASCII” and “bytes” designations for

source and object code, respectively, merely indicate basic types of data that have

no semantic meaning to the database; “ASCII” would probably contain ASCII

text, and “bytes” would probably contain machine instructions.

L ib ra ry

{
objCode: b y te s

}

A library consists of pre-compiled object code.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

The Cooperative Database

M anagement System

The Cooperative Database Management System (Co-DBMS) is proposed as part

of our framework to support cooperative product development. It follows the

paradigm of a server, whose function is to await and service requests from clients,

in this case agents. The Co-DBMS is unlike a server, however, in tha t servicing a

request from one agent may cause asynchronous notifications to be sent to other

agents. This chapter presents the architecture of the Co-DBMS, describes what

functionality it adds to an object-oriented data store in order to overcome the

weaknesses discussed in Chapter 3, presents the programmatic interface between

agents and the Co-DBMS, and summarizes the rules maintained by the Co-DBMS.

5.1 Architecture of the Cooperative Database

M anagem ent System

The Co-DBMS consists of an object store plus seven modules: tim er, agent in

formation manager, workspace manager, object access manager, collision records

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

manager, update monitor, and work status monitor. See Figure 5.1. The object

store provides persistent storage of the schema, extended objects (explained in

Section 5.2.7), and access permissions to those objects. The seven modules consti

tute the proposed Database Object Manager (DOM). These modules interact with

each other and together with the object store offer a collection of services to agents.

Product developers, in the environment, will run applications locally on their

own workstations. Applications are run asynchronously with respect to one an

other. The applications will communicate with the Co-DBMS through the use

of inter-process communication (IPC) [71]. The latency of IPC is high compared

to communication within a workstation. So the choice of what functionality to

assign to the Co-DBMS has been motivated by the need to reduce the frequency

of interaction of applications with the Co-DBMS. In order to accomplish this, the

programmatic interfaces presented in this chapter specify a granule of operation

at the level of base objects, rather than at the level of slots.

The Co-DBMS Timer

The Co-DBMS maintains an integer-valued timer. The tim er is incremented

whenever the DOM processes a request from any agent. If a request contains sub

requests, such as when an agent commits a collection of updates to the Co-DBMS,

the timer is incremented once per sub-request. If the DOM receives requests from

multiple agents at the same time, the requests are queued to be processed following

desired queuing policies (out of the scope of this work).

The time-stamp of some requests, such as an agent committing a batch of

updates, is remembered by the Co-DBMS for later use. Other time-stamps such

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T T
Co-DBMS services to a g e n t;

n
f ---------- w-----

work s ta tus
monitor

I
1

agent information
manager

workspace manager

root

timer

collision records
manager

update
monitor

i
object access

manager
DOM

-- J

Co-DBMS Object
Store

Figure 5.1: Architecture of the Co-DBMS

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

as the time at which the slot of an object changed value, are stored in the object

store. Because the tim er is incremented after each request, time-stamps are unique.

If the Co-DBMS is distributed, then methods for event ordering can be used to

ensure uniqueness of time-stamps [47].

5.2 Functionality of the Database Object M an

ager

This section describes each service offered by the DOM to the agents, presents

the interface which an agent uses to access the service, and explains how modules

within the DOM operate in order to provide tha t service.

5.2.1 Connecting agents to the DOM

Some of the information maintained by the DOM, such as which objects have

been checked out, is associated with a particular instance of an agent. Thus each

instance of an agent has its own identity. That identity is established when an agent

is first connected to the DOM, and is removed when an agent is disconnected.

ConnectAgmt{\)serName, AgentName)

return AgentID

When an agent starts execution, it must be registered with the DOM. The

DOM records what agent is running and what user is operating the agent, and re

turns an agent identifier (AgentID) which uniquely identifies that instance of the

agent. The name of the agent and the name of the user can be accessed as part of

the work status, as described in Section 5.2.6. The AgentID returned by the DOM

is used in subsequent requests to the DOM to identify the agent making the request.

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Disconnect Agent(AgentID)

When an agent terminates, it must be disconnected. The DOM invalidates the

agent ID and removes the name of the agent and the user from the agent regis

ter (the list of currently executing agents in the work status). If an agent has a

workspace selected (described in Section 5.2.3), this workspace must be unselected

before the agent can be disconnected.

5.2.2 Creating and destroying workspaces

As noted in Section 4.5.7, a dynamic workspace hierarchy is useful in cooperative

product development. Our system offers agents the ability to create and destroy

workspaces, and to determine what workspaces exist.

Create Workspace(Agent ID, SuperiorWorkspacelD, Description [,set InferiorWorkspacelD])

return WorkspacelD

This operation creates an inferior workspace of a specified superior workspace.

The name and description of the new workspace are given by the creator. A set of

workspaces which are inferior to the specified superior workspace can optionally

be supplied; doing so will make them inferiors to the new workspace.

Initially, the collection of objects viewed from the new workspace is identical

to the objects viewed from the superior workspace, and the set of constraint spec

ifications is the union of those of its inferior workspaces (or the empty set if no

initial inferior workspaces were specified).

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Destroy Workspace{ AgentID, WorkspacelD)

This operation destroys a specified workspace. A workspace W can be de

stroyed only if the following three conditions are met:

1. W 7 ̂ WT0Qt, since the root workspace always exists;

2. no currently executing agent has W selected (defined in Section 5.2.3);

3. there are no uncommitted changes in W.

If there are uncommitted changes in W , W must first be committed or aborted

before being destroyed. When a workspace is destroyed, its inferiors may either be

destroyed or become the inferiors of its superior workspace.

L is t Workspace Infe n o ?\s(A gen 111), WorkspacelD)

return set WorkspacelDs

Given the workspace identifier, the list of inferior workspaces is returned. This

command assists the agents in traversing the workspace hierarchy.

5.2.3 Workspace selection

All accesses and manipulations of objects must be performed within a particular

workspace. Multiple agents can simultaneously operate in the same workspace.

The choice of a workspace depends on the degree of cooperation and interaction

desired with other product developers and their agents. When two agents share a

workspace, they can work together more closely and share updates to objects in a

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

less restrictive manner. The choice of a workspace also depends on how stable a

view of objects is needed by the agent.

An agent must inform the DOM in which workspace it needs to operate; this is

called w orkspace se lec tio n . An agent tha t has selected a workspace W performs

operations associated with W until it explicitly unselects W.

An agent may have responsibilities in more than one workspace. This enables

agents to have different contexts simultaneously, and to use workspaces alterna

tively. The agent can allocate time and move between these workspaces as priorities

and deadlines dictate. However, as an active agent A in a workspace IT,-, A cannot

select another workspace Wj even if it has responsibilities in Wj. Moving from one

workspace to the other means unselecting the first before selecting the second.

Select Workspace^ AgentID, WorkspacelD)

This operation allows an agent to select the context of a particular workspace

in which to access the database. With no workspace selected, an agent cannot

check-out objects. An agent can have at most one workspace selected at any given

time.

Unselect Workspace{ Agent ID)

Unselect Workspace informs the DOM that an agent has finished working in a

workspace. Before an agent can unselect a workspace, it must check-in any objects

that it has checked-out.

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2.4 Constraint specification

As mentioned earlier, constraint specifications, which are attached to a workspace,

specify that a certain subset of constraints must be met both before and after any

set of changes is applied to objects in this workspace. This facility can be used to

ensure that artifacts meet certain standards before they are adm itted to superior

workspaces th a t are more publically accessible. Constraint specifications provide

assurance to any product developer working in a particular workspace that the

objects in th a t workspace conform to a certain level of validation.

Constraint specifications are enforced by rejecting a set of updates by an agent

to the workspace if one or more of those constraints is invalid. In addition, an

inferior workspace is also prevented from committing to that workspace if in the

inferior workspace one or more of those constraints is invalid.

Workspaces inherit constraint specifications from inferior workspaces. Thus,

the set of constraint specifications for a superior workspace is a superset of those

for its inferiors, which means that the degree of correctness required of a supe

rior workspace is at least as stringent as that required of its inferior workspaces.

The root workspace, since it holds objects which have achieved the highest level

of validation, has a large number of constraint specifications. Normally, agents

will operate in workspaces which have a few constraint specifications, in order to

make interactive updates during which no particular degree of consistency of the

artifact is expected to have been achieved. Constraint specifications can be added,

removed, or queried as follows.

A ddConstraintSpecification(Agent ID, Workspacel D, ObjectType,

Const raintSpecification)

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

return ConstraintID

This operation adds a constraint specification to a specified workspace. The

constraint is specified as a slot of a particular object type; the slot must be of

type logical. A constraint specification cannot be added to a workspace unless the

constraint is met by all objects of that type in that workspace and in all super

workspaces.

RemoveConstraintSpecification(AgentID, WorkspacelD, ObjectType,

ConstraintID)

RemoveConstraintSpecification removes a constraint specification from a spec

ified workspace and all sub-workspaces. Subsequent updates to those workspaces

are accepted by the Co-DBMS even if the value of the slot is false.

ListConstraintSpecijication(AgentID, WorkspacelD)

return set Constraint

This operation returns the set of constraint specifications attached to a partic

ular workspace.

5.2.5 Collision recording

Collision recording is needed in cooperative product development environments

where concurrent work is inherent. A collision record is attached to each workspace

to help product developers resolve their collisions. The operations used to service

collisions are as follows.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RecordCollision(AgentID, OffendingAgentID, Complaint)

return GollisionlD

An agent invokes RecordCollision to register a collision about an update made

by another agent. That agent identifies the offending agent and supplies an expla

nation of how the update constitutes a collision. The DOM does not understand

the semantics of collisions, and can make no attem pt to remedy the collision; it only

provides the mechanism with which collisions can be recorded (higher level mech

anisms are needed for implementing particular policies). Collisions are recorded

in the workspace which the complaining agent has selected. If a workspace has

unresolved collisions, it is not allowed to commit.

ResolveCollision(AgentID, GollisionlD, Resolution)

After some action has been taken to remedy a collision, it can be marked as

having been resolved; an explanation of how the collision is resolved is supplied

using the ResolveCollision operation. After all collisions are resolved, updates in

a workspace can be committed to the superior workspace. The DOM guarantees

tha t recorded collisions are not lost, but provides no assurance tha t a responder

handles the resolution of a conflict correctly.

ListCollision (AgentID, WorkspacelD)

return set Collision

This operation returns the set of collisions, each with its associated resolution

(if exists), tha t took place in a specific workspace.

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2.6 Work status monitoring

We consider maintaining work status to be of great relevance in cooperative prod

uct development. Knowledge of work status can aid agents in the task of planning

and coordinating their activities. A mechanism is provided with which agents can

access aud stay aware of changes to the work status. Higher level mechanisms can

use this mechanism in order to implement policies of work methodologies or shared

access.

The work status made available to agents is mainly the internal state of the

system that can be altered by invocations of the operations that are presented

throughout this chapter, specifically:

• which agents are currently running;

• what is the hierarchy of workspaces;

• which agents have selected what workspaces;

• the constraint specifications attached to a workspace;

• which agents are involved in what roles in what workspaces;

• what workspaces have uncommitted updates;

• what collisions and collision resolutions have been recorded in a workspace;

• what objects have been checked-out by what agents.

GetWorkStatu$(AgentID, WhichStatusReport)

return WorkStatusRequested

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Agents can obtain any of the above work status by invoking GetW orkStatus

and specifying what work status is needed.

TrackWorkStatus(AgentID, WhichStatusReport, WhichChange)

return StatusID

At times it may be useful for an agent not only to obtain work status, but to

track changes to it as well. For example, an agent might like to know when an

other agent has checked-out the same object. An agent specifies in what changes

to which work status it is interested by calling TrackWorkStatus. The agent will

receive asynchronous notifications of changes to the specified work status until the

agent cancels its interest in tracking that work status.

Stoptrack WorkStatu$(Agent 11), StatusID)

Using StoptrackWorkStatus, the agent indicates that it no longer wishes to

receive notifications of those changes to a specific work status.

5.2.7 Committing and aborting workspaces

When objects in a workspace achieve some desired state, it is useful to make them

more public or to move them to a workspace used for integration with the efforts

of other agents. This is achieved by committing the workspace to its superior

workspace. Immediately after the commit, all objects in the committed workspace

and its superior have the same state.

To implement the commit operation, the DOM maintains for each workspace

W in the workspace hierarchy ancillary information, in the form of attributes

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

called control attributes, which it uses to compute the update delta between

Swperior(W) and W. When an object is augmented with this control information

it is termed an extended object.

Extended objects

The object store provides persistence for objects, that is it stores the values of

their slots. So tha t the DOM can remember what updates have been applied to

each workspace, the object store holds additional information for each workspace

about each object that has been altered in the workspace. The result is an ex

tended object. The information is held at the level of each object unit (i.e.,

the base object level, the slot level, and the value level). The control attributes

of base objects and of each slot and value of base objects are described in Table 5.1.

When a workspace W is committed, the DOM scans the objects in the workspace

and uses the control information to determine what objects and set members were

created or destroyed and what slots changed in order to generate a collection of

updates that represent the update delta for the workspace. That update delta is

then applied to Supe,rior{W) and the extended objects in W are discarded; they

are no longer needed because the objects in Superior(W) now have the same state

as they did in W .

When a workspace W is aborted, no update delta is created. Instead, extended

objects in W and all of its sub-workspaces, are simply discarded. A workspace is

aborted only if the updates tha t have been applied to objects in the workspace are

to be undone.

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

object unit control attribute value meaning

base object existence status created in superior,
unchanged

The object exists in
the superior work
space, and has not
been destroyed in this
workspace.

created in superior,
destroyed

The object exists in
the superior work
space, but has been
destroyed in this
workspace.

destroyed in superior,
unchanged

The object formerly
existed in the superior
workspace, was de
stroyed in that work
space, and has not
been restored in this
workspace.

•

destroyed in superior,
restored

The object formerly
existed in the superior
workspace, was de
stroyed in that work
space, but has been re
stored in this work
space.

not in superior,
created

The object was created
in this workspace.

not in superior,
destroyed

The object was created
then destroyed in this
workspace.

value status same No slot of object has
been modified in this
workspace.

different Some slot of object
has been modified in
this workspace.

Table 5.1: Extended Objects

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

object unit control attribute value meaning

base object (cont.) time-stamp some Co-DBMS
time

The time at which
the slots of the ob
ject were most re
cently updated.

basic slot value status same The value of the slot
was not changed in
this workspace.

different The value of the slot
was changed in this
workspace.

tim e-stam p some C o-D B M S
time

The most recent time
at which the slot was
changed.

sub-object slot value status same No slot of sub -ob
ject was not changed
in this workspace.

different Some slot of sub-
object was changed
in this workspace.

tim e-stam p some C o-D B M S
time

The most recent time
at which slots were
changed.

reference slot value status same The reference in this
slot was not changed
in this workspace.

different The reference in this
slot was changed in
this workspace.

tim e-stam p some C o-D B M S
time

The most recent time
at which the slot was
changed.

set-valued slots time-stamp some Co-DBMS
time

The most recent
time a set member
was created, de
stroyed or updated.

Table 5.1: Extended Objects (cont.)
107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

object unit control attribute value meaning

member of
set-valued slot

existence status created in superior,
unchanged

The set member exists
in the superior work
space, and has not
been destroyed in this
workspace.

created in superior,
destroyed

The set member exists
in the superior work
space, but has been
destroyed in this
workspace.

destroyed in
superior,
unchanged

The set member for
merly existed in the
superior workspace,
was destroyed in that
workspace, and has
not been restored in
this workspace.

destroyed in
superior,
restored

The set member for
merly existed in the
superior workspace,
was destroyed in that
workspace, but has
been restored in this
workspace.

not in superior,
created

The set member was
created in this work
space.

not in superior,
destroyed

The set member was
created then destroyed
in this workspace.

other control attrib
utes appropriate to
the type of the mem
ber, as described in
this table

described in this
table

Presented in this
table.

derived direct slot attributes appropri
ate to the type of
slot, as in this table

described in this
table

Presented in this
table.

Table 5.1: Extended Objects (cont.)
108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

object unit control attributes value meaning

derived external slot validity status invalid Value of slot is not
current and must be
recomputed.

valid Value of slot is cur
rent.

invalidated true The slot has been in
validated since the
workspace was last
committed.

false The slot has not been
invalidated since the
workspace was last
committed.

validated true The slot has been re
computed since the
workspace was last
committed.

false The slot has not been
recomputed since the
workspace was last
committed.

tim e-stam p some Co-D BM S
time

If (validity status =
invalid)

then The earliest
time that the slot

was made invalid
since it was last
made valid,
else The most recent

time that the slot
was made valid.

attributes appropri
ate to the type of the
derived external slot,
as noted in this table

described in this
table

Presented in this
table.

Table 5.1: Extended Objects (cont.)

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The time-stamps in the extended objects assume the value t. of the Co-DBMS

timer at the time when the DOM processes an update request by an agent. There

is enough information in extended objects without the time-stamps to enable the

DOM to infer the update delta. Time-stamps are used for another reason: by com

paring the time-stamp of a derived external slot to the time-stamps of the slots

from which it is computed, it is possible for the dependency checker in the AOM

(presented in Section 6.2.7) to determine which slots were changed and caused a

derived external slot to be invalid; this can potentially save a great deal of effort in

recomputing the derived external slot. Time-stamps are also used to ensure that

an agent keeps a consistent view of objects in its cache; this is explained in Section

5.2.8.

Commit(Agent If), WorkspacelD)

The Commit operation passes all updates to workspace W up to Superior(W)

so that they are visible at a higher level in the hierarchy. The root workspace

WT00t has 110 superior and cannot be committed. A workspace W ^ Wroot can

be committed only if it satisfies specific co rrec tn ess c r ite r ia . The correctness

criteria for committing a workspace are:

1. the constraint specifications of Superior(W) are met by all objects in W]

2. there are no unresolved collisions in W ; the existence of unresolved collisions

indicates a problem that has not been resolved; preventing W from com

mitting in this situation will block the propagation of errors to more public

workspaces.

Abort{AgentID, WorkspacelD)

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Aborting a workspace implies discarding all new and modified objects in that

workspace and all its sub-workspaces (if exists). A workspace W can be aborted

only if the following two conditions are met:

1. there are no agents which have W or a sub-workspace selected;

2. there are no uncommitted updates in any sub-workspace of W.

In other words, before aborting a workspace, all its sub-workspaces have to be

recursively aborted first.

It is to be noted that, aborting W has no effect on Superior(W). After the

abort, both W and Superior(W) offer the same view of objects.

Sometimes aborting a workspace may have a rather drastic consequences. A

less costly way to undo selected updates to a workspace is to employ compensating

updates to achieve a desired s tate of objects [21, 40].

5.2.8 Object check-out and check-in

A workspace cau be thought of as the working area for a long open-ended trans

action. The DOM permits more than one agent, possibly under the control of

multiple users, to share, updates to the. same object in the same workspace.

Before an agent can access an object, it must check-out tha t object. Different

check-out modes may be considered. In this work, we maintain tha t an object can

be checked-out for either read or update access. The DOM dramatically increases

the potential for concurrency and cooperation in the environment; it offers mech

anisms which enable check-out of objects for update without resorting to the use

1 1 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of exclusive access. Neither check-out for read nor check-out for update excludes

check-out by other agents.

When an agent checks-out an object for read, the object’s current state is re

turned. The agent places all objects it checks-out in its cache of objects (agent

context or agent workspace). Consider an object X checked-out by agent A, then

upon A’s request, the DOM will send notifications of any updates made to X to

agent A until A checks-in X.

When an agent requests to check-out an object X for update, it implicitly

checks-out all dependent,s(X) for update access. In order to m aintain a consistent

view of objects, some conditions must be imposed on the circumstances in which

an agent is perm itted to check-out an object for update.

Conditions for checking-out objects for update

An agent which has selected workspace W can check-out object X for update

(and implicitly dependent,s(X)) only if the following two conditions are satisfied

for every Y € objectgroup(X).

• Condition 1:

Y is not checked-out for update except in workspace W . This guarantees

the invariant that if dependson{X, K) and both X and Y are checked-out for

update, then they are checked-out in the same workspace.

• Condition 2:

There are no uncommitted updates to Y in any workspace W' unless W <

W '. This guarantees the invariant that if dependson(X ,Y), there are un

com m itted updates to either X or Y in some workspace, and either X or Y

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is checked-out for update, then the workspace with uncommitted updates is

the same workspace where X or Y is checked-out or is a super-workspace of

tha t workspace.

Since X € objectgroup(X), condition 1 implies that an object can be checked-out

for update in at most one workspace. If there is a need for two agents to update

X at the same time, they must check-out X in the same workspace. Condition

2 implies tha t an object can be checked-out only in the same workspace or in a

sub-workspace wherein there are uncommitted updates to the object.

Suppose an agent submits updates A U = < ui,it,2 , . .. ,un > to workspace W' at

time tupdaie- Just prior to tijpdate, a t time /*, for every workspace W ^ Wroot, there

exists some update delta AlJw such that:

Vw{t*) = Vsuperior(W){l*) + A U w { U) .

Invariants maintained by conditions 1 and 2 guarantee that for each workspace

W < W':

Vw[t'Update) — Ksiiperiorf W) {t'Update)~\~ A(Jw (tllpdate) 1 wlieie AU\ty (f Update) — AlJ\y(t)-(-

AU.

This result holds whether the update delta AU comes from committing an in

ferior workspace or from an agent.

W ithout these two conditions the DOM would have to “merge” updates to X

in W with the state of X or the state of its dependents in sub-workspaces, rather

than merely apply the updates. The DOM is unable to merge updates, because

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

this would require tha t it understand the semantics of the data and the intent of

the agent in making the update.

When an agent updates an object to reference another, it does so within its

object cache, then sometime later commits tha t reference to the workspace selected

by the agent. The DOM must be aware of an agent’s intention to update an ob

ject to reference another, so that it can ensure that these conditions are enforced

should the agent commit its updates. The way this is done is presented in Section

5.2.9.

Update notifications

An agent checks-out into some workspace, and caches within its object cache,

some objects that it needs to work with. The DOM sends the agent update notifi

cations of changes to all objects checked-out so that it can keep its cache consistent

with the Co-DBMS.

Each update notification contains the following information:

1. the AgentlD of the agent tha t subm itted the update and caused the notifi

cation to be sent;

2 . the BaseObjectID of the base object updated;

3. the update operation which was applied to the base object;

4. a time-stamp that records the time when the update was performed.

Update notifications are distinguished as either immediate or deferred. An

agent may defer handling those notifications so that to keep the user’s current

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

view of objects from changing unexpectedly. In this case, the updates will be

handled later, in the meantime, the view presented will be consistent, although

somewhat out-dated.

Now, consider an agent that checked-out and cached an object, while at the

same time it is deferring the handling of notifications. Suppose the time the object

was last updated is more recent than the last notification handled by the agent.

Then the state of objects in the agent’s object cache has become inconsistent,

since updates to some objects already in the cache have not been incorporated;

the object ju st checked-out, however, have the most recent updates applied to it.

To prevent inconsistencies from occurring, the following condition is imposed:

an agent wishing to defer handling notifications it receives may do so provided

that it handles all pending notifications sent before the time of the last update to

the additional objects it requests to check-out.

This may be implemented as follows. When an agent requests to check-out

an object, it submits the time-stamp of the last update notification handled. If

the object to be checked-out has an update time-stamp (time for most recent up

date) greater than the value of the time-stamp sent by the agent, the check-out

request is rejected. In this case the agent must handle additional notifications and

re-submits the request if it so chooses.

CheckOutForRead(AgeutID, BaseObjectID, LastNotificationHandled)

return extendedO bject/ handleNotifications

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CheckOutForUpdate(AgentID, BaseObjectID, LastNotification Handled)

return extendedObject(s)/ handleNotifications

An agent invokes CheckOutForRead or CheckOutForlJpdate to check-out an

object for read or update access, respectively. The DOM returns a copy of the ob

ject or, in the case of CheckOutForlJpdate, checks-out and returns all dependents

of that object.

Checkln(Agent ID, BaseObjectID, LastNotificationHandled)

return ok/ handleNotifications

An agent invokes Checkin to inform the DOM that it no longer needs to access

an object.

5.2.9 Managing object references

An agent may update objects in its cache to include references to other objects

(not necessarily in its cache). In some situations, the DOM may not approve of

such references. For example, if the referenced object is checked-out for update in

some other workspace. Therefore, to ensure the correct behavior of the system, it

must be kept aware of references from one object to another in an agent’s object

cache tha t has not yet been committed to a workspace. This is achieved by having

each agent inform the DOM when it updates an object so that it references, or no

longer references, another object.

A ddReference{ Agent ID, Ob j ect ID, RefereneedOb ject ID)

return ok / notAllowed

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

An agent informs the DOM that it has updated an object in its cache to refer

ence another object by invoking AddReference and identifying the referencing and

referenced object. This has the side effect of incrementing the reference count from

the referencing to the referenced object. Suppose an agent has selected workspace

W. This request will fail if the referenced object is either checked-out for update

in some workspace other than W or has uncommitted changes in any workspace

W' except where W < W '.

Remove Refere.7ice(Agent ID, Object ID, ReferencedObjectID)

An agent informs the DOM that it has updated an object in its cache to no

longer reference another object by invoking RemoveReference and identifying the

referencing and referenced object. If the referenced object is no longer referenced

by any object in the agent’s cache, then it is free to be checked-out for update

in workspaces other than the workspace selected by the agent, subject to the

conditions on checking-out an object for update presented in Section 5.2.7.

5.2.10 Updating objects in workspaces

Each agent is free to subm it a batch of updates to the workspace it has selected

at any time. The batch is termed an update step. Updates in an update step

are applied atomically. Following an agent’s update step, the DOM sends update

notifications to every agent that has requested to be notified of updates to objects

that might affect the objects it has checked-out in this or sub-workspaces. Allow

ing agents in sub-workspaces to receive update notifications from agents in their

super-workspaces, has the advantage of providing the former agents with up-to-

date changes in the state of super-workspac.es, and therefore they can always base

their work on most recent information.

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Now consider the following scenario. Assume two agents Ai and Aj working in

the same workspace, sharing updates on object X with state S. Both agents ini

tialize their state based on S. Agent A,- applies update iq to its copy of X , yielding

Si = S + A IJi, and Aj applies update uj to its copy of X , yielding S3 = S + XUj.

Suppose th a t A,- and Aj now submit U{ and Uj, and the DOM sends relevant no

tifications to Aj.

Suppose that, due to network delays, update Uj now arrives from Aj. The

DOM will not know whether Aj received the notification before or after submit

ting U j . If Aj submitted U j before handling the notification, then Uj would be

invalid, since Aj may have based its update Uj on X having state S rather than

Si as it does now. On the other hand, if Aj did handle the notification, then Uj

should be applied to X.

To solve this problem, the DOM must know the relative order of notifica

tions sent and updates received. This could be accomplished using the following

protocol. Before sending a notification, the DOM attaches a time-stamp to it.

The DOM records the most recent time-stam p of the notifications sent to each

agent. When submitting an update request, the agent also sends to the DOM, the

time-stamp of the most recent notification it handled. The DOM then compares

that time-stam p with that of the last update notification sent to the agent. If an

update notification has been sent since the last notification processed, then the

DOM knows that the agent based its update request upon incomplete informa

tion. In this case, the DOM notifies the agent that its update might be invalid

and that it needs to process additional notifications. In response, the agent must

handle the notifications sent and re-submits the update request if it so chooses.

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This situation may recur; by the time the agent submits its request, there may

be additional notifications that it must handle before the DOM accepts its request.

UpdateWorkspace^AgentlD, list Update, NotificationTimeStamp)

return tim e/ handleNotifications/ iuvalidConstraints

An agent commits its updates to the workspace it has selected by calling Up-

dateWorkspace. If the request succeeds, the Co-DBMS returns the current time.

The agent uses the current Co-DBMS time to alter time-stamps in its extended

object cache, as explained in Section 6.2.4. When an agent commits its changes

to the Co-DBMS, the Co-DBMS decrements counts of uncommitted references be

tween objects. IJpdateWorkspace will fail either if the agent has not handled all

the update notifications sent by the DOM or if accepting the updates would cause

one or more of the workspace constraint specifications not to be satisfied.

5.3 Rules M aintained by the DOM

All modules within the DOM work together to jointly provide a collection of ser

vices to agents. Guaranteeing internal consistency and correct operations of the

DOM require tha t it maintain a number of rules. This section outlines those rules.

1. Unresolved collisions restrict workspace commit

If there are unresolved collisions in a workspace W, the DOM prevents W from

committing to its superior workspace Superior(W) so that potentially erroneous

updates are confined to W.

Rule 1:

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Workspaces with unresolved collisions cannot be committed.

The DOM enforces this rule by first checking for unresolved collisions within a

workspace before honoring a request to commit a workspace.

2. Constraint specifications are met

Constraint specifications provide the degree of consistency which is to be main

tained at all times within a workspace. The DOM guarantees:

Rule 2:

The constraint specifications which are attached to workspaces are met at all times.

The DOM preserves this rule by rejecting updates to a workspace W , either

from agents which have selected the workspace or from a committing inferior

workspace of W , in which one or more constraint specifications attached to W

is not true.

3. Control information provided is sufficient for commit

An agent can request that updates to a workspace be committed to its superior

workspace a t any time. When it does so, the DOM scans the extended object cache,

interprets the control information to determine how the objects were updated, and

generates a list of updates which are then applied to the superior workspace. The

rule which makes this possible is:

Rule 3:

The update delta can be computed at any time from the control attributes asso

ciated with objects.

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This rule is maintained by the DOM because the DOM alters the control a t

tributes on objects, as well as the values of object slots, whenever it processes an

update request from an agent or from an inferior workspace. The control attributes

in a workspace after each update reflect how the states of objects differ between

that workspace and the superior workspace.

4. Unhandled notifications restrict updates by agents

When an agent commits updates on objects in its object cache to a workspace

in the Co-DBMS, that agent does so based upon the state of the objects it had

cached earlier. If the agent has failed to process all update notifications from the

DOM, it may erroneously attem pt to perform an update based upon stale data.

The DOM guarantees:

Rule 4:

Update requests from agents will be honored only if the agent has handled all

update notifications which have been sent to it.

This rule is preserved by virtue of the protocol used between the agent and the

DOM which is based on time-stamps for notifications. The protocol is explained

in Section 5.2.8.

It is im portant to note that this rule does not guarantee that an agent has

responded in a proper fashion to the notifications it has received. Such a guarantee

of the agent’s behavior cannot, in general, be enforced by the DOM.

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. Referential integrity is enforced

The DOM enforces referential integrity within the object store:

Rule 5:

An object cannot be destroyed if there are any references to it from other objects.

The DOM maintains this rule by first checking whether an object X is ref

erenced by any other object before honoring a request from an agent to destroy

X . This includes checking whether X is referenced by another object within the

object cache of any agent. The DOM knows which objects reference other objects

within caches of agents, because an agent must notify the DOM when it adds or

removes an object reference within its cache.

6. Workspace related to superior by update delta

Agents submit batches of updates to workspaces in the Co-DBMS. In addition,

updates in workspaces may be committed to their superior workspace. The DOM

guarantees:

Rule 6:

Let Vw{t) be the view of objects at time t. in workspace W ^ W r0ot, aucl V$uVe.rior(W) {t)

be the view of objects in the superior workspace of W at time t.

Then Vjy (t) = V superior(W)(t) + X U (t) , where A U is the update delta which

represents the uncommitted updates to objects in W . The update delta is a con

catenation of (1) all updates which have been applied to objects in W by the

agents, and (2) updates to objects in W resulting from inferior workspaces of W

having committed to W.

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In order to preserve this rule, the DOM enforces the two conditions on when

objects may be checked-out for update by agents; these restrictions ensure tha t

updates applied to a workspace have no elfect 011 the states of objects in sub

workspaces. These conditions are presented in Section 5/2.8.

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Agents

An agent consists of an application (i.e., application code, along with application-

specific data structures), plus the Application Object Manager (AOM). This chap

ter presents the architecture of an agent, describes the functionality added by the

AOM, presents the interface between an application and the AOM, and summa

rizes the rules maintained by the AOM.

6.1 Architecture of an Agent

The application implements a particular functionality, and is what distinguishes

one agent from another. The AOM consists of six modules: timer, object cache

manager, out-date propagator, update notification manager, update focus handler,

and dependency checker. These modules work together and offer a collection of

services to the application. See Figure 6.1. Note that an application does not

communicate directly with the object store; it performs updates only through the

AOM, which then communicates with the Co-DBMS.

The AOM is linked with the application to create an agent; because of this,

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Agent

Application ^Internal sta te^) (^m essage queue^)

t ~a procedure X
V S calls T m essa9es

 — ------------------- T -------- -----
AOM

out-date
propagator

derived
slot caculator

update notification
manager

notifications

timer

object cache
manager

update i \
notifications from Co-DBMS

m essages

IT

extended
object cache

update focus
handler

dependency
checker

services
from Co-DBMS

data access

 _____ . j

Figure 6.1: Architecture of an Agent

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

communication between the application and the AOM is inexpensive. Thus, fre

quent interaction between the application and the AOM is not inefficient, and the

granule of interaction can be small - operations can involve slots of base objects,

as compared to entire objects, which is the case between agents and the Co-DBMS.

T h e ag en t t im e r

Each agent maintains an integer-valued timer. The timer in each agent is sep

arate from, and run asynchronously with respect to, the timer in the Co-DBMS

and the timers in other agents. The tim er represents the amount of tim e elapsed

since an agent last committed its updates to the workspace it has selected. The

tim er is initialized to zero when an agent selects a workspace. It is incremented

whenever the AOM processes any update request from the application. The timer

is reset whenever the agent commits its changes. The times at which slots of ob

jects change value are stored in the extended object cache, which holds the same

information as does the extended object store in the Co-DBMS.

M essage q u eue

One of the responsibilities of the AOM is to ensure that an application is made

aware of the occurrence of asynchronous events such as an update to a shared

object or a change in work status. The AOM notifies the application of an event

by creating a message with a time-stamp that indicates what events occurred and

appending the message to the application’s m essage queue.

O b je c t cache m a n ag e r

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

W ithin each agent there is a cache of extended objects which the agent has

checked-out and is currently accessing and manipulating. The cache is similar

to a workspace in the Co-DBMS in that all updates are encapsulated within the

cache; the updates are applied atomically to the workspace the agent has selected

when the agent commits its changes. The use of a cache enables an agent to

make experimental updates to local copies of objects. Unlike workspaces in the

Co-DBMS, the lifetime of the extended object cache is tied to that of the agent.

The object cache manager within the AOM gives an application access to the

extended object cache by handling requests both to load data not yet cached and

to update the cache.

6.2 Functionality of the Application Object M an

ager

This section describes each service that the AOM offers to applications, presents

the programmatic interface which an application uses to access the service, and

explains how modules within the AOM operate in order to provide that service.

6.2.1 Services from the Co-DBMS

Some of the services available to an application are slightly modified versions of

services from the Co-DBMS which are passed up through the AOM to an applica

tion. This section describes those services.

ApplicationBcgin(\]serName, ApplicationName)

When an application begins operation it must notify the AOM. It does so

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

by calling ApplicationBegin. In response the AOM initializes itself and registers

the agent with the Co-DBMS by calling ConnectAgeut. The AOM remembers

the AgentID returned by ConnectAgeut for use in subsequent requests to the Co-

DBMS.

ApplicationEnd()

return ok/ workspaceSelected

An application must also notify the AOM when it wishes to end operation. It

does so by invoking ApplicationEnd. The AOM permits termination only if the

application has no workspace currently selected. The AOM calls DisconnectAgent

in the Co-DBMS when the application ends.

The AOM contains procedures that provide the following framework services

to an application.

• creating and destroying workspaces

• workspace selection

• constraint specifications

• committing and aborting workspaces

• collision recording

• monitoring work status

These procedures provide the same functionality that the Co-DBMS otfers to

agents, as described in Chapter 5. Invoking any of them calls the Co-DBMS

procedure of the same name.

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2.2 Object check-out and check-in

An application requests that an object be cached by checking-out th a t object. If

the application needs only read access, it should check-out the object for read; if

it needs update access it must check-out the object for update. While an object is

checked-out, the Co-DBMS will send asynchronous notifications of updates made

by other agents to that object to the u p d a te no tifica tion m a n a g e r in order

that the cache be made consistent; the way this is done is explained in Section

6.2.5. An object will remain cached and accessible to the application until the

application checks-in the object.

ApplicationCheckOutForRead(Qb]ectlD, LastMessageHandled)

return extendedO bject/ handleMessages

ApplicationCheckOutForUpdate(ObjectlD, LastMessageHandled)

return extended()bject(s)/ handleMessages

An application calls ApplicationCheckOutForRead or Applic.ationChec.kOut-

ForlJpdate to check-out an object for read or update access, respectively. The

AOM calls CheckOutForRead or CheckOutForlJpdate in the Co-DBMS, respec

tively, and returns to the application a copy of the extended object or, in the case

of CheckOutForlJpdate, checks-out and returns all dependencies of th a t object.

The same restrictions apply on an agent in checking-out an object for update,

as presented in Section 5.2.8. There is one difference between ApplicationCheck

OutForRead (or ApplicationCheckOutForlJpdate) offered by the AOM to an ap

plication and CheckOutForRead (or CheckOutForlJpdate, respectively) offered by

the Co-DBMS to agents: an application passes the time-stamp of the last message

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

it handled to ApplicationOheckOutForRead (or ApplicationCheckOutForlJpdate);

the AOM converts this time-stamp to the time-stamp of the last notification han

dled by the agent and passes that to CheckOutForRead (or CheckOutForlJpdate,

respectively).

ApplicationCheckIn(Ob]ect\D, LastMessageHandled)

return ok / uncom m ittedUpdates/ handleMessages

An application invokes ApplicationCheckln to inform the AOM that it no

longer needs to access an object. The AOM calls Checkin in the Co-DBMS so

that it will then send no more notifications to the agent of updates to that object.

ApplicationCheckln will fail if the application has failed to handle all messages sent

to it, or if, in the case of an object checked-out for update, there are uncommitted

updates to the object in the cache.

6.2.3 Reading objects in cache

An application must be able to read the contents of objects in order to initialize

and keep current its internal data structures. The object cache manager gives

applications a programmatic interface to access objects in the cache.

ReadSlotValue(QlD, SlotName)

return value

The value returned by the ReadSlotValue depends on the type of the slot. See

Table 6.1.

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

object unit value returned by ReadSlotValue

basic slot value of slot of appropriate type, as described by the schema

sub-object OID of the sub-object

set-valued slot values (or OID in case of sub-object) of members of the set

object reference slot OID of the referenced object

derived direct slot value of slot of appropriate type, as described by the schema

derived external slot the value of the slot if it is valid, else (undefined) if the slot is invalid

Table 6.1: Reading Values of Objects in Cache

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2.4 Updating objects in cache

An application modifies data by updating objects in cache, then committing those

updates to the workspace it has selected. This section discusses how derived ex

ternal slots are marked invalid, presents the programmatic interface with which an

application updates cached objects, and describes what effect each update opera

tion has on the extended object cache and 011 other components of the AOM.

In v a lid a tin g d e riv ed e x te rn a l s lo ts

When slots in a base object X are updated, derived external slots in X , and in

other objects that reference X , may be invalidated. It is unreasonable to assume

that every application conscientiously invalidates derived external slots whenever

it updates slots in the object cache which may affect the derived external slots.

Furthermore, updates to the extended object cache by the update notification

manager (described in Section 6.2.5) may affect the validity of derived external

slots.

For these reasons, the out-date propagator in the AOM performs the task of

invalidating derived external slots in the object cache whenever slots upon which

they depend, as defined by the schema, are updated by either the application or

the update notification manager. The AOM does not know how to recompute the

new value of the derived external slot. Instead , it is the responsibility of applica

tions, and may require an arbitrary amount of computation.

One update may have a ripple effect in which derived external slots, and other

derived external slots affected by those slots, are affected. The out-date propagator

recursively marks derived external slots affected by the update as invalid. The

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

out-date propagator is guaranteed to have update access to all objects affected,

since when X was checked-out for update so were dependents(X).

When an application calls an update procedure, the out-date propagator com

pletes its task before the call returns control to the application. Thus, out-date

propagation occurs synchronously with respect to update requests from the appli

cation.

R e c o m p u tin g d e riv e d d ire c t s lo ts

Just as the value of derived external slots can become invalid when a slot upon

which it depends has been updated, so can a value of a derived direct slot. Instead

of calling the out-date propagator merely to mark the derived direct slot out-dated

as it does to a derived external slot, the AOM invokes the d e riv ed s lo t ca lcu la

to r to recompute the value of the derived direct slot. The derived slot calculator

computes the value of the derived direct slot based upon the specifications in the

schema.

U p d a te p ro c e d u re s

An application updates an object by calling procedures in the object cache

manager. When an application updates an object, the agent timer is incremented;

the time tha t an update occurs is used to time-stamp updated slots.

Table 6.2 shows the update procedures that can be called for each type of slot

in an object and what effect each procedure has on the extended object cache.

Control attributes are used when an agent commits its updates to the Co-DBMS

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

object unit update proce
dure

modifications in extended object cache

basic slot Update Value value := new value
value status := different
time-stamp := tupdate

set-valued slot CreateMember existence status := not in workspace, created
time-stamp := tupdate

DestroyMember If (existence status = created in workspace, unchanged)
then existence status := created in workspace, destroyed
else if (existence status = destroyed in workspace,

restored)
then existence status := destroyed in workspace,

unchanged
else if (existence status := not in workspace, created)
then existence status := not in workspace, destroyed

time-stamp := tupdate

DestroyMember calls RemoveReference for each uncom
mitted inter-object reference that is removed as a result
of destroying the set member.

RestoreMember If (existence status = created in workspace, destroyed)
then existence status := created in workspace,

unchanged
else if (existence status = destroyed in workspace,

unchanged)
then existence status := destroyed in workspace,

restored
else if (existence status := not in workspace, destroyed)
then existence status := not in workspace, created

time-stamp := tupdate

RestoreMember calls AddReference for each uncom
mitted inter-object reference that is added as a result of
restoring the set member.

Table 6.2: Procedures to Update Objects

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

| object unit update procedure modification to extended object cache

object reference
slot

UpdateReference value := ODD of object to reference
or
value := null
value status := different
time-stamp := tupdate

When an application adds a reference from one object to
another, the AOM in the agent calls AddReference in the
Co-DBMS. When an application removes a reference,
the AOM calls RemoveReference in the Co-DBMS.

derived external
slot

SetValid validity status := valid
validated := true
time—stamp • — tupdate

SetValid is called by an application after it recomputes
and updates the value of the derived external slot.

Setlnvalid if (validity status = valid)
then validity status := invalid

time-stamp := tupdate
invalidated := true

Setlnvalid is called recursively by the out-date propaga
tor.

procedures to up
date value of
derived external
slot

The procedures, in this table, that can be invoked to up
date the value of a derived external slot depend on the
type of the value of the derived external slot, as specified
by the schema.

These procedures are called by an application that has
recomputed the value of the slot.

derived direct
slot

procedures to up
date value of
derived direct slot

The procedures, in this table, that can be invoked to up
date the value of a derived direct slot depend on the type
of the value of the derived direct slot, as specified by the
schema.

These procedures are called only by the derived slot
calculator and not by the application. To an application,
the value of a derived direct slot is always current.

Table 6.2: Procedures to Update Objects (cont.)

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in order to determine the update delta between the object cache in the agent and

the workspace which the agent has selected.

Four side-effects of every update exist:

1. control attributes of both the object that contains the updated slot, and ev

ery object that owns that object are updated as follows:

value status := different

time-stamp := tupdate',

2. the update will cause derived external slots affected by the update to be

invalidated by the out-date propagator;

3. the update will cause derived direct slots affected by the update to be re

computed by the derived slot calculator;

4. the update focus handler will deliver a message to the application if the

update matches an interest placed by the application. (The operation of the

update focus handler is explained in detail in Section 6.2.6.)

The AOM enforces two conditions on when an application can update an object

in the object cache:

1. the application must have checked-out the object for update;

2. the application must have handled all messages sent to it by the update focus

handler; this is done using a protocol similar to tha t explained in Section

5.2.8.

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2.5 Handling update notifications

When an agent commits updates on object X to workspace W , the object cache

within every other agent tha t has selected either W or a sub-workspace of W and

which has checked-out X will become stale. The update monitor in the Co-DBMS

guarantees tha t each agent that is checking-out X will be sent asynchronous noti

fications of all updates to X .

When a notification of an update by another agent is received from the update

monitor, tha t update must be incorporated or “merged” into the agent’s object

cache. This action is performed by the update notification manager in the AOM.

Like the out-date propagator and the derived slot calculator, the update notifica

tion manager operates automatically on behalf of the application.

It is important to note that most existing systems with notification capabilities

are limited to notifying human users about the status of shared objects. They

assume that only the human user is active. A cooperative environment, however,

should have active components in the sense that it be able to monitor the activities

in the database and automatically perform some operations in response to changes

made to database objects [43, 6]. Our work provides the update monitor and the

work status monitor in the Co-DBMS, and the out-date propagator, the derived

slot calculator, and the update notification manager in the agent to serve these

purposes.

Purpose of the update notification manager

Suppose agent A has selected workspace W. Let Va {1) represent the view of the

object cache within agent A at time t, and Vw{t) represent the view of objects in

workspace W at time Z, to the extent that update notifications have been merged

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

into the object cache in A.

R ule : V/i(<) = Vw{t) + A U(t), where AU (t) is the update delta from W to

A. The update delta represents the uncommitted updates on the object cache

performed by the application.

Suppose notification of update u is sent to the update notification manager,

and tha t the update notification manager merges u into the object cache at time

t,Merge- It does so by altering Va to reflect update u and computing a new update

delta which is as close as possible to the old one. That is, the update notification

manager restores the rule by finding some small 81! such that:

^Ai^Merge) = V jy(/Merge) d" A f !(i-M erge)i

Vw(tM erge) — ^w i^M erge 1) d" U, an d

Merge) = A I ! (t. Merge ~ 1) d- 8 1 !

O p e ra tio n o f th e u p d a te n o tif ica tio n m a n a g e r

When an update notification manager receives an update notification from the

update monitor, it attem pts to reflect the change in the object cache. Table 6.3

shows how the update notification manager updates the object cache for each type

of update notification it can receive. As in the case with updates from an applica

tion, updates from the update notification manager can have side effects.

It is im portant to note tha t the manner in which the update notification man-

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

object unit update notifica
tion

modifications to extended object cache

basic slot UpdateValue to v value := v
value status := same
time-stamp := tupdate

An update notification may describe an update to a slot
in an object that was a member of some set but that the
application has destroyed. In this case, the update notifi
cation manager will first call RestoreMember to restore
the object then perform the update.

set-valued slot CreateMember existence status := created in workspace, unchanged
time-stamp := tupdate

DestroyMember existence status := destroyed in workspace, unchanged
time-stamp := tupdate

The update notification manager calls RemoveReference
for each uncommitted inter-object reference that is re
moved as a result of destroying a set member.

RestoreMember existence status := created in workspace, unchanged
time-stamp := tupdate

The update notification manager calls AddReference for
each uncommitted reference that is added as a result of
restoring a set member.

reference slot UpdateReference
to OID or null

value := ODD or null
value status := same
time-stamp := tu pdate

When the update notification manager removes an exist
ing reference from one object to another, it calls Remov
eReference in the Co-DBMS.

Table 6.3: Handling Update Notifications

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

object unit update notifica
tion

modifications to extended object cache

derived external
slot

SetValid if (invalidated = false)
then validity status := valid

time-stamp := tupdate
else validity status := invalid

If an agent A recomputes and sets a derived external slot
as valid, that validity can propagate to the object cache of
another agent A only if A has never invalidated derived
external slot in its cache.

Setlnvalid When the update notification manager incorporates other
agents’ updates into the object cache, the out-date propa
gator will automatically invalidate any derived external
slots affected; no action need to be taken by the update
notification manager when it receives notifications of a
derived external slot having been marked invalid.

updates to the
value of the
derived external
slot

After an agent recomputes a derived external slot, it up
dates the slot to contain the new value. Thus the update
notification manager may receive notifications of updates
by other agents to a derived external slot. It responds by
applying those updates, as described by this table, to the
derived external slot in the object cache.

derived direct
slot

updates to the
value of the
derived direct slot

When the update notification manager incorporates other
agents’ updates into the object cache, the derived slot
calculator will automatically invalidate any derived ex
ternal slots affected; no action need be taken by the up
date notification manager when it receives notification of
a derived direct slot having been updated.

Table 6.3: Handling Update Notifications (cont.)

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ager merges updates from other agents iuto the object cache is syntactic rather

than semantic. The update notification manager does not understand any mean

ing which may be assigned to the state of objects. Thus, when the update notifi

cation manager merges updates it may unknowingly undo updates to or adversely

affect the state of the object cache within the agent. In such a case, the application

is responsible for applying compensating updates to the object cache in order to

restore it to a “semantically consistent” state before committing the state of the

object cache to a workspace in the Co-DBMS.

Deferred handling of updates

In normal operation, the update notification manager makes asynchronous changes

to the object cache in response to update notifications, received from the update

monitor in the Co-DBMS, that describe updates made by other agents. Thus,

the view of data presented to an application is subject to change. At times, it

may be convenient for an application to present a static view of objects to a prod

uct developer, and therefore, the processing of update notifications by the update

notification manager is to be deferred. For example, a product developer might

choose not to be bothered by updates made by other product developers until

the end of each day. Note that the disadvantage of deferring the incorporation

of updates made by other product developers is that the product developer will

not be aware of potentially conflicting or erroneous updates until the merging of

updates resumes. But at that time other updates may have been predicated on

the erroneous updates, and correcting the resulting problem will be more difficult.

In general, identifying conflicts early than late in the process reduces the cost.

The AOM offers applications the ability to cause the update notification man

ager to defer or to resume the merging of update notifications into the object cache.

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For the period of tim e that the merging is suspended, the view of objects that the

application sees may be out-of-date.

When the object cache is stale, an application operates based on the view

of the world that is somewhat incorrect. For this reason, the application is

restricted in what it can do while the update notification manager has been

turned off; in particular, it is not allowed to update objects in the Co-DBMS.

The handshaking used in the procedures CheckOutForRead, CheckOutForlJpdate,

Checkin, ApplicatiouCheckOutForRead, Applic.ationChec.kOut For Update, Appli-

cationCheckln, and ApplicationCommit prevent an application from checking ob

jects out or in or from committing its updates to the Co-DBMS unless the update

notification manager has handled all update notifications and the application has

handled all the resulting messages.

Defer Update Handling()

An application calls DeferUpdateHandling when it wants to suspend opera

tion of the update notification manager. The application is then assured that any

changes to the objects in the cache are results of its updates, not those of other

agents.

Resume UpdateHandling()

An application calls ResumelJpdateHandling to continue operation of the up

date notification manager. When the update notification is running, objects in the

cache are subject to change asynchronously.

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2.6 Handling update focus

After an agent checks-out and caches an object X , the update monitor in the Co-

DBMS sends notifications of any updates to X to the update notification manager

in the agent, which uses the notification to make the object cache current. The

application in an agent reads data from and submits updates to the object cache,

then at some point commits those updates to the workspace it has selected. When

the update notification manager updates the object cache, it may make changes

that require the application either to adjust its internal state, or to make updates

to the object cache which compensate for updates from another agent, or both.

Thus, the application m ust be aware of some set of updates to the object cache.

Because different applications have different semantics, those updates in which

an application is interested in being notified depends on the particular applica

tion. The AOM does not understand the semantics of applications. Thus, it is the

responsibility of the application to inform the AOM of which updates it needs to

be informed about. It does so by registering in te re s ts with the u p d a te focus

h a n d le r in the AOM. Each interest identifies some set of updates. When any up

date specified by an interest occurs, the update focus handler sends a message to

the application that describes the update. An application registers some number

of interests with the update focus handler; the interests are chosen so that the set

of updates in which the application is interested is covered by the interests.

Collectively, a set of interests demarcates a region of interest, referred to as

u p d a te focus. The update focus should include updates to data upon which the

application is basing its operation - the re a d se t. When an application performs

an update to the object cache, the update focus handler does not send a notifi

cation of that update back to the application. The update may, however, trigger

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the out-date propagator or the derived slot calculator to perform further updates

on derived external or derived direct slots, respectively; these updates may cause

messages to be. sent to the application tha t performed the original update if it had

registered an interest in some derived slot affected.

The updates in which an application is interested may vary over time. An

application is free to adjust its focus at any time by registering additional interests

or unregistering an interest it had previously registered.

The mechanism o f update focus and messages provided by the AOM and the

Co-DBMS is what the framework offers for flexible concurrency control.

M atch in g u p d a te s to in te re s ts

Table 6.4 shows each interest tha t can be registered by an application and in

dicates which updates will cause a message to be sent to an application that has

registered that interest.

D a ta -d riv en an d d em a n d -d riv e n re c o m p u ta tio n

If an application recomputes derived external slot immediately whenever the

slot is invalidated, the result is d a ta -d r iv e n computation, and is similar to the

operation of a spreadsheet, which recomputes computed fields whenever data upon

which they depend have changed. An application can also achieve d em and-

d riv en computation by deferring recomputation of a derived external slot until

the value of that slot is needed.

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

interest corresponding update

value of slot S S is a basic slot
UpdateValue(S,v)

S contains a sub-object
application would use “existence of object” or state of object
described below

S is set-valued
CreateMember(S,X),
DestroyMember(S ,X),
RestoreMember(S,X), or
any update to a member of S

S is a reference slot
UpdateReference{ S,OID)

S is a derived direct slot
the derived slot calculator updates the value of the derived direct
slot

S is a derived external slot
SetValid(S) or
Setlnvalid(S)

existence of object X DestroyMembex{S,X), where X is a member of set-valued slot S
DestroyMember(S,Y), where X is a sub-object of Y
RestoreMember(S,X), where X is a member of set-valued slot S
RestoreMember(S,Y), where X is a sub-object of Y

state of object X any update to any slot of object X
any update to any slot of a sub-object of X

Table 6.4: Update Interests and their Corresponding Updates

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

If CPU resources were infinite, the value of derived external slots could be con

stantly recomputed and there would be no need for demand-driven computation.

They are not, of course, so the tradeoff between computational expense and keep

ing derived external slots valid, and therefore the choice between use of data- or

demand-driven computation, is an engineering trade-off.

ddd/7itere5t(Specification()fInterest)

return Interest ID

An application enlarges its focus by calling Addlnterest and indicating the

specification of interest to be registered. When an update occurs to the object

cache that matches an interest that the application has registered, the update fo

cus handler sends a message to the application.

RcmoveInterest(InterestID)

An application calls Removelnterest when its focus has been reduced and no

tification of updates corresponding to an interest which was registered earlier are

no longer needed.

6.2.7 Checking update dependencies of derived external

slots

When an application needs to recompute the value of an invalidated derived ex

ternal slot, it may be useful to know which slots have changed since the slot was

last valid. The d e p e n d e n c y checker in the AOM compares time-stamps in the

extended object cache to identify those slots.

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

When an object is cached in an agent, it contains time-stamp attributes from

the Co-DBMS timer. When the update notification manager merges updates into

the extended object cache, it assigns the time-stamps of the notifications to tim e

stamp attributes of cached objects; these time-stamps are also from the Co-DBMS

timer. When an application makes an update to the extended object cache, how

ever, the time-stamps used are from the agent timer. Thus, time-stamps in the

extended object cache will be a mix of time-stamps from the Co-DBMS timer and

from the agent timer. Suppose t\ and t 2 are two time-stamps. We define a total

order of time-stamps as follows:

t,\ < t.2 if and only if one of the following three conditions is met:

1. ti and t 2 are Co-DBMS time-stamps and t\ < t.2]

2. ti and t.2 are agent time-stamps and t\ < t2\

3. U is a Co-DBMS time-stamp and t 2 is an agent time-stamp.

As explained in Section 5.2.7, each slot in an object has a time-stamp attribute.

Updates to the extended object cache performed by the application, out-date prop

agator, derived slot calculator, and update notification manager all maintain the

rule if a derived external slot E is invalidated, its value depends on slot ,S, and S

has been updated since E was last valid, then t i in e -s ta m p (E) < t im e—stam p(S).

The dependency checker works by comparing the time-stamp of the derived

external slot E with the time-stamp of each slot S upon which it depends. If

the time-stamp of E is not greater than the time-stamp of S, then S is included

among those slots which, as a result of being updated, caused E to become invalid.

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CheckUpdateDependency(OlD, DerivedExternalSlot)

return set Slot

An application calls ChecklJpdateDepeudencies and specifies a particular de

rived external slot in order to retrieve the set of slots which have changed since

the derived external slot was last computed.

6.2.8 Committing updates to workspace

When an application wishes to save its updates of objects to the workspace it has

selected, it commits to the Co-DBMS. When the application commits its updates,

the AOM computes the update delta, that is, a list of updates which represent

the difference between the workspace and the object cache, and submits that list

by calling IJpdateWorkspace, as discussed in Section 5.2.10. An application may

request tha t its updates be discarded rather than committed; in this case the AOM

reloads cached objects from the data store and reinitializes the object cache. Table

6.5 shows how the object cache manager in the AOM computes the update delta

by recursively scanning each object in the object cache.

Commit (/pdatc(LastMessageHandled)

return ok / handleMessages/ invalidConstraint

An application commits its updates by invoking OommitUpdate. The request

will fail either if the application has not handled all the messages sent to it by

the update focus handler, or if not all constraint specifications of the workspace

selected by the application are true in the object cache.

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

object unit the state of con
trol attributes

update generated

basic slot value status =
different

value status := same
time-stamp := time-stamp + tcommit

The time-stamp of each slot in the object cache that was
updated is incremented by the current Co-DBMS time
when the agent commits, in order to convert it from
agent time to Co-DBMS time.

UpdateValue(X„ S, value, time-stamp)

sub-object or
member of set
valued slot

value status =
different

value status := same
time-stamp := time-stamp + tcommit

Recursively scan each slot in object and generate updates
according to this table.

set-valued slot Generate update
for each member
where:
existence status =
not in workspace,
created

existence status := created in workspace, unchanged
time-stamp := time-stamp + tcommit

CreateMember(X, S, OID of new member, time-stamp)

Generate update
for each member
where:
existence status =
created in work
space, destroyed

existence status := destroyed in workspace, unchanged
time-stamp := time-stamp + tcommit

DestroyMember(X, S, OID of member, time-stamp)

Generate update
for each member
where:
existence status =
destroyed in
workspace,
restored

existence status := created in workspace, unchanged
time-stamp := time-stamp + tcommit

RestoreMember(X, S, OID of member, time-stamp)

Table 6.5: Computing Differential Updates

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

object unit the state of con
trol attributes

update generated

object reference
slot

value status =
different

value status:= same
time-stamp := time-stamp + tcommit

UpdateReferenceiX, S, value, time-stamp)

derived external
slot

validity status =
invalid

and
invalidated = true

invalidated := false
validated := false
time-stamp := time-stamp + tcommit

SetInvalid(X, S, time-stamp)

validity status =
valid

and
validated = true

invalidated := false
validated := false
time-stamp := time-stamp + tcommit

SetValid(X, S, time-stamp)

Recursively scan the value of the derived external slot
and generate updates according to this table

derived direct
slot

value status =
different

value status := same
time-stamp := time-stamp + tcommit

Recursively scan the value of the derived direct slot and
generate updates according to this table.

Table 6.5: Computing Differential Updates (cont.)

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/l&or£l/pdafe(Last MessageHan died)

return o k / handleMessages

An application discards its updates by invoking AbortlJpdate.

6.3 R ules maintained by the AOM

All modules within the AOM work together to jointly provide a collection of ser

vices to au application. Guaranteeing internal consistency and correct operation

of the AOM requires that it maintain a number of rules. This section summarizes

the rules.

1. Unhandled messages restrict updates by applications

When an application makes updates to objects in the object cache, it does so based

upon the s ta te of the objects in its read set. If the application has registered in

terests in certain updates, it may receive messages from the update focus handler.

The AOM guarantees:

Rule 1:

An application can update the object cache only after it has seen all messages

sent to it since its last update.

This rule is preserved by virtue of the protocol used between the application

and the object cache manager. Because of the protocol, the object cache manager

may refuse an update request from the application.

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Object cache related to workspace by update delta

An application caches copies of objects and performs updates on those objects. Be

cause of updates by other agents, the cache may grow stale. The AOM guarantees:

Rule 2:

Let Vw{t) he the view of objects at time / in the workspace selected by an agent

and VA(t) be the view of objects in the agent’s object cache a t time t:

Then Va {I) = Vjy(/) + A f/(/), where A U is the update delta which represents

the uncom mitted updates to objects in the cache. The update delta is composed

of updates to the object cache by the application and updates to the workspace

from other agents.

The object cache manager preserves this rule by incorporating updates from the

application into the object cache. The update notification manager preserves this

rule by merging updates from other agents, as described by update notifications,

into the object cache and making adjustments to the update delta.

3. Control attributes provided are sufficient for commit

An application can choose to commit its updates to the Co-DBMS at any time.

When it does so, the object cache manager scans the extended object cache, inter

prets the information provided by the control attributes to determ ine what updates

were performed, and generates a list of updates which is then presented to the Co-

DBMS. The rule tha t makes this possible is:

Rule 3:

The update delta can be computed at any time from the control attributes asso

ciated with objects.

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The object cache manager, the out-date propagator, the update notification

manager, and derived slot calculator are the only modules that update the object

cache. They change the value of the control attributes in such a way that the

difference between the state of objects in the cache and objects in the Co-DBMS

is captured by the state of the control attributes.

4. Derived external slots are automatically invalidated

An application need not be aware of all derived external slots which may be af

fected by an update, because the out-date propagator guarantees:

Rule 4:

For every slot S and derived external slot E that depends on ,S:

If S is updated, then the validity status of E is set to invalid.

The out-date propagator behaves as a tru th maintenance system by recursively

marking derived external slots as invalid after each update to the object cache made

by either the application or by the update notification manager.

5. Relative time-stamps of slots are maintained

The dependency checker determines for a specified derived external slot which

slots upon which it depends have been updated since the derived external slot

was last computed. In order to do so, the dependency checker compares the time

stamp of the derived external slot with the time-stamps of the source slots; if a

derived external slot has a time-stamp tha t is not greater than that of a source slot,

then the source slot may have been updated since the derived external slot was last

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

computed and should be included in the reply returned by the dependency checker.

The rule which guarantees that the algorithm in the dependency checker works

is:

Rule 5:

For every slot S and derived external slot E that depends on S:

If S has been updated since E was last computed, then tim e — stam p(E) <

tim e — stam p(S).

This rule is maintained by the out-date propagator as follows:

When the out-date propagator is invalidating a derived external slot, and that

slot is valid, the out-date propagator marks the slot as invalid and sets the time

stamp of slot to that of the update. If the derived external slot has already been

marked invalid, the out-date propagator changes the time-stamp of the slot to the

minimum of the time-stamp of the update and the time-stamp already assigned to

the derived external slot.

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Developing Applications for

Cooperative Environm ents

The preceding two chapters have provided an operational definition of the Co-

DBMS and the agents, and have identified the operation rules maintained by the

DOM and the AOM. The inclusion of the AOM and the DOM between applica

tions and the database and containing an application to access data only through

the AOM, however, do not prevent unsuitable operation of an application. This

is because there are certain requirements on the application within an agent to

make it behave correctly. An application that fulfills these requirements is termed

c o o p e ra tiv e a p p lic a tio n (o r co -ap p lica tio n). Among co-applications there is

a range of levels of cooperation of the application with the AOM; higher level of

cooperation adm it higher levels of concurrency.

This chapter identifies what is required of an application for it to be co

application and what minimal alterations are needed to upgrade an existing ap

plication to a co-application. The chapter also explains what it means for an

application to handle messages from the focus handler, and discusses levels of

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cooperation of the application with the AOM.

7.1 Cooperative Applications

The AOM and the DOM give multiple applications simultaneous update access to

database objects. This places special requirements on applications so that they

do not interfere with each other. An application that meets these requirements is

termed co-application. This section defines what the requirements are.

7.1.1 Requirements of a co-application

So that an application does not interfere with updates of other applications, it

must, meet the following three requirements.

1. All access to objects by an application must only be through the interface

provided by the AOM.

2. As the application operates and reads data from the object cache and initial

izes internal data structures, it must adjust its focus to include updates to

all values upon which it is currently basing its internal state, so that it will

receive messages from the focus handler when those values change because

of updates of other applications.

3. The application must haudle all messages sent to it by the focus handler

before it commits its updates to the Co-DBMS. (Message handling is covered

in the next section.)

Note that, according to the above definition, any application can be a co-application

merely by never committing its updates. Therefore, satisfying the above require

ments does not imply the usefulness of a co-application, but merely that it is not

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

harmful to updates performed by other application. If a product developer uses an

application which fails to follow the above requirements, unpredictable alterations

to objects in the Co-DBMS may result; in such a case not only will progress on

the work will be hindered, but also damage to or reversal of the contributions of

other developers may occur.

7.1.2 Converting existing applications to co-applications

This section discusses how an existing application, which was not built to be used

in a cooperative environment, can be converted to a co-application and be some

what useful, but still need not know how to handle any messages. Although such

a conversion ensures that the application will not disrupt the efforts of other ap

plications, the application will be unable to affect progress on the work in the face

of concurrent access to shared objects by other applications.

Here is what is required of the application:

• upon starting, the application registers itself with the AOM;

• the application checks-out for update any objects it needs to change, and

checks-out for read any other objects it needs to access;

• the application will perform its task as usual, including interacting with the

user as necessary, until the task is complete; updates performed on internal

d a ta structures need to be com m itted first to the object cache then to the

Co-DBMS;

• a t commit time, the application will convert updates on internal data struc

tures to updates on the object cache then request that they be committed

to the Co-DBMS; but if any messages have arrived from the focus handler,

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the application must inform the user th a t the updates must be aborted and

the agent restarted.

The application must abort its updates if messages have been sent from the

focus handler. This is because a simple-minded application that lacks the intelli

gence to handle messages must not predicate any updates to objects upon other

objects which have changed by another application (as described by the messages).

An application tha t operates in this fashion would offer no benefit in the face of

concurrent operation. Note tha t this scheme is analogous to optimistic concur

rency control: acquisition of the same lock by two transactions require tha t one

transaction aborts, but if there is no such interference then both transactions can

commit their updates [45].

7.2 M essage Handling

Even though the update notification manager has incorporated external updates

into the agent’s object cache, a critical question remains: Has the internal state

of the application, that is, the application’s view of the world that it constructed

from the object cache before the update notifications were received, been disturbed?

The answer is - maybe. It depends on the semantics of the application; these are

known only to the application itself. The best assistance that can be offered by

the application is to let it inform the focus handler what objects and slots it has

assumed to be static, then notify it via messages if any of those change.

The above protocol assumes that in most cases an application will be able to

handle notifications it receives. This is, of course, a form of optimistic concurrency

control. In the worst case, an application is unable to incorporate the changes

made by another application into its view and the product developer cannot con-

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tinue the current thread of updates; this is analogous to a database transaction

abort. However, the stirring motivation for allowing multiple applications to up

date shared objects is to perm it cooperative updates to be made. The essence of

cooperation is that updates made by one product developer and his or her appli

cations are not catastrophic to the ongoing efforts of other cooperating product

developers [28, 31, 48]. This does not mean that the update might not cause

problems with the functionality or correctness of the product. In general, an ap

plication, probably under the direction of its user, will try to adjust to changes by

other applications so that the overall functionality or correctness of the product

are retained.

As described in Section 6.2.6, each application provides its update interests to

the focus handler which demarcate its focus. As a result, an update within that

focus generates a message which is sent to that application. As described above, a

co-application must handle every message received, if it is to commit its updates

to the Co-DBMS.

A message from the focus handler provides a description of an update to the

object cache that occurred as the result of another application’s update. For an

application to handle a message means that it make its internal representations

and data structures reflect the new state of objects in the Co-DBMS. This might

include updating a graphical display which offers the user a view of objects. To

handle a message may also mean that the application must perform compensating

updates on its object cache in order to restore semantic constraints of the database

objects or to amend changes which were performed automatically by the update

notification manager.

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Just before an application receives a message, it presumably has been running

and its controlling user has made updates to the view of objects offered by the

application. The manner in which an application handles a message depends upon

the application, its assumptions about the database objects before the message

arrived, the focus and extent of updates which caused the message to be sent,

the semantics of data involved, and the state of objects in the object cache. For

this reason, the AOM cannot ascertain whether an application has appropriately

handled a message from the focus handler.

The requirement that applications respond in a reasonable fashion to messages

is not trivial. In the general case, handling a message may require an application

to exhibit an arbitrary am ount of intelligence. The amount of intelligence that an

application has is called level of cooperation, and is discussed next.

7.3 Levels of Cooperation

In many cases an application will be able to handle a message from the focus han

dler by adjusting its internal data structures to incorporate the update described

by the message and by performing compensating updates in order to achieve a

required level of consistency. In some cases the application will be unable to do

so incrementally. For example, a simulator, in response to a message that reports

a change in the schematic, may be unable to modify the results of an ongoing

simulation and will have to restart the simulation. In still other cases, an applica

tion may simply have not enough intelligence to enable it to handle a particular

message from the focus handler.

The level of cooperation determines the variety of circumstances that an ap-

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

plication is able to handle messages from the focus handler and still continue to

operate w ithout aborting the updates it has made.

An application that has achieved a low level of cooperation with the AOM may

frequently be forced to abort operation when other applications update objects

upon which it has built its internal state. An application with a high level of

cooperation with the AOM can usually continue operating even when there are

updates to shared objects that are performed by other applications.

7.3.1 Low level of cooperation

If an application lacks the intelligence needed to handle messages from the focus

handler, then it cannot commit its changes to the Co-DBMS if another application

updates objects upon which it has built its internal state. Such a simple-minded

application might merely inform its user that it must be restarted.

It is interesting to note that such a low level of cooperation corresponds to

optimistic concurrency control.

7.3.2 Medium level of cooperation

Certain combinations of updates commute. For example, inserting member

then member m 2 to a set has the same result as inserting them in the opposite or

der [75]. An application which recognizes commutative operations on objects can

mechanically handle those messages from the focus handler that specifies updates

which commute with the updates made by the application.

Unfortunately, commutativity among pairs of operations is not common except

in financial transactions such as “credit” and “debit” . So if an application knows

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

how to handle messages only in such situations, there may be many messages it

cannot handle and thus many situations in which the application will be forced to

abort operation. Nonetheless, handling even a few messages results in a medium

level of cooperation better than the lowest level described above; the more messages

an application can handle, the less frequently it will be forced to abort operation

and discard updates made by the user.

7.3.3 High level of cooperation

If an application keeps its focus current, and handles all messages received from

the focus handler, then it does become possible for that application to operate

concurrently with other applications sharing the same database objects and never

need to abort because it does not understand an update made by another appli

cation. This is a high level of cooperation of the application with the AOM.

An im portant premise of our work is that forced by the need for a higher degree

of concurrency, applications will evolve toward a high level of cooperation. This

level of cooperation is difficult to achieve, since an application is not guaranteed

that any data which it has read are static; they may be changed at any tim e by

another application operating on behalf of the same or a different user.

A high level of cooperation requires that the application be robust and that

it perform reasonably even in situations where data change unexpectedly (due to

asynchronous updates by other applications). The framework guarantees that if

an application expresses an interest in an update, and that update occurs, then

the application will be notified of that update by an asynchronous message from

the focus handler.

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

There are two m ajor benefits from a high level of cooperation.

1. Applications from multiple vendors can be operated concurrently without

understanding each others semantics. Instead, an application needs to un

derstand only the semantics of the view of the artifact which it accesses.

2. The user is not forced into a specific order of application invocation, as in

the case when exclusive access to objects is employed. The work process

can iustead be viewed as an evolution, rather than a series of disconnected

activities.

7.3.4 Other levels of cooperation

Many levels of cooperation exist between the low and high ends. It is not necessary

for an application to have a high level of cooperation with the AOM in order to

gain any benefits; it is simply that a higher level of cooperation derives greater

benefit.

7.4 Conclusion

We conclude this chapter by stating that a co-application, which is linked with

the AOM to form an agent useful in cooperative environments, has features which

differ from those of conventional applications. These features help surmount coop

erative data sharing problems that cooperating product developers are increasingly

encountering. We outline the features of a co-application as follows.

• A co-application does not access data in the database directly, but instead

manipulate cached copies of objects through a well defined interface.

• It adjusts its focus to include updates to those objects upon which it is

currently basing its internal state.

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• It responds to messages describing updates made by other applications by

incorporating those updates into its internal state and by making compen

sating updates where necessary in order to restore consistency. If the appli

cation defers handling the messages, then it is obliged to handle them before

committing updates from the object cache to the Co-DBMS.

• It uses the work status monitor to stay aware of the work status and makes

the work status known to its user.

• It gives the user a means to record collisions in order to identify updates by

other users as unacceptable.

164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8

Conclusion and Future Work

A central concern in computer supported cooperative work is coordinated access to

shared information. In this dissertation, we investigate concurrency control issues

for environments that support cooperative work. As a context for our work, we

address product development environments where cooperation among a group of

diverse and distributed product developers is highly recommended for enhanced

productivity. Our research reveals a diverse set of requirements that cannot be

supported using conventional applications and their associated database manage

ment systems. To support these requirements, we develop a new framework for

cooperative data sharing. Contrary to the conventional approach, the operation

of the framework considers as a premise the evolution of the product rather than

the steps that lead to the product. Another major difference is the replacement

of the assumption tha t users are unrelated and isolated from one another, which

underlies the conventional approach, with the fact that product developers com

municate with each other, both informally and through the database, to jointly

develop the overall product.

The framework is basically comprised of two components: the cooperative

165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

database management system (or Co-DBMS) and the agent. The Co-DBMS con

sists of an object-oriented data store and a set of modules termed the database

object manager (or DOM). The agent has another set of modules, termed the ap

plication object manager (or AOM), that are directly linked to any application

accessing objects stored in the Co-DBMS. The framework provides a number of

desirable features to support cooperative product development.

In this chapter, we review the features of the framework and summarize the

main contributions. We also outline several directions for future work.

8.1 Features o f the Framework

The framework is open-ended: neither it, nor the applications which make use

of it, need to be changed when a new application is introduced into the product

development environment. In addition, the framework provides a host of other

features through the Co-DBMS and the agent.

8.1.1 Support provided by the Co-DBMS

Since conventional database management systems are inadequate for use in a coop

erative product development environment, additional techniques are needed. The

DOM of the Co-DBMS adds capabilities to an object-oriented data store to make

it suitable for cooperative data sharing. These capabilities are summarized below.

• A gent re g is tra tio n : agents register the commencement and termination

of their operation with the DOM using connect and disconnect procedures,

respectively.

166

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Object check-out and check-in: agents can check-out base objects for

read or for update access, and check-in objects they have checked-out when

access is no longer required.

• Asynchronous update notifications: the DOM sends asynchronous up

date notifications to agents; these notifications describe updates made by

other agents to base objects which have been checked-out.

• A dynamic workspace hierarchy: the DOM offers a dynamic workspace

hierarchy into which updates may be encapsulated.

• Support for user mediated consistency: the DOM enforces constraint

specifications tha t could be modified by the product developers or their

agents; the DOM also gives product developers and their agents the ability

to mark updates by other agents as collisions, and ensure that a workspace

cannot commit to its superior workspace if it contains unresolved collisions.

8.1.2 Support provided by agents

The AOM of an agent provides capabilities to an application which simplify the

development of applications that can operate effectively in a cooperative product

development environment. These capabilities are summarized below.

• Consistency of the object cache used by the application: the AOM

keeps the object cache consistent in the face of both internal updates made

by the application and external updates performed by other agents.

• Automatic invalidation of externally derived slots: the out-date prop

agator in the AOM automatically invalidates derived external slots when

slots upon which they depend are modified; this may cause, for example,

constraints throughout a product development hierarchy to be marked as

167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

invalid when some low-level component is modified; thus applications need

not be aware of all constraints and other derived slots in the system, nor of

the manner in which those slots depend on the values of other slots.

• A p p lic a tio n re g is te rs focus an d rece ives m essages: the AOM will mon

itor changes to objects which an application has included in its focus, and

will inform the application when such an update occurs; the application may

use this information to make its internal data structures consistent with the

object cache.

• D efe rred h an d lin g o f u p d a te s : a product developer may wish to ignore

updates made by agents other than the one he or she is using; this can be

done because the AOM gives the application a programmatic interface to

defer the incorporation of external updates into the object cache.

8.2 Research contributions

This section summarizes the research contributions of this dissertation.

8.2.1 Object model for cooperative product development

databases

We developed an object model and associated operations on objects which can be

used as a basis for a more complete object-oriented database. The object model

described in this dissertation is a formal model, and was used, throughout the

dissertation, to explain the operations of the framework. The model considers

objects as being inter-related and attaches additional information to objects in

order to facilitate cooperative work.

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Relationships among objects: in addition to providing support for nested-

objects, object references, and set-valued objects, the model provides derived

objects to represent the semantics of inter-object relationships.

• Control attributes: these are ancillary information attached to objects in

order to represent the difference between the state of objects in a workspace

and the state of those objects in its superior workspace; the Co-DBMS uses

this information to compute the update delta when a workspace is to be

committed to its superior workspace; the same control attributes enable an

agent to track how objects in its cache differ from those in the database; the

agent uses this information to compute the update delta when it needs to

commit its updates to the Co-DBMS.

8.2.2 Flexible model of concurrency control

The major contribution of this research is the development of a flexible model of

concurrency control, which does not necessitate the use of exclusive access; the

absence of exclusive access makes a high degree of cooperation possible among a

group of product developers who are collaboratively completing a product. The

main features of the model are outlined below.

• Use of notification: the update monitor in the DOM provides the mech

anism through which an agent can become aware of updates made by other

agents to cached objects. The DOM sends asynchronous update notifications

to the agents which describe updates tha t occur.

• Applications handle Notifications: when applications use this mecha

nism and follow the requirements of a co-application, explained in Chapter

7, they can keep their internal data structures consistent with the state of

the objects in the Co-DBMS without the need for restrictive exclusive access;

169

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the update notification manager in the AOM automatically incorporates up

dates from other agents into the object cache, but the application has the

responsibility of updating its internal da ta structure.

• M u ltip le levels o f co o p era tio n : applications can exhibit varying degrees

of cooperation; a range of techniques is possible, all of which guarantee con

sistency; levels of cooperation differ in the amount of application-specific

knowledge required; use of knowledge offers a high level of cooperation and

enables an application to respond flexibly to update notifications rather than

abort operation.

8.3 Future Work

Our research work unveils a number of im portant areas for future work in infor

mation sharing in CSGW generally and our framework specifically. In this section,

we outline some of these areas.

8.3.1 Prototype of the framework

Our proposed framework, and its associated mechanisms, represent a new approach

to achieve cooperative data sharing. The construction of a prototype framework

and co-applications is important to establish a proof of concept for feasibility and

effectiveness of our approach to cooperative product development environments.

Some concepts that the prototype will dem onstrate are:

• automatic, handling of update notifications to an agent’s object cache by the

update notification manager, the out-date propagator, and the derived slot

calculator in the agent;

170

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• changes are propagated among applications which share updates to the same

objects;

• the application maintains the consistency of its internal state in face of con

current updates.

8.3.2 Application of domain-specific semantics

The semantics of a particular domain, for example, software development, can be

used to develop views, interests, constraints, and methods which employ knowl

edge of that domain. Modules which offer domain-specific capabilities could, like

the AOM, be included with each application and would simplify the task of the

application developer.

Abstraction is one way of exploiting domain-specific knowledge. It is possi

ble, for example, to apply abstraction to interests. An interest abstraction is a

high level interest which is translated from a domain-specific level to a set of more

primitive interests. Using interest abstractions, a programmer who develops ap

plications will have more powerful vocabulary with which to express updates on

products, and therefore reduce the complexity which the programmer must handle.

Domain-specific semantics could also be used by the focus handler for the effi

cient handling of the message queue. An extension to the focus handler could be

to enable it to recognize messages which represent sets of operations that could

be performed using a less number of operations. For example, mechanisms could

be added to the focus handler to recognize inverse and idempotent operations and

prune the queue appropriately. Efficient handling of the message queue evidently

reduces the number of messages which the application has to handle [23].

171

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.3.3 A framework for handling shared messages

Message passing (not to be confused with messages passed from the AOM to the

application) is yet another im portant way for information sharing. Several research

and development efforts have been geared toward enhancing the capabilities of elec

tronic mail to better suit cooperative work [51, 24]. The concepts provided in this

dissertation could also be used to achieve this goal.

While we developed the framework for cooperative sharing of database objects,

the architecture of the framework could also provide an infrastructure for public

and directed message handling. This can be done by having a message handler,

similar to the Co-DBMS, receive messages from agents acting on behalf of users

and then handle these messages accordingly; if the message is public, then it could

be read by any other agent; if the message is directed, however, the message han

dler will re-direct the message to the particular agent(s) to whom the message

is addressed. An additional twist could be to have agents register their interest

in specific messages (for example, a specific subject), when the message handler

receives messages on a subject tha t matches an interest, it sends these messages to

the agent(s) who registered tha t interest. Messages could also have validity con

ditions (for example, expiration time). The message handler should ensure that

messages read or received by agents satisfy the validity conditions. We are cur

rently conducting an investigation to identify the requirements of message handling

in cooperative environments and the framework components that will provide the

features needed to support these requirements.

172

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] E. Adams, M. Honda, and T. Miller. Object management in a CASE envi

ronment. In 11th International Conference on Software Engineering, pages

154-163. IEEE Computer Society Press, 1989.

[2] D. Agrawal and A. Elabbadi. Transaction management in database systems.

In A. Elmagarmid, editor, Database Transaction Models fo r Advanced Appli

cations, pages 1-32. Morgan Kaufmann Publishers, San Meteo, CA, 1992.

[3] J. Austin. How to Do Things with Words. Harvard Press, 1962.

[4] R. Baecker, editor. Readings in Groupware and Computer-Supported Cooper

ative Work. Morgan-Kaufmann Publishers, San Meteo, CA, 1993.

[5] F. Bancilhon, W. Kim, and H. Korth. On long duration CAD transactions.

In D. Maier and S. Zdonik, editors, Readings in Object-Oriented Database

Systems, pages 408-431. Morgan Kaufman Publishers, San Meteo, CA, 1990.

[6] N. Barghouti and G. Kaiser. Concurrency control in advanced database ap

plications. ACM Computing Surveys, 33(3):269—317, September 1991.

[7] P. Bernstein, A. Hadzilacos, and N. Goodman. Concurrency Control and

Recovery in Database Systems. Addison-Wesley, Reading, MA, 1987.

[8] A. Bond. Cooperation in artifact design. In M IT-JSM E Workshop, 1989.

173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[9] H. Bonin. Teamwork between non-equals: Check-in and check-out model.

ACM SIGOIS Bulletin, 13(3): 18-27, December 1992.

[10] A. Buchmann and G. de Celis. An architecture and data model for CAD

databases. In Proceedings of VLDB 85, pages 105-114, 1985.

[11] S. Ceri and G. Pelagatti. Distributed Databases: Principles and Systems.

McGraw-Hill Book Company, 1984.

[12] P. Dewan and J. Riedl. Toward computer-supported concurrent software en

gineering. IEEE Computer, 26(1): 12-15, January 1993.

[13] E. Dyson. A framework for groupware. In D. Coleman, editor, Groupware’92.

Morgan Kaufmaun Publishers, San Meteo, CA, 1992.

[14] C. Ellis and S. Gibbs. Concurrency control in groupware systems. In ACM

SIC MOD ’89 Conference on the Management o f Data, 1989.

[15] C. Ellis, S. Gibbs, and G. Rein. Design and use of a group editor. In Engi

neering fo r Human-Computer Interaction, pages 13-25. North Holland, Am

sterdam, 1990.

[16] C. Ellis, S. Gibbs, and G. Rein. Groupware: Some issues and experiences.

Communications o f the ACM, 34(1):38—58, January 1990.

[17] A. Elmagarmid, editor. Database Transaction Models for Advanced Applica

tions. Morgan Kaufman Publishers, San Meteo, CA, 1992.

[18] A. Elmagarmid and C. Pu. Introduction to the special issue on heterogeneous

databases. ACM Computing Surveys, 22(3): 175-178, September 1990.

174

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[19] K. Eswaran, J. Gray, R. Lorie, and I. Traiger. The notion of consistency

and predicate locks in a database system. Communications of the ACM,

19(11):624—632, November 1976.

[20] M. Fernandez and S. Zdonik. Transaction groups: A model for controlling

cooperative transactions. In Proceedings o f the 3rd International Workshop

on Persistent Object Systems, Berlin, Germany, 1989. Springer-Verlag.

[21] H. Garcia-Molina. Using semantic knowledge for transaction processing in a

distributed database. ACM Transactions on Database Systems, 8(2), June

1983.

[22] H. Garcia-Molina and K. Salem. SAGAS. In ACM SIGMOD International

Conference on Management o f Data, pages 249-259, 1987.

[23] G. Ghung, K. Jelfay, and H. Abdel-Waliab. Accommodating latecomers in

shared window systems. IEEE Computer, 26(1), January 1993.

[24] Y. Goldberg, S. Marilyn, and E. Shapiro. Active mail: A framework for

implementing groupware. In ACM 1992 Conference on Computer-Supported

Cooperative Work, pages 75-83, 1992.

[25] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques.

Morgan Kaufman Publishers, San Meteo, CA, 1993.

[26] I. Greif, editor. Computer-Supported Cooperative Work: A Book of Readings.

Morgan Kaufman Publishers, San Meteo, CA, 1988.

[27] I. Greif. Designing Group-Enabled Applications: A Spreadsheet Example,

pages 515-525. Morgan Kaufman Publishers, San Meteo, CA, 1992.

175

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[28] I. Greif and S. Sarin. Data sharing in group work. In Irene Grief, editor,

Computer-Supported Cooperative Work: A Book of Readings, pages 477-508.

Morgan Kaufman Publishers, San Meteo, CA, 1988.

[29] J. Grudin. CSCW: the convergence of two development paradigms. In ACM

CHI’91, pages 91-97, 1991.

[30] J. Grudin. The CSCW forum. In 26th Annual Hawaii International Confer

ence on System Sciences, pages 51-58, 1993.

[31] W. Harrison, H. Ossher, and P. Sweeney. Coordinating concurrent develop

ment. In ACM 1990 Conference on Computer-Supported Cooperative Work,

pages 157-168. ACM SIGCHI and SIGOIS, 1990.

[32] S. Heiler, S. Haradhvala, S. Zdonik, B. Blaustein, and A. Rosenthal. A flex

ible framework for transaction management in engineering environments. In

A. Elmagarmid, editor, Database Transaction Models for Advanced Applica

tions, pages 87-122. Morgan Kaufman Publishers, San Meteo, CA, 1992.

[33] H. Jagadish and 0 . Shmueli. A proclamation-based model for cooperating

transactions. In Li-Yan Yuan, editor, 18th International Conference on Very

Large Databases, pages 265-276, 1992.

[34] R. Johansen. Computer Support for Business Team.s. The Free Press, 1988.

[35] R. Johansen. Leading Business Teams. Addison-Wesley, Reading, MA, 1991.

[36] P. Johnson-Lenz and T. Johnson-Lenz. Groupware: The process and impact

of design choices. In Kerr and Hiltz, editors, Studies o f Computer-Mediated

Communication Systems, pages 45-55. 1982.

[37] G. Kaiser. A flexible transaction model for software engineering. In IEEE

International Conference on Data Engineering, pages 560-567, 1990.

176

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[38] CJ. Kaiser and D. Perry. Workspaces and experimental databases: Automated

support for software maintenance and evolution. In Conference on Software

Maintenance, pages 108-114. IEEE Computer Society Press, 1987.

[39] W. Kim and F. Lochovsky, editors. Object-Oriented Concepts, Databases,

and Applications. ACM Frontier Series. Addison-Wesley Publishing Company,

Reading, MA, 1989.

[40] H. Korth, F. Levy, and A. Silberschatz. Compensating transactions: A new

recovery paradigm. In 16th VLDB Conference, pages 95-106, 1990.

[41] H. Korth and G. Speegle. Long duration transactions in software design

projects. In IEEE International Conference on Data Engineering, pages 568-

574, 1990.

[42] C. Krueger. Persistent long-term transactions for software development.

CMIJ-CS-90-188, Carnegie Mellon University, November 1990.

[43] A. Kumar and M. Stonebraker. Semantic-based transaction management tech

niques for replicated data. In A CM SIC MOD International Conference on

Management o f Data, pages 117-125, June 1988.

[44] M. Kumar and J. Wong. Concurrency control in design databases. TR#91-05,

Iowa State University, February 1991.

[45] H. Kung and J Robinson. On optimistic methods for concurrency control.

ACM Transactions on Database Systems, 6(2):213-236, June 1981.

[46] C. Kydd and I). Ferry. A behavioral view of computer supported cooperative

work tools. Management Systems, 3(1):55—67, 1991.

[47] L. Lamport. Time, clocks, and the ordering of events in a distributed system.

Communications of the ACM, pages 558-565, July 1978.

177

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[48] F. Londono. A Blackboard Framework to Support Concurrent Engineering.

PhD thesis, West Virginia University, 1990.

[49] D. Maier. Making database systems fast enough for CAD. In W. Kim and

F. Lochovsky, editors, Object-Oriented Concepts, Databases, and Applica

tions, pages 573-592. Addison-Wesley Publishing Company, 1989.

[50] D. Maier and S. Zdonik, editors. Readings in Object-Oriented Database Sys

tems. Morgan Kaufman Publishers, San Meteo, CA, 1990.

[51] T. Malone, K. Grant, F. Turbak, S. Brobst, and M. Cohen. Intelligent

information-sharing systems. Communications o f the ACM , 30(5):390—402,

May 1987'.

[52] J. Manzi. Working Together, pages 3-9. Morgan Kaufman Publishers, San

Meteo, CA, 1992.

[53] J. McGrath. Groups: Interaction and Performance. Prentice Hall, Englewood

Cliffs, NJ, 1984.

[54] E. Moss. Semantics for Transactions in Shared Object Worlds, pages 289-

294. ACM Frontier Series. Addison-Wesley Publishing Company, Reading,

MA, 1990.

[55] S. Mujica. A Computer-Based Environment fo r Collaborative Design. PhD

thesis, University of California, Los Angeles, 1991.

[56] K. Narayanaswamy and N. Goldman. Lazy consistency: A basis for coopera

tive software development. In ACM 1992 Conference on Computer-Supported

Cooperative Work, pages 257-264, 1992.

[57] M. Nodine, S. Ramaswamy, and S. Zdonik. A cooperative transaction model

for design databases. In A. Elmagarmid, editor, Database Transaction Models

178

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for Advanced, Applications, pages 53-86. Morgan Kaufman Publishers, Sail

Meteo, CA, 1992.

[58] M. Nodine and S. Zdonik. Cooperative transaction hierarchies: A transaction

model to support design applications. In VLDB, pages 84-90, 1990.

[59] J. Nunamaker, A Dennis, .J. Valacich, I). Vogel, and J. George. Electronic

meeting systems to support group work. Communications o f the ACM,

34(7):40-61, July 1991.

[60] L. Osterweil. Software environment research: Directions for the next five

years. IEEE Computer, 14(4):35—43, 1981.

[61] C. Papadimitriou. The Theory o f Database Concurrency Control Computer

Science Press, Rockville, MD, 1986.

[62] C. Pu, G. Kaiser, and N. Hutchinson. Split transactions for open-ended ac

tivities. In 14th International Conference on VLDB, pages 26-37. Morgan

Kaufmann Publishers, 1988.

[63] R. Reddy, K. Srinivas, V. Jaganathan, and R. Karinthi. Computer support

for concurrent engineering. IEEE Computer, 26(1): 12—15, January 1993.

[64] R. Reddy and R. Wood. Emerging prototypes for concurrent engineering. In

Second National Symposium on Concurrent Engineering, 1990.

[65] B. Reeves and F. Shipman. Supporting communication between designers with

artifact-centered evolving information spaces. In J. Turner and R. Kraut,

editors, ACM 1992 Conference on Computer-Supported Cooperative Work,

pages 394-401, 1992.

[66] T. Rodden. A survey of CSCW systems. Interacting with Computers,

3(3):319—353, 1991.

179

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[67] J. Rosenberg and I). Koch, editors. Persistent Object Systems. Springer-

Verlag, 1989.

[68] A. Skarra. A Model of Concurrency Control For Cooperative Transactions.

PhD thesis, Brown University, 1991.

[69] P. Sorgaad. A framework for computer supported cooperative work. In

J. Kaasboll, editor, Report o f the l l th IRIS Seminar, pages 620-640. Uni

versity of Oslo, 1988.

[70] S. Sutton. A flexible consistency model for persistent data in software-process

programming languages. In j th International Workshop on Persistent Object

Systems. ACM Press, 1990.

[71] A. Tanenbaum. Computer Networks. Prentice-Hall Inc., Englewood Cliffs,

N J, second edition, 1988.

[72] R. Taylor, L. Clarke, L. Osterweil, J. Wileded, and M. Young. Arcadia:

A software development environment research project. In IEEE 1986 ADA

Applications and Environments Conference, 1986.

[73] D. Tylor. Object-Oriented Information Systems: Planning and Implementa

tion. John Wiley and Sons, Inc., New York, NY, 1992.

[74] R. Unland and G. Schlageter. A transaction manager development facility for

non standard database systems. In A. Elmagarmid, editor, Database Trans

action Models for Advanced Applications, pages 399-466. Morgan Kaufmann

Publishers, San Meteo, CA, 1992.

[75] W . Weihl. Commutativity-based concurrency control for abstract data types.

In 21st Annual Hawaii International Conference on System Sciences, pages

205-214. IEEE Computer Society Press, 1988.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[76] R. W inner, J. Pennel, H. Bertrend, and M. Slusarczuk. The role of concurrent

engineering in weapons system acquisition. IDA Report R-338 (D TIC#A D-

A‘203-615), IDA, Alexandria, VA, 1988.

[77] T. Winograd. A language/action perspective on the design of cooperative

work. Human-Computer Interactions, 3(1):3—30, 1987.

181

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	A Framework for Data Sharing in Computer Supported Cooperative Environments
	Recommended Citation

	tmp.1569417959.pdf.4DX1G

