
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Electrical & Computer Engineering Theses &
Dissertations Electrical & Computer Engineering

Spring 2007

Detecting Compromised Nodes in Wireless Sensor Networks Detecting Compromised Nodes in Wireless Sensor Networks

Mary Lisa Mathews
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/ece_etds

 Part of the Digital Communications and Networking Commons, and the Electrical and Computer

Engineering Commons

Recommended Citation Recommended Citation
Mathews, Mary L.. "Detecting Compromised Nodes in Wireless Sensor Networks" (2007). Master of
Science (MS), Thesis, Electrical & Computer Engineering, Old Dominion University, DOI: 10.25777/
9yyg-5z07
https://digitalcommons.odu.edu/ece_etds/96

This Thesis is brought to you for free and open access by the Electrical & Computer Engineering at ODU Digital
Commons. It has been accepted for inclusion in Electrical & Computer Engineering Theses & Dissertations by an
authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/ece_etds
https://digitalcommons.odu.edu/ece_etds
https://digitalcommons.odu.edu/ece
https://digitalcommons.odu.edu/ece_etds?utm_source=digitalcommons.odu.edu%2Fece_etds%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/262?utm_source=digitalcommons.odu.edu%2Fece_etds%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.odu.edu%2Fece_etds%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.odu.edu%2Fece_etds%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds/96?utm_source=digitalcommons.odu.edu%2Fece_etds%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

DETECTING COMPROMISED NODES IN WIRELESS SENSOR

NETWORKS

by

Mary Lisa Mathews
B.S. 2004, Drexel University

A Thesis Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirement for the Degree of

MASTER OF SCIENCE

COMPUTER ENGINEERING

OLD DOMINION UNIVERSITY
May 2007

Approved by:

Min Song (Director)

Lee A. Belfora (Member)

Yederic D. McKenzie (Member)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

DETECTING COMPROMISED NODES IN WIRELESS SENSOR NETWORKS

Mary Lisa Mathews
Old Dominion University, 2007

Director: Dr. Min Song

While wireless sensor networks are proving to be a versatile tool, many of the

applications in which they are utilized have sensitive data. Therefore, security is crucial

in many of these applications. Once a sensor node has been compromised, the security of

the network degrades quickly if measures are not taken to deal with this event. There

have been many approaches researched to tackle the issue. In this thesis, an anomaly-

based intrusion detection protocol is developed to detect compromised nodes in wireless

sensor networks.

The proposed protocol is implemented after the sensors are deployed into the

environment in which they will be used. They will start to learn the normal behavior of

each of their neighbors with whom they communicate. All legitimate sensor nodes have

the same code running on them. A compromised node that is present in the network is

assumed to have different code running on it in order to cause some form of damage to

the network. These malicious nodes are detected when one of its neighboring nodes

identifies its behavior as deviating from what is expected, or in other words an anomaly.

The base station is then contacted to confirm whether the suspected node is in fact

compromised. If the base station concludes that the node is compromised, the rest of the

network will be informed, and the appropriate actions will be taken. One of the unique

features of the algorithm is that it is not only capable of sustaining security in wireless

sensor networks, but handling the computing restraints as well as other limitations

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

characteristic of these systems. Extensive simulations are performed to verify

algorithm designed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This Thesis is dedicated to my close family and friends, for their constant love and

support.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGEMENTS

I would like to thank Dr. Min Song for his continuous support and guidance on

my research. I would also like to thank Dr. Lee Belfore and Dr. Frederic McKenzie for

consenting to be on my thesis advisory committee.

I would also like to thank my parents for always being there for me and pushing

me to strive for my best.

I would also like to thank Mr. Sachin Shetty for his help in understanding the

TOSSEM simulator and getting over the many hurdles it presented.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

Page

LIST OF FIGURES.. ix

Chapter

I. INTRODUCTION... 1

1.1 General Wireless Sensor Network Characteristics....................................... 1

1.2 General Security.. 3

1.3 Intrusion Detection Systems... 5

1.4 Combining Two Methods to Detect Compromised Nodes...........................6

1.4.1 Network/Neighbor Stability Based Anomaly Detection......................7

1.4.2 SWATT: Software-based ATTestation for Embedded Devices..........8

1.5 Challenges and Contributions of Thesis...9

II. RELATED WORK.. 11

2.1 Proving the Necessity of Security... 11

2.2 Location Based Anomaly Detection... 12

2.2.1 LAD Scheme.. 12

2.2.2 Detecting Malicious Beacon Nodes in LAD..................................... 14

2.3 Network/Neighbor Stability Based Anomaly Detection............................. 15

2.4 SWATT: Software-based ATTestation for Embedded Devices.................18

III. ALGORITHM FOR DETECTING COMPROMISED NODES..................... 20

3.1 The Main Idea... 20

3.2 The Algorithm... 20

3.3 Type of Attack Thwarted by Algorithm...30

3.4 Features of the Algorithm... 30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IV. SIMULATOR DEVELOPMENT.. 32

4.1 Simulator Introduction.. 32

4.2 Example Simulation Run..33

4.3 Simulator Drawbacks and Configuration..38

V. SIMULATIONS & ANALYSIS..42

VI. CONCLUSION AND FUTURE WORK..51

REFERENCES... 53

APPENDIX... 55

A. TinyViz code used for running TOSSIM..55

VITA... 65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

Figure Page

1. Flow chart on general sensor operation in algorithm...25

2. Flow chart for how sensors deal with messages from base station...............................26

3. Flow chart on general base station operation in algorithm...27

4. Pseudocode to be implemented.. 29

5. Cygwin window... 34

6. TinyViz running with 20 nodes... 35

7. Fixed radius option of Radio model plugin... 36

8. Debug messages plugin.. 37

9. Debug messages displayed in screen... 38

10. Average Time to Detect Each Compromised Node..43

11. Average Time to Detect All Compromised Nodes... 43

12. Average Number of Compromised Packets Sent per Compromised Node................45

13. Average Number of False Positives Prevented..46

14. Average Time to Detect a Compromised Node in a 20 Node Network................... 47

15. Average Time to Detect All Compromised Nodes in a 20 Node Network............... 47

16. Average Number of Compromised Packets Sent per Compromised Node in a
20 Node Network... 48

17. Average Number of False Positives Prevented in a 20 Node Network.......................49

18. Overhead of Implementing Algorithm in a 20 Node Network....................................50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1

I. INTRODUCTION

Research into wireless sensor networks, as well as the applications that employ

this technology that are already in place, show that they are a favorable method for

solving problems or enhancing existing systems. They can be used for a wide range of

functions from monitoring patients while not at the doctor’s office to sensing

environmental conditions such as the level of pollutants in a given area. Since many

wireless sensor networks are utilized in applications where the data gathered is

confidential, security has become a critical issue. However, finding an efficient solution

to this issue is easier said than done for a variety of reasons.

1.1 General Wireless Sensor Network Characteristics

Wireless sensor networks are comprised of sensor nodes that are designed to

gather information regarding environmental data such as light, temperature, sound, and

pressure. These sensor nodes generally function using the same elements described

below [13], [14]. To begin, there are the actual sensors which gather the data that

represents the physical conditions being monitored once the network has been deployed.

The sensor readings that are gathered periodically are sent to the processing unit that

houses the data and program memory. This processing unit usually converts the data

values into a human readable format if this is desired or needed. The operating system

and other programs stored in the program memory dictate all operations of the sensor

nodes while they are in use. While the power source of these devices normally comes in

Using IEEE Editorial Style Manual

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

\

2

the form of a battery, there has been research conducted into other sources such as solar

cells. The wireless aspect of the communication in these sensor networks is usually

achieved through a radio antenna, although some sensors have instituted infrared or laser

communication schemes.

In many deployments, each node in the sensor network is given a unique

identification number that is usually determined when the sensors are programmed. This

means that this node id is part of the code in the program memory and is included in all

outgoing packets sent to the rest of the network. This id is typically given by assigning

numbers starting from either zero or one and incrementing by one for each node added to

the network.

Implementing any form of security measure onto the sensor nodes require the use

of resources that are already constrained in these networks [1], [2]. The sensor nodes are

designed with the goals of being small, in order to be utilized in different scenarios, and

relatively cheap so that many nodes can be deployed in the desired environment. This

has led to these sensors having constraints in terms of low computation, memory, and

power available. Therefore, any security method added to these networks will inevitably

consume some of these resources [16].

A good portion of the memory is generally allotted for the code that runs on the

sensors that instruct them on their sensing, communication, and other operational

functions. The programs dictate what conditions to sense, when to sense them, and what

computations to perform on the values gathered. The nodes also need to know when to

construct packets, how to construct them, and who to send them to. This implies that the

program determines who the nodes of the network communicate with in terms of sending

and receiving information. Some applications allow all nodes to communicate with each

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

other while others require each node to keep a neighbor list of acceptable nodes with

whom they are allowed to send and receive packets. Additional code that is required to

implement any algorithm needs to fall within the range of the total provided memory

minus the existing code memory already utilized. Increasing the resources on the sensor

nodes is not a viable solution if the goals mentioned above or the general operating

efficiency of the network are sacrificed.

1.2 General Security

The objective of any security method being utilized is to maintain authentication,

secrecy, and data integrity within the network [2], [3], [18]. Authentication involves the

receiver of a packet being able to validate that the alleged sender is in fact the real sender

and that it is a valid node of the network. The node identification numbers assigned to

each member of the network comes into play here. Secrecy (a.k.a. confidentiality) deals

with making sure that the data sent is kept secret from those who should not have access

to the information. Even if messages sent in the network are received by unintended

parties, they should not be able to decipher the message contents. Data integrity ensures

that the data received is the same as the data that was sent. Altered messages can come

about by malicious parties modifying packets that are sent between nodes or as a result of

distortion occurring from the wireless communication medium. Either way, these

messages can produce adverse effects in the network, especially in real-time applications

where any information received is acted upon accordingly. For instance, in a battlefield

surveillance application, packet information that represents an approaching enemy would

set off a drastic set of actions. If this information was incorrect, the result could be

disastrous. Many applications benefit from implementing some form of data aggregation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to average out the values obtained from the sensors [2]. This way, the threats that any

extreme values obtained from sensor readings, as well as any altered packets present in

the network, pose to the reliability of the information gathered by the nodes is reduced.

Different types of attacks on wireless sensor networks focus on exploiting the

resource constraints to cripple one of the three parameters listed above [3], [15]. An

attacker can passively eavesdrop on the wireless communication occurring within the

network. By doing so, any of the sensitive information that is being sensed by the nodes

will be available to the listening party [14]. For a more active assault, a malicious party

could inject false packets into the network that would be perceived as valid information

by the other nodes [17]. This also ties up network resources that could have been used

for legitimate packets. An attacker might also alter the contents of a valid packet, which

undermines the authentication and data integrity of the network.

Most security algorithms employ some form of cryptography where data is

encoded and then decoded by the base stations and sensor nodes of the wireless sensor

network [4]. Cryptography allows for authentication, secrecy, and data integrity to be

maintained within the network. TinySec is an example of a security protocol placed on

wireless sensor networks that incorporates these traits [18]. However, the security of

many of the algorithms degrades when one or more nodes have been compromised [5],

[6]. A compromised node occurs when a once valid node of the network has been

reprogrammed to perform some type of malicious activity. Previous security measures

such as cryptography keys mostly likely will not work against them since the

compromised nodes now have these keys, and the other nodes do not know they are

compromised. They are still seen as valid nodes of the network. These nodes can

perform many attacks that cause problems to the general network operation including

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

injecting false packets and modifying the contents of packets coming from other sensor

nodes. The rest of the network would not be able to identify the compromised node, or

intruder, from a valid node if there are not additional security measures included in the

network.

Another assault that plagues wireless sensor networks is the selective forwarding

attack [15]. In this attack, the adversary selectively forwards packets sent by other nodes

in the network which results in lost information. For this to work, the malicious party

needs to somehow include itself into the actual path of the packets being sent. If a

compromised node has incorporated itself into the network and is undetected, it could

easily perform this attack since the other nodes that consider it a neighbor would continue

to send it packets. Information such as network updates vital to sensor network operation

and packets containing sensor values would be prevented from propagating through the

network correctly. This causes damage to the traffic flow of the network as well.

1.3 Intrusion Detection Systems

An intrusion detection system (IDS), whose function is to detect attacks that

exploit the vulnerabilities or flaws within a given network, could be utilized in this

situation [7]. They are generally classified into two main types: misuse intrusion

detection and anomaly-based intrusion detection [12]. Both kinds strive for the same

characteristics of a 100% attack detection rate as well as a 0% false positive rate. The

100% attack detection implies locating and stopping any attacks that occur while the

network is up and running. A false positive occurs when a legitimate node is identified

as an intruder by the other nodes. For obvious reasons, this is detrimental to the integrity

of the network and decreases the competency measurement of the detection system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Misuse intrusion detection systems work under the concept that the attacks that

plague a network exhibit certain unique characteristics that can form a signature for said

attack [12]. The individual attacks are introduced onto the network and studied in order

to look for patterns with which to identify the attack. While the network is deployed, it is

constantly being monitored for activity that matches any of the known signatures. If a

match is found, appropriate action is taken to deal with the intruder that has been

identified. The problem with this type of IDS is that unknown attacks can pass through

the network undetected.

In anomaly-based intrusion detection systems, there is an assumption that the

intruder’s behavior deviates from the normal network behavior [12]. In this type of IDS,

each sensor node will be monitoring its neighbors to keep track of the normal behavior

for a given set of parameters. The nodes develop profiles for each of the nodes with

whom it communicates to determine what is acceptable in terms of communication in the

form of packets sent and received. Any node that strays from its standard actions will

trigger an alarm in its neighbors. The disadvantage of this type of IDS is that there is

generally a high false positive rate. Also, the computation involved with figuring out

whether each neighboring node has deviated from its acceptable behavior along with

updating the profiles has the potential to overtax the network resources.

1.4 Combining Two Methods to Detect Compromised Nodes

In this thesis, two methods for detecting compromised nodes were combined to

create a new algorithm that improved on them by overcoming their limitations. A brief

summary of the methods as well as the solution to their limitations is described below. A

more detailed summary of the methods is provided in the related work section for each.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7

1.4.1 Network/Neighbor Stability Based Anomaly Detection

Onat and Miri developed an anomaly-based intrusion detection system in which

each node created profiles of acceptable behavior for each of its neighbors based off two

parameters which are packet receive power and packet arrival rate [10]. Each node was

programmed to store a packet buffer that would determine the threshold values which are

the highest and lowest acceptable values for these parameters. This buffer was to be

maintained and updated for the entire lifetime of the network. A packet is labeled as

anomalous when the observed parameter value does not fall within the range allowed by

the threshold values. An intrusion buffer is kept for each neighbor as well. This buffer

stores a preset number of consecutive packets that do not fall within the expected range.

If a packet that falls within the desired range is received before the preset number is

reached, the intrusion buffer is emptied. However, an intruder is identified when its

intrusion buffer is filled.

In the algorithm designed for in this thesis, an intrusion detection system similar

to the one described above was implemented, although there were some limitations that

needed to be overcome. To begin with, there was a large amount of space needed in

memory for the two buffers to be able to identify the compromised nodes. The packet

buffer stored 1000 entries while the intrusion buffers stored 100 when dealing with the

packet arrival rate. In this thesis, the packet arrival time is the parameter used to generate

the profiles of acceptable behavior. The algorithm described in the paper was designed to

work on large scale networks. However, small scale networks are used during the

simulation runs for this thesis. The packet buffer implemented here kept 10 entries, while

the intrusion buffer kept 1. This reduction is mainly due to the use of a trusted entity

which will be described in the next section and the network size. The trusted entity,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

which is a base station in this thesis, also eliminates the occurrence of any false positives.

The algorithm created here would be applicable to large scale networks if certain changes

are implemented. The packet buffer would be increased to 100 entries, and the number

of base stations utilized would increase as a function of the network size.

The authors mentioned that in most types of anomaly-based intrusion detection

systems, each node needs to hear that a fixed number of other nodes suspect the intruder

as well to confirm that the node is indeed compromised. While they left this for future

work, this had been dealt with here. There are four packets transmitted between the

trusted entity and other nodes of the network to identify a compromised node and

broadcast its decision to the rest of the network. Once a sensor node hears this message,

it will cease to communicate with the identified intruder.

1.4.2 SWATT: Software-based ATTestation for Embedded Devices

The creators of SWATT revealed that code attestation can proficiently identify

intruders in wireless sensor networks [11]. Their technique was based on the perception

that a compromised node will have different code running on it and stored in its memory

compared to a valid node of the network. This is a viable claim considering that if a node

is truly compromised, it has to do something different compared to the legitimate nodes

in the network. Given that the program being executed on the nodes controls their

operation, malicious behavior would be written in the same memory contents where the

program is stored. This principle is incorporated into the design of this thesis as well.

A verifier is utilized in SWATT to identify intruders. It was assumed that the

verifier has a copy of the code running on the sensor nodes of the network. The verifier

instructs a node to perform a checksum over the contents of memory while performing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the checksum itself over the copy it has on hand. If the response of the requested node

does not come in time or is incorrect, an intruder has been found.

The main limitation with directly implementing their work in the algorithm

designed for this thesis is there was no mention of a way to detect a compromised node.

The simulations involved checking nodes that were already known to have altered code.

The solution implemented here is an anomaly-based intrusion detection system

mentioned in the previous section.

1.5 Challenges and Contributions of Thesis

This thesis presents an anomaly-based intrusion detection system that deals with

the threat imposed by the selective forwarding attack on wireless sensor networks. When

dealing with this type of environment, the resource constraints that are characteristic of

these networks was taken into consideration. The additional code needed to implement

the proposed algorithm needed to work on top of the existing code that manages all

sensor operational activities. It was crucial that the additional memory space required for

each node to store profiles containing acceptable behavior information regarding its

neighbors be kept to a minimum. Any computations involved with determining whether

a node deviated from its normal behavior was carefully weighed for usefulness and

necessity. These computations are to be performed for every single incoming packet that

a node receives from each node it considers a neighbor.

Apart from the resource limitations present, there was also the wireless

communication aspect to consider. The fact that the all traffic within the network uses

this medium implies a higher number of packets lost and a higher number of packets

dropped. This affects the normal behavior profiles stored for the neighboring nodes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

There were also the questions of how to efficiently determine a node as compromised and

how to propagate the identification of a compromised node to the rest of the nodes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

II. RELATED WORK

2.1 Proving the Necessity of Security

Wireless sensor networks have already been exploited in a variety of applications.

While some of the people using these sensors have protected their networks with

different measures such as cryptography keys, there may be others that still do not realize

the importance of security or the multitude of threats that these networks are susceptible

to. Hartung, Balasalle, and Han proved the high level of vulnerability that is an intrinsic

part of these networks [6].

The main contribution the authors provided in the paper was to demonstrate the

ease with which an outsider can view as well as alter the code running on a sensor node

once it has been obtained. Their experiment was conducted on the Crossbow Mica2

sensors. The Crossbow sensor platform, as well as most other sensor platforms, has a

programming interface board that is used to write the programs onto memory. This board

allows the sensor code to be changed to meet the specifications of the user instead of

having sensor nodes with static code that cannot be changed. UISP, a free downloadable

tool that one can use to interact with microcontrollers, was employed and easily copied

the program code as well as the contents of EEPROM. The EEPROM is where the where

the values read in from the actual sensors are stored. This code was then converted into

assembly language, which allowed the authors to view any predefined keys and routing

protocols that were present.

The second stage of the experiment revealed additional information that an

attacker can effortlessly discover once a sensor node is obtained. An AVR JTAG

interface was utilized in this part, which provides a means to manipulate signal levels,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

programming, and On Chip Debugging (OCD) [6]. This device allowed the authors to

gain access to the contents of the program, EEPROM, and the SRAM. It was noted that

the SRAM is thought to be a secure location in which to keep secretive information.

Obviously this theory was proven false by their experiment.

2.2 Location Based Anomaly Detection

2.2.1 LAD Scheme

Many wireless sensor networks utilize a GPS system to gather data regarding the

location of the sensor nodes. In large sensor networks, providing each node with GPS

capability might be too expensive; instead, many applications resolve this issue by using

beacon nodes that have a GPS receiver. These beacon nodes will know their own

location and send out beacon packets to the rest of the network that contain their location

information. The sensor nodes that receive these beacons use their information to figure

out their own location in the deployed network. The Local Anomaly Detection (LAD)

scheme was devised to deal with the situation where there are compromised nodes that

attack the localization schemes that are needed when implementing beacon nodes [8].

Their method utilizes knowledge regarding deployment for estimating sensor

positions along with knowing which neighboring node belongs to which group. After

deployment of the sensor network, a localization phase takes place where the nodes

calculate their locations using the beacon nodes. Their detection scheme takes place in

the next phase, which they called the detection phase, where the sensors try to analyze

whether the locations they computed in the previous phase are indeed accurate. An

anomaly is suspected when the variation between the expected location and the actual

location of one of the nodes is too great.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

There were three metrics designed by the authors to use in their anomaly-based

intrusion detection scheme. They are all based around the fact that the sensors in their

networks are grouped together by their deployment locations. The sensors will send their

group id to neighboring nodes of the network. The first metric described is the

Difference Metric (DM) which compares the observed number of nodes in its group

recorded from the broadcast packets to the expected number of nodes that is the result of

a calculation. An anomaly is indicated if the difference between the two numbers

exceeds a preset number. The second metric, coined the Add-all Metric (AM), involves

looking at the observed and expected number of neighbors in each group and performing

a union function on them. The result is again compared to a threshold value, which if

exceeded flags an anomaly. Last is the Probability Metric (PM) which involves each

node calculating the probability that the observed number of members in each group is

possible when considering its own estimated location. A threshold value is used in this

metric as well. The threshold values of all three metrics was determined by running

simulations of a wireless sensor network, collecting the data gathered, and performing the

various computations desired for each metric.

The simulations indicated that the LAD scheme can indeed detect compromised

nodes. The chances of detection are increased if the compromised nodes attack with a

higher degree of damage. Obviously, the higher the number of compromised nodes there

are in the network, the lower the detection rate becomes. The authors of the paper

observed that the DM performed better than the other two metrics created, and they

mainly used this one in their simulation runs to check the performance of their designed

intrusion detection system. Although it was mentioned that compromised beacon nodes

present a problem, they were not specifically addressed in the simulations or the LAD

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

scheme. What might be interesting to study here is if the positioning of the compromised

beacon nodes affects the detection rate.

2.2.2 Detecting Malicious Beacon Nodes in LAD

The creators of LAD later published a paper presenting a way to detect malicious

beacon nodes [9]. They reasoned that it would be difficult for a compromised beacon

node to get away with sending beacon signals with the wrong location information. This

is because the malicious beacon node location information and the beacon signal will

both have to be falsified. All beacon nodes of the network can estimate the location of

other beacon nodes based off received beacon signals.

Beacon nodes in the network are given a set of node id’s and keys that allows

them to communicate with the other beacon nodes of the network while appearing to be a

non-beacon node. This was done to help decrease the chance that a compromised beacon

node can determine when another beacon node is requesting information from it instead

of a sensor node of the network. Compromised nodes are detected when a valid beacon

node gets a beacon signal from a malicious beacon node whose estimated location based

off the beacon signal is different from the location given by the beacon signal. Attacks

using locally replayed beacon signals are discovered since it is difficult for the

compromised beacon node to achieve the expected round trip time for communication

between neighboring nodes. The authors also proposed a method to have a base station

revoke malicious beacon nodes once there are enough alerts from other beacon nodes

regarding the suspected node.

Simulation results showed that malicious beacon nodes are identified at a higher

rate when they inject more malicious beacon signals. The results did show that their

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

algorithm detected malicious beacon signals and the base station was able to identify and

stop communication with the compromised nodes. Replayed beacon signals were also

detected which helped to decrease the number of false positives that occurred during

network operation.

2.3 Network/Neighbor Stability Based Anomaly Detection

Onat and Miri developed an anomaly-based intrusion detection system by

exploiting certain characteristics of the sensor nodes, namely their stable neighborhood

information [10]. The sensor network they set up took the communication to be a many-

to-one arrangement, which is where the sensor nodes send their information to a single or

fixed destination along paths that are more or less stable. Therefore, the HELLO flood

packets that nodes use to identify their neighbors would not be needed throughout the

lifetime of the network.

There were many assumptions made by the authors when designing their

algorithm and running their simulations. It was noted in the paper that new nodes did not

appear in the network after initial deployment and that the nodes were not mobile. Every

node in the network had the ability to distinctively identify its neighboring nodes. Also,

there were thought to be no changes in transmission power levels. Each node used the

same hardware and was managed by the same protocol stack. However, the clock

running on one node was not presumed to be synchronized with those of the other nodes.

Given the stability of the network that was assumed, the sensors should know

what to expect from their neighbors. To further exploit this concept, two parameters

pertaining to their neighbors were chosen for each sensor node to store and maintain.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

The parameters selected were the packet arrival rate in units of packets per unit time and

the average receive power in units of dBm.

A buffer containing a predetermined number of packets is maintained in this

algorithm. The packets coming into buffer before it has been filled are used to calculate

the range of acceptable values with respect to the arrival rate and receive power for

subsequent packets. After the buffer is filled, any arriving packets that match the criteria

for admissible packets are used to update the acceptable range of values. This way, the

older values are discarded to make room for the new. The criteria, when looking at the

receive power for each packet that comes in, is to check whether it falls within the

minimum and maximum receive power values of packets already in the packet buffer.

For the packet arrival rate portion of the algorithm, two rates were maintained. The first

was the rate at which the previous packets arrived, and the second is the rate at which the

packets including the new one arrived. A compromised node is found if the ratio of these

two rates exceeds a predetermined threshold value.

When the packet values for either of the specified parameters do not conform to

the profile set for that particular node, the packet is added to an intrusion buffer. This

intrusion buffer is used to store packets whose values do not fall within the expected

ranges. After a preset number of sequential packets deviate from what is expected, the

node sending these packets is labeled as an intruder [10]. If the node in question sends a

series of anomalous packets and then one that is acceptable, the intrusion buffer is

emptied.

The authors performed many simulations to check the credibility of their

proposed intrusion detection system. As predicted, higher levels of variation between a

node’s transmit powers before and after it is compromised leads to a higher detection

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

probability and a decrease in the average detection time. This implies that if the

malicious node is able to mimic the original node’s transmit power level, it would be

difficult to detect its presence. Regarding the packet arrival rates, detecting an intruder is

more likely to occur when the threshold value used to determine the allowable range is

lower. However, as the threshold value decreases, the number of false alarms was seen to

increase. In other words, when the acceptable range of values is smaller, more nodes in

general are flagged as intruders. This includes compromised nodes as well as legitimate

nodes of the network.

It was observed that the probability of labeling a valid node as an intruder

decreases as the number of packets stored in the intrusion buffer increases when using

either one of the parameters measured for anomalies. This is important since most

algorithms do not provide a method for nodes that are falsely accused of being

compromised to reinstate themselves into the network later. Preventing these false

alarms is important, especially in anomaly-based intrusion detection systems where they

tend to be high. However, the opposite is true for identifying the compromised nodes

when measuring transmit power anomalies, meaning that as the number of packets stored

in the intrusion buffers increases, the probability of detecting the intruders decreases.

This is because the time to detect the intruder inevitably increases seeing as how more

packets are needed to fill up the buffer. During this time, the questionable node might

send an acceptable packet that cleans out the intrusion buffer that is being kept for it.

The authors mentioned that in anomaly-based intrusion detection systems, a

general consensus regarding the presence of the intruder is needed to decrease the

number of false alarms and increase the chance of detecting the compromised nodes.

Once a node suspects a compromised node is in the network, it will alert its neighbors by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

sending them a packet identifying the possible intruder. When a node hears this alert

message, it checks the unique node number contained in the packet to how many times

this particular one has been suspected. After the node in question has been suspected for

a predetermined number of times by neighboring nodes, it is identified as an intruder.

This information can then be sent to the rest of the network so the attacker is now

revealed to those who did not know of the intruder’s presence.

2.4 SWATT: Software-based ATTestation for Embedded Devices

A different approach to detecting compromised nodes involves using code

attestation to validate the actual program code running on the sensor nodes. Hardware-

based methods of attestation exist where a secure coprocessor is utilized to check the

memory contents of the embedded device in question. SoftWare-based ATTestation

technique (SWATT) is a code attestation algorithm that is executed solely through

software means [11].

Their technique was designed with the intention of creating a method to externally

verify the code running on embedded devices. A trusted verifier is the key component in

achieving this goal of their algorithm. The malicious node will contain at least one line

of code that is different from the expected code running on normal sensors. The verifier

has a copy of the memory contents residing in uncompromised nodes. The verifier sends

a “challenge” to the node, which it uses as the input to a pseudo-random generator to

create random memory addresses [11]. A checksum is performed in the device on each

of these memory addresses. The verifier runs the same verification procedure locally to

compute the expected value of the checksum. This expected value is compared to the

value returned by the node in question.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A compromised node that has altered the memory contents would have to discern

whether each memory location created by the pseudo-random generator has been

changed. For the proposed SWATT method to perform well enough to be used in

wireless sensor networks, the additional time needed to perform this check and run the

verification procedure should be noticeable to the verifier. The authors chose to run their

experiments on a simulator contained in AVR studio version 4.0. Their results showed

that difference in time to compute the checksum becomes more prominent as the number

of memory locations accessed increases.

The authors made the point that attestation done in the software is more suitable

for sensor networks compared to a hardware-based method. This is due to the foresight

that changes made to the hardware of the sensor nodes would most likely increase the

production costs. The more nodes used in the sensor network, the more expensive it

would be to implement code attestation in the hardware. Also, altering the software of

the existing sensors to implement code attestation would be much easier than altering the

hardware. Changing the software simply involves updating the code already running on

the sensors to include the attestation program.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

III. ALGORITHM FOR DETECTING COMPROMISED NODES

3.1 The Main Idea

The algorithm that was designed in this thesis for detecting compromised nodes in

wireless sensor networks takes the general anomaly-based intrusion detection system and

combines it with the event-driven property of sensor nodes. Selective forwarding attacks,

which these networks are susceptible to, are thwarted in this algorithm.

Every node in the network learns when it can expect to receive packets from each

of its neighbors. The compromised nodes in this algorithm perform the selective

forwarding attack, meaning they do not send packets when they are supposed to. When

the neighbors of this compromised node discover that they are not receiving packets from

it as they should, they suspect that the node is an intruder. The various assumptions and

the specifics of the design are described in detail below.

3.2 The Algorithm

There were many assumptions made to create the algorithm designed in this

thesis. The sensor network in each simulation run would be of a fixed size, which

ensures that malicious parties that add their own node into the network cannot participate

in the communication amongst the valid nodes since they do not have a valid network id.

The base station, assigned to node id of ‘O’, was known to be a trusted source; therefore,

any packets received by the node ‘0 ’ would not be stored in the arrival_t:ime_buffer[N]

since there would be no anomalies to observe. Basically this means that the base station

would never be compromised, so there was no reason to waste memory space for it in a

packet buffer.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

While some algorithms that use a trusted party for security or other purposes

place more than one trusted entity in their wireless sensor network, there will only be one

in this algorithm. The base station should have more computational and memory

resources that allow it to take on the added tasks and communication that comes with its

job. This allowed for the assumption that only one was needed, and adding additional

base stations would be a waste of resources given the smaller size of the networks used in

the simulations.

Each node in the network is to maintain an arrival_time_buffer[N] for each of its

predetermined N number of neighbors. The number of neighbors will be determined

based on a function of the network size seeing as how a smaller sized network would

need fewer neighbors per node for communication purposed than a larger sized network.

Also, it would take more time and resources to maintain a larger buffer, so a smaller size

buffer that provides a balance between size and functionality is desired. The values

stored in the buffers will be used to calculate the threshold values for packet arrival times

for each neighboring node once a preset number of packets, m ax_buffer_packets, have

arrived from said party. These threshold values basically provide a range of time in

seconds during which the next packet for the particular node is expected to arrive. In

other words, there is a high_value and a low _value in units of seconds that is stored for

each neighbor, and each incoming packet needs to fall within these two values.

It is important to note than an assumption was made that compromised nodes will

not be present in the sensor network during the neighbor discovery phase that takes place

after deployment. The nodes need time to recognize the normal behavior of their

neighbors. If their neighbors were already compromised, what is thought to be normal

behavior would actually be abnormal and would deter efforts to detect intruders through

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

the discovery of anomalies. The compromised node created in this algorithm will

perform the selective forwarding attack once it has become compromised. It will still

communicate with the same nodes as it did when it was valid. The difference is now the

node does not send packets on as it should. Rather, it does so randomly.

During this neighbor discovery phase, or initialization phase, every sensor node in

the network is to receive a certain number of packets, m ax_buffer_packets, from each of

its neighboring nodes. Each packet’s arrival_time that comes in from the neighbor before

the preset number is reached is checked against the high and low values recorded for the

neighbor’s node id. If the arrival time is higher than the high_value or lower than the

low _value, that particular value is then updated.

It is important to note that the arrival_time is computed by the node itself and not

taken from the packet timestamp. Each node knows the last time when it has received a

packet from every single node it considers a neighbor. The clocks running on individual

sensor nodes do not need to be synchronized given that its main function is to provide a

means for determining the difference between receiving two incoming packets, which is

stored in arrival_tim e_buffer[N]. These values are relative only to the node performing

the calculations, meaning it does not need to look at those values calculated on other

nodes.

Once the m ax_buffer_packets that were needed to compute these threshold values

has been received, the arrival_time of each packet subsequent that comes in from that

specific neighbor is checked to see if it has arrived in an acceptable time frame with

respect to the last packet it sent. If the packet does not fall in the desired range, an

ALERT message is sent to the base station that contains the node id of the suspected

node, nodejdcompr as wells as its own node id, node_ids.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

Every node operating in the wireless sensor network, with the exception of the

base station, is to keep a packet transmission time buffer, transm ission_tim e_buffer[X].

This buffer maintained on each node stores the number of timer events, X, that have

passed since that node has sent a packet, regardless of who the destination node is. Only

a small number of entries need to be stored in this buffer for it to serve its purpose.

Upon receipt of an ALERT message, the base station will proceed to send a

message, REQUESnON_TRANSM ISSION_TIM ES(), to the node_idCOmpr asking it for its

transm ission_tim e_buffer[X]. If the differences in these transmission times are not

consistent, the base station is assured that the node is indeed compromised. The base

station will then proceed to send out a broadcast message,

COMPROMISED_NODE_FOUND(/70ote_/Qrco/77iW.), to all sensor nodes of the network

informing them of the presence of the compromised node. Upon receipt of this message,

the nodes will clear out the values stored for node_idCompr- Any packet coming from the

compromised node will be ignored from this point onwards. An integral function the

base station is assumed to have is the ability to communicate directly with each node of

the network. That way, the exchange between the base station and the nodes will not be

hampered by packets that are dropped when it is necessary for other nodes to pass on

their packets.

The decision was made to update the high_value and low _value contained in the

arrival_tim e_biiffer[N] of the sensor nodes to keep it fresh. This was accomplished by

having each node to store the values that fall outside the desired range in the

arrival_tim e_buffer[N] when it sends the ALERT message to the base station. If the base

station determines the suspected intruder is in fact a valid node of the network, it will

send a message back to the node that sent the ALERT, node_ids, informing of its

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

findings. This node will then update its high_value or low _value accordingly for the

appropriate node, node_idvaiid, in its arrival_time_buffer[N].

Due to the fact that dropped packets are prevalent in wireless sensor network, the

base station was equipped with a buffer, alert_buffer[Y], in which to keep the last Y

ALERT messages it receives. When the timer event has fired on the base station, the

next node id, n o d e jd , indicated in the alert messages buffer will be sent a request for its

packet transmission times. This node id is determined based off a variable that contains

the location of the next entry to be sent. This variable is updated so that the node ids are

contacted based off the order in which the ALERT messages came in.

Figures 1 through 4 shown below provide the general concepts of the algorithm

designed in this thesis through flow charts and pseudocode.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

Yes
node idD = 0

Yes
node_idp in
compromised]̂ >(Ignore packet

Yesnode_idp found in
arrival time_buffer

max N
reached

Add node_idp to
arrival time buffer Yesnum bujfer jackets <

maxbufferjackets

arrival time value
falls in between
highvalue and
low value Update high value

or low_value as
needed

Send ALERT to base station

For each arriving packet

See nodeidp = 0
below

Figure 1. Flow chart on general sensor operation in algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

Yes
node idD = 0

Add node id.c o m p r to compromised]}

Update arrivalJime buffer values for node_idvaud

Clear out any values in the arrival time buffer for node id<c o m p r

Send TRANSMISSION_TIMES(tra«smAs7o«_tzme_J)uJf/IeF) to base station

3. VALID_NODE_FOUND(node_idvaud) is received

1. REQUEST_TRANSMISSION_TIMES() is received

2. COMPROMISED_NODE_FOUND(«oJe_iJcompr) is received

node_idp = 0 means the base station has sent
one of the following 3 messages. The action
that will result is given below as well

Figure 2. Flow chart for how sensors deal with messages from base station.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

ALERT(node ida, nt

y

odejdb) is received

r
Send REQUEST_TRANSMISSION_TIMES(fran5/nmzo«_tfme_6MJf/Ie/') to nodeJda

No Yesall values are the same as
other values in
transmission time buffer

Send broadcast
COMPROMISED_NODE_FOUND(«odeJ<4)

Send VALID_NODE_FOUND(node_idvaii(j) to nodeidb

For each value in transmission JimeJouffer

TRANSMISSION_TIMES(tra«5w?55ion time_bujfer) is received

Figure 3. Flow chart on general base station operation in algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

Pseudocode

Notation
For Sensor Nodes
node_idp node id of received packet
arrival time arrival time of packet based on system clock
arrival_time_buffer[N] buffer that stores information regarding packets received for N

nodes
max buffer jackets maximum number of packets to use for arrival_time_buffer
num_buffer jackets number of packets already used for arrivalJ;ime_buffer[N]
high value highest acceptable packet arrival time
low_value lowest acceptable packet arrival time
transmission time buffer[X] buffer that stores last X transmission times
node_ids node id of sensor
node_idcompr node id of compromised nodes identified by base station
node_idvaiid node id of valid node identified by base station
compromised[] buffer that stores node ids of compromised nodes identified by

base station

For Base Station
node_ida node id of suspected compromised node
node_idb node id of node that sent ALERT
alert buffer[Y] buffer that stores the node_idb of last Y ALERT messages received

1) Sensor Code
On {arrival of) packet

If (nodeidp != 0) AND (node_idp NOT in compromised[])
If node_idp already in arrival time Jbuffer

If nu m bufferjackets < max_buffer ja c k e ts
If arrival time > highjvalue

highvalue = arrivaltim e
Else If arrivaltim e < low_value

low_value = arrivaltim e
End If

Else
If {arrival time > high value) OR {arrival time < low value)

Send ALERT{node idp, node_ids) to base station
End If

End If
Else

If max N not reached
Add node idp to arrival time buffer

End If
End If

End If

Figure 4. Pseudocode to be implemented.
On {arrival of] REQUEST_TRANSMISSION_TIMES()

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Send TRANSMISSION_TIMES(£ransmz'ssj'oH_rime_Z>w$'er) to base station

On {arrival of} COMPROMISED NODE_FOUND(n o d e _ i d COm p r)

Clear out any values in the arrival time buffer for node_idcompr
Add node i d c o m p r to compromised[]

On {arrival of} VALID_NODE_FOUND(«oJe_zdva/,rf)
Update transmission time Jbuffer values for node_idvand

2) Base Station Code

On {arrival of} ALERT(node_ida, node_idb)
Send REQUESTION_TRANSMISSION_TIMES() to node_ida

On {arrival of} TRANSMISSION_TIMES(transmission_time _buffer)
For i < size of packet_ buffer

If transmission time _buffer[i] != transmission time _bujfer[i + 1]
Compromised node identified
Send broadcast COMPROMISED J40DE_FOUND(«oc/eJda)

End
End For
If compromised node not identified

Send VALID_NODE_FOXJND(node_idvauii) to node_idb

Figure 4. continued.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

3.3 Type of Attack Thwarted by Algorithm

In the selective forwarding attack that plagues wireless sensor networks, packets

that should be sent by a compromised node if it was still a valid node are selectively

dropped. The compromised nodes purposely eliciting malicious behavior in this thesis

will only perform this type of attack. They will be valid nodes of the network that are set

to be compromised after a certain amount of time. The other nodes of the network that

consider this node a neighbor should realize if there is a noticeable time difference

between incoming packets. When this happens, they will send the ALERT message to

the base station which will in turn catch the differences in the transmission time buffer of

the compromised node. The selective forwarding attack is defeated when the other nodes

of the network received the broadcast message sent by the base station informing them to

cease communication with the malicious party.

3.4 Features of the Algorithm

This thesis relies on the fact that many wireless sensor networks are event driven,

more specifically around a timer. In other words, the functions performed by the sensor

nodes are dictated by a timer. These functions are those contained in the program

running on the sensors that dictates all of their operations throughout the network

lifetime, which includes the transmission of packets. This is the reason behind

programming each sensor to keep a buffer containing the packet transmission times for

all the packets it sends. When sensors are instructed by the base station to send

transm ission_tim e_buffer[X], the differences in those times will be calculated. If the

differences do not conform to the timer specifications, meaning a packet was not created

in the specified number of seconds, a node is deemed compromised.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In this algorithm, the base station, a trusted entity, is instructed to verify whether a

suspected node is indeed compromised instead of leaving the task to the other sensor

nodes in the network. Multiple compromised nodes might hinder the efficiency of

finding intruders since neighboring nodes are the ones to verify the claims. If the

situation arises in which neighbors are compromised as well, this presents a problem,

especially if they are dropping packets. In this case, a valid node might not get the

verification on its claim of a compromised node if the required number of nodes does not

respond. The base station used in this algorithm is capable of more accurately validating

whether a node is in fact an intruder. Also, if a node receives a message from the base

station identifying a compromised node, it can immediately cease communication with

the specified node. It does not need to hear similar messages from other nodes which

would reduce the time needed to stop the compromised node from creating further havoc

in the wireless sensor network.

Since the inter-nodal communication of having other nodes verifying intruders is

no longer needed, a portion of the resource consumption in terms of battery usage,

computations performed, and radio communication is reduced. The radio communication

is especially important since congestion is often a problem in wireless sensor networks.

In many intrusion based systems, a large amount of packet information would need to be

stored to implement packet arrival rate based anomaly detection. This is not necessary

for the algorithm designed in this thesis to be effective.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

IV. SIMULATOR DEVELOPMENT

4.1 Simulator Introduction

The TinyOS simulator TOSSIM was chosen to implement the designed protocol

for detecting compromised nodes in a wireless sensor network. This simulator has a

smaller learning curve compared to more complex simulators such as NS2. TOSSIM was

run in a Windows environment, and the TinyViz program available through TinyOS

served as a GUI for TOSSIM. This GUI allows for the end user to enable various

settings such as viewing debug messages, positioning the nodes in desired positions, and

viewing the radio communication between nodes as it happens. TOSSIM was capable of

simulating the interaction of networks with hundreds of sensor nodes.

The TinyViz program that was provided was very simple in nature. It was

designed to simulate the communication occurring between sensors within a wireless

sensor network. The sensor nodes simply sent messages once a timer event was fired if it

knew its neighbors or broadcast messages to the whole network if it did not. The

sender’s node id was displayed if a message was received. One buffer was included that

contained the list of nodes to with which to communicate, and only one type of packet

was sent by the nodes.

There was much time spent in writing the code that performs the sensor node and

base station functions. The program needed to deal with creating and maintaining the

arrival time buffer for each node that is considered a neighbor. The complexity of this

section was what made this part of developing the code most difficult. Sensor nodes also

needed to respond to packets from the base station appropriately, namely the request for

the packet transmission times, the validation of a node, and a broadcast identifying an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

intruder. The base station mainly responds to the packets it received. If an ALERT

message is received, the base station updates the alert buffer and sends a message to the

suspected node requesting its packet transmission times. When the suspected node

responds, the base station removes the entry from the alert buffer and checks the contents

of the packet to verify whether the node is compromised or not. If it is compromised, a

broadcast message is sent. If it is not compromised, the base station sends a message to

the node that sent the ALERT giving it the node id of the validated node.

4.2 Example Simulation Run

This section provides a step by step example of what exactly was done when the

simulations were run. To begin with, a cygwin window shown below needed to be

opened. The ‘export dbg = usr3’ command allows for the debug messages to be viewed.

The third line executed allowed for the TinyViz program to simulate 20 nodes and write

all the debug messages into the desired file, which is ‘logtest.txt’ in the window shown

below.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

Figure 5. Cygwin window.

The window below shows the TinyViz GUI with the 20 nodes randomly dispersed. The

‘Radio model’ and ‘Debug messages’ options were selected from the ‘Plugins’ menu that

is displayed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

nm L w o u t {<*m\ S i m T l m r 0O O Q m c 0* ,Q - - - - - - - - - - - * “ l i J ! f t j L S I ■ ■ ■ ■
8« l « e t a l t : : '
D « s * f « < r t j t i ' M e i l j W H K i w K M I ’ j , P o w w P r a n s i i g 1. W f c l l n w j R M k > m o d a l

A D C D a f c t i a m a a a w j f t a I j s « t I d e a t i o n ; i * i t i o mcMtA't
f H A O C R e a d i n g s | M a.*##,* j (j , c n m o u t m « .
§ | } C 4U l T I « i , s *
@ C i i t t n M i *4• U p) C o n t o u r p o h r t *
j j g f t o f r u a - i m w i j B ' •
Q D i r * e t « d O w p t i

- | f | 8c t l e o « t l o r i
Q S e n t r a d i o p j e k o b
{£3 N a i g h O o r t i o o d g r a p h
123 P e w t r P r o f i l i n g £I D R a d i o l l n i a -.
Q R a d i o m o d a l

Figure 6. TinyViz running with 20 nodes.

Selecting the ‘Radio model’ option opens up the tab shown on the right side of the

screen. Here, the ‘Fixed radius (1000.0)’ option was chosen to allow all nodes to

communicate with each other.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

!ssf Sim T im e O.OWS#« ’— - Cd h I s i i
MiuqmessMuje* J- ■ OireetedGraph - Set to t ta n j 1 S®ntr«d«i psekBts

■ADC Rowan®* I Se«ar#skj>«»< | C O tn u ri I CenJtoW j ' Contour M O to

Wsisfiuortiooa df*p5j] lamer ffoniin# | iMwito
PUUngrrojdnrfrolpt .

 —

: ' V ‘ :

.

 ;__

Figure 7. Fixed radius option of Radio model plugin.

Next, the ‘Debug messages’ option was selected from the ‘Plugins’ window. The

‘Show Radio Messages’ option was turned off since it was not needed, and the ‘Show

Debug Messages’ was left on.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

F i t Uyout H ughs i Sim Tlmt; O.QOOwc CWiy

A!K! t o s d i n s s | Sfit tire«>tt|Kiint I C a t*m «ri j C ftn tre td j C o n to u t p m n ts

Powe? Profiling ftjtiw Sink* RmHoiVMmM
K. O vev tesl !■ S e t lo ca tio n | S e n t t a d io p a c k e t*

M Show OabuQ M s n b m &J Showjfci$o MMfflM .

dS elec ted m o teso n ly Match:!

#

"±
JMgMght

0*h«9

Figure 8. Debug messages plugin.

The green play button at the top of the screen is then pressed to run the simulations. The

following window shows the debug messages that are displayed in the TinyViz screen

and printed to ‘logtest.txt’ once this is done.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

Nte Uyout PhighM f j l j j i f f j sfm H im ; 3 .S70f*c m m ' & d i

i

ASIC ft.e«fims;s$ S*» breakpoint . j C ilanun j Centroid { Cootc

ttwkihhorbood nraoh < i*ower Profim j ; fUdfo Jink# j

***9 ®* j | i S. e l io ia t to n i S& nltutU o

m Show DBbue Mbm qbb □ Show RmMo Mb m o m

O Solectod m oteo only Mateti: [

ULS] T ir d in y V iO : M « IS *<l«ct«d u k« s a f i a i i i J t d
[3] T o tT inyV irfl; Hed< 3 *< l«c tid t o b< ccwpr«na*«d
[111 T iitTinyViaH i Med* 14 i n d ln y w r i i f i t » nod* I I
(15) T M tTinyV idl: Mod< IS r<c«iv«d m u i y i 4r«M nod« 14
[IS] Ic rtT in y V id l: ttodt 1$ now cowprcmij « d
[15] T crtT inyV irfh Cofnprunij«d Hodc IS node m ight jend m«jjaq« uh«n t in * <l«p*«d 1
[IS) T i r t l l n y K O ; M e I I t o node t
[1] TeitTinyV i J4; Mode 1 se le c te d t o be cowpromijed

:<Hf

— * :
■ r

8f<nuld4iOA mufftttf
-_______________________________ _ _

Figure 9. Debug messages displayed in screen.

4.3 Simulator Drawbacks and Configuration

To begin the simulation process, there were several parameters that were altered

for numerous runs to determine what kind of effect they had. Increasing the number of

packets to obtain while computing the threshold values did not produce a noticeable

difference in the time it took to detect a compromised node or the number of times a valid

node was wrongly accused of being an intruder. There was a very noticeable difference,

though, in the time required for the initialization phase. Therefore, a standard of 10

packets was assigned for all simulation runs regarding the number of packets needed

when determining the high and low values of acceptable packet arrival time. Since the

event-driven property of the network keeps the packet transmission times of the nodes

consistent, the value was kept at 5 throughout simulations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

During these simulations, each sensor node is to send a packet every 3 seconds.

The sensor nodes are turned on at different times, meaning the time elapsed since the

simulator started can be different from another node. The main reason for this is due to

the fact that if all the nodes are turned on at the same time, considering that they all

communicate on the same frequency, there would be constant collisions in the network.

The packets would all be jammed and communication in the network would drop

significantly. Also, in real applications of a wireless sensor network, the sensor nodes

would need to be turned on manually and thus would not all have the same time.

One difficulty found in these simulations was that TOSSIM runs the same code

on all the nodes. When dealing with actual sensors in a real sensor network, the program

that is needed by that particular node is downloaded into its memory. If unique node

identification numbers are required for a sensor node, they are easily established during

this process. When working with Crossbow MTS310CA sensor and MPR400CB

processor radio board, which together made a sensor node, this task was accomplished by

simply typing the node number in the command line used to download the code. Any

program needed for the sensor nodes should not contain the code required for the base

station to perform its tasks or the code that makes the compromised node perform its

malicious activities. However, when dealing with TOSSIM, the only noticeable method

to have separate code for the valid sensors, the compromised nodes, and the base station

was to have one program for all three while having the node id checked when certain

function calls were made. This means there is additional time needed to check for which

type of node is being simulated as well as additional storage space needed for the code.

It was also speculated that there could be problems introduced into the network

when one node was waiting on a response from another node. For example, if the base

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

station was waiting for a suspected node to send its transmission time buffer, it might be

held up for an unnecessary or even an indefinite amount of time if the packet is lost for

reasons such as congestion in the network. This led to the elimination of any planned

wait functions. In order to compensate, the alert buffer was created for the base station to

get the transmission times buffer from suspected nodes in the situation where the request

is lost before reaching its destination.

Another hurdle came about since there was no method found to differentiate the

nodes in terms of hardware. It was decided that the sensor nodes of the network are to

have the same hardware and protocol stack running on them. Since a compromised node

in this algorithm is defined as a node with code that performs malicious activities, the

same goes for these nodes. However, base stations are generally expected to have more

resources available to them. In this algorithm, the base station needed to be able to reach

every all nodes of the network. Since there was no method seen in TOSSIM to

accomplish this, every node in the network was set to be able to communicate with every

other node. Initially, a node would consider another node a neighbor when it received a

packet from said node. When the nodes are spread out over a given area, neighboring

nodes are normally those that are closest in communication range. To deal with the

modification in the algorithm that every node can communicate with every other node

and the signal strength is the same, the code had to be altered such that each node was

assigned a set of nodes to be its neighbors.

Before the simulations to test the efficiency of the designed algorithm were run,

the time needed for the initialization phase needed to be determined. For each network

size used, simulations were run to see how long it took for each node of the network to

gather the threshold values for each of its neighbors. A compromised node would be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

introduced into the network after the initialization phase was said to have finished. The

larger the network size, the more time allotted for the initialization phase. The 50 node

simulations were given 45 minutes for the initialization phase. It is important to note that

the simulations were observed to occur in real time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

V. SIMULATIONS & ANALYSIS

The next simulations that were run involved increasing the number of nodes in the

network while keeping the percentage of compromised nodes introduced into the network

the same. Three simulations were run for each network size. Figures 10 and 11 below

show the time associated with detecting the compromised nodes. Figure 10 displays the

average time to detect each compromised node in the network. Once a node becomes

compromised, the time it takes before the base station alerts the rest of the nodes to its

presence is recorded and averaged for each set of simulation runs. Figure 11 displays the

average time it takes to locate all compromised nodes once they are introduced into the

network. During these simulations, all compromised nodes are introduced around the

same time. The average time elapsed for each simulation from when the first node is

compromised to when the last compromised node is detected is shown here. A 95%

confidence interval for the sample mean was calculated, and a difference was observed

for each network size. The largest interval was seen for the 50 node networks with

respect to the time it took to detect each compromised node, which was 644.07 +/-

151.69, as well as for all compromised nodes, which was 1127 +/- 229.33. Increasing the

number of simulations for each network size from 3 to 30 would produce a smaller

interval around the mean. This goes for all of the following figures included.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

700

600 -

500 -

• 300- oo
200 -

too -

20 30 40 50
Humber of Nodes in Network

Figure 10. Average Time to Detect Each Compromised Node.

1000

400

200

30 40 50
Humber of Nodes in Network

Figure 11. Average Time to Detect All Compromised Nodes

What needs to be considered when looking at these graphs is that 10 % of the

number of nodes in the network was compromised. This means that the 10 node network

size will have 1 compromised node while the 50 node network size will have 5. Since the

base station needs to service all ALERT messages, the time to needed to identify the

additional nodes is higher in the larger sized networks. This attributed to the larger

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

number of packets propagating through the network which consequently leads to a higher

number of dropped packets. The alert messages buffer kept by the base station aided in

reducing the number of ALERT messages ignored. A base station with better

computational resources would have helped to decrease the amount of time necessary to

detect the compromised nodes. Also to keep in mind is that there is only one base station

for every network size. It is expected that it would take longer to detect the compromised

nodes in a larger wireless sensor network.

Figure 12 shows the average number of compromised packets sent by an intruder

in the network. The largest 95% confidence interval calculated was the 10 node network

size with an interval of 1.67 +/-1.31.The numbers on the left indicate the average number

of packets that are sent by a compromised node that is a functioning member of the

network. This graph indicates that the algorithm designed efficiently stops the selective

forwarding attacks before each compromised node can pose a significant problem in the

network. Once a compromised node exhibits suspicious behavior that is picked up by the

other sensor nodes, it is stopped quickly when considering the number of packets it is

able to inject into the network. The slight increase in the number of compromised

packets as the network size increases is due to the congestion and dropped packets that

occur due to the higher amount of traffic. It was often noted that the base station would

not be able to respond to multiple ALERT message coming in at the same time. While

this is acceptable to some degree since it is a normal occurrence in wireless sensor

networks, the extent to which it happened could probably have been reduced if the base

station had more resources available to it.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

m 3.50

1.50

10 20 40 50
Number of Nodes in Network

Figure 12. Average Number of Compromised Packets Sent per Compromised Node.

Figure 13 depicts the average number of false positives that occur during the

simulation runs for each network size. The largest 95% confidence interval calculated

was the 40 node network size with an interval of 216 +/- 31.1. False positives occur

when a valid node of the network is labeled as a compromised node. This figure

represents the number of times the base station receives an ALERT message from one of

the sensor nodes containing an uncompromised node id and proceeds to determine that

the node is in fact a valid node. Obviously, as more packets are being sent in the larger

network sizes, more ALERT messages would be sent. The base station provides an

important service in distinguishing the compromised nodes from the valid nodes. All of

the false positives are prevented from occurring in this algorithm. Based on my

knowledge, I believe that the number of false positives occurring in other anomaly-based

intrusion detection systems is non-zero.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

400
350
300
250

£ 200

30to 20 40 50
Number o f Nodes in Network

Figure 13. Average Number of False Positives Prevented.

In the next set of simulations, the network size was kept at a constant value of 20

while the percentage of compromised nodes was increased. The time required to detect

each compromised may slightly increase as the number of compromised nodes in the

network increases as seen in Figure 14. This is due in part to the selective forwarding

attack being performed by the compromised nodes. Since the nodes do not detect the

anomalies in packet arrival times until a packet is actually sent, it takes more time to

detect them when there are more performing the same attack which is seen in Figure 15.

The largest 95% confidence interval calculated for the time it took to detect each

compromised node was observed with 2 compromised nodes with an interval of 83.2 +/-

69.8. The largest 95% confidence interval calculated for the time it took to detect all

compromised node was again seen with 2 compromised nodes but with an interval of 120

+/- 107. The slight wave noticed in Figure 14 is due to the fact that not all the

compromised nodes were detected during the some of the simulation run when there were

8 and 10 compromised nodes. The importance of these figures is that as the number of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

compromised nodes increases, the nodes and the base station are still able to work

together to discover the intruders.

120

100

80

40

20

Number at Compromised Nodes i t 20 Node Network

Figure 14. Average Time to Detect a Compromised Node in a 20 Node Network.

250

200

5 150

• 100 09

50

10

Number of Compromised Nodes in S t Node Network

Figure 15. Average Time to Detect All Compromised Nodes in a 20 Node Network.

Figure 16 shows the effect of the compromised nodes in a 20 node network

regarding the number of packets that are sent while the node is compromised. The largest

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

95% confidence interval calculated was seen to occur with 10 compromised nodes that

had an interval of 2.63 +/- 1.76. Examining the results shown in Figure 14 and 16

together indicates that the malicious nodes are stopped quickly before they have much

time to wreak havoc in the network. The curve in Figure 16 basically implies that the

average number of compromised packets being sent is the same for all nodes since this

number fluctuates slightly around 2 packets per compromised nodes, regardless of the

number of compromised nodes present in the network.

0 2.5

O 0.5

Number of Compromised Nodes in 20 Node Network

Figure 16. Average Number of Compromised Packets Sent per Compromised Node in a 20 Node
Network.

Figure 17 shown below represents the number of false positives that are prevented

from occurring within the network. The largest 95% confidence interval calculated for

the these numbers was with 10 compromised nodes with an interval of 58.3 +/- 11.3.

What is interesting to note here is that the number of false positives decreases as the

network size increases. This figure can be explained by considering the fact the network

size is staying the same while the number of compromised nodes performing the selective

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

forwarding the attack increases. Since more nodes are not sending packets, this means

the number of messages sent throughout the network is decreased.

90 -i

70

10

Humber of Compromised Nodes in 20 Node Network

Figure 17. Average Number of False Positives Prevented in a 20 Node Network.

Figure 18 below shows the overhead associated with implementing the designed

algorithm in a 20 node network with 2 compromised nodes. The packets represented by

the blue shaded region are those sent by the sensors nodes during normal operation. The

95% confidence interval calculated for these packets to be sent is 1382.33 +/- 27.28. The

packets in the purple shaded area represent the communication involved with identifying

compromised nodes. This including the ALERT messages sent to the base station, the

base station requesting packet transmission time buffers, the response the suspected node

sends back, and the broadcast messages sent by the base station identifying compromised

nodes. The 95% confidence interval calculated for compromised nodes packets is 358.67

+/- 34.79. The packets sent by the base station indicating valid nodes are represented in

the yellow shaded area. The 95% confidence interval calculated with respect to these

packets being sent is 84.67 +/- 6.82. There is a decrease in the number of packets

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

associated with normal operation since the sensor nodes are event-driven, and it takes

time to construct, process, and receive packets.

Overhead of frnplementing Algorithm

■ Normal
Operation

■ Compromised
Nodes

□Valid Nodes

Original

Algorithm
Average

0 200 400 600 800 1000 1200 1400 16001800 2000
Packets Sent

Figure 18. Overhead of Implementing Algorithm in a 20 Node Network.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

VI. CONCLUSION AND FUTURE WORK

An algorithm for detecting compromised nodes in wireless sensor networks was

designed and verified in this thesis. The anomaly-based intrusion detection technique

was applied by utilizing the concept that a valid node of the network will follow an

expected pattern of behavior. In other words, deviation from the norm is grounds for

suspicion which allows a node participating in the network to identify intruders. Each

sensor node was required to maintain a buffer that contained threshold values of packet

arrival times for each node it considered a neighbor. If a neighbor’s packet fell outside of

this desired range, the node would send an ALERT message to the base station informing

it of the presence of a possible intruder.

Other implementations of this technique mandate that a node must acquire a

preset number of messages before labeling a node as compromised. Before this point, the

node in question is just a suspect. This is done to reach some sort of a consensus in the

network regarding the identity of intruders so that the number of false positives is

decreased. Once a malicious node has been deemed compromised, this information is

then propagated to the rest of the network. In this thesis, the base station, a trusted entity

in the network, performs the function of these other nodes, with good accuracy. By

having the base station investigate all claims of compromised node through means of

checking the packet transmission times buffer, there were no occurrences of

misidentifying an uncompromised node. This is very important since false positives are

prevalent in many anomaly-based intrusion detection systems. The information was also

spread quickly since multiple nodes did not have reach the same conclusion before the

decision was made.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

This thesis uses the event-driven characteristics of sensor networks to allow the

base station to determine whether a node is compromised. Since the transmission of

packets being sent is centered around a timer as well, each sensor node was instructed to

keep a buffer pertaining to these packet transmission times. When the base station is

alerted to claims of abnormal behavior, it verifies them by checking the expected

difference in packet transmission times of the suspected node versus the actual

difference.

While the simulator chosen was not the most ideal, it did enable the designed

protocol to be tested for efficiency. The purpose of this thesis was to accurately detect

the presence of compromised nodes running the selective forwarding attack in a timely

manner. This was shown in the figures depicting the results of the simulations. The

compromised nodes were identified by the other nodes of the network and verified by the

base station in a reasonable amount of time. This was seen in larger network sizes with

the same percentage of compromised nodes as well as in the same network size with

different percentages of compromised nodes. The number of false positives that were

prevented provides another indication of the importance of the base station.

Consequently, the base station itself was where the most improvement could be

made. The TOSSIM simulator utilized in this thesis had many drawbacks that needed to

be overcome to test the efficiency and accuracy of the designed algorithm. If there was a

method provided to distinguish between the different types of nodes, mainly the base

station and sensor nodes, this would have given a more realistic idea of the capability of

this algorithm where the base station is concerned.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

REFERENCES

[1] Yee Wei Law and Paul J.M. Havinga, “How to Secure a Wireless Sensor Network,”

Proceedings o f the 2005 International Conference on Intelligent Sensors, Sensor

Networks and Information Processing Conference, Dec. 2005, pp. 89 - 95.

[2] Adrian Perrig, John Stankovic, and David Wagner, “Security in Wireless Sensor

Networks,” Communications o f the ACM, vol. 47, no. 6, June 2004, pp. 53 - 57.

[3] Elaine Shi and Adrian Perrig, “Designing Secure Sensor Networks,” IEEE Wireless

Communications, vol. 11, no. 6, Dec. 2004, pp. 38-43 .

[4] Germano Guimaraes, Eduardo Souto, Djamel Sadok, and Judith Kelner, “Evaluation

of Security Mechanisms in Wireless Sensor Networks,” Proceedings o f the 2005

Systems Communications, 2005, pp. 428 - 433.

[5] Harald Vogt, Matthias Ringwald, and Mario Strasser, “Intrusion Detection and

Failure Recovery in Sensor Nodes,” available at

http://www.vs.inf.ethz.ch/res/papers/vogt05recovery.pdf

[6] Carl Hartung, James Balasalle, and Richard Han, “Node Compromise in Sensor

Networks: The Need for Secure Systems,” Technical Report CU-CS-990-05, Dept of

Comp Science, University of Colorado at Boulder, Jan 2005, available at

http://www.cs.colorado.edu/department/publications/reports/docs/CU-CS-990-05.pdf

[7] Amitabh Mishra, Ketan Nadkami, and Animesh Patcha, “Intrusion Detection in

Wireless Ad Hoc Networks,” IEEE Wireless Communications, vol. 11, no. 1, Feb.

2004, pp. 48 - 60.

[8] Wenliang Du, Lei Fang, and Peng Ning, “LAD: Localization Anomaly Detection for

Wireless Sensor Networks,” Journal of Parallel and Distributed Computing, vol. 66 ,

issue 7, July 2006, pp. 874 - 886.

[9] Donggang Liu, Peng Ning, Wenliang Du, “Detecting Malicious Beacon Nodes for

Secure Location Discovery in Wireless Sensor Networks,” available at

http://discovery.csc.ncsu.edu/pubs/icdcs05.pdf

[10]Ilker Onat, land Ali Miri, “An Intrusion Detection System for Wireless Sensor

Networks,” IEEE International Conference on Wireless and Mobile Computing,

Networking and Communications, WiMob'2005, vol. 3, 2005, pp. 253 - 259.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.vs.inf.ethz.ch/res/papers/vogt05recovery.pdf
http://www.cs.colorado.edu/department/publications/reports/docs/CU-CS-990-05.pdf
http://discovery.csc.ncsu.edu/pubs/icdcs05.pdf

54

[11] Arvind Seshadri, Adrian Perrig, Leendert van Doom, and Pradeep Khosla,

“SWATT: softWare-based attestation for embedded devices,” Proceedings o f the

2004 IEEE Symposium on Security and Privacy, May 9-12, 2004, pp. 272-282.

[12] Yoshinori Okazaki, Izuru Sato, and Shigeki Goto, “A New Intrusion Detection

Method based on Process Profiling,” Proceedings o f the 2002 Symposium on

Applications and the Internet 2002 (SAINT 2002), Jan. 28 - Feb. 1, 2002, pp. 82 - 90.

[13]I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor

networks: A survey,” Computer Networks, vol. 38, no. 4, Mar. 15, 2002, p 393-422.

[14] Marcos AugustO M. Vieira, Claudionor N. Coelho Jr., Di6genes Cecilio da Silva

Junior, and Jose M. da Mata, “Survey on Wireless Sensor Network Devices,”

Proceedings o f the ETFA ’03 IEEE Conference on Emerging Technologies and

Factory Automation, vol. 1, Sept.16 - 19, 2003, pp. 537 - 544.

[15] Chris Karlof and David Wagner, “Secure Routing in Wireless Sensor Networks:

Attacks and Countermeasures,” Proceedings o f the First IEEE 2003 IEEE

International Workshop on Sensor Network Protocols and Applications, May 11,

2003, pp. 113-127.

[16] Sasha Slijepcevic, Miodrag Potkonjak, Vlasios Tsiatsis, Scott Zimbeck, and Mani B.

Srivastava, “On Communication Security in Wireless Ad-Hoc Sensor Networks,”

Proceedings on the Eleventh IEEE International Workshop on Enabling

Technologies: Infrastructure for Collaborative Enterprises, 2002, June 10-12,

2002, pp. 139-144.

[17] Paul Brutch and Calvin Ko, “Challenges in Intrusion Detection for Wireless Ad-hoc

Networks,” Proceedings on the 2003 Symposium on Applications and the Internet

Workshops, Jan. 27 -31 , 2003, pp. 363 - 373.

[18] Chris Karlof, Naveen Sastry, and David Wagner, “TinySec: A link layer security

architecture for wireless sensor networks,” Proceedings o f the Second International

Conference on Embedded Networked Sensor Systems, 2004, pp. 162-175.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

APPENDIX

A. TinyViz code used for running TOSSIM

// $Id: TestTinyVizM.nc,v 1.2 2003/10/07 21:45:24 idgay Exp $

/*
* Copyright (c) 2003
* The President and Fellows o f Harvard College.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions o f source code must retain the above copyright
* notice, this list o f conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list o f conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name o f the University nor the names o f its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*

* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OR CONTRIBUTORS BE

LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,

STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/

/* Author: Matt Welsh <mdw@eecs.harvard.edu>
* Last modified: 3 August 2003
*/

/* *

* The TestTinyViz application simply sends random messages to demonstrate
* the debugging and visualization features o f TinyViz.
* @author Matt Welsh <mdw@eecs.harvard.edu>
*/

module TestTinyVizM {
provides {

interface StdControl;
}
uses {

interface Timer;
interface Time;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mailto:mdw@eecs.harvard.edu
mailto:mdw@eecs.harvard.edu

interface ReceiveMsg;
interface SendMsg;
interface Random;
interface SysTime;

}
} implementation {

enum {
M AXNEIGHBORS = 3,

};

uintl 6_t neighbors[MAX_NEIGHBORS];
TOS Msg beacon_packet;

uintl 6_t num nodes = 20;
uintl 6_t timeinitial;
uintl 6_t compromised = 0;

command resu ltt StdControl.init() {
inti;
stract timeval tval;
gettimeofday (&tval, NULL);
tim einitial = localtime (&tval.tv_sec);
tim einitial = tval.tvsec;

if (((TOS LOCAL ADDRESS % 2) != 0) && (TOS LOCAL ADDRESS != 0))
{

compromised = 1;
}

i f (TOS LOCAL ADDRESS !=0)
{
for (i = 0; i < MAX NEIGHBORS; i++)
{
neighbors[i] = ((TOS LOCAL ADDRESS + i + 1) % num nodes);
if (neighbors[i] = =0)
neighbors[i] += MAX NEIGHBORS - i;

}
}
*((uintl6_t *)beacon_packet.data) = TOS LOCAL ADDRESS;
return call Random.init();

}

command result t StdControl.start() {
return call Timer.start(TIMER_REPEAT, 3000);

}
command result t StdControl.stop() {

return call Timer.stop();
}

uintl 6_t packet_tr[5];
uintl 6_t packetcounter;
uintl 6 t trans_time_prev;
uintl 6_t transtim ecurr;
uint8_t compromisednow = 0;
bool displayedcompromisedmsg;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57

uintl 6_t num_compr_packets_sent = 0;
uintl 6_t num_total_packets_sent = 0;

int alert_messages[50];
int a;
int alertadded;
int alert_sent;

event result_t Timer.fired() {
uintl6_tnbr;
uintl6_t sendrand = -1;
struct timeval tval;
uintl 6_t timecurrent;

trans_time_curr+= 1;

gettimeofday (&tval, NULL);
timecurrent = tval.tvsec;

i f (TOS LOCAL ADDRESS = 0)
{
int alertnum;
for (a = 0; a < 50; a++)
{
alert_num = (alert_sent + a) % 50;
if (alert_messages[alert_num] > 0)
{
struct SecMsg *pack;
pack = (struct SecMsg *)beacon_packet.data;
pack->messtype = 4;
pack->sourceMoteID = TO SLO CALADDRESS;
pack->resentrequest = 1;
call SendMsg.send(alert_messages[alert_num], sizeof(struct SecMsg), &beacon_packet);
dbg(DBG_USR3, "TestTinyVizM: Request for packet buffer from alert_messages[%d] = %d\n",

alert_num, alert_messages[alert_num]);
break;

}
}
if ((time_current - time_initial) > 270)
{
dbg(DBG_USR3, "TestTinyVizM: time_current - time initial = %d\n", time_current - time_initial);

}
return SUCCESS;

}

i f (compromised)
{
if ((time current - time initial) > 360)
{
compromisednow = 1;
if (displayedcom prom isedm sg == FALSE)
{
dbg(DBG_USR3, "TestTinyVizM: Node %d now compromised \n", TOS LOCAL ADDRESS);
displayedcom prom isedm sg = TRUE;

}
dbg(DBG_USR3, "TestTinyVizM: Compromised Node %d node might send message when time

elapsed = %d\n", TOS LOCAL ADDRESS, time current - time initial);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

}
}

if ((compromised_now != 1) || ((compromisednow = = 1) && ((call Random.rand() % 7) == 0)))
{
nbr = call Random.rand() % MAX NEIGHBORS;

if (neighbors[nbr] != Oxffff)
{
struct SecMsg *pack;

pack = (struct SecMsg *)beacon_packet.data;
pack->messtype = 2;
pack->sourceMoteID = TO SLO CALADDRESS;

call SendMsg.send(neighbors[nbr], sizeof(struct SecMsg), &beacon_packet);
dbg(DBG_USR3, "TestTinyVizM: Node %d sending message to node %d\n",

TOS LOCAL ADDRESS, neighbors[nbr]);

if (compromised)
num_total_packets_sent += 1;

if (compromised now)
{
pack->compromisedpacket = 1;
num_compr_packets_sent+= 1;
dbg(DBG_USR3, "TestTinyVizM: Compromised Node %d Sending packet to Node %d at time =

%d\n", TO SLO C A LA D D R ESS, neighbors [nbr], timecurrent);
dbg(DBG_USR3, "TestTinyVizM: Compromised Node %d has sent %d total packets and %d

compromised packets\n", TOS LOCAL ADDRESS, num_total_packets_sent, num_compr_packets_sent);
}

packet_tr[packet_counter] = trans_time_curr - trans_time_prev;
trans_time_prev = transtim ecurr;
packetcounter = (packet_counter + 1) % 5;

}
else
{
struct SecMsg *pack;
pack = (struct SecMsg *)beacon_packet.data;
pack->messtype = 3;

pack->sourceMoteID = TO SLO CALADDRESS;
call SendMsg.send(TOS_BCAST_ADDR, sizeof(uintl6_t), &beacon_packet);
dbg(DBG_USR3, "TestTinyVizM: Node %d sent Broadcast^", TOS LOCAL ADDRESS);

packet_tr[packet_counter] = trans_time_curr - trans_time_prev;
trans_time_prev = trans_time_curr;
packet_counter = (packet counter + 1) %5;

}
}
return SUCCESS;

event result t SendMsg.sendDone(TOS_MsgPtr msg, bool success) {
dbg(DBG_USRl, "TestTinyVizM: Done sending, success=%d\n", success);
return SUCCESS;

}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59

uintl 6_t packetarrivaltim e;
uintl 6_t packetarrivaltim edifference;

struct timeval tv;

float num_buffer_pkts = 10.0;

typedef struct
{
int neighbored;
uintl 6_t last_pkt_arrival_time;
int total_pkts_added;
uintl 6_t highvalue;
int high_packet;
uintl 6_t low value;
int low_packet;
int questionedvalue;

} neighbor_buffer[MAX_NEIGHBORS];
neighborbuffer arrivaltimes;

int numneighbors = 0;
int m = 0;
uintl 6_t compromised_nodes[MAX_NEIGHBORS * 2];
int j;
bool nodeaddrfound;
uintl 6_t compr_pack_found = 0;

event TOS MsgPtr ReceiveMsg.receive(TOS_MsgPtr recv_packet) {
intn;
intp;
uintl 6_t nodeaddr;
struct SecMsg *pack;
pack = (struct SecMsg *)recv_packet->data;

nodeaddr = pack->sourceMoteID;

for (p = 0; p < m; p++)
{
if (compromised_nodes[p] == nodeaddr)
{
dbg(DBG_USR3, "TestTinyVizM: Node %d is ignoring message rceived from COMPROMISED

NODE %d\n", TOS LOCAL ADDRESS, nodeaddr);
return recv_packet;

}
}

i f (TOS LOCAL ADDRESS = 0)
{
if (pack->messtype == 1)
{
bool alertfound;
int alert_num;

dbg(DBG_USR3, "TestTinyVizM: Received Alert compromised node - %d message from %d\n",
pack->messdetails[0], pack->sourceMoteID);

for (a = 0; a < 50; a++)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

{
i f (alert_messages[a] == pack->messdetails[0])

alertfound = TRUE;
}
if (alertfound = FALSE)
{
for (a = 0; a < 50; a++)
{
alert_num = (alert_added + a) % 50;
i f (alert_messages[alert_num] = 0)
{
alert_messages[alert_num] = pack->messdetails[0];
alertadded += 1;
dbg(DBG_USR3, "TestTinyVizM: alert_messages[%d] = %d\n", alertnum,

alert_messages[alert_num]);
break;

}
}

}
pack->messtype = 4;
pack->sourceMoteID = TO SLO CALADDRESS;
call SendMsg.send(pack->messdetails[0], sizeof(struct SecMsg), recv_packet);
//dbg(DBG_USR3, "TestTinyVizM: Request for packet buffer from %d\n", pack->messdetails[0]);

}
if (pack->messtype == 5)
{
intk;
int iscom prom ised = 0;

dbg(DBG_USR3, "TestTinyVizM: Received packet buffer from %d \n", pack->sourceMoteID);

if (pack->resentrequest = = 1)
alert_sent += 1;

for (a = 0; a < 50; a++)
{
if (alert_messages[a] == pack->sourceMoteID)
{
dbg(DBG_USR3, "TestTinyVizM: Removed alert_messages[%d] = %d\n", a, alert_messages[a]);
alert_messages[a] = 0;
break;

}
}
for (k = 2 ; k < 6; k++)
{
if (pack->compromisedpacket == 1)
{
dbg(DBG_USR3, "TestTinyVizM: Received packet buffer [%d] = %d \n", k -1, pack-

>messdetails[k-1]);
}
if (pack->messdetails[k-l] !=pack->messdetails[k])
{
compromised_nodes[m] = nodeaddr;
m = m + 1;
dbg(DBG_USR3, "TestTinyVizM: Received packet buffer [%d] = %d \n", k , pack-

>messdetails[k]);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

dbg(DBG_USR3, "TestTinyVizM: Base Station has compromised_nodes[%d] = %d\n", m,
compromised_nodes[m]);

pack->messtype = 6;
pack->messdetails[0] = pack->sourceMoteID;
pack->sourceMoteID = TO SLO CALADDRESS;
dbg(DBG USR3 'I** Sending

broadcast message to all that %d IS COMPROMISED pack->messdetails[0]);
dbg(DBG_USR3, "number o f false alarms is %d\n", compr_pack_found);
call SendMsg.send(TOS_BCAST_ADDR, sizeof(struct SecMsg), recv_packet);
iscompromised = 1;
break;

}
}
if (is compromised == 0)
{
dbg(DBG_USR3, "%d is Not Compromised\n", pack->sourceMoteID);
pack->messtype = 7;
pack->messdetails[0] = pack->sourceMoteID;
call SendMsg.send(pack->origsourcenode, sizeof(s1ruct SecMsg), recv_packet);
compr_pack_found += 1;

}
}

}
else
{
if (pack->messtype = 4)
{
intk;
pack->messtype = 5;
pack->sourceMoteID = TO SLO CALADDRESS;
pack->messdetails[0]= 0; // CONTAINS FUNCTION VALUE
for (k = 0 ; k < 6; k++)
pack->messdetails[k+l] = packet_tr[k];

call SendMsg.send(0x0, sizeof(struct SecMsg), recv_packet);
//dbg(DBG_USR3, "TestTinyVizM: pack->origsourcenode = %d\n", pack->origsourcenode);
dbg(DBG_USR3, "TestTinyVizM: Sending packet buffer to base station from %d \n",

TO SLO CALADDRESS);
return recv_packet;

}
if (pack->messtype == 6)
{
dbg(DBG_USR3, "TestTinyVizM: %d Received broadcast compromised node notification for %d\n",

TO SLO C A LA D D R ESS, pack->messdetails[0]);

for O' = 0; j < MAX NEIGHBORS; j++)
{

if (arrival_times[j].neighbored == pack->messdetails[0])
{
arrival_times[j].neighbor_id = Oxffff;
arrival_times[j] .last_pkt_arrival_time = Oxffff;
arrival_times[j].total_pkts_added = Oxffff;
arrival_times[j].high_value = Oxffff;
arrival_times[j].low_value = Oxffff;
compromised_nodes[m] = pack->messdetails[0];
numneighbors -= 1;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

dbg(DBG_USR3, "TestTinyVizM: Removed arrival_times[%d] from neighbor list since it is now
compromised_nodes[%d] = %d\n", j, m, compromised_nodes[m]);

m = m + 1;
}

}
return recv_packet;

}
if (pack->messtype = 7)
{
dbg(DBG_USR3, "TestTinyVizM: %d Received message from base station that %d is not

compromised\n", TOS LOCAL ADDRESS, pack->messdetails[0]);

for (j = 0; j < MAX NEIGHBORS; j++)
{

i f (arrival_times[j].neighbor_id = pack->messdetails[0])
{
if (arrival_times[j].questioned_value > arrival_times[j].high_value)
{
arrival_times[j].high_value = arrival_times[j].questioned_value;

}
else
{
arrival_times[j].low_value = arrival_times[j].questioned_value;

}
arrival_times[j].total_pkts_added = arrival_times[j].total_pkts_added + 1;

}
}
return recv_packet;

}
if (nodeaddr = 0)

return recv_packet;

dbg(DBG_USR3, "TestTinyVizM: Node %d received message from node %d\n",
TOS LOCAL ADDRESS, nodeaddr);

nodeaddrfound = FALSE;
gettimeofday (&tv, NULL);

= packetarrivaltim e = tv.tvsec;

for O' = 0; j < MAX NEIGHBORS; j++)
{
if (arrival_times[j].neighbor_id = nodeaddr)
{
nodeaddrfound = TRUE;
packet arrival time difference = packet arrival time - arrival_times[j].last_pkt_arrival_time;

if (arrival_times[j].total_pkts_added < num_buffer_pkts)
{
i f (arrival_times[j].total_pkts_added = 0)
{
arrival_times[j].high_value = packet_arrival_time_difference;
arrival_times[j].high_packet = 0;
arrival_times[j].low_value = packet_arrival_time_difference;
arrival_times[j].lowjpacket = 0;

}
else if (packet_arrival_time_difference > arrival_times[j].high_value)
{

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

amval_times[j].high_value = packetarrivaltim edifference;
arrival_times[j].high_packet = arrival_times[j].total_pkts_added + 1;

}
else if (packetarrivaltim edifference < arrival_times[j].low_value)

{
arrival_times[j].low_value = packetarrivaltim edifference;
arrival_times[j].low_packet = arrival_times[j].total_pkts_added + 1;

}

arrival_times[j].total_pkts_added = arrival_times[j].total_pkts_added + 1;

if (arrival_times[j].total_pkts_added == num_buffer_pkts)
{
i f ((arrival_times[j].neighbor id % 9) == 0)
{
dbg(DBG_USR3, "TestTinyVizM: %d Received message from %d so EQUAL packet

numbers\n", TO SLO C A LA D D R ESS, nodeaddr);
}

}
}
else
{
if (pack->compromisedpacket == 1)
{
dbg(DBG_USR3, "TestTinyVizM: %d Received message from %d LIMIT REACHED\n",

TOS LOCAL ADDRESS, nodeaddr);
dbg(DBG_USR3, "TestTinyVizM: packetarrivaltim edifference = %d\n",

packetarrivaltim edifference);
dbg(DBG_USR3, "TestTinyVizM: high value = %d\n", arrival_times[j].high_value);
dbg(DBG_USR3, "TestTinyVizM: low value = %d\n", arrival_times[j].low_value);

}
if ((packetarrival time difference < arrival_times[j].low_value) ||
(packet_arrival_time_difference > arrival_times[j].high_value))
{
if (pack->compromisedpacket = =1)
{
dbg(DBG_USR3, "TestTinyVizM: ***** COMPROMISED NODE %d suspected on

TOS LOCAL ADDRESS = %d *****'', nodeaddr, TOS LOCAL ADDRESS);
}
pack->messtype = 1;
pack->sourceMoteID = TO SLO CALADDRESS;
pack->origsourcenode = TOS_LOCAL_ADDRESS;
pack->messdetails[0] = nodeaddr;

arrival_times[j].questioned_value = packetarrivaltim edifference;

dbg(DBG_USR3, "TestTinyVizM: %d Sending Alert message to base station regarding %d\n",
TOS LOCAL ADDRESS, nodeaddr);

call SendMsg.send(0x0000, sizeof(struct SecMsg), recv_packet);
}

}
arrival_times[j].last_pkt_arrival_time = packetarrivaltim e;

}
}
if ((nodeaddr fovmd = FALSE) && (num neighbors < MAX NEIGHBORS))
{
arrival_times[num_neighbors].neighbor_id = nodeaddr;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

arrival_times[num_neighbors].last_pkt_arrival_time = packet_arrival_time;
arrival_times[num_neighbors].total_pkts_added = 0;
arrival times[num_neighbors].high_value = 0;
arrival_times[num_neighbors].low_value = 0;
num_neighbors += 1;

for (n = 0; n < MAX NEIGHBORS; n++) {
i f (neighbors[n] == Oxffff) {

neighbors[n] = nodeaddr;
dbg(DBG_USR3, "TestTinyVizM: Node %d now conisders node %d a neighbor\n",

TOS LOCAL ADDRESS, nodeaddr);
break;

}
}

}

return recv_packet;
}

}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

NAME:

DATE OF BIRTH:

DEGREES:

VITA

Mary Lisa Mathews

August 5, 1981

• Bachelor o f Science (Computer Engineering), Drexel University,

Philadelphia, PA, June 2004.

• Master o f Science (Computer Engineering), Old Dominion

University, Norfolk, VA, May 2007.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Detecting Compromised Nodes in Wireless Sensor Networks
	Recommended Citation

	tmp.1553622007.pdf.d0qQ2

