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ABSTRACT

DETECTING COMPROMISED NODES IN WIRELESS SENSOR NETWORKS

Mary Lisa Mathews 
Old Dominion University, 2007 

Director: Dr. Min Song

While wireless sensor networks are proving to be a versatile tool, many of the 

applications in which they are utilized have sensitive data. Therefore, security is crucial 

in many of these applications. Once a sensor node has been compromised, the security of 

the network degrades quickly if measures are not taken to deal with this event. There 

have been many approaches researched to tackle the issue. In this thesis, an anomaly- 

based intrusion detection protocol is developed to detect compromised nodes in wireless 

sensor networks.

The proposed protocol is implemented after the sensors are deployed into the 

environment in which they will be used. They will start to learn the normal behavior of 

each of their neighbors with whom they communicate. All legitimate sensor nodes have 

the same code running on them. A compromised node that is present in the network is 

assumed to have different code running on it in order to cause some form of damage to 

the network. These malicious nodes are detected when one of its neighboring nodes 

identifies its behavior as deviating from what is expected, or in other words an anomaly. 

The base station is then contacted to confirm whether the suspected node is in fact 

compromised. If the base station concludes that the node is compromised, the rest of the 

network will be informed, and the appropriate actions will be taken. One of the unique 

features of the algorithm is that it is not only capable of sustaining security in wireless 

sensor networks, but handling the computing restraints as well as other limitations
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characteristic of these systems. Extensive simulations are performed to verify 

algorithm designed.
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I. INTRODUCTION

Research into wireless sensor networks, as well as the applications that employ 

this technology that are already in place, show that they are a favorable method for 

solving problems or enhancing existing systems. They can be used for a wide range of 

functions from monitoring patients while not at the doctor’s office to sensing 

environmental conditions such as the level of pollutants in a given area. Since many 

wireless sensor networks are utilized in applications where the data gathered is 

confidential, security has become a critical issue. However, finding an efficient solution 

to this issue is easier said than done for a variety of reasons.

1.1 General Wireless Sensor Network Characteristics

Wireless sensor networks are comprised of sensor nodes that are designed to 

gather information regarding environmental data such as light, temperature, sound, and 

pressure. These sensor nodes generally function using the same elements described 

below [13], [14]. To begin, there are the actual sensors which gather the data that 

represents the physical conditions being monitored once the network has been deployed. 

The sensor readings that are gathered periodically are sent to the processing unit that 

houses the data and program memory. This processing unit usually converts the data 

values into a human readable format if this is desired or needed. The operating system 

and other programs stored in the program memory dictate all operations of the sensor 

nodes while they are in use. While the power source of these devices normally comes in

Using IEEE Editorial Style Manual
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the form of a battery, there has been research conducted into other sources such as solar 

cells. The wireless aspect of the communication in these sensor networks is usually 

achieved through a radio antenna, although some sensors have instituted infrared or laser 

communication schemes.

In many deployments, each node in the sensor network is given a unique 

identification number that is usually determined when the sensors are programmed. This 

means that this node id is part of the code in the program memory and is included in all 

outgoing packets sent to the rest of the network. This id is typically given by assigning 

numbers starting from either zero or one and incrementing by one for each node added to 

the network.

Implementing any form of security measure onto the sensor nodes require the use 

of resources that are already constrained in these networks [1], [2]. The sensor nodes are 

designed with the goals of being small, in order to be utilized in different scenarios, and 

relatively cheap so that many nodes can be deployed in the desired environment. This 

has led to these sensors having constraints in terms of low computation, memory, and 

power available. Therefore, any security method added to these networks will inevitably 

consume some of these resources [16].

A good portion of the memory is generally allotted for the code that runs on the 

sensors that instruct them on their sensing, communication, and other operational 

functions. The programs dictate what conditions to sense, when to sense them, and what 

computations to perform on the values gathered. The nodes also need to know when to 

construct packets, how to construct them, and who to send them to. This implies that the 

program determines who the nodes of the network communicate with in terms of sending 

and receiving information. Some applications allow all nodes to communicate with each
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other while others require each node to keep a neighbor list of acceptable nodes with 

whom they are allowed to send and receive packets. Additional code that is required to 

implement any algorithm needs to fall within the range of the total provided memory 

minus the existing code memory already utilized. Increasing the resources on the sensor 

nodes is not a viable solution if the goals mentioned above or the general operating 

efficiency of the network are sacrificed.

1.2 General Security

The objective of any security method being utilized is to maintain authentication, 

secrecy, and data integrity within the network [2], [3], [18]. Authentication involves the 

receiver of a packet being able to validate that the alleged sender is in fact the real sender 

and that it is a valid node of the network. The node identification numbers assigned to 

each member of the network comes into play here. Secrecy (a.k.a. confidentiality) deals 

with making sure that the data sent is kept secret from those who should not have access 

to the information. Even if messages sent in the network are received by unintended 

parties, they should not be able to decipher the message contents. Data integrity ensures 

that the data received is the same as the data that was sent. Altered messages can come 

about by malicious parties modifying packets that are sent between nodes or as a result of 

distortion occurring from the wireless communication medium. Either way, these 

messages can produce adverse effects in the network, especially in real-time applications 

where any information received is acted upon accordingly. For instance, in a battlefield 

surveillance application, packet information that represents an approaching enemy would 

set off a drastic set of actions. If this information was incorrect, the result could be 

disastrous. Many applications benefit from implementing some form of data aggregation
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to average out the values obtained from the sensors [2]. This way, the threats that any 

extreme values obtained from sensor readings, as well as any altered packets present in 

the network, pose to the reliability of the information gathered by the nodes is reduced.

Different types of attacks on wireless sensor networks focus on exploiting the 

resource constraints to cripple one of the three parameters listed above [3], [15]. An 

attacker can passively eavesdrop on the wireless communication occurring within the 

network. By doing so, any of the sensitive information that is being sensed by the nodes 

will be available to the listening party [14]. For a more active assault, a malicious party 

could inject false packets into the network that would be perceived as valid information 

by the other nodes [17]. This also ties up network resources that could have been used 

for legitimate packets. An attacker might also alter the contents of a valid packet, which 

undermines the authentication and data integrity of the network.

Most security algorithms employ some form of cryptography where data is 

encoded and then decoded by the base stations and sensor nodes of the wireless sensor 

network [4]. Cryptography allows for authentication, secrecy, and data integrity to be 

maintained within the network. TinySec is an example of a security protocol placed on 

wireless sensor networks that incorporates these traits [18]. However, the security of 

many of the algorithms degrades when one or more nodes have been compromised [5], 

[6]. A compromised node occurs when a once valid node of the network has been 

reprogrammed to perform some type of malicious activity. Previous security measures 

such as cryptography keys mostly likely will not work against them since the 

compromised nodes now have these keys, and the other nodes do not know they are 

compromised. They are still seen as valid nodes of the network. These nodes can 

perform many attacks that cause problems to the general network operation including
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injecting false packets and modifying the contents of packets coming from other sensor 

nodes. The rest of the network would not be able to identify the compromised node, or 

intruder, from a valid node if there are not additional security measures included in the 

network.

Another assault that plagues wireless sensor networks is the selective forwarding 

attack [15]. In this attack, the adversary selectively forwards packets sent by other nodes 

in the network which results in lost information. For this to work, the malicious party 

needs to somehow include itself into the actual path of the packets being sent. If a 

compromised node has incorporated itself into the network and is undetected, it could 

easily perform this attack since the other nodes that consider it a neighbor would continue 

to send it packets. Information such as network updates vital to sensor network operation 

and packets containing sensor values would be prevented from propagating through the 

network correctly. This causes damage to the traffic flow of the network as well.

1.3 Intrusion Detection Systems

An intrusion detection system (IDS), whose function is to detect attacks that 

exploit the vulnerabilities or flaws within a given network, could be utilized in this 

situation [7]. They are generally classified into two main types: misuse intrusion 

detection and anomaly-based intrusion detection [12]. Both kinds strive for the same 

characteristics of a 100% attack detection rate as well as a 0% false positive rate. The 

100% attack detection implies locating and stopping any attacks that occur while the 

network is up and running. A false positive occurs when a legitimate node is identified 

as an intruder by the other nodes. For obvious reasons, this is detrimental to the integrity 

of the network and decreases the competency measurement of the detection system.
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Misuse intrusion detection systems work under the concept that the attacks that 

plague a network exhibit certain unique characteristics that can form a signature for said 

attack [12]. The individual attacks are introduced onto the network and studied in order 

to look for patterns with which to identify the attack. While the network is deployed, it is 

constantly being monitored for activity that matches any of the known signatures. If a 

match is found, appropriate action is taken to deal with the intruder that has been 

identified. The problem with this type of IDS is that unknown attacks can pass through 

the network undetected.

In anomaly-based intrusion detection systems, there is an assumption that the 

intruder’s behavior deviates from the normal network behavior [12]. In this type of IDS, 

each sensor node will be monitoring its neighbors to keep track of the normal behavior 

for a given set of parameters. The nodes develop profiles for each of the nodes with 

whom it communicates to determine what is acceptable in terms of communication in the 

form of packets sent and received. Any node that strays from its standard actions will 

trigger an alarm in its neighbors. The disadvantage of this type of IDS is that there is 

generally a high false positive rate. Also, the computation involved with figuring out 

whether each neighboring node has deviated from its acceptable behavior along with 

updating the profiles has the potential to overtax the network resources.

1.4 Combining Two Methods to Detect Compromised Nodes

In this thesis, two methods for detecting compromised nodes were combined to 

create a new algorithm that improved on them by overcoming their limitations. A brief 

summary of the methods as well as the solution to their limitations is described below. A 

more detailed summary of the methods is provided in the related work section for each.
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1.4.1 Network/Neighbor Stability Based Anomaly Detection

Onat and Miri developed an anomaly-based intrusion detection system in which 

each node created profiles of acceptable behavior for each of its neighbors based off two 

parameters which are packet receive power and packet arrival rate [10]. Each node was 

programmed to store a packet buffer that would determine the threshold values which are 

the highest and lowest acceptable values for these parameters. This buffer was to be 

maintained and updated for the entire lifetime of the network. A packet is labeled as 

anomalous when the observed parameter value does not fall within the range allowed by 

the threshold values. An intrusion buffer is kept for each neighbor as well. This buffer 

stores a preset number of consecutive packets that do not fall within the expected range. 

If a packet that falls within the desired range is received before the preset number is 

reached, the intrusion buffer is emptied. However, an intruder is identified when its 

intrusion buffer is filled.

In the algorithm designed for in this thesis, an intrusion detection system similar 

to the one described above was implemented, although there were some limitations that 

needed to be overcome. To begin with, there was a large amount of space needed in 

memory for the two buffers to be able to identify the compromised nodes. The packet 

buffer stored 1000 entries while the intrusion buffers stored 100 when dealing with the 

packet arrival rate. In this thesis, the packet arrival time is the parameter used to generate 

the profiles of acceptable behavior. The algorithm described in the paper was designed to 

work on large scale networks. However, small scale networks are used during the 

simulation runs for this thesis. The packet buffer implemented here kept 10 entries, while 

the intrusion buffer kept 1. This reduction is mainly due to the use of a trusted entity 

which will be described in the next section and the network size. The trusted entity,
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which is a base station in this thesis, also eliminates the occurrence of any false positives. 

The algorithm created here would be applicable to large scale networks if certain changes 

are implemented. The packet buffer would be increased to 100 entries, and the number 

of base stations utilized would increase as a function of the network size.

The authors mentioned that in most types of anomaly-based intrusion detection 

systems, each node needs to hear that a fixed number of other nodes suspect the intruder 

as well to confirm that the node is indeed compromised. While they left this for future 

work, this had been dealt with here. There are four packets transmitted between the 

trusted entity and other nodes of the network to identify a compromised node and 

broadcast its decision to the rest of the network. Once a sensor node hears this message, 

it will cease to communicate with the identified intruder.

1.4.2 SWATT: Software-based ATTestation for Embedded Devices

The creators of SWATT revealed that code attestation can proficiently identify 

intruders in wireless sensor networks [11]. Their technique was based on the perception 

that a compromised node will have different code running on it and stored in its memory 

compared to a valid node of the network. This is a viable claim considering that if a node 

is truly compromised, it has to do something different compared to the legitimate nodes 

in the network. Given that the program being executed on the nodes controls their 

operation, malicious behavior would be written in the same memory contents where the 

program is stored. This principle is incorporated into the design of this thesis as well.

A verifier is utilized in SWATT to identify intruders. It was assumed that the 

verifier has a copy of the code running on the sensor nodes of the network. The verifier 

instructs a node to perform a checksum over the contents of memory while performing
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the checksum itself over the copy it has on hand. If the response of the requested node 

does not come in time or is incorrect, an intruder has been found.

The main limitation with directly implementing their work in the algorithm 

designed for this thesis is there was no mention of a way to detect a compromised node. 

The simulations involved checking nodes that were already known to have altered code. 

The solution implemented here is an anomaly-based intrusion detection system 

mentioned in the previous section.

1.5 Challenges and Contributions of Thesis

This thesis presents an anomaly-based intrusion detection system that deals with 

the threat imposed by the selective forwarding attack on wireless sensor networks. When 

dealing with this type of environment, the resource constraints that are characteristic of 

these networks was taken into consideration. The additional code needed to implement 

the proposed algorithm needed to work on top of the existing code that manages all 

sensor operational activities. It was crucial that the additional memory space required for 

each node to store profiles containing acceptable behavior information regarding its 

neighbors be kept to a minimum. Any computations involved with determining whether 

a node deviated from its normal behavior was carefully weighed for usefulness and 

necessity. These computations are to be performed for every single incoming packet that 

a node receives from each node it considers a neighbor.

Apart from the resource limitations present, there was also the wireless 

communication aspect to consider. The fact that the all traffic within the network uses 

this medium implies a higher number of packets lost and a higher number of packets 

dropped. This affects the normal behavior profiles stored for the neighboring nodes.
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There were also the questions of how to efficiently determine a node as compromised and 

how to propagate the identification of a compromised node to the rest of the nodes.
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II. RELATED WORK

2.1 Proving the Necessity of Security

Wireless sensor networks have already been exploited in a variety of applications. 

While some of the people using these sensors have protected their networks with 

different measures such as cryptography keys, there may be others that still do not realize 

the importance of security or the multitude of threats that these networks are susceptible 

to. Hartung, Balasalle, and Han proved the high level of vulnerability that is an intrinsic 

part of these networks [6].

The main contribution the authors provided in the paper was to demonstrate the 

ease with which an outsider can view as well as alter the code running on a sensor node 

once it has been obtained. Their experiment was conducted on the Crossbow Mica2 

sensors. The Crossbow sensor platform, as well as most other sensor platforms, has a 

programming interface board that is used to write the programs onto memory. This board 

allows the sensor code to be changed to meet the specifications of the user instead of 

having sensor nodes with static code that cannot be changed. UISP, a free downloadable 

tool that one can use to interact with microcontrollers, was employed and easily copied 

the program code as well as the contents of EEPROM. The EEPROM is where the where 

the values read in from the actual sensors are stored. This code was then converted into 

assembly language, which allowed the authors to view any predefined keys and routing 

protocols that were present.

The second stage of the experiment revealed additional information that an 

attacker can effortlessly discover once a sensor node is obtained. An AVR JTAG 

interface was utilized in this part, which provides a means to manipulate signal levels,
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programming, and On Chip Debugging (OCD) [6]. This device allowed the authors to 

gain access to the contents of the program, EEPROM, and the SRAM. It was noted that 

the SRAM is thought to be a secure location in which to keep secretive information. 

Obviously this theory was proven false by their experiment.

2.2 Location Based Anomaly Detection

2.2.1 LAD Scheme

Many wireless sensor networks utilize a GPS system to gather data regarding the 

location of the sensor nodes. In large sensor networks, providing each node with GPS 

capability might be too expensive; instead, many applications resolve this issue by using 

beacon nodes that have a GPS receiver. These beacon nodes will know their own 

location and send out beacon packets to the rest of the network that contain their location 

information. The sensor nodes that receive these beacons use their information to figure 

out their own location in the deployed network. The Local Anomaly Detection (LAD) 

scheme was devised to deal with the situation where there are compromised nodes that 

attack the localization schemes that are needed when implementing beacon nodes [8].

Their method utilizes knowledge regarding deployment for estimating sensor 

positions along with knowing which neighboring node belongs to which group. After 

deployment of the sensor network, a localization phase takes place where the nodes 

calculate their locations using the beacon nodes. Their detection scheme takes place in 

the next phase, which they called the detection phase, where the sensors try to analyze 

whether the locations they computed in the previous phase are indeed accurate. An 

anomaly is suspected when the variation between the expected location and the actual 

location of one of the nodes is too great.
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There were three metrics designed by the authors to use in their anomaly-based 

intrusion detection scheme. They are all based around the fact that the sensors in their 

networks are grouped together by their deployment locations. The sensors will send their 

group id to neighboring nodes of the network. The first metric described is the 

Difference Metric (DM) which compares the observed number of nodes in its group 

recorded from the broadcast packets to the expected number of nodes that is the result of 

a calculation. An anomaly is indicated if the difference between the two numbers 

exceeds a preset number. The second metric, coined the Add-all Metric (AM), involves 

looking at the observed and expected number of neighbors in each group and performing 

a union function on them. The result is again compared to a threshold value, which if 

exceeded flags an anomaly. Last is the Probability Metric (PM) which involves each 

node calculating the probability that the observed number of members in each group is 

possible when considering its own estimated location. A threshold value is used in this 

metric as well. The threshold values of all three metrics was determined by running 

simulations of a wireless sensor network, collecting the data gathered, and performing the 

various computations desired for each metric.

The simulations indicated that the LAD scheme can indeed detect compromised 

nodes. The chances of detection are increased if the compromised nodes attack with a 

higher degree of damage. Obviously, the higher the number of compromised nodes there 

are in the network, the lower the detection rate becomes. The authors of the paper 

observed that the DM performed better than the other two metrics created, and they 

mainly used this one in their simulation runs to check the performance of their designed 

intrusion detection system. Although it was mentioned that compromised beacon nodes 

present a problem, they were not specifically addressed in the simulations or the LAD
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scheme. What might be interesting to study here is if the positioning of the compromised 

beacon nodes affects the detection rate.

2.2.2 Detecting Malicious Beacon Nodes in LAD

The creators of LAD later published a paper presenting a way to detect malicious 

beacon nodes [9]. They reasoned that it would be difficult for a compromised beacon 

node to get away with sending beacon signals with the wrong location information. This 

is because the malicious beacon node location information and the beacon signal will 

both have to be falsified. All beacon nodes of the network can estimate the location of 

other beacon nodes based off received beacon signals.

Beacon nodes in the network are given a set of node id’s and keys that allows 

them to communicate with the other beacon nodes of the network while appearing to be a 

non-beacon node. This was done to help decrease the chance that a compromised beacon 

node can determine when another beacon node is requesting information from it instead 

of a sensor node of the network. Compromised nodes are detected when a valid beacon 

node gets a beacon signal from a malicious beacon node whose estimated location based 

off the beacon signal is different from the location given by the beacon signal. Attacks 

using locally replayed beacon signals are discovered since it is difficult for the 

compromised beacon node to achieve the expected round trip time for communication 

between neighboring nodes. The authors also proposed a method to have a base station 

revoke malicious beacon nodes once there are enough alerts from other beacon nodes 

regarding the suspected node.

Simulation results showed that malicious beacon nodes are identified at a higher 

rate when they inject more malicious beacon signals. The results did show that their

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



15

algorithm detected malicious beacon signals and the base station was able to identify and 

stop communication with the compromised nodes. Replayed beacon signals were also 

detected which helped to decrease the number of false positives that occurred during 

network operation.

2.3 Network/Neighbor Stability Based Anomaly Detection

Onat and Miri developed an anomaly-based intrusion detection system by 

exploiting certain characteristics of the sensor nodes, namely their stable neighborhood 

information [10]. The sensor network they set up took the communication to be a many- 

to-one arrangement, which is where the sensor nodes send their information to a single or 

fixed destination along paths that are more or less stable. Therefore, the HELLO flood 

packets that nodes use to identify their neighbors would not be needed throughout the 

lifetime of the network.

There were many assumptions made by the authors when designing their 

algorithm and running their simulations. It was noted in the paper that new nodes did not 

appear in the network after initial deployment and that the nodes were not mobile. Every 

node in the network had the ability to distinctively identify its neighboring nodes. Also, 

there were thought to be no changes in transmission power levels. Each node used the 

same hardware and was managed by the same protocol stack. However, the clock 

running on one node was not presumed to be synchronized with those of the other nodes.

Given the stability of the network that was assumed, the sensors should know 

what to expect from their neighbors. To further exploit this concept, two parameters 

pertaining to their neighbors were chosen for each sensor node to store and maintain.
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The parameters selected were the packet arrival rate in units of packets per unit time and 

the average receive power in units of dBm.

A buffer containing a predetermined number of packets is maintained in this 

algorithm. The packets coming into buffer before it has been filled are used to calculate 

the range of acceptable values with respect to the arrival rate and receive power for 

subsequent packets. After the buffer is filled, any arriving packets that match the criteria 

for admissible packets are used to update the acceptable range of values. This way, the 

older values are discarded to make room for the new. The criteria, when looking at the 

receive power for each packet that comes in, is to check whether it falls within the 

minimum and maximum receive power values of packets already in the packet buffer. 

For the packet arrival rate portion of the algorithm, two rates were maintained. The first 

was the rate at which the previous packets arrived, and the second is the rate at which the 

packets including the new one arrived. A compromised node is found if the ratio of these 

two rates exceeds a predetermined threshold value.

When the packet values for either of the specified parameters do not conform to 

the profile set for that particular node, the packet is added to an intrusion buffer. This 

intrusion buffer is used to store packets whose values do not fall within the expected 

ranges. After a preset number of sequential packets deviate from what is expected, the 

node sending these packets is labeled as an intruder [10]. If the node in question sends a 

series of anomalous packets and then one that is acceptable, the intrusion buffer is 

emptied.

The authors performed many simulations to check the credibility of their 

proposed intrusion detection system. As predicted, higher levels of variation between a 

node’s transmit powers before and after it is compromised leads to a higher detection
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probability and a decrease in the average detection time. This implies that if the 

malicious node is able to mimic the original node’s transmit power level, it would be 

difficult to detect its presence. Regarding the packet arrival rates, detecting an intruder is 

more likely to occur when the threshold value used to determine the allowable range is 

lower. However, as the threshold value decreases, the number of false alarms was seen to 

increase. In other words, when the acceptable range of values is smaller, more nodes in 

general are flagged as intruders. This includes compromised nodes as well as legitimate 

nodes of the network.

It was observed that the probability of labeling a valid node as an intruder 

decreases as the number of packets stored in the intrusion buffer increases when using 

either one of the parameters measured for anomalies. This is important since most 

algorithms do not provide a method for nodes that are falsely accused of being 

compromised to reinstate themselves into the network later. Preventing these false 

alarms is important, especially in anomaly-based intrusion detection systems where they 

tend to be high. However, the opposite is true for identifying the compromised nodes 

when measuring transmit power anomalies, meaning that as the number of packets stored 

in the intrusion buffers increases, the probability of detecting the intruders decreases. 

This is because the time to detect the intruder inevitably increases seeing as how more 

packets are needed to fill up the buffer. During this time, the questionable node might 

send an acceptable packet that cleans out the intrusion buffer that is being kept for it.

The authors mentioned that in anomaly-based intrusion detection systems, a 

general consensus regarding the presence of the intruder is needed to decrease the 

number of false alarms and increase the chance of detecting the compromised nodes. 

Once a node suspects a compromised node is in the network, it will alert its neighbors by
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sending them a packet identifying the possible intruder. When a node hears this alert 

message, it checks the unique node number contained in the packet to how many times 

this particular one has been suspected. After the node in question has been suspected for 

a predetermined number of times by neighboring nodes, it is identified as an intruder. 

This information can then be sent to the rest of the network so the attacker is now 

revealed to those who did not know of the intruder’s presence.

2.4 SWATT: Software-based ATTestation for Embedded Devices

A different approach to detecting compromised nodes involves using code 

attestation to validate the actual program code running on the sensor nodes. Hardware- 

based methods of attestation exist where a secure coprocessor is utilized to check the 

memory contents of the embedded device in question. SoftWare-based ATTestation 

technique (SWATT) is a code attestation algorithm that is executed solely through 

software means [11].

Their technique was designed with the intention of creating a method to externally 

verify the code running on embedded devices. A trusted verifier is the key component in 

achieving this goal of their algorithm. The malicious node will contain at least one line 

of code that is different from the expected code running on normal sensors. The verifier 

has a copy of the memory contents residing in uncompromised nodes. The verifier sends 

a “challenge” to the node, which it uses as the input to a pseudo-random generator to 

create random memory addresses [11]. A checksum is performed in the device on each 

of these memory addresses. The verifier runs the same verification procedure locally to 

compute the expected value of the checksum. This expected value is compared to the 

value returned by the node in question.
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A compromised node that has altered the memory contents would have to discern 

whether each memory location created by the pseudo-random generator has been 

changed. For the proposed SWATT method to perform well enough to be used in 

wireless sensor networks, the additional time needed to perform this check and run the 

verification procedure should be noticeable to the verifier. The authors chose to run their 

experiments on a simulator contained in AVR studio version 4.0. Their results showed 

that difference in time to compute the checksum becomes more prominent as the number 

of memory locations accessed increases.

The authors made the point that attestation done in the software is more suitable 

for sensor networks compared to a hardware-based method. This is due to the foresight 

that changes made to the hardware of the sensor nodes would most likely increase the 

production costs. The more nodes used in the sensor network, the more expensive it 

would be to implement code attestation in the hardware. Also, altering the software of 

the existing sensors to implement code attestation would be much easier than altering the 

hardware. Changing the software simply involves updating the code already running on 

the sensors to include the attestation program.
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III. ALGORITHM FOR DETECTING COMPROMISED NODES

3.1 The Main Idea

The algorithm that was designed in this thesis for detecting compromised nodes in 

wireless sensor networks takes the general anomaly-based intrusion detection system and 

combines it with the event-driven property of sensor nodes. Selective forwarding attacks, 

which these networks are susceptible to, are thwarted in this algorithm.

Every node in the network learns when it can expect to receive packets from each 

of its neighbors. The compromised nodes in this algorithm perform the selective 

forwarding attack, meaning they do not send packets when they are supposed to. When 

the neighbors of this compromised node discover that they are not receiving packets from 

it as they should, they suspect that the node is an intruder. The various assumptions and 

the specifics of the design are described in detail below.

3.2 The Algorithm

There were many assumptions made to create the algorithm designed in this 

thesis. The sensor network in each simulation run would be of a fixed size, which 

ensures that malicious parties that add their own node into the network cannot participate 

in the communication amongst the valid nodes since they do not have a valid network id. 

The base station, assigned to node id of ‘O’, was known to be a trusted source; therefore, 

any packets received by the node ‘0 ’ would not be stored in the arrival_t:ime_buffer[N] 

since there would be no anomalies to observe. Basically this means that the base station 

would never be compromised, so there was no reason to waste memory space for it in a 

packet buffer.
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While some algorithms that use a trusted party for security or other purposes 

place more than one trusted entity in their wireless sensor network, there will only be one 

in this algorithm. The base station should have more computational and memory 

resources that allow it to take on the added tasks and communication that comes with its 

job. This allowed for the assumption that only one was needed, and adding additional 

base stations would be a waste of resources given the smaller size of the networks used in 

the simulations.

Each node in the network is to maintain an arrival_time_buffer[N] for each of its 

predetermined N number of neighbors. The number of neighbors will be determined 

based on a function of the network size seeing as how a smaller sized network would 

need fewer neighbors per node for communication purposed than a larger sized network. 

Also, it would take more time and resources to maintain a larger buffer, so a smaller size 

buffer that provides a balance between size and functionality is desired. The values 

stored in the buffers will be used to calculate the threshold values for packet arrival times 

for each neighboring node once a preset number of packets, m ax_buffer_packets, have 

arrived from said party. These threshold values basically provide a range of time in 

seconds during which the next packet for the particular node is expected to arrive. In 

other words, there is a high_value and a low _value in units of seconds that is stored for 

each neighbor, and each incoming packet needs to fall within these two values.

It is important to note than an assumption was made that compromised nodes will 

not be present in the sensor network during the neighbor discovery phase that takes place 

after deployment. The nodes need time to recognize the normal behavior of their 

neighbors. If their neighbors were already compromised, what is thought to be normal 

behavior would actually be abnormal and would deter efforts to detect intruders through
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the discovery of anomalies. The compromised node created in this algorithm will 

perform the selective forwarding attack once it has become compromised. It will still 

communicate with the same nodes as it did when it was valid. The difference is now the 

node does not send packets on as it should. Rather, it does so randomly.

During this neighbor discovery phase, or initialization phase, every sensor node in 

the network is to receive a certain number of packets, m ax_buffer_packets, from each of 

its neighboring nodes. Each packet’s arrival_time that comes in from the neighbor before 

the preset number is reached is checked against the high and low values recorded for the 

neighbor’s node id. If the arrival time is higher than the high_value or lower than the 

low _value, that particular value is then updated.

It is important to note that the arrival_time is computed by the node itself and not 

taken from the packet timestamp. Each node knows the last time when it has received a 

packet from every single node it considers a neighbor. The clocks running on individual 

sensor nodes do not need to be synchronized given that its main function is to provide a 

means for determining the difference between receiving two incoming packets, which is 

stored in arrival_tim e_buffer[N]. These values are relative only to the node performing 

the calculations, meaning it does not need to look at those values calculated on other 

nodes.

Once the m ax_buffer_packets that were needed to compute these threshold values 

has been received, the arrival_time of each packet subsequent that comes in from that 

specific neighbor is checked to see if it has arrived in an acceptable time frame with 

respect to the last packet it sent. If the packet does not fall in the desired range, an 

ALERT message is sent to the base station that contains the node id of the suspected 

node, nodejdcompr as wells as its own node id, node_ids.
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Every node operating in the wireless sensor network, with the exception of the 

base station, is to keep a packet transmission time buffer, transm ission_tim e_buffer[X ]. 

This buffer maintained on each node stores the number of timer events, X, that have 

passed since that node has sent a packet, regardless of who the destination node is. Only 

a small number of entries need to be stored in this buffer for it to serve its purpose.

Upon receipt of an ALERT message, the base station will proceed to send a 

message, REQUESnON_TRANSM ISSION_TIM ES(), to the node_idCOmpr asking it for its 

transm ission_tim e_buffer[X ]. If the differences in these transmission times are not 

consistent, the base station is assured that the node is indeed compromised. The base 

station will then proceed to send out a broadcast message, 

COMPROMISED_NODE_FOUND(/70ote_/Qrco/77iW.), to all sensor nodes of the network 

informing them of the presence of the compromised node. Upon receipt of this message, 

the nodes will clear out the values stored for node_idCompr- Any packet coming from the 

compromised node will be ignored from this point onwards. An integral function the 

base station is assumed to have is the ability to communicate directly with each node of 

the network. That way, the exchange between the base station and the nodes will not be 

hampered by packets that are dropped when it is necessary for other nodes to pass on 

their packets.

The decision was made to update the high_value and low _value contained in the 

arrival_tim e_biiffer[N] of the sensor nodes to keep it fresh. This was accomplished by 

having each node to store the values that fall outside the desired range in the 

arrival_tim e_buffer[N] when it sends the ALERT message to the base station. If the base 

station determines the suspected intruder is in fact a valid node of the network, it will 

send a message back to the node that sent the ALERT, node_ids, informing of its
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findings. This node will then update its high_value or low _value accordingly for the 

appropriate node, node_idvaiid, in its arrival_time_buffer[N].

Due to the fact that dropped packets are prevalent in wireless sensor network, the 

base station was equipped with a buffer, alert_buffer[Y], in which to keep the last Y 

ALERT messages it receives. When the timer event has fired on the base station, the 

next node id, n o d e jd , indicated in the alert messages buffer will be sent a request for its 

packet transmission times. This node id is determined based off a variable that contains 

the location of the next entry to be sent. This variable is updated so that the node ids are 

contacted based off the order in which the ALERT messages came in.

Figures 1 through 4 shown below provide the general concepts of the algorithm 

designed in this thesis through flow charts and pseudocode.
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Yes
node idD = 0

Yes
node_idp in 
compromised ]̂ >( Ignore packet

Yesnode_idp found in 
arrival time_buffer

max N  
reached

Add node_idp to 
arrival time buffer Yesnum bujfer jackets < 

maxbufferjackets

arrival time value 
falls in between 
highvalue and 
low value Update high value 

or low_value as 
needed

Send ALERT to base station

For each arriving packet

See nodeidp = 0 
below

Figure 1. Flow chart on general sensor operation in algorithm.
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Yes
node idD = 0

Add node id.c o m p r to compromised]}

Update arrivalJime buffer values for node_idvaud

Clear out any values in the arrival time buffer for node id<c o m p r

Send TRANSMISSION_TIMES(tra«smAs7o«_tzme_J)uJf/IeF) to base station

3. VALID_NODE_FOUND(node_idvaud) is received

1. REQUEST_TRANSMISSION_TIMES() is received

2. COMPROMISED_NODE_FOUND(«oJe_iJcompr) is received

node_idp = 0 means the base station has sent 
one of the following 3 messages. The action 
that will result is given below as well

Figure 2. Flow chart for how sensors deal with messages from base station.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



27

ALERT(node ida, nt 

y

odejdb) is received 

r
Send REQUEST_TRANSMISSION_TIMES(fran5/nmzo«_tfme_6MJf/Ie/') to nodeJda

No Yesall values are the same as 
other values in 
transmission time buffer

Send broadcast
COMPROMISED_NODE_FOUND(«odeJ<4)

Send VALID_NODE_FOUND(node_idvaii(j) to nodeidb

For each value in transmission JimeJouffer

TRANSMISSION_TIMES(tra«5w?55ion time_bujfer) is received

Figure 3. Flow chart on general base station operation in algorithm.
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Pseudocode 

Notation
For Sensor Nodes
node_idp node id of received packet
arrival time arrival time of packet based on system clock
arrival_time_buffer[N] buffer that stores information regarding packets received for N

nodes
max buffer jackets  maximum number of packets to use for arrival_time_buffer
num_buffer jackets  number of packets already used for arrivalJ;ime_buffer[N]
high value highest acceptable packet arrival time
low_value lowest acceptable packet arrival time
transmission time buffer[X] buffer that stores last X transmission times 
node_ids node id of sensor
node_idcompr node id of compromised nodes identified by base station
node_idvaiid node id of valid node identified by base station
compromised[] buffer that stores node ids of compromised nodes identified by

base station

For Base Station
node_ida node id of suspected compromised node
node_idb node id of node that sent ALERT
alert buffer[Y] buffer that stores the node_idb of last Y ALERT messages received

1) Sensor Code
On {arrival of) packet

If (nodeidp  != 0) AND (node_idp NOT in compromised[])
If node_idp already in arrival time Jbuffer

If nu m bufferjackets < max_buffer ja c k e ts  
If arrival time > highjvalue

highvalue  = arrivaltim e  
Else If arrivaltim e < low_value 

low_value = arrivaltim e
End If

Else
If {arrival time > high value) OR {arrival time < low value) 

Send ALERT{node idp, node_ids) to base station
End If

End If
Else

If max N not reached
Add node idp to arrival time buffer

End If
End If 

End If

Figure 4. Pseudocode to be implemented. 
On {arrival of] REQUEST_TRANSMISSION_TIMES()
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Send TRANSMISSION_TIMES(£ransmz'ssj'oH_rime_Z>w$'er) to base station

On {arrival of} COMPROMISED NODE_FOUND( n o d e _ i d COm p r )

Clear out any values in the arrival time buffer for node_idcompr 
Add node i d c o m p r  to compromised[]

On {arrival of} VALID_NODE_FOUND(«oJe_zdva/,rf)
Update transmission time Jbuffer values for node_idvand

2) Base Station Code

On {arrival of} ALERT(node_ida, node_idb)
Send REQUESTION_TRANSMISSION_TIMES() to node_ida

On {arrival of} TRANSMISSION_TIMES(transmission_time _buffer)
For i < size of packet_ buffer

If transmission time _buffer[i] != transmission time _bujfer[i + 1] 
Compromised node identified
Send broadcast COMPROMISED J40DE_FOUND(«oc/eJda)

End 
End For
If compromised node not identified

Send VALID_NODE_FOXJND(node_idvauii) to node_idb

Figure 4. continued.
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3.3 Type of Attack Thwarted by Algorithm

In the selective forwarding attack that plagues wireless sensor networks, packets 

that should be sent by a compromised node if it was still a valid node are selectively 

dropped. The compromised nodes purposely eliciting malicious behavior in this thesis 

will only perform this type of attack. They will be valid nodes of the network that are set 

to be compromised after a certain amount of time. The other nodes of the network that 

consider this node a neighbor should realize if there is a noticeable time difference 

between incoming packets. When this happens, they will send the ALERT message to 

the base station which will in turn catch the differences in the transmission time buffer of 

the compromised node. The selective forwarding attack is defeated when the other nodes 

of the network received the broadcast message sent by the base station informing them to 

cease communication with the malicious party.

3.4 Features of the Algorithm

This thesis relies on the fact that many wireless sensor networks are event driven, 

more specifically around a timer. In other words, the functions performed by the sensor 

nodes are dictated by a timer. These functions are those contained in the program 

running on the sensors that dictates all of their operations throughout the network 

lifetime, which includes the transmission of packets. This is the reason behind 

programming each sensor to keep a buffer containing the packet transmission times for 

all the packets it sends. When sensors are instructed by the base station to send 

transm ission_tim e_buffer[X ], the differences in those times will be calculated. If the 

differences do not conform to the timer specifications, meaning a packet was not created 

in the specified number of seconds, a node is deemed compromised.
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In this algorithm, the base station, a trusted entity, is instructed to verify whether a 

suspected node is indeed compromised instead of leaving the task to the other sensor 

nodes in the network. Multiple compromised nodes might hinder the efficiency of 

finding intruders since neighboring nodes are the ones to verify the claims. If the 

situation arises in which neighbors are compromised as well, this presents a problem, 

especially if they are dropping packets. In this case, a valid node might not get the 

verification on its claim of a compromised node if the required number of nodes does not 

respond. The base station used in this algorithm is capable of more accurately validating 

whether a node is in fact an intruder. Also, if a node receives a message from the base 

station identifying a compromised node, it can immediately cease communication with 

the specified node. It does not need to hear similar messages from other nodes which 

would reduce the time needed to stop the compromised node from creating further havoc 

in the wireless sensor network.

Since the inter-nodal communication of having other nodes verifying intruders is 

no longer needed, a portion of the resource consumption in terms of battery usage, 

computations performed, and radio communication is reduced. The radio communication 

is especially important since congestion is often a problem in wireless sensor networks. 

In many intrusion based systems, a large amount of packet information would need to be 

stored to implement packet arrival rate based anomaly detection. This is not necessary 

for the algorithm designed in this thesis to be effective.
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IV. SIMULATOR DEVELOPMENT

4.1 Simulator Introduction

The TinyOS simulator TOSSIM was chosen to implement the designed protocol 

for detecting compromised nodes in a wireless sensor network. This simulator has a 

smaller learning curve compared to more complex simulators such as NS2. TOSSIM was 

run in a Windows environment, and the TinyViz program available through TinyOS 

served as a GUI for TOSSIM. This GUI allows for the end user to enable various 

settings such as viewing debug messages, positioning the nodes in desired positions, and 

viewing the radio communication between nodes as it happens. TOSSIM was capable of 

simulating the interaction of networks with hundreds of sensor nodes.

The TinyViz program that was provided was very simple in nature. It was 

designed to simulate the communication occurring between sensors within a wireless 

sensor network. The sensor nodes simply sent messages once a timer event was fired if it 

knew its neighbors or broadcast messages to the whole network if it did not. The 

sender’s node id was displayed if a message was received. One buffer was included that 

contained the list of nodes to with which to communicate, and only one type of packet 

was sent by the nodes.

There was much time spent in writing the code that performs the sensor node and 

base station functions. The program needed to deal with creating and maintaining the 

arrival time buffer for each node that is considered a neighbor. The complexity of this 

section was what made this part of developing the code most difficult. Sensor nodes also 

needed to respond to packets from the base station appropriately, namely the request for 

the packet transmission times, the validation of a node, and a broadcast identifying an
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intruder. The base station mainly responds to the packets it received. If an ALERT 

message is received, the base station updates the alert buffer and sends a message to the 

suspected node requesting its packet transmission times. When the suspected node 

responds, the base station removes the entry from the alert buffer and checks the contents 

of the packet to verify whether the node is compromised or not. If it is compromised, a 

broadcast message is sent. If it is not compromised, the base station sends a message to 

the node that sent the ALERT giving it the node id of the validated node.

4.2 Example Simulation Run

This section provides a step by step example of what exactly was done when the 

simulations were run. To begin with, a cygwin window shown below needed to be 

opened. The ‘export dbg = usr3’ command allows for the debug messages to be viewed. 

The third line executed allowed for the TinyViz program to simulate 20 nodes and write 

all the debug messages into the desired file, which is ‘logtest.txt’ in the window shown 

below.
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Figure 5. Cygwin window.

The window below shows the TinyViz GUI with the 20 nodes randomly dispersed. The 

‘Radio model’ and ‘Debug messages’ options were selected from the ‘Plugins’ menu that 

is displayed.
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Figure 6. TinyViz running with 20 nodes.

Selecting the ‘Radio model’ option opens up the tab shown on the right side of the 

screen. Here, the ‘Fixed radius (1000.0)’ option was chosen to allow all nodes to 

communicate with each other.
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Figure 7. Fixed radius option of Radio model plugin.

Next, the ‘Debug messages’ option was selected from the ‘Plugins’ window. The 

‘Show Radio Messages’ option was turned off since it was not needed, and the ‘Show 

Debug Messages’ was left on.
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Figure 8. Debug messages plugin.

The green play button at the top of the screen is then pressed to run the simulations. The 

following window shows the debug messages that are displayed in the TinyViz screen 

and printed to ‘logtest.txt’ once this is done.
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Figure 9. Debug messages displayed in screen.

4.3 Simulator Drawbacks and Configuration

To begin the simulation process, there were several parameters that were altered 

for numerous runs to determine what kind of effect they had. Increasing the number of 

packets to obtain while computing the threshold values did not produce a noticeable 

difference in the time it took to detect a compromised node or the number of times a valid 

node was wrongly accused of being an intruder. There was a very noticeable difference, 

though, in the time required for the initialization phase. Therefore, a standard of 10 

packets was assigned for all simulation runs regarding the number of packets needed 

when determining the high and low values of acceptable packet arrival time. Since the 

event-driven property of the network keeps the packet transmission times of the nodes 

consistent, the value was kept at 5 throughout simulations.
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During these simulations, each sensor node is to send a packet every 3 seconds. 

The sensor nodes are turned on at different times, meaning the time elapsed since the 

simulator started can be different from another node. The main reason for this is due to 

the fact that if all the nodes are turned on at the same time, considering that they all 

communicate on the same frequency, there would be constant collisions in the network. 

The packets would all be jammed and communication in the network would drop 

significantly. Also, in real applications of a wireless sensor network, the sensor nodes 

would need to be turned on manually and thus would not all have the same time.

One difficulty found in these simulations was that TOSSIM runs the same code 

on all the nodes. When dealing with actual sensors in a real sensor network, the program 

that is needed by that particular node is downloaded into its memory. If unique node 

identification numbers are required for a sensor node, they are easily established during 

this process. When working with Crossbow MTS310CA sensor and MPR400CB 

processor radio board, which together made a sensor node, this task was accomplished by 

simply typing the node number in the command line used to download the code. Any 

program needed for the sensor nodes should not contain the code required for the base 

station to perform its tasks or the code that makes the compromised node perform its 

malicious activities. However, when dealing with TOSSIM, the only noticeable method 

to have separate code for the valid sensors, the compromised nodes, and the base station 

was to have one program for all three while having the node id checked when certain 

function calls were made. This means there is additional time needed to check for which 

type of node is being simulated as well as additional storage space needed for the code.

It was also speculated that there could be problems introduced into the network 

when one node was waiting on a response from another node. For example, if the base
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station was waiting for a suspected node to send its transmission time buffer, it might be 

held up for an unnecessary or even an indefinite amount of time if the packet is lost for 

reasons such as congestion in the network. This led to the elimination of any planned 

wait functions. In order to compensate, the alert buffer was created for the base station to 

get the transmission times buffer from suspected nodes in the situation where the request 

is lost before reaching its destination.

Another hurdle came about since there was no method found to differentiate the 

nodes in terms of hardware. It was decided that the sensor nodes of the network are to 

have the same hardware and protocol stack running on them. Since a compromised node 

in this algorithm is defined as a node with code that performs malicious activities, the 

same goes for these nodes. However, base stations are generally expected to have more 

resources available to them. In this algorithm, the base station needed to be able to reach 

every all nodes of the network. Since there was no method seen in TOSSIM to 

accomplish this, every node in the network was set to be able to communicate with every 

other node. Initially, a node would consider another node a neighbor when it received a 

packet from said node. When the nodes are spread out over a given area, neighboring 

nodes are normally those that are closest in communication range. To deal with the 

modification in the algorithm that every node can communicate with every other node 

and the signal strength is the same, the code had to be altered such that each node was 

assigned a set of nodes to be its neighbors.

Before the simulations to test the efficiency of the designed algorithm were run, 

the time needed for the initialization phase needed to be determined. For each network 

size used, simulations were run to see how long it took for each node of the network to 

gather the threshold values for each of its neighbors. A compromised node would be
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introduced into the network after the initialization phase was said to have finished. The 

larger the network size, the more time allotted for the initialization phase. The 50 node 

simulations were given 45 minutes for the initialization phase. It is important to note that 

the simulations were observed to occur in real time.
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V. SIMULATIONS & ANALYSIS

The next simulations that were run involved increasing the number of nodes in the 

network while keeping the percentage of compromised nodes introduced into the network 

the same. Three simulations were run for each network size. Figures 10 and 11 below 

show the time associated with detecting the compromised nodes. Figure 10 displays the 

average time to detect each compromised node in the network. Once a node becomes 

compromised, the time it takes before the base station alerts the rest of the nodes to its 

presence is recorded and averaged for each set of simulation runs. Figure 11 displays the 

average time it takes to locate all compromised nodes once they are introduced into the 

network. During these simulations, all compromised nodes are introduced around the 

same time. The average time elapsed for each simulation from when the first node is 

compromised to when the last compromised node is detected is shown here. A 95% 

confidence interval for the sample mean was calculated, and a difference was observed 

for each network size. The largest interval was seen for the 50 node networks with 

respect to the time it took to detect each compromised node, which was 644.07 +/- 

151.69, as well as for all compromised nodes, which was 1127 +/- 229.33. Increasing the 

number of simulations for each network size from 3 to 30 would produce a smaller 

interval around the mean. This goes for all of the following figures included.
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Figure 10. Average Time to Detect Each Compromised Node.
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Figure 11. Average Time to Detect All Compromised Nodes

What needs to be considered when looking at these graphs is that 10 % of the 

number of nodes in the network was compromised. This means that the 10 node network 

size will have 1 compromised node while the 50 node network size will have 5. Since the 

base station needs to service all ALERT messages, the time to needed to identify the 

additional nodes is higher in the larger sized networks. This attributed to the larger
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number of packets propagating through the network which consequently leads to a higher 

number of dropped packets. The alert messages buffer kept by the base station aided in 

reducing the number of ALERT messages ignored. A base station with better 

computational resources would have helped to decrease the amount of time necessary to 

detect the compromised nodes. Also to keep in mind is that there is only one base station 

for every network size. It is expected that it would take longer to detect the compromised 

nodes in a larger wireless sensor network.

Figure 12 shows the average number of compromised packets sent by an intruder 

in the network. The largest 95% confidence interval calculated was the 10 node network 

size with an interval of 1.67 +/-1.31.The numbers on the left indicate the average number 

of packets that are sent by a compromised node that is a functioning member of the 

network. This graph indicates that the algorithm designed efficiently stops the selective 

forwarding attacks before each compromised node can pose a significant problem in the 

network. Once a compromised node exhibits suspicious behavior that is picked up by the 

other sensor nodes, it is stopped quickly when considering the number of packets it is 

able to inject into the network. The slight increase in the number of compromised 

packets as the network size increases is due to the congestion and dropped packets that 

occur due to the higher amount of traffic. It was often noted that the base station would 

not be able to respond to multiple ALERT message coming in at the same time. While 

this is acceptable to some degree since it is a normal occurrence in wireless sensor 

networks, the extent to which it happened could probably have been reduced if the base 

station had more resources available to it.
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Figure 12. Average Number of Compromised Packets Sent per Compromised Node.

Figure 13 depicts the average number of false positives that occur during the 

simulation runs for each network size. The largest 95% confidence interval calculated 

was the 40 node network size with an interval of 216 +/- 31.1. False positives occur 

when a valid node of the network is labeled as a compromised node. This figure 

represents the number of times the base station receives an ALERT message from one of 

the sensor nodes containing an uncompromised node id and proceeds to determine that 

the node is in fact a valid node. Obviously, as more packets are being sent in the larger 

network sizes, more ALERT messages would be sent. The base station provides an 

important service in distinguishing the compromised nodes from the valid nodes. All of 

the false positives are prevented from occurring in this algorithm. Based on my 

knowledge, I believe that the number of false positives occurring in other anomaly-based 

intrusion detection systems is non-zero.
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Figure 13. Average Number of False Positives Prevented.

In the next set of simulations, the network size was kept at a constant value of 20 

while the percentage of compromised nodes was increased. The time required to detect 

each compromised may slightly increase as the number of compromised nodes in the 

network increases as seen in Figure 14. This is due in part to the selective forwarding 

attack being performed by the compromised nodes. Since the nodes do not detect the 

anomalies in packet arrival times until a packet is actually sent, it takes more time to 

detect them when there are more performing the same attack which is seen in Figure 15. 

The largest 95% confidence interval calculated for the time it took to detect each 

compromised node was observed with 2 compromised nodes with an interval of 83.2 +/- 

69.8. The largest 95% confidence interval calculated for the time it took to detect all 

compromised node was again seen with 2 compromised nodes but with an interval of 120 

+/- 107. The slight wave noticed in Figure 14 is due to the fact that not all the 

compromised nodes were detected during the some of the simulation run when there were 

8 and 10 compromised nodes. The importance of these figures is that as the number of
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compromised nodes increases, the nodes and the base station are still able to work 

together to discover the intruders.
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Figure 14. Average Time to Detect a Compromised Node in a 20 Node Network.
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Figure 15. Average Time to Detect All Compromised Nodes in a 20 Node Network.

Figure 16 shows the effect of the compromised nodes in a 20 node network 

regarding the number of packets that are sent while the node is compromised. The largest
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95% confidence interval calculated was seen to occur with 10 compromised nodes that 

had an interval of 2.63 +/- 1.76. Examining the results shown in Figure 14 and 16 

together indicates that the malicious nodes are stopped quickly before they have much 

time to wreak havoc in the network. The curve in Figure 16 basically implies that the 

average number of compromised packets being sent is the same for all nodes since this 

number fluctuates slightly around 2 packets per compromised nodes, regardless of the 

number of compromised nodes present in the network.

0  2.5

O 0.5

Number of Compromised Nodes in 20 Node Network

Figure 16. Average Number of Compromised Packets Sent per Compromised Node in a 20 Node
Network.

Figure 17 shown below represents the number of false positives that are prevented 

from occurring within the network. The largest 95% confidence interval calculated for 

the these numbers was with 10 compromised nodes with an interval of 58.3 +/- 11.3. 

What is interesting to note here is that the number of false positives decreases as the 

network size increases. This figure can be explained by considering the fact the network 

size is staying the same while the number of compromised nodes performing the selective
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forwarding the attack increases. Since more nodes are not sending packets, this means 

the number of messages sent throughout the network is decreased.

90 -i
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Humber of Compromised Nodes in 20 Node Network

Figure 17. Average Number of False Positives Prevented in a 20 Node Network.

Figure 18 below shows the overhead associated with implementing the designed 

algorithm in a 20 node network with 2 compromised nodes. The packets represented by 

the blue shaded region are those sent by the sensors nodes during normal operation. The 

95% confidence interval calculated for these packets to be sent is 1382.33 +/- 27.28. The 

packets in the purple shaded area represent the communication involved with identifying 

compromised nodes. This including the ALERT messages sent to the base station, the 

base station requesting packet transmission time buffers, the response the suspected node 

sends back, and the broadcast messages sent by the base station identifying compromised 

nodes. The 95% confidence interval calculated for compromised nodes packets is 358.67 

+/- 34.79. The packets sent by the base station indicating valid nodes are represented in 

the yellow shaded area. The 95% confidence interval calculated with respect to these 

packets being sent is 84.67 +/- 6.82. There is a decrease in the number of packets
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associated with normal operation since the sensor nodes are event-driven, and it takes 

time to construct, process, and receive packets.

Overhead of frnplementing Algorithm
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Figure 18. Overhead of Implementing Algorithm in a 20 Node Network.
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VI. CONCLUSION AND FUTURE WORK

An algorithm for detecting compromised nodes in wireless sensor networks was 

designed and verified in this thesis. The anomaly-based intrusion detection technique 

was applied by utilizing the concept that a valid node of the network will follow an 

expected pattern of behavior. In other words, deviation from the norm is grounds for 

suspicion which allows a node participating in the network to identify intruders. Each 

sensor node was required to maintain a buffer that contained threshold values of packet 

arrival times for each node it considered a neighbor. If a neighbor’s packet fell outside of 

this desired range, the node would send an ALERT message to the base station informing 

it of the presence of a possible intruder.

Other implementations of this technique mandate that a node must acquire a 

preset number of messages before labeling a node as compromised. Before this point, the 

node in question is just a suspect. This is done to reach some sort of a consensus in the 

network regarding the identity of intruders so that the number of false positives is 

decreased. Once a malicious node has been deemed compromised, this information is 

then propagated to the rest of the network. In this thesis, the base station, a trusted entity 

in the network, performs the function of these other nodes, with good accuracy. By 

having the base station investigate all claims of compromised node through means of 

checking the packet transmission times buffer, there were no occurrences of 

misidentifying an uncompromised node. This is very important since false positives are 

prevalent in many anomaly-based intrusion detection systems. The information was also 

spread quickly since multiple nodes did not have reach the same conclusion before the 

decision was made.
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This thesis uses the event-driven characteristics of sensor networks to allow the 

base station to determine whether a node is compromised. Since the transmission of 

packets being sent is centered around a timer as well, each sensor node was instructed to 

keep a buffer pertaining to these packet transmission times. When the base station is 

alerted to claims of abnormal behavior, it verifies them by checking the expected 

difference in packet transmission times of the suspected node versus the actual 

difference.

While the simulator chosen was not the most ideal, it did enable the designed 

protocol to be tested for efficiency. The purpose of this thesis was to accurately detect 

the presence of compromised nodes running the selective forwarding attack in a timely 

manner. This was shown in the figures depicting the results of the simulations. The 

compromised nodes were identified by the other nodes of the network and verified by the 

base station in a reasonable amount of time. This was seen in larger network sizes with 

the same percentage of compromised nodes as well as in the same network size with 

different percentages of compromised nodes. The number of false positives that were 

prevented provides another indication of the importance of the base station.

Consequently, the base station itself was where the most improvement could be 

made. The TOSSIM simulator utilized in this thesis had many drawbacks that needed to 

be overcome to test the efficiency and accuracy of the designed algorithm. If there was a 

method provided to distinguish between the different types of nodes, mainly the base 

station and sensor nodes, this would have given a more realistic idea of the capability of 

this algorithm where the base station is concerned.
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APPENDIX

A. TinyViz code used for running TOSSIM

// $Id: TestTinyVizM.nc,v 1.2 2003/10/07 21:45:24 idgay Exp $

/*
* Copyright (c) 2003
* The President and Fellows o f  Harvard College.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions o f source code must retain the above copyright
* notice, this list o f  conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list o f  conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name o f the University nor the names o f  its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*

*  THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 

PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OR CONTRIBUTORS BE 

LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 

STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/

/* Author: Matt Welsh <mdw@eecs.harvard.edu>
* Last modified: 3 August 2003 
*/

/* *

* The TestTinyViz application simply sends random messages to demonstrate
* the debugging and visualization features o f  TinyViz.
* @author Matt Welsh <mdw@eecs.harvard.edu>
*/

module TestTinyVizM { 
provides { 

interface StdControl;
}
uses { 

interface Timer; 
interface Time;
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interface ReceiveMsg; 
interface SendMsg; 
interface Random; 
interface SysTime;

}
} implementation { 

enum {
M AXNEIGHBORS = 3,

};

uintl 6_t neighbors[MAX_NEIGHBORS];
TOS Msg beacon_packet;

uintl 6_t num nodes = 20; 
uintl 6_t timeinitial; 
uintl 6_t compromised = 0;

command resu ltt StdControl.init() { 
inti;
stract timeval tval; 
gettimeofday (&tval, NULL); 
tim einitial = localtime (&tval.tv_sec); 
tim einitial = tval.tvsec;

if  (((TOS LOCAL ADDRESS % 2) != 0) && (TOS LOCAL ADDRESS != 0)) 
{

compromised = 1;
}

i f  (TOS LOCAL ADDRESS !=0)
{
for (i = 0; i < MAX NEIGHBORS; i++)
{
neighbors[i] = ((TOS LOCAL ADDRESS + i + 1) % num nodes); 
if  (neighbors[i] = =0)  
neighbors[i] += MAX NEIGHBORS - i;

}
}
*((uintl6_t *)beacon_packet.data) = TOS LOCAL ADDRESS; 
return call Random.init();

}

command result t StdControl.start() { 
return call Timer.start(TIMER_REPEAT, 3000);

}
command result t StdControl.stop() { 

return call Timer.stop();
}

uintl 6_t packet_tr[5]; 
uintl 6_t packetcounter; 
uintl 6 t  trans_time_prev; 
uintl 6_t transtim ecurr; 
uint8_t compromisednow = 0; 
bool displayedcompromisedmsg;
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uintl 6_t num_compr_packets_sent = 0; 
uintl 6_t num_total_packets_sent = 0;

int alert_messages[50]; 
int a;
int alertadded; 
int alert_sent;

event result_t Timer.fired() { 
uintl6_tnbr; 
uintl6_t sendrand = -1; 
struct timeval tval; 
uintl 6_t timecurrent;

trans_time_curr+= 1;

gettimeofday (&tval, NULL); 
timecurrent = tval.tvsec;

i f  (TOS LOCAL ADDRESS =  0)
{
int alertnum;
for (a = 0; a < 50; a++)
{
alert_num = (alert_sent + a) % 50; 
if  (alert_messages[alert_num] > 0)
{
struct SecMsg *pack;
pack = (struct SecMsg *)beacon_packet.data; 
pack->messtype = 4;
pack->sourceMoteID = TO SLO CALADDRESS; 
pack->resentrequest = 1;
call SendMsg.send(alert_messages[alert_num], sizeof(struct SecMsg), &beacon_packet); 
dbg(DBG_USR3, "TestTinyVizM: Request for packet buffer from alert_messages[%d] = %d\n", 

alert_num, alert_messages[alert_num]); 
break;

}
}
if  ((time_current - time_initial) > 270)
{
dbg(DBG_USR3, "TestTinyVizM: time_current - time initial = %d\n", time_current - time_initial);

}
return SUCCESS;

}

i f  (compromised)
{
if  ((time current - time initial) > 360)
{
compromisednow = 1; 
if  (displayedcom prom isedm sg == FALSE)
{
dbg(DBG_USR3, "TestTinyVizM: Node %d now compromised \n", TOS LOCAL ADDRESS); 
displayedcom prom isedm sg = TRUE;

}
dbg(DBG_USR3, "TestTinyVizM: Compromised Node %d node might send message when time 

elapsed = %d\n", TOS LOCAL ADDRESS, time current - time initial);
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}
}

if  ((compromised_now != 1) || ((compromisednow = = 1) && ((call Random.rand() % 7) == 0)))
{
nbr = call Random.rand() % MAX NEIGHBORS;

if (neighbors[nbr] != Oxffff)
{
struct SecMsg *pack;

pack = (struct SecMsg *)beacon_packet.data; 
pack->messtype = 2;
pack->sourceMoteID = TO SLO CALADDRESS;

call SendMsg.send(neighbors[nbr], sizeof(struct SecMsg), &beacon_packet);
dbg(DBG_USR3, "TestTinyVizM: Node %d sending message to node %d\n",

TOS LOCAL ADDRESS, neighbors[nbr]);

if  (compromised) 
num_total_packets_sent += 1; 

if  (compromised now)
{
pack->compromisedpacket = 1; 
num_compr_packets_sent+= 1;
dbg(DBG_USR3, "TestTinyVizM: Compromised Node %d Sending packet to Node %d at time = 

%d\n", TO SLO C A LA D D R ESS, neighbors [nbr], timecurrent);
dbg(DBG_USR3, "TestTinyVizM: Compromised Node %d has sent %d total packets and %d 

compromised packets\n", TOS LOCAL ADDRESS, num_total_packets_sent, num_compr_packets_sent);
}

packet_tr[packet_counter] = trans_time_curr - trans_time_prev; 
trans_time_prev = transtim ecurr; 
packetcounter = (packet_counter + 1) % 5;

}
else
{
struct SecMsg *pack;
pack = (struct SecMsg *)beacon_packet.data; 
pack->messtype = 3;

pack->sourceMoteID = TO SLO CALADDRESS;
call SendMsg.send(TOS_BCAST_ADDR, sizeof(uintl6_t), &beacon_packet); 
dbg(DBG_USR3, "TestTinyVizM: Node %d sent Broadcast^", TOS LOCAL ADDRESS);

packet_tr[packet_counter] = trans_time_curr - trans_time_prev; 
trans_time_prev = trans_time_curr; 
packet_counter = (packet counter + 1) %5;

}
}
return SUCCESS;

event result t SendMsg.sendDone(TOS_MsgPtr msg, bool success) { 
dbg(DBG_USRl, "TestTinyVizM: Done sending, success=%d\n", success); 
return SUCCESS;

}
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uintl 6_t packetarrivaltim e;
uintl 6_t packetarrivaltim edifference;

struct timeval tv;

float num_buffer_pkts = 10.0;

typedef struct
{
int neighbored;
uintl 6_t last_pkt_arrival_time;
int total_pkts_added;
uintl 6_t highvalue;
int high_packet;
uintl 6_t low value;
int low_packet;
int questionedvalue;

} neighbor_buffer[MAX_NEIGHBORS]; 
neighborbuffer arrivaltimes;

int numneighbors = 0; 
int m = 0;
uintl 6_t compromised_nodes[MAX_NEIGHBORS * 2]; 
int j;
bool nodeaddrfound;
uintl 6_t compr_pack_found = 0;

event TOS MsgPtr ReceiveMsg.receive(TOS_MsgPtr recv_packet) { 
intn; 
intp;
uintl 6_t nodeaddr; 
struct SecMsg *pack;
pack = (struct SecMsg *)recv_packet->data;

nodeaddr = pack->sourceMoteID;

for (p = 0; p < m; p++)
{
if  (compromised_nodes[p] == nodeaddr)
{
dbg(DBG_USR3, "TestTinyVizM: Node %d is ignoring message rceived from COMPROMISED 

NODE %d\n", TOS LOCAL ADDRESS, nodeaddr); 
return recv_packet;

}
}

i f  (TOS LOCAL ADDRESS =  0)
{
if  (pack->messtype == 1)
{
bool alertfound; 
int alert_num;

dbg(DBG_USR3, "TestTinyVizM: Received Alert compromised node - %d message from %d\n", 
pack->messdetails[0], pack->sourceMoteID); 

for (a = 0; a < 50; a++)
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{
i f  (alert_messages[a] == pack->messdetails[0]) 

alertfound = TRUE;
}
if  (alertfound =  FALSE)
{
for (a = 0; a < 50; a++)
{
alert_num = (alert_added + a) % 50; 
i f  (alert_messages[alert_num] =  0)
{
alert_messages[alert_num] = pack->messdetails[0]; 
alertadded += 1;
dbg(DBG_USR3, "TestTinyVizM: alert_messages[%d] = %d\n", alertnum,

alert_messages[alert_num]); 
break;

}
}

}
pack->messtype = 4;
pack->sourceMoteID = TO SLO CALADDRESS;
call SendMsg.send(pack->messdetails[0], sizeof(struct SecMsg), recv_packet);
//dbg(DBG_USR3, "TestTinyVizM: Request for packet buffer from %d\n", pack->messdetails[0]);

}
if  (pack->messtype == 5)
{
intk;
int iscom prom ised = 0;

dbg(DBG_USR3, "TestTinyVizM: Received packet buffer from %d \n", pack->sourceMoteID);

if  (pack->resentrequest = = 1)  
alert_sent += 1;

for (a = 0; a < 50; a++)
{
if  (alert_messages[a] == pack->sourceMoteID)
{
dbg(DBG_USR3, "TestTinyVizM: Removed alert_messages[%d] = %d\n", a, alert_messages[a]);
alert_messages[a] = 0;
break;

}
}
for ( k = 2 ; k < 6; k++)
{
if  (pack->compromisedpacket == 1)
{
dbg(DBG_USR3, "TestTinyVizM: Received packet buffer [%d] = %d \n", k -1, pack- 

>messdetails[k-1 ]);
}
if  (pack->messdetails[k-l] !=pack->messdetails[k])
{
compromised_nodes[m] = nodeaddr; 
m = m + 1;
dbg(DBG_USR3, "TestTinyVizM: Received packet buffer [%d] = %d \n", k , pack- 

>messdetails[k]);
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dbg(DBG_USR3, "TestTinyVizM: Base Station has compromised_nodes[%d] = %d\n", m, 
compromised_nodes[m]); 

pack->messtype = 6;
pack->messdetails[0] = pack->sourceMoteID; 
pack->sourceMoteID = TO SLO CALADDRESS;
dbg(DBG USR3 'I************************************************** Sending 

broadcast message to all that %d IS COMPROMISED pack->messdetails[0]);
dbg(DBG_USR3, "number o f false alarms is %d\n", compr_pack_found); 
call SendMsg.send(TOS_BCAST_ADDR, sizeof(struct SecMsg), recv_packet); 
iscompromised = 1; 
break;

}
}
if  (is compromised == 0)
{
dbg(DBG_USR3, "%d is Not Compromised\n", pack->sourceMoteID); 
pack->messtype = 7;
pack->messdetails[0] = pack->sourceMoteID;
call SendMsg.send(pack->origsourcenode, sizeof(s1ruct SecMsg), recv_packet); 
compr_pack_found += 1;

}
}

}
else
{
if  (pack->messtype =  4)
{
intk;
pack->messtype = 5;
pack->sourceMoteID = TO SLO CALADDRESS; 
pack->messdetails[0]= 0; // CONTAINS FUNCTION VALUE 
for ( k = 0 ; k < 6; k++) 
pack->messdetails[k+l] = packet_tr[k];

call SendMsg.send(0x0, sizeof(struct SecMsg), recv_packet);
//dbg(DBG_USR3, "TestTinyVizM: pack->origsourcenode = %d\n", pack->origsourcenode); 
dbg(DBG_USR3, "TestTinyVizM: Sending packet buffer to base station from %d \n", 

TO SLO CALADDRESS); 
return recv_packet;

}
if  (pack->messtype == 6)
{
dbg(DBG_USR3, "TestTinyVizM: %d Received broadcast compromised node notification for %d\n", 

TO SLO C A LA D D R ESS, pack->messdetails[0]);

for O' = 0; j < MAX NEIGHBORS; j++)
{

if  (arrival_times[j].neighbored == pack->messdetails[0]) 
{
arrival_times[j].neighbor_id = Oxffff; 
arrival_times[j ] .last_pkt_arrival_time = Oxffff; 
arrival_times[j].total_pkts_added = Oxffff; 
arrival_times[j].high_value = Oxffff; 
arrival_times[j].low_value = Oxffff; 
compromised_nodes[m] = pack->messdetails[0]; 
numneighbors -= 1;
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dbg(DBG_USR3, "TestTinyVizM: Removed arrival_times[%d] from neighbor list since it is now 
compromised_nodes[%d] = %d\n", j, m, compromised_nodes[m]); 

m = m + 1;
}

}
return recv_packet;

}
if  (pack->messtype =  7)
{
dbg(DBG_USR3, "TestTinyVizM: %d Received message from base station that %d is not 

compromised\n", TOS LOCAL ADDRESS, pack->messdetails[0]);

for (j = 0; j < MAX NEIGHBORS; j++)
{

i f  (arrival_times[j].neighbor_id =  pack->messdetails[0])
{
if  (arrival_times[j].questioned_value > arrival_times[j].high_value)
{
arrival_times[j].high_value = arrival_times[j].questioned_value;

}
else
{
arrival_times[j].low_value = arrival_times[j].questioned_value;

}
arrival_times[j].total_pkts_added = arrival_times[j].total_pkts_added + 1;

}
}
return recv_packet;

}
if  (nodeaddr =  0)

return recv_packet;

dbg(DBG_USR3, "TestTinyVizM: Node %d received message from node %d\n",
TOS LOCAL ADDRESS, nodeaddr);

nodeaddrfound = FALSE; 
gettimeofday (&tv, NULL);

= packetarrivaltim e = tv.tvsec;

for O' = 0; j < MAX NEIGHBORS; j++)
{
if  (arrival_times[j].neighbor_id =  nodeaddr)
{
nodeaddrfound = TRUE;
packet arrival time difference = packet arrival time - arrival_times[j].last_pkt_arrival_time;

if  (arrival_times[j].total_pkts_added < num_buffer_pkts)
{
i f  (arrival_times[j].total_pkts_added =  0)
{
arrival_times[j].high_value = packet_arrival_time_difference; 
arrival_times[j].high_packet = 0;
arrival_times[j].low_value = packet_arrival_time_difference; 
arrival_times[j].lowjpacket = 0;

}
else if  (packet_arrival_time_difference > arrival_times[j].high_value)
{
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amval_times[j].high_value = packetarrivaltim edifference; 
arrival_times[j].high_packet = arrival_times[j].total_pkts_added + 1;

}
else if  (packetarrivaltim edifference < arrival_times[j].low_value)

{
arrival_times[j].low_value = packetarrivaltim edifference; 
arrival_times[j].low_packet = arrival_times[j].total_pkts_added + 1;

}

arrival_times[j].total_pkts_added = arrival_times[j].total_pkts_added + 1;

if  (arrival_times[j].total_pkts_added == num_buffer_pkts)
{
i f  ((arrival_times[j].neighbor id % 9) == 0)
{
dbg(DBG_USR3, "TestTinyVizM: %d Received message from %d so EQUAL packet 

numbers\n", TO SLO C A LA D D R ESS, nodeaddr);
}

}
}
else
{
if  (pack->compromisedpacket == 1)
{
dbg(DBG_USR3, "TestTinyVizM: %d Received message from %d LIMIT REACHED\n", 

TOS LOCAL ADDRESS, nodeaddr);
dbg(DBG_USR3, "TestTinyVizM: packetarrivaltim edifference = %d\n",

packetarrivaltim edifference);
dbg(DBG_USR3, "TestTinyVizM: high value = %d\n", arrival_times[j].high_value); 
dbg(DBG_USR3, "TestTinyVizM: low value = %d\n", arrival_times[j].low_value);

}
if  ((packetarrival time difference < arrival_times[j].low_value) ||
(packet_arrival_time_difference > arrival_times[j].high_value))
{
if  (pack->compromisedpacket = =1)
{
dbg(DBG_USR3, "TestTinyVizM: ***** COMPROMISED NODE %d suspected on 

TOS LOCAL ADDRESS = %d *****'', nodeaddr, TOS LOCAL ADDRESS);
}
pack->messtype = 1;
pack->sourceMoteID = TO SLO CALADDRESS; 
pack->origsourcenode = TOS_LOCAL_ADDRESS; 
pack->messdetails[0] = nodeaddr;

arrival_times[j].questioned_value = packetarrivaltim edifference;

dbg(DBG_USR3, "TestTinyVizM: %d Sending Alert message to base station regarding %d\n", 
TOS LOCAL ADDRESS, nodeaddr);

call SendMsg.send(0x0000, sizeof(struct SecMsg), recv_packet);
}

}
arrival_times[j].last_pkt_arrival_time = packetarrivaltim e;

}
}
if  ((nodeaddr fovmd =  FALSE) && (num neighbors < MAX NEIGHBORS))
{
arrival_times[num_neighbors].neighbor_id = nodeaddr;
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arrival_times[num_neighbors].last_pkt_arrival_time = packet_arrival_time; 
arrival_times[num_neighbors].total_pkts_added = 0; 
arrival times[num_neighbors].high_value = 0; 
arrival_times[num_neighbors].low_value = 0; 
num_neighbors += 1;

for (n = 0; n < MAX NEIGHBORS; n++) { 
i f  (neighbors[n] == Oxffff) { 

neighbors[n] = nodeaddr;
dbg(DBG_USR3, "TestTinyVizM: Node %d now conisders node %d a neighbor\n", 

TOS LOCAL ADDRESS, nodeaddr); 
break;

}
}

}

return recv_packet;
}

}
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