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ABSTRACT 

PARALLEL JACOBI TRANSFORMATION ALGORITHM FOR GENERALIZED EIGEN-SOLUTION WITH 
IMPROVED DAMAGE DETECTION OF TRUSS/BRIDGE-TYPE STRUCTURES 

Maryam Ehsaei 

Old Dominion University, 2019 

Director: Dr. Duc T. Nguyen 

 

 

Serial Jacobi transformation algorithm for the solution of “standard eigen-problems” is 

re-visited to facilitate the explanation of the proposed parallel transformation algorithm, for 

which computational efficiency can be realized in this study through “pattern recognition” for 

the development and explanation of “explicit formulas” to avoid costly matrix time matrix 

operations. The proposed parallel Jacobi transformation for the solution of “generalized eigen-

problems” has also been incorporated into the “improved damage detection” algorithm. 

Computational efficiency and robust behaviors for the entire proposed procedures (eigen-

solution, damage detection and damage quantification) can be validated through several 

academic and real-life numerical examples. Numerical results obtained from this study have 

indicated that our proposed generalized Jacobi transformation is more robust/reliable as 

compared to MATLAB eigen-solver. Furthermore, our proposed simple rule of thumb for damage 

detection of aging bridge structures also give better results than existing algorithms. 
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This thesis is dedicated to the proposition 

that the harder you work, the luckier you get. 
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NOMENCLATURE 

 

𝐾             Stiffness Matrix 

𝑀             Mass Matrix 

𝜆              Eigen-Value Matrix 

𝜙             Eigen-Vector Matrix 

𝑃i            Rotation or Transformation Matrix 

𝜔            Frequency Matrix  

𝐹̃𝐷           Flexibility Matrix 

𝐸𝑖
(𝑒)

        Strain Energy 

𝐾𝑅          Reduced Stiffness Matrix 

𝑀𝑅         Reduced Mass Matrix 

𝑑𝐿
(𝑒)

        Local element displacement 

𝑑𝐺
(𝑒)

        Global element displacement 

𝐸̅(𝑒)        Normalized Cumulative Energy 
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CHAPTER 1 

INTRODUCTION 

 

During the past decades, substantial research efforts have been devoted to the development of 

damage identification techniques for civil engineering structures with both simulation and 

experimental studies. Based on the comprehensive literature reviews [1–3], vibration-based 

damage identification (VBDI) approaches have been widely developed and become an important 

research topic in the fields of civil, mechanical and aerospace engineering. Model-based 

techniques, a class of VBDI approaches, can be utilized effectively for both damage localization 

and quantification. In the techniques, an analytical or a numerical model (e.g. finite element 

methods) is generally required to give eigen-solutions of the monitored structure. As a result, 

performing eigen analysis with computational efficiency becomes one of the important factors 

affecting the effectiveness of this kind of model-based techniques. 

 

For an undamped vibrating structure with N degrees-of-freedoms, the “generalized eigen-

problem” [4-8] can be described by the following equation: 

 

𝐾𝑁×𝑁𝜙 =  𝜆𝑀𝑁×𝑁𝜙                                                                                                      (1) 

 

For solving the above “generalized” eigen-problem, efficient solutions, such as Subspace Iteration 

[4, 7], Lanczos algorithms [4, 6-8] have been well documented in the literature. It should also be 
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mentioned that if the above NxN “Mass” matrix [M] becomes an Identity matrix [4], then the 

above “generalized” eigen-problem will be simplified to the “standard” eigen-problem: 

 

𝐾𝑁×𝑁𝜙 =  𝜆𝜙                                                                                                                  (2) 

 

In Eqs. (1-2), K, λ and 𝜙 represent the system “stiffness,” “eigen-values” and “eigen-vectors” 

matrices, respectively.  The Jacobi transformation/rotation family of algorithms [4-8] basically 

transforms the standard/generalized eigen-problem into diagonal matrix for easily computing all 

eigen-pairs. 

 

 

1.1 Literature Surveys 

 

Many researchers [4, 6-8] have considered the classical Jacobi rotation algorithm to transform 

the symmetrical, “standard eigen-problem” into diagonal matrix with all eigen-values appeared 

on its diagonal locations. Sameh and other researchers have extended the above classical (Jacobi 

rotation) procedure into “parallel Jacobi” algorithm [9] by simply demanding several (instead of 

only one) off-diagonal terms be driven to zero in each transformation. In Sameh’s prior work [9], 

however, all eigen-pairs of the “standard eigen-problem” need to be computed.  

 

Bathe and other researchers have incorporated the classical Jacobi transformation into the 

subspace iteration algorithm [4] so that only the first few (or all) eigen-pairs can be found for the 
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“generalized eigen-problem.” Using the subspace iteration algorithm, the “sparse” matrix 

operations can be easily exploited [4, 7, 10]. However, in Bathe’s prior works [4], only one (not 

multiple) off-diagonal term at a time can be driven to zero. 

 

 

1.2     Goals for This Study 

 

The goals and objectives for this work are not only to extend the capability of the “stand-alone, 

generalized eigen-solver” [as shown in Table 1], but also to incorporate the parallel generalized 

eigen-solver into practical (real-life) engineering applications such as structural health 

monitoring. In this present work, first, the Jacobi transformation algorithm is embedded inside 

the subspace iteration algorithm to calculate the generalized eigen-problem of the monitored 

structure.  

 

To provide the effective computational procedure, a parallel computing strategy based on the 

idea of making several off-diagonal terms to be simultaneously driven to zero is used for the 

Jacobi transformation algorithm, which is called parallel subspace iteration and Jacobi 

transformation (PSI-JT) algorithm. Then, the PSI-JT algorithm is incorporated into a two-phase 

damage identification method to improving the quality of damage assessment results in terms of 

the accurate solution and computational time.  
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Finally, 2-D and 3-D truss/bridge-type structures are presented to validate the superior 

performance of the proposed damage identification approach. 

 

 

Table 1.   Motivations/Objectives for This Research Work 

 
Standard 

Eigen-

Problem 

Generalized 

Eigen-

Problem 

Parallel 

Computation^^ 

All 

Eigen-

Pairs 

Few Lowest 

Eigen-Pairs 

Sparse Dense 

Sameh’s  

early works 

Yes No Yes Yes No No Yes 

K.J. Bathe’s  

early works 

Yes Yes No Yes Yes Some Yes 

This 

dissertatio

n/work 

Yes Yes Yes Yes Yes Yes Yes 

^^ Several (not just one) off-diagonal terms can be driven to zero in each 

transformation 

 

 

The remaining sections of this dissertation will be organized as follows. After the introduction 

section, the classical Jacobi transformation for the solution of the “generalized eigen-problem” 

is briefly reviewed in Section 2.1. Next, in Section 2.2, explicit formulas (based on observed 

pattern recognitions) for the triple products (matrix times matrix) operations are developed and 

explained. Parallel computing strategies are presented in Section 2.3, for which Sameh’s prior 

publications will be presented in a fashion such that the “explicit formulas” developed in Section 
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2.2 can be fully incorporated. Subspace iteration algorithm is summarized in Section 2.4, so that 

only “few lowest eigen-pairs” specified by the user can be computed for the “generalized eigen-

problem.” Section 2.4 also shows that the stand-alone “Jacobi transformation” algorithm 

(presented in Sections 2.2, and 2.3) are embedded inside the subspace iteration algorithm. In 

Section 2.5, the superior performance (in terms of reduction in wall-clock time) of the parallel 

PSI-JT algorithm is investigated by comparing to the well-established MATLAB built-in eigen-

solver such as the EIG function.  

 

Existing damage detection and damage quantification are discussed in Section 3.1 and 3.2, for 

which a “simple rule of thumb” is proposed in section 3.1 to improve the quality of damage 

detection in bridge structures. Additional several numerical examples are presented in Section 

3.3 to validate our claim for “improving the quality of damage detection” as compared to recently 

published algorithms. Finally, conclusion and future research works are highlighted in Section 4. 

 

 

1.3 Assumptions for This Study 

 

The following assumptions are made in this work: 

Assumption 1: Damage can be imposed on the structure by specifying the level of 

damage (in percentage) occurred in certain members (not occurred in certain 

joints). For example, if member #5 of a 2-D truss structure is damaged by 30 % (or 

0.30), then every term of the 4x4 element stiffness matrix of the damage member 
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#5 can be computed based on the original (undamage) member #5 element 

stiffness matrix, to be multiplied by the adjustment factor 0.70 ( = 1.00 – 0.30 ). 

Assumption 2: For practical applications, the few sensor-locations should be placed 

at certain optimal locations (or at certain optimal degree-of-freedoms). Only the 

frequencies and mode-shapes (or eigen-vectors) at these sensor-locations are 

measured, while the information on system stiffness and mass matrices of the 

damage structure are unavailable. Thus, in this work we have assumed that the L x 

L eigen-vectors of the damage structure at the sensor-locations can be converted 

(or transformed) into the “full” N x L eigen-vectors (where L << N) through any 

existing model reduction methods (such as Guyan reduction method, Dynamic 

reduction method, etc.), which utilize the available information on the original 

(undamage) system stiffness and mass matrices. 
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CHAPTER 2 

CLASSICAL JACOBI TRANSFORMATION AND THE GENERALIZED EIGEN PROBLEM 

 

In the well-documented (classical) Jacobi transformation method, the original “stiffness” matrix 

[K] and “mass” matrix [M] in Eq. (1) can be repeatedly transformed into diagonal matrices, [K*] 

and [M*] respectively, through the Jacobi transformation as shown in Eqs. (3-4) 

 

[𝐾𝑁×𝑁] [𝜙] = [𝜆] [𝑀𝑁×𝑁][𝜙];  K and M are symmetrical.                           (Eq. 1, repeated) 

 

𝐾∗ =  𝑃1
𝑇 𝐾 𝑃1                                                                                                                             (3)                

𝑀∗ =  𝑃1
𝑇 𝑀 𝑃1                                                                                                                            (4)   

 

and the rotation (or transformation) matrix [𝑃1] can be defined as:     

 

𝑃1
𝑇 = [

1 𝜃1 0 0
𝜃2 1 0 0
0
0

0
0

1
0

0
1

]                                                                                                                (5) 

 

In Eq. (5), we have assumed that the new off-diagonal terms for matrix 𝐾∗ at location (p, q) = (1, 

2) to be driven to zero through the transformation shown in Eqs. (3-4).  𝜃1 and 𝜃2 are the 2 

unknowns, which can be solved by applying the following equations: 
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𝐾12
∗ = 0, and 𝑀12

∗= 0                                                                                                                 (6) 

 

 

2.1.  A Review of Jacobi Transformation for The Solution of the “Generalized Eigen-Problem” 

 

The following derivation is valid, when k12 is intended to become zero.  For the general case, two 

unknowns should be placed in kij and kji locations. 

 

𝐾∗ =  𝑃1
𝑇 K 𝑃1                                                                                                                                      (7) 

    = [

1 𝜃1 0 0
𝜃2 1 0 0
0
0

0
0

1
0

0
1

] [

𝑘11 𝑘12 𝑘13 𝑘14
𝑘21 𝑘22 𝑘23 𝑘24
𝑘31
𝑘41

𝑘32
𝑘42

𝑘33
𝑘43

𝑘34
𝑘44

] [

1 𝜃2 0 0
𝜃1 1 0 0
0
0

0
0

1
0

0
1

]                                                        (8)   

                                                                                                     

[

𝑘11 + 𝑘12𝜃1 𝑘11𝜃2 + 𝑘12 𝑘13 𝑘14
𝑘21 + 𝑘22𝜃1 𝑘21𝜃2 + 𝑘22 𝑘23 𝑘24
𝑘31 + 𝑘32𝜃1
𝑘41 + 𝑘42𝜃1

𝑘31𝜃2 + 𝑘32
𝑘41𝜃2 + 𝑘42

𝑘33
𝑘43

𝑘34
𝑘44

] 

 

After performing the triple products shown in Eq. (8), 𝐾∗ is obtained as it is represented in 

equation (9). 

 

𝐾∗ =                                                                                                                                                               (9) 
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(𝒌𝟏𝟏 + 𝒌𝟏𝟐𝜽𝟏) 

+𝜽𝟏(𝒌𝟐𝟏 + 𝒌𝟐𝟐𝜽𝟏) 

(𝒌𝟏𝟏𝜽𝟐 + 𝒌𝟏𝟐) 

+𝜽𝟏(𝒌𝟐𝟏𝜽𝟐 + 𝒌𝟐𝟐) 
𝒌𝟏𝟑 + 𝜽𝟏𝒌𝟐𝟑 𝒌𝟏𝟒 + 𝜽𝟏𝒌𝟐𝟒 

𝑠𝑦𝑚. 
𝜃2(𝑘11𝜃2 + 𝑘12) 

+(𝑘21𝜃2 + 𝑘22) 
𝜃2 𝑘13 + 𝑘23 𝜃2𝑘14 + 𝑘24 

𝑠𝑦𝑚. 𝑠𝑦𝑚. 𝑘33  𝑘34  

𝑠𝑦𝑚. 𝑠𝑦𝑚. 𝑠𝑦𝑚. 𝑘44  

 

 

Thus, 𝐾∗1,2 = 0 =  (𝑘11𝜃2 + 𝑘12) +  𝜃1(𝑘21𝜃2 + 𝑘22)                                                                         (10) 

 

              𝑀∗
1,2 = 0 = (𝑀11𝜃2 +𝑀12) + 𝜃1(𝑀21𝜃2 +𝑀22)                                                       (11) 

 

From Eqs. (10) & (11): 

 

          𝜃1 = 
−(𝑘11𝜃2+𝑘12)

(𝑘21𝜃2+𝑘22)
    =   

−(𝑀11𝜃2+𝑀12)

(𝑀21𝜃2+𝑀22)
                                                                                    (12)           

 

Hence θ2 can be computed from equation (12), as shown in the following paragraph.     

 

From Eq. (12), one obtains: 

 

(𝑘11𝜃2 + 𝑘12) (𝑀21𝜃2 +𝑀22) = (𝑘21𝜃2 + 𝑘22) (𝑀11𝜃2 +𝑀12)                                                        (13) 
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𝑘11𝑀21𝜃2
2 + (𝑘11𝑀22+𝑘12𝑀21) 𝜃2 + (𝑘12𝑀22) = 𝑘21𝑀11𝜃2

2 +(𝑘21𝑀12+𝑘22𝑀11) 𝜃2 +

(𝑘22𝑀12)  

 

(𝑘11𝑀21 - 𝑘21𝑀11) 𝜃2
2 + (𝑘11𝑀22+𝑘12𝑀21 - 𝑘21𝑀12 - 𝑘22𝑀11) 𝜃2 + (𝑘12𝑀22 - 𝑘22𝑀12) = 

0                                                                                                                                                       (14) 

 

The above Eq. (14) can be expressed as: 

 

(𝐴1)𝜃2
2 + (𝐵1)𝜃2 + (𝐶1) = 0                                                                                                                   (15)                            

 

Hence, 

 

      𝜃2 = 
−𝐵1±√𝐵1

2−4𝐴1𝐶1

2𝐴1
                   (assuming A1 ≠ 0)                                                                     (16) 

 

In Eq. (16), if the denominator 𝐴1 = 0; then from (Eq. (15), one obtains: 

 

  𝜃2= -𝐶1 / 𝐵1                                                                                                                                                   (17) 

 

Finally, 𝜃1 can be found from Eq. (12) 

 

The sign in front of the SQRT of Eq. (16) will be based on the sign of 𝑘̅, defined as below.     
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𝑘̅ = 𝐵1 = (𝑘11𝑀22+𝑘12𝑀21 - 𝑘21𝑀12 - 𝑘22𝑀11)                                                                                   (18) 

 

After computing 𝜃2 [see Eq. (16), or Eq. (17)], and 𝜃1 [see Eq. (12)], matrix 𝑃1
𝑇 can be generated 

as shown below: 

 

𝑃1
𝑇 = [

1 𝜃1 0 0
𝜃2 1 0 0
0
0

0
0

1
0

0
1

]                                                                                                                            (19) 

 

In the following steps, “explicit formulas” for the modified / transformed matrix K* and M* 

should be developed (𝐾∗ =  𝑃1
𝑇  K 𝑃1, and M* = 𝑃1

𝑇 M 𝑃1). In the transformed matrix 𝐾∗ and 𝑀∗, 

it is assumed the selected off-diagonal terms (𝑘12 = 𝑘21, 𝑎𝑛𝑑 𝑚12 = 𝑚21) should be driven to 

zero. 

 

The above procedure will be repeated until all the off-diagonal terms become zero. Equation 20 

shows this procedure [4]. 

 

𝑃𝑁
𝑇…𝑃2

𝑇𝑃1
𝑇 K 𝑷𝟏𝑷𝟐…𝑷𝑵 = 𝐾∗                                                                                        (20) 

 

In Eq. (20), the matrix K* eventually becomes a diagonal (eigen-value) matrix, where N is the size 

of 𝐾𝑁×𝑁. Furthermore, Eigen-Vectors matrix can also be identified from Eq. (20) [4, 7]:     
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First 

Second 

Last 

 𝑷𝟏𝑷𝟐…𝑷𝑵 =𝜙                                                                                                                        (21) 

 

Based on Ref. [9], more than one off-diagonal terms can be driven to zero, which will also be 

adopted in this work. 

 

The most time-consuming part of the Jacobi Rotation procedure is the computation, which 

involves with repeated matrix times matrix operations.  

 

                                                            𝑃𝑁
𝑇 …  𝑃2

𝑇  𝑃1
𝑇  K  𝑃1  𝑃2 …  𝑃𝑁 

 

 

 

 

In this work, however, expensive matrix times matrix operations can be avoided by recognizing 

the pattern of “explicit formulas” for 𝑃𝑖+1
𝑇 𝐾 𝑃𝑖+1, which will be explained in greater details in 

the next section. 

 

 

2.2 Development of “Explicit Formulas” For Triple Matrix Times Matrix Operations 

 

We have observed that there are specific patterns in the result of 𝐾∗ =  𝑃1
𝑇  𝐾 𝑃1 [see Eq. (9)], 

which will be repeated in every step of the procedure. 
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First of all, it is observed that the changes in matrix K* (as compared to matrix K) only happens in 

the terms associated with the related rows and columns of matrix K (ith  row and jth column for 

the selected 𝐾𝑖𝑗, which will become zero, after the Jacobi transformation step 𝐾∗ =𝑃1
𝑇 𝐾 𝑃1 is 

completed). 

 

For better explanation, assuming that 𝐾12 [or 𝐾pq, where p=1, and q=2] is selected to become 

zero after the Jacobi transformation. For the pairs (p, q), it can be defined: 

• The “companion” row for “row p” is “row q,” and the “companion” row for “row q” is 

“row p.” 

• The “companion” column for “column p” is “column q,” and the “companion” column for 

“column q” is “column p.” 

 

Recalled Eqs. (7-8), 𝑃1 can be defined as: 

 

 𝑃1= [

1 𝜃2 0 0
𝜃1 1 0 0
0
0

0
0

1
0

0
1

]                                                                                                                               (22) 

 

𝑀𝑎𝑡𝑟𝑖𝑥 𝐾∗ can be computed as follows, based on Eqs. (3, 4, 9). 
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(𝒌𝟏𝟏 + 𝒌𝟏𝟐𝜽𝟏) 

+𝜽𝟏(𝒌𝟐𝟏 + 𝒌𝟐𝟐𝜽𝟏) 

(𝒌𝟏𝟏𝜽𝟐 + 𝒌𝟏𝟐) 

+𝜽𝟏(𝒌𝟐𝟏𝜽𝟐 + 𝒌𝟐𝟐) 
𝒌𝟏𝟑 + 𝜽𝟏𝒌𝟐𝟑 𝒌𝟏𝟒 + 𝜽𝟏𝒌𝟐𝟒 

𝑠𝑦𝑚. 
𝜃2(𝑘11𝜃2 + 𝑘12) 

+(𝑘21𝜃2 + 𝑘22) 
𝜃2 𝑘13 + 𝑘23 𝜃2𝑘14 + 𝑘24 

𝑠𝑦𝑚. 𝑠𝑦𝑚. 𝑘33  𝑘34  

𝑠𝑦𝑚. 𝑠𝑦𝑚. 𝑠𝑦𝑚. 𝑘44  

 

 

In general, it has been observed that the transformation of all the components of 𝐾 matrix, can 

be categorized in 3 different types. In other words, each of the components of matrix 𝐾 will be 

transformed based on one of these three types.  

 

These three types or categories are observed to be dependent on the location of the component 

in the transformed matrix 𝐾ij
∗ as shown in Eq. (9). It is also observed that the developed formula 

is independent of the location of selected 𝐾𝑖𝑗 (selected component to become zero). The 

“explicit” formulas for each term 𝐾ij
∗ can be developed based on the observed patterns, as 

described in the following paragraphs.  

 

1. Type 1:  All 𝐾𝑖𝑗 terms, which none of the indexes are either p=1 or q=2 (such as 𝐾33, 𝐾34 and 

𝐾44). In other words, all terms  𝐾ij
∗ for which i ≠ p, q, and j ≠  q, p 
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These (type 1) terms will not change after the triple product matrix multiplications (𝐾∗ =  𝑃1
𝑇 K 

𝑃1) and their values remain the same. 

 

2. Type 2:  All 𝐾𝑖𝑗 terms, which only one of the indexes are either p=1 or q=2 (such as 𝐾13, 𝐾14, 

𝐾23, and 𝐾24). In other words, all terms 𝐾ij
∗  for which i = either p, or q and j ≠ p and j ≠  q. 

These 𝐾ij
∗ terms can be computed based on the following “explicit” formula: 

 

𝐾ij
∗   = 𝐾𝑖𝑗 +𝜃m * K (“companion” row for “row i,” j)                                                                        (23) 

 

The subscript m of 𝜃 can be found by looking at the “companion” row for “row i” of the rotation 

matrix 𝑃1. Based on the “explicit” formula shown in Eq. (23), we can compute: 

 

𝐾13
∗    = 𝐾13 + 𝜃m * K (“companion” row for “row 1,” 3) 

 

𝐾13
∗    = 𝐾13 + 𝜃m* 𝐾23                                                                                                                           (24) 

 

Where the subscript m of 𝜃 can be found by looking at the “companion” row for “row i = 1” of 

the rotation matrix 𝑃1. In this case, “companion” row for “row i = 1” is row 2 (by referring to p=1 

and q=2). Thus, by looking at row 2 of matrix 𝑃1, it can be easily identified that 𝜃m = 𝜃1. Hence,   
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𝐾13
∗     = 𝐾13 + 𝜃1* 𝐾23                                                                                                                           (25) 

   

Similarly, we can compute: 

 

𝐾24
∗ = 𝐾24 + 𝜃m * K (“companion” row for “row 2,” 4) 

 

𝐾24
∗= 𝐾24 + 𝜃m* 𝐾14                                                                                                                              (26) 

 

where the subscript m of 𝜃 can be found by looking at the “companion” row for “row i = 2” of 

the rotation matrix 𝑃1. In this case, “companion” row for “row i = 2” is row 1. Thus, by looking at 

row 1 of matrix 𝑃1, it can be easily identified that 𝜃m= 𝜃2. Hence,  

 

𝐾24
∗  = 𝐾24 + 𝜃2 * 𝐾14                                                                                                                           (27) 

 

3. Type 3:  All 𝐾𝑖𝑗 terms, for which both indices are either p=1 or q=2 (such as 𝐾11, 𝐾12 and 𝐾22). 

In other words, all terms 𝐾ij
∗ for which i = either p, or q and j = either p, or q. 

These 𝐾ij
∗ terms can be computed based on the following 2 steps: 
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Step 3.1: In this step, the “exact, same” procedure as explained in Type 2 is followed. For 

example, 

 

𝐾12
∗ = 𝐾12 + 𝜃m * K (“companion” row for “row 1,”2) 

   

𝐾12
∗ = 𝐾12^^ + 𝜃m * 𝐾22^^                                                                                                                  (28) 

                      

Then, referring to row 2 of matrix 𝑃1, the proper subscript m for theta is obtained, hence 

 

𝐾12
∗  = 𝐾12^^ + 𝜃1 * 𝐾22^^                                                                                                                  (29) 

 

Step 3.2: In this step 𝐾12^^, shown in Eq. (29), is replaced by the following formulas: 

 

𝐾12^^ = 𝐾12 + 𝜃r * K (1, ”companion” column for “column 2”)                                                   (30) 

 

𝐾12^^ = 𝐾12+ 𝜃r * 𝐾11 

 

where, the subscript “r” of 𝜃 can be obtained by referring to column 1 of matrix 𝑃1
𝑇. Thus, 
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𝐾12^^ = 𝐾12 + 𝜃2 * 𝐾11                                                                                                                       (31) 

 

Similarly, Replacing K (2,2)^^, shown in Eq. (29), by the following formulas: 

 

𝐾22^^ = 𝐾22+ 𝜃s * K (2, “companion” column for “column 2”)                                                    (32) 

 

𝐾22^^ = 𝐾22+ 𝜃s * 𝐾21                                                                                                                         (33) 

 

where, the subscript “s” of 𝜃 can be obtained by referring to column 1 of matrix 𝑃1
𝑇. 

Thus: 

 

𝐾22^^ = 𝐾22+ 𝜃2* 𝐾21                                                                                                                         (34) 

  

Finally, substituting Eqs. (31, 34) into Eq. (29), one obtains 

 

𝐾12
∗ = { 𝐾12+ 𝜃2* 𝐾11 }  +  𝜃1 * { 𝐾22+ 𝜃2 * 𝐾21 }                                                                           (35) 

 

Similar procedures can be used to compute 𝐾11
∗, and 𝐾22

∗ for these type 3 terms of matrix [K*]. 
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2.3 Parallel Computing Strategies for Jacobi Transformation Algorithm 

 

Sameh presented an algorithm [9] that can zero-out several off-diagonal terms (row “p,” column 

“q”) simultaneously, for the “Standard NxN Eigen-Problem.” This idea can also be applied for the 

“Generalized NxN Eigen-Problem,” where p and q are sequences defined by Sameh [9], in which 

p & q can be swapped, so that p is less than q. The complete algorithm (to systematically identify 

all the off-diagonal locations (p, q) of matrix [K]) driven by Sameh is presented in his early work 

in detail [9] and can be conveniently summarized here, as follows: 

 

a) For k = 1, 2, …, m-1 [where m = n / 2; and k = step #] 

q = m – k + 1, m – k + 2, … , n – k,                          

p = (2m – 2k + 1) – q,    if                  m – k + 1 ≤ q ≤ 2m – 2k 

p = (4m – 2k) – q,          if                   2m – 2k < q  ≤ 2m – k - 1 

p = n,                               if                   2m – k – 1 < q 

 

b) For k = m, m+1, … , 2m-1 

q = 4m – n - k, 4m – n - k + 1, … , 3m – k – 1,                          

p = n,                              if                     q < 2m – k + 1 

p = (4m – 2k) – q,         if                    2m – k + 1 ≤ q  ≤ 4m – 2k - 1 

p = (6m – 2k – 1) - q,   if                     4m – 2k – 1 < q 
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Example 1: For a 4x4 matrix [K]; n = 4; k = step # = 1, 2, …., n-1 = 3;  

For each step m = n/2 = 2 off-diagonal terms are simultaneously driven to zero. Applying the 

above algorithm, the following steps are produced:  

• step #1: (p, q) = (1,2) & (3,4)  

• step #2: (p, q) = (2,4) & (1,3) 

• step #3: (p, q) = (1,4) & (2,3) 

 

Example 2: For a 6x6 matrix [K]; n = 6; k = step # = 1, 2, …., n-1 = 5 F 

or each step m = n/2 = 3 off-diagonal terms are simultaneously driven to zero. Applying the above 

algorithm the pairs are as below: 

• step #1: (p, q) = (2,3), (1,4) & (5,6) 

• step #2: (p, q) = (1,2), (3,5) & (4,6) 

• step #3: (p, q) = (3,6), (2,4) & (1,5) 

• step #4: (p, q) = (2,6), (1,3) & (4,5) 

• step #5: (p, q) = (1,6), (2,5) & (3,4) 

 

Extension of Ref. [9] for Parallel Jacobi Transformation of “Generalized Eigen-Problems” is 

described in the following part of this section. 

 

The generalized eigen-equations, see Eq. (1), can be re-stated as 
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[𝐾𝑁×𝑁] [𝜙] = [𝜆] [𝑀𝑁×𝑁][𝜙]                                                                                                            (36) 

 

In eq (36), 𝐾 is a Symmetrical Positive Definite (SPD) “stiffness” matrix. 

 

𝐾∗ =  𝑃1
𝑇 𝐾 𝑃1                                                                                                                 (3, repeated) 

 

𝑀∗ =  𝑃1
𝑇 𝑀 𝑃1                                                                                                                (4, repeated) 

 

Assuming the off-diagonal terms of matrix K* and M*, at locations (p, q) = (1, 2) & (p, q) = (3, 4), 

are intended to be driven to zero. Thus,    

   

𝑃1
𝑇 = [

1 𝜃1 0 0
𝜃2 1 0 0
0
0

0
0

1
𝜃4

𝜃3
1

]                                                                                                                     (37)  

              

The 4 unknowns 𝜃1, 𝜃2, 𝜃3 and 𝜃4 can be solved by employing 4 associated equations 𝐾12
∗  = 0 = 

𝐾34
∗ = 𝑀12

∗= 𝑀34
∗, and using similar “explicit formulas” developed in Section 2.1 of this 

dissertation. 

 

 

2.4 Subspace Iteration 
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Subspace Iteration and Lanczos Algorithms [4-8] have been used extensively in the engineering 

communities for solving the generalized eigen-problem 

 

𝐾𝑁×𝑁𝜙 =  𝜆𝑀𝑁×𝑁𝜙                                                                                                    (36, repeated) 

 

The details of “Subspace Iteration” algorithm is presented in the following step-by-step 

procedure: 

 

Step 1:  Guess [𝑋𝑘]𝑁×𝐿 , where L≪ N  and L ≈ (2 to 4) × (# lowest Eigen Pairs desired) 

 

Step 2:  The following equation is developed 

 

[K] 𝑋̅𝑘+1 = [M] 𝑋𝑘                                                                                                                  (38)       

 

The unknown, [𝑋̅𝑘+1], can be solved by sparse equation solver [6-8, 10], where K and M are sparse 

(SPD = Symmetric Positive Definite) matrices. 

 

Step 3:  Reduced problem is created in this step by applying the result from previous step to 

original stiffness and mass matrices. The following “reduced” stiffness and “reduced” mass 

matrices are obtained: 
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  [𝐾𝑅𝑒𝑑𝑢𝑐𝑒] 
𝐿×𝐿

 = [𝑋̅𝑘+1
𝑇 ] 

𝐿×𝑁
 [𝐾] 𝑁×𝑁 [𝑋̅𝑘+1] 

𝑁×𝐿
                                                                            (39)    

    

  [𝑀𝑅𝑒𝑑𝑢𝑐𝑒] 
𝐿×𝐿

 = [𝑋̅𝑘+1
𝑇 ] 

𝐿×𝑁
 [𝑀] 𝑁×𝑁 [𝑋̅𝑘+1] 

𝑁×𝐿
 

 

Step 4:  Solve for all eigen-pairs of the Generalized (Dense) Reduced Eigen-Problem [see Jacobi 

transformation with explicit formulas in Section 2.2]: 

 

   [𝐾𝑅] 𝐿×𝐿[𝐸_𝑉𝑒𝑐𝑡𝑜𝑟𝑠] 𝐿×𝐿 = [𝐸_Values] 𝐿×𝐿 [𝑀𝑅] 𝐿×𝐿 [𝐸_𝑉𝑒𝑐𝑡𝑜𝑟𝑠] 𝐿×𝐿                                   (40) 

 

Step 5:  In this step the guessed (eigen-vector) matrix [X] is being update using equation (41).    

  

   [𝑋𝑘+1]𝑁×𝐿 = [𝑋̅𝑘+1] 
𝑁×𝐿

 × [𝐸_𝑉𝑒𝑐𝑡𝑜𝑟𝑠] 𝐿×𝐿                                                                                (41) 

 

If the algorithm converges, then the subspace iteration process stops, if the algorithm is not 

converged, then, returns to Step 2, and replaces Xk by Xk+1. This procedure will continue until 

the convergence achieved [4]. 

 

 

2.5 Numerical Examples for Subspace Iteration with Jacobi Rotation (PSI-JT) for Eigen-Problems 
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In this section, several illustrative test examples are used to evaluate the performance of the 

proposed PSI-JT algorithm, in both MATLAB sequential and parallel computing environments. The 

results for eigen-solutions, and wall-clock time are reported in Tables 2-5. 

 

All the examples are real world eigen value problems, which shows the PSI-JT algorithm super 

performance in comparison with MATLAB built-in function. 

 

 

Table 2. 2003 x 2003 Size Fluid Flow eig Solution Time and Solution Accuracy 

Requested 

Eigenvalue 

PSI-JT algorithm MATLAB “eig” 

2 2.449043 

(9 subspace iteration) 

2.458226 

(9 subspace iteration) 

4 2.742210 

(8 subspace iteration) 

2.454659 

(8 subspace iteration) 

10 6.689142 

(8 subspace iteration) 
Not converged 

27 102.968629 

(8 subspace iteration) 
Not converged 

63 2027.442472 

(7 subspace iteration) 
Not converged 
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Table 3. 1086 x 1086 Size Buckling of Hot Washer eig Solution Time and Solution Accuracy 

Requested 

Eigenvalue 

PSI-JT algorithm MATLAB “eig” 

2 1.916372 

(9 subspace iteration) 

1.650959 

(27 subspace iteration) 

4 2.348291 

(11 subspace iteration) 

1.449550 

(20 subspace iteration) 

10 5.795341 

(8 subspace iteration) 

Not converged  

27 98.628914 

(8 subspace iteration) 

Not converged 

63 2016.937281 

(7subspaceiteration) 

Not converged 

 

 

Table 4. 420 x 420 Size Lumped Mass eig Solution Time and Solution Accuracy 

Requested 

Eigenvalue 

PSI-JT algorithm MATLAB “eig” 

2 0.199795  

(9 subspace iteration) 

0.092030 

(11 subspace iteration) 

4 0.376640 

(7 subspace iteration) 

0.091801 

(7 subspace iteration) 

10 4.459468 

(7 subspace iteration) 

Not converged  

20 1405.341492 

(7 subspace iteration) 

Not converged 
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Table 5. 153 x 153 Size Transmission Tower eig Solution Time and Solution Accuracy 

Requested 

Eigenvalue 

PSI-JT algorithm MATLAB “eig” 

2 0.078787  

(4 subspace iteration) 

0.010875 

(4 subspace iteration) 

4 0.316909 

(7 subspace iteration) 

0.020544 

(9 subspace iteration) 

10 3.417312 

(8 subspace iteration) 

Not converged  

20 30.654872 

(7 subspace iteration) 

Not converged 

27 1602.563036 

(8 subspace iteration) 

Not converged 

28 2690.135469 

(8 subspace iteration) 

Not converged 

 

 

To follow, a different number of eigen-pairs for a specific problem is requested. The parallel 

performance and time comparison for this example using different number of processors are 

represented in Tables 6-9. This example is a real-world fluid flow eigen-value problem, in which 

the stiffness matrix is a module of an offshore platform [Refs. 23]. The stiffness matrix has exactly 

3948 rows and 3948 columns. It is a sparse, symmetric positive definite matrix that is a structural 

full rank matrix. A high number of components makes it time consuming for non-parallel 

algorithms to solve and order the eigen-pairs of such matrix. However, by using the proposed 

algorithm a few numbers of eigen-pairs can be found in a reasonable amount of time.  
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Table 6. Fluid Flow Generalized Eigenvalues, Symmetric Stiffness Matrix, First 66 Eigen-Pairs 

Requested 

Eigenvalue 

Entire 

subspace 

iteration 1 

processor 

(sec) 

1 processor 

time (sec) 

Entire 

subspace 

iteration 2 

processors 

(sec) 

2 

processor 

time (sec) 

Entire 

subspace 

iteration 3 

processors 

(sec) 

3 

processors 

time (sec) 

Entire 

subspace 

iteration 4 

processors 

(sec) 

4 

processors 

time (sec) 

66 896.455950 
1102.822512 
1261.487762 
895.840537 
590.352192 
422.939290 

895.378442 
1101.811450 
1260.467557 
894.852254 
589.355626 
421.939288 

603.305860 
730.748058 
856.724612 
608.52093 
389.60349 
280.34919 

602.345941 
729.745724 
855.684254 
607.505687 
388.605737 
279.365551 

599.162143 
725.859754 
815.686974 
591.797457 
386.427996 
281.492801 

598.197305 
724.858474 
814.699774 
590.830891 
385.435389 
280.537490 

542.307915 
667.134515 
763.602743 
541.680371 
350.564300 
254.537911 

541.302544 
666.160063 
762.586148 
540.677359 
349.563550 
253.554994 

Average 861.6497 860.6341 578.2087 577.2088 566.7379 565.7599 519.9713 518.9741 
Speed 

Ratio 

 
1  

1.491027 
 

1.5212 
 

1.658337 

Efficiency  
100%  

74.5% 
 

50.7% 
 

41.4% 

 

 

Table 7.  Fluid Flow Generalized Eigenvalues, Symmetric Stiffness Matrix, First 77 Eigen-Pairs 

Requested 

Eigenvalue 
Entire 

subspace 

iteration 1 

processor 

(sec) 

1 processor 

time (sec) 
Entire 

subspace 

iteration 2 

processors 

(sec) 

2 

processor 

time (sec) 

Entire 

subspace 

iteration 3 

processors 

(sec) 

3 

processors 

time (sec) 

Entire 

subspace 

iteration 4 

processors 

(sec) 

4 

processors 

time (sec) 

77 831.959080 
1051.925227 
1048.577007 
743.936809 
523.077149 
436.999096 
393.059580 

830.658220 
1050.620045 
1047.274977 
742.619260 
521.780760 
435.712405 
391.798155 

713.884270 
880.492157 
865.129932 
607.147950 
426.449668 
348.092683 
334.649933 

712.550378 
879.018793 
863.853816 
605.873926 
425.161826 
346.781326 
333.348337 

681.975138 
817.823681 
863.766488 
617.980968 
415.184607 
343.967879 
309.103373 

680.613784 
816.488608 
862.427766 
616.640425 
413.828006 
342.706388 
307.825279 

606.455958 
752.659846 
770.183558 
550.739695 
390.863231 
326.716534 
293.608608 

605.202129 
751.401258 
768.925017 
549.483642 
389.598018 
325.461272 
292.369932 

Average 718.5048 717.2091 596.5495 595.2269 578.5432 577.2186 527.3182 526.063 
Speed Ratio  

1  
1.204934 

 
1.242526 

 
1.363352 

Efficiency  
100%  

60% 
 

41.4% 
 

34% 
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Table 8.  Fluid Flow Generalized Eigenvalues, Symmetric Stiffness Matrix, First 100 Eigen-Pairs 

Requested 

Eigenvalue 
Entire 

subspace 

iteration 1 

processor 

(sec) 

1 processor 

time (sec) 
Entire 

subspace 

iteration 2 

processors 

(sec) 

2 processor 

time (sec) 
Entire 

subspace 

iteration 3 

processors 

(sec) 

3 processors 

time (sec) 
Entire 

subspace 

iteration 4 

processors 

(sec) 

4 processors 

time (sec) 

100 1789.793154 
2187.909222 
2011.821475 
1751.386294 
1235.837517 
982.869197 
805.975200 

1788.015892 
2186.397163 
2010.273289 
1749.809894 
1234.150799 
981.286765 
804.441556 

1183.647068 
1482.387773 
1363.752152 
1144.917301 
801.335118 
631.880441 
517.550627 

1182.113589 
1480.840859 
1362.213095 
1143.397802 
799.791688 
630.311019 
515.988933 

1089.22413 
1304.322926 
1320.355531 
1056.207567 
840.833167 
679.717967 
571.278204 

1087.59278 
1302.711819 
1318.70554 
1054.589811 
839.214997 
678.119807 
569.617665 

1057.477909 
1346.470352 
1222.838462 
1066.126696 
758.246017 
586.747670 
485.437057 

1055.889081 
1344.894885 
1221.248836 
1064.553007 
756.671522 
585.171944 
483.870980 

Average 1537.942 1536.339 1017.924 1016.38 980.2771 978.6503 931.9063 930.3286 
Speed Ratio  

1  
1.51158 

 
1.569855 

 
1.651394 

Efficiency  
100%  

75% 
 

52% 
 

41% 

 

 

Table 9.  Fluid Flow Generalized Eigenvalues, Symmetric Stiffness Matrix, First 130 Eigen-Pairs 

Requested 

Eigenvalue 
Entire 

subspace 

iteration 1 

processor 

(sec) 

1 processor 

time (sec) 
Entire 

subspace 

iteration 2 

processors 

(sec) 

2 processor 

time (sec) 
Entire 

subspace 

iteration 3 

processors 

(sec) 

3 processors 

time (sec) 
Entire 

subspace 

iteration 4 

processors 

(sec) 

4 processors 

time (sec) 

130 4674.504531 

5317.978785 

5758.926719 

4693.046095 

3862.506603 

3195.744506 

2561.290700 

2349.782457 

2138.589593 

4672.470960 

5315.944539 

5756.906390 

4691.039332 

3860.490993 

3193.679225 

2559.251701 

2347.762727 

2136.548267 

2914.733795 

3324.582042 

3607.435549 

2946.655990 

2458.863334 

2019.590105 

1633.518384 

1482.917552 

1360.015090 

2912.711002 

3322.546426 

3605.413389 

2944.637561 

2456.850108 

2017.597980 

1631.485206 

1480.925914 

1358.008694 

2798.485735 

3211.935270 

3525.006478 

2912.528066 

2474.853233 

2006.354640 

1656.405730 

1519.861581 

1359.840351 

2796.439071 

3209.894113 

3522.958084 

2910.519497 

2472.807510 

2004.329649 

1654.390045 

1517.850097 

1357.800250 

2694.347694 

3022.486226 

3302.339200 

2711.994936 

2289.757198 

1869.879441 

1523.149886 

1373.881566 

1276.555119 

2692.321249 

3020.435974 

3300.250400 

2709.959192 

2287.742729 

1867.833520 

1521.121354 

1371.864847 

1274.509227 

Average 3839.152 3837.122 2416.479 2414.464 2385.03 2382.999 2229.377 2227.338 
Speed 

Ratio 

 
1  

1.589223 
 

1.610207 
 

1.722739 

Efficiency  
100%  

79.5% 
 

53.6% 
 

43% 
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CHAPTER 3 

EXISTING DAMAGE DETECTION AND NEW/PROPOSED ALGORITHMS 

 

Damage detection in structures, specifically bridge type structures, is an important subject. Due 

to its important application in real world problems, this topic attracts a lot of old and new scholars 

to research on this topic. A lot of researchers have investigated damage detection or health 

monitoring problems and presented methods [11-18].  

 

In this chapter, a two-phase method is presented for damage detection using a “simple rule of 

thumb” for structural damage detection and quantification. The merit of the present two-phase 

method over other exiting two-phase methods [13,14] is that a simple but efficient “rule of 

thumb” is proposed for the improvement in damage detection, together with the parallel PSI-JT 

algorithm that is incorporated to effectively compute for the generalized eigen-problem. 

 

 

 

Figure 1.  A 6-Node, 11-Member Two-Dimensional Truss Structure 
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To illustrate damage localization and quantification process of the two-phase method, an 

example of a 2-D Truss/Bridge Structure, shown in Figure 1, is used herein. In Figure 1, the lengths 

of each member, the cross-sectional area of each member, the material density and Youngs 

modulus are user’s input parameters. In general, the Finite Element Method (FEM) will be based 

on the type of structure we wish to analyze. This illustrative example is based on a 2-D 

Truss/Bridge type structure. Using FEM, a structure can be analyzed under (a) undamaged 

(original) condition, and (b) damaged condition. 

 

Once the frequencies (related to eigen-values) & mode-shapes (eigen-vectors) of the damage 

structure is measured (via optimal locations of sensors), the proposed method can robustly 

detect the “location (Phase ½) and the severity (Phase 2/2)” of damage members. The step-by-

step numerical procedures of this two-phase method can be summarized in the following 

sections. 

 

 

3.1.   Phase 1/2: Detect/Identify Damage Members 

 

Step 1.0 Finite Element Analysis of “Original” (Undamage) Structure 

In this step, first the element stiffness [𝑘𝐿
(𝑒)] matrices, and the element diagonal/lumped mass 

[𝑚𝐿
(𝑒)] matrices are computed.  
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Then, the global stiffness [𝐾] = ∑[𝑘𝐺
(𝑒)] matrix, and the global [𝑀] = ∑[𝑚𝐺

(𝑒)] diagonal/ lumped 

mass matrix is assembled. Using MATLAB command equation (42) is driven.   

             

[𝜙, 𝜆] = 𝐸𝐼𝐺(𝐾𝑏𝑐 ,𝑀𝑏𝑐)                                                                                                                         (42) 

 

Then, the Eigen Values ([𝜆] and frequencies, 𝜔𝑖) can be obtained, and the corresponding Eigen 

Vectors (mode-shapes 𝜙𝑖) can be identified through the matrix [𝜙].  MATLAB “EIG” command 

will solve the “generalized” eigen-equation:    

   

[𝐾𝑏𝑐]𝜙𝑖
∗ =  𝜔𝑖

2[𝑀𝑏𝑐] 𝜙𝑖
∗                                                                                                                          (43) 

 

Next, the mass-orthonormalized scalar of each eigen vector is computed. 

 

{𝜙𝑖
∗}𝑇[𝑀𝑏𝑐]{𝜙𝑖

∗} = scalar = 𝑐𝑖                                                                                                                  (44) 

 

{𝜙𝑖} =  
{𝜙𝑖

∗}

√𝑐𝑖
                                                                                                                                               (45) 

 

Thus,  

𝐹𝑈𝐷̃ = 𝐹𝑈𝑛𝐷𝑎𝑚𝑎𝑔𝑒𝑑̃ =∑
1

𝜔𝑖

𝑁𝐿𝑀
𝑖=1  𝜙𝑖  𝜙𝑖

𝑇; where NLM = Number of Lowest Modes           (46) 
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Step 2.0 (very similar to Step 1.0) 

Using FEM, the associated damaged structure is also analyzed. In real life structure, the 

measurements of frequencies & mode shapes would come from sensors installed on the 

structure at key locations. For our example, “artificial damage” is applied to elements #1, #5 and 

#10 of the mentioned example [see Figure 1], with stiffness reduction of 80%, 70% and 90% for 

those 3 elements, respectively. 

In this step, it would be desirable to compute the element stiffness matrices  [𝑘𝐿
(𝑒)] with damage 

members. However, the element mass [𝑚𝐿
(𝑒)] diagonal matrices with no damage applied is 

required to be used.  

Next, the global damaged stiffness [𝐾] = ∑[𝑘𝐺
(𝑒)], and the global [𝑀] = ∑[𝑚𝐺

(𝑒)] diagonal 

lumped mass matrices are assembled respectively. Then, boundary conditions are applied on the 

system’s stiffness and mass matrices [𝐾𝑏𝑐] and [𝑀𝑏𝑐], respectively. Using the MATLAB command 

represents in equation (47) the eigen pairs are obtained. 

 

 [𝜙, 𝜆] = 𝐸𝐼𝐺(𝐾𝑏𝑐 , 𝑀𝑏𝑐)                                                                                                                      (47) 

 

Then, the Eigen Values ([𝜆] and frequencies 𝜔𝑖) is obtained. The corresponding Eigen Vectors 

(mode- shapes 𝜑𝑖) can be identified by the matrix [𝜙]. MATLAB command EIG will solve the 

“generalized” eigen-equation represented in eq (48). 
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[𝐾𝑏𝑐 ]𝐷𝜙𝑖
∗ =  𝜔𝑖

2[𝑀𝑏𝑐] 𝜙𝑖
∗                                                                                                                   (48) 

 

Remarks: After obtaining the eigen-solution for damage structure, it is pretended that the 

damage members and their severities are unknown. 

Then, the Mass-Orthonormalized scalar of each eigen vector is computed. 

 

{𝜙𝑖
∗}𝑇[𝑀𝑏𝑐]{𝜙𝑖

∗} = scalar = 𝑐𝑖                                                                                                               (49) 

{𝜙𝑖} =  
{𝜙𝑖

∗}

√𝑐𝑖
  Thus,                                                                                                                                 (50) 

𝐹̃𝐷 = 𝐹̃𝐷𝑎𝑚𝑎𝑔𝑒𝑑 = ∑
1

𝜔𝑖
2

𝑁𝐿𝑀
𝑖=1  𝜙𝑖  𝜙𝑖

𝑇                                                                                                       (51) 

𝐹̃𝛥 = 𝐹̃𝑈𝐷 - 𝐹̃𝐷                                                                                                                               (52) 

[𝑈, 𝑆, 𝑉] = 𝑆𝑉𝐷(𝐹𝛥̃)                                                                                                                   (53) 

 

Then by using MATLAB “SVD” command, which is represented in eq (53). the given matrix [see 

Eq. (52)] into its triple products is decomposed, where the second (or middle) matrix is a diagonal 

matrix, and the first & third matrices are ORTHOGONAL matrices:  

 

𝐹̃𝛥 = [𝑈][𝜀][𝑉]𝑇                                                                                                                                            (54) 
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     = [ [𝑈1] [𝑈0]] [
[𝜀1] [0]

[0] [0]
] [ [𝑉1] [𝑉0]]

𝑇                                                                                         (55) 

 

“If the column vectors in the matrix [𝑉0] are treated like different loading conditions/vectors [19, 

20], then the stresses of damage elements will be equal to zero.” In practical application, we 

should use “Strain Energy” 𝐸𝑖
(𝑒)

, instead of stress associated with each eth element, and check for 

low strain elements [13-14]. 

 

𝐸𝑖
(𝑒)
=  

1

2
{𝑑𝐿

(𝑒)
}
𝑇

[𝑘𝐿
(𝑒)
] 𝑑𝐿

(𝑒)
= scalar;                                                                                                    (56) 

 

where i = 1,2,3,… ndlv = number of damaged location vectors = # of columns of the sub-matrix 

[𝑉0]. 

Notes: the above elements’ strain energy is associated with the “original (undamage)” structure, 

since the goal of Phase 1 is to find and identify “which members are damaged.” 

 

{𝑑𝐿
(𝑒)
} =  [𝑅(𝑒)]𝑑𝐺

(𝑒)
                                                                                                                                (57) 

where: 

[𝑅(𝑒)] =  [

𝐶𝑥 𝑆𝑥
−𝑆𝑥 𝐶𝑥

0 0
0 0

0 0
0 0

𝐶𝑥 𝑆𝑥
−𝑆𝑥 𝐶𝑥

] ; 𝑎𝑛𝑑  𝐶𝑥 =  
𝑥𝑗−𝑥𝑖

𝐿(𝑒)
 ;   𝐶𝑦 =  

𝑦𝑗−𝑦𝑖

𝐿(𝑒)
                                             (58) 
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 𝐿(𝑒) =  √(𝑥𝑗 − 𝑥𝑖)
2
+ (𝑦𝑗 − 𝑦𝑖)

2
                                                                                                       (59) 

 

Instead of using Stress, or Strain Energy for each element, we use the “Normalized Cumulative 

Energy,” or “NCE” for each element [21,22], which is defined as 

 

𝐸̅(𝑒) =  
𝜓(𝑒)

max
𝑘
{𝜓𝑘}

                                                                                                                                      (60) 

where,𝜓(𝑒) =  ∑
𝐸𝑖
(𝑒)

max
𝑘
{𝐸𝑖
𝑘}

𝑛𝑑𝑙𝑣
𝑖=1                                                                                                                (61) 

 

For each eth element (corresponding to the ith loading case), 𝐸𝑖
(𝑒)

 is computed as shown above 

for the undamage case. Within each ith loading case, the max value among all elements “e” is 

found and the max
𝑘
{𝐸𝑖

𝑘} is obtained. Then, Eq. (61) is applied to compute 𝜓(𝑒). 

 

Among all 𝜓(𝑒) values computed, the max value = max
𝑘
{𝜓𝑘} is found and Eq. (60) is applied to 

compute “NCE” ≡ 𝐸̅(𝑒). Based on the computed “NCE” = 𝐸̅(𝑒), eq (62) is obtained. 
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𝐸̅(𝑒) = 

{
 
 
 
 
 

 
 
 
 
 
𝐸̅(1)

𝐸̅(2)

𝐸̅(3)

𝐸̅(4)

𝐸̅(5)

𝐸̅(6)

𝐸̅(7)

𝐸̅(8)

𝐸̅(9)

𝐸̅(10)

𝐸̅(11)}
 
 
 
 
 

 
 
 
 
 

=  

{
 
 
 
 
 

 
 
 
 
 
𝑣𝑒𝑟𝑦 𝑐𝑙𝑜𝑠𝑒 𝑡𝑜 𝑧𝑒𝑟𝑜 (𝑒𝑣𝑒𝑛 𝑤ℎ𝑒𝑛 3 𝑜𝑟 4 𝑙𝑜𝑤𝑒𝑠𝑡 𝑚𝑜𝑑𝑒𝑠 𝑢𝑠𝑒𝑑)

𝐸̅(2)

𝐸̅(3)

𝐸̅(4)

𝑣𝑒𝑟𝑦 𝑐𝑙𝑜𝑠𝑒 𝑡𝑜 𝑧𝑒𝑟𝑜 (𝑒𝑣𝑒𝑛 𝑤ℎ𝑒𝑛 3 𝑜𝑟 4 𝑙𝑜𝑤𝑒𝑠𝑡 𝑚𝑜𝑑𝑒𝑠 𝑢𝑠𝑒𝑑)

𝐸̅(6)

𝐸̅(7)

𝐸̅(8)

𝐸̅(9)

𝑣𝑒𝑟𝑦 𝑐𝑙𝑜𝑠𝑒 𝑡𝑜 𝑧𝑒𝑟𝑜 (𝑤ℎ𝑒𝑛 6 𝑙𝑜𝑤𝑒𝑠𝑡 𝑚𝑜𝑑𝑒𝑠 𝑢𝑠𝑒𝑑)
𝑒𝑥𝑎𝑐𝑡𝑙𝑦 𝑧𝑒𝑟𝑜 (𝐸𝑙𝑒𝑚𝑒𝑛𝑡 #11 𝑖𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑏𝑦 2 𝑝𝑖𝑛𝑛𝑒𝑑 𝑛𝑜𝑑𝑒𝑠)}

 
 
 
 
 

 
 
 
 
 

 

above formula………… ……………………………………………………………………………………………….(62) 

 

 

Notice that 𝐸̅(11) is exactly zero. However, element #11 should NOT be considered as a damage 

element, because this element has 2 end nodes which are fully constrained by 2 pinned (Dirichlet 

boundary condition) supports. This element has its nodal displacements equal to zero, thus it has 

no stress and has zero “normalized cumulative energy.” 

 

 

3.2.   Phase 2/2: Determine the Level of Severity for Those Few Damage Members 

 

Using optimization techniques, such as Genetic Algorithm (GA), or Differential Evolution (DE), 

etc., one can find the level (or amount) of damage occurred in elements # (1), # (5) and # (10) 

that have already been found/identified in Phase 1/2. 

 

Let 𝑥⃗ = the unknown amount of damage in the truss elements # (1), # (5) and # (10). 
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𝑥⃗ =  {

𝑥(1) = [0.00 → 1.00]

𝑥(2) = [0.00 → 1.00]

𝑥(3) = [0.00 → 1.00]

}                                                                                                               (63) 

 

Thus, the optimization problem can be stated. The unknown vector 𝑥⃗ is found, such that the 

OBJECTIVE function 𝛤(𝑥⃗), defined in eq. (64), is minimized [22]. 

 

Min. 𝛤(𝑥⃗) = 1 −𝑀𝐷𝐿𝐴𝐶(𝑥⃗) +  ∑
‖𝜙𝐷𝑀,𝑖−𝜙𝐷𝐴,𝑖(𝑥⃗)‖

‖𝜙𝐷𝑀,𝑖‖

𝑁𝐿𝑀
𝑖=1                                                                    (64) 

 

In eq. (64), 𝜙𝐷𝑀,𝑖 = the ith damaged mode shape, which can be obtained by measurements (using 

sensors at strategic/optimal locations), in real-life/practical applications.  

 

𝜙𝐷𝐴,𝑖(𝑥⃗) = the ith analytical (damage) mode-shape, associated with the current amount of 

damage vector 𝑥⃗, found by the optimization (GA, or DE, etc…) process. In this dissertation 

example, the actual measurements have not been taken. Instead, artificially created damage 

conditions to VALIDATE the numerical procedures. 

 

𝑀𝐷𝐿𝐴𝐶(𝑥⃗) =  
|𝛥𝑓𝑇𝛿𝑓(𝑥⃗)|

2

(𝛥𝑓𝑇𝛥𝑓)(𝛿𝑓𝑇(𝑥⃗)𝛿𝑓(𝑥⃗))
 ≤ 1                                                                                           (65) 

  

The right-hand side of the above inequality can be easily verified by Cauchy’s inequality, and  
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𝛥𝑓 =  
‖𝑓𝑢𝑑−𝑓𝐷𝑀‖

‖𝑓𝑢𝑑‖
                                                                                                                                         (66) 

 

𝛿𝑓(𝑥⃗) =
‖𝑓𝑢𝑑−𝑓𝐷𝐴(𝑥⃗)‖

‖𝑓𝑢𝑑‖
                                                                                                                                 (67) 

 

“If” 𝑓𝐷𝑀 = 𝑓𝐷𝐴(𝑥⃗), as the measured frequency vector of the damage structure is equal to the 

analytical (damage) frequency vector, “Then,” the Eqs. (66-67) will lead to  𝛥𝑓 = 𝛿𝑓(𝑥⃗) , and 

Eq. (65) will become 𝑀𝐷𝐿𝐴𝐶(𝑥⃗) = 1. 

 

Hence the Minimum value for the objective function will become [see Eq. (64)]: 

 

Min. 𝛤(𝑥⃗) = 1 – [MDLAC(x) = 1] + {summation term = 0} = 0 

 

In this work, a “simple rule of thumb” has been added for improving damage detection phase. 

This rule of thumb basically states that “if the Normalized Cumulative Energy of an element is 

less than or equal to a specific factor, say 10 (based on our numerical experience) times min 

(𝐸̅(𝑒)), then that member should also be considered as a damage element.” However, this “rule 

of thumb” should obviously NOT be applied for finding the minimum energy for any member 

with fully constraints at its end nodes, such as member 11 of Figure 1). 

 

𝐸(𝑒) ≤ 10 × min (𝐸̅(𝑒))                                                                                                                     (68) 
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3.3. Numerical Examples for Damage Detection and Damage Quantification 

 

In this Section, several numerical examples are used to evaluate the performance of the proposed 

“simple rule of thumb,” which basically modify the existing algorithms for Damage Detection and 

Damage Quantification of Bridge-type Structures.  

 

Comparisons between existing algorithms [13, 14], and the proposed “simple/inexpensive rule 

of thumb” are reported in Tables 10, 11 and 13, and in Figures 2-5. All the figures are the last 

iteration results, which the meaning of each diagram is explained in follow.  

 

In all figures, the upper diagram, X-axes show the “number of variations,” which represents the 

number of damage elements (for instance, the number of bars shows the number of damage 

elements), and Y-axes named as “current best individual” show the severity of damage elements 

for each of the damage members.  

 

In the lower diagram, the X-axis shows “score” that indicates the fitness (objective) function 

value, and this Y-axis also shows number of populations, which falls within the score ranges.  

 

It is worth mentioning that these figures have been created by MATLAB software automatically 

and represent the convergence of the problem to the results, which are shown in these figures. 

In other words, upper figure shows the number of damage members and their damage severities, 

and the lower figure shows the number of individuals and their respective fitness value range 
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(for example, in figure 2, almost 30 individuals in the population has the fitness value in range of 

0.2-0.5x10−3). Summation of all bars’ heights in the lower diagram gives the population size 

generated by MATLAB code. 

 

In this work, different sizes for 2-D and 3-D truss/bridge-type problems have been investigated, 

using the proposed algorithm. In each example, some elements are considered to be damaged 

with different levels of severity. It is shown in the following problems that the improved 

algorithm, can easily recognize the damage elements and their severities (either low or high), 

regardless of the input amount of severities on damage elements. It is worth mentioning that 

existing algorithms [13, 14] are unable to detect all of the damage members, especially those 

with low severity, in some cases, as it is fully described in the related papers [13, 14].  
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Table 10.   11-bar Truss Examples with Different Damage Elements (Case 1, 2 and 3) 

3 damage elements 4 damage elements 5 damage elements 

Damage 

Element 

Damage 

Severity 

Detected 

elements 

by 

existed 

alg. 

Damage 

Element 

Damage 

Severity 

Detected 

elements 

by existed 

alg. 

Damage 

Element 

Damage 

Severity 

Detected 

elements by 

existed alg. 

1 80% detected 1 20% 
Not 

detected 
1 70% detected 

5 70% detected 7 10% 
Not 

detected 
3 50% Not detected 

10 90% detected 5 30% 
Not 

detected 
6 70% detected 

   10 50% detected 7 20% Not detected 

      9 40% Not detected 

 

 

Figure 2.    MATLAB Result for 11-bar Truss with 3 Damage Members (1, 5, 10) 
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Figure 3.    MATLAB Result for 11-bar Truss with 4 Damage Members (1, 5, 7, 10) 

 

 

 

 Figure 4.    MATLAB Result for 11-bar Truss with 5 Damage Members (1, 3, 6, 7, 9) 

 

Another case that has been studied is a 48-bar 3D truss, which contains 1 bay, 3 stories, and 2 

frames. Each frame consists of columns, beams and X braces in each bay and stories, including 

the connecting bays. 
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Table 11. 48 Bar Truss Example with 5 Damage Elements (Case 4) 

Damage 

Element 

Damage 

Severity 

Detected elements by 

existed alg. 

5 90% detected 

13 80% Not detected 

20 60% Not detected 

35 90% detected 

37 20% Not detected 

 

 

 

Figure 5.    MATLAB Result for 48-bar Truss Damage Members (5, 13, 20, 35, 37) 
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Another example is a bridge with 10 bays, each 8 feet, 8 stories, each 8 feet and 6 frames, each 

8 feet. Each frame consists of columns, beams, and X brace frames. This example is a simply 

supported has 1782 degrees of freedom, 594 nodes, and 3288 members and is a larger size 

problem. This structure has been used to show the time efficiency as well as accuracy of the 

proposed method.  

 

In this example, 5 elements have been identified as damage by the proposed algorithm correctly. 

The damage severity of members is varied, which have been detected by the program correctly. 

Also, the computing time is reduced by using 2 processors in parallel computation. Computation 

time using different number of processors is reported in Table 12. The results can be found in 

Table 13 and Figure 6. 

 

 

Table 12. Computation Time in Parallel Performance for Larger Scale Problem 

Number  

of processors 

Time 

(second) 

1 1375.4501 

2 941.3579 

3 898.6813 

4 867.9016 
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Table 13.  Larger Scale Truss Example with 5 Damage Elements (Case 5) 

Damage 

Element 

Damage 

Severity 

Detected elements 

by existed alg. 

10 80% detected 

37 70% Not detected 

55 90% Not detected 

529 75% Not detected 

705 40% Not detected 

 

 

 

Figure 6.    MATLAB Result for Larger Truss Damage Members (10, 37, 55, 529, 705) 
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There are some cases in which, even by considering large number of mode-shapes, existing 

algorithms [13, 14] will not be able to detect “all” damage elements, especially when the number 

of damage elements is more than 3. Using our suggested “simple rule of thumb,” however, 

existing algorithms [13, 14] will be able to detect “all” damage members. 

 

Subspace iteration in combination with Jacobi rotation algorithm have been implemented into 

the damage detection problem for computing the few lowest eigen pairs. Combination of 

subspace iteration and MATLAB “eig” built-in function have also been used for performance 

evaluation. In almost all numerical cases considered in this study, this combined (subspace 

iteration and MATLAB “eig”) algorithm does not converge to the correct eigen-pairs. These 

mentioned numerical results have clearly shown that our proposed PSI-JT algorithm is more 

robust (reliable) as compared to MATLAB built-in “EIG” function. 
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CHAPTER 4 

CONCLUSIONS 

 

Serial Jacobi transformation algorithm for the solution of “standard eigen-problems” is re-visited 

to facilitate the explanation of the proposed parallel transformation algorithm, for which 

computational efficiency can be realized in this study through “pattern recognition” for the 

development of “explicit formulas” to avoid costly matrix time matrix operations.  

 

In this work, the Jacobi transformation algorithm is embedded inside the subspace iteration 

algorithm to calculate the generalized eigen-problem of the monitored structure. To provide the 

effective computational procedure, a parallel computing strategy based on the idea of making 

several off-diagonal terms to be simultaneously driven to zero is used for the Jacobi 

transformation algorithm, which is so-called parallel subspace iteration and Jacobi 

transformation (PSI-JT) algorithm. The results depict the accuracy and time efficiency of the 

proposed algorithm. 

 

Numerical results obtained from this study have indicated that our proposed generalized Jacobi 

transformation is more robust and reliable as compared to MATLAB eigen-solver. Specifically, for 

obtaining more eigen pairs, the PSI-JT algorithm is shown to produce more robust results. 
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The proposed parallel Jacobi transformation for the solution of “generalized eigen-problems” has 

also been incorporated into our “improved damage detection” algorithm. Computational 

efficiency and robust behavior for the entire proposed procedures (eigen-solution, damage 

detection and damage quantification) can be validated through several academic and real-life 

numerical examples.  

 

For damage members severity estimation, an optimization problem needs to be solved 

repeatedly to converge to the correct solution. Using PSI-JT algorithm is depicted to produce 

robust solution in damage severity quantification.  
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APPENDICES 

APPENDIX 1 

    

Old Dominion University (ODU) MATLAB Source Code for “Parallel Subspace Iteration with Jacobi 

Transformation” 

 

 

A.1 Subspace source code with Jacobi Rotation Combination 

 

Below the MATLAB source code of subspace iteration with Jacobi rotation implementation is 

represented. 

 

clear all 

close all 

clc 

% Define K and M matrices 

% A = [5 -4 1 0;-4 6 -4 1;1 -4 6 -4;0 1 -4 5]; 

% B = [2 -1 0 0;-1 4 -1 0;0 -1 4 -1;0 0 -1 2]; 

N = load('bcsstk13'); 

N_1 = N.Problem.A; 

A = full(N_1); 
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B=eye(size(A,1)); 

% Input lowest eigen value desired 

L =77; 

% Deifine first guess 

x_k = zeros(size(A,2),(4*L)); 

for j = 1:size(A,2) 

    for i = 1:(4*L) 

        x_k(i,i) = 1; 

    end 

end 

  

x_k = x_k(1:size(A,2), 1:(4*L)); 

% Subspace code 

max_Abs_error_norm = 1; 

ecol = 1; 

err = 1; 

X_bar = x_k; 

m_n=0; 

% tic 

while max_Abs_error_norm > 10e-7 || ecol > 10e-3  

    m_n=m_n+1; 

    B_mod = B*X_bar; 



54 
 

 
 

    X_bar = A\B_mod; 

    A_R = X_bar'*A*X_bar; 

    B_R = X_bar'*B*X_bar; 

    [val,phi,sweep]=eigenpair_generalized_Parallel_2(A_R,B_R); 

    % sort 

    [val,ind] = sort(val); 

    phi = phi(:,ind); 

  

    X = X_bar*phi; 

    for i=1:(L) 

         Abs_error_norm(i) = norm(A*X(:,i)-val(i)*B*X(:,i)); 

    end 

    max_Abs_error_norm = norm(Abs_error_norm); 

    X_bar = X; 

    if m_n~=1 

        for i=1:L 

        ecol_1(i) = norm(val(i) - val_store(i)); 

        ecol = norm(ecol_1); 

        end 

        val_store = val; 

    else 

    end 



55 
 

 
 

val_store = val; 

end 

%%%%%  Check 

[vc,vl]=eig(A,B); 

sval=sort(abs(val)); 

for i=1:L 

decc(i) = vl(i,i) - sval(i); 

end 

n_decc = norm(decc); 

 

 

A.2 Subspace source code with MATLAB “EIG” Built-in function 

 

Follow Subspace iteration source code with MATLAB EIG built in function is shown. 

 

clear all 

close all 

clc 

% Define K and M matrices 

% A = [5 -4 1 0;-4 6 -4 1;1 -4 6 -4;0 1 -4 5]; 

% B = [2 -1 0 0;-1 4 -1 0;0 -1 4 -1;0 0 -1 2]; 

N = load('bcsstk13'); 
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N_1 = N.Problem.A; 

A = full(N_1); 

B=eye(size(A,1)); 

% Input lowest eigen value desired 

L =77; 

% Deifine first guess 

x_k = zeros(size(A,2),(4*L)); 

for j = 1:size(A,2) 

    for i = 1:(4*L) 

        x_k(i,i) = 1; 

    end 

end 

x_k = x_k(1:size(A,2), 1:(4*L)); 

% Subspace code 

max_Abs_error_norm = 1; 

ecol = 1; 

err = 1; 

X_bar = x_k; 

m_n=0; 

% tic 

while max_Abs_error_norm > 10e-7 || ecol > 10e-3  

    m_n=m_n+1; 
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    B_mod = B*X_bar; 

    X_bar = A\B_mod; 

    A_R = X_bar'*A*X_bar; 

    B_R = X_bar'*B*X_bar; 

   [phi,val]=eig(A_R,B_R); 

    % sort 

    [val,ind] = sort(abs(diag(val))); 

    phi = phi(:,ind); 

    X = X_bar*phi; 

    for i=1:(L) 

         Abs_error_norm(i) = norm(A*X(:,i)-val(i)*B*X(:,i)); 

    end 

    max_Abs_error_norm = norm(Abs_error_norm); 

    X_bar = X; 

    if m_n~=1 

        for i=1:L 

        ecol_1(i) = norm(val(i) - val_store(i)); 

        ecol = norm(ecol_1); 

        end 

        val_store = val; 

    else 

    end 
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val_store = val; 

end 

 

%%%%%  Check 

[vc,vl]=eig(A,B); 

sval=sort(abs(val)); 

for i=1:L 

decc(i) = vl(i,i) - sval(i); 

end 

n_decc = norm(decc); 

 

 

A.3 Jacobi Rotation Source Code 

 

Jacobi rotation source code using the explicit formula described in the previous chapters is 

presented. 

 

function[val,phi,sweep]=eigenpair_generalized_Parallel_2(k,M) 

n=size(k,2); 

m = (n+1)/2; 

m = fix(m); 

nprocessor = n/2; 

phi = eye(size(k,1)); 
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nn=1; 

sweep=0; 

while nn~=0 

    nn=0; 

    sweep=sweep+1; 

for rr=1:size(k,1)-1 

    if rr <= m-1 

    for i = 1:nprocessor 

         q(i) = m - rr +i; 

         if q(i)<= (2*m - 2*rr) && q(i)>=(m-rr+1) 

             p(i) = (2*m - 2*rr +1)-q(i); 

         elseif q(i)<= (2*m -rr-1) && q(i)>(2*m-2*rr) 

             p(i) = (4*m - 2*rr) - q(i); 

         elseif q(i)> (2*m-rr-1) 

             p(i) = n; 

         end 

         if q(i)<p(i) 

             pc=p(i); 

             p(i)=q(i); 

             q(i)=pc; 

         end 

    end 
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elseif rr >= m 

    for i = 1:nprocessor 

%         if k==(2*m-1) && i==2 

%             q(i) = 3*m - k -1; 

%         else 

         q(i) = 4*m - n - rr +i-1; 

%         end 

         if q(i)> (4*m - 2*rr - 1) 

             p(i) = (6*m - 2*rr -1)-q(i); 

         elseif q(i)>=(2*m -rr+1) && q(i)<=(4*m-2*rr-1) 

             p(i) = (4*m - 2*rr) - q(i); 

         elseif q(i)< (2*m-rr+1) 

             p(i) = n; 

         end 

         if q(i)<p(i) 

             pc=p(i); 

             p(i)=q(i); 

             q(i)=pc; 

         end 

    end 

    end 
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% p1=zeros(size(k)); 

% for i=1:size(k,1) 

%     p1(i,i)=1; 

% end 

p1=eye(size(k)); 

kbar = zeros(size(k,1)); 

k_bar = zeros(1,size(p,2)); 

x = zeros(1,size(p,2)); 

lambda = zeros(1,size(p,2)); 

alpha = zeros(1,size(p,2)); 

for i = 1:size(p,2) 

    if (k(p(i),p(i))/M(p(i),p(i)))==(k(q(i),q(i))/M(q(i),q(i)))==(k(p(i),q(i))/M(p(i),q(i))) 

        alpha(i) = 0; 

        lambda(i) = (-1)*(k(p(i),q(i))/k(q(i),q(i))); 

    else 

kbar(p(i),p(i)) = k(p(i),p(i))*M(p(i),q(i))-M(p(i),p(i))*k(p(i),q(i)); 

kbar(q(i),q(i)) = k(q(i),q(i))*M(p(i),q(i))-M(q(i),q(i))*k(p(i),q(i)); 

k_bar(i) = k(p(i),p(i))*M(q(i),q(i))-k(q(i),q(i))*M(p(i),p(i)); 

if k_bar(i)>=0 

    x(i) = (k_bar(i)/2)+sqrt((k_bar(i)/2)^2+kbar(p(i),p(i))*kbar(q(i),q(i))); 

elseif k_bar(i)<0 

    x(i) = (k_bar(i)/2)-sqrt((k_bar(i)/2)^2+kbar(p(i),p(i))*kbar(q(i),q(i))); 
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end 

  

lambda(i) = (-1)*(kbar(p(i),p(i))/x(i)); 

alpha(i) = kbar(q(i),q(i))/x(i); 

    end 

p1(p(i),q(i))=alpha(i); 

p1(q(i),p(i))=lambda(i); 

end 

phi=phi*p1; 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Creat new k based on my formula 

parfor pi=1:nprocessor 

    Tempo1 = zeros(  p(pi)  ,1 ); 

    Tempo1_M = zeros( p(pi) ,1); 

    Tempo2 = zeros(q(pi) ,1); 

    Tempo2_M = zeros(q(pi) ,1); 

    pSubs = zeros(  p(pi)  ,2 );  %new 

    qSubs = zeros(q(pi) ,2); 

    for irow = 1:p(pi) 

        [xx,inside_angle] = find(irow==[p;q]); 

        Tempo1(irow) = [(xx-1)*alpha(inside_angle)+(2-xx)]* ... 
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            [k(p(inside_angle),p(pi))+lambda(pi)*k(p(inside_angle),q(pi))] + ... 

            [(2-xx)*lambda(inside_angle)+(xx-1)]* ... 

            [k(q(inside_angle),p(pi))+lambda(pi)*k(q(inside_angle),q(pi))]; 

        Tempo1_M(irow) = [(xx-1)*alpha(inside_angle)+(2-xx)]* ... 

            [M(p(inside_angle),p(pi))+lambda(pi)*M(p(inside_angle),q(pi))] + ... 

            [(2-xx)*lambda(inside_angle)+(xx-1)]* ... 

            [M(q(inside_angle),p(pi))+lambda(pi)*M(q(inside_angle),q(pi))]; 

        pSubs(irow,:)=[irow,p(pi)];  %new 

    end 

    for irow = 1:q(pi) 

        [xx,inside_angle] = find(irow==[p;q]); 

        Tempo2(irow) = [(xx-1)*alpha(inside_angle)+(2-xx)]* ... 

            [alpha(pi)*k(p(inside_angle),p(pi))+k(p(inside_angle),q(pi))] + ... 

            [(2-xx)*lambda(inside_angle)+(xx-1)]* ... 

            [alpha(pi)*k(q(inside_angle),p(pi))+k(q(inside_angle),q(pi))]; 

        Tempo2_M(irow) = [(xx-1)*alpha(inside_angle)+(2-xx)]* ... 

            [alpha(pi)*M(p(inside_angle),p(pi))+M(p(inside_angle),q(pi))] + ... 

            [(2-xx)*lambda(inside_angle)+(xx-1)]* ... 

            [alpha(pi)*M(q(inside_angle),p(pi))+M(q(inside_angle),q(pi))]; 

        qSubs(irow,:)=[irow,q(pi)];  %new 

    end 
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    subsCell{pi,1}=[pSubs;qSubs];  %new 

    kValCell{pi,1}=[Tempo1;Tempo2];   

    MValCell{pi,1}=[Tempo1_M;Tempo2_M]; 

     

    %Assign tempos to k 

%     for irow = 1:p(pi) 

%         k_1(irow,p(pi)) = Tempo1(irow); 

%         k_1(p(pi),irow) = Tempo1(irow); 

%         M_1(irow,p(pi)) = Tempo1_M(irow); 

%         M_1(p(pi),irow) = Tempo1_M(irow); 

%     end 

%     for irow = 1:q(pi) 

%         k_1(irow,q(pi)) = Tempo2(irow); 

%         k_1(q(pi),irow) = Tempo2(irow); 

%         M_1(irow,q(pi)) = Tempo2_M(irow); 

%         M_1(q(pi),irow) = Tempo2_M(irow); 

%     end               

end 

subs=cell2mat(subsCell); 

kVal=cell2mat(kValCell); 

MVal=cell2mat(MValCell); 
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k_1=accumarray(subs,kVal,size(k)); 

M_1=accumarray(subs,MVal,size(M)); 

  

k=k_1 + tril(k_1.',-1); %make symmetric  

M=M_1 + tril(M_1.',-1); 

end 

  

for ki=1:size(k,1) 

    sum=0; 

    if k(ki,ki)~=0 

    for kj=1:size(k,1) 

        if kj==ki 

            kj=kj+1; 

        else 

        sum = sum + abs(k(ki,kj)); 

        end 

    end 

    if abs(k(ki,ki))>(100*sum) 

        nn=nn+0; 

    else 

        nn=nn+1; 
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    end 

    end 

end 

end 

  

for i = 1:size(k,1) 

   val(i)=k(i,i)/M(i,i); 

end 

  

end 
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APPENDIX 2 

     

One of the examples is a 2003x2003 matrix (a Symmetrical Stiffness Matrix, which represents the 

Fluid Flow Generalized Eigen-Problems), is also included. If the number of requested eigen-pairs 

is 63, then MATLAB built-in function (EIG) will not be able to converge to the correct solution. 

However, if we replace MATLAB built-in function (EIG) with our Generalized Subspace Iteration 

with Jacobi Rotation source code, then correct eigen-solutions have been obtained. 

The input file has been downloaded from Texas A&M website, and also have been adopted and 

published in other valid websites described in the related references [23, 24]. Following are the 

complete information and figures of matrices selected from these sources [23, 24] and used in 

this dissertation work. 

 

 

B.1 Symmetrix stiffness matrix, module of an offshore platform 

 

This example is a real-world symmetric stiffness matrix, shows module of an offshore platform. 

The figure is shown in Figure 7. Matrix properties consist of number of rows and columns, number 

of nonzero terms and other related features, are represented in the Table 14.  
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Figure 7.    Symmetric Stiffness Matrix, Module of an Offshore Platform 

 

 

Table 14.  Symmetric Stiffness Matrix, Module of an Offshore Platform, Properties 

Matrix Properties 

number of rows 3,948 

number of columns 3,948 

nonzeros 117,816 

structural full rank? yes 

structural rank 3,948 

explicit zero entries 0 

nonzero pattern symmetry symmetric 

numeric value symmetry symmetric 

type real 

structure symmetric 

Cholesky candidate? yes 

positive definite? yes 
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This matrix is authored by M. Will, and is edited by I. Duff, R. Grimes, J. Lewis [23]. This matrix is 

a fuild matrix, and as it is shown in Figure 7, the matrix is related to the 3D problem. 

 

 

B.2 Symmetric Stiffness Matrix, Fluid Flow Generalized Eigenvalues 

 

This example is also a real-world symmetric stiffness matrix, extracted from fluid Flow 

Generalized Eigenvalues problem. The figure of the matrix is represented in Figure 8, and the 

matrix properties are described in Table 15. 

 

This matrix is authored by J. Lewis, and is edited by I. Duff, R. Grimes, J. Lewis [23]. This matrix is 

a computational fluid dynamic 3D problem. 

 

 

 

Figure 8.    Symmetric Stiffness Matrix, Fluid Flow Generalized Eigenvalues 
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Table 15.  Symmetric Stiffness Matrix, Fluid Flow Generalized Eigenvalues, Properties 

Matrix Properties 

umber of rows 2,003 

number of columns 2,003 

nonzeros 83,883 

structural full rank? yes 

structural rank 2,003 

explicit zero entries 0 

nonzero pattern symmetry symmetric 

numeric value symmetry symmetric 

type real 

structure symmetric 

Cholesky candidate? yes 

positive definite? yes 

 

 

B.3 Symmetric Stiffness Matrix, Buckling of Hot Washer 

 

Another real-world problem is presented in this section. The data is extracted from the websites 

mentioned in the previous sections [23, 24]. Table 16 shows the properties of this matrix, and 

Figure 9 demonstrates the figure of the matrix. 
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This matrix is authored by J. Lewis, and is edited by I. Duff, R. Grimes, J. Lewis [23]. As it is clear 

from the name of the name, this is matrix is extracted from a structural 3D problem. 

 

 

 

Figure 9.    Symmetric Stiffness Matrix, Buckling of Hot Washer 

 

 

B.4 Symmetric Stiffness Matrix, Medium Test Problem, Lumped Masses 

 

This is also another structural 3D problem with lower number of rows and columns compare to 

the previous cases. This matrix is authored by J. Lewis, and is edited by I. Duff, R. Grimes, J. Lewis 

[23]. 

 

More information about matrix properties is described in Table 17, and the figure of the matrix 

is shown in Figure 10. 
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Table 16.  Symmetric Stiffness Matrix, Buckling of Hot Washer, Properties 

Matrix Properties 

number of rows 1,086 

number of columns 1,086 

nonzeros 22,070 

structural full rank? yes 

structural rank 1,086 

explicit zero entries 0 

nonzero pattern symmetry symmetric 

numeric value symmetry symmetric 

type real 

structure symmetric 

Cholesky candidate? yes 

positive definite? yes 
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Figure 10.   Symmetric Stiffness Matrix, Medium Test Problem, Lumped Masses 

 

 

Table 17.  Symmetric Stiffness Matrix, Medium Test Problem, Lumped Masses, Properties 

Matrix Properties 

number of rows 420 

number of columns 420 

nonzeros 7,860 

structural full rank? yes 

structural rank 420 

explicit zero entries 0 

nonzero pattern symmetry symmetric 

numeric value symmetry symmetric 

type real 

structure symmetric 

Cholesky candidate? yes 

positive definite? yes 
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B.5 Symmetric Stiffness Matrix, Transformation Tower, Lumped Masses 

 

This symmetric stiffness matrix is related to a 3D structural problem. It is authored by J. Lewis, 

and is edited by I. Duff, R. Grimes, J. Lewis [23]. It is worth mentioning that this matrix is one of 

the small size matrices that has been used in this research for authorizing PSI-JT algorithm. 

 

The figure of this matrix is shown in Figure 11. The properties of the matrix is described in detail 

in Table 18.  

 

 

 

Figure 11.   Symmetric Stiffness Matrix, Transformation Tower, Lumped Masses 
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Table 18.  Symmetric Stiffness Matrix, Transformation Tower, Lumped Masses, Properties 

Matrix Properties 

number of rows 153 

number of columns 153 

nonzeros 2,423 

structural full rank? yes 

structural rank 153 

explicit zero entries 0 

nonzero pattern symmetry symmetric 

numeric value symmetry symmetric 

type real 

structure symmetric 

Cholesky candidate? yes 

positive definite? yes 

 

 

In this research all of the previous cases described in detail in this section, is used to test and 

validate the performance of PSI-JT algorithm. Looking at the figures of these cases, it is clear that 

they are completely different in the formation, and are not have a lot in common, but being 

sparse symmetric positive definite. 
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APPENDIX 3 

 

Since the code for this section is so large and also Jacobi rotation source code has been presented 

in Appendix A.3, the complete code for this part will not be mentioned here. However, the Source 

code for truss generation that has been used to create any size 2D and 3D trusses is presented in 

this section. 

 

 

C.1 Truss Creation Source Code 

 

The following source code was written by the dissertation author in MATLAB and is able to create 

2D and 3D truss. In this code the user needs to specify very short input data, such as number of 

bays, number of storied, 2D or 3D format, etc., and the code is able to create the truss and all the 

features, such as connectivity table, etc., by itself. 

 

close all 

clear all 

clc 

 

% User Inputs 

fprintf('\n'); 

nbays=input('ENTER THE NUMBER OF Bays:-'); 

fprintf('\n'); 
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fprintf('****************************************************************

*******************************\n'); 

% if nbays>=1 

fprintf('\n'); 

Length=input('ENTER THE Length of Each Bay:-'); 

fprintf('\n'); 

% end 

fprintf('****************************************************************

*******************************\n'); 

fprintf('\n'); 

nstories=input('ENTER THE NUMBER OF Stories:-'); 

fprintf('\n'); 

fprintf('****************************************************************

*******************************\n'); 

fprintf('\n'); 

Height=input('ENTER THE Height OF Each Stories:-'); 

fprintf('\n'); 

fprintf('****************************************************************

*******************************\n'); 

fprintf('\n'); 

nframes=input('ENTER THE NUMBER OF Frames:-'); 

fprintf('\n'); 

fprintf('****************************************************************

*******************************\n'); 

fprintf('\n'); 

Width=input('ENTER THE Width OF Two Consecutive Frames:-'); 

fprintf('\n'); 

fprintf('****************************************************************

*******************************\n'); 
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fprintf('\n'); 

n_node_element=input('ENTER THE NUMBER OF Nodes per Element:-'); 

fprintf('\n'); 

fprintf('****************************************************************

*******************************\n'); 

fprintf('\n'); 

% Truss Dimension 

global num_dof_node 

global num_dof_ele 

num_dof_node=input('ENTER THE NUMBER OF SPATIAL DIMENSIONS:-'); 

num_dof_ele=n_node_element*num_dof_node; 

fprintf('\n'); 

fprintf('****************************************************************

*******************************\n'); 

fprintf('\n'); 

damage_ele=input('ENTER THE damage element and severity [ele sve;..]:-'); 

fprintf('\n'); 

fprintf('****************************************************************

*******************************\n'); 

fprintf('\n'); 

a_ver=input('ENTER THE Area of Vertical Area:-'); 

fprintf('\n'); 

fprintf('****************************************************************

*******************************\n'); 

fprintf('\n'); 

a_hor=input('ENTER THE Area of Horizontal Area:-'); 

fprintf('\n'); 

fprintf('****************************************************************

*******************************\n'); 
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fprintf('\n'); 

a_diag=input('ENTER THE Area of Diagonal; Area:-'); 

fprintf('\n'); 

 

tic 

 

% Compute Number of Nodes 

global num_nod 

num_nod = (nstories+1)*(nbays+1)*(nframes); 

num_nod_fram = (nstories+1)*(nbays+1); 

 

% nodes coordinates 

global nod_coor 

nod_coor = zeros(num_nod,num_dof_node); 

e = 1; 

for i = 1:nframes 

    for k = 1:nstories+1 

        for j = 1:nbays+1 

            nod_coor(e,:) = [0+(j-1)*Length, 0+(k-1)*Height, 0+(i-1)*Width]; 

            e = e+1; 

            if e == num_nod+1 

                break 

            end 

        end 

    end 

end 
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% Number of Vertical Elements 

num_ver_ele = nstories*(nbays+1)*nframes; 

num_ver_frame = nstories*(nbays+1); 

 

% Number of Horizontal Elements 

num_hor_ele = nstories*nbays*nframes + nstories*(nbays+1)*(nframes-1); 

 

% Number of Diagonal Elements 

num_diag_ele = 2*nstories*(2*nbays*nframes+nframes-nbays-1); 

 

%Total Number of Elements 

global num_ele 

num_ele = num_ver_ele + num_hor_ele + num_diag_ele; 

 

% Construct the Connectivity Matrix 

global ele_nod 

global A 

ele_nod = zeros(num_ele,n_node_element); 

 

% Vertical Elements Connectivity 

for j=1:nframes 

    for i=(1+num_ver_frame*(j-1)):(num_ver_frame*j) 

        ele_nod(i,:) = [i+(num_nod_fram-num_ver_frame)*(j-1), ... 

            i+(nbays+1)+(num_nod_fram-num_ver_frame)*(j-1)]; 

        A(i) = a_ver; 

    end 

end 

 

%Horizontal Elements Connectivity Matrix 
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[x,y] = find(nod_coor(:,2)~=0); 

i = i + 1; 

for e = 1:nframes 

    for k =1:nstories 

        for j = 1:nbays 

            ele_nod(i,:) = [x(j+(k-1)*(nbays+1)+(e-1)*(num_nod_fram-(nbays+1))), ... 

                x(j+1+(k-1)*(nbays+1)+(e-1)*(num_nod_fram-(nbays+1)))]; 

            A(i) = a_hor; 

            i = i + 1; 

        end 

    end 

end 

 

if nframes>1 

    for j = 1:((num_nod_fram-(nbays+1))*(nframes-1)) 

        ele_nod(i,:) = [x(j),x(j)+num_nod_fram]; 

        A(i) = a_hor; 

        i = i+1; 

    end 

end 

     

 

%Diagonal Elements Connectivity Matrix 

i = i - 1; 

for j=1:nbays 

    [x1,y1] = find(nod_coor(:,1)==(Length*(j-1))); 

    [x2,y2] = find(nod_coor(:,1)==(Length*j)); 

    sx1 = size(x1,1); 

    for e = 1:nframes 
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        for k = 1:((sx1/nframes)-1) 

            i = i+1; 

            ele_nod(i,:) = [x1(k+((e-1)*(nstories+1))),x2(k+1+((e-1)*(nstories+1)))]; 

            A(i) = a_diag; 

            i = i+1; 

            ele_nod(i,:) = [x2(k+((e-1)*(nstories+1))),x1(k+1+((e-1)*(nstories+1)))]; 

            A(i) = a_diag; 

        end 

    end 

end 

 

if nframes>1 

    for j=1:nbays+1 

        [x3,y3] = find(nod_coor(:,1)==(Length*(j-1))); 

        sx1 = size(x3,1); 

        for e=1:(nframes-1) 

        for k = 1:((sx1/nframes)-1) 

            i = i+1; 

            ele_nod(i,:) = [x3(k+(e-1)*(nstories+1)),x3(k+(e-1)*(nstories+1)+(nstories+2))]; 

            A(i) = a_diag; 

            i = i+1; 

            ele_nod(i,:) = [x3(k+(e-1)*(nstories+1)+(nstories+1)), ... 

                x3(k+1+(e-1)*(nstories+1))]; 

            A(i) = a_diag; 

        end  

        end 

    end 

end 
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% elements degree of freedom (DOF) 

global ele_dof 

ele_dof = zeros(num_ele,num_dof_ele); 

for j=1:num_ele 

    ele_dof(j,:)=[((3*ele_nod(j,1))-2),((3*ele_nod(j,1))-1),(3*ele_nod(j,1)), ... 

        ((3*ele_nod(j,2))-2),((3*ele_nod(j,2))-1),(3*ele_nod(j,2))]; 

end 

 

%Form Modulus of Elasticity and mass density 

global E 

for i = 1:num_ele 

    E(i) = 30000; 

end 

global rho 

rho = 9.8759999999999994e-3; 

 

fprintf('****************************************************************

*******************************\n'); 

fprintf('\n'); 

number_of_loads =input('ENTER THE Number of Loads; Number:-'); 

fprintf('\n'); 

fprintf('****************************************************************

*******************************\n'); 

fprintf('\n'); 

force = zeros(num_dof_node*num_nod,1); 

for j=1:number_of_loads 

    node_load_app=input('ENTER THE Node Number that this Load Apply to; Node:-'); 
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    dof_load_app=input('ENTER THE DOF of the Node that This Load Apply to; DOF:-'); 

    load_value=input('ENTER THE Value of the Applying Load; Value:-'); 

    force((3*node_load_app)-(3-dof_load_app))=load_value; 

end 

fprintf('\n'); 

 

%Construct Boundary Condition Vector 

displacement=zeros(num_dof_node*num_nod,1); 

[x4,y4] = find(nod_coor(:,2)==0); 

sx4 = size(x4,1); 

global BC 

for j=1:sx4 

    for k=1:num_dof_node 

        BC(k+(3*(j-1)), 1) = (3*x4(j))-(3-k); 

    end 

end 
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APPENDIX 4 

 

The input for damage detection & quantification problems comes from both manually (for some 

examples to check the accuracy of the MATLAB code), and a self-written MATLAB code to 

generate data such as node coordinates, element nodes, connectivity table of the input truss.  

 

As an example, for 11-bar truss, the input data file that user needs to enter to the computer 

screen, for using the automatically generated data for truss, is as follows: 

 

• Total number of nodes (6 for this example) 

• Number of nodes per element (for this example 2) 

• Number of degrees of freedom per node (2 for the example) 

• Number of spatial dimension (2 for this example, because it is a 2D truss) 

• Number of bays (2 for this example) 

• Number of stories (1 for this example) 

• Number of frames (0 for this example, since it is a 2D structure) 

• Area of each element will be asked and should be input by the user with an enter after 

inputting each. (For this example: 14, 1, 11, 7, 1, 1, 6, 3, 14, 1, 1) 

• Modulus of elasticity (30000 for this example) 

• Members’ density (for this example 0.009876) 
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• Number of applied loads (2 for this example) 

• Degree of freedom and magnitude of the applied load ([2,10000] / enter/ [6,10000]) 

 

The outputs of sample problems for damage detection & quantification have already described 

and presented in earlier sections of this dissertation. 

 

The following input is the case when the data is manually inputted. The related input information 

is as below: 

 

%number of nodes 
num_nod=6; 
num_dof_node = 3; 
  
% nodes coordinates 
nod_coor=[720 0 0;720 360 0;360 0 0;360 360 0;0 0 0;0 360 0]; 
  
% connectivity table 
ele_nod=[6 4;4 2;5 3;3 1;3 4;1 2;6 3;5 4;4 1;3 2;5 6]; 
  
%number of elements 
num_ele=size(ele_nod,1); 
  
% elements degree of freedom (DOF)  
ele_dof=[16 17 18 10 11 12;10 11 12 4 5 6;13 14 15 7 8 9;7 8 9 1 2 3; ... 
    7 8 9 10 11 12; 1 2 3 4 5 6;16 17 18 7 8 9;13 14 15 10 11 12; ... 
    10 11 12 1 2 3;7 8 9 4 5 6;13 14 15 16 17 18]; 
num_dof_ele = 6; 
  
% A, E, L are cross sectional area, Young's modulus, length of elements,respectively. 
  
A(1)=14; 
A(2)=1; 
A(3)=11; 
A(4)=7; 
A(5)=1; 
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A(6)=1; 
A(7)=6; 
A(8)=3; 
A(9)=14; 
A(10)=1; 
A(11)=1; 
  
% E(1)=30000; 
for i = 1:num_ele 
    E(i) = 30000; 
end 
  
rho = 9.8759999999999994e-3; 
 
BC = [1;2;3;4;5;6;25;26;27;28;29;30]; 
 
%Define damaged elements and their related severities 
damage_ele = [1 0.8;5 0.7;10 0.9]; 
 
 

It is worth mentioning that in the “damage_ele” matrix, mentioned above, the first column shows 

the damage element number, and the second column shows the damage severity of the related 

member. 

 

This code is written in MATLAB software. In this case the input properties, such as number of 

nodes, number of degrees of freedom, etc, are imported by hand for comparison reasons. 

However, in the bigger size problems, 48-bar truss and 594-bar truss the properties are 

developed by the “Truss-Creation” Source code, described in the previous sections.   
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