
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Civil & Environmental Engineering Theses &
Dissertations Civil & Environmental Engineering

Fall 2019

Parallel Jacobi Transformation Algorithm for Generalized Eigen-Parallel Jacobi Transformation Algorithm for Generalized Eigen-

Solution With Improved Damage Detection of Truss/Bridge-Type Solution With Improved Damage Detection of Truss/Bridge-Type

Structures Structures

Maryam Ehsaei
Old Dominion University, mehsa001@odu.edu

Follow this and additional works at: https://digitalcommons.odu.edu/cee_etds

 Part of the Civil Engineering Commons

Recommended Citation Recommended Citation
Ehsaei, Maryam. "Parallel Jacobi Transformation Algorithm for Generalized Eigen-Solution With Improved
Damage Detection of Truss/Bridge-Type Structures" (2019). Doctor of Philosophy (PhD), Dissertation,
Civil & Environmental Engineering, Old Dominion University, DOI: 10.25777/7yj7-ww61
https://digitalcommons.odu.edu/cee_etds/102

This Dissertation is brought to you for free and open access by the Civil & Environmental Engineering at ODU Digital
Commons. It has been accepted for inclusion in Civil & Environmental Engineering Theses & Dissertations by an
authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/cee_etds
https://digitalcommons.odu.edu/cee_etds
https://digitalcommons.odu.edu/cee
https://digitalcommons.odu.edu/cee_etds?utm_source=digitalcommons.odu.edu%2Fcee_etds%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/252?utm_source=digitalcommons.odu.edu%2Fcee_etds%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/cee_etds/102?utm_source=digitalcommons.odu.edu%2Fcee_etds%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

i

PARALLEL JACOBI TRANSFORMATION ALGORITHM FOR GENERALIZED EIGEN-SOLUTION WITH

IMPROVED DAMAGE DETECTION OF TRUSS/BRIDGE-TYPE STRUCTURES

by

Maryam Ehsaei

B.S. September 2011, Fasa University, Iran

M.S. September 2013, Shiraz University, Iran

A Dissertation Submitted to the Faculty of

Old Dominion University in Partial Fulfillment of the

requirement for the Degree of

DOCTOR OF PHILOSOPHY

CIVIL AND ENVIRONMENTAL ENGINEERING

OLD DOMINION UNIVERSITY

October 2019

Approved by:

 Duc T. Nguyen (Director)

 Gene Hou (Member)

 Yunbyeong Chae (Member)

 Mojtaba Sirjani (Member)

ii

ABSTRACT

PARALLEL JACOBI TRANSFORMATION ALGORITHM FOR GENERALIZED EIGEN-SOLUTION WITH
IMPROVED DAMAGE DETECTION OF TRUSS/BRIDGE-TYPE STRUCTURES

Maryam Ehsaei

Old Dominion University, 2019

Director: Dr. Duc T. Nguyen

Serial Jacobi transformation algorithm for the solution of “standard eigen-problems” is

re-visited to facilitate the explanation of the proposed parallel transformation algorithm, for

which computational efficiency can be realized in this study through “pattern recognition” for

the development and explanation of “explicit formulas” to avoid costly matrix time matrix

operations. The proposed parallel Jacobi transformation for the solution of “generalized eigen-

problems” has also been incorporated into the “improved damage detection” algorithm.

Computational efficiency and robust behaviors for the entire proposed procedures (eigen-

solution, damage detection and damage quantification) can be validated through several

academic and real-life numerical examples. Numerical results obtained from this study have

indicated that our proposed generalized Jacobi transformation is more robust/reliable as

compared to MATLAB eigen-solver. Furthermore, our proposed simple rule of thumb for damage

detection of aging bridge structures also give better results than existing algorithms.

iii

Copyright, 2019, by Maryam Ehsaei, All Rights Reserved.

iv

This thesis is dedicated to the proposition

that the harder you work, the luckier you get.

v

ACKNOWLEDGMENTS

There are a lot of people who contributed to this dissertation. First, I would like to thank

my committee members, whose precious guidance and comments improved the quality of this

manuscript. I would like to express my appreciation to my major advisor, Professor Nguyen, who

devoted his precious time and knowledge guiding me and walking along with me through this

journey; I highly appreciate his tireless efforts and devotion. Furthermore, I do thank my friends

who were by my side during my program and this dissertation. Finally, I would like to thank my

family, who has been my greatest support all my life. I devote this work to my father and mother,

who sacrificed their lives to create mine in the best way possible, also to my sister, whose support

and energy have been my greatest strengths.

vi

NOMENCLATURE

𝐾 Stiffness Matrix

𝑀 Mass Matrix

𝜆 Eigen-Value Matrix

𝜙 Eigen-Vector Matrix

𝑃i Rotation or Transformation Matrix

𝜔 Frequency Matrix

�̃�𝐷 Flexibility Matrix

𝐸𝑖
(𝑒)

 Strain Energy

𝐾𝑅 Reduced Stiffness Matrix

𝑀𝑅 Reduced Mass Matrix

𝑑𝐿
(𝑒)

 Local element displacement

𝑑𝐺
(𝑒)

 Global element displacement

�̅�(𝑒) Normalized Cumulative Energy

vii

TABLE OF CONTENTS

 Page

LIST OF TABLES .. ix
LIST OF FIGURES ... x
CHAPTER
1. INTRODUCTION ... 1

1.1 LITERATURE SURVEYS .. 2
1.2 GOALS FOR THIS STUDY .. 3
1.3 ASSUMPTIONS FOR THIS STUDY ... 5

2. CLASSICAL JACOBI TRANSFORMATION AND THE GENERALIZED EIGEN PROBLEM 7

2.1 A REVIEW OF JACOBI TRANSFORMATION FOR THE SOLUTION OF THE
“GENERALIZED EIGEN-PROBLEM” .. 8
2.2 Development OF “EXPLICIT FORMULAS” FOR TRIPLE MATRIX TIMES MATRIX
OPERATIONS ... 12
2.3 PARALLEL COMPUTING STRATEGIES FOR JACOBI TRANSFORMATION
ALGORITHM .. 19
2.4 SUBSPACE ITERATION ... 21
2.5 NUMERICAL EXAMPLES FOR SUBSPACE ITERATION WITH JACOBI ROTATION
(PSI-JT) FOR EIGEN PROBLEM ... 23

3. EXISTING DAMAGE DETECTION AND NEW/PROPOSED ALGORITHMS 29

3.1 PHASE 1/2: DETECT/IDENTIFY THE DAMAGE MEMBERS .. 30
3.2 PHASE 2/2: DETERMINE THE LEVEL OF SEVERITY FOR THOSE FEW DAMAGED
MEMBERS .. 36
3.3 NUMERICAL EXAMPLES FOR DAMAGE DETECTION AND DAMAGE
QUANTIFICATION .. 39

4. CONCLUSIONS ... 47

5. REFERENCES .. 49

APPENDICES .. 52

A APPENDIX 1 .. 52
A.1 SUBSPACE SOURCE CODE WITH JACOBI ROTATION COMBINATION 52
A.2 SUBSPACE SOURCE CODE WITH MATLAB “EIG” BUILT-IN FUNCTION 55
A.3 JACOBI ROTATION SOURCE CODE .. 58

B APPENDIX 2 .. 67
B.1 SYMMETRIC STIFFNESS MATRIX, MODULE OF AN OFFSHORE PLATFORM 67
B.2 SYMMETRIC STIFFNESS MATRIX, FLUID FLOW GENERALIZED
EIGENVALUES .. 69

viii

 Page

B.3 SYMMETRIC STIFFNESS MATRIX, BUCKLING OF HOT WASHER 70
B.4 SYMMETRIC STIFFNESS MATRIX, MODULE OF AN OFFSHORE 71
B.5 SYMMETRIC STIFFNESS MATRIX, TRANSFORMATION TOWER, LUMPED
MASSES .. 74

C APPENDIX 3 .. 76
C.1 TRUSS CREATION SOURCE CODE .. 76

D APPENDIX 4 .. 85

VITA .. 88

ix

LIST OF TABLES

Table Page

1. Motivations/Objectives for This Research Work ... 4

2. 2003 x 2003 Size Fluid Flow eig Solution Time and Solution Accuracy 24

3. 1086 x 1086 Size Buckling of Hot Washer eig Solution Time and Solution

Accuracy ... 25

4. 420 x 420 Size Lumped Mass eig Solution Time and Solution Accuracy 25

5. 153 x 153 Size Transmission Tower eig Solution Time and Solution Accuracy 26

6. Fluid Flow Generalized Eigenvalues, Symmetric Stiffness Matrix, First 66

Eigen-Pairs .. 27

7. Fluid Flow Generalized Eigenvalues, Symmetric Stiffness Matrix, First 77

Eigen-Pairs .. 27

8. Fluid Flow Generalized Eigenvalues, Symmetric Stiffness Matrix, First 100

Eigen-Pairs .. 28

9. Fluid Flow Generalized Eigenvalues, Symmetric Stiffness Matrix, First 130

Eigen-Pairs .. 28

10. 11-bar Truss Examples with Different Damage Elements (Case 1, 2 and 3) 41

11. 48-bar Truss Example with 5 Damage Elements (Case 4) .. 43

12. Computation Time in Parallel Performance for Larger Scale Problem(Case 5) 44

13. Larger Scale Truss Example with 5 Damage Elements.. 45

14. Symmetric Stiffness Matrix, Module of an Offshore Platform, Properties 68

15. Symmetric Stiffness Matrix, Fluid Flow Generalized Eigenvalues, Properties 70

16. Symmetric Stiffness Matrix, Buckling of Hot Washer, Properties 72

17. Symmetric Stiffness Matrix, Medium Test Problem, Lumped Masses, Properties 73

18. Symmetric Stiffness Matrix, Transformation Tower, Lumped Masses, Properties 75

x

LIST OF FIGURES

Figure Page

1. A 6-Node, 11-Member Two-Dimensional Truss Structure .. 29

2. MATLAB Result for 11-bar Truss with 3 Damaged Members (1, 5, 10) 41

3. MATLAB Result for 11-bar Truss with 4 Damaged Members (1, 5, 7, 10) 42

4. MATLAB Result for 11-bar Truss with 5 Damaged Members (1, 3, 6, 7, 9) 42

5. MATLAB Result for 48-bar Truss Damaged Members (5, 13, 20, 35, 37) 43

6. MATLAB Result for Larger Truss Damaged Members (10, 37, 55, 529, 705) 45

7. Symmetric Stiffness Matrix, Module of an Offshore Platform 68

8. Symmetric Stiffness Matrix, Fluid Flow Generalized Eigenvalues 69

9. Symmetric Stiffness Matrix, Buckling of Hot Washer .. 71

10. Symmetric Stiffness Matrix, Medium Test Problem, Lumped Masses 73

11. Symmetric Stiffness Matrix, Transformation Tower, Lumped Masses, properties 74

1

CHAPTER 1

INTRODUCTION

During the past decades, substantial research efforts have been devoted to the development of

damage identification techniques for civil engineering structures with both simulation and

experimental studies. Based on the comprehensive literature reviews [1–3], vibration-based

damage identification (VBDI) approaches have been widely developed and become an important

research topic in the fields of civil, mechanical and aerospace engineering. Model-based

techniques, a class of VBDI approaches, can be utilized effectively for both damage localization

and quantification. In the techniques, an analytical or a numerical model (e.g. finite element

methods) is generally required to give eigen-solutions of the monitored structure. As a result,

performing eigen analysis with computational efficiency becomes one of the important factors

affecting the effectiveness of this kind of model-based techniques.

For an undamped vibrating structure with N degrees-of-freedoms, the “generalized eigen-

problem” [4-8] can be described by the following equation:

𝐾𝑁×𝑁𝜙 = 𝜆𝑀𝑁×𝑁𝜙 (1)

For solving the above “generalized” eigen-problem, efficient solutions, such as Subspace Iteration

[4, 7], Lanczos algorithms [4, 6-8] have been well documented in the literature. It should also be

2

mentioned that if the above NxN “Mass” matrix [M] becomes an Identity matrix [4], then the

above “generalized” eigen-problem will be simplified to the “standard” eigen-problem:

𝐾𝑁×𝑁𝜙 = 𝜆𝜙 (2)

In Eqs. (1-2), K, λ and 𝜙 represent the system “stiffness,” “eigen-values” and “eigen-vectors”

matrices, respectively. The Jacobi transformation/rotation family of algorithms [4-8] basically

transforms the standard/generalized eigen-problem into diagonal matrix for easily computing all

eigen-pairs.

1.1 Literature Surveys

Many researchers [4, 6-8] have considered the classical Jacobi rotation algorithm to transform

the symmetrical, “standard eigen-problem” into diagonal matrix with all eigen-values appeared

on its diagonal locations. Sameh and other researchers have extended the above classical (Jacobi

rotation) procedure into “parallel Jacobi” algorithm [9] by simply demanding several (instead of

only one) off-diagonal terms be driven to zero in each transformation. In Sameh’s prior work [9],

however, all eigen-pairs of the “standard eigen-problem” need to be computed.

Bathe and other researchers have incorporated the classical Jacobi transformation into the

subspace iteration algorithm [4] so that only the first few (or all) eigen-pairs can be found for the

3

“generalized eigen-problem.” Using the subspace iteration algorithm, the “sparse” matrix

operations can be easily exploited [4, 7, 10]. However, in Bathe’s prior works [4], only one (not

multiple) off-diagonal term at a time can be driven to zero.

1.2 Goals for This Study

The goals and objectives for this work are not only to extend the capability of the “stand-alone,

generalized eigen-solver” [as shown in Table 1], but also to incorporate the parallel generalized

eigen-solver into practical (real-life) engineering applications such as structural health

monitoring. In this present work, first, the Jacobi transformation algorithm is embedded inside

the subspace iteration algorithm to calculate the generalized eigen-problem of the monitored

structure.

To provide the effective computational procedure, a parallel computing strategy based on the

idea of making several off-diagonal terms to be simultaneously driven to zero is used for the

Jacobi transformation algorithm, which is called parallel subspace iteration and Jacobi

transformation (PSI-JT) algorithm. Then, the PSI-JT algorithm is incorporated into a two-phase

damage identification method to improving the quality of damage assessment results in terms of

the accurate solution and computational time.

4

Finally, 2-D and 3-D truss/bridge-type structures are presented to validate the superior

performance of the proposed damage identification approach.

Table 1. Motivations/Objectives for This Research Work

Standard

Eigen-

Problem

Generalized

Eigen-

Problem

Parallel

Computation^^

All

Eigen-

Pairs

Few Lowest

Eigen-Pairs

Sparse Dense

Sameh’s

early works

Yes No Yes Yes No No Yes

K.J. Bathe’s

early works

Yes Yes No Yes Yes Some Yes

This

dissertatio

n/work

Yes Yes Yes Yes Yes Yes Yes

^^ Several (not just one) off-diagonal terms can be driven to zero in each

transformation

The remaining sections of this dissertation will be organized as follows. After the introduction

section, the classical Jacobi transformation for the solution of the “generalized eigen-problem”

is briefly reviewed in Section 2.1. Next, in Section 2.2, explicit formulas (based on observed

pattern recognitions) for the triple products (matrix times matrix) operations are developed and

explained. Parallel computing strategies are presented in Section 2.3, for which Sameh’s prior

publications will be presented in a fashion such that the “explicit formulas” developed in Section

5

2.2 can be fully incorporated. Subspace iteration algorithm is summarized in Section 2.4, so that

only “few lowest eigen-pairs” specified by the user can be computed for the “generalized eigen-

problem.” Section 2.4 also shows that the stand-alone “Jacobi transformation” algorithm

(presented in Sections 2.2, and 2.3) are embedded inside the subspace iteration algorithm. In

Section 2.5, the superior performance (in terms of reduction in wall-clock time) of the parallel

PSI-JT algorithm is investigated by comparing to the well-established MATLAB built-in eigen-

solver such as the EIG function.

Existing damage detection and damage quantification are discussed in Section 3.1 and 3.2, for

which a “simple rule of thumb” is proposed in section 3.1 to improve the quality of damage

detection in bridge structures. Additional several numerical examples are presented in Section

3.3 to validate our claim for “improving the quality of damage detection” as compared to recently

published algorithms. Finally, conclusion and future research works are highlighted in Section 4.

1.3 Assumptions for This Study

The following assumptions are made in this work:

Assumption 1: Damage can be imposed on the structure by specifying the level of

damage (in percentage) occurred in certain members (not occurred in certain

joints). For example, if member #5 of a 2-D truss structure is damaged by 30 % (or

0.30), then every term of the 4x4 element stiffness matrix of the damage member

6

#5 can be computed based on the original (undamage) member #5 element

stiffness matrix, to be multiplied by the adjustment factor 0.70 (= 1.00 – 0.30).

Assumption 2: For practical applications, the few sensor-locations should be placed

at certain optimal locations (or at certain optimal degree-of-freedoms). Only the

frequencies and mode-shapes (or eigen-vectors) at these sensor-locations are

measured, while the information on system stiffness and mass matrices of the

damage structure are unavailable. Thus, in this work we have assumed that the L x

L eigen-vectors of the damage structure at the sensor-locations can be converted

(or transformed) into the “full” N x L eigen-vectors (where L << N) through any

existing model reduction methods (such as Guyan reduction method, Dynamic

reduction method, etc.), which utilize the available information on the original

(undamage) system stiffness and mass matrices.

7

CHAPTER 2

CLASSICAL JACOBI TRANSFORMATION AND THE GENERALIZED EIGEN PROBLEM

In the well-documented (classical) Jacobi transformation method, the original “stiffness” matrix

[K] and “mass” matrix [M] in Eq. (1) can be repeatedly transformed into diagonal matrices, [K*]

and [M*] respectively, through the Jacobi transformation as shown in Eqs. (3-4)

[𝐾𝑁×𝑁] [𝜙] = [𝜆] [𝑀𝑁×𝑁][𝜙]; K and M are symmetrical. (Eq. 1, repeated)

𝐾∗ = 𝑃1
𝑇 𝐾 𝑃1 (3)

𝑀∗ = 𝑃1
𝑇 𝑀 𝑃1 (4)

and the rotation (or transformation) matrix [𝑃1] can be defined as:

𝑃1
𝑇 = [

1 𝜃1 0 0
𝜃2 1 0 0
0
0

0
0

1
0

0
1

] (5)

In Eq. (5), we have assumed that the new off-diagonal terms for matrix 𝐾∗ at location (p, q) = (1,

2) to be driven to zero through the transformation shown in Eqs. (3-4). 𝜃1 and 𝜃2 are the 2

unknowns, which can be solved by applying the following equations:

8

𝐾12
∗ = 0, and 𝑀12

∗= 0 (6)

2.1. A Review of Jacobi Transformation for The Solution of the “Generalized Eigen-Problem”

The following derivation is valid, when k12 is intended to become zero. For the general case, two

unknowns should be placed in kij and kji locations.

𝐾∗ = 𝑃1
𝑇 K 𝑃1 (7)

 = [

1 𝜃1 0 0
𝜃2 1 0 0
0
0

0
0

1
0

0
1

] [

𝑘11 𝑘12 𝑘13 𝑘14
𝑘21 𝑘22 𝑘23 𝑘24
𝑘31
𝑘41

𝑘32
𝑘42

𝑘33
𝑘43

𝑘34
𝑘44

] [

1 𝜃2 0 0
𝜃1 1 0 0
0
0

0
0

1
0

0
1

] (8)

[

𝑘11 + 𝑘12𝜃1 𝑘11𝜃2 + 𝑘12 𝑘13 𝑘14
𝑘21 + 𝑘22𝜃1 𝑘21𝜃2 + 𝑘22 𝑘23 𝑘24
𝑘31 + 𝑘32𝜃1
𝑘41 + 𝑘42𝜃1

𝑘31𝜃2 + 𝑘32
𝑘41𝜃2 + 𝑘42

𝑘33
𝑘43

𝑘34
𝑘44

]

After performing the triple products shown in Eq. (8), 𝐾∗ is obtained as it is represented in

equation (9).

𝐾∗ = (9)

9

(𝒌𝟏𝟏 + 𝒌𝟏𝟐𝜽𝟏)

+𝜽𝟏(𝒌𝟐𝟏 + 𝒌𝟐𝟐𝜽𝟏)

(𝒌𝟏𝟏𝜽𝟐 + 𝒌𝟏𝟐)

+𝜽𝟏(𝒌𝟐𝟏𝜽𝟐 + 𝒌𝟐𝟐)
𝒌𝟏𝟑 + 𝜽𝟏𝒌𝟐𝟑 𝒌𝟏𝟒 + 𝜽𝟏𝒌𝟐𝟒

𝑠𝑦𝑚.
𝜃2(𝑘11𝜃2 + 𝑘12)

+(𝑘21𝜃2 + 𝑘22)
𝜃2 𝑘13 + 𝑘23 𝜃2𝑘14 + 𝑘24

𝑠𝑦𝑚. 𝑠𝑦𝑚. 𝑘33 𝑘34

𝑠𝑦𝑚. 𝑠𝑦𝑚. 𝑠𝑦𝑚. 𝑘44

Thus, 𝐾∗1,2 = 0 = (𝑘11𝜃2 + 𝑘12) + 𝜃1(𝑘21𝜃2 + 𝑘22) (10)

 𝑀∗
1,2 = 0 = (𝑀11𝜃2 +𝑀12) + 𝜃1(𝑀21𝜃2 +𝑀22) (11)

From Eqs. (10) & (11):

 𝜃1 =
−(𝑘11𝜃2+𝑘12)

(𝑘21𝜃2+𝑘22)
 =

−(𝑀11𝜃2+𝑀12)

(𝑀21𝜃2+𝑀22)
 (12)

Hence θ2 can be computed from equation (12), as shown in the following paragraph.

From Eq. (12), one obtains:

(𝑘11𝜃2 + 𝑘12) (𝑀21𝜃2 +𝑀22) = (𝑘21𝜃2 + 𝑘22) (𝑀11𝜃2 +𝑀12) (13)

10

𝑘11𝑀21𝜃2
2 + (𝑘11𝑀22+𝑘12𝑀21) 𝜃2 + (𝑘12𝑀22) = 𝑘21𝑀11𝜃2

2 +(𝑘21𝑀12+𝑘22𝑀11) 𝜃2 +

(𝑘22𝑀12)

(𝑘11𝑀21 - 𝑘21𝑀11) 𝜃2
2 + (𝑘11𝑀22+𝑘12𝑀21 - 𝑘21𝑀12 - 𝑘22𝑀11) 𝜃2 + (𝑘12𝑀22 - 𝑘22𝑀12) =

0 (14)

The above Eq. (14) can be expressed as:

(𝐴1)𝜃2
2 + (𝐵1)𝜃2 + (𝐶1) = 0 (15)

Hence,

 𝜃2 =
−𝐵1±√𝐵1

2−4𝐴1𝐶1

2𝐴1
 (assuming A1 ≠ 0) (16)

In Eq. (16), if the denominator 𝐴1 = 0; then from (Eq. (15), one obtains:

 𝜃2= -𝐶1 / 𝐵1 (17)

Finally, 𝜃1 can be found from Eq. (12)

The sign in front of the SQRT of Eq. (16) will be based on the sign of �̅�, defined as below.

11

�̅� = 𝐵1 = (𝑘11𝑀22+𝑘12𝑀21 - 𝑘21𝑀12 - 𝑘22𝑀11) (18)

After computing 𝜃2 [see Eq. (16), or Eq. (17)], and 𝜃1 [see Eq. (12)], matrix 𝑃1
𝑇 can be generated

as shown below:

𝑃1
𝑇 = [

1 𝜃1 0 0
𝜃2 1 0 0
0
0

0
0

1
0

0
1

] (19)

In the following steps, “explicit formulas” for the modified / transformed matrix K* and M*

should be developed (𝐾∗ = 𝑃1
𝑇 K 𝑃1, and M* = 𝑃1

𝑇 M 𝑃1). In the transformed matrix 𝐾∗ and 𝑀∗,

it is assumed the selected off-diagonal terms (𝑘12 = 𝑘21, 𝑎𝑛𝑑 𝑚12 = 𝑚21) should be driven to

zero.

The above procedure will be repeated until all the off-diagonal terms become zero. Equation 20

shows this procedure [4].

𝑃𝑁
𝑇…𝑃2

𝑇𝑃1
𝑇 K 𝑷𝟏𝑷𝟐…𝑷𝑵 = 𝐾∗ (20)

In Eq. (20), the matrix K* eventually becomes a diagonal (eigen-value) matrix, where N is the size

of 𝐾𝑁×𝑁. Furthermore, Eigen-Vectors matrix can also be identified from Eq. (20) [4, 7]:

12

First

Second

Last

 𝑷𝟏𝑷𝟐…𝑷𝑵 =𝜙 (21)

Based on Ref. [9], more than one off-diagonal terms can be driven to zero, which will also be

adopted in this work.

The most time-consuming part of the Jacobi Rotation procedure is the computation, which

involves with repeated matrix times matrix operations.

 𝑃𝑁
𝑇 … 𝑃2

𝑇 𝑃1
𝑇 K 𝑃1 𝑃2 … 𝑃𝑁

In this work, however, expensive matrix times matrix operations can be avoided by recognizing

the pattern of “explicit formulas” for 𝑃𝑖+1
𝑇 𝐾 𝑃𝑖+1, which will be explained in greater details in

the next section.

2.2 Development of “Explicit Formulas” For Triple Matrix Times Matrix Operations

We have observed that there are specific patterns in the result of 𝐾∗ = 𝑃1
𝑇 𝐾 𝑃1 [see Eq. (9)],

which will be repeated in every step of the procedure.

13

First of all, it is observed that the changes in matrix K* (as compared to matrix K) only happens in

the terms associated with the related rows and columns of matrix K (ith row and jth column for

the selected 𝐾𝑖𝑗, which will become zero, after the Jacobi transformation step 𝐾∗ =𝑃1
𝑇 𝐾 𝑃1 is

completed).

For better explanation, assuming that 𝐾12 [or 𝐾pq, where p=1, and q=2] is selected to become

zero after the Jacobi transformation. For the pairs (p, q), it can be defined:

• The “companion” row for “row p” is “row q,” and the “companion” row for “row q” is

“row p.”

• The “companion” column for “column p” is “column q,” and the “companion” column for

“column q” is “column p.”

Recalled Eqs. (7-8), 𝑃1 can be defined as:

 𝑃1= [

1 𝜃2 0 0
𝜃1 1 0 0
0
0

0
0

1
0

0
1

] (22)

𝑀𝑎𝑡𝑟𝑖𝑥 𝐾∗ can be computed as follows, based on Eqs. (3, 4, 9).

14

(𝒌𝟏𝟏 + 𝒌𝟏𝟐𝜽𝟏)

+𝜽𝟏(𝒌𝟐𝟏 + 𝒌𝟐𝟐𝜽𝟏)

(𝒌𝟏𝟏𝜽𝟐 + 𝒌𝟏𝟐)

+𝜽𝟏(𝒌𝟐𝟏𝜽𝟐 + 𝒌𝟐𝟐)
𝒌𝟏𝟑 + 𝜽𝟏𝒌𝟐𝟑 𝒌𝟏𝟒 + 𝜽𝟏𝒌𝟐𝟒

𝑠𝑦𝑚.
𝜃2(𝑘11𝜃2 + 𝑘12)

+(𝑘21𝜃2 + 𝑘22)
𝜃2 𝑘13 + 𝑘23 𝜃2𝑘14 + 𝑘24

𝑠𝑦𝑚. 𝑠𝑦𝑚. 𝑘33 𝑘34

𝑠𝑦𝑚. 𝑠𝑦𝑚. 𝑠𝑦𝑚. 𝑘44

In general, it has been observed that the transformation of all the components of 𝐾 matrix, can

be categorized in 3 different types. In other words, each of the components of matrix 𝐾 will be

transformed based on one of these three types.

These three types or categories are observed to be dependent on the location of the component

in the transformed matrix 𝐾ij
∗ as shown in Eq. (9). It is also observed that the developed formula

is independent of the location of selected 𝐾𝑖𝑗 (selected component to become zero). The

“explicit” formulas for each term 𝐾ij
∗ can be developed based on the observed patterns, as

described in the following paragraphs.

1. Type 1: All 𝐾𝑖𝑗 terms, which none of the indexes are either p=1 or q=2 (such as 𝐾33, 𝐾34 and

𝐾44). In other words, all terms 𝐾ij
∗ for which i ≠ p, q, and j ≠ q, p

15

These (type 1) terms will not change after the triple product matrix multiplications (𝐾∗ = 𝑃1
𝑇 K

𝑃1) and their values remain the same.

2. Type 2: All 𝐾𝑖𝑗 terms, which only one of the indexes are either p=1 or q=2 (such as 𝐾13, 𝐾14,

𝐾23, and 𝐾24). In other words, all terms 𝐾ij
∗ for which i = either p, or q and j ≠ p and j ≠ q.

These 𝐾ij
∗ terms can be computed based on the following “explicit” formula:

𝐾ij
∗ = 𝐾𝑖𝑗 +𝜃m * K (“companion” row for “row i,” j) (23)

The subscript m of 𝜃 can be found by looking at the “companion” row for “row i” of the rotation

matrix 𝑃1. Based on the “explicit” formula shown in Eq. (23), we can compute:

𝐾13
∗ = 𝐾13 + 𝜃m * K (“companion” row for “row 1,” 3)

𝐾13
∗ = 𝐾13 + 𝜃m* 𝐾23 (24)

Where the subscript m of 𝜃 can be found by looking at the “companion” row for “row i = 1” of

the rotation matrix 𝑃1. In this case, “companion” row for “row i = 1” is row 2 (by referring to p=1

and q=2). Thus, by looking at row 2 of matrix 𝑃1, it can be easily identified that 𝜃m = 𝜃1. Hence,

16

𝐾13
∗ = 𝐾13 + 𝜃1* 𝐾23 (25)

Similarly, we can compute:

𝐾24
∗ = 𝐾24 + 𝜃m * K (“companion” row for “row 2,” 4)

𝐾24
∗= 𝐾24 + 𝜃m* 𝐾14 (26)

where the subscript m of 𝜃 can be found by looking at the “companion” row for “row i = 2” of

the rotation matrix 𝑃1. In this case, “companion” row for “row i = 2” is row 1. Thus, by looking at

row 1 of matrix 𝑃1, it can be easily identified that 𝜃m= 𝜃2. Hence,

𝐾24
∗ = 𝐾24 + 𝜃2 * 𝐾14 (27)

3. Type 3: All 𝐾𝑖𝑗 terms, for which both indices are either p=1 or q=2 (such as 𝐾11, 𝐾12 and 𝐾22).

In other words, all terms 𝐾ij
∗ for which i = either p, or q and j = either p, or q.

These 𝐾ij
∗ terms can be computed based on the following 2 steps:

17

Step 3.1: In this step, the “exact, same” procedure as explained in Type 2 is followed. For

example,

𝐾12
∗ = 𝐾12 + 𝜃m * K (“companion” row for “row 1,”2)

𝐾12
∗ = 𝐾12^^ + 𝜃m * 𝐾22^^ (28)

Then, referring to row 2 of matrix 𝑃1, the proper subscript m for theta is obtained, hence

𝐾12
∗ = 𝐾12^^ + 𝜃1 * 𝐾22^^ (29)

Step 3.2: In this step 𝐾12^^, shown in Eq. (29), is replaced by the following formulas:

𝐾12^^ = 𝐾12 + 𝜃r * K (1, ”companion” column for “column 2”) (30)

𝐾12^^ = 𝐾12+ 𝜃r * 𝐾11

where, the subscript “r” of 𝜃 can be obtained by referring to column 1 of matrix 𝑃1
𝑇. Thus,

18

𝐾12^^ = 𝐾12 + 𝜃2 * 𝐾11 (31)

Similarly, Replacing K (2,2)^^, shown in Eq. (29), by the following formulas:

𝐾22^^ = 𝐾22+ 𝜃s * K (2, “companion” column for “column 2”) (32)

𝐾22^^ = 𝐾22+ 𝜃s * 𝐾21 (33)

where, the subscript “s” of 𝜃 can be obtained by referring to column 1 of matrix 𝑃1
𝑇.

Thus:

𝐾22^^ = 𝐾22+ 𝜃2* 𝐾21 (34)

Finally, substituting Eqs. (31, 34) into Eq. (29), one obtains

𝐾12
∗ = { 𝐾12+ 𝜃2* 𝐾11 } + 𝜃1 * { 𝐾22+ 𝜃2 * 𝐾21 } (35)

Similar procedures can be used to compute 𝐾11
∗, and 𝐾22

∗ for these type 3 terms of matrix [K*].

19

2.3 Parallel Computing Strategies for Jacobi Transformation Algorithm

Sameh presented an algorithm [9] that can zero-out several off-diagonal terms (row “p,” column

“q”) simultaneously, for the “Standard NxN Eigen-Problem.” This idea can also be applied for the

“Generalized NxN Eigen-Problem,” where p and q are sequences defined by Sameh [9], in which

p & q can be swapped, so that p is less than q. The complete algorithm (to systematically identify

all the off-diagonal locations (p, q) of matrix [K]) driven by Sameh is presented in his early work

in detail [9] and can be conveniently summarized here, as follows:

a) For k = 1, 2, …, m-1 [where m = n / 2; and k = step #]

q = m – k + 1, m – k + 2, … , n – k,

p = (2m – 2k + 1) – q, if m – k + 1 ≤ q ≤ 2m – 2k

p = (4m – 2k) – q, if 2m – 2k < q ≤ 2m – k - 1

p = n, if 2m – k – 1 < q

b) For k = m, m+1, … , 2m-1

q = 4m – n - k, 4m – n - k + 1, … , 3m – k – 1,

p = n, if q < 2m – k + 1

p = (4m – 2k) – q, if 2m – k + 1 ≤ q ≤ 4m – 2k - 1

p = (6m – 2k – 1) - q, if 4m – 2k – 1 < q

20

Example 1: For a 4x4 matrix [K]; n = 4; k = step # = 1, 2, …., n-1 = 3;

For each step m = n/2 = 2 off-diagonal terms are simultaneously driven to zero. Applying the

above algorithm, the following steps are produced:

• step #1: (p, q) = (1,2) & (3,4)

• step #2: (p, q) = (2,4) & (1,3)

• step #3: (p, q) = (1,4) & (2,3)

Example 2: For a 6x6 matrix [K]; n = 6; k = step # = 1, 2, …., n-1 = 5 F

or each step m = n/2 = 3 off-diagonal terms are simultaneously driven to zero. Applying the above

algorithm the pairs are as below:

• step #1: (p, q) = (2,3), (1,4) & (5,6)

• step #2: (p, q) = (1,2), (3,5) & (4,6)

• step #3: (p, q) = (3,6), (2,4) & (1,5)

• step #4: (p, q) = (2,6), (1,3) & (4,5)

• step #5: (p, q) = (1,6), (2,5) & (3,4)

Extension of Ref. [9] for Parallel Jacobi Transformation of “Generalized Eigen-Problems” is

described in the following part of this section.

The generalized eigen-equations, see Eq. (1), can be re-stated as

21

[𝐾𝑁×𝑁] [𝜙] = [𝜆] [𝑀𝑁×𝑁][𝜙] (36)

In eq (36), 𝐾 is a Symmetrical Positive Definite (SPD) “stiffness” matrix.

𝐾∗ = 𝑃1
𝑇 𝐾 𝑃1 (3, repeated)

𝑀∗ = 𝑃1
𝑇 𝑀 𝑃1 (4, repeated)

Assuming the off-diagonal terms of matrix K* and M*, at locations (p, q) = (1, 2) & (p, q) = (3, 4),

are intended to be driven to zero. Thus,

𝑃1
𝑇 = [

1 𝜃1 0 0
𝜃2 1 0 0
0
0

0
0

1
𝜃4

𝜃3
1

] (37)

The 4 unknowns 𝜃1, 𝜃2, 𝜃3 and 𝜃4 can be solved by employing 4 associated equations 𝐾12
∗ = 0 =

𝐾34
∗ = 𝑀12

∗= 𝑀34
∗, and using similar “explicit formulas” developed in Section 2.1 of this

dissertation.

2.4 Subspace Iteration

22

Subspace Iteration and Lanczos Algorithms [4-8] have been used extensively in the engineering

communities for solving the generalized eigen-problem

𝐾𝑁×𝑁𝜙 = 𝜆𝑀𝑁×𝑁𝜙 (36, repeated)

The details of “Subspace Iteration” algorithm is presented in the following step-by-step

procedure:

Step 1: Guess [𝑋𝑘]𝑁×𝐿 , where L≪ N and L ≈ (2 to 4) × (# lowest Eigen Pairs desired)

Step 2: The following equation is developed

[K] �̅�𝑘+1 = [M] 𝑋𝑘 (38)

The unknown, [�̅�𝑘+1], can be solved by sparse equation solver [6-8, 10], where K and M are sparse

(SPD = Symmetric Positive Definite) matrices.

Step 3: Reduced problem is created in this step by applying the result from previous step to

original stiffness and mass matrices. The following “reduced” stiffness and “reduced” mass

matrices are obtained:

23

 [𝐾𝑅𝑒𝑑𝑢𝑐𝑒]
𝐿×𝐿

 = [�̅�𝑘+1
𝑇]

𝐿×𝑁
 [𝐾] 𝑁×𝑁 [�̅�𝑘+1]

𝑁×𝐿
 (39)

 [𝑀𝑅𝑒𝑑𝑢𝑐𝑒]
𝐿×𝐿

 = [�̅�𝑘+1
𝑇]

𝐿×𝑁
 [𝑀] 𝑁×𝑁 [�̅�𝑘+1]

𝑁×𝐿

Step 4: Solve for all eigen-pairs of the Generalized (Dense) Reduced Eigen-Problem [see Jacobi

transformation with explicit formulas in Section 2.2]:

 [𝐾𝑅] 𝐿×𝐿[𝐸_𝑉𝑒𝑐𝑡𝑜𝑟𝑠] 𝐿×𝐿 = [𝐸_Values] 𝐿×𝐿 [𝑀𝑅] 𝐿×𝐿 [𝐸_𝑉𝑒𝑐𝑡𝑜𝑟𝑠] 𝐿×𝐿 (40)

Step 5: In this step the guessed (eigen-vector) matrix [X] is being update using equation (41).

 [𝑋𝑘+1]𝑁×𝐿 = [�̅�𝑘+1]
𝑁×𝐿

 × [𝐸_𝑉𝑒𝑐𝑡𝑜𝑟𝑠] 𝐿×𝐿 (41)

If the algorithm converges, then the subspace iteration process stops, if the algorithm is not

converged, then, returns to Step 2, and replaces Xk by Xk+1. This procedure will continue until

the convergence achieved [4].

2.5 Numerical Examples for Subspace Iteration with Jacobi Rotation (PSI-JT) for Eigen-Problems

24

In this section, several illustrative test examples are used to evaluate the performance of the

proposed PSI-JT algorithm, in both MATLAB sequential and parallel computing environments. The

results for eigen-solutions, and wall-clock time are reported in Tables 2-5.

All the examples are real world eigen value problems, which shows the PSI-JT algorithm super

performance in comparison with MATLAB built-in function.

Table 2. 2003 x 2003 Size Fluid Flow eig Solution Time and Solution Accuracy

Requested

Eigenvalue

PSI-JT algorithm MATLAB “eig”

2 2.449043

(9 subspace iteration)

2.458226

(9 subspace iteration)

4 2.742210

(8 subspace iteration)

2.454659

(8 subspace iteration)

10 6.689142

(8 subspace iteration)
Not converged

27 102.968629

(8 subspace iteration)
Not converged

63 2027.442472

(7 subspace iteration)
Not converged

25

Table 3. 1086 x 1086 Size Buckling of Hot Washer eig Solution Time and Solution Accuracy

Requested

Eigenvalue

PSI-JT algorithm MATLAB “eig”

2 1.916372

(9 subspace iteration)

1.650959

(27 subspace iteration)

4 2.348291

(11 subspace iteration)

1.449550

(20 subspace iteration)

10 5.795341

(8 subspace iteration)

Not converged

27 98.628914

(8 subspace iteration)

Not converged

63 2016.937281

(7subspaceiteration)

Not converged

Table 4. 420 x 420 Size Lumped Mass eig Solution Time and Solution Accuracy

Requested

Eigenvalue

PSI-JT algorithm MATLAB “eig”

2 0.199795

(9 subspace iteration)

0.092030

(11 subspace iteration)

4 0.376640

(7 subspace iteration)

0.091801

(7 subspace iteration)

10 4.459468

(7 subspace iteration)

Not converged

20 1405.341492

(7 subspace iteration)

Not converged

26

Table 5. 153 x 153 Size Transmission Tower eig Solution Time and Solution Accuracy

Requested

Eigenvalue

PSI-JT algorithm MATLAB “eig”

2 0.078787

(4 subspace iteration)

0.010875

(4 subspace iteration)

4 0.316909

(7 subspace iteration)

0.020544

(9 subspace iteration)

10 3.417312

(8 subspace iteration)

Not converged

20 30.654872

(7 subspace iteration)

Not converged

27 1602.563036

(8 subspace iteration)

Not converged

28 2690.135469

(8 subspace iteration)

Not converged

To follow, a different number of eigen-pairs for a specific problem is requested. The parallel

performance and time comparison for this example using different number of processors are

represented in Tables 6-9. This example is a real-world fluid flow eigen-value problem, in which

the stiffness matrix is a module of an offshore platform [Refs. 23]. The stiffness matrix has exactly

3948 rows and 3948 columns. It is a sparse, symmetric positive definite matrix that is a structural

full rank matrix. A high number of components makes it time consuming for non-parallel

algorithms to solve and order the eigen-pairs of such matrix. However, by using the proposed

algorithm a few numbers of eigen-pairs can be found in a reasonable amount of time.

27

Table 6. Fluid Flow Generalized Eigenvalues, Symmetric Stiffness Matrix, First 66 Eigen-Pairs

Requested

Eigenvalue

Entire

subspace

iteration 1

processor

(sec)

1 processor

time (sec)

Entire

subspace

iteration 2

processors

(sec)

2

processor

time (sec)

Entire

subspace

iteration 3

processors

(sec)

3

processors

time (sec)

Entire

subspace

iteration 4

processors

(sec)

4

processors

time (sec)

66 896.455950
1102.822512
1261.487762
895.840537
590.352192
422.939290

895.378442
1101.811450
1260.467557
894.852254
589.355626
421.939288

603.305860
730.748058
856.724612
608.52093
389.60349
280.34919

602.345941
729.745724
855.684254
607.505687
388.605737
279.365551

599.162143
725.859754
815.686974
591.797457
386.427996
281.492801

598.197305
724.858474
814.699774
590.830891
385.435389
280.537490

542.307915
667.134515
763.602743
541.680371
350.564300
254.537911

541.302544
666.160063
762.586148
540.677359
349.563550
253.554994

Average 861.6497 860.6341 578.2087 577.2088 566.7379 565.7599 519.9713 518.9741
Speed

Ratio

1

1.491027

1.5212

1.658337

Efficiency
100%

74.5%

50.7%

41.4%

Table 7. Fluid Flow Generalized Eigenvalues, Symmetric Stiffness Matrix, First 77 Eigen-Pairs

Requested

Eigenvalue
Entire

subspace

iteration 1

processor

(sec)

1 processor

time (sec)
Entire

subspace

iteration 2

processors

(sec)

2

processor

time (sec)

Entire

subspace

iteration 3

processors

(sec)

3

processors

time (sec)

Entire

subspace

iteration 4

processors

(sec)

4

processors

time (sec)

77 831.959080
1051.925227
1048.577007
743.936809
523.077149
436.999096
393.059580

830.658220
1050.620045
1047.274977
742.619260
521.780760
435.712405
391.798155

713.884270
880.492157
865.129932
607.147950
426.449668
348.092683
334.649933

712.550378
879.018793
863.853816
605.873926
425.161826
346.781326
333.348337

681.975138
817.823681
863.766488
617.980968
415.184607
343.967879
309.103373

680.613784
816.488608
862.427766
616.640425
413.828006
342.706388
307.825279

606.455958
752.659846
770.183558
550.739695
390.863231
326.716534
293.608608

605.202129
751.401258
768.925017
549.483642
389.598018
325.461272
292.369932

Average 718.5048 717.2091 596.5495 595.2269 578.5432 577.2186 527.3182 526.063
Speed Ratio

1
1.204934

1.242526

1.363352

Efficiency
100%

60%

41.4%

34%

28

Table 8. Fluid Flow Generalized Eigenvalues, Symmetric Stiffness Matrix, First 100 Eigen-Pairs

Requested

Eigenvalue
Entire

subspace

iteration 1

processor

(sec)

1 processor

time (sec)
Entire

subspace

iteration 2

processors

(sec)

2 processor

time (sec)
Entire

subspace

iteration 3

processors

(sec)

3 processors

time (sec)
Entire

subspace

iteration 4

processors

(sec)

4 processors

time (sec)

100 1789.793154
2187.909222
2011.821475
1751.386294
1235.837517
982.869197
805.975200

1788.015892
2186.397163
2010.273289
1749.809894
1234.150799
981.286765
804.441556

1183.647068
1482.387773
1363.752152
1144.917301
801.335118
631.880441
517.550627

1182.113589
1480.840859
1362.213095
1143.397802
799.791688
630.311019
515.988933

1089.22413
1304.322926
1320.355531
1056.207567
840.833167
679.717967
571.278204

1087.59278
1302.711819
1318.70554
1054.589811
839.214997
678.119807
569.617665

1057.477909
1346.470352
1222.838462
1066.126696
758.246017
586.747670
485.437057

1055.889081
1344.894885
1221.248836
1064.553007
756.671522
585.171944
483.870980

Average 1537.942 1536.339 1017.924 1016.38 980.2771 978.6503 931.9063 930.3286
Speed Ratio

1
1.51158

1.569855

1.651394

Efficiency
100%

75%

52%

41%

Table 9. Fluid Flow Generalized Eigenvalues, Symmetric Stiffness Matrix, First 130 Eigen-Pairs

Requested

Eigenvalue
Entire

subspace

iteration 1

processor

(sec)

1 processor

time (sec)
Entire

subspace

iteration 2

processors

(sec)

2 processor

time (sec)
Entire

subspace

iteration 3

processors

(sec)

3 processors

time (sec)
Entire

subspace

iteration 4

processors

(sec)

4 processors

time (sec)

130 4674.504531

5317.978785

5758.926719

4693.046095

3862.506603

3195.744506

2561.290700

2349.782457

2138.589593

4672.470960

5315.944539

5756.906390

4691.039332

3860.490993

3193.679225

2559.251701

2347.762727

2136.548267

2914.733795

3324.582042

3607.435549

2946.655990

2458.863334

2019.590105

1633.518384

1482.917552

1360.015090

2912.711002

3322.546426

3605.413389

2944.637561

2456.850108

2017.597980

1631.485206

1480.925914

1358.008694

2798.485735

3211.935270

3525.006478

2912.528066

2474.853233

2006.354640

1656.405730

1519.861581

1359.840351

2796.439071

3209.894113

3522.958084

2910.519497

2472.807510

2004.329649

1654.390045

1517.850097

1357.800250

2694.347694

3022.486226

3302.339200

2711.994936

2289.757198

1869.879441

1523.149886

1373.881566

1276.555119

2692.321249

3020.435974

3300.250400

2709.959192

2287.742729

1867.833520

1521.121354

1371.864847

1274.509227

Average 3839.152 3837.122 2416.479 2414.464 2385.03 2382.999 2229.377 2227.338
Speed

Ratio

1

1.589223

1.610207

1.722739

Efficiency
100%

79.5%

53.6%

43%

29

CHAPTER 3

EXISTING DAMAGE DETECTION AND NEW/PROPOSED ALGORITHMS

Damage detection in structures, specifically bridge type structures, is an important subject. Due

to its important application in real world problems, this topic attracts a lot of old and new scholars

to research on this topic. A lot of researchers have investigated damage detection or health

monitoring problems and presented methods [11-18].

In this chapter, a two-phase method is presented for damage detection using a “simple rule of

thumb” for structural damage detection and quantification. The merit of the present two-phase

method over other exiting two-phase methods [13,14] is that a simple but efficient “rule of

thumb” is proposed for the improvement in damage detection, together with the parallel PSI-JT

algorithm that is incorporated to effectively compute for the generalized eigen-problem.

Figure 1. A 6-Node, 11-Member Two-Dimensional Truss Structure

30

To illustrate damage localization and quantification process of the two-phase method, an

example of a 2-D Truss/Bridge Structure, shown in Figure 1, is used herein. In Figure 1, the lengths

of each member, the cross-sectional area of each member, the material density and Youngs

modulus are user’s input parameters. In general, the Finite Element Method (FEM) will be based

on the type of structure we wish to analyze. This illustrative example is based on a 2-D

Truss/Bridge type structure. Using FEM, a structure can be analyzed under (a) undamaged

(original) condition, and (b) damaged condition.

Once the frequencies (related to eigen-values) & mode-shapes (eigen-vectors) of the damage

structure is measured (via optimal locations of sensors), the proposed method can robustly

detect the “location (Phase ½) and the severity (Phase 2/2)” of damage members. The step-by-

step numerical procedures of this two-phase method can be summarized in the following

sections.

3.1. Phase 1/2: Detect/Identify Damage Members

Step 1.0 Finite Element Analysis of “Original” (Undamage) Structure

In this step, first the element stiffness [𝑘𝐿
(𝑒)] matrices, and the element diagonal/lumped mass

[𝑚𝐿
(𝑒)] matrices are computed.

31

Then, the global stiffness [𝐾] = ∑[𝑘𝐺
(𝑒)] matrix, and the global [𝑀] = ∑[𝑚𝐺

(𝑒)] diagonal/ lumped

mass matrix is assembled. Using MATLAB command equation (42) is driven.

[𝜙, 𝜆] = 𝐸𝐼𝐺(𝐾𝑏𝑐 ,𝑀𝑏𝑐) (42)

Then, the Eigen Values ([𝜆] and frequencies, 𝜔𝑖) can be obtained, and the corresponding Eigen

Vectors (mode-shapes 𝜙𝑖) can be identified through the matrix [𝜙]. MATLAB “EIG” command

will solve the “generalized” eigen-equation:

[𝐾𝑏𝑐]𝜙𝑖
∗ = 𝜔𝑖

2[𝑀𝑏𝑐] 𝜙𝑖
∗ (43)

Next, the mass-orthonormalized scalar of each eigen vector is computed.

{𝜙𝑖
∗}𝑇[𝑀𝑏𝑐]{𝜙𝑖

∗} = scalar = 𝑐𝑖 (44)

{𝜙𝑖} =
{𝜙𝑖

∗}

√𝑐𝑖
 (45)

Thus,

𝐹𝑈�̃� = 𝐹𝑈𝑛𝐷𝑎𝑚𝑎𝑔𝑒𝑑̃ =∑
1

𝜔𝑖

𝑁𝐿𝑀
𝑖=1 𝜙𝑖 𝜙𝑖

𝑇; where NLM = Number of Lowest Modes (46)

32

Step 2.0 (very similar to Step 1.0)

Using FEM, the associated damaged structure is also analyzed. In real life structure, the

measurements of frequencies & mode shapes would come from sensors installed on the

structure at key locations. For our example, “artificial damage” is applied to elements #1, #5 and

#10 of the mentioned example [see Figure 1], with stiffness reduction of 80%, 70% and 90% for

those 3 elements, respectively.

In this step, it would be desirable to compute the element stiffness matrices [𝑘𝐿
(𝑒)] with damage

members. However, the element mass [𝑚𝐿
(𝑒)] diagonal matrices with no damage applied is

required to be used.

Next, the global damaged stiffness [𝐾] = ∑[𝑘𝐺
(𝑒)], and the global [𝑀] = ∑[𝑚𝐺

(𝑒)] diagonal

lumped mass matrices are assembled respectively. Then, boundary conditions are applied on the

system’s stiffness and mass matrices [𝐾𝑏𝑐] and [𝑀𝑏𝑐], respectively. Using the MATLAB command

represents in equation (47) the eigen pairs are obtained.

 [𝜙, 𝜆] = 𝐸𝐼𝐺(𝐾𝑏𝑐 , 𝑀𝑏𝑐) (47)

Then, the Eigen Values ([𝜆] and frequencies 𝜔𝑖) is obtained. The corresponding Eigen Vectors

(mode- shapes 𝜑𝑖) can be identified by the matrix [𝜙]. MATLAB command EIG will solve the

“generalized” eigen-equation represented in eq (48).

33

[𝐾𝑏𝑐]𝐷𝜙𝑖
∗ = 𝜔𝑖

2[𝑀𝑏𝑐] 𝜙𝑖
∗ (48)

Remarks: After obtaining the eigen-solution for damage structure, it is pretended that the

damage members and their severities are unknown.

Then, the Mass-Orthonormalized scalar of each eigen vector is computed.

{𝜙𝑖
∗}𝑇[𝑀𝑏𝑐]{𝜙𝑖

∗} = scalar = 𝑐𝑖 (49)

{𝜙𝑖} =
{𝜙𝑖

∗}

√𝑐𝑖
 Thus, (50)

�̃�𝐷 = �̃�𝐷𝑎𝑚𝑎𝑔𝑒𝑑 = ∑
1

𝜔𝑖
2

𝑁𝐿𝑀
𝑖=1 𝜙𝑖 𝜙𝑖

𝑇 (51)

�̃�𝛥 = �̃�𝑈𝐷 - �̃�𝐷 (52)

[𝑈, 𝑆, 𝑉] = 𝑆𝑉𝐷(𝐹�̃�) (53)

Then by using MATLAB “SVD” command, which is represented in eq (53). the given matrix [see

Eq. (52)] into its triple products is decomposed, where the second (or middle) matrix is a diagonal

matrix, and the first & third matrices are ORTHOGONAL matrices:

�̃�𝛥 = [𝑈][𝜀][𝑉]𝑇 (54)

34

 = [[𝑈1] [𝑈0]] [
[𝜀1] [0]

[0] [0]
] [[𝑉1] [𝑉0]]

𝑇 (55)

“If the column vectors in the matrix [𝑉0] are treated like different loading conditions/vectors [19,

20], then the stresses of damage elements will be equal to zero.” In practical application, we

should use “Strain Energy” 𝐸𝑖
(𝑒)

, instead of stress associated with each eth element, and check for

low strain elements [13-14].

𝐸𝑖
(𝑒)
=

1

2
{𝑑𝐿

(𝑒)
}
𝑇

[𝑘𝐿
(𝑒)
] 𝑑𝐿

(𝑒)
= scalar; (56)

where i = 1,2,3,… ndlv = number of damaged location vectors = # of columns of the sub-matrix

[𝑉0].

Notes: the above elements’ strain energy is associated with the “original (undamage)” structure,

since the goal of Phase 1 is to find and identify “which members are damaged.”

{𝑑𝐿
(𝑒)
} = [𝑅(𝑒)]𝑑𝐺

(𝑒)
 (57)

where:

[𝑅(𝑒)] = [

𝐶𝑥 𝑆𝑥
−𝑆𝑥 𝐶𝑥

0 0
0 0

0 0
0 0

𝐶𝑥 𝑆𝑥
−𝑆𝑥 𝐶𝑥

] ; 𝑎𝑛𝑑 𝐶𝑥 =
𝑥𝑗−𝑥𝑖

𝐿(𝑒)
 ; 𝐶𝑦 =

𝑦𝑗−𝑦𝑖

𝐿(𝑒)
 (58)

35

 𝐿(𝑒) = √(𝑥𝑗 − 𝑥𝑖)
2
+ (𝑦𝑗 − 𝑦𝑖)

2
 (59)

Instead of using Stress, or Strain Energy for each element, we use the “Normalized Cumulative

Energy,” or “NCE” for each element [21,22], which is defined as

�̅�(𝑒) =
𝜓(𝑒)

max
𝑘
{𝜓𝑘}

 (60)

where,𝜓(𝑒) = ∑
𝐸𝑖
(𝑒)

max
𝑘
{𝐸𝑖
𝑘}

𝑛𝑑𝑙𝑣
𝑖=1 (61)

For each eth element (corresponding to the ith loading case), 𝐸𝑖
(𝑒)

 is computed as shown above

for the undamage case. Within each ith loading case, the max value among all elements “e” is

found and the max
𝑘
{𝐸𝑖

𝑘} is obtained. Then, Eq. (61) is applied to compute 𝜓(𝑒).

Among all 𝜓(𝑒) values computed, the max value = max
𝑘
{𝜓𝑘} is found and Eq. (60) is applied to

compute “NCE” ≡ �̅�(𝑒). Based on the computed “NCE” = �̅�(𝑒), eq (62) is obtained.

36

�̅�(𝑒) =

{

�̅�(1)

�̅�(2)

�̅�(3)

�̅�(4)

�̅�(5)

�̅�(6)

�̅�(7)

�̅�(8)

�̅�(9)

�̅�(10)

�̅�(11)}

=

{

𝑣𝑒𝑟𝑦 𝑐𝑙𝑜𝑠𝑒 𝑡𝑜 𝑧𝑒𝑟𝑜 (𝑒𝑣𝑒𝑛 𝑤ℎ𝑒𝑛 3 𝑜𝑟 4 𝑙𝑜𝑤𝑒𝑠𝑡 𝑚𝑜𝑑𝑒𝑠 𝑢𝑠𝑒𝑑)

�̅�(2)

�̅�(3)

�̅�(4)

𝑣𝑒𝑟𝑦 𝑐𝑙𝑜𝑠𝑒 𝑡𝑜 𝑧𝑒𝑟𝑜 (𝑒𝑣𝑒𝑛 𝑤ℎ𝑒𝑛 3 𝑜𝑟 4 𝑙𝑜𝑤𝑒𝑠𝑡 𝑚𝑜𝑑𝑒𝑠 𝑢𝑠𝑒𝑑)

�̅�(6)

�̅�(7)

�̅�(8)

�̅�(9)

𝑣𝑒𝑟𝑦 𝑐𝑙𝑜𝑠𝑒 𝑡𝑜 𝑧𝑒𝑟𝑜 (𝑤ℎ𝑒𝑛 6 𝑙𝑜𝑤𝑒𝑠𝑡 𝑚𝑜𝑑𝑒𝑠 𝑢𝑠𝑒𝑑)
𝑒𝑥𝑎𝑐𝑡𝑙𝑦 𝑧𝑒𝑟𝑜 (𝐸𝑙𝑒𝑚𝑒𝑛𝑡 #11 𝑖𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑏𝑦 2 𝑝𝑖𝑛𝑛𝑒𝑑 𝑛𝑜𝑑𝑒𝑠)}

above formula………… ……………………………………………………………………………………………….(62)

Notice that �̅�(11) is exactly zero. However, element #11 should NOT be considered as a damage

element, because this element has 2 end nodes which are fully constrained by 2 pinned (Dirichlet

boundary condition) supports. This element has its nodal displacements equal to zero, thus it has

no stress and has zero “normalized cumulative energy.”

3.2. Phase 2/2: Determine the Level of Severity for Those Few Damage Members

Using optimization techniques, such as Genetic Algorithm (GA), or Differential Evolution (DE),

etc., one can find the level (or amount) of damage occurred in elements # (1), # (5) and # (10)

that have already been found/identified in Phase 1/2.

Let �⃗� = the unknown amount of damage in the truss elements # (1), # (5) and # (10).

37

�⃗� = {

𝑥(1) = [0.00 → 1.00]

𝑥(2) = [0.00 → 1.00]

𝑥(3) = [0.00 → 1.00]

} (63)

Thus, the optimization problem can be stated. The unknown vector �⃗� is found, such that the

OBJECTIVE function 𝛤(�⃗�), defined in eq. (64), is minimized [22].

Min. 𝛤(�⃗�) = 1 −𝑀𝐷𝐿𝐴𝐶(�⃗�) + ∑
‖𝜙𝐷𝑀,𝑖−𝜙𝐷𝐴,𝑖(�⃗�)‖

‖𝜙𝐷𝑀,𝑖‖

𝑁𝐿𝑀
𝑖=1 (64)

In eq. (64), 𝜙𝐷𝑀,𝑖 = the ith damaged mode shape, which can be obtained by measurements (using

sensors at strategic/optimal locations), in real-life/practical applications.

𝜙𝐷𝐴,𝑖(�⃗�) = the ith analytical (damage) mode-shape, associated with the current amount of

damage vector �⃗�, found by the optimization (GA, or DE, etc…) process. In this dissertation

example, the actual measurements have not been taken. Instead, artificially created damage

conditions to VALIDATE the numerical procedures.

𝑀𝐷𝐿𝐴𝐶(�⃗�) =
|𝛥𝑓𝑇𝛿𝑓(�⃗�)|

2

(𝛥𝑓𝑇𝛥𝑓)(𝛿𝑓𝑇(�⃗�)𝛿𝑓(�⃗�))
 ≤ 1 (65)

The right-hand side of the above inequality can be easily verified by Cauchy’s inequality, and

38

𝛥𝑓 =
‖𝑓𝑢𝑑−𝑓𝐷𝑀‖

‖𝑓𝑢𝑑‖
 (66)

𝛿𝑓(�⃗�) =
‖𝑓𝑢𝑑−𝑓𝐷𝐴(�⃗�)‖

‖𝑓𝑢𝑑‖
 (67)

“If” 𝑓𝐷𝑀 = 𝑓𝐷𝐴(�⃗�), as the measured frequency vector of the damage structure is equal to the

analytical (damage) frequency vector, “Then,” the Eqs. (66-67) will lead to 𝛥𝑓 = 𝛿𝑓(�⃗�) , and

Eq. (65) will become 𝑀𝐷𝐿𝐴𝐶(�⃗�) = 1.

Hence the Minimum value for the objective function will become [see Eq. (64)]:

Min. 𝛤(�⃗�) = 1 – [MDLAC(x) = 1] + {summation term = 0} = 0

In this work, a “simple rule of thumb” has been added for improving damage detection phase.

This rule of thumb basically states that “if the Normalized Cumulative Energy of an element is

less than or equal to a specific factor, say 10 (based on our numerical experience) times min

(�̅�(𝑒)), then that member should also be considered as a damage element.” However, this “rule

of thumb” should obviously NOT be applied for finding the minimum energy for any member

with fully constraints at its end nodes, such as member 11 of Figure 1).

𝐸(𝑒) ≤ 10 × min (�̅�(𝑒)) (68)

39

3.3. Numerical Examples for Damage Detection and Damage Quantification

In this Section, several numerical examples are used to evaluate the performance of the proposed

“simple rule of thumb,” which basically modify the existing algorithms for Damage Detection and

Damage Quantification of Bridge-type Structures.

Comparisons between existing algorithms [13, 14], and the proposed “simple/inexpensive rule

of thumb” are reported in Tables 10, 11 and 13, and in Figures 2-5. All the figures are the last

iteration results, which the meaning of each diagram is explained in follow.

In all figures, the upper diagram, X-axes show the “number of variations,” which represents the

number of damage elements (for instance, the number of bars shows the number of damage

elements), and Y-axes named as “current best individual” show the severity of damage elements

for each of the damage members.

In the lower diagram, the X-axis shows “score” that indicates the fitness (objective) function

value, and this Y-axis also shows number of populations, which falls within the score ranges.

It is worth mentioning that these figures have been created by MATLAB software automatically

and represent the convergence of the problem to the results, which are shown in these figures.

In other words, upper figure shows the number of damage members and their damage severities,

and the lower figure shows the number of individuals and their respective fitness value range

40

(for example, in figure 2, almost 30 individuals in the population has the fitness value in range of

0.2-0.5x10−3). Summation of all bars’ heights in the lower diagram gives the population size

generated by MATLAB code.

In this work, different sizes for 2-D and 3-D truss/bridge-type problems have been investigated,

using the proposed algorithm. In each example, some elements are considered to be damaged

with different levels of severity. It is shown in the following problems that the improved

algorithm, can easily recognize the damage elements and their severities (either low or high),

regardless of the input amount of severities on damage elements. It is worth mentioning that

existing algorithms [13, 14] are unable to detect all of the damage members, especially those

with low severity, in some cases, as it is fully described in the related papers [13, 14].

41

Table 10. 11-bar Truss Examples with Different Damage Elements (Case 1, 2 and 3)

3 damage elements 4 damage elements 5 damage elements

Damage

Element

Damage

Severity

Detected

elements

by

existed

alg.

Damage

Element

Damage

Severity

Detected

elements

by existed

alg.

Damage

Element

Damage

Severity

Detected

elements by

existed alg.

1 80% detected 1 20%
Not

detected
1 70% detected

5 70% detected 7 10%
Not

detected
3 50% Not detected

10 90% detected 5 30%
Not

detected
6 70% detected

 10 50% detected 7 20% Not detected

 9 40% Not detected

Figure 2. MATLAB Result for 11-bar Truss with 3 Damage Members (1, 5, 10)

42

Figure 3. MATLAB Result for 11-bar Truss with 4 Damage Members (1, 5, 7, 10)

 Figure 4. MATLAB Result for 11-bar Truss with 5 Damage Members (1, 3, 6, 7, 9)

Another case that has been studied is a 48-bar 3D truss, which contains 1 bay, 3 stories, and 2

frames. Each frame consists of columns, beams and X braces in each bay and stories, including

the connecting bays.

43

Table 11. 48 Bar Truss Example with 5 Damage Elements (Case 4)

Damage

Element

Damage

Severity

Detected elements by

existed alg.

5 90% detected

13 80% Not detected

20 60% Not detected

35 90% detected

37 20% Not detected

Figure 5. MATLAB Result for 48-bar Truss Damage Members (5, 13, 20, 35, 37)

44

Another example is a bridge with 10 bays, each 8 feet, 8 stories, each 8 feet and 6 frames, each

8 feet. Each frame consists of columns, beams, and X brace frames. This example is a simply

supported has 1782 degrees of freedom, 594 nodes, and 3288 members and is a larger size

problem. This structure has been used to show the time efficiency as well as accuracy of the

proposed method.

In this example, 5 elements have been identified as damage by the proposed algorithm correctly.

The damage severity of members is varied, which have been detected by the program correctly.

Also, the computing time is reduced by using 2 processors in parallel computation. Computation

time using different number of processors is reported in Table 12. The results can be found in

Table 13 and Figure 6.

Table 12. Computation Time in Parallel Performance for Larger Scale Problem

Number

of processors

Time

(second)

1 1375.4501

2 941.3579

3 898.6813

4 867.9016

45

Table 13. Larger Scale Truss Example with 5 Damage Elements (Case 5)

Damage

Element

Damage

Severity

Detected elements

by existed alg.

10 80% detected

37 70% Not detected

55 90% Not detected

529 75% Not detected

705 40% Not detected

Figure 6. MATLAB Result for Larger Truss Damage Members (10, 37, 55, 529, 705)

46

There are some cases in which, even by considering large number of mode-shapes, existing

algorithms [13, 14] will not be able to detect “all” damage elements, especially when the number

of damage elements is more than 3. Using our suggested “simple rule of thumb,” however,

existing algorithms [13, 14] will be able to detect “all” damage members.

Subspace iteration in combination with Jacobi rotation algorithm have been implemented into

the damage detection problem for computing the few lowest eigen pairs. Combination of

subspace iteration and MATLAB “eig” built-in function have also been used for performance

evaluation. In almost all numerical cases considered in this study, this combined (subspace

iteration and MATLAB “eig”) algorithm does not converge to the correct eigen-pairs. These

mentioned numerical results have clearly shown that our proposed PSI-JT algorithm is more

robust (reliable) as compared to MATLAB built-in “EIG” function.

47

CHAPTER 4

CONCLUSIONS

Serial Jacobi transformation algorithm for the solution of “standard eigen-problems” is re-visited

to facilitate the explanation of the proposed parallel transformation algorithm, for which

computational efficiency can be realized in this study through “pattern recognition” for the

development of “explicit formulas” to avoid costly matrix time matrix operations.

In this work, the Jacobi transformation algorithm is embedded inside the subspace iteration

algorithm to calculate the generalized eigen-problem of the monitored structure. To provide the

effective computational procedure, a parallel computing strategy based on the idea of making

several off-diagonal terms to be simultaneously driven to zero is used for the Jacobi

transformation algorithm, which is so-called parallel subspace iteration and Jacobi

transformation (PSI-JT) algorithm. The results depict the accuracy and time efficiency of the

proposed algorithm.

Numerical results obtained from this study have indicated that our proposed generalized Jacobi

transformation is more robust and reliable as compared to MATLAB eigen-solver. Specifically, for

obtaining more eigen pairs, the PSI-JT algorithm is shown to produce more robust results.

48

The proposed parallel Jacobi transformation for the solution of “generalized eigen-problems” has

also been incorporated into our “improved damage detection” algorithm. Computational

efficiency and robust behavior for the entire proposed procedures (eigen-solution, damage

detection and damage quantification) can be validated through several academic and real-life

numerical examples.

For damage members severity estimation, an optimization problem needs to be solved

repeatedly to converge to the correct solution. Using PSI-JT algorithm is depicted to produce

robust solution in damage severity quantification.

49

REFERENCES

1. Carden, E. P. (2004). Vibration Based Condition Monitoring: A Review, Structural Health

Monitoring, 3(4), 355–377

2. Wei Fan, & Pizhong Qiao. (2011). Vibration-Based Damage Identification Methods: A Review

and Comparative Study, Structural Health Monitoring, 10(1), 83–111.

3. Das, S., Saha, P., & Patro, S. K. (2016). Vibration-Based Damage Detection Techniques Used

for Health Monitoring of Structures: A Review, Journal of Civil Structural Health Monitoring,

6(3), 477–507.

4. K.J. Bathe, Finite Element Procedures, Prentice Hall Publisher (1996)

5. J.N. Reddy, Finite Element Method, Third Edition, McGraw-Hill Publisher (2006)

6. Gene H. Golub, Charles F. Van Loan, Matrix Computations, Fourth Edition (2013)

7. D.T. Nguyen, Finite Element Methods: Parallel-Sparse Statics and Eigen-Solutions, Springer

Publisher (2006)

8. M.T. Heath, Scientific Computing: An Introductory Survey, McGraw-Hill Publisher (1997)

9. Ahmed H. Sameh, “On Jacobi and Jacobi-Like Algorithms for a Parallel Computer,”

Mathematics of Computation, Vol. 25, No. 115, pages 579-590 (July 1971).

10. S. Pissanetzky, Sparse Matrix Technology, Academic Press Publisher (1984)

11. T Vo-Duy, V Ho-Huu, H Dang-Trung, T Nguyen-Thoi, “A two-step approach for damage

detection in laminated composite structures using modal strain energy method and an

improved differential evolution algorithm,” Journal of Composite Structures, Vol. 147, pages

42-53, Elsevier Publisher (2016/7/1)

50

12. D Dinh-Cong, T Vo-Duy, V Ho-Huu, A Tran-Viet, T Nguyen-Thoi, “An efficient multi-stage

optimization approach for damage detection in plate structures,” Advances in Engineering

Software, Vol 112, pages 76-87 (2017/10/1)

13. T Vo-Duy, N Nguyen-Minh, H Dang-Trung, A Tran-Viet, T Nguyen-Thoi, “Damage assessment

of laminated composite beam structures using damage locating vector (DLV) method,”

Frontiers of Structural and Civil Engineering Vol. 9 (Issue 4), pp. 457-465 (2015/12/1)

14. D Dinh-Cong, T Vo-Duy, N Nguyen-Minh, V Ho-Huu, T Nguyen-Thoi, “A two-stage assessment

method using damage locating vector method and differential evolution algorithm for

damage identification of cross-ply laminated composite beams,” Advances in Structural

Engineering, Vol. 20 (issue 12), pages 1807-1827 (2017/12), SAGE Publications

15. D Dinh-Cong, H Dang-Trung, T Nguyen-Thoi, “An efficient approach for optimal sensor

placement and damage identification in laminated composite structures,”” Advances in

Engineering Software, Vol 119, pages 48-59 (2018/5/1), Elsevier Publisher.

16. D Dinh-Cong, V Vo-Duy, T Nguyen-Thoi, “Damage assessment in truss structures with limited

sensors using a two-stage method and model reduction,” Applied Soft Computing, Vol. 66,

pages 264-277 (2018/5/1), Elsevier Publisher

17. D Dinh-Cong, V Vo-Duy, V Ho-Huu, T Nguyen-Thoi, “Damage assessment in plate-like

structures using a two-stage method based on modal strain energy change and Jaya

algorithm’, Inverse Problems in Science and Engineering, Vol. 27 (Issue 2), pages 166-189

(2019/2/1), Taylor & Francis Publisher

51

18. D Dinh-Cong, S Pham-Duy, T Nguyen-Thoi, “Damage detection of 2D frame structures using

incomplete measurements by optimization procedure and model reduction,” Journal of

Advanced Engineering and Computation, Vol. 2 (Issue 3), pages 164-173 (2018/9/30),

19. Bernal, D. (2002). Load Vectors for Damage Localization, Journal of Engineering Mechanics,

128(1), 7–14.

20. Gao, Y., Spencer, B. F., & Bernal, D. (2007). Experimental Verification of the Flexibility-Based

Damage Locating Vector Method, Journal of Engineering Mechanics, 133(10), 1043–1049.

21. Dinh-Cong, D., Vo-Duy, T., Nguyen-Minh, N., Ho-Huu, V., & Nguyen-Thoi, T. (2017). A Two-

Stage Assessment Method Using Damage Locating Vector Method and Differential Evolution

Algorithm for Damage Identification of Cross-Ply Laminated Composite Beams, Advances in

Structural Engineering, 20(12), 1807–1827.

22. Nguyen-Thoi, T., Tran-Viet, A., Nguyen-Minh, N., Vo-Duy, T., & Ho-Huu, V. (2018). A

Combination of Damage Locating Vector Method (DLV) and Differential Evolution Algorithm

(DE) for Structural Damage Assessment, Frontiers of Structural and Civil Engineering, 12(1),

92–108.

23. https://www.cise.ufl.edu/research/sparse/matrices/HB/

24. https://sparse.tamu.edu/HB

https://www.cise.ufl.edu/research/sparse/matrices/HB/

52

APPENDICES

APPENDIX 1

Old Dominion University (ODU) MATLAB Source Code for “Parallel Subspace Iteration with Jacobi

Transformation”

A.1 Subspace source code with Jacobi Rotation Combination

Below the MATLAB source code of subspace iteration with Jacobi rotation implementation is

represented.

clear all

close all

clc

% Define K and M matrices

% A = [5 -4 1 0;-4 6 -4 1;1 -4 6 -4;0 1 -4 5];

% B = [2 -1 0 0;-1 4 -1 0;0 -1 4 -1;0 0 -1 2];

N = load('bcsstk13');

N_1 = N.Problem.A;

A = full(N_1);

53

B=eye(size(A,1));

% Input lowest eigen value desired

L =77;

% Deifine first guess

x_k = zeros(size(A,2),(4*L));

for j = 1:size(A,2)

 for i = 1:(4*L)

 x_k(i,i) = 1;

 end

end

x_k = x_k(1:size(A,2), 1:(4*L));

% Subspace code

max_Abs_error_norm = 1;

ecol = 1;

err = 1;

X_bar = x_k;

m_n=0;

% tic

while max_Abs_error_norm > 10e-7 || ecol > 10e-3

 m_n=m_n+1;

 B_mod = B*X_bar;

54

 X_bar = A\B_mod;

 A_R = X_bar'*A*X_bar;

 B_R = X_bar'*B*X_bar;

 [val,phi,sweep]=eigenpair_generalized_Parallel_2(A_R,B_R);

 % sort

 [val,ind] = sort(val);

 phi = phi(:,ind);

 X = X_bar*phi;

 for i=1:(L)

 Abs_error_norm(i) = norm(A*X(:,i)-val(i)*B*X(:,i));

 end

 max_Abs_error_norm = norm(Abs_error_norm);

 X_bar = X;

 if m_n~=1

 for i=1:L

 ecol_1(i) = norm(val(i) - val_store(i));

 ecol = norm(ecol_1);

 end

 val_store = val;

 else

 end

55

val_store = val;

end

%%%%% Check

[vc,vl]=eig(A,B);

sval=sort(abs(val));

for i=1:L

decc(i) = vl(i,i) - sval(i);

end

n_decc = norm(decc);

A.2 Subspace source code with MATLAB “EIG” Built-in function

Follow Subspace iteration source code with MATLAB EIG built in function is shown.

clear all

close all

clc

% Define K and M matrices

% A = [5 -4 1 0;-4 6 -4 1;1 -4 6 -4;0 1 -4 5];

% B = [2 -1 0 0;-1 4 -1 0;0 -1 4 -1;0 0 -1 2];

N = load('bcsstk13');

56

N_1 = N.Problem.A;

A = full(N_1);

B=eye(size(A,1));

% Input lowest eigen value desired

L =77;

% Deifine first guess

x_k = zeros(size(A,2),(4*L));

for j = 1:size(A,2)

 for i = 1:(4*L)

 x_k(i,i) = 1;

 end

end

x_k = x_k(1:size(A,2), 1:(4*L));

% Subspace code

max_Abs_error_norm = 1;

ecol = 1;

err = 1;

X_bar = x_k;

m_n=0;

% tic

while max_Abs_error_norm > 10e-7 || ecol > 10e-3

 m_n=m_n+1;

57

 B_mod = B*X_bar;

 X_bar = A\B_mod;

 A_R = X_bar'*A*X_bar;

 B_R = X_bar'*B*X_bar;

 [phi,val]=eig(A_R,B_R);

 % sort

 [val,ind] = sort(abs(diag(val)));

 phi = phi(:,ind);

 X = X_bar*phi;

 for i=1:(L)

 Abs_error_norm(i) = norm(A*X(:,i)-val(i)*B*X(:,i));

 end

 max_Abs_error_norm = norm(Abs_error_norm);

 X_bar = X;

 if m_n~=1

 for i=1:L

 ecol_1(i) = norm(val(i) - val_store(i));

 ecol = norm(ecol_1);

 end

 val_store = val;

 else

 end

58

val_store = val;

end

%%%%% Check

[vc,vl]=eig(A,B);

sval=sort(abs(val));

for i=1:L

decc(i) = vl(i,i) - sval(i);

end

n_decc = norm(decc);

A.3 Jacobi Rotation Source Code

Jacobi rotation source code using the explicit formula described in the previous chapters is

presented.

function[val,phi,sweep]=eigenpair_generalized_Parallel_2(k,M)

n=size(k,2);

m = (n+1)/2;

m = fix(m);

nprocessor = n/2;

phi = eye(size(k,1));

59

nn=1;

sweep=0;

while nn~=0

 nn=0;

 sweep=sweep+1;

for rr=1:size(k,1)-1

 if rr <= m-1

 for i = 1:nprocessor

 q(i) = m - rr +i;

 if q(i)<= (2*m - 2*rr) && q(i)>=(m-rr+1)

 p(i) = (2*m - 2*rr +1)-q(i);

 elseif q(i)<= (2*m -rr-1) && q(i)>(2*m-2*rr)

 p(i) = (4*m - 2*rr) - q(i);

 elseif q(i)> (2*m-rr-1)

 p(i) = n;

 end

 if q(i)<p(i)

 pc=p(i);

 p(i)=q(i);

 q(i)=pc;

 end

 end

60

elseif rr >= m

 for i = 1:nprocessor

% if k==(2*m-1) && i==2

% q(i) = 3*m - k -1;

% else

 q(i) = 4*m - n - rr +i-1;

% end

 if q(i)> (4*m - 2*rr - 1)

 p(i) = (6*m - 2*rr -1)-q(i);

 elseif q(i)>=(2*m -rr+1) && q(i)<=(4*m-2*rr-1)

 p(i) = (4*m - 2*rr) - q(i);

 elseif q(i)< (2*m-rr+1)

 p(i) = n;

 end

 if q(i)<p(i)

 pc=p(i);

 p(i)=q(i);

 q(i)=pc;

 end

 end

 end

61

% p1=zeros(size(k));

% for i=1:size(k,1)

% p1(i,i)=1;

% end

p1=eye(size(k));

kbar = zeros(size(k,1));

k_bar = zeros(1,size(p,2));

x = zeros(1,size(p,2));

lambda = zeros(1,size(p,2));

alpha = zeros(1,size(p,2));

for i = 1:size(p,2)

 if (k(p(i),p(i))/M(p(i),p(i)))==(k(q(i),q(i))/M(q(i),q(i)))==(k(p(i),q(i))/M(p(i),q(i)))

 alpha(i) = 0;

 lambda(i) = (-1)*(k(p(i),q(i))/k(q(i),q(i)));

 else

kbar(p(i),p(i)) = k(p(i),p(i))*M(p(i),q(i))-M(p(i),p(i))*k(p(i),q(i));

kbar(q(i),q(i)) = k(q(i),q(i))*M(p(i),q(i))-M(q(i),q(i))*k(p(i),q(i));

k_bar(i) = k(p(i),p(i))*M(q(i),q(i))-k(q(i),q(i))*M(p(i),p(i));

if k_bar(i)>=0

 x(i) = (k_bar(i)/2)+sqrt((k_bar(i)/2)^2+kbar(p(i),p(i))*kbar(q(i),q(i)));

elseif k_bar(i)<0

 x(i) = (k_bar(i)/2)-sqrt((k_bar(i)/2)^2+kbar(p(i),p(i))*kbar(q(i),q(i)));

62

end

lambda(i) = (-1)*(kbar(p(i),p(i))/x(i));

alpha(i) = kbar(q(i),q(i))/x(i);

 end

p1(p(i),q(i))=alpha(i);

p1(q(i),p(i))=lambda(i);

end

phi=phi*p1;

%%%

%Creat new k based on my formula

parfor pi=1:nprocessor

 Tempo1 = zeros(p(pi) ,1);

 Tempo1_M = zeros(p(pi) ,1);

 Tempo2 = zeros(q(pi) ,1);

 Tempo2_M = zeros(q(pi) ,1);

 pSubs = zeros(p(pi) ,2); %new

 qSubs = zeros(q(pi) ,2);

 for irow = 1:p(pi)

 [xx,inside_angle] = find(irow==[p;q]);

 Tempo1(irow) = [(xx-1)*alpha(inside_angle)+(2-xx)]* ...

63

 [k(p(inside_angle),p(pi))+lambda(pi)*k(p(inside_angle),q(pi))] + ...

 [(2-xx)*lambda(inside_angle)+(xx-1)]* ...

 [k(q(inside_angle),p(pi))+lambda(pi)*k(q(inside_angle),q(pi))];

 Tempo1_M(irow) = [(xx-1)*alpha(inside_angle)+(2-xx)]* ...

 [M(p(inside_angle),p(pi))+lambda(pi)*M(p(inside_angle),q(pi))] + ...

 [(2-xx)*lambda(inside_angle)+(xx-1)]* ...

 [M(q(inside_angle),p(pi))+lambda(pi)*M(q(inside_angle),q(pi))];

 pSubs(irow,:)=[irow,p(pi)]; %new

 end

 for irow = 1:q(pi)

 [xx,inside_angle] = find(irow==[p;q]);

 Tempo2(irow) = [(xx-1)*alpha(inside_angle)+(2-xx)]* ...

 [alpha(pi)*k(p(inside_angle),p(pi))+k(p(inside_angle),q(pi))] + ...

 [(2-xx)*lambda(inside_angle)+(xx-1)]* ...

 [alpha(pi)*k(q(inside_angle),p(pi))+k(q(inside_angle),q(pi))];

 Tempo2_M(irow) = [(xx-1)*alpha(inside_angle)+(2-xx)]* ...

 [alpha(pi)*M(p(inside_angle),p(pi))+M(p(inside_angle),q(pi))] + ...

 [(2-xx)*lambda(inside_angle)+(xx-1)]* ...

 [alpha(pi)*M(q(inside_angle),p(pi))+M(q(inside_angle),q(pi))];

 qSubs(irow,:)=[irow,q(pi)]; %new

 end

64

 subsCell{pi,1}=[pSubs;qSubs]; %new

 kValCell{pi,1}=[Tempo1;Tempo2];

 MValCell{pi,1}=[Tempo1_M;Tempo2_M];

 %Assign tempos to k

% for irow = 1:p(pi)

% k_1(irow,p(pi)) = Tempo1(irow);

% k_1(p(pi),irow) = Tempo1(irow);

% M_1(irow,p(pi)) = Tempo1_M(irow);

% M_1(p(pi),irow) = Tempo1_M(irow);

% end

% for irow = 1:q(pi)

% k_1(irow,q(pi)) = Tempo2(irow);

% k_1(q(pi),irow) = Tempo2(irow);

% M_1(irow,q(pi)) = Tempo2_M(irow);

% M_1(q(pi),irow) = Tempo2_M(irow);

% end

end

subs=cell2mat(subsCell);

kVal=cell2mat(kValCell);

MVal=cell2mat(MValCell);

65

k_1=accumarray(subs,kVal,size(k));

M_1=accumarray(subs,MVal,size(M));

k=k_1 + tril(k_1.',-1); %make symmetric

M=M_1 + tril(M_1.',-1);

end

for ki=1:size(k,1)

 sum=0;

 if k(ki,ki)~=0

 for kj=1:size(k,1)

 if kj==ki

 kj=kj+1;

 else

 sum = sum + abs(k(ki,kj));

 end

 end

 if abs(k(ki,ki))>(100*sum)

 nn=nn+0;

 else

 nn=nn+1;

66

 end

 end

end

end

for i = 1:size(k,1)

 val(i)=k(i,i)/M(i,i);

end

end

67

APPENDIX 2

One of the examples is a 2003x2003 matrix (a Symmetrical Stiffness Matrix, which represents the

Fluid Flow Generalized Eigen-Problems), is also included. If the number of requested eigen-pairs

is 63, then MATLAB built-in function (EIG) will not be able to converge to the correct solution.

However, if we replace MATLAB built-in function (EIG) with our Generalized Subspace Iteration

with Jacobi Rotation source code, then correct eigen-solutions have been obtained.

The input file has been downloaded from Texas A&M website, and also have been adopted and

published in other valid websites described in the related references [23, 24]. Following are the

complete information and figures of matrices selected from these sources [23, 24] and used in

this dissertation work.

B.1 Symmetrix stiffness matrix, module of an offshore platform

This example is a real-world symmetric stiffness matrix, shows module of an offshore platform.

The figure is shown in Figure 7. Matrix properties consist of number of rows and columns, number

of nonzero terms and other related features, are represented in the Table 14.

68

Figure 7. Symmetric Stiffness Matrix, Module of an Offshore Platform

Table 14. Symmetric Stiffness Matrix, Module of an Offshore Platform, Properties

Matrix Properties

number of rows 3,948

number of columns 3,948

nonzeros 117,816

structural full rank? yes

structural rank 3,948

explicit zero entries 0

nonzero pattern symmetry symmetric

numeric value symmetry symmetric

type real

structure symmetric

Cholesky candidate? yes

positive definite? yes

69

This matrix is authored by M. Will, and is edited by I. Duff, R. Grimes, J. Lewis [23]. This matrix is

a fuild matrix, and as it is shown in Figure 7, the matrix is related to the 3D problem.

B.2 Symmetric Stiffness Matrix, Fluid Flow Generalized Eigenvalues

This example is also a real-world symmetric stiffness matrix, extracted from fluid Flow

Generalized Eigenvalues problem. The figure of the matrix is represented in Figure 8, and the

matrix properties are described in Table 15.

This matrix is authored by J. Lewis, and is edited by I. Duff, R. Grimes, J. Lewis [23]. This matrix is

a computational fluid dynamic 3D problem.

Figure 8. Symmetric Stiffness Matrix, Fluid Flow Generalized Eigenvalues

70

Table 15. Symmetric Stiffness Matrix, Fluid Flow Generalized Eigenvalues, Properties

Matrix Properties

umber of rows 2,003

number of columns 2,003

nonzeros 83,883

structural full rank? yes

structural rank 2,003

explicit zero entries 0

nonzero pattern symmetry symmetric

numeric value symmetry symmetric

type real

structure symmetric

Cholesky candidate? yes

positive definite? yes

B.3 Symmetric Stiffness Matrix, Buckling of Hot Washer

Another real-world problem is presented in this section. The data is extracted from the websites

mentioned in the previous sections [23, 24]. Table 16 shows the properties of this matrix, and

Figure 9 demonstrates the figure of the matrix.

71

This matrix is authored by J. Lewis, and is edited by I. Duff, R. Grimes, J. Lewis [23]. As it is clear

from the name of the name, this is matrix is extracted from a structural 3D problem.

Figure 9. Symmetric Stiffness Matrix, Buckling of Hot Washer

B.4 Symmetric Stiffness Matrix, Medium Test Problem, Lumped Masses

This is also another structural 3D problem with lower number of rows and columns compare to

the previous cases. This matrix is authored by J. Lewis, and is edited by I. Duff, R. Grimes, J. Lewis

[23].

More information about matrix properties is described in Table 17, and the figure of the matrix

is shown in Figure 10.

72

Table 16. Symmetric Stiffness Matrix, Buckling of Hot Washer, Properties

Matrix Properties

number of rows 1,086

number of columns 1,086

nonzeros 22,070

structural full rank? yes

structural rank 1,086

explicit zero entries 0

nonzero pattern symmetry symmetric

numeric value symmetry symmetric

type real

structure symmetric

Cholesky candidate? yes

positive definite? yes

73

Figure 10. Symmetric Stiffness Matrix, Medium Test Problem, Lumped Masses

Table 17. Symmetric Stiffness Matrix, Medium Test Problem, Lumped Masses, Properties

Matrix Properties

number of rows 420

number of columns 420

nonzeros 7,860

structural full rank? yes

structural rank 420

explicit zero entries 0

nonzero pattern symmetry symmetric

numeric value symmetry symmetric

type real

structure symmetric

Cholesky candidate? yes

positive definite? yes

74

B.5 Symmetric Stiffness Matrix, Transformation Tower, Lumped Masses

This symmetric stiffness matrix is related to a 3D structural problem. It is authored by J. Lewis,

and is edited by I. Duff, R. Grimes, J. Lewis [23]. It is worth mentioning that this matrix is one of

the small size matrices that has been used in this research for authorizing PSI-JT algorithm.

The figure of this matrix is shown in Figure 11. The properties of the matrix is described in detail

in Table 18.

Figure 11. Symmetric Stiffness Matrix, Transformation Tower, Lumped Masses

75

Table 18. Symmetric Stiffness Matrix, Transformation Tower, Lumped Masses, Properties

Matrix Properties

number of rows 153

number of columns 153

nonzeros 2,423

structural full rank? yes

structural rank 153

explicit zero entries 0

nonzero pattern symmetry symmetric

numeric value symmetry symmetric

type real

structure symmetric

Cholesky candidate? yes

positive definite? yes

In this research all of the previous cases described in detail in this section, is used to test and

validate the performance of PSI-JT algorithm. Looking at the figures of these cases, it is clear that

they are completely different in the formation, and are not have a lot in common, but being

sparse symmetric positive definite.

76

APPENDIX 3

Since the code for this section is so large and also Jacobi rotation source code has been presented

in Appendix A.3, the complete code for this part will not be mentioned here. However, the Source

code for truss generation that has been used to create any size 2D and 3D trusses is presented in

this section.

C.1 Truss Creation Source Code

The following source code was written by the dissertation author in MATLAB and is able to create

2D and 3D truss. In this code the user needs to specify very short input data, such as number of

bays, number of storied, 2D or 3D format, etc., and the code is able to create the truss and all the

features, such as connectivity table, etc., by itself.

close all

clear all

clc

% User Inputs

fprintf('\n');

nbays=input('ENTER THE NUMBER OF Bays:-');

fprintf('\n');

77

fprintf('**

*******************************\n');

% if nbays>=1

fprintf('\n');

Length=input('ENTER THE Length of Each Bay:-');

fprintf('\n');

% end

fprintf('**

*******************************\n');

fprintf('\n');

nstories=input('ENTER THE NUMBER OF Stories:-');

fprintf('\n');

fprintf('**

*******************************\n');

fprintf('\n');

Height=input('ENTER THE Height OF Each Stories:-');

fprintf('\n');

fprintf('**

*******************************\n');

fprintf('\n');

nframes=input('ENTER THE NUMBER OF Frames:-');

fprintf('\n');

fprintf('**

*******************************\n');

fprintf('\n');

Width=input('ENTER THE Width OF Two Consecutive Frames:-');

fprintf('\n');

fprintf('**

*******************************\n');

78

fprintf('\n');

n_node_element=input('ENTER THE NUMBER OF Nodes per Element:-');

fprintf('\n');

fprintf('**

*******************************\n');

fprintf('\n');

% Truss Dimension

global num_dof_node

global num_dof_ele

num_dof_node=input('ENTER THE NUMBER OF SPATIAL DIMENSIONS:-');

num_dof_ele=n_node_element*num_dof_node;

fprintf('\n');

fprintf('**

*******************************\n');

fprintf('\n');

damage_ele=input('ENTER THE damage element and severity [ele sve;..]:-');

fprintf('\n');

fprintf('**

*******************************\n');

fprintf('\n');

a_ver=input('ENTER THE Area of Vertical Area:-');

fprintf('\n');

fprintf('**

*******************************\n');

fprintf('\n');

a_hor=input('ENTER THE Area of Horizontal Area:-');

fprintf('\n');

fprintf('**

*******************************\n');

79

fprintf('\n');

a_diag=input('ENTER THE Area of Diagonal; Area:-');

fprintf('\n');

tic

% Compute Number of Nodes

global num_nod

num_nod = (nstories+1)*(nbays+1)*(nframes);

num_nod_fram = (nstories+1)*(nbays+1);

% nodes coordinates

global nod_coor

nod_coor = zeros(num_nod,num_dof_node);

e = 1;

for i = 1:nframes

 for k = 1:nstories+1

 for j = 1:nbays+1

 nod_coor(e,:) = [0+(j-1)*Length, 0+(k-1)*Height, 0+(i-1)*Width];

 e = e+1;

 if e == num_nod+1

 break

 end

 end

 end

end

80

% Number of Vertical Elements

num_ver_ele = nstories*(nbays+1)*nframes;

num_ver_frame = nstories*(nbays+1);

% Number of Horizontal Elements

num_hor_ele = nstories*nbays*nframes + nstories*(nbays+1)*(nframes-1);

% Number of Diagonal Elements

num_diag_ele = 2*nstories*(2*nbays*nframes+nframes-nbays-1);

%Total Number of Elements

global num_ele

num_ele = num_ver_ele + num_hor_ele + num_diag_ele;

% Construct the Connectivity Matrix

global ele_nod

global A

ele_nod = zeros(num_ele,n_node_element);

% Vertical Elements Connectivity

for j=1:nframes

 for i=(1+num_ver_frame*(j-1)):(num_ver_frame*j)

 ele_nod(i,:) = [i+(num_nod_fram-num_ver_frame)*(j-1), ...

 i+(nbays+1)+(num_nod_fram-num_ver_frame)*(j-1)];

 A(i) = a_ver;

 end

end

%Horizontal Elements Connectivity Matrix

81

[x,y] = find(nod_coor(:,2)~=0);

i = i + 1;

for e = 1:nframes

 for k =1:nstories

 for j = 1:nbays

 ele_nod(i,:) = [x(j+(k-1)*(nbays+1)+(e-1)*(num_nod_fram-(nbays+1))), ...

 x(j+1+(k-1)*(nbays+1)+(e-1)*(num_nod_fram-(nbays+1)))];

 A(i) = a_hor;

 i = i + 1;

 end

 end

end

if nframes>1

 for j = 1:((num_nod_fram-(nbays+1))*(nframes-1))

 ele_nod(i,:) = [x(j),x(j)+num_nod_fram];

 A(i) = a_hor;

 i = i+1;

 end

end

%Diagonal Elements Connectivity Matrix

i = i - 1;

for j=1:nbays

 [x1,y1] = find(nod_coor(:,1)==(Length*(j-1)));

 [x2,y2] = find(nod_coor(:,1)==(Length*j));

 sx1 = size(x1,1);

 for e = 1:nframes

82

 for k = 1:((sx1/nframes)-1)

 i = i+1;

 ele_nod(i,:) = [x1(k+((e-1)*(nstories+1))),x2(k+1+((e-1)*(nstories+1)))];

 A(i) = a_diag;

 i = i+1;

 ele_nod(i,:) = [x2(k+((e-1)*(nstories+1))),x1(k+1+((e-1)*(nstories+1)))];

 A(i) = a_diag;

 end

 end

end

if nframes>1

 for j=1:nbays+1

 [x3,y3] = find(nod_coor(:,1)==(Length*(j-1)));

 sx1 = size(x3,1);

 for e=1:(nframes-1)

 for k = 1:((sx1/nframes)-1)

 i = i+1;

 ele_nod(i,:) = [x3(k+(e-1)*(nstories+1)),x3(k+(e-1)*(nstories+1)+(nstories+2))];

 A(i) = a_diag;

 i = i+1;

 ele_nod(i,:) = [x3(k+(e-1)*(nstories+1)+(nstories+1)), ...

 x3(k+1+(e-1)*(nstories+1))];

 A(i) = a_diag;

 end

 end

 end

end

83

% elements degree of freedom (DOF)

global ele_dof

ele_dof = zeros(num_ele,num_dof_ele);

for j=1:num_ele

 ele_dof(j,:)=[((3*ele_nod(j,1))-2),((3*ele_nod(j,1))-1),(3*ele_nod(j,1)), ...

 ((3*ele_nod(j,2))-2),((3*ele_nod(j,2))-1),(3*ele_nod(j,2))];

end

%Form Modulus of Elasticity and mass density

global E

for i = 1:num_ele

 E(i) = 30000;

end

global rho

rho = 9.8759999999999994e-3;

fprintf('**

*******************************\n');

fprintf('\n');

number_of_loads =input('ENTER THE Number of Loads; Number:-');

fprintf('\n');

fprintf('**

*******************************\n');

fprintf('\n');

force = zeros(num_dof_node*num_nod,1);

for j=1:number_of_loads

 node_load_app=input('ENTER THE Node Number that this Load Apply to; Node:-');

84

 dof_load_app=input('ENTER THE DOF of the Node that This Load Apply to; DOF:-');

 load_value=input('ENTER THE Value of the Applying Load; Value:-');

 force((3*node_load_app)-(3-dof_load_app))=load_value;

end

fprintf('\n');

%Construct Boundary Condition Vector

displacement=zeros(num_dof_node*num_nod,1);

[x4,y4] = find(nod_coor(:,2)==0);

sx4 = size(x4,1);

global BC

for j=1:sx4

 for k=1:num_dof_node

 BC(k+(3*(j-1)), 1) = (3*x4(j))-(3-k);

 end

end

85

APPENDIX 4

The input for damage detection & quantification problems comes from both manually (for some

examples to check the accuracy of the MATLAB code), and a self-written MATLAB code to

generate data such as node coordinates, element nodes, connectivity table of the input truss.

As an example, for 11-bar truss, the input data file that user needs to enter to the computer

screen, for using the automatically generated data for truss, is as follows:

• Total number of nodes (6 for this example)

• Number of nodes per element (for this example 2)

• Number of degrees of freedom per node (2 for the example)

• Number of spatial dimension (2 for this example, because it is a 2D truss)

• Number of bays (2 for this example)

• Number of stories (1 for this example)

• Number of frames (0 for this example, since it is a 2D structure)

• Area of each element will be asked and should be input by the user with an enter after

inputting each. (For this example: 14, 1, 11, 7, 1, 1, 6, 3, 14, 1, 1)

• Modulus of elasticity (30000 for this example)

• Members’ density (for this example 0.009876)

86

• Number of applied loads (2 for this example)

• Degree of freedom and magnitude of the applied load ([2,10000] / enter/ [6,10000])

The outputs of sample problems for damage detection & quantification have already described

and presented in earlier sections of this dissertation.

The following input is the case when the data is manually inputted. The related input information

is as below:

%number of nodes
num_nod=6;
num_dof_node = 3;

% nodes coordinates
nod_coor=[720 0 0;720 360 0;360 0 0;360 360 0;0 0 0;0 360 0];

% connectivity table
ele_nod=[6 4;4 2;5 3;3 1;3 4;1 2;6 3;5 4;4 1;3 2;5 6];

%number of elements
num_ele=size(ele_nod,1);

% elements degree of freedom (DOF)
ele_dof=[16 17 18 10 11 12;10 11 12 4 5 6;13 14 15 7 8 9;7 8 9 1 2 3; ...
 7 8 9 10 11 12; 1 2 3 4 5 6;16 17 18 7 8 9;13 14 15 10 11 12; ...
 10 11 12 1 2 3;7 8 9 4 5 6;13 14 15 16 17 18];
num_dof_ele = 6;

% A, E, L are cross sectional area, Young's modulus, length of elements,respectively.

A(1)=14;
A(2)=1;
A(3)=11;
A(4)=7;
A(5)=1;

87

A(6)=1;
A(7)=6;
A(8)=3;
A(9)=14;
A(10)=1;
A(11)=1;

% E(1)=30000;
for i = 1:num_ele
 E(i) = 30000;
end

rho = 9.8759999999999994e-3;

BC = [1;2;3;4;5;6;25;26;27;28;29;30];

%Define damaged elements and their related severities
damage_ele = [1 0.8;5 0.7;10 0.9];

It is worth mentioning that in the “damage_ele” matrix, mentioned above, the first column shows

the damage element number, and the second column shows the damage severity of the related

member.

This code is written in MATLAB software. In this case the input properties, such as number of

nodes, number of degrees of freedom, etc, are imported by hand for comparison reasons.

However, in the bigger size problems, 48-bar truss and 594-bar truss the properties are

developed by the “Truss-Creation” Source code, described in the previous sections.

88

VITA

Maryam Ehsaei

Department of Civil and Environmental Engineering

Old Dominion University

Norfolk VA, 23529

Maryam Ehsaei was born in Shiraz, Iran, on November 1988. After finishing her B.S. in Civil and

Environmental Engineering from Fasa University, Iran, on September 2011, she received her M.S.

in Structural Engineering from Shiraz University, Iran, on September 2013.

	Parallel Jacobi Transformation Algorithm for Generalized Eigen-Solution With Improved Damage Detection of Truss/Bridge-Type Structures
	Recommended Citation

	tmp.1578674362.pdf.4l50G

