Large Deviation Local Limit Theorems for Ratio Statistics

Sanjeev V. Sabnis

Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/mathstat_etds

Part of the Applied Statistics Commons, and the Probability Commons

Recommended Citation
https://digitalcommons.odu.edu/mathstat_etds/104

This Dissertation is brought to you for free and open access by the Mathematics & Statistics at ODU Digital Commons. It has been accepted for inclusion in Mathematics & Statistics Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.
LARGE DEVIATION LOCAL LIMIT THEOREMS
FOR RATIO STATISTICS

by

Sanjeev V. Sabnis
B.Sc. June 1979, University of Poona, India
M.Sc. June 1981, University of Poona, India

A dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the
Requirements for the Degree of

DOCTOR OF PHILOSOPHY
COMPUTATIONAL AND APPLIED MATHEMATICS

OLD DOMINION UNIVERSITY
August, 1987

Approved by:

Dr. N. R. Chacaltuy (Director)
Dr. Ram C. Dahiva
Dr. John P. Morgan
Dr. Edward P. Markowski
Abstract

LARGE DEVIATION LOCAL LIMIT THEOREMS
FOR RATIO STATISTICS
Sanjeev V. Sabnis
Old Dominion University, 1987
Director: Dr. N. R. Chaganty

Let \{T_n, n \geq 1\} be an arbitrary sequence of non-lattice random variables and \{S_n, n \geq 1\} be another sequence of positive non-lattice random variables. Let the two sequences be independent. Let \phi_{1n} and \phi_{2n} be the moment generating functions of \{T_n, n \geq 1\} and \{S_n, n \geq 1\} respectively. Let \{a_n\} be a sequence of real numbers such that \(a_n \to \infty\). Let

\[
A_n(z) = \frac{1}{a_n} \log \phi_{1n}(z)
\]

and

\[
B_{2n}(z) = \frac{1}{a_n} \log \phi_{2n}(z).
\]

Under some mild and easily verifiable conditions on \phi_{1n} and \phi_{2n}, which imply that \((T_n - E(T_n))/a_n \to 0\) in probability and \((S_n - E(S_n))/a_n \to c\) in probability for some \(c > 0\), we obtain a large deviation local limit theorem for the ratio statistic \(R_n = T_n/S_n\), that is, we obtain an asymptotic expression for the density, \(f_n(r_n)\), of the ratio statistic \(R_n = T_n/S_n\) at the point \(r_n\) where \(\{r_n, n \geq 1\}\) is a bounded sequence of real numbers. This expression is given by

\[
f_n(r_n) = \frac{a_n \psi'_{2n}(-r_n r_n)}{[2\pi a_n [\psi_{1n}''(r_n) + r_n^2 \psi_{2n}''(-r_n r_n)]]^{1/2}}
\]

\[
\times \exp(a_n[\psi_{1n}(r_n) + \psi_{2n}(-r_n r_n)])[1 + O(1/a_n)]
\]
where \(r_n \) is such that

\[
\psi'_{1n}(r_n) - r_n \psi'_{2n}(-r_n r_n) = 0.
\]

When \(S_n \) is degenerate at \(n \), our result reduces to the result of Chaganty-Sethuraman (Ann. of Probab., (1985), vol. 13, 97-113). We obtain similar asymptotic expressions for the probability density functions (p.d.f.) or probability mass functions (p.m.f.) of ratio statistics arising from different combinations of non-lattice and lattice random variables \(T_n \) and \(S_n \).

We also present the corresponding results for the ratio of sums of i.i.d. random variables along with some interesting applications. In all of these applications, the p.d.f.'s (or p.m.f.'s) do not have closed form expressions. However, our results provide simple computable approximations involving moment generating functions for such p.d.f.'s (or p.m.f.'s). We verify our result for the \(F \) statistic, whose exact density is available. Our approximation coincides with the exact expression except for the normalizing constant. However, we show that our approximation is asymptotically equivalent to the exact density.

Let \(\{T_n, n \geq 1\} \) be an arbitrary sequence of random vectors and \(\{S_n > 0, n \geq 1\} \) be an arbitrary sequence of random variables. In Chapter III, we obtain an asymptotic expression for the density of the vector \(R_n = T_n/S_n \). A result which obtains an asymptotic expression for the tail probability, \(P(R_n > r_n) \), is known as a strong large deviation result. In Chapter IV, we obtain strong large deviation results for statistics which can be expressed as the ratio of two independent sequences of non-lattice as well as lattice random variables.
to

my parents
Acknowledgments

I would like to thank Dr. N. R. Chaganty for introducing me to the area of large deviation limit theory and for providing much of his own time during this work. This dissertation is a result of his inspiring guidance. I am thankful to Dr. Ram Dahiya, Dr. John Morgan, Dr. Edward Markowski for being on my thesis committee. I would also like to extend my thanks to Dr. John Tweed for making the departmental computer facilities available to me.

Thanks are also due to Dr. R. V. Rammamorthy of Michigan State University who recommended me to Old Dominion University.

Finally, I am grateful to my wife, Sheela whose patience and constant encouragement helped me to complete this seemingly unending project.
Contents

1 Introduction and Summary .. 1-1

2 Large Deviation Local Limit Theorems 2-8
 2.1 Introduction ... 2-8
 2.2 Local limit theorems for arbitrary sequence of random vari-
 ables ... 2-12
 2.3 Large deviation local limit theorems for ratio statistics ... 2-28
 2.4 Large deviation local limit theorems for ratio statistics of
 lattice random variables .. 2-51
 2.5 Applications ... 2-57

3 Large deviation local limit theorems for random vectors 3-64
 3.1 Definitions and Preliminaries 3-64
 3.2 Local limit theorems for random vectors 3-66
 3.3 Large deviation local limit theorems for lattice random vec-
 tors .. 3-86

4 Strong large deviation results for ratio statistics 4-92
4.1 Introduction ... 4-92
4.2 Non-lattice case .. 4-93
4.3 The Lattice case ... 4-97

References ... 100
Chapter 1

Introduction and Summary

The origin of probability theory dates back to the middle of the 17th century. Since then limit theorems have become the core of probability theory as they are quite useful in understanding the random phenomena present in all our sciences. The history of the limit theorems begins with the limit theorems of Bernoulli (1713). Then followed the limit theorems of de Moivre and Laplace. Later on, Poisson succeeded in obtaining generalizations of the theorems of Bernoulli, de Moivre and Laplace. In today’s context these theorems are referred to as the laws of large numbers, one of the fundamental propositions of the theory of probability. We state these results below in Theorems 1.1 and 1.2 which are now known as Weak Law of Large Numbers (WLLN) and Strong Law of Large Numbers (SLLN) respectively. The WLLN refers to convergence in probability whereas the SLLN refers to almost sure convergence of averages of random variables.
Theorem 1.1 (WLLN). Let \(\{X_n, n \geq 1\} \) be pairwise independent and identically distributed random variables with finite mean \(E(X_1) \). Then we have

\[
\frac{S_n}{n} \to E(X_1)
\] \hspace{1cm} (1.1)

in probability.

Theorem 1.2 (SLLN). Let \(\{X_n, n \geq 1\} \) be a sequence of i.i.d. random variables with finite mean \(E(X_1) \). Then we have

\[
\frac{S_n}{n} \to E(X_1)
\] \hspace{1cm} (1.2)

almost surely.

Theorems 1.1 and 1.2 are due to Khintchine and Kolmogorov respectively.

Chebyshev, a Russian Mathematician, made major contributions to the theory of probability by introducing new techniques to prove the theorems concerning sums of arbitrarily distributed independent random variables. For example, under the assumption of existence of moments of all orders (by utilizing the methods of moments), Chebyshev gave different versions of the proof of the Central Limit Theorem (CLT) (see Theorem 1.3 below for a version of the CLT) for sums of independent but arbitrarily distributed random variables. The CLT deals with convergence in distribution of normalized sums of random variables. Then around 1900, Lyapunov proved CLT with substantially weaker restrictions than those required by Chebyshev. He proved the theorem utilizing the method of characteristic func-
tions, developed by himself, rather than the method of moments used by Chebyshev. We give the simplest form of the CLT in Theorem 1.3.

Theorem 1.3 (CLT). Let \(\{X_n, n \geq 1\} \) be a sequence of i.i.d. random variables with \(E(X_1) = \mu \) and \(\text{var}(X_1) = \sigma^2 \) and distribution function \(F \). Let \(F_n \) denote the distribution function of the normalized sum, that is, the distribution function of \((S_n - n\mu)/\sqrt{n}\sigma \), where \(S_n = X_1 + \cdots + X_n \). Then

\[
F_n(x) \to \Phi(x)
\] (1.3)

uniformly in \(x \) where \(\Phi(x) \) denotes the distribution function of the standard normal random variable.

While the CLT gives the limit of a sequence of distribution functions \(F_n \), it is quite inadequate in practice. In many applications we are interested not only in the convergence of \(F_n(x) \) but also in the error of approximating \(F_n(x) \) by \(\Phi(x) \). This question was addressed by several authors including Cramer (1938), Berry (1941), Esseen (1943, 1945) and Chernoff (1952). Berry and Essen established an upperbound for the error \(e_n(x) = |F_n(x) - \Phi(x)| \), which is uniform in \(x \). While the upperbound for the error \(e_n(x) \) is quite sharp for moderate values of \(x \), however, for large values of \(x \), both \(F_n(x) \) and \(\Phi(x) \) are close to 1 and the upperbound overestimates the error \(e_n(x) \). Chernoff (1952) initiated the study of the tail of \(F_n(x) \). He showed that if \(X_1 \) has a finite moment generating function in a neighbourhood of zero, then the probability that \(S_n/n \) deviates from \(E(X_1) \) by a small amount \(\epsilon > 0 \) tends to zero exponentially fast as \(n \to \infty \). The
event $E_n = \{|S_n/n - E(X_1)| > \epsilon\}$ is known as a large deviation event since it represents the deviation of S_n/n away from the mean. The probability of occurrence of E_n is known as a large deviation probability. Therefore, Chernoff's theorem is known as a large deviation limit theorem. In recent years, limit theorems for large deviations have become a vital part of the theory of probability. The theory of large deviations forms a natural complement to the law of large numbers stated in Theorems 1.1 and 1.2.

Among the different kinds of limit theorems, the local limit theorems are also of great importance. These theorems deal with the convergence of a sequence of density functions to another density function as well as with asymptotic expansions for a sequence of density functions. One should note that the hypothesis of the CLT does not guarantee the convergence of the corresponding density functions to the standard normal density. In fact, such a convergence takes place almost everywhere only when F_n is nonsingular for some n.

Let $\{X_n, n \geq 1\}$ be a sequence of independent and identically distributed random variables. Let $S_n = X_1 + \cdots + X_n$ be the n^{th} partial sum. Let f_n denote the density function of S_n/\sqrt{n}. Richter proved an important local limit theorem for large deviations for sums of i.i.d. random variables, that is, an asymptotic expansion for $f_n(x_n)$ when x_n is allowed to increase with n. Chaganty and Sethuraman (1985) generalized Richter's theorem to an arbitrary sequence of random variables thereby increasing the applicability of Richter's theorem to new classes of statistics. We state the result of Chaganty and Sethuraman in Theorem 2.2.3 of Chapter II.
The goal of this dissertation is to generalize Theorem 2.2.3 to the ratio statistic \(R_n = \frac{T_n}{S_n} \), where \(\{S_n, n \geq 1\} \) is an arbitrary sequence of positive random variables independent of \(\{T_n, n \geq 1\} \). In the special case where \(T_n \) and \(S_n \) are partial sums of independent random variables our result simplifies to the heuristic conclusion of Daniels (1954).

The problem of obtaining the limit for \(\log P(T_n \geq x_n) \), where \(x_n \rightarrow \infty \) at a suitable rate as \(n \rightarrow \infty \), has been studied by several authors including Cramér (1938), Chernoff (1952), and Ellis (1984). Chaganty and Sethuraman chose to call these results of Cramér, Chernoff and Ellis as weak large deviation results since they give an asymptotic expansion for \(\log P(T_n \geq x_n) \) rather than an approximation for \(P(T_n \geq x_n) \). An approximation for \(P(T_n \geq x_n) \) is known as a strong large deviation result. One of the earliest strong large deviation results when \(T_n \) is the sum of i.i.d. random variables was obtained by Bahadur and Ranga Rao (1960). Recently, Chaganty and Sethuraman (1986) extended the result of Bahadur and Ranga Rao to an arbitrary sequence of random variables \(\{T_n, n \geq 1\} \).

In this dissertation we present analogous results for statistics which can be expressed as the ratio of two independent sequences of non-lattice as well as the ratio of two independent sequences of lattice random variables.

This dissertation has been organised as follows:

Chapter II consists of five sections. In Section 2.1 we present the background material. In Section 2.2 we state Chaganty-Sethuraman’s results for an arbitrary sequence of non-lattice random variables. We also state and outline the proof of Chaganty-Sethuraman’s theorem with Condition (iii')
in Theorem 2.2.3 replaced by another simple and easily verifiable Condition (iii"). As an application we obtain a large deviation local limit theorem for the Wilcoxon signed rank statistic under the null hypothesis. Section 2.3 contains the main results of this dissertation. Let \(\{T_n, n \geq 1\} \) be an arbitrary sequence of non-lattice random variables and \(\{S_n, n \geq 1\} \) be another arbitrary sequence of positive non-lattice random variables. Under some mild conditions on \(\phi_{1n} \) and \(\phi_{2n} \), the moment generating functions of \(T_n \) and \(S_n \) respectively, we obtain in Theorem 2.3.1 an asymptotic expression for the density of the ratio statistic \(R_n = T_n/S_n \). We also obtain an asymptotic expression in Theorem 2.3.12 for the density of the ratio statistic in the case where \(T_n \) is non-lattice and \(S_n \) is lattice. In Section 2.4 we obtain similar results in Theorems 2.4.1 and 2.4.2 when \(T_n \) and \(S_n \) both are lattice random variables and when \(T_n \) is lattice and \(S_n \) is non-lattice respectively. In the case where \(T_n \) and \(S_n \) are sums of i.i.d. random variables, the conditions of the Theorems 2.3.1, 2.3.12, 2.4.1 and 2.4.2 are very much simplified. We present the corresponding results for the ratios of sums of i.i.d. random variables in Theorems 2.3.13, 2.3.14, 2.4.3 and 2.4.4 respectively. In Section 2.5 we provide three examples illustrating different occurrences of non-lattice and lattice \(T_n \) and \(S_n \). For simplicity, in these examples we let \(T_n \) and \(S_n \) to be sums of i.i.d. random variables. We also study our approximation for the F statistic, whose exact density is available. Our approximation coincides with the exact expression except for the normalizing constant. However, our approximation is asymptotically equivalent to the exact density.
Chapter III contains large deviation local limit theorems for an arbitrary sequence of random vectors. Let \(\{T_n, n \geq 1\} \) be an arbitrary sequence of random vectors and \(\{S_n, n \geq 1\} \) be an arbitrary sequence of positive random variables. An asymptotic expression for the density of the ratio statistic, \(R_n = T_n / S_n \) is given.

In Chapter IV, we present strong large deviation results for statistics which can be expressed as the ratio of two independent sequences of non-lattice as well as the ratio of independent sequences of lattice random variables.
Chapter 2

Large Deviation Local Limit Theorems

2.1 Introduction

The very basic probability limit theorems are the weak law of large numbers (WLLN), the strong law of large numbers (SLLN) and the Central limit theorem (CLT). The WLLN refers to convergence in probability where as the SLLN refers to almost sure convergence of the averages of random variables. The CLT deals with convergence in distribution of normalized sums of random variables. If \(\{X_n, n \geq 1\} \) is a sequence of i.i.d. random variables with \(E(X_1) = \mu, \ Var(X_1) = \sigma^2 \) and distribution function \(F \) and further if \(F_n \) denotes the distribution function of the normalized sum \((S_n - n\mu)/\sqrt{n}\sigma \) then the CLT asserts that,

\[
F_n(x) \rightarrow \Phi(x)
\]
uniformly in \(z \), where \(\Phi(z) \) denotes the distribution function of the standard normal random variable.

The CLT raises a number of questions. For instance,

1) Do the partial sums of random variables always converge in distribution to the normal distribution?

2) How much error is committed in the approximation of \(F_n(x) \) by \(\Phi(x) \)?

3) Does the hypothesis of the CLT imply convergence of the corresponding density functions to the normal density?

The answer to the first question is negative. It leads to the theory of infinite divisibility. As regards to the second question different authors have obtained asymptotic expansions, as well as bounds for the error

\[e_n(x) = |F_n(x) - \Phi(x)| \quad \text{for fixed } x. \]

Theorem 2.1.1 below gives an asymptotic expansion for \(e_n(x) \) and Theorem 2.1.2 gives a bound on the error term \(e_n(x) \). Theorems 2.1.1 and 2.1.2 are due to Esseen (1945), Berry (1941) and Esseen (1943) respectively.

Theorem 2.1.1 (Esseen). If \(F \) is non-lattice and has a finite third moment

\[\mu_3 = \int_{-\infty}^{\infty} x^3 \, dF(x), \]

then

\[e_n(x) = \frac{\mu_3 (1 - x^2)}{6\sigma^3 \sqrt{2\pi n}} \exp(-x^2/2) + o(1/n) \quad (2.1) \]

uniformly in \(x \).
Theorem 2.1.2 (Berry and Esseen). Let $E(X_1) = 0$ and let $\rho = E|X_1|^3$ be finite. Then for all x and n

$$|e_n(x)| \leq \frac{33}{4} \frac{\rho}{\sigma^3 \sqrt{n}}. \quad (2.2)$$

The constant $33/4$ was first replaced by 0.91 in Zolotarev (1967) and subsequently by 0.7975 in Van Beeck (1972). For fixed n and for large values of x, the quantities $F_n(x)$ and $\Phi(x)$ both become close to 1 and the bound given in Theorem 2.1.2 becomes impracticable. The problem of studying the error of approximation was approached differently by Cramer (1938). He obtained an estimate of the ratio of the tail probabilities,

$$\frac{[1 - F_n(x_n)]}{[1 - \Phi(x_n)]} \quad (2.3)$$

for $x_n = O(\sqrt{n})$, assuming that the moment generating function of X_1 exists. Petrov (1954) extended this result to the case of non identically distributed random variables.

A counter example given in the book of Gnedenko and Kolmogorov (1954), page 223 answers the third question in the negative. A close examination of the example reveals that the convergence fails to take place only in a neighborhood of the origin. However, a result due to Ranga Rao and Varadarajan (1960) guarantees convergence almost everywhere. We state this result in Theorem 2.1.3 below.

Theorem 2.1.3. A necessary and sufficient condition for $f_n(x)$ to converge to $\phi(x)$ almost everywhere is that F_n is nonsingular for some n.

2-10
Theorem 2.1.3 is known as a local limit theorem for densities.

The problem of obtaining an estimate of the ratio in (2.3) of the tail probabilities can be characterized as the problem of large deviation. If \(\{T_n, n \geq 1\} \) is a sequence of random variables, an approximation to \(P(T_n \geq x_n) \) where \(x_n \to \infty \), is known as a Strong large deviation result whereas an approximation to \(k_n(x_n) \), the probability density function of \(T_n \) at \(x_n \), is known in the literature as the large deviation local limit theorem. The result of the latter kind was first obtained by Richter (1957) for the sums of i.i.d. random variables. This result was stated in Richter’s paper in terms of Cramér series. Recently, Chaganty-Sethuraman showed that the same result can be rewritten in terms of the so called large deviation rate. Large deviation local limit theorems for sums of independent, non-identically distributed lattice and non-lattice random variables were also obtained by Moskvin (1972) and by MacDonald (1979). Chaganty-Sethuraman (1985) extended Richter’s result for an arbitrary sequence of random variables, for both non-lattice and lattice cases. They have demonstrated the applicability of the large deviation local limit theorems for statistics that occur in nonparametric inference and also in establishing limit theorems for some probabilistic models occurring in statistical mechanics (see Chaganty and Sethuraman (1987)).

In this chapter we first state the local limit Theorems 2.2.1 and 2.2.3 due to Richter (1957) and Chaganty-Sethuraman (1985), respectively. As noted by Chaganty-Sethuraman (1985) Condition (iii') of Theorem 2.2.3 was difficult to verify in examples. In Theorem 2.2.8 we establish Theorem
2.2.3, replacing Condition (iii') by another easily verifiable Condition (iii'').

The main goal of this chapter is to present similar large deviation local limit theorems for statistics which can be expressed as the ratio of two independent random variables. These results are obtained in Sections 2.3 and 2.4. We treat the case of the ratio of two non-lattice arbitrary random variables in Theorem 2.3.1. Theorems 2.3.12, 2.4.1 and 2.4.2 cover the cases when one of the random variables is non-lattice and the other one is lattice. The conditions of our theorems are much simplified in the case of ratios of sums of i.i.d. random variables. We state these results in Theorems 2.3.13, 2.3.14, 2.4.3 and 2.4.4. In Section 2.5 we provide a number of applications of our theorems.

2.2 Local limit theorems for arbitrary sequence of random variables

Richter (1957) proved a large deviation local limit theorem involving the Cramer series for the sequence \(\{X_n, n \geq 1\} \) of i.i.d. random variables. Chaganty-Sethuraman (1985) restated Richter's result in terms of the large deviation rate and extended the result to an arbitrary sequence of random variables not necessarily sums of i.i.d. random variables. We present below statements of these theorems.

Theorem 2.2.1 (Richter). Let \(\{X_n, n \geq 1\} \) be a sequence of i.i.d. random variables having common distribution function \(F \) with \(E(X_1) = 0 \) and
\(\text{Var}(X_1) = \sigma^2. \) Let \(S_n = X_1 + X_2 + \cdots + X_n. \) Let \(f_n \) be the p.d.f. of \(S_n/\sqrt{n}. \) Assume the following conditions:

1. There exists a positive number \(A \) such that
 \[
 \int_{-\infty}^{\infty} \exp(sx) \, dF(x) < \infty
 \]
 for all \(s \) with \(|s| < A. \)

2. There exists an \(n_0 \) such that the distribution function of \(S_n = X_1 + X_2 + \cdots + X_n \) is absolutely continuous with a bounded derivative for \(n \geq n_0. \)

Then, if \(x > 1 \) and \(x = O(\sqrt{n}) \), we have, as \(n \to \infty \)

\[
 f_n(x) = \phi(x) \exp\left(\frac{x^2}{\sqrt{n}}\right) \lambda\left(\frac{x}{\sqrt{n}}\right) \left[1 + O\left(\frac{x}{\sqrt{n}}\right)\right]
\]

where \(\lambda(t) \) is a power series converging for all sufficiently small values of \(|t| \) and \(\phi(x) \) is the density of the standard normal random variable.

The next Theorem 2.2.2 is essentially a reformulation of Theorem 2.2.1 in terms of the large deviation rate function \(\gamma \) defined below in Theorem 2.2.2. One should also note the conditions of Theorem 2.2.1 are weaker than those of Theorem 2.2.2. Here and throughout this dissertation \(\log z \) denotes the principal logarithm of the complex number \(z. \)

Theorem 2.2.2. Let \(\{X_n, n \geq 1\} \) be an i.i.d. sequence of random variables with common distribution function \(F \) and analytic characteristic function \(\phi(z), z \in \mathbb{C}, \) where \(\mathbb{C} \) is the set of all complex numbers. Let \(\psi(z) = \log \phi(z). \)
Let I denote the interval $(-a,a)$, for fixed positive number a. Let m be a real number and a_1 be such that $0 < a_1 < a$. Let τ be such that $\psi'(\tau) = m$ and denote $\psi''(\tau) = \sigma^2 > 0$. Let $m_n \rightarrow m$. Assume the following conditions:

(i) There exists $\beta > 0$ such that $|\psi(s)| < \beta$, for all $s \in I$.

(ii) There exists $\tau_n \in (-a_1,a_1)$ such that $\psi'(\tau_n) = m_n$ for $n \geq 1$.

(iii) There exists $A < \infty$ such that

\[
\sup_{s \in I} \int_{-\infty}^{\infty} \left| \frac{\phi(s + it)}{\phi(s)} \right| dt \leq A. \tag{2.5}
\]

Define $\gamma(x) = \sup_{s \in I} |xs - \psi(s)|$. Let v_n denote the probability density function of S_n/n, where $S_n = X_1 + X_2 + \cdots + X_n$. Then,

\[
v_n(m_n) = \frac{\sqrt{n}}{\sqrt{2\pi\sigma}} \exp(-n\gamma(m_n))[1 + O(1/n)]. \tag{2.6}
\]

Now, we state Chaganty-Sethuraman's theorem for an arbitrary sequence of random variables. Theorem 2.2.3 below obtains an asymptotic expansion for the density function k_n of T_n/n at the point m_n which is in the region of large deviation for T_n.

Theorem 2.2.3 (Chaganty-Sethuraman). Let $\{T_n, n \geq 1\}$ be a sequence of non-lattice random variables. Let

\[
\phi_n(z) = E(\exp zT_n) \tag{2.7}
\]
and

\[\psi_n(z) = \frac{1}{n} \log \phi_n(z) \]

(2.8)

for a complex number \(z \). Denote the interval \((-a, a)\) by \(I \) and \((-a_1, a_1)\) by \(I_1 \), where \(0 < a_1 < a \). Assume that \(\phi_n(z) \) is nonvanishing and analytic in \(\Omega = \{z : |\text{Real}(z)| < a\} \). Let \(\{m_n\} \) be a sequence of real numbers. Let

\[G_{n, \tau}(t) = \psi_n(\tau) + itm_n - \psi_n(\tau + it), \]

(2.9)

for \(\tau \in I_1 \). Assume that \(\{T_n, n \geq 1\} \) satisfies the following conditions:

(i') There exists \(\beta > 0 \) such that \(|\psi_n(z)| < \beta \) for \(z \in \Omega \) and \(n \geq 1 \).

(ii') There exist \(\alpha > 0 \) and \(\tau_n \in I_1 \) such that \(\psi_n'(\tau_n) = m_n \) and \(\psi_n''(\tau) \geq \alpha \), for \(\tau \in I_1 \) and for all \(n \geq 1 \).

(iii') There exists \(\eta > 0 \) such that for any \(0 < \delta < \eta \),

\[\inf_{|t| \geq \delta} \text{Real}(G_n(t)) = \min\{\text{Real}(G_n(\delta)), \text{Real}(G_n(-\delta))\} \]

(2.10)

for all \(n \geq 1 \), where \(G_n(t) = G_{n, \tau_n}(t) \).

(iv') There exist \(p, l > 0 \) such that

\[\sup_{\tau \in I} \int_{-\infty}^{\infty} \left| \frac{\phi_n(\tau + it)}{\phi_n(\tau)} \right|^{1/n} dt = O(n^p). \]

(2.11)
Let \(\gamma_n(u) = \sup_{s \in I} [us - \psi_n(s)] \) and \(k_n \) be the probability density function of \(T_n/n \). Then

\[
k_n(m_n) = \frac{\sqrt{n}}{2\pi \sqrt{\psi^n'_n(r_n)}} \exp(-n\gamma_n(m_n))[1 + O(1/n)]. \tag{2.12}
\]

The case of lattice random variables is treated in the next theorem.

Theorem 2.2.4 (Chaganty-Sethuraman). Let \(\{T_n, n \geq 1\} \) be a sequence of lattice random variables taking values in the set \(S = \{a_n + kh_n : k = 0, \pm 1, \pm 2, \ldots\} \). Define \(\phi_n(z), \psi_n(z) \) as in Theorem 2.2.3. Let \(\phi_n(z) \) be analytic in \(\Omega = \{z : \Real(z) < a\} \). Let \(\{m_n = a_n + k_nh_n/n\} \) be a sequence of real numbers, where \(\{k_n\} \) is a sequence of integers. Suppose that Conditions (i) and (ii) of Theorem 2.2.3 hold. Further, let us assume the following conditions:

(iii*) There exists \(\eta > 0 \) such that for any \(0 < \delta < \eta \),

\[
\inf_{\delta \leq |t| \leq \pi/h_n} \Real(G_n(t)) = \min[\Real(G_n(\delta)), \Real(G_n(-\delta))] \tag{2.13}
\]

for \(n \geq 1 \).

(iv*) There exist \(p, l \) such that

\[
\sup_{\tau \in I} \left| \int_{-\pi/h_n}^{\pi/h_n} \frac{\phi_n(\tau + it)}{\phi_n(\tau)} \right| |dt| = O(n^p). \tag{2.14}
\]

Let \(\gamma_n(u) = \sup_{s \in I} [us - \psi_n(s)] \) and \(\psi'_n(r_n) = m_n \). Then

\[
\frac{\sqrt{n}}{|h_n|} \Pr(T_n/n = m_n) = \frac{1}{\sqrt{2\pi \sqrt{\psi^n'_n(r_n)}}} \exp(-n\gamma_n(m_n))[1 + O(1/n)]. \tag{2.15}
\]
Remark 2.2.5. Condition (iv') of Theorem 2.2.3 is an integrability condition which guarantees the existence of the density function \(k_n \) of \(T_n/n \). Conditions (i') and (ii') together imply that \((T_n - E(T_n))/\sqrt{\text{var}(T_n)} \) converges in distribution to the standard normal and \((T_n - E(T_n))/n \) converges to zero in probability. Condition (iii') is satisfied for example if the characteristic functions \(|\phi_n(\tau + it)/\phi_n(\tau)| \) are concave in a neighbourhood of the origin. Verification of condition (iii') in examples poses some difficulties. In Theorem 2.2.8 we show that condition (iii') can be replaced by an easily verifiable condition (iii'') and still obtain the conclusion (2.12).

Remark 2.2.6. It is easy to see that Theorem 2.2.3 simplifies to Theorem 2.2.2 when \(T_n \) is taken to be the sum of \(n \) i.i.d. random variables.

Remark 2.2.7. The proofs of Theorems 2.2.2-2.2.4 have the same pattern and they consist of three major steps. In step 1, we use the inversion formula for the characteristic functions of the conjugate distribution (see (2.26) for the definition of a conjugate distribution) to get an expression for the density functions \(k_n(m_n) \) and \(v_n(m_n) \). This expression is dependent on the conjugate distribution. We choose the appropriate conjugate distribution using a saddle point technique. We then split the integral \(I_n \) appearing in the inversion formula into two parts \(I_{n1} \) and \(I_{n2} \) (see (2.31) below). In step 2, we show that \(I_{n1} \) goes to zero exponentially fast and in step 3, we complete the proof by showing that \(I_{n2} = 1 + O(1/n) \).
We now state and outline the proof of Chaganty-Sethuraman’s theorem with Condition (iii') replaced by Condition (iii''). We continue to use the same notations introduced earlier.

Theorem 2.2.8. Assume that \(\{T_n, n \geq 1\} \) satisfies the following conditions:

(i') There exists \(\beta > 0 \) such that \(|\psi_n(z)| < \beta \) for \(z \in \Omega \) and \(n \geq 1 \).

(ii') There exists \(\alpha > 0 \) and \(\tau_n \in I_1 \) such that \(\psi_n'(\tau_n) = m_n \) and \(\psi_n''(\tau) \geq \alpha \), for \(\tau \in I_1 \) and for all \(n \geq 1 \).

(iii'') Given \(\delta > 0 \) there exists \(0 < \eta < 1 \) such that

\[
\limsup_n \sup_{|t| > \delta} \left| \frac{\phi_n(\tau_n + it) - \phi_n(\tau_n)}{\phi_n(\tau_n)} \right|^{1/n} < \eta. \tag{2.16}
\]

(iv') There exist \(p, l > 0 \) such that

\[
\sup_{\tau \in I} \int_{-\infty}^{\infty} \left| \frac{\phi_n(\tau + it)}{\phi_n(\tau)} \right|^{l/n} dt = O(n^p). \tag{2.17}
\]

Then,

\[
k_n(m_n) = \frac{\sqrt{n}}{\sqrt{2\pi} \sqrt{\psi_n''(\tau_n)}} \exp(-n\gamma_n(m_n))[1 + O(1/n)]. \tag{2.18}
\]

We will need the following lemma in the proof of Theorem 2.2.8.
Lemma 2.2.9. Let $\psi_n(x)$ be as defined in (2.8). Assume that the condition (i') of Theorem 2.2.8 holds. Then,

$$|\psi_n^{(k)}(\tau)| \leq \frac{k!\beta}{(a - a_1)^k}$$ \hspace{1cm} (2.19)

for $k \geq 1$ and for $\tau \in J_1$. Let

$$R_n(\tau + it) = \psi_n(\tau + it) - \psi_n(\tau) - it\psi_n'(\tau) - \frac{it^2}{2!}\psi_n''(\tau) - \frac{it^3}{3!}\psi_n'''(\tau).$$ \hspace{1cm} (2.20)

Then there exists $\delta_1 > 0$ such that for $|t| < \delta_1$ and for $\tau \in J_1$,

$$|R_n(\tau + it)| \leq \frac{2\beta t^4}{(a - a_1)^4}.$$ \hspace{1cm} (2.21)

Proof. Since ψ_n is analytic in Ω, we can apply Cauchy’s theorem for derivatives to get

$$\psi_n^{(k)}(\tau) = \frac{k!}{2\pi i} \int_{C(\tau, a - a_1)} \frac{\psi_n(\omega)}{(\omega - \tau)^{k+1}} d\omega$$ \hspace{1cm} (2.22)

for $|\tau| < a$ and for all $k \geq 1$ where $C(\tau, a - a_1) = \{\omega \in C: |\tau - \omega| = (a - a_1)\}$.

We use Condition (i') to obtain

$$|\psi_n^{(k)}(\tau)| \leq \frac{k!}{2\pi} \sup_{\omega \in C(\tau, a - a_1)} |\psi_n(\omega)| \int_{C(\tau, a - a_1)} \frac{1}{|\omega - \tau_n|^{k+1}} d\omega$$

$$\leq \frac{k!\beta}{(a - a_1)^k}$$ \hspace{1cm} (2.23)

for $k \geq 1$. This proves (2.19). Next, since ψ_n is analytic in Ω and $|\tau| < a$, the following expansion is valid for all $n \geq 1$ and $|t| < \delta_1$ where $\delta_1 < (a - a_1)/2$,

$$\psi_n(\tau + it) = \psi_n(\tau) + it\psi_n'(\tau) + \frac{(it)^2}{2!}\psi_n''(\tau) + \frac{(it)^3}{3!}\psi_n'''(\tau) + R_n(\tau + it)$$ \hspace{1cm} (2.24)
where

\[R_n(\tau + it) = \frac{(it)^4}{2\pi i} \int_{C(\tau, a-a_1)} \frac{\psi_n(\omega)}{(\omega - \tau)^4(\omega - \tau - it)} d\omega. \]

An upper bound for \(R_n \) is given by

\[|R_n(\tau + it)| \leq \frac{t^4}{2\pi} \sup_{\omega \in C(\tau, a-a_1)} |\psi_n(\omega)| \int_{C(\tau, a-a_1)} \frac{1}{|\omega - \tau|^4|\omega - \tau - it|} d\omega \]

\[\leq \frac{2\beta t^4}{(a - a_1)^4} \tag{2.25} \]

wherein we have used the relation

\[|\omega - \tau - it| \geq |\omega - \tau| - |t| = (a - a_1) - |t| \geq (a - a_1)/2. \] This proves the lemma.

Next, we outline the proof of Theorem 2.2.8. The proof is given in three major steps.

Proof of Theorem 2.2.8:

Step 1. Consider the conjugate distribution \(H_n \) given by

\[dH_n(x) = \frac{\exp(\tau x)}{\phi_n(\tau)} dF_n(x) \tag{2.26} \]

for \(\tau \in I \), where \(F_n \) denotes the distribution function of \(T_n \). The characteristic function (c.f.) of the distribution function (d.f.) \(H_n \) is given by \(\phi_n(\tau + it)/\phi_n(\tau) \). From (2.17) it follows that \(\phi_n(\tau + it)/\phi_n(\tau) \) is absolutely integrable. Therefore the p.d.f. of \(H_n \) exists and it is given by

\[\frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{\phi_n(\tau + it)}{\phi_n(\tau)} \exp(-itx) dt \tag{2.27} \]

2-20
and using (2.26) we get the p.d.f. of \(F_n \) as
\[
\frac{1}{2\pi} \int_{-\infty}^{\infty} \phi_n(\tau + it) \exp(-(\tau + it)x) \, dt.
\] (2.28)

Thus the p.d.f. of \(T_n/n \) is given by
\[
k_n(x) = \frac{n}{2\pi} \int_{-\infty}^{\infty} \phi_n(\tau + it) \exp(-n(\tau + it)x) \, dt
\]
\[
= \frac{n}{2\pi} \int_{-\infty}^{\infty} \exp(n[\psi_n(\tau + it) - (\tau + it)x]) \, dt. \tag{2.29}
\]

The above equality (2.29) is valid for any \(\tau \in J_1 \). The appropriate choice for \(\tau \) is \(\tau_n \) satisfying \(\psi'_n(\tau_n) = m_n \). Thus, we have
\[
k_n(m_n) = \frac{n}{2\pi} \int_{-\infty}^{\infty} \exp(n[\psi_n(\tau_n + it) - (\tau_n + it)m_n]) \, dt
\]
\[
= \left[\frac{n}{2\pi \psi''_n(\tau_n)} \right]^{1/2} \exp(-n\gamma_n(m_n)) I_n \tag{2.30}
\]
where
\[
I_n = \left[\frac{n\psi''_n(\tau_n)}{2\pi} \right]^{1/2} \int_{-\infty}^{\infty} \exp(n[\psi_n(\tau_n + it) - \psi_n(\tau_n) - itm_n]) \, dt
\]
\[
= \left[\frac{n\psi''_n(\tau_n)}{2\pi} \right]^{1/2} \left[\int_{|\tau| \geq \delta} \exp(n[\psi_n(\tau_n + it) - \psi_n(\tau_n) - itm_n]) \, dt
\]
\[
+ \int_{|\tau| < \delta} \exp(n[\psi_n(\tau_n + it) - \psi_n(\tau_n) - itm_n]) \, dt \right], \tag{2.31}
\]
where \(\delta \) is any positive number less than \(\delta_1 \) of Lemma 2.2.9. We choose our \(\delta \) small enough such that
\[
M(\delta) = \left[\beta/\alpha \right]^2((a-a_1)^3+2\beta\delta/(a-a_1)^4) < \alpha/2.
\]

2-21
Thus we can write

$$I_n = I_{n1} + I_{n2} \text{ (say).} \quad (2.32)$$

We now show that I_{n1} goes to zero exponentially fast.

Step II. Consider,

$$|I_{n1}| = \left[\frac{n \psi_n''(\tau_n)}{2\pi} \right]^{1/2} \left| \int_{|t| \geq \delta} \exp \left(n[\psi_n(\tau_n + it) - \psi_n(\tau_n) - itm_n] \right) dt \right|$$

$$\leq \left[\frac{n \psi_n''(\tau_n)}{2\pi} \right]^{1/2} \left| \int_{|t| \geq \delta} \frac{\phi_n(\tau_n + it)}{\phi_n(\tau_n)} \right| dt$$

$$= \left[\frac{n \psi_n''(\tau_n)}{2\pi} \right]^{1/2} \left[\sup_{|t| \geq \delta} \left| \frac{\phi_n(\tau_n + it)}{\phi_n(\tau_n)} \right| \right]^{1/n} \left| \frac{\phi_n(\tau_n + it)}{\phi_n(\tau_n)} \right|^{(1-1/n)} dt$$

$$\leq \left[\frac{n \psi_n''(\tau_n)}{2\pi} \right]^{1/2} \left[\sup_{|t| \geq \delta} \left| \frac{\phi_n(\tau_n + it)}{\phi_n(\tau_n)} \right| \right]^{n(1-1/n)} \int_{|t| \geq \delta} \left| \frac{\phi_n(\tau_n + it)}{\phi_n(\tau_n)} \right|^{1/n} dt$$

$$\leq \left[\frac{n \psi_n''(\tau_n)}{2\pi} \right]^{1/2} \left[\sup_{|t| \geq \delta} \left| \frac{\phi_n(\tau_n + it)}{\phi_n(\tau_n)} \right| \right]^{n(1-1/n)} \int_{-\infty}^{\infty} \left| \frac{\phi_n(\tau_n + it)}{\phi_n(\tau_n)} \right|^{1/n} dt. \quad (2.33)$$

From (2.16) and (2.17) it follows that,

$$|I_{n1}| \leq \left[\frac{n \psi_n''(\tau_n)}{2\pi} \right]^{1/2} \eta^{n(1-1/n)} O(n^p)$$

$$= O(n^{p+1/2}) \exp \left(-\eta_1 (n - l) \right) \quad (2.34)$$

where $\eta_1 = -\log \eta > 0$. Thus I_{n1} goes to zero exponentially fast. Next we will show that $I_{n2} = 1 + O(1/n)$ in step III below.

Step III. Let us recall that

2-22
\[I_{n2} = \left[\frac{n\psi''(\tau_n)}{2\pi} \right]^{1/2} \int_{|s|<\delta} \exp \left(n \left[\psi_n(\tau_n + it) - \psi_n(\tau_n) - itm_n \right] \right) dt. \] (2.35)

By making a change of variable \(t = s/\sqrt{n} \), we obtain

\[I_{n2} = \left[\frac{\psi''(\tau_n)}{2\pi} \right]^{1/2} \int_{|s|<\sqrt{n}\delta} \exp \left(n \left[\psi_n(\tau_n + is/\sqrt{n}) - \psi_n(\tau_n) - \frac{is}{\sqrt{n}} m_n \right] \right) ds. \] (2.36)

From (2.24) we get,

\[I_{n2} = \left[\frac{\psi''(\tau_n)}{2\pi} \right]^{1/2} \int_{|s|<\sqrt{n}\delta} \exp \left(n \left[-\frac{s^2}{2n} \psi''(\tau_n) - \frac{is^3}{6n\sqrt{n}} \psi'''(\tau_n) \right] \right) + R_n(\tau_n + is/\sqrt{n}) ds \\
+ \frac{nR_n(\tau_n + is/\sqrt{n}) + L_n(s)}{ds} \] (2.37)

where

\[L_n(s) = [\exp(z_n) - 1 - z_n] \] (2.38)

and

\[z_n = \left[-\frac{is^3}{6\sqrt{n}} \psi'''(\tau_n) + nR_n(\tau_n + is/\sqrt{n}) \right]. \] (2.39)

The r.h.s. of (2.37) can be written as the sum of four integrals. The first integral is equal to \(1 + o(1/n) \) by Mill's ratio (see Feller (1968) page 175, (1.8)). It is clear that the second integral is zero. In order to show
that the third integral is $O(1/n)$ we will use the bound in (2.21) for R_n.
For that consider,
\[
\left| n \left[\psi''(r_n) \right]^{1/2} \int_{|s| < \sqrt{n} \delta} \exp \left(-\frac{s^2}{2} \psi_n(r_n) \right) R_n(r_n + is/\sqrt{n}) \, ds \right|
\]
\[
\leq n \left[\psi''(r_n) \right]^{1/2} \int_{|s| < \sqrt{n} \delta} \exp \left(-\frac{s^2}{2} \psi_n(r_n) \right) \left| R_n(r_n + is/\sqrt{n}) \right| \, ds
\]
\[
\leq n \left[\psi''(r_n) \right]^{1/2} \frac{2\beta}{n^2 (a - a_1)^4} \int_{|s| < \sqrt{n} \delta} s^4 \exp \left(-\frac{s^2}{2} \psi_n(r_n) \right) \, ds
\]
\[
= O(1/n). \quad (2.40)
\]
Thus
\[
n \left[\psi''(r_n) \right]^{1/2} \int_{|s| < \sqrt{n} \delta} \exp \left(-\frac{s^2}{2} \psi_n(r_n) \right) R_n(r_n + is/\sqrt{n}) \, ds = O(1/n). \quad (2.41)
\]
Finally, to show that the fourth integral is also $O(1/n)$, we first get an upperbound for $L_n(s)$. From (2.19) and (2.21) we have for $|s| < \sqrt{n} \delta$,
\[
|z_n| = \left| \frac{i s^3}{6 \sqrt{n}} \psi''(r_n) + n R_n(r_n + is/\sqrt{n}) \right|
\]
\[
\leq \frac{|s|^3}{6 \sqrt{n}} |\psi''(r_n)| + n |R_n(r_n + is/\sqrt{n})|
\]
\[
\leq \left[\frac{\beta |s|^3}{\sqrt{n} (a - a_1)^3} + \frac{2\beta s^4}{n (a - a_1)^4} \right]
\]
\[
\leq \left[\frac{\beta \delta s^2}{(a - a_1)^3} + \frac{2\beta \delta^2 s^2}{(a - a_1)^4} \right]
\]
\[
= M(\delta) s^2 \quad (2.42)
\]
where \(M(\delta) = [\beta \delta/(a - a_1)^3 + 2\beta \delta^2/(a - a_1)^4] \). Using the inequality
\[
|\exp(z_n) - 1 - z_n| \leq |z_n|^2 \exp |z_n| \text{ and (2.42) we get}
\]
\[
L_n(s) = |\exp(z_n) - 1 - z_n|
\]
\[
\leq \left[\frac{\beta |s|^3}{\sqrt{n} (a - a_1)^3} + \frac{2\beta s^4}{n(a - a_1)^4} \right]^2 \exp(M(\delta)s^2). \tag{2.43}
\]

We will use the bound in (2.43) to show that the fourth integral in the r.h.s. of (2.37) is \(O(1/n) \).
Consider,
\[
\left[\psi''(\tau_n) \right] \left[\int_{|s| < \sqrt{n}\delta} \exp(-s^2/2\psi''(\tau_n)) L_n(s) \, ds \right]
\]
\[
\leq \left[\psi''(\tau_n) \right] \left[\int_{|s| < \sqrt{n}\delta} \exp(-s^2/2\psi''(\tau_n)) \exp(M(\delta)s^2) \right]
\]
\[
\left[\frac{\beta |s|^3}{\sqrt{n} (a - a_1)^3} + \frac{2\beta s^4}{n(a - a_1)^4} \right]^2 \, ds
\]
\[
\leq \left[\psi''(\tau_n) \right]^{1/2} \left[\int_{|s| < \sqrt{n}\delta} \exp(-\left(\frac{\alpha}{2} - M(\delta)\right)s^2) \right]
\]
\[
\left[\frac{\beta |s|^3}{\sqrt{n} (a - a_1)^3} + \frac{2\beta s^4}{n(a - a_1)^4} \right]^2 \, ds
\]
\[
= O(1/n) \quad \tag{2.44}
\]
since we chose \(\delta \) such that \(\alpha < \frac{\alpha}{2} \). Thus, from (2.37), (2.41), (2.44) it follows that \(I_{n_2} = 1 + O(1/n) \). The proof of Theorem 2.2.8 is now complete.
For lattice random variables T_n we have the following analogous theorem.

Theorem 2.2.10. Let T_n take values in the set \(\{a_n + kh_n : k = 0, \pm 1, \pm 2, \ldots \} \).

Let \(\{m_n = (a_n + k_n)h_n / n\} \) be a sequence of real numbers where \(\{k_n\} \) is a sequence of integers. Assume that conditions (i') and (ii') of Theorem 2.2.8 hold and replace conditions (iii'') and (iv') of Theorem 2.2.5 by the following:

(iii'') Given $\delta > 0$, there exists $0 < \eta < 1$ such that

\[
\lim \sup_n \sup_{\varepsilon \leq |\tau| \leq \pi / |h_n|} \left| \frac{\phi_n(\tau_n + i\varepsilon)}{\phi_n(\tau_n)} \right|^{1/n} < \eta.
\]

(iv'') There exist $p, l > 0$ such that

\[
\sup_{\tau \in I} \int_{-\pi / |h_n|}^{\pi / |h_n|} \left| \frac{\phi_n(\tau_n + i\tau)}{\phi_n(\tau_n)} \right|^{1/n} dt = O(n^p).
\]

Then,

\[
\frac{1}{|h_n|} \Pr(T_n / n = m_n) = \frac{1}{\sqrt{2\pi} \sqrt{\psi_n(\tau_n)}} \exp(-n\gamma_n(m_n)) [1 + O(1/n)].
\]

Proof. The proof of this theorem is analogous to that of Theorem 2.2.5 except that the range of integration in (2.27) is from $-\pi / |h_n|$ to $\pi / |h_n|$ instead of the whole real line. Hence we skip the details of this proof.

As an application to large deviation local limit theorems for an arbitrary sequence of random variables Chaganty- Sethuraman (1985) have discussed...
two examples in non-parametric theory. One of the examples deals with Wilcoxon signed rank statistic. We show below that the Wilcoxon signed rank statistic satisfies our new Condition (iii**).

Example 2.2.11 Let \(\{X_n, n \geq 1\} \) be a sequence of i.i.d. random variables with median \(m \). Arrange \(|X_1|, |X_2|, \ldots, |X_n|\) in increasing order of magnitude and assign ranks 1, 2, \ldots, \(n \). The Wilcoxon signed-ranked statistic \(U_n \) is defined as the sum of the ranks of positive \(X_i \)'s. This statistic is used to test the null hypothesis \(H_0 : m = 0 \) vs \(H_1 : m \neq 0 \). Let \(T_n = \frac{U_n}{n} \). The c.f. of \(T_n \) under the null hypothesis \(H_0 \) is given by

\[
\phi_n(z) = \prod_{k=1}^{n} \left[\frac{(\exp(kz/n) + 1)/2}{\exp(kz/n) + 1} \right], \quad z \in \mathbb{C} \tag{2.48}
\]

and therefore

\[
\psi_n(z) = \frac{1}{n} \sum_{k=1}^{n} \log \left(\frac{(\exp(kz/n) + 1)/2}{\exp(kz/n) + 1} \right), \quad z \in \mathbb{C}. \tag{2.49}
\]

In this example verification of Conditions (i'), (ii') and (iv**) of Theorem 2.2.10 does not pose any difficulties. The analysis in Chaganty and Sethuraman (1985) page 26 shows that, there exists \(n_0 \) and \(\delta_1 > 0 \) such that for \(0 < \delta < \delta_1 \),

\[
\sup_{\varepsilon \leq |t| < \pi/n} \left| \frac{\phi_n(\tau_n + it)}{\phi_n(\tau_n)} \right|^{1/n} \leq \exp(-\alpha \delta^2/4) \tag{2.50}
\]

for \(n \geq n_0 \). This verifies Condition (iii**). Thus all the conditions of Theorem 2.2.10 are satisfied. Hence, the conclusion of Theorem 2.2.10 yields an expression for \(P(T_n = nm) \).
2.3 Large deviation local limit theorems for ratio statistics

This section deals with the main theorems of this dissertation, namely, Theorems 2.3.1 and 2.3.12. Let \(\{T_n, n \geq 1\} \) be an arbitrary sequence of random variables and \(\{S_n, n \geq 1\} \) be another arbitrary sequence of positive random variables. Let the two sequences be independent. Theorem 2.3.1 obtains an asymptotic expression for the density function of \(R_n = \frac{T_n}{S_n} \) at the point \(r_n \) in the case where both \(T_n \) and \(S_n \) are non-lattice random variables. The other Theorem 2.3.12 obtains similar result in the case where \(T_n \) is non-lattice and \(S_n \) is a lattice random variable. We treat the case where \(T_n \) and \(S_n \) both are lattice random variables later in Section 2.4.

Our Theorem 2.3.12 simplifies to the result of Chaganty- Sethuraman (see Theorem 2.2.8) in the case where \(T_n \) is taken to be the sum of \(n \) i.i.d. non-lattice random variables and \(S_n \) is taken to be degenerate at \(n \). Thus our theorem generalizes the results obtained by Chaganty and Sethuraman.

The conditions of the Theorems 2.3.1, 2.3.12 are very much simplified when \(T_n \) and \(S_n \) are taken to be the sums of i.i.d. random variables. These results are stated in Theorems 2.3.13 and 2.3.14. The conclusion of Theorem 2.3.13 agrees with the heuristic result of Daniels (1954).

Like the theorems in the previous section, the theorems in this section are also obtained under some mild and easily verifiable conditions on the moment generating functions \(\phi_{1n} \) and \(\phi_{2n} \) of \(T_n \) and \(S_n \) respectively. These conditions are such that they give bounds on the means of \(T_n/a_n \).
and S_n/a_n and variances of $T_n/\sqrt{a_n}$ and $S_n/\sqrt{a_n}$ which in turn imply that T_n/a_n converges to zero in probability and S_n/a_n, in view of (2.54), converges in probability to some positive constant. Thus by Slutsky’s theorem $R_n = T_n/S_n$ converges to zero in probability and therefore for any $r_n > 0$, the asymptotic expressions for the density function of R_n at r_n obtained in this section become a large deviation local limit theorem. We proceed with some notations.

Let $\{T_n, n \geq 1\}$ be an arbitrary sequence of non-lattice random variables and let $\{S_n, n \geq 1\}$ be a sequence of positive non-lattice valued random variables. Let the two sequences be independent. Let ϕ_{1n} and ϕ_{2n} be the moment generating functions of $\{T_n, n \geq 1\}$ and $\{S_n, n \geq 1\}$ respectively. Let us further assume that $\phi_{1n}(z)$ is analytic in $\Omega_1 = \{ z \in \mathbb{C} : |z| < c_1 \}$ and $\phi_{2n}(z)$ is analytic in $\Omega_2 = \{ z \in \mathbb{C} : |z| < c_2 \}$ where \mathbb{C} denotes the set of all complex numbers and c_1, c_2 are some positive constants. Let $\{a_n\}$ be a sequence of real numbers such that $a_n \to \infty$.

Let

$$\psi_{1n}(z) = \frac{1}{a_n} \log \phi_{1n}(z), \quad z \in \Omega_1. \tag{2.51}$$

$$\psi_{2n}(z) = \frac{1}{a_n} \log \phi_{2n}(z), \quad z \in \Omega_2. \tag{2.52}$$

Let $J_1 = (-b_1, b_1), \ 0 < b_1 < c_1$ and $J_2 = (-b_2, b_2), \ 0 < b_2 < c_2$. Let $\{r_n\}$ be a bounded sequence of real numbers such that there exists a sequence $\{r_n\}$ contained in J_1 satisfying

$$\psi'_{1n}(r_n) - r_n \psi'_{2n}(-r_n r_n) = 0 \tag{2.53}$$

for $r_n r_n \in J_2$ for all $n \geq 1$. Let there exist positive constants α_1 and α_2

2-29
such that
\[\psi''_1(\tau) > \alpha_1 \text{ and } \psi'_2(\tau') > \alpha_2 \] (2.54)
and \(\tau' \in J_2 \).

We now state the main theorem of this section. Theorem 2.3.1 below obtains a large deviation local limit theorem for the ratio statistic \(R_n = T_n/S_n \) at the point \(r_n \).

Theorem 2.3.1. Assume that the two sequences \(\{T_n, n \geq 1\} \) and \(\{S_n, n \geq 1\} \) satisfy the following conditions:

(A1) There exist \(\beta_1 < \infty \) and \(\beta_2 < \infty \) such that
\[|\psi_1(z)| < \beta_1 \text{ for } z \in \Omega_1 \] (2.55)
and
\[|\psi_2(z)| < \beta_2 \text{ for } z \in \Omega_2, \text{ for all } n \geq 1. \] (2.56)

(A2) For any given \(\delta > 0 \), there exist \(0 < \eta < 1 \) and \(q > 0 \) such that
\[\limsup \sup_n \sup_{|t| > \delta} \left| \frac{\phi_1(r_n + it)}{\phi_1(r_n)} \right|^{1/a_n} < \eta \] (2.57)
and
\[\sup_{|t| > \delta} \left| \psi'_2(-r_n(r_n + it)) \right| = O(a_n^q). \] (2.58)

(A3) There exist \(p, l > 0 \) such that
\[\sup_{r \in J_1} \int_{-\infty}^{\infty} \left| \frac{\phi_1(r + it)}{\phi_1(r)} \right|^{1/a_n} dt = O(a_n^p). \] (2.59)
Then an asymptotic expansion for the density function g_n of T_n/S_n at the point r_n is given by

$$g_n(r_n) = \frac{\sqrt{a_n} \psi_{2n}'(-r_n r_n)}{[2\pi[\psi_{1n}''(r_n) + r_n^2 \psi_{2n}''(-r_n r_n)]]^{1/2}}$$

$$\times \exp(a_n[\psi_{1n}(r_n) + \psi_{2n}(-r_n r_n)][1 + O(1/a_n)]). \quad (2.60)$$

The proof of this theorem is deferred until the end of Lemma 2.3.11. We now make some remarks about the Conditions (A1), (A2) and (A3) of the above theorem.

Remark 2.3.2. Condition (A1) of Theorem 2.3.1 requires that ψ_{1n} and ψ_{2n} be bounded uniformly in n in a circle around the origin in the complex plane. In Lemma 2.3.7 we show that Condition (A1) implies that the means of T_n/a_n and S_n/a_n are bounded and the variances of $T_n/\sqrt{a_n}$ and $S_n/\sqrt{a_n}$ are also bounded. Applying Chebyshev’s inequality we can verify that $(T_n - E(T_n))/a_n \to 0$ in probability and $(S_n - E(S_n))/a_n \to c$ in probability for some c positive. The application of Slutsky’s theorem shows that $R_n = T_n/S_n$ goes to zero in probability.

Remark 2.3.3. Since $|\phi_{1n}(r_n + it)/\phi_{1n}(r_n)|$ is the characteristic function of a non-lattice random variable, for each $\delta > 0$ we can always find $0 < \eta_n < 1$ such that

$$\sup_{|t| > \delta} |\phi_{1n}(r_n + it)/\phi_{1n}(r_n)|^{1/a_n} < \eta_n.$$
Condition (A2) requires that the limsup $\eta_n = \eta < 1$. We use Condition (A2) mainly in Lemma 2.3.9 to show that the term I_{n1} defined in (2.68) goes exponentially fast to zero.

Remark 2.3.4. Condition (A3) guarantees the existence of the density function of T_n and permits the use of inversion formula to get an expression for the p.d.f. of T_n. This condition is also used to show that the term I_{n1} in (2.68) goes exponentially fast to zero.

Remark 2.3.5. It is interesting to note that the conclusion of the Theorem 2.3.1 remains the same if ϕ_{1n} is replaced by ϕ_{2n} in (2.57) and (2.59) of Conditions (A2) and (A3).

Remark 2.3.6. Selection of an appropriate sequence $\{r_n\}$ of real numbers guarantees the existence of a saddle point $(\tau_n, 0)$ for the function $Real(\psi_{1n}(\tau + it) + \psi_{2n}(-r_n(\tau + it)))$ for each n. We use this saddle point to get an asymptotic expression for the integral in (2.107).

We will need the following Lemmas 2.3.7 thru 2.3.10 in the proof of Theorem 2.3.1. Lemma 2.3.7 obtains bounds which are independent of n for $\psi_{1n}^{(k)}$ and $\psi_{2n}^{(k)}$ for $k \geq 1$ and also for the remainder terms $R_{1n}(\tau + it)$ and $R_{2n}(\tau + it)$ defined below.

Lemma 2.3.7. Let ψ_{1n} and ψ_{2n} be as defined in (2.51) and (2.52). Assume that Condition (A1) of Theorem 2.3.1 holds. Then the following holds:

$$\sup_{\tau \in J_j} |\psi_{j,n}^{(k)}(\tau)| \leq \frac{k!\beta_j}{(\epsilon_j - \delta_j)^k}$$ \hspace{1cm} (2.61)
for \(j = 1, 2 \) and for \(k \geq 1 \). Let
\[
R_{jn}(r + it) = \psi_{jn}(r + it) - \psi_{jn}(r) - (it)\psi'_{jn}(r) - \frac{(it)^2}{2!} \psi''_{jn}(r) - \frac{(it)^3}{3!} \psi'''_{jn}(r)
\]
for \(r \in J_j, j = 1, 2 \). Then there exists \(\delta_j < (c_j - b_j)/2 \) such that
\[
\sup_{r \in J_j} |R_{jn}(r + it)| < \frac{2\beta_j t^4}{(c_j - b_j)^4}
\]
for \(|t| < \delta_j \) and for \(j = 1, 2 \).

Proof. The proof of this lemma is similar to the proof of Lemma 2.2.9 and hence it is omitted.

Remark 2.3.8. Let \(\sup |r_n| = \tau \). Let \(\delta_3 = \delta_2/\tau \). Since \(\psi_{2n}(z) \) is analytic in \(\Omega_2 \) the following expansion is valid for all \(n \geq 1 \) and \(|t| < \delta_3 \):
\[
\psi'_{2n}(-r_n(\tau_n + it)) = \psi'_{2n}(-r_n\tau_n) + (-ir_n\tau_n)^2 \psi''_{2n}(-r_n\tau_n) + \frac{(-ir_n\tau_n)^3}{2!} \psi'''_{2n}(-r_n\tau_n)
\]
\[\text{+} R(-r_n(\tau_n + it)) \]
where
\[
R(-r_n(\tau_n + it)) = \frac{(-ir_n\tau_n)^3}{2\pi i} \int_{C_2} \frac{\psi'_{2n}(\omega)}{(\omega - (-r_n\tau_n))^3(\omega - (-r_n\tau_n) + it)} d\omega
\]
and \(C_2 = C(-r_n\tau_n, c_2 - b_2) \). Therefore, for \(|t| < \delta_3 \) we have,
\[
|R(-r_n(\tau_n + it))| \leq \frac{2\beta_2 r^3 t^3}{(c_2 - b_2)^3}.
\]
Lemma 2.3.9 shows that the term \(I_{n_1} \) (see (2.113)) appearing in the proof of Theorem 2.3.1 goes exponentially fast to zero.

Lemma 2.3.9. Assume that the Conditions (A2) and (A3) of Theorem 2.3.1 are satisfied. Let

\[
n_f(z) = \psi_{1n}(z) + \psi_{2n}(-r_nz).
\]

Then

\[
I_{n_1} = \left| \frac{a_n f''_n(r_n)}{2\pi} \right|^{1/2} \int_{|t| \geq \delta} \exp\left(\left| a_n (f_n(r_n + it) - f_n(r_n)) \right| \right) \frac{\psi_{2n}'(-r_n(r_n + it))}{\psi_{2n}'(-r_n r_n)} dt
\]

(2.68)

goes exponentially fast to zero for all \(\delta > 0 \) such that \(\delta < \min(\delta_1, \delta_2, \delta_3) \)

where \(\delta_1 \) and \(\delta_2 \) are as in Lemma 2.3.7 and \(\delta_3 \) is as in Remark 2.3.3.

Proof: Consider

\[
|I_{n_1}| = \left| \frac{a_n f''_n(r_n)}{2\pi} \right|^{1/2} \int_{|t| \geq \delta} \exp\left(\left| a_n (f_n(r_n + it) - f_n(r_n)) \right| \right) \left| \frac{\psi_{2n}'(-r_n(r_n + it))}{\psi_{2n}'(-r_n r_n)} \right| dt \]

(2.69)

Replacing \(f_n(r_n) \) by \(\psi_{1n}(r_n) + \psi_{2n}(-r_n r_n) \) inside the integral, we get

\[
|I_{n_1}| \leq \left| \frac{a_n f''_n(r_n)}{2\pi} \right|^{1/2} \int_{|t| \geq \delta} \left| \frac{\phi_{1n}(r_n + it)}{\phi_{1n}(r_n)} \frac{\phi_{2n}(-r_n(r_n + it))}{\phi_{2n}(-r_n r_n)} \right| dt
\]

(2.69)
Using the fact that \(\psi_{2n}(\tau) > \alpha_2 \), for \(\tau \in J_2 \) and Condition (A2) we get,

\[
|I_{n1}| \leq \left[\frac{a_n f_n''(\tau_n)}{2\pi} \right]^{1/2} \frac{1}{\alpha_2} O(a_n^0) \eta_n^{(1-\alpha_n)} \int_{-\infty}^{\infty} \left| \frac{\phi_{1n}(\tau + it)}{\phi_{1n}(\tau_n)} \right|^{1-\alpha_n} \phi_{1n}(\tau + it) d\tau.
\] (2.70)

Finally, Condition (A3) implies that,

\[
|I_{n1}| \leq O(a_n^{p+q+1/2}) \exp(-\eta_1(a_n - l)),
\] (2.71)

where \(\eta_1 = -\log \eta > 0 \). Hence \(I_{n1} \) goes exponentially fast to zero.

We need the following lemma to prove Lemma 2.3.11.

Lemma 2.3.10. Let \(\psi_{1n} \) and \(\psi_{2n} \) be as defined in (2.51) and (2.52). Assume that Condition (A1) of Theorem 2.3.1 holds.

Let

\[
d_n = \psi_{1n}(\tau_n) + \frac{\tau_n^2}{\alpha_n} \psi_{2n}'(\tau_n) + \frac{\tau_n^4}{\alpha_n} \psi_{2n}(\tau_n)
\] (2.72)

and

\[
L_n(s) = \exp(z_n) \frac{\psi_{2n}'(\tau_n + i\frac{\tau_n}{\sqrt{\alpha_n}})}{\psi_{2n}'(-\tau_n)} - 1 - z_n
\] (2.73)
where
\[z_n = \frac{-is^3}{6\sqrt{a_n}} \psi'''_1(r_n) + \frac{ir^3s^3}{6\sqrt{a_n}} \psi'''_2(-r_n\tau_n) \]
\[+ a_n R_{1n}(r_n + i\frac{s}{\sqrt{a_n}}) + a_n R_{2n}(-r_n(r_n + i\frac{s}{\sqrt{a_n}})). \] (2.74)

Then there exists \(\delta > 0 \) such that
\[\left[\frac{d_n}{2\pi} \right]^{1/2} \int_{|s|<\sqrt{a_n}\delta} \exp(-\frac{s^2}{2}d_n) L_n(s) ds = O(1/a_n). \] (2.75)

Proof. Let \(\delta \) be as in Lemma 2.3.9. Then
\[Q_n = \left[\frac{d_n}{2\pi} \right]^{1/2} \int_{|s|<\sqrt{a_n}\delta} \exp(-\frac{s^2}{2}d_n) \left[\exp(z_n) - 1 - z_n \right] L_n(s) ds. \] (2.76)

We can write \(Q_n \) as the sum of four integrals as follows:
\[Q_n = \left[\frac{d_n}{2\pi} \right]^{1/2} \int_{|s|<\sqrt{a_n}\delta} \exp(-\frac{s^2}{2}d_n) \left[\exp(z_n) - 1 - z_n \right] \frac{\psi'_2(-r_n(r_n + i\frac{s}{\sqrt{a_n}}))}{\psi'_2(-r_n\tau_n)} \]
\[+ \left(\frac{\psi'_2(-r_n(r_n + i\frac{s}{\sqrt{a_n}}))}{\psi'_2(-r_n\tau_n)} - 1 \right) - (z_n) + \left(\frac{\psi'_2(-r_n(r_n + i\frac{s}{\sqrt{a_n}}))}{\psi'_2(-r_n\tau_n)} \right) \] ds
\[= I'_{n1} + I'_{n2} + I'_{n3} + I'_{n4} \text{ (say)} \] (2.77)

where
\[I'_{n4} = \left[\frac{d_n}{2\pi} \right]^{1/2} \int_{|s|<\sqrt{a_n}\delta} \exp(-\frac{s^2}{2}d_n) \exp((z_n) - 1 - z_n) \frac{\psi'_2(-r_n(r_n + i\frac{s}{\sqrt{a_n}}))}{\psi'_2(-r_n\tau_n)} ds \] (2.78)
The proof is completed by showing that $I_n = O(1/a_n)$ for $i = 1, 2, 3, 4$. In order to show that $I_n = O(1/a_n)$, we get an upper bound for $(\exp(z_n) - 1 - z_n)$, by first obtaining an upper bound for z_n. For $|s| < \sqrt{a_n} \delta$, using Condition (A1) and (2.61) we get that

$$|z_n| \leq \frac{|s|^3 \beta_1}{\sqrt{a_n} (c_1 - b_1)^3} + \frac{|r_n|^3 |s|^3 \beta_2}{\sqrt{a_n} (c_2 - b_2)^3} + \frac{2 \beta_1 s^4}{a_n (c_1 - b_1)^4} + \frac{2 \beta_2 r_n^4 s^4}{a_n (c_2 - b_2)^4}$$

$$\leq \frac{\beta_1 \delta |s|^2}{(c_1 - b_1)^3} + \frac{\beta_2 |r_n|^3 \delta |s|^2}{(c_2 - b_2)^3} + \frac{2 \beta_1 \delta^2 s^2}{(c_1 - b_1)^4} + \frac{2 \beta_2 r_n^4 \delta^2 s^2}{(c_2 - b_2)^4}$$

$$= \left[\frac{\beta_1 \delta}{(c_1 - b_1)^3} + \frac{\beta_2 |r_n|^3 \delta}{(c_2 - b_2)^3} + \frac{2 \beta_1 \delta^2}{(c_1 - b_1)^4} + \frac{2 \beta_2 r_n^4 \delta^2}{(c_2 - b_2)^4} \right] s^2. \quad (2.82)$$

Using the boundedness of r_n in (2.82), we get

$$|z_n| \leq M(\delta) s^2 \quad (2.83)$$

where

$$M(\delta) = \left[\frac{\beta_1 \delta}{(c_1 - b_1)^3} + \frac{\beta_2 r_n^2 \delta}{(c_2 - b_2)^3} \right.$$

$$+ \frac{2 \beta_1 \delta^2}{(c_1 - b_1)^4} + \frac{2 \beta_2 r_n^4 \delta^2}{(c_2 - b_2)^4}. \quad (2.84)$$

2-37
We choose our δ such that $M(\delta) < \alpha_1/2$. Using the simple inequality

$$ |\exp(z_n) - 1 - z_n| \leq |z_n|^2 \exp(|z_n|) $$

we obtain,

$$ |\exp(z_n) - 1 - z_n| \leq \left[\frac{|s|^3 \beta_1}{\sqrt{a_n}(c_1 - b_1)^3} + \frac{r^3 |s|^3 \beta_2}{\sqrt{a_n}(c_2 - b_2)^3} \right. $$

$$ \left. + \frac{2\beta_1 s^4}{a_n(c_1 - b_1)^4} + \frac{2\beta_2 r^4 s^4}{a_n(c_2 - b_2)^4} \right]^2 \exp(M(\delta)s^3). $$

(2.85)

We are now in a position to show that $I_{n1} = O(1/a_n)$. Consider

$$ |I'_{n1}| = \left| \left[\frac{d_n}{2\pi} \right]^{1/2} \int_{|s|<\sqrt{a_n} \delta} \exp\left(-\frac{s^2}{2} d_n\right) \left(\exp(z_n) - 1 - z_n \right) \frac{\psi'_{2n}(-r_n(r_n + i\frac{s}{\sqrt{a_n}}))}{\psi'_{2n}(-r_n r_n)} ds \right| $$

$$ \leq \left[\frac{d_n}{2\pi} \right]^{1/2} \int_{|s|<\sqrt{a_n} \delta} \exp\left(-\frac{s^2}{2} d_n\right) \left(\exp(z_n) - 1 - z_n \right) \left| \frac{\psi'_{2n}(-r_n(r_n + i\frac{s}{\sqrt{a_n}}))}{\psi'_{2n}(-r_n r_n)} \right| ds $$

$$ \leq \left[\frac{d_n}{2\pi} \right]^{1/2} \int_{|s|<\sqrt{a_n} \delta} \exp\left(-\frac{s^2}{2} d_n\right) \exp(M(\delta)s^3) \left[\frac{|s|^3 \beta_1}{\sqrt{a_n}(c_1 - b_1)^3} + \frac{r^3 |s|^3 \beta_2}{\sqrt{a_n}(c_2 - b_2)^3} \right. $$

$$ \left. + \frac{2\beta_1 s^4}{a_n(c_1 - b_1)^4} + \frac{2\beta_2 r^4 s^4}{a_n(c_2 - b_2)^4} \right]^2 \left| \frac{\psi'_{2n}(-r_n(r_n + i\frac{s}{\sqrt{a_n}}))}{\psi'_{2n}(-r_n r_n)} \right| ds. $$

(2.86)

Using Taylor series expansion for ψ'_{2n} and the bounds (2.61) and (2.63) obtained in Lemma 2.3.7 we can show that $\left| \psi'_{2n}(-r_n(r_n + i\frac{s}{\sqrt{a_n}}))/\psi'_{2n}(-r_n r_n) \right|$ is bounded in n. Since $M(\delta) < \alpha_1/2$ we get that $I'_{n1} = O(1/a_n)$. Thus

$$ I_{n1} = O(1/a_n). $$

(2.87)
Next we show that $I_{n2}' = O(1/a_n)$. Consider

\[I_{n2}' = \left[\frac{d_n}{2\pi} \right]^{1/2} \int_{|s|<\sqrt{a_n\delta}} \exp\left(-\frac{s^2}{2} d_n \right) \left(\frac{\psi_{2n}'(-r_n(r_n + i\frac{s}{\sqrt{a_n}}))}{\psi_{2n}(-r_n r_n)} - 1 \right) ds \]

\[= \left[\frac{d_n}{2\pi} \right]^{1/2} \int_{|s|<\sqrt{a_n\delta}} \exp\left(-\frac{s^2}{2} d_n \right) \left[-ir_n \frac{s}{\sqrt{a_n}} \frac{\psi_{2n}''(-r_n r_n)}{\psi_{2n}(-r_n r_n)} \right] ds \]

\[+ \frac{r^2 n^2}{a_n} \frac{\psi_{2n}''(-r_n r_n)}{\psi_{2n}(-r_n r_n)} \]

(2.88)

where $R(-r_n(r_n + it))$ is as given in (2.65). It is easy to see that the first integral on the right hand side of I_{n2}' is zero. The use of bound on $\psi_{2n}''(-r_n r_n)$ (see (2.61)) and the fact that $\psi_{2n}(-r_n r_n) > \alpha_2$, it follows that the second integral is $O(1/a_n)$. Similarly (2.66) and the fact that $\psi_{2n}''(-r_n r_n) > \alpha_2$ imply that the third integral is $O(1/a_n^2)$. Therefore,

\[I_{n2}' = O(1/a_n). \] (2.89)

Next, consider

\[I_{n3}' = \left[\frac{d_n}{2\pi} \right]^{1/2} \int_{|s|<\sqrt{a_n\delta}} \exp\left(-\frac{s^2}{2} d_n \right) (-z_n) ds \]

\[= (-1) \left[\frac{d_n}{2\pi} \right]^{1/2} \int_{|s|<\sqrt{a_n\delta}} \exp\left(-\frac{s^2}{2} d_n \right) \left[-\frac{i s^3}{6\sqrt{a_n}} \psi_{1n}'(r_n) + \frac{i r_n^3 s^3}{6\sqrt{a_n}} \psi_{2n}''(-r_n r_n) \right. \]

\[+ a_n R_{1n}(r_n + i\frac{s}{\sqrt{a_n}}) + a_n R_{2n}(-r_n(r_n + i\frac{s}{\sqrt{a_n}})) \] (2.90)

The first two integrals on the right hand side of I_{n3}' are zero and the third and fourth integrals using (2.63) can be seen to be equal to $O(1/a_n)$.
Thus

\[I_{n3} = O(1/a_n). \]

(2.91)

Lastly, consider

\[
 I_{n4} = \left[\frac{d_n}{2\pi} \right]^{1/2} \int_{|s|<\sqrt{\alpha_n\delta}} \exp\left(-\frac{s^2}{2}d_n\right) \frac{\psi_{2n}(-r_n(r_n+i\frac{s}{\sqrt{\alpha_n}}))}{\psi_{2n}(-r_n r_n)} ds
\]

\[
 = \left[\frac{d_n}{2\pi} \right]^{1/2} \int_{|s|<\sqrt{\alpha_n\delta}} \exp\left(-\frac{s^2}{2}d_n\right) \left[\frac{-is^3}{6\sqrt{\alpha_n}} \psi'''_{1n}(r_n) + \frac{ir_n s^3}{6\sqrt{\alpha_n}} \psi'''_{2n}(-r_n r_n)
 + a_n R_{1n}(r_n + i\frac{s}{\sqrt{\alpha_n}}) + a_n R_{2n}(-r_n(r_n+i\frac{s}{\sqrt{\alpha_n}})) \right] \left[1 - ir_n \frac{s}{\sqrt{\alpha_n}} \frac{\psi''_{2n}(-r_n r_n)}{\psi_{2n}(-r_n r_n)} \right.
\]

\[
 - \frac{r_n^2 s^2}{\alpha_n} \psi''_{2n}(-r_n r_n) + \frac{R(-r_n r_n - i r_n \frac{s}{\sqrt{\alpha_n}})}{\psi''_{2n}(-r_n r_n)} \right] ds. \]

(2.92)

\[I_{n4} \text{ can be easily shown to be } O(1/a_n). \] Therefore, it follows from (2.86), (2.88), (2.90) and (2.91) that \(Q_n = O(1/a_n). \) This completes the proof of the lemma.

The next lemma shows that the term \(I_{n2} \) appearing in the proof of the main Theorem 2.3.1, (see (2.111)) is \(1 + O(1/a_n). \)

Lemma 2.3.11. Let \(f_n(t) \) be as defined in (2.67). Assume that Conditions (A1) and (A2) of Theorem 2.3.1 hold. Let \(\delta \) be as in Lemma 2.3.10. Then

\[
 I_{n2} = \left[\frac{a_n d_n}{2\pi} \right]^{1/2} \int_{|t|<\delta} \exp(a_n|f_n(r_n + it) - f_n(r_n)|) \frac{\psi'_{2n}(-r_n(r_n + it))}{\psi_{2n}(-r_n r_n)} dt
\]

\[
 = 1 + O(1/a_n). \]

(2.93)
Proof. Consider

\[
I_n^2 = \left[\frac{a_n d_n}{2\pi} \right]^{1/2} \int_{|t|<\delta} \exp \left(a_n \left[\psi_{1n}(\tau_n + it) - \psi_{1n}(\tau_n) + \psi_{2n}(-\tau_n(\tau_n + it)) - \psi_{2n}(-\tau_n \tau_n) \right] \right) \frac{\psi_{2n}'(\tau_n(\tau_n + it))}{\psi_{2n}'(-\tau_n \tau_n)} dt. \tag{2.94}
\]

Making a change of variable \(t = s/\sqrt{a_n} \), we get,

\[
I_n^2 = \left[\frac{d_n}{2\pi} \right]^{1/2} \int_{|s|<\sqrt{a_n} \delta} \exp \left(-a_n \left[\frac{s^2}{2a_n} \psi_{1n}(\tau_n) + \frac{r_n^2 s^3}{2a_n} \psi_{2n}(\tau_n) \right. \right.
\]

\[
+ \frac{i s^3}{6a_n \sqrt{a_n}} \psi_{1n}'''(\tau_n) - \frac{i r_n^3 s^3}{6a_n \sqrt{a_n}} \psi_{2n}'''(\tau_n) - R_{1n}(\tau_n + i \frac{s}{\sqrt{a_n}}) - R_{2n}(\tau_n + i \frac{s}{\sqrt{a_n}}) \left. \right] \right) \frac{\psi_{2n}'(\tau_n + i \frac{s}{\sqrt{a_n}})}{\psi_{2n}'(-\tau_n \tau_n)} ds. \tag{2.95}
\]

Using the Taylor's series expansions for \(\psi_{1n} \) and \(\psi_{2n} \) (see (2.62)), we get

\[
I_n^2 = \left[\frac{d_n}{2\pi} \right]^{1/2} \int_{|s|<\sqrt{a_n} \delta} \exp \left(-a_n \left[\frac{s^2}{2a_n} \psi_{1n}(\tau_n) + \frac{r_n^2 s^3}{2a_n} \psi_{2n}(\tau_n) \right. \right.
\]

\[
+ \frac{i s^3}{6a_n \sqrt{a_n}} \psi_{1n}'''(\tau_n) - \frac{i r_n^3 s^3}{6a_n \sqrt{a_n}} \psi_{2n}'''(\tau_n) - R_{1n}(\tau_n + i \frac{s}{\sqrt{a_n}}) - R_{2n}(\tau_n + i \frac{s}{\sqrt{a_n}}) \left. \right] \right) \frac{\psi_{2n}'(\tau_n + i \frac{s}{\sqrt{a_n}})}{\psi_{2n}'(-\tau_n \tau_n)} ds
\]

\[
= \left[\frac{d_n}{2\pi} \right]^{1/2} \int_{|s|<\sqrt{a_n} \delta} \exp \left(-\frac{s^2}{2} \left[\psi_{1n}(\tau_n) + r_n^2 \psi_{2n}(-\tau_n \tau_n) \right. \right.
\]

\[
\times \exp \left(\frac{-i s^3}{6a_n} \psi_{1n}'''(\tau_n) + \frac{i r_n^2 s^3}{6a_n} \psi_{2n}'''(\tau_n) + a_n R_{1n}(\tau_n + i \frac{s}{\sqrt{a_n}}) \right. \right.
\]

\[
+ a_n R_{2n}(\tau_n + i \frac{s}{\sqrt{a_n}}) \left. \right] \right) \frac{\psi_{2n}'(\tau_n + i \frac{s}{\sqrt{a_n}})}{\psi_{2n}'(-\tau_n \tau_n)} ds. \tag{2.96}
\]

2-41
Noting that $\psi''_1(\tau_n) + r_n^2 \psi''_{2n}(-r_n \tau_n)$ is d_n defined in (2.72), we get that

$$I_{n2} = \left[\frac{d_n}{2\pi} \right]^{1/2} \int_{|s| < \sqrt{a_n \delta}} \exp \left(-\frac{d_n s^2}{2} \right) \left[1 - \frac{-i s^3}{6 \sqrt{a_n}} \psi''_1(\tau_n) + \frac{i r_n s^3}{6 \sqrt{a_n}} \psi''_{2n}(-r_n \tau_n) \right] ds$$

$$+ a_n R_{1n}(\tau_n + i \frac{s}{\sqrt{a_n}}) + a_n R_{2n}(-r_n(\tau_n + i \frac{s}{\sqrt{a_n}})) + L_n(s) \right] ds$$

where d_n, z_n and $L_n(s)$ are as defined in (2.72), (2.74) and (2.73) respectively. The right hand side of (2.96) involves six integrals. Let us analyze these integrals.

The 1^{st} integral

$$\left[\frac{d_n}{2\pi} \right]^{1/2} \int_{|s| < \sqrt{a_n \delta}} \exp \left(-\frac{s^2}{2} d_n \right) ds = 1 - 2 \Phi(-\sqrt{a_n \delta} \sqrt{d_n})$$

$$= 1 + o(1/a_n) \quad (2.98)$$

follows from Mill's Ratio (see Feller (1968) page 175, (1.8)).

The 2^{nd} integral

$$\left[\frac{d_n}{2\pi} \right]^{1/2} \frac{i \psi''_1(\tau_n)}{6 \sqrt{a_n}} \int_{|s| < \sqrt{a_n \delta}} s^3 \exp \left(-\frac{s^2}{2} d_n \right) ds = 0. \quad (2.99)$$

The 3^{rd} integral

$$\left[\frac{d_n}{2\pi} \right]^{1/2} \frac{i r_n \psi''_{2n}(-r_n \tau_n)}{6 \sqrt{a_n}} \int_{|s| < \sqrt{a_n \delta}} s^3 \exp \left(-\frac{s^2}{2} d_n \right) ds = 0. \quad (2.100)$$

For the 4^{th} integral consider

$$\left| \left[\frac{d_n}{2\pi} \right]^{1/2} \int_{|s| < \sqrt{a_n \delta}} a_n R_{1n}(\tau_n + i \frac{s}{\sqrt{a_n}}) \exp \left(-\frac{s^2}{2} d_n \right) ds \right|$$

2-42
\[a_n \left(\frac{d_n}{2\pi} \right)^{1/2} \int_{|s|<\sqrt{a_n}} \exp \left(\frac{-s^2}{2} d_n \right) |R_{1n}(\tau_n + i \frac{s}{\sqrt{a_n}})| ds \leq \frac{1}{a_n} \left(\frac{d_n}{2\pi} \right)^{1/2} \frac{2\beta_1}{(c_1 - b_1)^4} \int_{|s|<\sqrt{a_n}} s^4 \exp \left(\frac{-s^2}{2} d_n \right) ds \]

\[= O(1/a_n). \quad (2.101) \]

Thus

\[\left[\frac{d_n}{2\pi} \right]^{1/2} \int_{|s|<\sqrt{a_n}} a_n R_{1n}(\tau_n + i \frac{s}{\sqrt{a_n}}) \exp \left(\frac{-s^2}{2} d_n \right) ds = O(1/a_n). \quad (2.102) \]

Similarly, the 5th integral can be shown to be equal to \(O(1/a_n) \), that is,

\[\left[\frac{d_n}{2\pi} \right]^{1/2} \int_{|s|<\sqrt{a_n}} a_n R_{2n}(\tau_n + i \frac{s}{\sqrt{a_n}}) \exp \left(\frac{-s^2}{2} d_n \right) ds = O(1/a_n). \quad (2.103) \]

The 6th integral

\[\left[\frac{d_n}{2\pi} \right]^{1/2} \int_{|s|<\sqrt{a_n}} \exp \left(\frac{-s^2}{2} d_n \right) L_n(s) ds \]

is nothing but \(Q_n \) defined by (2.76) and therefore, by Lemma 2.3.10 it is equal to \(O(1/a_n) \). Thus

\[I_{n2} = 1 + O(1/a_n). \]

This completes the proof of Lemma 2.3.11.

We now proceed with the proof of the main Theorem 2.3.1.
Proof. Let G_n be the distribution function of $R_n = T_n/S_n$. Then

$$G_n(r) = P\left[\frac{T_n}{S_n} \leq r\right] = \int_0^\infty F_{1n}(ry) \, dF_{2n}(y). \quad (2.104)$$

The density function, g_n, of G_n is given by

$$g_n(r) = \int_0^\infty y f_{1n}(ry) \, dF_{2n}(y) \quad (2.105)$$

where f_{1n} is the p.d.f. of T_n.

Using the conjugate distribution technique (see (2.26), (2.27) and (2.28)), we get that

$$f_{1n}(ry) = \frac{1}{2\pi} \int_{-\infty}^\infty \phi_{1n}(\tau + it) \exp(-(\tau + it)ry) \, dt \quad (2.106)$$

which is true for all $r \in J_1$. Later we will choose r appropriately. Substituting (2.105) in (2.104) we obtain

$$g_n(r) = \int_0^\infty y \left[\frac{1}{2\pi} \int_{-\infty}^\infty \phi_{1n}(\tau + it) \exp(-(\tau + it)ry) \, dt \right] \, dF_{2n}(y)$$

$$= \frac{1}{2\pi} \int_{-\infty}^\infty \phi_{1n}(\tau + it) \left[\int_0^\infty y \exp(-(\tau + it)ry) \, dF_{2n}(y) \right] \, dt$$

$$= \frac{1}{2\pi} \int_{-\infty}^\infty \phi_{1n}(\tau + it) \phi'_{2n}(-r(\tau + it)) \, dt$$

$$= \frac{a_n}{2\pi} \int_{-\infty}^\infty \exp(a_n[\psi_{1n}(\tau + it) + \psi_{2n}(-r(\tau + it))] \psi'_{2n}(-r(\tau + it)) \, dt.$$

Saddle point technique suggests that when r is replaced by r_n an appropriate choice of τ is τ_n where τ_n is such that

$$\psi'_{1n}(r_n) - r_n\psi'_{2n}(-r_n\tau_n) = 0 \quad (2.107)$$

2-44
for \(\tau_n \in J_1 \) and \(\tau_n r_n \in J_2 \). Therefore, we have,

\[
g_n(\tau_n) = \frac{a_n}{2\pi} \int_{-\infty}^{\infty} \exp\left(a_n[\psi_1n(\tau_n + it) + \psi_2n(-\tau_n(\tau_n + it))]
ight) \psi_{2n}'(-\tau_n(\tau_n + it)) \, dt
\]

\[
= \frac{\sqrt{a_n} \psi_{2n}'(-\tau_n \tau_n) \exp\left(a_n[\psi_1n(\tau_n) + \psi_2n(-\tau_n \tau_n)]\right)}{[2\pi \psi_1n'(\tau_n) + r_{2n} \psi_{2n}'(-\tau_n \tau_n)]^{1/2}} I_n
\]

(2.108)

where

\[
I_n = \left[\frac{a_n[\psi_1n'(\tau_n) + r_{2n} \psi_{2n}'(-\tau_n \tau_n)]}{2\pi}\right]^{1/2} \int_{-\infty}^{\infty} \exp\left(a_n[\psi_1n(\tau_n + it) - \psi_1n(\tau_n)]\right) \psi_{2n}'(-\tau_n(\tau_n + it)) \psi_{2n}'(-\tau_n \tau_n) \, dt.
\]

(2.109)

Let \(f_n(z) \) and \(d_n \) be as defined in (2.67) and (2.72) respectively. We have,

\[
I_n = \left[\frac{a_n d_n}{2\pi}\right]^{1/2} \int_{-\infty}^{\infty} \exp\left(a_n[f_n(\tau_n + it) - f_n(\tau_n)]\right) \psi_{2n}'(-\tau_n(\tau_n + it)) \psi_{2n}'(-\tau_n \tau_n) \, dt
\]

\[
= \left[\frac{a_n d_n}{2\pi}\right]^{1/2} \left[\int_{|t| \geq \delta} \exp\left(a_n[f_n(\tau_n + it) - f_n(\tau_n)]\right) \psi_{2n}'(-\tau_n(\tau_n + it)) \psi_{2n}'(-\tau_n \tau_n) \, dt
\]

\[
+ \int_{|t| < \delta} \exp\left(a_n[f_n(\tau_n + it) - f_n(\tau_n)]\right) \psi_{2n}'(-\tau_n(\tau_n + it)) \psi_{2n}'(-\tau_n \tau_n) \, dt\right]
\]

(2.110)

where \(\delta \) is chosen such that \(\delta < \min(\delta_1, \delta_2, \delta_3) \) and \(M(\delta) < a_1/2 \) where \(\delta_1 \), \(\delta_2 \) are as in Lemma 2.3.7 and \(\delta_3 \) is as in Remark 2.3.8 and

\[
M(\delta) = \left[\beta_1 \delta/(c_1 - b_1)^3 + \beta_2 r^3 \delta/(c_2 - b_2)^3
\right.
\]

\[
+ 2\beta_1 \delta^2/(c_1 - b_1)^4 + 2\beta_2 r^2 \delta^2/(c_2 - b_2)^4 \right]. \quad (2.111)
\]

Thus

\[
I_n = I_{n1} + I_{n2} \quad (2.112)
\]

2-45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
where

\[I_{n1} = \left[\frac{a_n d_n}{2\pi} \right]^{1/2} \int_{|t|\geq \epsilon} \exp\left(a_n [f_n(r_n + it) - f_n(r_n)] \right) \frac{\psi_{2n}(-r_n(r_n + it))}{\psi_{2n}(-r_n r_n)} \, dt \]

(2.113)

and

\[I_{n2} = \left[\frac{a_n d_n}{2\pi} \right]^{1/2} \int_{|t|< \epsilon} \exp\left(a_n [f_n(r_n + it) - f_n(r_n)] \right) \frac{\psi_{2n}'(-r_n(r_n + it))}{\psi_{2n}(-r_n r_n)} \, dt. \]

(2.114)

Lemma 2.3.9 shows that the term \(I_{n1} \) goes exponentially fast to zero and Lemma 2.3.11 shows that \(I_{n2} = 1 + O(1/a_n) \).

Thus

\[I_n = 1 + O(1/a_n). \]

(2.115)

Hence the proof of the theorem is complete.

Next, we obtain similar asymptotic expression for the density function of ratio statistic \(R_n = T_n/S_n \) for the case where \(\{T_n, n \geq 1\} \) is a sequence of non-lattice random variables and \(\{S_n, n \geq 1\} \) is a sequence of positive lattice random variables. This result is stated below in Theorem 2.3.12.

Theorem 2.3.12. Let \(\{T_n, n \geq 1\} \) be a sequence of non-lattice random variables with distribution functions \(F_{1n} \) and let \(\{S_n, n \geq 1\} \) be a sequence of positive lattice random variables with distribution functions \(F_{2n} \). Let the two sequences \(\{T_n, n \geq 1\} \) and \(\{S_n, n \geq 1\} \) be independent. Let \(S_n \) take values in the set \(S = \{a_n + kh_n : a_n \text{ and } h_n \text{ are such that } a_n + kh_n > 0\} \).

Let \(\psi_{1n} \) and \(\psi_{2n} \) be as defined in (2.51) and (2.52) respectively. Assume that (2.58) is satisfied for an appropriate sequence \(r_n \). Let \(\{T_n\} \) and \(\{S_n\} \) further
satisfy the Conditions (A1), (A2) and (A3) of Theorem 2.3.1. Then, an
asymptotic expression for the p.d.f., g_{2n}, of T_n/S_n at the point r_n is given by

$$g_{2n}(r_n) = \frac{a_n\psi_{2n}(-r_n)}{\left[2\pi a_n[\psi_{1n}(r_n) + \tau_n^2\psi_{2n}(-r_n)]\right]^{1/2}} \exp(a_n[\psi_{1n}(r_n) + \psi_{2n}(-r_n)][1 + O(1/a_n)]). \quad (2.116)$$

The proof of this theorem runs parallel to that of earlier Theorems 2.3.1. Hence, we will give first few steps of the proof of this theorem.

Proof. Let G_{2n} be the distribution function of T_n/S_n. Then,

$$G_{2n}(r) = P\left(\frac{T_n}{S_n} \leq r\right)$$

$$= \sum_{y \in S} P(T_n \leq ry) P(S_n = y)$$

$$= \sum_{y \in S} F_1n(ry) P(S_n = y). \quad (2.117)$$

Therefore the p.d.f. of T_n/S_n is given by

$$g_{2n}(r) = \sum_{y \in S} y f_1n(ry) P(S_n = y)$$

$$= \sum_{y \in S} y P(S_n = y) f_1n(ry). \quad (2.118)$$

Using the inversion formula for the conjugate distribution as in (2.109) we can get an expression for $f_1n(ry)$. Thus we have

$$g_{2n}(r) = \sum_{y \in S} y P(S_n = y) \left[\frac{1}{2\pi} \int_{-\infty}^{\infty} \phi_1n(r + it) \exp(-(r + it)ry) dt\right]$$
\[= \frac{1}{2\pi} \int_{-\infty}^{\infty} \phi_1(\tau + it) \left[\sum_{y \in S} yP(S_n = y) \exp(-(\tau + it)ry) \right] dt \]
\[= \frac{1}{2\pi} \int_{-\infty}^{\infty} \phi_1(\tau + it) \phi_2(-r(\tau + it)) dt \]
\[= \frac{a_n}{2\pi} \int_{-\infty}^{\infty} \exp(a_n[\psi_1(\tau + it) + \psi_2(-r(\tau + it))]) \psi_2(-r(\tau + it)) dt. \quad (2.119) \]

Replacing \(\tau \) by \(\tau_1 \) and \(\tau \) by \(\tau_2 \) we get
\[g_2(\tau) = \frac{a_n}{2\pi} \int_{-\infty}^{\infty} \exp(a_n[\psi_1(\tau + it)] + \psi_2(-r(\tau + it))]) \psi_2(-r(\tau + it)) dt. \quad (2.120) \]

The rest of the proof is similar to that of Theorem 2.3.1. Hence
\[g_2(\tau) = \frac{a_n \psi_2(-r\tau)}{[2\pi a_n[\psi_1(\tau) + r^2 \psi_2(-r\tau)]]^{1/2}} \]
\[\times \exp(a_n[\psi_1(\tau) + \psi_2(-r\tau)])[1 + O(1/a_n)]. \quad (2.121) \]

Theorems 2.3.13 and 2.3.14 below obtain asymptotic expressions for the density of the ratio of sums of i.i.d. random variables. Theorem 2.3.13 deals with the occurrence of non-lattice \(T_n \) and non-lattice \(S_n \) where as Theorem 2.3.14 deals with the occurrence of non-lattice \(T_n \) and lattice \(S_n \). When \(T_n \) and \(S_n \) are sums of \(n \) i.i.d. random variables not only that the conditions of Theorems 2.3.13 and 2.3.14 become simpler, but, part 1 of condition (A2) ((2.57)) is automatically satisfied. We skip the proofs of these theorems as they can easily be deduced from Theorems 2.3.1 and 2.3.12.
Theorem 2.3.13. Let \(\{X_n, n \geq 1\} \) and \(\{Y_n > 0, n \geq 1\} \) be two sequences of non-lattice random variables with distribution functions \(F_1 \) and \(F_2 \) respectively. Let the two sequences be independent. Let \(\phi_1 \) and \(\phi_2 \) denote the characteristic functions of \(\{X_n, n \geq 1\} \) and \(\{Y_n > 0, n \geq 1\} \) respectively. Let \(\psi_i(z) = \log \phi_i(z) \) for \(i = 1, 2 \). Let \(\phi_i(z) \) be non-vanishing and analytic in \(\Omega_i = \{z \in \mathbb{C} : |z| < c_i\} \) for \(i = 1, 2 \). Let \(J_i \) denote the interval \((-b_i, b_i)\) where \(0 < b_i < c_i \) for \(i = 1, 2 \). Further, let \(\{r_n\} \) be a sequence of real numbers such that there exists \(\{r_n\} \in J_1 \) and

\[
\psi_1'(r_n) - r_n \psi_1'(-r_n r_n) = 0 \tag{2.122}
\]

for \(r_n r_n \in J_2 \). Let there exist \(\alpha_1 > 0 \) and \(\alpha_2 > 0 \) such that \(\psi_1''(r) > \alpha_1 \) for \(r \in J_1 \) and \(\psi_2''(r) > \alpha_2 \) for \(r \in J_2 \).

Assume the following conditions:

(B1) There exist \(\beta_i < \infty \) such that

\[
|\psi_i(z)| < \beta_i \text{ for all } z \in \Omega_i \text{ for } i = 1, 2. \tag{2.123}
\]

(B2) Given \(\delta > 0 \), there exists \(q > 0 \), such that

\[
\sup_{|t| > \delta} |\psi_2'(-r_n(r_n + it))| = O(n^q). \tag{2.124}
\]

(B3) There exists \(B < \infty \) such that

\[
\sup_{r \in J_i} \int_{-\infty}^{\infty} \left| \frac{\phi_1(r + it)}{\phi_1(r)} \right| < B. \tag{2.125}
\]

Let \(q_{\text{in}} \) denote the probability density function of \(T_n/S_n \) where \(T_n = X_1 + \cdots + X_n \) and \(S_n = Y_1 + \cdots + Y_n \). Then

\[
q_{\text{in}}(r_n) = \frac{\sqrt{n} \psi_2'(-r_n r_n)}{\sqrt{2 \pi} \left[\psi_1'(r_n)^2 + r_n^2 \psi_2''(-r_n r_n) \right]^{1/2}}.
\]
\[\times \exp \left(n [\psi_1 (\tau_n) + \psi_2 (-\tau_n \tau_n)] \right) [1 + O(1/n)]. \quad (2.126) \]

Theorem 2.3.14. Let \(\{X_n, n \geq 1\} \) be a sequence of non-lattice random variables with common distribution function \(F_1 \) and let \(\{Y_n > 0, n \geq 1\} \) be a sequence of lattice valued random variables with common distribution function \(F_2 \). Let the two sequences be independent. Let \(\phi_1 \) and \(\phi_2 \) denote the characteristic functions of \(\{X_n, n \geq 1\} \) and \(\{Y_n > 0, n \geq 1\} \) respectively. Let \(\phi_i(z) \) be non-vanishing and analytic in \(\Omega_i = \{z \in \mathbb{C} : |z| < c_i\} \) for \(i = 1, 2 \). Let \(J_i \) denote the interval \((-b_i, b_i)\) where \(0 < b_i < c_i \) for \(i = 1, 2 \). Further, let \(\{\tau_n\} \) be a sequence of real numbers such that there exists \(\{\tau_n\} \in J_1, \tau_n \tau_n \in J_2 \) and

\[\psi_1^\prime (\tau_n) - \tau_n \psi_2^\prime (-\tau_n \tau_n) = 0. \quad (2.127) \]

Also, let there exist \(\alpha_1 > 0 \) such that \(\psi_1^\prime (\tau) > \alpha_1 \).

Assume Conditions (B1), (B2) and (B3) of Theorem 2.3.13. Let \(g_{2n} \)

\[q_{2n}(\tau_n) = \frac{\sqrt{n} \psi_2^\prime (-\tau_n \tau_n)}{[2 \pi [\psi_1^\prime (\tau_n) + r_n^2 \psi_2^\prime (-\tau_n \tau_n)]^{1/2}} \]

\[\times \exp \left(n [\psi_1 (\tau_n) + \psi_2 (-\tau_n \tau_n)] \right) [1 + O(1/n)]. \quad (2.128) \]
2.4 Large deviation local limit theorems for ratio statistics of lattice random variables

In this section we obtain similar local limit theorems for ratio statistic \(R_n = T_n / S_n \) when

(i) \(T_n \) and \(S_n \) both are lattice random variables and

(ii) when \(T_n \) is lattice and \(S_n \) is non-lattice.

First, we consider case (i) where both \(T_n \) and \(S_n \) are lattice random variables. We continue to use the same notations introduced in Section 2.3.

Theorem 2.4.1 Let \(\{T_n, n \geq 1\} \) be a sequence of lattice random variables with distribution functions \(F_{1n} \). Let \(T_n \) take values in the set

\[S_1 = \{a_n + kh_n : a_n \text{ and } h_n \text{ are real numbers and } k \text{ is an integer}\}. \]

We assume that the two sequences are independent. Let \(\{S_n > 0, n \geq 1\} \) be a sequence of positive lattice random variables taking values in the set \(S_2 = \{a'_n + kh'_n : a'_n \text{ and } h'_n \text{ are such that } a'_n + kh'_n > 0\} \). Let \(r_n \) be an appropriate sequence of real numbers such that there exist \(r_n \in J_1 \) such that

\[
\psi_{1n}(r_n) - r_n \psi_{2n}(-r_n r_n) = 0 \tag{2.129}
\]

for \(r_n r_n \in J_2, n \geq 1 \). Let \(\alpha_1, \alpha_2 \) be positive real numbers such that

\[
\psi_{1n}(r) > \alpha_1 \text{ and } \psi_{2n}(r') > \alpha_2 \tag{2.130}
\]
for \(\tau \in J_1 \) and \(\tau' \in J_2 \). Assume that these two sequences satisfy the following conditions: (D1) There exist \(\beta_1 < \infty \) and \(\beta_2 < \infty \) such that

\[
|\psi_n(z)| < \beta_j \text{ for } z \text{ with } |z| < A_j \text{ for } j = 1, 2 \text{ and } n \geq 1. \tag{2.131}
\]

(D2) Given \(\delta > 0 \), there exists \(0 < \eta < 1 \) such that

\[
\limsup_n \sup_{\delta < \|\tau\| \leq \|\tau_n\|} \frac{1}{1/2_n} \frac{1}{|\Phi_n(\tau + i\delta)|} < \eta. \tag{2.132}
\]

(D3) There exist \(p, l > 0 \) such that

\[
\sup_{\tau \in I} \int_{-\pi/|\tau_n|}^{\pi/|\tau_n|} \left| \frac{\phi_{1n}(\tau + it)}{\phi_{1n}(\tau)} \right|^{1/2_n} dt = O(a_n^2). \tag{2.133}
\]

Let \(P_n(r) = P(T_n = rS_n) \). Then

\[
\frac{\sqrt{a_n}}{h_n} P_n(r_n) = \frac{1}{2\pi \{\psi_{1n}^H(r_n) + r_n^2 \psi_{2n}^H(-r_n r_n)\}} \left[1 + O(1/a_n) \right]. \tag{2.134}
\]

Proof. Consider

\[
P_n(r) = P(T_n = rS_n) = \sum_{y \in S_2} P(T_n = ry) P(S_n = y). \tag{2.135}
\]

Using the conjugate density technique and condition (D4), we get that

\[
P(T_n = ry) = \frac{|h_n|}{2\pi} \int_{-\pi/|h_n|}^{\pi/|h_n|} \phi_{1n}(\tau + it) \exp(-(\tau + it)ry) dt. \tag{2.136}
\]
Substituting this in (2.134), we have,

\[P_n(r) = \sum_{y \in S_2} P(S_n = y) \left[\frac{|h_n|}{2\pi} \int_{-\pi/|h_n|}^{\pi/|h_n|} \phi_1(y, r + it) \exp(-(r + it)y) dt \right] \]

\[= \frac{|h_n|}{2\pi} \int_{-\pi/|h_n|}^{\pi/|h_n|} \phi_1(y, r + it) \sum_{y \in S_2} P(S_n = y) \exp(-(r + it)y) dt \]

\[= \frac{|h_n|}{2\pi} \int_{-\pi/|h_n|}^{\pi/|h_n|} \phi_1(y, r + it) \phi_2(-r(r + it)) dt \]

\[= \frac{|h_n|}{2\pi} \int_{-\pi/|h_n|}^{\pi/|h_n|} \exp(a_n[\psi_1(y, r + it) + \psi_2(-r(r + it))]) dt. \quad (2.137) \]

Replacing \(r \) by \(r_n \) and \(\tau \) by \(\tau_n \) we can rewrite \(P_n(r_n) \) as follows:

\[\frac{\sqrt{a_n}}{|h_n|} P_n(r_n) = \frac{\sqrt{a_n}}{2\pi} \int_{-\pi/|h_n|}^{\pi/|h_n|} \exp(a_n[\psi_1(r_n + it) + \psi_2(-r_n(r_n + it))]) dt \]

\[= \left[\frac{1}{2\pi[\psi_1''(r_n) + r_n^2\psi_2''(-r_n r_n)]} \right]^{1/2} \exp(a_n[\psi_1(r_n) + \psi_2(-r_n r_n)]) J_n \]

where

\[J_n = \left[a_n[\psi_1''(r_n) + r_n^2\psi_2''(-r_n r_n)] \right]^{1/2} \int_{-\pi/|h_n|}^{\pi/|h_n|} \exp(a_n[\psi_1(y, r + it) + \psi_2(-r_n r_n)]) dt. \quad (2.139) \]

We can easily verify that \(J_n \) is equal to \(1 + O(1/a_n) \).

Thus,

\[\frac{\sqrt{a_n}}{|h_n|} P_n(r_n) = \left[\frac{1}{2\pi[\psi_1''(r_n) + r_n^2\psi_2''(-r_n r_n)]} \right]^{1/2} \times \exp(a_n[\psi_1(r_n) + \psi_2(-r_n r_n)])[1 + O(1/a_n)]. \]

(2.140)
For case (ii) we have the following.

Theorem 2.4.2. Let \(\{T_n, n \geq 1\} \) be a sequence of lattice random variables with distribution functions \(F_{1n} \) and let \(\{S_n > 0, n \geq 1\} \) be a sequence of non-lattice random variables with distribution functions \(F_{2n} \). Let \(T_n \) take values in the set \(S = \{a_n + kh_n: a_n \) and \(h_n \) are such that \(a_n + kh_n > 0\}. \) Let \(r_n \) be a bounded sequence of real numbers satisfying (2.138). Suppose that Conditions (D1),(D2) and (D3) hold. If \(g_{2n} \) is the p.d.f. of \(T_n/S_n \), then

\[
\frac{\sqrt{a_n}}{|h_n|} g_{2n}(r_n) = \left[\frac{1}{2\pi[\psi_{1n}''(r_n) + r_n^2\psi_{1n}''(-r_n)]} \right]^{1/2} \times \exp(a_n[\psi_{1n}(r_n) + \psi_{2n}(-r_n)]\) [1 + O(1/a_n)].
\]

(2.141)

Proof of this theorem runs parallel to the proof of the preceding theorems and hence is omitted.

Theorems 2.4.3 and 2.4.4 stated below consider cases (i) and (ii) for i.i.d. random variables.

Theorem 2.4.3. Let \(\{X_n, n \geq 1\} \) be a sequence of independent lattice valued random variables with common distribution function \(F_1 \) and \(\{Y_n > 0, n \geq 1\} \) be another sequence of independent and identically distributed lattice valued random variables with distribution \(F_2 \). Let the two sequences \(\{X_n, n \geq 1\} \) and \(\{Y_n, n \geq 1\} \) be independent of each other. Let \(\phi_1 \) and \(\phi_2 \) denote the characteristic functions of \(X_1 \) and \(Y_1 \) respectively. Let \(J_i = \)
(-b_i, b_i), where 0 < b_i < c_i for some c_i, i = 1, 2. Let \{r_n\} be a proper sequence of real numbers such that there exist \(r_n \in J_1 \), \(\alpha_1 > 0 \) and

\[
\psi_1'(r_n) - r_n \psi_2'(-r_n r_n) = 0
\]

and

\[
\psi_1''(\tau) > \alpha_1. \tag{2.143}
\]

Assume that \(\{X_n, n \geq 1\} \) and \(\{Y_n, n \geq 1\} \) satisfy the following conditions:

\((E1).\) There exist \(\beta_i < \infty \) such that

\[
|\psi_i(z)| < \beta_i \text{ for all } z \in J_i \text{ for } i = 1, 2. \tag{2.144}
\]

\((E2).\) There exists \(B < \infty \) such that

\[
\sup_{r \in J_1} \int_{-\pi/|h|}^{\pi/|h|} \left| \frac{\phi_1(\tau + it)}{\phi_1(\tau)} \right| dt < B. \tag{2.145}
\]

Let \(T_n = X_1 + \cdots + X_n \) and \(S_n = Y_1 + \cdots + Y_n \). Then

\[
\frac{\sqrt{n}}{|h|} P(T_n = r_n S_n) = \left[\frac{1}{2\pi \{\psi_1'(r_n) + \psi_2'(-r_n r_n)\}} \right]^{1/2} \exp(n[\psi_1'(r_n) + \psi_2'(-r_n r_n)][1 + O(1/n)]). \tag{2.146}
\]

Theorem 2.4.4 Let \(\{X_n, n \geq 1\} \) be a sequence of independent and identically distributed lattice valued random variables with distribution function \(F_1 \). Let \(\{Y_n > 0, n \geq 1\} \) be another sequence of non-lattice and independent random variables with common distribution function \(F_2 \). Assume that
the two sequences satisfy the conditions of Theorem 2.4.3. The probability density function g_{2n} of T_n/S_n is given by

$$\frac{\sqrt{n}}{|h|} g_{2n}(r_n) = \left[\frac{1}{2\pi \{ \psi_1'(r_n) + r_n^2 \psi_2'(-r_n r_n) \}} \right]^{1/2}$$

$$\times \exp(n[\psi_1(r_n) + \psi_2(-r_n r_n)])[1 + O(1/n)]. \quad (2.147)$$
2.5 Applications

In this section we present a number of examples to illustrate large deviation local limit theorems for the ratio statistic $R_n = T_n/S_n$ obtained in Sections 2.3 and 2.4. Our examples cover all the four combinations of non-lattice and lattice cases for T_n and S_n. One should note that in all these examples the exact density does not have a closed form, however our theorems provide a simple asymptotic expressions. These examples clearly demonstrate the wide applicability of our theorems. To simplify matters in all the examples we choose T_n and S_n to be the sum of n i.i.d. random variables. The first Example 2.5.1 considers the case of non-lattice for both T_n and S_n. In this example we choose T_n to be the sum of n i.i.d. $N(0,1)$ random variables and S_n to be the sum of n i.i.d. χ^2 random variables with one degree of freedom. We verify easily all the conditions of Theorem 2.3.13. Thus the conclusion (2.125) of Theorem 2.3.13 yields a simple expression for the density of the random variable which is the ratio of $N(0,n)$ and χ^2 with n degrees of freedom. The second Example 2.5.2 considers the case of non-lattice for T_n and lattice for S_n. Here we choose T_n to be the same as in Example 2.5.1 but S_n is chosen to be the sum of n i.i.d. Poisson random variables with mean equal to 1. Proceeding as in Example 2.5.1 we can easily verify that all the conditions (B1), (B2) and (B3) of Theorem 2.3.14 are satisfied. Thus we obtain in (2.153) an asymptotic expression for the density of the ratio statistic $N(0,n)$ over Poisson (n) at a suitable point r_n. In the third Example 2.5.3 we consider the case of lattice random variables T_n and S_n. We chose both T_n and S_n to be the sum of n independent Poisson
random variables each with means λ_1 and λ_2 respectively. As mentioned earlier the probability mass function of T_n/S_n can only be written as an infinite series and does not have a closed form. However, we easily verify all the conditions of Theorem 2.4.3 and thus we obtain a simple closed form asymptotic expression for the probability mass function of T_n/S_n.

Finally we obtain an approximation for the density function of consider the F statistic with n degrees of freedom for both the numerator and denominator. We assume that n is large. In this case we show that our approximation for the density agrees with the exact expression except for the normalizing constant. However, we show that the ratio of two constants converges to one as $n \to \infty$, directly instead of appealing to Theorem 2.3.13.

Example 2.5.1. Let $\{X_n, n \geq 1\}$ be a sequence of independent normal random variables with mean 0 and variance 1. Let $\{Y_n, n \geq 1\}$ be a sequence of independent random variables with common distribution function χ^2 with one degree of freedom. The c.f. of X_1 is given by $\phi_1(z) = e^{z^2/2}$ and that of Y_1 is given by $\phi_2(z) = (1 - 2z)^{-1/2}$ for $|z| < 1/2$. Let r_n be a bounded sequence of real numbers such that $0 < r < r_n < \bar{r}$. Let

$$r_n = \frac{-1 + \sqrt{1 + 8 r_n^2}}{4 r_n}. \tag{2.148}$$

Let $b_1 = (-1 + \sqrt{1 + 8 r_n^2})/2 \bar{r}$ and $c_1 = 2b_1$. Further, let

$$(-1 + \sqrt{1 + 8 r_n^2})/4 < b_2 < \min\{((-1 + \sqrt{1 + 8 r_n^2})/2, 1/2}\} \text{ and } c_2 = 1/2. \tag{2.149}$$

We now verify all the conditions of Theorem 2.3.13.

Condition (B1). Let $\beta_1 = c_1^2$ and $\beta_2 = \sqrt{[\log 4]^2 + 4\pi^2}$. Then

$$|\psi_1(z)| = \frac{|z|^2}{2} < \beta_1, \text{ for } |z| < c_1 \tag{2.149}$$
and
\[|\psi_2(z)| = |\log(1 - 2z)| < \beta_2, \text{ for } |z| < 1/2. \] (2.150)

Condition (B2). Let \(\delta > 0 \). Then
\[
\sup_{|t|>\delta} |\psi'_2(-\tau_n(\tau_n + it))| = \sup_{|t|>\delta} \left| \frac{1}{1 - 2(-\tau_n(\tau_n + it))} \right| = \frac{1}{\sqrt{(1 + 2\tau_n \tau_n)^2 + 4\tau_n^2 t^2}} < q < \infty
\] (2.151)

where \(q = \sup_n q_n \) and \(q_n = 1/\sqrt{(1 + 2\tau_n)^2 + 4\tau_n^2 \delta^2} \).

Condition (B3). This condition is trivially satisfied.

Thus we have verified all the conditions of Theorem 2.3.13. An asymptotic expression for the density function of \(R_n = T_n/S_n \) where \(T_n = X_1 + \cdots + X_n \) and \(S_n = Y_1 + \cdots + Y_n \) is given by
\[
q_{1n}(\tau_n, \tau_n) = \sqrt{\frac{n}{2\pi}} \frac{(1 + 2\tau_n \tau_n)^{-n/2}}{[2 + (1 + 2\tau_n \tau_n)^2]^{1/2}} \exp \left(\frac{n\tau_n^2}{2} \right) [1 + O(1/n)]. \] (2.152)

Example 2.5.2. Let \(\{X_n, n \geq 1\} \) be a sequence of independent random variables with common distribution function \(N(0,1) \). Let \(\{Y_n, n \geq 1\} \) be a sequence of Poisson random variables with parameter \(\lambda = 1 \). Let \(\phi_1(z) = e^{z^2/2} \) and \(\phi_2(z) = e^{e^{z-1}} \). We choose \(c_i > 0 \) such that \(\phi_i \) is non-vanishing and analytic in \(\Omega_i = \{z \in \mathbb{C}:|z| < c_i\} \), for \(i = 1, 2 \). Let \(J_i = (-b_i, b_i) \),
0 < b_i < c_i for i = 1, 2. We choose b_i's in such a fashion so that for a bounded sequence r_n we can always find \(\tau_n \in J_1 \) satisfying

\[
\tau_n e^{r_n r_n} = r_n
\]

and \(r_n \tau_n \in J_2 \). In this example we can easily verify Conditions (B1), (B2) and (B3) of Theorem 2.3.14. Thus the density function \(q_{2n} \) of \(T_n / S_n \) at the point \(r_n \) is given by

\[
q_{2n}(r_n) = \frac{\sqrt{n} e^{-r_n^2}}{[2\pi [1 + r_n^2 e^{-r_n^2}]]^{1/2}} \exp\left(n\left[\frac{2e^{r_n} + r_n^2 - 2}{2}\right]\left[1 + O(1/n)\right]\right) \tag{2.154}
\]

Example 2.5.3. Let \(\{X_n, n \geq 1\} \) be a sequence of Poisson random variables with parameter \(\lambda_1 \). Let \(\{Y_n, n \geq 1\} \) be another sequence of Poisson random variables with parameter \(\lambda_2 \). Let \(T_n = X_1 + \cdots + X_n \) and \(S_n = Y_1 + \cdots + Y_n \). Then \(\phi_i(z) = e^{\lambda_i (e^z - 1)} \) and \(\psi_i(z) = \lambda_i (e^z - 1) \) for \(i = 1, 2 \). Note that \(\phi_1(z) \) and \(\phi_2(z) \) are analytic in all the complex plane \(\mathbb{C} \). Let \(J_i = (-b_i, b_i) \) for \(0 < b_i < c_i \) for \(i = 1, 2 \). Let us choose a bounded sequence of real numbers \(\{r_n\} \) such that \(0 < r < r_n < \bar{r} \) and there exist \(\tau'_n \)'s satisfying

\[
\tau_n = \frac{\log r_n + \log \lambda_2 - \log \lambda_1}{(r_n + 1)}.
\tag{2.155}
\]

Let \(b_1 = 2\log \bar{r} + \log \lambda_2 - \log \lambda_1 / (r + 1) \) and \(c_1 = 2b_1 \). Let \(b_2 = \log \bar{r} + \log \lambda_2 - \log \lambda_1 \) and \(c_2 = 2b_2 \). With \(\alpha_1 = \lambda_1^{(r+1)/2} / 2|z|\lambda_2^{(r+1)} \) we have \(\psi_1''(r) = \lambda_1 e^r > \alpha_1 \). We now proceed to verify all the conditions of Theorem 2.4.3.

Condition (E1). Let \(\beta_i = 2\lambda_i (e^z + 1)^2 \) for \(i = 1, 2 \). For this \(\beta_i \) it is easy to check that \(|z| < c_i \) implies \(|\psi_i(z)| < \beta_i \) for \(i = 1, 2 \).

Condition (E2) is trivially satisfied.
Thus from Theorem 2.4.3 we can write an asymptotic expression for
\(g_{3n}(r_n) = P(T_n = rS_n) \) which is given by

\[
g_{3n}(r_n) = \frac{1}{[2\pi n[\lambda_1 e^{\tau n} + \lambda_2 r_n^2 e^{-\tau_n}]]^{1/2}} \\
\times \exp n[\lambda_1(e^{\tau n} - 1) + \lambda_2(e^{-\tau_n} - 1)][1 + O(1/n)]. \tag{2.156}
\]

Let \(F_{n,n} \) denote the \(F \) statistic with \(n \), \(n \) degrees of freedom. In the next example we compare, for large values of \(n \), exact density of \(F_{n,n} \) statistic with the asymptotic expression of the density given by (2.60).

Example 2.5.4. Let \(T_n \) and \(S_n \) be the sums of \(n \) i.i.d. \(\chi^2 \) random variables with one degree of freedom. The c.f. of \(T_n \) is given by \(\phi_1(z) = (1 - 2z)^{-n/2} \) and that of \(S_n \) is given by \(\phi_2(z) = (1 - 2z)^{-n/2} \). Both \(\phi_1(z) \) and \(\phi_2(z) \) are analytic and non-vanishing in \(\Omega = \{ z \in \mathbb{C} : |z| < 1/2 \} \). Let \(J_i = (-b_i, b_i) \) for \(0 < b_i < 1/2 \). We now briefly verify conditions of Theorem 2.3.13.

Condition (A1). Let \(\beta_i = \sqrt{|\log 4|^2 + 4\pi^2} \) for \(i = 1, 2 \). Then for \(|z| < 1/2 \) it follows that, \(|\psi_i(z)| < \beta_i \) for \(i = 1, 2 \).

Condition (A2). This is verified as in Example 2.5.1.

Condition (A3). Consider

\[
\left| \frac{\phi_1(\tau + it)}{\phi_1(\tau)} \right| = \left| \frac{1 - 2\tau}{(1 - 2(\tau + it))} \right|^{1/2}
\]

\[
= \frac{(1 - 2\tau)^{1/2}}{[(1 - 2\tau)^2 + 4t^2]^{1/4}}.
\tag{2.157}
\]

2-61
Thus
\[
\sup_{\tau \in D_1} \int_{-\infty}^{\infty} \left| \frac{\phi_1(\tau + it)}{\phi_1(\tau)} \right| dt = \sup_{\tau \in D_1} \int_{-\infty}^{\infty} \frac{(1 - 2\tau)^{1/2}}{[(1 - 2\tau)^2 + 4t^2]^{1/4}} dt
\]
\[= \sup_{\tau \in D_1} (1 - 2\tau)^{1/2} \int_{-\infty}^{\infty} \frac{1}{[(1 - 2\tau)^2 + 4t^2]^{1/4}} dt \leq \sqrt{2 \pi}. \tag{2.158}
\]

Thus we have verified all the conditions of Theorem 2.3.13 and we now apply the same theorem (see (2.60)). On simplification of the numerator and denominator in the expression (2.60) we get
\[
g_{1n}(r_n) = \frac{\frac{\sqrt{2\pi}}{n^{1/2} 2^{n-1/2}} r_n^{n/2-1}}{(\frac{n}{2} - 1)!(\frac{n}{2} - 1)!} \left(r_n + 1 \right)^n \tag{2.159}
\]
where \(\{r_n\} \) is an appropriate sequence of real numbers. The exact density of the ratio \(T_n/S_n \) at point \(r \) is given by
\[
f(r_n|n,n) = \frac{(n-1)!}{(\frac{n}{2} - 1)!(\frac{n}{2} - 1)!} \frac{r_n^{n/2-1}}{(r_n + 1)^n}. \tag{2.160}
\]
On comparing (2.159) and (2.160) we see that both the expressions agree except for a constant. We can use Stirling's formula and show that the ratio of the two constants occurring in (2.159) and (2.160) tends to 1 as \(n \to \infty \).
Chapter 3

Large deviation local limit theorems for random vectors

In this chapter we shall extend the local limit theorems for ratio statistics of random variables in Chapter 2 to random vectors. We begin with a few definitions and notations.

3.1 Definitions and Preliminaries.

We denote the k-dimensional complex plane by \mathbb{C}^k. The points in \mathbb{C}^k are denoted by $z = (z_1, z_2, \ldots, z_k)$ where $z_i \in \mathbb{C}$, $i = 1, 2, \ldots, k$. If $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_k)$ is a k-dimensional vector with nonnegative integer components, we shall use the following abbreviations:

$$z^\alpha = z_1^{\alpha_1} z_2^{\alpha_2} \cdots z_k^{\alpha_k}$$ \hspace{1cm} (3.1)

$$dz = dz_1 \, dz_2 \cdots \, dz_k$$ \hspace{1cm} (3.2)
\begin{equation}
< z, \xi > = z_1 \xi_1 + z_2 \xi_2 + \cdots + z_k \xi_k
\end{equation}

for all \(z, \xi \in \mathbb{C}^k \).

\begin{equation}
|\alpha| = |\alpha_1| + |\alpha_2| + \cdots + |\alpha_k|.
\end{equation}

When \(f \) is a complex valued function defined on \(\mathbb{C}^k \) and \(i, j, \ell \) are positive integers we write

\[
D_{ij}^\alpha f(z) = \frac{D^\alpha f(z)}{dz_i dz_j},
\]

\[
D_{ij}^\alpha f(z) = \frac{D^\alpha f(z)}{dz_i dz_j dz_l},
\]

and

\[
D^\alpha f(z) = \frac{D^\alpha f(z)}{dz_1 dz_2 \cdots dz_k}.
\]
Definition 3.1.3. A complex valued function f is said to be holomorphic at a point $z_0 \in \mathbb{C}^k$ if in some neighbourhood of z_0, it is the sum of an absolutely convergent power series

$$f(z) = \sum_{|a| \geq 0} a_a (z - z_0)^a.$$ \hspace{1cm} (3.7)

Let $(z + re^{i\theta}) = (z_1 + r_1 e^{i\theta_1}, \ldots, z_k + r_k e^{i\theta_k})$ for $r = (r_1, r_2, \ldots, r_k)$ and $\theta = (\theta_1, \theta_2, \ldots, \theta_k)$. The following theorem can be found in Vladimirov (1966) pp. 30-31.

Theorem 3.1.4 (Cauchy). Suppose that a function $f(z)$ is holomorphic and that it is bounded in the closed polydisc $S(z_0, r)$ then the coefficient a_a in the expansion of f is given by

$$a_a = \frac{1}{(2\pi)^k} \int_0^{2\pi} \cdots \int_0^{2\pi} \frac{f(z_0 + re^{i\theta})}{r^a} \exp(-i \theta, \alpha) d\theta.$$ \hspace{1cm} (3.8)

Consequently,

$$|a_a| \leq \frac{1}{r^a} \max_{z \in S(z_0, r)} |f(z)|.$$ \hspace{1cm} (3.9)

3.2 Local limit theorems for random vectors

Let $\{T_n, n \geq 1\}$ be a sequence of non-lattice random vectors in \mathbb{R}^k and let $\{S_n > 0, n \geq 1\}$ be a sequence of non-lattice random variables. Let us assume that S_n is independent of T_n for $n \geq 1$. Let the moment generating function $\phi_{1n}(z) = E(\exp < z, T_n >)$ of T_n be holomorphic in Ω^k_1, where $\Omega_1 = \{x + iy : x \in I = (-c_1, c_1) \text{ and } y \in R\}$ for some $c_1 > 0$. Let $\phi_{2n}(z) = E(\exp (zS_n))$ be analytic in $\Omega_2 = \{z \in \mathbb{C} : |z| < c_2\}$ for some
$c_2 > 0$. Let C denote the set of all complex numbers. Let $J_1 = (-b_1, b_1)$, $0 < b_1 < c_1$ and $J_2 = (-b_2, b_2)$, $0 < b_2 < c_2$. Let $\{a_n\}$ be a sequence of real numbers such that $a_n \to \infty$.

Let

$$\psi_{1n}(z) = \frac{1}{a_n} \log \phi_{1n}(z), \text{ for } z \in \Omega_1^k.$$ \hspace{1cm} (3.10)

$$\psi_{2n}(z) = \frac{1}{a_n} \log \phi_{2n}(z), \text{ for } z \in \Omega_2.$$ \hspace{1cm} (3.11)

Let $\nabla \psi_{1n}(z) = (D_1 \psi_{1n}(z), D_2 \psi_{1n}(z), \ldots, D_k \psi_{1n}(z))$ be the vector of the first order partial derivatives and $\nabla^2 \psi_{1n}(z)$ denote the matrix of second order partial derivatives, that is,

$$\nabla^2 \psi_{1n}(z) = (D_{ij} \psi_{1n}(z)).$$ \hspace{1cm} (3.12)

The determinant of the matrix $\nabla^2 \psi_{1n}(z)$ is denoted by $|\nabla^2 \psi_{1n}(z)|$.

Let $d_n = \nabla^2 (\psi_{1n}(r) + \psi_{2n}(-<r, \tau>))$ be positive definite. Further, let the eigen values of d_n be bounded below by $\alpha_1 > 0$, for all $\tau \in J_1^k$ and $n \geq 1$. Let $\{r_n\}$ be a sequence of vectors in R^k such that $|r_{jn}| < \bar{r}_j < \infty$ for $j = 1, \ldots, k$ and $n \geq 1$. For this sequence r_n let there exist a sequence $\{r_n\}$ in J_1^k such that $<r_n, r_n> \in J_2$ and

$$\nabla (\psi_{1n}(r_n) + \psi_{2n}(-<r_n, r_n>)) = 0$$ \hspace{1cm} (3.13)

and

$$\psi_{2n}(-<r_n, r_n>) > \alpha_2$$ \hspace{1cm} (3.14)

for some positive constant α_2 and for all $n \geq 1$.

We now state the main theorem of this section.
Theorem 3.2.1. Let \(\{T_n, n \geq 1\} \) be a sequence of random vectors in \(R^k \). Let \(\{S_n, n \geq 1\} \) be a sequence of random variables which is independent of \(T_n \). Assume that \(T_n \) and \(S_n \) satisfy the following conditions:

\[(F1) \text{ There exist } \beta_1 < \infty \text{ and } \beta_2 < \infty \text{ such that } \]
\[|\psi_{1n}(z)| < \beta_1 \text{ for } z \in \Omega_1^k \]
\[\text{and} \]
\[|\psi_{2n}(z)| < \beta_2 \text{ for } z \in \Omega_2 \text{ for all } n \geq 1. \]

\[(F2) \text{ Given } \delta > 0 \text{ there exist } 0 < \eta < 1, q > 0 \text{ such that} \]
\[\limsup_{n} \sup_{|t| > \delta} \left| \frac{\phi_{1n}(r_n + it)}{\phi_{1n}(r_n)} \right|^{1/a_n} < \eta \]
\[\text{and} \]
\[\sup_{|t| > \delta} |\psi_{2n}'(- < r_n, r_n + it >)| = O(a_n^q). \]

\[(F3) \text{ There exist } p, l > 0 \text{ such that} \]
\[\sup_{r \in \mathbb{R}_+} \int_{-\infty}^{\infty} \left| \frac{\phi_{1n}(r + it)}{\phi_{1n}(r)} \right|^{l/a_n} dt = O(a_n^p). \]

Then, an asymptotic expansion for the density function \(\bar{g}_n \) of \(T_n / S_n \) at the point \(r_n \) is given by,

\[\bar{g}_n(r_n) = \frac{a_n^{k/2} (\psi_{1n}'(- < r_n, r_n >))^k}{(2\pi)^{k/2} |d_n|^{1/2}} \]
\[\times \exp \left(a_n [\psi_{1n}(r_n) + \psi_{2n}(- < r_n, r_n >)] \right) [1 + O(1/a_n)]. \]
Remark 3.2.3. The proof of Theorem 3.2.1 is similar to that of Theorem 2.3.1. The proof has two major steps. In the first step the term I_{n1} appearing in the proof of the theorem is shown to go to zero exponentially fast and in the second step the term I_{n2} is shown to be equal to $1 + O(1/a_n)$. These steps are presented below as Lemmas 3.2.7 and 3.2.9 respectively. The proofs of these lemmas depend on lemmas 3.2.4, 3.2.8 which are also proved below.

Lemma 3.2.4. Let ψ_{1n} and ψ_{2n} be as defined in (3.14) and (3.15). Assume that Condition (F1) of Theorem 3.2.1 holds. Let δ_1 be any real number less than $(c_1 - b_1)/2$. For $|t| < \delta_1$ let

$$R_{in}(\tau_n + it) = \psi_{1n}(\tau_n + it) - \psi_{1n}(\tau_n) - i < t, \nabla \psi_{1n}(\tau_n) >$$

$$+ \frac{1}{2} t' \nabla^2 \psi_{1n}(\tau_n) t + i \sum_{|\alpha| = 3} a^{(n)}_{\alpha} t^{[\alpha]}.$$

(3.21)

Then we have the following bound:

$$\sup_n |R_{in}(\tau_n + it)| \leq \frac{2 \beta_1 t^4}{(c_1 - b_1)^4}.$$ (3.22)

Proof. Since $\tau_n \in J_1^k$ for all $n \geq 1$ and ψ_{1n} is holomorphic in Ω_1^k we can write for $|t| < (c_1 - b_1)/2$,

$$\psi_{1n}(\tau_n + it) = \psi_{1n}(\tau_n) + i < t, \nabla \psi_{1n}(\tau_n) > - \frac{1}{2} t' \nabla^2 \psi_{1n}(\tau_n) t$$

$$- i \sum_{|\alpha|=3} a^{(n)}_{\alpha} t^{[\alpha]} + \sum_{|\alpha| \geq 4} a^{(n)}_{\alpha} (it)^{|\alpha|}.$$ (3.23)

3-68
By Cauchy’s theorem and Condition (F1) of Theorem 3.2.1 we get the following bound for $a^{(n)}_\alpha$:

$$|a^{(n)}_\alpha| \leq \frac{\beta_1}{(c_1 - b_1)|\alpha|}. \quad (3.24)$$

Thus for $|t| < (c_1 - b_1)/2$ and for all $n \geq 1$,

$$|R_{1n}(r_n + it)| = \sum_{|\alpha| \geq 4} a^{(n)}_\alpha (it)^{|\alpha|}$$

$$\leq \sum_{|\alpha| \geq 4} \left| \prod_{j=1}^k |t_j|^{\alpha_j} \right| \frac{\beta_1}{(c_1 - b_1)|\alpha|}$$

$$\leq \frac{2 |t|^4 \beta_1}{(c_1 - b_1)^4}. \quad (3.25)$$

Remark 3.2.5. Let $R_{2n}(r + it)$ be as defined in (2.62). As shown in Lemma 2.3.7 there exists $0 < \delta_2 < (c_2 - b_2)/2$ such that

$$\sup_{t \in \mathbb{D}_2} |R_{2n}(r + it)| \leq \frac{2\beta_2 t^4}{(c_2 - b_2)^4}$$

for $|t| < \delta_2$ and for all $n \geq 1$.

Remark 3.2.6. Let $\sup_n |r_n| = r$. Let $\delta_3 = \delta_2/r$. Let $R(z)$ be the remainder term in the expansion of $\psi^{(n)}_{2n}(- < r_n, z >)$ as in (2.64). Proceeding as in Remark 2.3.8. we can show that for $|t| < \delta_3$,

$$|R(- < r_n, r_n + it >)| \leq \frac{2\beta_2 < r_n, t >^3}{(c_2 - b_2)^3}. \quad (3.26)$$

In the next lemma we show that the term I_{n1} defined in (3.29) goes to zero exponentially fast.
Lemma 3.2.7. Assume that the Conditions (F2) and (F3) of Theorem 3.2.1 are satisfied. Let

$$d_n = \nabla^2(\psi_{2n}(r_n) + \psi_{2n}(\langle - r_n, r_n \rangle))$$

(3.27)

and

$$f_{1n}(z) = \psi_{1n}(z) + \psi_{2n}(\langle - r_n, z \rangle).$$

(3.28)

Then there exists $$\delta > 0$$ such that

$$| I_{n1} | = \left[\frac{a_n^k |d_n|}{(2\pi)^k} \right]^{1/2} \int_{|t| \geq \delta} \exp([a_n[f_n(r_n + it) - f_n(r_n)]])$$

$$\frac{\psi_{2n}(\langle - r_n, r_n + it \rangle)}{\psi_{2n}(\langle - r_n, r_n \rangle)} \, dt$$

(3.29)

goes exponentially fast to zero.

Proof. Let $$\delta$$ be such that $$\delta < \min(\delta_1, \delta_2, \delta_3)$$ where $$\delta_1$$, $$\delta_2$$ and $$\delta_3$$ are as in Lemma 3.2.4, Remark 3.2.5 and Remark 3.2.6 respectively. Consider

$$| I_{n1} | = \left[\frac{a_n^k |d_n|}{(2\pi)^k} \right]^{1/2} \int_{|t| \geq \delta} \exp([a_n[f_n(r_n + it) - f_n(r_n)]])$$

$$\frac{\psi_{2n}(\langle - r_n, r_n + it \rangle)}{\psi_{2n}(\langle - r_n, r_n \rangle)} \, dt$$

$$\leq \left[\frac{a_n^k |d_n|}{(2\pi)^k} \right]^{1/2} \int_{|t| \geq \delta} \exp([a_n[f_n(r_n + it) - f_n(r_n)]])$$

$$\times \left| \frac{\psi_{2n}(\langle - r_n, r_n + it \rangle)}{\psi_{2n}(\langle - r_n, r_n \rangle)} \right| \, dt.$$

Substituting for $$f_n(r_n + it)$$ and $$f_n(r_n)$$ (see (3.28)), we get that

$$| I_{n1} | \leq \left[\frac{a_n^k |d_n|}{(2\pi)^k} \right]^{1/2} \int_{|t| \geq \delta} \left| \frac{\phi_{2n}(r_n + it)}{\phi_{2n}(r_n)} \frac{\phi_{2n}(\langle - r_n, r_n + it \rangle)}{\phi_{2n}(\langle - r_n, r_n \rangle)} \right|$$

3-70
From (3.17), (3.18) and (3.19) and also noting the fact that
\[\psi_{2n}(-<r_n, r_n>) > \alpha_2 \]
we get that
\[|I_{11}| \leq \left[\frac{a^k_n|d_n|}{(2\pi)^k} \right]^{1/2} \frac{1}{\alpha_2} O(a^{\eta_1}_{n}) \eta^{(1-l/\alpha_n)} \int_{R^k} \frac{\phi_{1n}(r_n + it)}{\phi_{1n}(r_n)} |^{l/\alpha_n} dt \]
\[\leq O(a^{n+4n+k/2}_n) \exp \left(-\eta_1(a_n - l)\right) \] \hspace{1cm} (3.30)
which goes to zero exponentially fast, since \(\eta_1 = -\log \eta > 0 \).

The following lemma will be used to prove Lemma 3.2.9.

Lemma 3.2.8. Let \(\psi_{1n} \) and \(\psi_{2n} \) be as defined in (3.14) and (3.15). Let \(d_n \) be as in (3.27). Assume that Condition (F1) of Theorem 3.2.1 holds.
Let

\[L_n(s) = \left[\exp(z_n) \frac{\psi'_{2n}(- < r_n, r_n + i \frac{s}{\sqrt{a_n}} >)}{\psi_{2n}(- < r_n, r_n >)} - 1 - z_n \right] \] \tag{3.31}

where

\[z_n(s) = \left[\frac{-i}{\sqrt{a_n}} \sum_{|\omega| = 3} \omega^{(n)} s^{\omega} + \frac{i(\langle r_n, s \rangle)^3}{6\sqrt{a_n}} \psi'''_{2n}(- < r_n, s >) \right] \tag{3.32} \]

\[+ a_n R_{1n}(\tau_n + i \frac{s}{\sqrt{a_n}}) + a_n R_{2n}(- < r_n, r_n + i \frac{s}{\sqrt{a_n}} >) \].

Then, there exists \(\delta > 0 \) such that

\[\left[\frac{|d_n|}{(2\pi)^k} \right]^{1/2} \int_{|s| < \sqrt{a_n}\delta} \exp(-\frac{s'd_n s}{2}) L_n(s) \, ds = O(1/a_n). \] \tag{3.33}

Proof. Consider

\[Q_n^* = \left[\frac{|d_n|}{(2\pi)^k} \right]^{1/2} \int_{|s| < \sqrt{a_n}\delta} \exp(-\frac{s'd_n s}{2}) \left[\exp(z_n) \frac{\psi'_{2n}(- < r_n, r_n + i \frac{s}{\sqrt{a_n}} >)}{\psi_{2n}(- < r_n, r_n >)} - 1 - z_n \right] \, ds \] \tag{3.34}

for \(\delta > 0 \). The r.h.s. of the above equation can be written as the sum of four integrals as follows:

\[Q_n^* = \left[\frac{|d_n|}{(2\pi)^k} \right]^{1/2} \int_{|s| < \sqrt{a_n}\delta} \exp(-\frac{s'd_n s}{2}) \left[\exp(z_n) - 1 - z_n \right] \, ds \]

\[\times \frac{\psi'_{2n}(- < r_n, r_n + i \frac{s}{\sqrt{a_n}} >)}{\psi_{2n}(- < r_n, r_n >)} + \left(\frac{\psi'_{2n}(- < r_n, r_n + i \frac{s}{\sqrt{a_n}} >)}{\psi_{2n}(- < r_n, r_n >)} - 1 \right) \]

\[- (z_n) + \left(z_n \frac{\psi'_{2n}(- < r_n, r_n + i \frac{s}{\sqrt{a_n}} >)}{\psi_{2n}(- < r_n, r_n >)} \right) \, ds \]

\[= I_{n1} + I_{n2} + I_{n3} + I_{n4} \, (say) \]

3-72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
where

\[
I_n' = \left[\frac{|d_n|}{(2\pi)^k} \right]^{1/2} \int_{|s|<\sqrt{a_n}\delta} \exp\left(\frac{-s'd_nS}{2}\right) \left(\exp(z_n) - 1 - z_n\right)
\]

\[
I_n' \psi_n'(\cdot - < r_n, r_n + i \frac{s}{\sqrt{a_n}} >) \psi_n'(- < r_n, r_n >) ds.
\]

\[
I_n' = \left[\frac{|d_n|}{(2\pi)^k} \right]^{1/2} \int_{|s|<\sqrt{a_n}\delta} \exp\left(\frac{-s'd_nS}{2}\right) \left(\frac{\psi_n'(\cdot - < r_n, r_n + i \frac{s}{\sqrt{a_n}} >) \psi_n'(- < r_n, r_n >)}{\psi_n'(- < r_n, r_n >)} - 1\right) ds.
\]

We complete the proof of this lemma by showing \(I_n' = O(1/a_n), i = 1, 2, 3, 4\). To show that \(I_n' = O(1/a_n)\), we get an upperbound for \(\exp(z_n) - 1 - z_n\).

For \(|s| < \sqrt{a_n}\delta\), consider

\[
|z_n| = \left| \frac{-i}{\sqrt{a_n}} \sum_{| \alpha | = 3} \alpha \phi_\alpha^{(n)} s^n + \frac{i(< r_n, s >)^3}{6\sqrt{a_n}} \psi_n'(\cdot - < r_n, s >)\right|

+ a_n R_{1n}(r_n + i \frac{s}{\sqrt{a_n}}) + a_n R_{2n}(- < r_n, r_n + i \frac{s}{\sqrt{a_n}} >)
\]

\[
(3.35)
\]

The bound on \(|R_{2n}(- < r_n, r_n + it >)|\) given in Remark 3.2.5 yields yields

\[
|z_n| \leq \left[\frac{1}{\sqrt{a_n}} \frac{\beta_1|s|^3}{(c_1 - b_1)^3} + \frac{|s|^3 \beta_2(\sum_{j=1}^2 r_j)^3}{\sqrt{a_n}} \right]
\]

3-73
wherein we have used the fact that $|r_{jn}| < \bar{r}_j$. Thus we have

$$|z_n(s)| < M(\delta)|s|^2$$

(3.38)

where

$$M(\delta) = \left[\frac{\beta_1 \delta}{(c_1 - b_1)^3} + \frac{\beta_2 \delta (\sum_{j=1}^{k} \bar{r}_j)^3}{(c_2 - b_2)^3} \right]$$

(3.39)

Let us choose our δ such that $M(\delta) < \alpha_1/2k$. Using the simple inequality, $|\exp(z_n) - 1 - z_n| \leq |z_n|^2 \exp(|z_n|)$, we obtain,

$$|\exp(z_n) - 1 - z_n| \leq \left[\frac{1}{\sqrt{a_n}} \frac{\beta_1 |s|^3}{(c_1 - b_1)^3} + \frac{|s|^3 \beta_2 (\sum_{j=1}^{k} \bar{r}_j)^3}{\sqrt{a_n} (c_2 - b_2)^3} \right.$$

$$+ \frac{2\beta_1 |s|^4}{a_n (c_1 - b_1)^4} + \frac{2|s|^4 \beta_2 (\sum_{j=1}^{k} \bar{r}_j)^4}{a_n (c_2 - b_2)^4} \right]^{\exp(M(\delta)|s|^2)}.$$
Consider

\[
|I_n'| = \left[\frac{|d_n|}{(2\pi)^k} \right]^{1/2} \int_{|s| < \sqrt{a_n}} \exp\left(-\frac{s'd_n s}{2} \right) \exp\left(z_n - 1 - z_n \right) \psi_2n(- < \tau_n, \tau_n + \frac{s}{\sqrt{a_n}} >) \left| \frac{\psi_2n(- < \tau_n, \tau_n >)}{\psi_2n(- < \tau_n, \tau_n >)} \right| ds.
\]

Substituting the bound in (4.46) in the above equation, we get

\[
|I_n'| \leq \left[\frac{|d_n|}{(2\pi)^k} \right]^{1/2} \int_{|s| < \sqrt{a_n}} \exp\left(-\frac{s'd_n s}{2} \right) \exp(M(\delta)|s|^2) \psi_2n(- < \tau_n, \tau_n + \frac{s}{\sqrt{a_n}} >) \left| \frac{\psi_2n(- < \tau_n, \tau_n >)}{\psi_2n(- < \tau_n, \tau_n >)} \right| ds.
\]

Since \(k(s's) \geq |s|^2\), we have

\[
|I_n'| \leq \frac{1}{a_n} \left[\frac{|d_n|}{(2\pi)^k} \right]^{1/2} \int_{|s| < \sqrt{a_n}} \exp\left(-\frac{s'd_n s}{2} + M(\delta)k(s's) \right) \psi_2n(- < \tau_n, \tau_n + \frac{s}{\sqrt{a_n}} >) \left| \frac{\psi_2n(- < \tau_n, \tau_n >)}{\psi_2n(- < \tau_n, \tau_n >)} \right| ds. \quad (3.41)
\]
Proceeding as in the univariate case we can show that

$$\left| \psi_{2n}(- < r_n, r_n + i >) \big/ \psi_{2n}(- < r_n, r_n >) \right|$$

is bounded in n. Since $M(\delta) < \alpha_1/2k$, the inequality (3.45) shows that $I_{11} = O(1/a_n)$. Next consider,

$$|I_{12}'| = \left[\frac{|d_n|}{2\pi} \right]^{1/2} \int_{|s|<\sqrt{a_n\delta}} \exp\left(-\frac{s'd_n s}{2} \right) \frac{\psi_{2n}(- < r_n, r_n + i \frac{s}{\sqrt{a_n} \delta} >)}{\psi_{2n}(- < r_n, r_n >)} ds - 1 \right] ds$$

$$= \left[\frac{|d_n|}{2\pi} \right]^{1/2} \int_{|s|<\sqrt{a_n\delta}} \exp\left(-\frac{s'd_n s}{2} \right) \left[-\frac{i < r_n, s >}{a_n} \frac{\psi_{2n}(- < r_n, r_n >)}{\psi_{2n}(- < r_n, r_n >)} + \frac{R(- < r_n, r_n + i \frac{s}{\sqrt{a_n} \delta} >)}{\psi_{2n}(- < r_n, r_n >)} \right] ds. \quad (3.44)$$

It is easy to see that the first integral on the right hand side of I_{12}' is zero, second integral is $O(1/a_n)$. We can use the bound on $|R(- < r_n, r_n + i \frac{s}{\sqrt{a_n} \delta} >)|$ (see Remark 3.2.6) to show that the third integral is $O(1/a_n)$.

Therefore

$$I_{12}' = O(1/a_n). \quad (3.45)$$
Now, consider

\[|I_{n3}'| = \left(\frac{|d_n|}{(2\pi)^{k/2}} \right) \int_{|s|<\sqrt{a_n}\delta} \exp\left(-\frac{s'd_n s}{2} \right) (-z_n) ds \]

\[= (-1) \left(\frac{|d_n|}{(2\pi)^{k/2}} \right) \int_{|s|<\sqrt{a_n}\delta} \exp\left(-\frac{s'd_n s}{2} \right) \left[\frac{-i}{\sqrt{a_n}} \sum_{|\alpha|=3} a^{(n)}_{\alpha} s^{\alpha} + \frac{i}{6\sqrt{a_n}} \psi^{m}_{2n}(-<r_n,\tau_n>) \right. \]

\[+ a_n R_{1n}(r_n + i \frac{s}{\sqrt{a_n}}) + a_n R_{2n}(-<r_n,\tau_n + i \frac{s}{\sqrt{a_n}}>) \] \hspace{1cm} (3.46)

The first two integrals on the right hand side of \(I_{n3}' \) are zero. We use the bounds on \(R_{1n}(r+it) \) and \(R_{2n}(r+it) \), obtained in Lemma 3.2.4 and Remark 3.2.5, to show that the third and fourth integrals are \(O(1/a_n) \).

Thus

\[I_{n3}' = O(1/a_n). \] \hspace{1cm} (3.47)

Lastly, consider

\[I_{n4}' = \left(\frac{|d_n|}{(2\pi)^{k/2}} \right) \int_{|s|<\sqrt{a_n}\delta} \exp\left(-\frac{s'd_n s}{2} \right) \left[\frac{-i}{\sqrt{a_n}} \sum_{|\alpha|=3} a^{(n)}_{\alpha} s^{\alpha} \right. \]

\[+ \frac{i}{6\sqrt{a_n}} \psi^{m}_{2n}(-<r_n,\tau_n>) + a_n R_{1n}(r_n + i \frac{s}{\sqrt{a_n}}) \]

\[+ a_n R_{2n}(-<r_n,\tau_n + i \frac{s}{\sqrt{a_n}}>) \]
Using the argument similar to the univariate case the term \(I_{n4} \) can be easily verified to be equal to \(O(1/a_n) \). This completes the proof of Lemma 3.2.6.

The next lemma shows that the term \(I_{n2} \) appearing in the proof of the main theorem is \(1 + O(1/a_n) \).

Lemma 3.2.9 Let \(f_n(t) \) be as defined in (3.31). Let \(\delta > 0 \) as in Lemma 3.2.8. Then

\[
I_{n2} = \int_{|t| < \delta} \exp \left(a_n \left[f_n(t) - f_n(\tau_n) \right] \right) \frac{\psi_{2n}'(- < \tau_n, \tau_n + it >)}{\psi_{2n}'(- < \tau_n, \tau_n >)} dt
\]

\[= 1 + O(1/a_n). \quad (3.48)\]

Proof. Consider

\[
I_{n2} = \int_{|t| < \delta} \exp \left(a_n \left[\psi_{1n}(\tau_n + it) - \psi_{1n}(\tau_n) \right] \right)
\begin{align*}
+ \psi_{2n}(- < \tau_n, \tau_n + it >) - \psi_{2n}(- < \tau_n, \tau_n >)
\end{align*}
\frac{\psi_{2n}'(- < \tau_n, \tau_n + it >)}{\psi_{2n}'(- < \tau_n, \tau_n >)} dt.
\]

By making a change of variable \(t = s/\sqrt{a_n} \), we have,

\[
I_{n2} = \int_{|s| < \sqrt{a_n}} \exp \left(a_n \left[\psi_{1n}(\tau_n + i\frac{s}{\sqrt{a_n}}) - \psi_{1n}(\tau_n) \right] \right)
\begin{align*}
+ \psi_{2n}(- < \tau_n, \tau_n + i\frac{s}{\sqrt{a_n}} >) - \psi_{2n}(- < \tau_n, \tau_n >)
\end{align*}
\frac{\psi_{2n}'(- < \tau_n, \tau_n + i\frac{s}{\sqrt{a_n}} >)}{\psi_{2n}'(- < \tau_n, \tau_n >)} ds. \quad (3.50)
\]
For $|s| < \sqrt{a_n} \delta$, we use Taylor’s series for ψ_{1n} and ψ_{2n} to get

$$I_{n2} = \left[\frac{|d_n|}{(2\pi)^k} \right]^{1/2} \int_{|s| < \sqrt{a_n} \delta} \exp \left(-a_n \frac{1}{2a_n} s' \nabla^2 \psi_{1n}(\tau_n) s \right)$$

$$+ \left. \frac{i < r_n, s >^2}{2a_n} \psi_{2n}^\prime(- < r_n, \tau_n >) - \frac{i}{a_n \sqrt{a_n} |a|_{n=3}} \sum a_{\alpha}^{(n)} s^\alpha \right.$$

$$- \frac{i < r_n, s >^3}{6a_n \sqrt{a_n}} \psi_{2n}^\prime(- < r_n, \tau_n >) - R_{1n}(\tau_n + i \frac{s}{\sqrt{a_n}})$$

$$- R_{2n}(- < r_n, \tau_n + i \frac{s}{\sqrt{a_n}} >) \psi_{2n}^\prime(- < r_n, \tau_n >) - \psi_{2n}(- < r_n, \tau_n >) ds.$$ \hspace{1cm} (3.51)

We note that $s' \nabla^2 \psi_{1n}(\tau_n) s + < r_n, s >^2 \psi_{2n}^\prime(- < r_n, \tau_n >) = s'd_n s$. Thus we have,

$$|I_{n2}| = \left[\frac{|d_n|}{(2\pi)^k} \right]^{1/2} \int_{|s| < \sqrt{a_n} \delta} \exp \left(\frac{-s'd_n s}{2} \right) \exp \left(- \frac{i}{\sqrt{a_n} |a|_{n=3}} \sum a_{\alpha}^{(n)} s^\alpha \right)$$

$$- \frac{i < r_n, s >^3}{6 \sqrt{a_n}} \psi_{2n}^\prime(- < r_n, \tau_n >) + a_n R_{1n}(\tau_n + i \frac{s}{\sqrt{a_n}})$$

$$+ a_n R_{2n}(- < r_n, \tau_n + i \frac{s}{\sqrt{a_n}} >) \psi_{2n}^\prime(- < r_n, \tau_n >)$$

$$= \left[\frac{|d_n|}{(2\pi)^k} \right]^{1/2} \int_{|s| < \sqrt{a_n} \delta} \exp \left(\frac{-s'd_n s}{2} \right) \left[1 - \frac{i}{\sqrt{a_n} |a|_{n=3}} \sum a_{\alpha}^{(n)} s^\alpha \right]$$

$$- \frac{i < r_n, s >^3}{6 \sqrt{a_n}} \psi_{2n}^\prime(- < r_n, \tau_n >) + a_n R_{1n}(\tau_n + i \frac{s}{\sqrt{a_n}})$$

$$+ a_n R_{2n}(- < r_n, \tau_n + i \frac{s}{\sqrt{a_n}} >) + L_n(s) \right] ds.$$ \hspace{1cm} (3.52)
where \(d_n, L_n(s) \) and \(z_n(s) \) are as defined in (3.30), (3.35) and (3.36) respectively. The right hand side of (3.56) involves six integrals. The 1st integral is \(1 + o(1/a_n) \). Trivially, 2nd and 3rd integrals are equal to zero. In order to show that the 4th integral is \(1 + O(1/a_n) \), we use the bound on \(R_{1n}(\tau_n + i s/\sqrt{a_n}) \) given in Lemma 3.2.4. Thus

\[
\left| \frac{|d_n|}{(2\pi)^k} \int_{|s|<\sqrt{a_n} \delta} a_n R_{1n}(\tau_n + i \frac{s}{\sqrt{a_n}}) \exp(-s'd_n s/2) \, ds \right| \\
\leq a_n \left| \frac{|d_n|}{(2\pi)^k} \int_{|s|<\sqrt{a_n} \delta} \exp(-s'd_n s/2) \right| R_{1n}(\tau_n + i \frac{s}{\sqrt{a_n}}) \, ds \\
\leq \frac{1}{a_n} \left| \frac{|d_n|}{(2\pi)^k} \right| \frac{2 \beta_1}{(c_1 - b_1)^4} \int_{|s|<\sqrt{a_n} \delta} |s|^4 \exp(-s'd_n s/2) \, ds \\
= O(1/a_n).
\]

(3.53)

Similarly, the 5th integral can be shown to be equal to \(O(1/a_n) \). The 6th integral, \(\left| \frac{|d_n|}{(2\pi)^k} \right| \frac{2 \beta_1}{(c_1 - b_1)^4} \int_{|s|<\sqrt{a_n} \delta} L_n(s) \exp(-s'd_n s/2) \, ds \) is \(Q_n^* \) defined in (3.37). Therefore, it follows from Lemma 3.2.8 that

\[
\left| \frac{|d_n|}{(2\pi)^k} \right| \frac{2 \beta_1}{(c_1 - b_1)^4} \int_{|s|<\sqrt{a_n} \delta} L_n(s) \exp(-s'd_n s/2) \, ds = O(1/a_n). \]

(3.54)

Thus

\[
I_n = 1 + O(1/a_n). \]

We now proceed with the proof of main theorem.

Proof. Let \(G_n \) be the distribution function of \(R_n = T_n/S_n \). Then, for \(r = (r_1, r_2, \ldots, r_k) \)

\[
G_n(r) = Pr \left[\frac{T_{1n}}{S_n} \leq r_1, \ldots, \frac{T_{kn}}{S_n} \leq r_k \right]
\]

3-80
The density function g_n of G_n is given by

$$g_n(r) = \int_0^\infty y^k f_{1n}(ry) \, dF_{2n}(y)$$

(3.56)

where f_{1n} is the p.d.f. of T_n.

Using the conjugate distribution technique, we get,

$$f_{1n}(ry) = \left[\frac{1}{2\pi} \right]^k \int_{R^k} \phi_{1n}(\tau + it) \exp \left(- < ry, \tau + it > \right) \, dt.$$

(3.57)

Therefore,

$$g_n(r) = \int_0^\infty y^k \left[\frac{1}{2\pi} \right]^k \int_{R^k} \phi_{1n}(\tau + it) \exp \left(- < ry, \tau + it > \right) \, dt \, dF_{2n}(y)$$

$$= \left[\frac{1}{2\pi} \right]^k \int_{R^k} \phi_{1n}(\tau + it) \left[\int_0^\infty y^k \exp \left(- < ry, \tau + it > \right) \, dF_{2n}(y) \right] \, dt$$

$$= \left[\frac{1}{2\pi} \right]^k \int_{R^k} \phi_{1n}(\tau + it) \phi_{2n}(- < r, \tau + it >) \, dt$$

$$= \left[\frac{1}{2\pi} \right]^k \int_{R^k} \phi_{1n}(\tau + it) \phi_{2n}(- < r, \tau + it >) \, dt$$

$$= \left[\frac{a_n}{2\pi} \right]^k \int_{R^k} \exp \left(a_n [\psi_{1n}(\tau + it) + \psi_{2n}(- < r, \tau + it >)] \right) \psi_{2n}(- < r, \tau + it >) \, dt.$$

We now replace r by r_n and τ by τ_n to get

$$g_n(r_n) = \left[\frac{a_n}{2\pi} \right]^k \int_{R^k} \exp \left(a_n [\psi_{1n}(\tau_n + it) + \psi_{2n}(- < r_n, \tau_n + it >)] \right)$$
\[x \psi'_{2n}(\langle - r_\tau, r_\tau + it \rangle) dt \]

\[= \left[\frac{a_m}{2\pi} \right]^{k/2} \psi'_{2n}(\langle - r_\tau, r_\tau \rangle) \prod_{n} \exp(a_m[\psi_{1n}(r_\tau) + \psi_{2n}(\langle - r_\tau, r_\tau \rangle)]) I_n \]

where

\[I_n = \left[\frac{a_n^k|d_n|}{(2\pi)^k} \right]^{1/2} \int_{R^k} \exp(a_n[\psi_{1n}(r_\tau + it) - \psi_{1n}(r_\tau)]) \psi'_{2n}(\langle - r_\tau, r_\tau + it \rangle) \psi'_{2n}(\langle - r_\tau, r_\tau \rangle) dt. \]

Writing \(\psi_{1n}(t) \) and \(\psi_{2n}(t) \) in terms of \(f_n(t) \) (see (3.31)) we get,

\[I_n = \left[\frac{a_n^k|d_n|}{(2\pi)^k} \right]^{1/2} \int_{R^k} \exp(a_n[f_n(r_\tau + it) - f_n(r_\tau)]) \frac{\psi'_{2n}(\langle - r_\tau, r_\tau + it \rangle)}{\psi'_{2n}(\langle - r_\tau, r_\tau \rangle)} dt \]

\[= \left[\frac{a_n^k|d_n|}{(2\pi)^k} \right]^{1/2} \left[\int_{|t| \geq \delta} \exp(a_n[f_n(r_\tau + it) - f_n(r_\tau)]) \frac{\psi'_{2n}(\langle - r_\tau, r_\tau + it \rangle)}{\psi'_{2n}(\langle - r_\tau, r_\tau \rangle)} dt \right. \]

\[+ \left. \int_{|t| < \delta} \exp(a_n[f_n(r_\tau + it) - f_n(r_\tau)]) \frac{\psi'_{2n}(\langle - r_\tau, r_\tau + it \rangle)}{\psi'_{2n}(\langle - r_\tau, r_\tau \rangle)} dt \right] \]

where \(\delta \) is chosen such that \(\delta = \min(\delta_1, \delta_2, \delta_3) \) and \(M(\delta) < \alpha / 2k \) for \(M(\delta) \) in (3.45). Thus

\[I_n = I_{n1} + I_{n2} \]

where

\[I_{n1} = \left[\frac{a_n^k|d_n|}{2\pi^k} \right]^{1/2} \int_{|t| \geq \delta} \exp(a_n[f_n(r_\tau + it) - f_n(r_\tau)]) \frac{\psi'_{2n}(\langle - r_\tau, r_\tau + it \rangle)}{\psi'_{2n}(\langle - r_\tau, r_\tau \rangle)} dt \]

\[(3.60) \]

3-82
and
\[
I_{n2} = \left[\frac{a_n^k |d_n|}{2\pi^k} \right]^{1/2} \int_{|t|<\delta} \exp(a_n|f_n(\tau_n+it)-f_n(\tau_n)|) \frac{\psi_{2n}'(-<\tau_n,\tau_n+it>)}{\psi_{2n}(-<\tau_n,\tau_n>)} dt.
\] (3.63)

Lemma 3.2.7 shows that the term \(I_{n1} \) goes exponentially fast to zero and Lemma 3.2.9 shows that \(I_{n2} = 1 + O(1/a_n) \). Thus
\[
I_n = 1 + O(1/a_n).
\] (3.64)

This completes the proof of the theorem.

Theorem 3.2.10 stated below is analogous to Theorem 3.2.1 except that in Theorem 3.2.10 we take the components of \(T_n \) and \(S_n \) to be sums of \(n \) i.i.d. random variables, particular case of Theorem 3.2.1.

Theorem 3.2.10 Let \(\{X_n, n \geq 1\} \) be a sequence of non-lattice i.i.d. random vectors in \(\mathbb{R}^k \) with distribution function \(F_1 \) and m.g.f. \(\phi_1 \). Let \(\{Y_n, n \geq 1\} \) be another sequence of non-lattice, positive random variables with distribution function \(F_2 \) and m.g.f. \(\phi_2 \). We assume that \(Y_n \)'s are independent of the components of \(X_n \)'s. Let \(\phi_1 \) and \(\phi_2 \) be analytic and non-vanishing in \(\Omega_1 \) and \(\Omega_2 \) respectively, where \(\Omega_i = \{z \in \mathbb{C} : |z| < c_i\} \) for \(c_i > 0, i = 1, 2 \). Let
\[
\psi_i(z) = \frac{1}{n} \log \phi_i(z),
\]
for \(i = 1, 2 \). Let \(J_1 = (-b_1, b_1), 0 < b_1 < c_1 \) and \(J_2 = (-b_2, b_2), 0 < b_2 < c_2 \).

Let \(\{a_n\} \) be a sequence of real numbers such that \(a_n \to \infty \).

Let \(\nabla \psi_1(z) = (D_1\psi_1(z), D_2\psi_1(z), \cdots, D_k\psi_1(z)) \) be the vector of the first order partial derivatives and \(\nabla^2 \psi_1(z) \) denote the matrix of second order partial derivatives, that is,
\[
\nabla^2 \psi_1(z) = (D_{ij}\psi_1(z)).
\] (3.65)
The determinant of the matrix $\nabla^2 \psi_1(z)$ is denoted by $|\nabla^2 \psi_1(z)|$.

Let $d_n = \nabla^2 \left(\psi_1(\tau) + \psi_2(-<\tau,\tau>) \right)$ be positive definite. Further, let the eigenvalues of d_n be bounded below by $\alpha_1 > 0$, for all $\tau \in J_1^k$ and $n \geq 1$. Let $\{\tau_n\}$ be a sequence of vectors in \mathbb{R}^k such that $|\tau_{jn}| < r_j^*$ for $j = 1, \ldots, k$ and $n \geq 1$. For this sequence τ_n let there exist a sequence $\{\tau_n\}$ in J_1^k such that $<\tau_n,\tau_n> \in J_2$

\[
\nabla (\psi_1(\tau_n) + \psi_2(-<\tau_n,\tau_n>)) = 0 \quad (3.66)
\]

and

\[
\psi_2(-<\tau_n,\tau_n>) > \alpha_2 \quad (3.67)
\]

where $\alpha_2 > 0$ and $n \geq 1$.

Let us assume the following conditions on the moment generating functions ϕ_1 and ϕ_2.

(F11) There exist $\beta_1 < \infty$ and $\beta_2 < \infty$ such that

\[
|\psi_1(z)| < \beta_1 \text{ for } z \in \Omega_1^k \quad (3.68)
\]

and

\[
|\psi_2(z)| < \beta_2 \text{ for } z \in \Omega_2. \quad (3.69)
\]

(F12) Given $\delta > 0$, there exists $q > 0$ such that

\[
\sup_{|h| > \delta} |\psi_2(-<\tau_n,\tau_n + it>)| = O(n^q). \quad (3.70)
\]

(F13) There exists $B_1 < \infty$ such that

\[
\sup_{\tau \in J_1^k} \int_{-\infty}^{\infty} \left| \frac{\phi_1(\tau + it)}{\phi_1(\tau)} \right|^{\frac{1}{|\omega_n|}} dt < B_1. \quad (3.71)
\]
(F12) Given $\delta > 0$, there exists $q > 0$ such that

$$\sup_{|t|>\delta} \left| \psi_2'(- < r_n, r_n + it >) \right| = O(n^q). \quad (3.70)$$

(F13) There exists $B_1 < \infty$ such that

$$\sup_{r \in \mathbb{R}_+} \int_{-\infty}^{\infty} \left| \frac{\phi_1(r + it)}{\phi_1(r)} \right|^{1/q_n} dt < B_1. \quad (3.71)$$

Let $T_n = X_1 + \cdots + X_n$, $S_n = Y_1 + \cdots + Y_n$. Then an asymptotic expression for the p.d.f. of $R_n = T_n/S_n$ at the point r_n is given by,

$$\bar{g}_1(r_n) = \frac{n^{k/2} \left(\psi_2'(- < r_n, r_n >) \right)^k}{(2\pi)^{k/2} |d_n|^{1/2}}$$

$$\times \exp(n[\psi_1(r_n) + \psi_2(- < r_n, r_n >)]) [1 + O(1/n)]. \quad (3.72)$$
3.3 Large deviation local limit theorems for lattice random vectors

Now we proceed to obtain similar local limit theorems for ratio statistic $R_n = T_n/S_n$ where the random vector T_n and the random variable S_n both are lattice. We continue to use the same notations introduced in Section 3.2.

Before we state and prove the results of this section we give below a few definitions and results for lattice random vectors.

Definition 3.3.1. Consider \mathbb{R}^k as a group under vector addition. A subgroup L is discrete if every ball in \mathbb{R}^k has only a finite number of points of L in it.

Definition 3.3.2. A discrete subgroup L is called a lattice if there exists k linearly independent vectors $\{\xi_1, \ldots, \xi_k\}$ such that $L = [\xi: \xi = m_1 \xi_1 + \cdots + m_k \xi_k; m_i \text{ integer}, \forall i = 1, \ldots, k]$.

Definition 3.3.3. A random vector X in \mathbb{R}^k is a lattice random vector if there exists $x_0 \in \mathbb{R}^k$ and a lattice such that $Pr(X \in x_0 + L) = 1$.

Definition 3.3.4. A random vector X in \mathbb{R}^k is degenerate if there exists a hyperplane $H = \{x: <a, x> = c\}$, where $a \neq 0$ and c is a constant such that $Pr(X \in H) = 1$, otherwise we say that X is non-degenerate.

Lemma 3.3.5. Let X be a nondegenerate lattice random vector. Then there exists a unique lattice L_0 such that the following two properties hold:
(i) \(\Pr(X \in x + L_0) = 1 \) for all \(x \) such that \(\Pr(X = x) > 0 \).

(ii) If \(M \) is any closed subgrouph such that \(\Pr(X \in y_0 + M) = 1 \) for some \(y_0 \in R^k \), then \(L_0 \subset M \).

The lattice \(L_0 \) is called the minimal lattice for \(X \). In what follows we shall consider only the minimal lattice. Let \(\phi(t) = E e^{it \cdot x} \), \(t \in R^k \) be the characteristic function of \(X \). A vector \(t_0 \in R^k \) is said to be a period of \(|\phi| \) if \(|\phi(t + t_0)| = |\phi(t)| \) for all \(t \in R^k \).

Lemma 3.3.6. Let \(X \) be a lattice random vector with characteristic function \(\phi \). The set \(L_1 \) of periods of \(|\phi| \) is a lattice if and only if \(X \) is nondegenerate. Further, let \(L_1 = \{ t : \langle t, \xi \rangle \in 2\pi m \ \forall \ \xi \in L, \ m \ \text{integer} \} \). Let \(\{n_1, \ldots, n_k\} \) be a dual basis, that is, \(\langle \xi_j, n_{j'} \rangle = 0 \) if \(j \neq j' \) and 1 if \(j = j' \). Then \(L_1 = \{2\pi t : \langle t, m_1n_1 + \cdots + m_kn_k \rangle, \ m_i \ \text{integer} \} \).

This completes the preliminaries. We now proceed with Theorem 3.3.7 which gives an asymptotic expression for the density of the ratio statistic \(R_n = T_n/S_n \) where \(\{T_n, n \geq 1\} \) is a sequence of lattice random vectors and \(\{S_n, n \geq 1\} \) is a sequence of lattice valued random variables.

Theorem 3.3.7. Let \(L_n \) be the lattice \(\{\xi : \xi = h_n(m_1e_1 + \cdots + m_ke_k), \ m_i \ \text{integer} \} \), where \(\{h_n, n \geq 1\} \) is a sequence of real numbers and \(\{e_1, \cdots, e_k\} \) is an orthonormal basis of \(R^k \). Let \(\{T_n, n \geq 1\} \) be a sequence of nondegenerate
lattice random vectors defined on L_n with distribution functions F_{1n}. Let
\{S_n, n \geq 1\} be a sequence of lattice random variables taking values in the set
$S' = \{a'_n + kh'_n : a'_n, h'_n are such that a'_n + kh'_n > 0\}$. Let S_n be independent
of the components of the vector T_n for all $n \geq 1$. Let $r_n = (r_{1n}, \cdots, r_{kn})$ be
a sequence of vectors in R^k such that $|r_{jn}| < r$ for $j = 1, \cdots, k$ and $n \geq 1$
and $r > 0$.

Assume that the following conditions are satisfied.

(H1) There exist $\beta_1 < \infty$ and $\beta_2 < \infty$ such that

$$|\psi_{1n}(z)| < \beta_1 \text{ for } z \in \Omega_1$$

and

$$|\psi_{2n}(z)| < \beta_2 \text{ for } z \in \Omega_2$$

for $n \geq 1$.

(H2) Given $\delta > 0$, there exists $0 < \eta < 1$ such that

$$\limsup_n \sup_{\delta \leq |t| \leq |h_n|} \left[\frac{\phi_{1n}(r_n + it)}{\phi_{1n}(r_n)} \right]^{1/a_n} < \eta.$$

(H3) There exist $p, l > 0$ such that

$$\sup_{r \in \mathbb{R}_k} \left| \frac{\phi_{1n}(r_n + it)}{\phi_{1n}(r_n)} \right|^{1/a_n} = O(a_n^p).$$

Let $P_n(r_n) = P(T_n = r_n S_n)$. Then

$$P_n(r_n) = \left[\frac{|h_n|^k}{(2\pi)^k a_n^k \sqrt{2(\psi_{1n}(r_n) + \psi_{2n}(\langle - r_n, r_n \rangle))}} \right]^{1/2}$$

$$\times \exp(a_n[\psi_{1n}(r_n) + \psi_{2n}(\langle - r_n, r_n \rangle)])[1 + O(1/a_n)].$$
Proof: Consider,

\[P(T_n = r_nS_n) = \sum_{y \in S', \; r_y \in L_n} P(T_n = r_y) P(S_n = y). \]

(3.78)

We use the conjugate distribution technique to obtain the probability \(P(T_n = r_y) \) and it is given by

\[P(T_n = r_y) = \frac{|h_n|^k}{(2\pi)^k} \int_{E^n} \phi_1n(\tau + it) e^{-<r_y, \tau + it>} \, dt \]

(3.79)

where \(E^n = \{ (t_1, \cdots, t_k) : |t_j| < \pi/|h_n| \} \). In view of (3.82), (3.81) becomes

\[P(T_n = rS_n) = \sum_{\nu \in S', \; r \in L_n} \left[\frac{|h_n|^k}{(2\pi)^k} \int_{E^n} \phi_1n(\tau + it) e^{-<r_y, \tau + it>} \right] P(S_n = y) \]

\[= \left[\frac{|h_n|^k}{(2\pi)^k} \right] \int_{E^n} \phi_1n(\tau + it) \sum_{\nu \in S', \; r \in L_n} e^{-<r_y, \tau + it>} P(S_n = y) \]

\[= \left[\frac{|h_n|^k}{(2\pi)^k} \right] \int_{E^n} \phi_1n(\tau + it) \phi_2n(-<r_y, \tau + it>) dt \]

(3.80)

The saddle point allows us to replace \(\tau \) by \(r_n \) when \(r \) is replaced by \(r_n \).

Thus, we have,

\[P(T_n = r_nS_n) = \left[\frac{|h_n|^k}{(2\pi)^k} \right] \int_{E^n} \exp(a_n[\psi_1n(\tau_n + it) + \psi_2n(-<r_n, \tau_n + it>)]) \, dt \]

(3.81)

\[= \left[\frac{|h_n|^k}{a_n^{k/2} (2\pi)^{k/2} |d_n|^{1/2}} \right] \int_{E^n} \exp(a_n[\psi_1n(\tau_n) + \psi_2n(-<r_n, \tau_n>)]) I_n \]

where

\[I_n = \left[\frac{a_n^{k/2} |d_n|^{1/2}}{2\pi^{k/2}} \right] \int_{E^n} \exp(a_n[\psi_1n(\tau_n + it) - \psi_1n(\tau_n) + \psi_2n(-<r_n, \tau_n + it>)]) \]

3-89
Using the techniques similar to the techniques in Theorem 3.3.7, we can easily show that $I_n = 1 + O(1/a_n)$. Thus

$$P(T_n = r_n S_n) = \left[\frac{|h_n|^k}{d_n^{k/2} (2\pi)^{k/2} |d_n|^{3/2}} \right]$$

\begin{equation}
\times \exp(a_n[\psi_{1n}(\tau_n) + \psi_{2n}(\tau_n)] [1 + O(1/a_n)].
\end{equation}

The following Theorem 3.3.8 is a particular case of Theorem 3.3.7 proved above. Here T_n is the sum of n i.i.d. lattice valued random vectors defined on the lattice L_n and S_n is the sum of n i.i.d. lattice valued random variables Y_n. This theorem gives an asymptotic expression for the density of the ratio of two statistics.

Theorem 3.3.8. Let L_n be the lattice \{ $\xi : \xi = h_n(m_1e_1 + \cdots + m_ke_k)$, m_i integer \}, where \{ $h_n, n \geq 1$ \} is a sequence of real numbers and \{ e_1, \cdots, e_k \} is an orthonormal basis of \mathbb{R}^k. Let \{ $X_n, n \geq 1$ \} be a sequence of i.i.d. lattice valued random vectors defined on lattice L_n. Let \{ $Y_n, n \geq 1$ \} be an i.i.d. sequence of lattice random variables taking values in the set $S' = \{ a'_n + k'h'_n : a'_n, h'_n \text{ are such that } a'_n + k'h'_n > 0 \}$. Let Y_n be independent of the components of the random vectors X_n for all $n \geq 1$. Let $\tau_n = (\tau_{1n}, \cdots, \tau_{kn})$ be a sequence of vectors in \mathbb{R}^k such that $|\tau_{jn}| < r$ for $j = 1, \cdots, k$ and $n \geq 1$ and $r > 0$. For this sequence \{ τ_n \}, let there exist τ'_n's in J_1^k such that

$$\psi_1(\tau_n) - r_n \psi_2'(\tau_n) = 0 \text{ and } \tau_n, \tau_n' \in J_2.$$
Let \(v_n = \nabla^2(\psi_1(\tau) + \psi_2(-< r, \tau >)) \) for \(\tau \in J_1^k \) and \(< r, \tau > \in J_2 \). Let the eigen values of \(v_n \) be bounded below by \(\alpha_1 > 0 \). Assume that the following conditions are satisfied.

(H11) There exist \(\beta_1 < \infty \) and \(\beta_2 < \infty \) such that

\[
|\psi_1(z)| < \beta_1 \text{ for } z \in \Omega_1
\]

and

\[
|\psi_2(z)| < \beta_2 \text{ for } z \in \Omega_2.
\]

(H12) There exists \(B_3 \) such that

\[
\sup_{r \in J_1^k} \left| \int_{-\pi/\lambda}^{\pi/\lambda} \frac{\phi_1(r + it)}{\phi_1(r)} \right|^n < B_3.
\]

Let \(T_n = X_1 + \cdots + X_n \) and \(S_n = Y_1 + \cdots + Y_n \). Let \(P(T_n = r_n S_n) = P_n(r_n) \). Then,

\[
P_n(r_n) = \left[\frac{|\lambda|^k}{(2\pi)^k n^k \nabla^2(\psi_1(\tau) + \psi_2(-< r, \tau >))} \right]^{1/2}
\]

\[
\times \exp(a[\psi_1(\tau) + \psi_2(-< r, \tau >)] \{1 + O(1/n)\}).
\]
Chapter 4

Strong large deviation results for ratio statistics

4.1 Introduction

Let \(\{T_n, n \geq 1\} \) be a sequence of random variables such that \(T_n/a_n \to 0 \) for some sequence of real numbers \(a_n \to \infty \). In most examples the probability of the event \(\{T_n > x_n\} \) goes to zero exponentially fast whenever \(x_n = O(a_n) \) and \(x_n \) is positive. The event \(\{T_n \geq x_n\} \) for \(x_n \) positive is known in the literature as a large deviation event. Numerous authors including Cramér (1938), Chernoff (1952), Ellis (1984), Varadhan (1984) have obtained asymptotic expressions for \(\log P(T_n \geq x_n) \) under some conditions on the moment generating function of \(T_n \). Bahadur and Ranga Rao (1960) obtained asymptotic expression for \(P(T_n \geq x_n) \) when \(T_n \) is the sum of \(n \) i.i.d. random variables and \(x_n = O(n) \). Chaganty- Sethuraman coined the
term Weak large deviation results for the results of the former type and
Strong large deviation results for the results of the latter type. In a recent
paper, Chaganty-Sethuraman extended the results of Bahadur and Ranga
Rao (1960) to an arbitrary sequence of random variables T_n, not neces­
sarily sums of i.i.d. random variables. We state these results precisely in
Theorems 4.2.2 and 4.3.2.

The purpose of this chapter is to obtain strong large deviation result
for the ratio statistic $R_n = T_n/S_n$, where T_n and S_n are arbitrary sequences
of random variables. In Theorem 4.2.3, we show that Conditions (Q1) and
(Q2) on the m.g.f.'s of T_n and S_n imply Conditions (P1) and (P2) of theorem
4.2.2 for the random variable T'_n. Thus Conditions (P1) and (P2) of Theo­
rem 4.2.2 are satisfied for arbitrary random variables $T'_n = T_n - r_n S_n$ giving
an asymptotic expression for $P(T_n/S_n > r_n)$ i.e. for $P(T_n - r_n S_n > 0)$. The
case of arbitrary lattice random variables T_n and S_n is treated in Theorem
4.3.3.

4.2 Non-lattice case

This section contains strong large deviation limit theorems for non-lattice
random variables.

Strong large deviation theorem for an arbitrary sequence of non- lattice
random variables is stated below in Theorem 4.2.2.

Theorem 4.2.1 Let $\{W_n, n \geq 1\}$ be a sequence of nonlattice valued random
variables with m.g.f. $\phi_n(z)$. Let $\phi_n(z)$ be analytic and nonvanishing in

\[4-93\]
\[\Omega = \{ z \in C : |z| < c \}, \text{ where } c > 0. \text{ Let} \]
\[\psi_n(z) = \frac{1}{a_n} \phi_n(z) \quad (4.1) \]

for \(z \in \Omega, n \geq 1 \). Also, let
\[\gamma_n(u) = \sup_{|s| < a} [us - \psi_n(s)], \text{ for real } u. \quad (4.2) \]

Let \(\{m_n, n \geq 1\} \) be a sequence of real numbers such that there exists a sequence \(\tau_n \) satisfying \(\psi'_n(\tau_n) = m_n \) and \(d < \tau_n < c < c_1 \) for some positive numbers \(c \) and \(d \) and for all \(n \geq 1 \). Assume the following conditions for \(T_n \).

\begin{enumerate}
 \item[(P1)] There exists \(\beta < \infty \) such that \(|\psi_n(z)| < \beta \) for all \(n \geq 1, z \in \Omega \).
 \item[(P2)] There exists \(\delta_1 > 0 \) such that
\[\sup_{|t| \geq \delta} \left| \frac{\phi_n(\tau_n + it)}{\phi_n(\tau_n)} \right| = o\left(\frac{1}{\sqrt{a_n}} \right) \quad (4.3) \]
 for all \(0 < \delta < \delta_1 \).
 \item[(P3)] There exists \(\alpha > 0 \) such that \(\psi_n''(\tau_n) \geq \alpha \) for all \(n \geq 1 \).
\end{enumerate}

Then
\[P \left(\frac{W_n}{a_n} \geq m_n \right) \sim \frac{\exp(-a_n \gamma_n(m_n))}{\sqrt{2\pi \tau_n} \sqrt{a_n \psi_n''(\tau_n)}}. \quad (4.4) \]

The following Theorem 4.2.3 generalizes Theorem 4.2.2 stated above to ratio statistic.

Theorem 4.2.2 Let \(\{T_n, n \geq 1\} \) be an arbitrary sequence of nonlattice random variables with m.g.f. \(\phi_1(z) = E[\exp(zT_n)] \) and \(\{S_n, n \geq 1\} \) be another sequence of nonlattice positive random variables with m.g.f. \(\phi_2(z) = \)
$E[\exp(zT_n)]$. Assume that the two sequences are independent of each other.

Let ϕ_{1n} and ϕ_{2n} be nonvanishing and analytic in the region $\Omega = \{z \in \mathbb{C} : |z| < c\}$, where $c > 0$ and \mathbb{C} is the set of all complex numbers. Let $\{a_n\}$ be a sequence of real numbers such that $a_n \to \infty$. Let

$$
\psi_{in}(z) = \frac{1}{a_n} \log \phi_{in}(z), \text{ for } z \in \Omega, \ i = 1,2. \quad (4.5)
$$

Let $\{r_n\}$ be a positive bounded sequence of real numbers such that there exists τ_n satisfying $0 < d < \tau_n < c$ and

$$
\psi'_{1n}(\tau_n) - \tau_n \psi'_{2n}(-r_n^*\tau_n) = 0. \quad (4.6)
$$

Assume the following conditions for T_n and S_n:

(Q1) There exist $\beta_i < \infty$ such that $|\psi_i(z)| < \beta_i$ for $z \in \Omega$, for $i = 1,2$.

(Q2) There exists $\delta_1 > 0$ such that

$$
\sup_{|t| \leq \delta} \left| \frac{\phi_{1n}(\tau_n + it)}{\phi_{1n}(\tau_n)} \right| = o(1/a_n) \quad (4.7)
$$

for any $0 < \delta < \delta_1$.

(Q3) Let α_1 be a positive real number such that $\psi'_{1n}(\tau) > \alpha_1$.

Then

$$
P\left(\frac{T_n}{S_n} \geq \tau_n \right) \sim \frac{\exp(a_n[\psi_{1n}(\tau_n) + \psi_{2n}(-r_n^*\tau_n)])}{\sqrt{2\pi r_n} \sqrt{a_n[\psi''_{1n}(\tau_n) + \tau_n^* \psi''_{2n}(-r_n^*\tau_n)]}}. \quad (4.8)
$$

Proof: Consider

$$
P\left(\frac{T_n}{S_n} \geq \tau_n \right) = P\left(T_n - r_n S_n \geq 0\right) = P\left(\frac{T_n^*}{a_n} \geq 0 \right) \quad (4.9)
$$

4-95
where $T^*_n = T_n - r_n S_n$. Using the independence of T_n and S_n we get the following relationship between the m.g.f.'s of T_n, S_n and T^*_n

$$\phi_{0n}(\tau) = \phi_{1n}(\tau) \phi_{2n}(-\tau \tau) \text{ for } \tau \in J_0$$

(4.10)

which implies that

$$\psi_{0n}(z) = \psi_{1n}(z) + \psi_{2n}(-z)$$

(4.11)

where ϕ_{0n} is the m.g.f. of T^*_n, $\psi_{0n}(z) = \frac{1}{\alpha_n} \log \phi_{0n}(z)$. Let $\gamma^*_n(u) = \sup |z| < e^{u \psi_{0n}(s)}$. From Condition (Q1) and (4.11), it follows that

$$|\psi_{0n}(z)| < \beta_1 + \beta_2.$$

(4.12)

Thus, there exists $\beta_0 = \beta_1 + \beta_2 < \infty$ such that $|\psi_{0n}(z)| < \beta_0$. Hence Condition (P1) of Theorem 4.2.2 is satisfied.

We have for any $0 < \delta < \delta_1$

$$\sup_{|t| \geq \delta} \left| \frac{\phi_{0n}(\tau_n + it)}{\phi_{0n}(\tau_n)} \right| = \sup_{|t| \geq \delta} \left| \frac{\phi_{1n}(\tau_n + it)}{\phi_{1n}(\tau_n)} \frac{\phi_{2n}(\tau_n + it)}{\phi_{2n}(\tau_n)} \right| \leq \sup_{|t| \geq \delta} \left| \frac{\phi_{1n}(\tau_n + it)}{\phi_{0n}(\tau_n)} \right|.$$

From Condition (Q2) it follows that

$$\sup_{|t| \geq \delta} \left| \frac{\phi_{0n}(\tau_n + it)}{\phi_{0n}(\tau_n)} \right| = o(1/\alpha_n).$$

(4.13)

Hence Condition (P2) of Theorem 4.2.2 is also satisfied. In view of $\psi^\prime_{1n}(\tau) > \alpha_1$ and (4.11) Condition (P3) is easily satisfied. Thus an arbitrary sequence $\{T^*_n, n \geq 1\}$ satisfies all the conditions of Theorem 4.2.2 and hence the conclusion of the Theorem 4.2.2 yields

$$P \left(\frac{T^*_n}{\alpha_n} \geq 0 \right) \sim \frac{\exp(-\alpha_n \gamma^*_n(0))}{\sqrt{2\pi \tau_n \alpha_n} \sqrt{\alpha_n \psi_{0n}'(\tau_n)}}.$$

(4.14)
which in turn gives Strong large deviation result for T_n/S_n, namely,

$$P\left(\frac{T_n}{S_n} \geq r_n\right) \sim \frac{\exp(a_n[\psi_{1n}(r_n) + \psi_{2n}(-r_n\tau_n)])}{\sqrt{2\pi}\tau_n\sqrt{a_n[\psi'_{1n}(r_n) + \tau_n^2\psi''_{2n}(-r_n\tau_n)]}}. \tag{4.15}$$

4.3 The Lattice case

In this section we state strong large deviation theorem for lattice valued random variables. These theorems are analogous to the theorems for lattice valued random variables of the previous section.

The next theorem provides an estimate of $P\left(\frac{T_n}{a_n} \geq m_n\right)$ where $\{T_n, n \geq 1\}$ is a sequence of lattice valued random variables and m_n is in the large deviation of T_n/a_n. We first introduce few notations.

Let $\{T_n, n \geq 1\}$ be an arbitrary sequence of lattice valued random variables taking values in the lattice $\{t_n + kp_n : k = 0, \pm 1, \pm 2, \cdots\}$, $p_n > 0$. Let the c.f. of T_n, $\phi_n(z)$, be analytic and nonvanishing in the region $

\Omega = \{z \in \mathbb{C} : |z| < c_1\}$. Let $\{a_n\}$ be a sequence of real numbers such that $a_n \to \infty$ and $p_n = o(\sqrt{a_n})$. Let

$$\psi_n(z) = \frac{1}{a_n} \log \phi_n(z), \tag{4.16}$$

be a well defined analytic function on Ω. Let $\{m_n\}$ be a sequence of real numbers such that there exists $0 < \tau_n < b_1 < c_1$ satisfying $\psi'_n(\tau_n) = m_n$ and $\tau_n\sqrt{a_n} \to \infty$ as $n \to \infty$. We now state Theorem 4.3.2.

Theorem 4.3.1 Assume that T_n satisfies Conditions (P1) and (P3) of Theorem 4.2.2 and the following Condition (P2'):

4-97
There exists $\delta_1 > 0$, such that for $0 < \delta < \delta_1$,

$$\sup_{\delta \leq |t| < \sigma/h_n} \left| \frac{\phi_n(r_n + it)}{\phi_n(r_n)} \right|. \quad (4.17)$$

Then

$$P\left(\frac{T_n}{a_n} \geq m_n \right) \sim \frac{p_n}{\sqrt{2\pi} a_n \psi'_n(r_n)} \exp\left(-a_n \gamma_n(m_n)\right) \left(1 - \exp(-p_n r_n)\right) \quad (4.18)$$

where $\gamma_n(m_n) = m_n r_n - \psi_n(r_n)$.

Next, we present Theorem 4.3.3 which provides an estimate of the large deviation probability for the ratio T_n/S_n, where $\{T_n, n \geq 1\}$ and $\{S_n > 0, n \geq 1\}$ denote the arbitrary sequences of random variables. First we begin with few preliminaries.

Let $\{T_n, n \geq 1\}$ be a sequence of lattice random variables with distribution functions F_{1n}. Let T_n take values in the set $S_1 = \{a_n + kh_n : a_n$ and h_n are real numbers and k is an integer}. Let $\{S_n > 0, n \geq 1\}$ be a sequence of positive lattice random variables taking values in the set $S_2 = \{a'_n + kh'_n : a'_n$ and h'_n are such that $a'_n + kh'_n > 0\}$. Let the m.g.f.'s of T_n and S_n, ϕ_{1n} and ϕ_{2n}, be analytic and non-vanishing in $\Omega = \{z \in \mathbb{C} : |z| < b\}$. Let r_n be a positive bounded sequence of real numbers such that there exist r_n such that $0 < r_n < b_1 < b$ and

$$\psi'_{1n}(r_n) - r_n \psi'_{2n}(-r_n r_n) = 0. \quad (4.19)$$

for all $n \geq 1$.

Theorem 4.3.2 Assume that these two sequences meet the following conditions: (R1) There exist $\beta_1 < \infty$ and $\beta_2 < \infty$ such that

$$|\psi_{jn}(z)| < \beta_j for z with |z| < b for j = 1, 2 and n \geq 1. \quad (4.20)$$
(R2) There exists $\delta_1 > 0$ such that

$$\sup_{\varepsilon \leq |t| < \pi/\delta_1} \left| \frac{\phi_{1n}(\tau_n + i\varepsilon)}{\phi_{1n}(\tau_n)} \right| = o(1/\delta_1)$$

for any $0 < \delta < \delta_1$.

(R3) Let α_1 be positive real numbers such that

$$\psi_{1n}''(\tau) > \alpha_1.$$

Then

$$P \left(\frac{T_n}{S_n} \geq \tau_n \right) \sim \frac{h_n}{\sqrt{2\pi} \sqrt{a_n[\psi_{1n}'(\tau_n) + r_n\psi_{2n}''(r_n)]}} \times \frac{\exp(a_n[\psi_{1n}(\tau_n) + \psi_{2n}(-r_n\tau_n)])}{(1 - \exp(-h_n\tau_n))}.$$

Proof. The proof of this theorem is similar to the proof of theorem and hence we omit it.
References

Autobiographical Statement

Place and Date of Birth: KOLHAPUR (INDIA), August 28, 1958.

Educational: M.Sc., 1981, University of Poona, India.
B.Sc., 1979, Abasaheb Garware College, University of Poona, India.