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ABSTRACT
SPATIOTEMPORAL DOWNSCALING RAINFALL PREDICTIONS OF NORTH
AMERICAN REGIONAL CLIMATE CHANGE ASSESSMENT PROGRAM FOR
ENTIRE VIRGINIA
Zhaoyi Cai
Old Dominion University, 2019
Director: Xixi Wang

This thesis developed a statistical downscaling approach, which consists of a series of
linear regression equations, to spatiotemporally downscale the rainfall predictions from
North American Regional Climate Change Assessment Program (NARCCAP) in
accordance with the 15-min observed rainfall data at the rain gauges across the state of
Virginia. NARCCAP has generated twelve different region-global climate models (RCM-
GCMs) with a temporal resolution of 3 hr and a spatial resolution of 50 km over the
entire America. Although it has been downscaled already, such resolutions are still too
coarse to represent the rain gauges. This means that the RCM-GCMs’ predictions need to
be further downscaled for watershed planning and management as well as hydrologic
engineering design. In this regard, this thesis developed the statistical downscaling
approach using the predictions by one of the RCM-GCMs and then validated the
applicability of the approach using the predictions by the other RCM-GCMs. The
development and validation were implemented by comparing the RCM-GCMs’
predictions with the observed data. Future studies should better utilize the predictions of
all twelve RCM-GCMs and try some nonlinear algorithms to minimize either

underestimating or overpredicting some extreme rainfalls for a duration of longer than 3

hr.
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This thesis is dedicated to the proposition that the harder you work, the luckier you get.
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PREFACE
In the past century, the concentration of greenhouse gases (GHGs), including COs, in the
Earth’s atmosphere has been rising due to increasing industrial activities. This has caused,
and will continue to cause, large-scale variations in atmospheric processes, which in turn
may lead to the decrease in precipitation amount but increase in extreme rainfall intensity,
and atmosphere temperature. The overarching goal of this thesis was to advance our
understanding of non-stationarity resulting from climate change. The specific objective
was to downscale the predictions of various region-global models (RCM-GCMs)
ensembles for the state of Virginia, generating extreme rainfall datasets for developing
probability-based rainfall intensity-duration-frequency (IDF) curves, which allow us to
take into account influences of the non-stationarity in designing hydraulic structures,
increasing the structures’ resilience while avoiding either over or under committing

resources.

This thesis is organized into five chapters. Chapter 1 (Introduction) describes the

problem and challenge from climate change and puts forward the thesis goal and study

objective. Chapter 2 (Literature Review) overviews the historical development, evolution,
and application of various RCM-GCMs, summarizes the commonly used downscaling

methods, and highlights the research needs. Chapter 3 (Methods) describes the methods

used by this thesis study. Chapter 4 (Results and Discussion) presents the results of this

thesis and discusses their validity and applicability. Chapter 5 (Conclusions and

Recommendations) concisely summarizes the major findings from this thesis study and

makes recommendations for future studies.



CHAPTER 1

INTRODUCTION
1.1 Problem Statement
An intensity-duration-frequency (IDF) curve is a mathematical function that relates rainfall
intensity with its duration and frequency of occurrence. Quantifying extreme rainfall
characteristics (i.e. intensity, duration, and frequency) is imperative in hydrologic engineering
design. In this regard, for a given duration and return period, the rainfall intensity can be
determined from the rainfall IDF curve. In practice, IDF curves have also been widely used as an
effective tool in approximating extreme rainfall for storm water management and other water-

related infrastructure designs.

In the past century, the concentration of greenhouse gases (GHGs), including COy, in the Earth’s
atmosphere has been rising due to increasing industrial activities. This has caused, and will
continue to cause, large-scale variations in atmospheric processes, which in turn may lead to the
decrease in precipitation amount but increase in extreme rainfall intensity, and atmosphere
temperature. Such changes in rainfall characteristics can invalidate the existing IDF curves,
which were developed by assuming non-stationary climates, leading to either over or under
committing resources and an unknown risk in designing infrastructures. Current design standards
are mainly based on the IDF curves developed using historic climate information. For example, a
dam that is designed to control a 100-year flood may provide a significantly lower level of
protection if the intensity and duration of the 100-year storm event increases. To adapt to future
climates, it is imperative to update the current standards for water infrastructure design and to

evaluate possible influences of climate change on the existing IDF curves.

Changes in the hydrologic cycle resulting from greenhouse gases have been projected to cause
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variations in rainfall intensity, duration, and frequency. Incorporating potential effects of climate
change into engineering design is practically needed to reduce uncertainty and increase resilience
of infrastructure. In this regard, revisiting and updating the existing IDF curves for future climate

scenarios are raising more attention.

In terms of how extreme rainfall characteristics would be modified in the future, Golbahar et al.
(2013) found that a large uncertainty of the projected rainfall intensities by six climate models
for long (> 4 h) durations makes it difficult to draw any strong conclusions about the expected
changes on future rainfall intensity in Alabama. The inconsistent results can be attributed to the
difference in 1) physical parameterizations, especially of radiative and precipitation-forming
processes, among different General Circulation Models (GCMs) and Regional Climate Models
(RCMs); and 2) initial and boundary conditions for each climate projection. Given the large
uncertainty in the output from paired RCMs-GCMs, performing an uncertainty analysis and
creating probability based IDF curves has been considered as an emerging research need. Alain
et al. (2007) compared the CRCM-simulated annual May to October maximum rainfall depth
(MOAM) series (2-, 6-, 12-, and 24-h durations) to the available historical records over Southern
Quebec, Canada. Those authors found that increases in regional MOAM values can be detected
between the control and future periods and that uncertainties in these changes tend to increase
with increase of return period and/or duration. Thus, multi-model ensembles will need to be
analyzed to quantify such uncertainties. Similarly, Emori et al. (2005) showed that the simulation
of extreme daily precipitations was highly dependent on model parameterization, implying that a
model with a higher resolution does not necessarily result in better predictions of future climate
than a model with a lower resolution. These ensembles must include the use of outputs of various

combinations of the GCMs and RCMs to take into account possible future scenarios, which



represent how socioeconomic developments, technology advancements, and greenhouse gas

emissions would be conceptualized and mathematically described.

1.2 Objective

The overarching goal of this thesis was to advance our understanding of non-stationarity
resulting from climate change. The specific objective was to downscale the predictions of
various RCM-GCMs ensembles for the state of Virginia, generating extreme rainfall datasets for
developing probability-based IDF curves, which allow us to take into account influences of the
non-stationarity in designing hydraulic structures, increasing the structures’ resilience while

avoiding either over or under committing resources.



CHAPTER 2

LITERATURE REVIEW

Predictions of future climates have been extensively studied and well documented in existing
literature. Some of the existing documents focus on the development and validation of various
prediction models, while others focus on applications of the predicted results. Given the large
amount of such documents, this chapter was carved by following the overview presented by
Africa and Latin American Resilience to Climate Change Project (2014) from the United States
Agency for International Development, with significant enrichments from other sources and the
author’s insights. Its main purpose was to identify what has been done and what needs to be done,

highlighting the research necessity and contributions of this thesis.

2.1 General Circulation Model or Global Circulation Models (GCMs)

Decision makers are increasingly demanding climate information at the national to local scale in
order to address the risk posed by projected climate changes and their anticipated impacts. To
respond to the needs of decision makers to plan for climate change, a variety of reports, tools,
and datasets provide projected climate impacts at spatial and temporal scales much finer than
those at which the projections are made. It is important to recognize the variety of assumptions
behind the techniques used to derive such information and the limitations they impose on the
results. The main tools used to project climate are General Circulation Models (GCMs), which
are computer models that mathematically represent various physical processes of the global
climate system. General or global circulation models (GCMs) simulate the Earth’s climate via
mathematical equations that describe atmospheric, oceanic, and biotic processes, interactions,

and feedbacks. They are the primary tools that provide reasonably accurate global-, hemispheric-



5

, and continental-scale climate information and are used to understand present climate and future

climate scenarios under increased greenhouse gas concentrations.

A GCM is composed of many grid cells that represent horizontal and vertical areas on the
Earth’s surface. In each of the cells, GCMs compute the following: water vapor and cloud
atmospheric interactions, direct and indirect effects of aerosols on radiation and precipitation,
changes in snow cover and sea ice, the storage of heat in soils and oceans, surfaces fluxes of heat

and moisture, and large-scale transport of heat and water by the atmosphere and oceans.

The spatial resolution of GCMs is generally quite coarse, with a grid size of about 100-500
kilometers. Each modeled grid cell is homogenous, (i.e., within the cell there is one value for a
given variable). Moreover, they are usually dependable at temporal scales of monthly means and
longer. In summary, GCMs provide quantitative estimates of future climate change that are valid

at the global and continental scale and over long periods.

Although GCMs are valuable predictive tools, they cannot account for fine-scale heterogeneity
of climate variability and change due to their coarse resolution. Numerous landscape features
such as mountains, water bodies, infrastructure, land-cover characteristics, and components of
the climate system such as convective clouds and coastal breezes, have scales that are much finer
than 100500 kilometers. Such heterogeneities are important for decision makers who require
information on potential impacts on crop production, hydrology, species distribution, etc. at

scales of 10-50 kilometers.

2.2 Downscaling Methods
Readily available climate change projections are provided at global and continental spatial scales
for the end of the 21st century (Intergovernmental Panel on Climate Change [IPCC], 2007).

These projections, however, do not fit the needs of sub-national adaptation planning that requires



regional and/or local projections of likely conditions five to 10 years from now. Moreover,
decision makers are interested in understanding the impacts of climate change on specific
sectors, e.g., agricultural production, food security, disease prevalence, and population

vulnerability.

In response to this demand, numerous impact and vulnerability assessments produced at different
scales, from global to local, provide climate change impact results at spatial scales much finer
than those at which projections are initially made. To produce such results, combinations of
methods and indicators are often used, each with its own assumptions, advantages, and
disadvantages. In reports, these essential factors may not be adequately communicated to the
reader, thus leaving him/her without the ability to understand potential discrepancies between
different reports. Often, global or continental-scale information is directly used to produce local-
scale impact maps, which is not appropriate since this large-scale information does not account

for differences at the local scale.

Downscaling is a technique that is used to extract high-resolution information from regional
scale variables produced by coarse resolution models. Any information that is presented at
spatial scales finer than 100 kilometers x 100 kilometers and temporal scales finer than monthly
values has undergone a process called downscaling. While it produces climatic information at
scales finer than the initial projections, this process involves additional information, data, and
assumptions, leading to further uncertainties and limitations of the results, a consequence that is
often not made explicit to end-users. International organizations or national governments
currently provide no official guidance that assists researchers, practitioners, and decision makers
in determining climate projection parameters, downscaling methods, and data sources that best

meet their needs. Since the research community is still developing downscaling methods, users



often need to read highly technical and specialized explanations in order to understand and

adequately apply the results for impact studies, planning, or decision-making.

The followings are important considerations and recommendations to keep in mind when

designing and interpreting fine-scale information on climate change and its impacts:

1) Downscaling relies on the assumption that local climate is a combination of large-scale
climatic/atmospheric features (global, hemispheric, continental, regional) and local
conditions (topography, water bodies, land surface properties). Representation of the latter is

generally beyond the capacity of current GCMs.

2) Deriving climate projections at local scales is a multistep process and at each step,
assumptions and approximations are made. Uncertainties are inherent in projections of
changes in climate and their impacts. They arise from different sources and need to be kept in

mind, whether explicitly quantified or not.

3) Downscaling can be applied spatially and temporally. Oftentimes, several downscaling
methods are combined to obtain climate change information at desired spatial and temporal

scales.

There are two principal ways to combine the information on local conditions with large-scale
climate projections:

Dynamical: by explicitly including additional data and physical processes in models similar to
GCMs but at a much higher resolution and covering only select portions of the globel. This
method has numerous advantages but is computationally intensive and requires large volumes of
data as well as a high level of expertise to implement and interpret results, often beyond the

capacities of institutions in developing countries.



Statistical: by establishing statistical relationships between large-scale climate features that
GCMs and local climate characteristics provide. In contrast to the dynamical method, the
statistical methods are easy to implement and interpret. They require minimal computing
resources but rely heavily on historical climate observations and the assumption that currently
observed relationships will carry into the future. However, high quality historical records often

are not available in developing countries.

2.3 Dynamical Downscaling

Global climate models (GCMs) with the ability to capture large-scale circulations are useful
tools for climate simulation. RCMs take the large-scale atmospheric information supplied by
GCM output at the lateral boundaries and incorporate more complex topography, the land-sea
contrast, surface heterogeneities, and detailed descriptions of physical processes in order to
generate realistic climate information at a spatial resolution of approximately 20 to 50
kilometers. However, GCMs have limited suitability in representing regional climate variability,
especially for regions with complex terrain, owing to the coarse resolution and simple physical
parameterizations used in GCMs. The dynamical downscaling technique consists mainly of
nesting high-resolution regional climate models (RCMs) into GCMs or using reanalysis data
within a limited area of interest. RCMs apply higher resolution topography, the land-sea contrast,

surface heterogeneities, and finer physical processes to simulate climate more accurately.

Since the RCM is nested in a GCM, the overall quality of dynamically downscaled RCM output
is tied to the accuracy of the large-scale forcing of the GCM and its biases. Despite recovering
important regional-scale features that are underestimated in coarse-resolution GCMs, RCM
outputs are still subject to systematic errors and therefore often require a bias correction as well

as further downscaling to a higher resolution.



2.3.1 Regional Climate Models (RCMs)

An RCM is like a GCM but has higher resolution and additional regional information, which
enables it to better represent local landscape and possibly local atmospheric processes. The
global model simulates the response of the global circulation to changes in atmospheric
composition through a large number of processes, but some of them need to be approximated due
to the coarse resolution of the models. On the other hand, at the resolution of 25-50 km for
portions of the globe, the RCM is able to capture some of those smaller-scale processes more
realistically. Atmospheric fields (e.g., surface pressure, wind, temperature, and humidity)
simulated by a GCM are fed into the vertical and horizontal boundaries of the RCM. Locally
specific data and physics-based equations are then used to process this information and obtain
regional climate outputs. The primary advantage of RCMs is their ability to model atmospheric
processes and land cover changes explicitly. Although there has been great advancement during
the past decade in the technical ability of RCMs to simulate regional climate, significant
challenges and concerns still exist. Since smaller grid cells, more surface information, and often
more processes are included in an RCM, the number of computations might be as large, if not
larger, than in a GCM that covers the entire globe4. Thus, RCMs are computationally demanding
and may require as much processing time as a GCM to compute projections (Wilby et al., 2009).
They also require a substantial amount of input, e.g., surface properties and high-frequency
GCM information. In addition, complex calibration procedures are often needed to make realistic

simulations.

Just like GCMs, RCMs have difficulty accurately simulating convective precipitation, which is a
major concern for tropical regions. Most RCMs also do not accurately simulate extreme

precipitation — a systematic bias that can worsen as the resolution is increased. Statistical bias
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corrections often need to be performed to better match the model output to the observations
(Brown et al., 2008). In some cases, fine adjustments to the convective schemes can improve the
realism of simulated rainfall, but these adjustments require substantial expertise and reduce
geographic portability — that is, they create a version of the model that is well adjusted to a

particular region but that may perform poorly elsewhere.

The quality of RCM results also depends on the driving GCM information. For example, if the
GCM misplaces storm tracks, there will be errors in the RCM’s precipitation climatology (Wilby
et al., 2009). Additionally, different RCMs contain distinct dynamical schemes and physical

parameters, which means that RCMs driven by the same GCM can produce different results.

Finally, the grid-box size of an RCM is typically greater than 10 kilometers, which is still too
coarse for hydrological and agricultural impact studies that require more local- or station-scale
climate information (Benestad, 2009). To obtain higher resolution results, statistical methods are

used in lieu of RCMs, or RCM output is further downscaled via statistical means.

Generally, the RCMs are being adopted worldwide as they offer many advantages such as (i)
giving intense events that will be smoothened in coarse resolution but may still miss the most
extremes; (ii) giving phenomenological values diurnal cycle; (iii) having more numerical

stability and accuracy as these cover only a fraction of the globe and require short-time steps; (iv)
providing improvement in climate simulations, especially for precipitation that has high spatial
variability; and (v) boundary conditions based on actual observations that provide information on
fine-scale climate behavior besides isolating GCM error from the errors intrinsic to RCM. The
RCMs have some limitations too: for example, (i) simulation is dependent upon the boundary
conditions supplied from other source; (ii) climate needs parameterization for sub grid-scale

processes, surface atmosphere coupling, and radiation transfer and cloud microphysics; (iii) only
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a limited number of scenario runs are available, and the “time slice” approach is used; (iv) the
outputs of the dynamically downscaled RCM are dependent on the precision of the forcing GCM
and its unfairness (Seaby et al., 2013); (v) the outputs of the RCM are liable to systematic errors
and may involve a method of bias removal in addition to downscaling techniques for higher
resolution; and (vi) climate information in grid-box size of an RCM is at higher resolution (larger
than10 km) than local- or station-scale, which make such downscaling inappropriate for

hydrologic and agricultural impact studies (Benestad, 2009).

RCMs are developed by research institutions that have sufficient computational capacity and
technical expertise. Various RCMs differ in their numerical, physical, and technical aspects. The
most commonly used RCMs in climate change downscaling studies include the U.S. Regional
Climate Model Version 3 (RegCM3); Canadian Regional Climate Model (CRCM); UK Met
Office Hadley Centre’s Regional Climate Model Version 3 (HadRM3); German Regional
Climate Model (REMO); Dutch Regional Atmospheric Climate Model (RACMO); and German
HIRHAM, which combines the dynamics of the High Resolution Limited Area Model

(HIRLAM) and European Centre-Hamburg (ECHAM) models.

Although the above models have been developed primarily over North America and Europe, they
can be adapted to any region of the globe by incorporating appropriate information on terrain,
land-cover, hydrology, and so on; hence, several RCMs can be used over a given region.
However, downscaled results can differ depending on which RCM(s) is used. It is important to

recognize that a single RCM will most likely not provide ‘accurate’ results.

In this thesis, we chose six different RCMs from the North American Regional Climate Change
Assessment Program (NARCCAP). The general NARCCAP strategy (as in most RCM

applications) consists of two phases. In Phase I, six RCMs were forced with global reanalysis
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from the National Center for Environmental Prediction/Department of Energy (NCEP/DOE)
reanalysis as the boundary conditions. Because the reanalysis effectively consists of weather
prediction model analysis fields (with “frozen” model versions and analysis systems), it is
appropriate to compare the RCM output with observations on a time step basis. In the second
phase, GCM output was used to provide boundary conditions for both historic and future climate
runs. For the historic run, given the chaotic nature of the atmosphere as represented in the GCM
boundary conditions, comparisons with observations is only possible in a statistical context. The
six RCMs participating in NARCCAP are the Hadley Regional Model 3 (HRM3), the Regional
Climate Model version 3 (RCM3), the Canadian Regional Climate Model (CRCM), the NCEP

Experimental Climate Prediction Center Regional Spectral Model (ECPC), the MMS5 -

PSU/NCAR mesoscale model (MMS5), and the Weather Research and Forecasting model (WRF).
In Phase I of NARCCAP, 25-year (1980-2004) RCM simulations were implemented using the
NCEP/DOE Reanalysis for boundary conditions. In Phase II, each RCM was nested within at
least one GCM at 50 km spatial resolution for the periods 1971-2000 and 2041-2070. In this
thesis, all 12 combinations of RCMs and GCMs for Phase II had been archived and all of the

RCM-based analyses used seasonal and annual mean precipitation (P) derived from 3-hour

NARCCAP output.

2.3.2 Approaches Developments

Coarse-grid GCM simulation output is used for initial and lateral boundary conditions, known as
“one-way nesting approach” (Mearns et al., 2003). The “nested” RCM approach was first applied
in climate change studies in the late 1980s by Dickinson, Errico, Giorgi, and Bates (1989).
However, most researches focused more on improving the technical ability of RCMs to simulate

regional climate in the next 20 years. Even though one-way nested approaches have generally
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been used in many RCM simulations, feedback from RCM to GCM could still hardly be found
until the 21st century. Two-way nesting means an interactive numerical model integration, where
a part of the integration area is computed at a finer horizontal resolution than the coarser resolved
residual area. The basic idea behind this technique is the reduced computing time compared to an
integration at the finer resolution over the whole integration area. Two-way nesting techniques
have already been applied between atmospheric limited area models at different horizontal
resolutions (Phillips and Shukla, 1973). Lorenz and Jacob (2005) developed a two-way nested
ECHAM4-REMO atmospheric climate model system, integrated numerically stable for a 10-year
period using a two-way nesting region and found a positive influence on the simulation of the
global climate, even in regions not covered by the two-way nesting domain. Also, they found
that the systematic error can be reduced globally by a more detailed representation of this
particular region. Bowden et al. (2012) compared the three nudging techniques in the WRF
model using two-way nesting to determine the influence of interior nudging on mean error. Jeon
et al. (2019) also implemented an online two-way nesting framework to improve global surface
tides in the Hybrid Coordinate Ocean Model (HY COM). In all this research, high-resolution
child domains are coupled with relatively low-resolution parent domains for computational

efficiency.

2.4 Statistical Downscaling

Statistical downscaling involves the establishment of empirical relationships between historical
and/or current large-scale atmospheric and local climate variables. Once a relationship has been
determined and validated, future atmospheric variables that GCMs project are used to predict
future local climate variables. Statistical downscaling can produce site-specific climate

projections, which RCMs cannot provide since they are computationally limited to a 20 to 50
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kilometers spatial resolution. However, this approach relies on the critical assumption that the
relationship between present large-scale circulation and local climate remains valid under
different forcing conditions of possible future climates. It is unknown whether present-day
statistical relationships between large- and regional-scale variables will be upheld in the future
climate system. The main advantage of statistical downscaling methods is that they are
computationally inexpensive and appropriate when computational resources are limited.
Regression-based downscaling is a widely applied method in practice. It formalizes
mathematically the relationship between large-scale predictors and the small-scale predictand.
Because of its much lower computational cost, statistical downscaling is almost always used for
multi-model downscaling. Statistical downscaling relies on empirical mathematical relationships
to go from large-scale predictors to fine scale predictands. These relationships are often much
faster to apply than dynamical downscaling, which makes them ideal for downscaling large
ensembles of GCMs for multiple time periods or scenarios. However, they are subject to the
stationarity assumption that the relationship between the predictors and predictands continues to
hold, even in a changed climate. Although statistical models are valuable tools for downscaling
multi-model ensembles, they do not produce a full complement of variables like dynamical

downscaling.

Oftentimes, dynamical and statistical approaches are used in conjunction. Dynamical-statistical
downscaling involves the use of an RCM to downscale GCM output before statistical equations
are used to further downscale RCM output to a finer resolution. Dynamical downscaling
improves specific aspects of regional climate modeling and provides better predictors for further
statistical downscaling to higher-resolution output. Statistical-dynamical downscaling is a

somewhat more complex approach but is less computationally demanding in comparison to
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dynamical downscaling. This method statistically pre-filters GCM outputs into a few

characteristic states that are further used in RCM simulations.

Statistical downscaling consists of a heterogeneous group of methods that vary in sophistication
and applicability. They are all relatively simple to implement but require a sufficient amount of
high-quality observational data. Most statistical downscaling methods can be classified into three

main categories: Perfect Prognosis, Model Output Statistics and Weather Generators.

2.4.1 Approaches Developments

The basic premise behind Perfect Prognosis (PP) approaches to statistical downscaling is that
GCMs are able to simulate the large-scale atmospheric climate fields realistically, even if fields
with high spatial variability, like precipitation, are poorly simulated. Thus, statistical
relationships are sought with variables in which there is high confidence, while ignoring those in
which there is low confidence. Most PP approaches disregard any residual noise term although
some newer PP approaches explicitly provide a noise model to help capture the variability and
extremes. Approaches that include a noise model are often referred to as stochastic, while those

that do not are termed deterministic.

Building a PP downscaling scheme requires two steps that are often performed together. They
are the identification of suitable, observed large-scale predictors, and the development of the
statistical relationship between them and the local-scale observations. It is important that
predictors that capture the effects of climate change are included in the scheme if it is to be used
to downscale future projections. This consideration needs to be kept in mind when identifying
predictors based on historical time series that may contain only a small climate change signal. In
general, the predictor choice will vary depending on the region and season. Various large-scale

predictors for downscaling precipitation have been explored in Wilby and Wigley (2000), along
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with a comparison of the observed and simulated fields. Often these predictors are high-
dimensional fields of grid-based values. Since these fields frequently have high levels of spatial
correlation, the grid-point values are not independent. Thus, it is relatively common to reduce the
dimensionality of the predictor field in some way. Common techniques for this include principal
component analysis (Hannachi, 2007), canonical correlation analysis (Hertig and Jacobeit, 2008;
Palatella et al., 2010), maximum covariance analysis (Tippett et al., 2008), support vector
machine (Nayak and Ghosh, 2013), and physically-motivated transformations such as using an
ENSO index or weather types (Wu et al., 2010). Weather types are circulation patterns or
regimes that occur frequently in a location. They can be defined subjectively, by visually

inspecting synoptic maps, or objectively using clustering and classification algorithms.

There are many ways to establish the statistical relationship between the predictors and
predictands in PP, though in each case the relationship is calibrated using observed variables
before being applied to climate model output. Each statistical model has its own set of
assumptions and level of complexity. Among the simplest models are linear regression models.
These assume that the variables involved are Gaussian-distributed, which is not true of
precipitation fields on short timescales, including daily. This assumption has been relaxed in the
framework of the generalized linear model. Also, the linearity dependence has been replaced by
non-parametric smooth functions in the generalized additive model (e.g., Vrac et al., 2007). All
of these methods focus on predicting the mean conditional on a set of predictors. In order to
quantify the variance (or higher-order moments) dependence on a set of predictors, vector

generalized linear models can be used.

Several non-linear regression techniques have also been applied to the statistical downscaling

problem. Such techniques include the application of artificial neural networks to downscale
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precipitation (e.g., Haylock et al., 2006). Another method that has been applied to downscaling is
the analogue method (e.g., Zorita and von Storch, 1999). In this method, a selected metric is used
to identify the most similar situation in the historical record and the corresponding local
observations are used as the prediction. One major limitation of this approach is that it cannot

produce precipitation amounts that have not been observed in the past.

The many different statistical models that can be used in PP downscaling make various
assumptions and have various limitations. All PP approaches do, however, share two major
assumptions. Firstly, that suitable predictors are well-simulated by the GCM; that is, only fields
that have been evaluated and found to perform well should be used. Secondly, that the
relationship identified between the predictor and predictands is stationary. That is, it is assumed
that, although the climate changes, the relationship between the identified variables does not

change.

2.4.2 Model Output Statistics

Unlike PP techniques, Model Output Statistics (MOS) methods develop statistical relationships
between simulated predictors and observed predictands. They are most often applied to climate
model-simulated fields of the same variable being predicted. That is, a MOS method can be used
to correct the RCM-simulated precipitation field, in order to account for the difference between
areal-gridded means and local point observations of precipitation. As such, MOS methods can
often be thought of as statistical corrections to RCM-simulated outputs; indeed, they have been
used in numerical weather prediction (NWP) for some time (Glahn and Lowry, 1972; Kalnay,

2003).

If the RCM simulation is driven by an atmospheric re-analysis, then there is a direct

correspondence between the simulation and observations. In this case, the MOS method will
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relate the simulated and observed time series through regression techniques. If, on the other
hand, the RCM simulation is not driven by a re-analysis, then this direct relationship does not
exist between the simulation and observations. In this case, the MOS methods can only be used

to link the distributions of the variables.

At their simplest, MOS methods provide a bias correction of the present-day simulated field to
match the observations. For variables such as temperature, this is usually a simple arithmetic
(e.g., additive) correction while, for precipitation, this is applied as a scaling factor, often
calculated and applied separately for each month or season. A more complex approach is
quantile matching. In this approach, different intensities are considered individually such that the
simulated cumulative distribution function is adjusted to match the observed cumulative
distribution function. Similar bias-correction approaches have been further developed to account

for persistence in the precipitation fields (Johnson and Sharma, 2012).

2.4.3 Weather Generators

Weather generators are statistical models that produce random sequences of climate variables
with statistical properties that match those of the observed variables. Weather generators were
not originally developed with spatial downscaling but are typically used in temporal downscaling.
For example, they are used to generate daily sequences of weather variables (e.g., precipitation,
maximum and minimum temperature, humidity, etc.) that correspond to monthly or annual
averages or amounts. Temporal downscaling is necessary for some impact models that require
local spatial data at a daily resolution, which GCMs cannot reliably provide. Weather generators
produce sequences of daily values, but since different weather sequences may be associated with
a given set of, for example, monthly values, multiple sequences commonly are generated to be

further used in impact models. This method usually generates very long time series to assist in
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the study of floods, planning for large water engineering projects, and so on. As downscaling
tools, they are often used with the statistical relationships being developed from observed data.
The same statistical properties are calculated on both a present-day and future climate simulation.
The simulated changes in these properties are then applied to the observed parameters (Semenov

and Barrow, 1997).

2.5 Summary
In most cases, a sequence of different methods is needed to obtain results at the desired
resolution; however, the analysis of select reports presenting changes in climate and/or their

impacts has shown the following points:

1) Information on downscaling and the limitations of the results are often not appropriately
highlighted, leading the user to believe that the results are “true” and valid at the resolution
presented. Extensive reading of technical documentation is often needed to uncover all the

steps and assumptions that led to the final results.

2) Uncertainties inherent in projections and additionally arising from applied downscaling are
often not presented, quantified, nor discussed, leading the user to interpret the numerical

results at face value.

3) Validation of downscaled results (on historical data) is often omitted; comparing downscaled
results to high-resolution observed information would highlight systematic biases and the

limitations of results.

The above deficiencies most frequently result from simple oversight by the authors of the report
or their efforts to make it easy to use. However, they are important, and an expert user may be

able to detect them and estimate the limitations of the results. The overall diversity of the
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approaches and methods in existing reports and publications reflects the diversity of the goals
and resources of each assessment. Thus, there is no single best downscaling approach, and
downscaling methods will depend on the desired spatial and temporal resolution of outputs and
the climate characteristics of the highest impact of interest. In light of current approaches and

practices reviewed in this report, it is possible to make the recommendations that follow:

1) When designing assessments of climate change and its impacts at sub-regional scales, a
thorough evaluation of the information needs and the relevance of existing information
should be carried out first. If the need for an original downscaling of the projections is
confirmed, the approach should be selected based on the information needs and also,

importantly, on available resources (data, computing resources, expertise, and timeframes).

2) When using/interpreting existing results/reports, the coarse resolution of the initial
projections and the scales at which they are valid need to be kept in mind. Any results
presenting fine-scale spatial details or using high temporal resolution data have undergone a
manipulation (usually a sequence of manipulations) of the original projections, whether this
process is described or not. It is only through an evaluation of the employed downscaling
procedure that the validity of the results at a fine resolution and the value added over initial
coarse projections can be assessed. Results that look detailed may actually not be robust; in
general, a rigorous downscaling process requires including additional information, and a
simple interpolation from coarse- to fine-scale may not lead to reliable results. Therefore, it is
important to understand (and research if not directly available) at least the broad aspects of

the applied downscaling.

3) Since uncertainty is inherent to the projections, an estimate of it — quantitative or at least

qualitative — should always be included and carried through the downscaling process. Such
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an estimate should at least include different potential future climate states and ideally should

also estimate the influence of the downscaling procedure on the results.
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CHAPTER 3

METHODS
3.1 Study Site
This thesis was conducted for the entire state of Virginia, most of which is located within the
Chesapeake Bay Watershed. The state has a humid subtropical climate, with an annual average
of 35 to 45 days of thunderstorm activity and an average annual precipitation of 1080 mm. The

average temperature varies from -3°C in January to 30°C in July.

3.1.1 Site Characteristics

Virginia has a significant topographic relief, with elevations varying from Virginia Beach in the
east at sea level to Mount Rogers in the west at 1746 m above sea level. The major gradations
occur at the edges of the Atlantic Ocean, the end of the Piedmont, and the Blue Ridge and
Allegheny chains of the Appalachian Mountains. The moderating influence of the ocean from the
east, powered by the Gulf Stream, also creates the potential for hurricanes near the mouth of
Chesapeake Bay. Cold air masses arrive over the mountains, especially in winter, which can lead
to significant snowfalls when coastal storms, known as nor’easters, move up the Atlantic coast.
The interaction of these elements with the state's topography creates micro-climates in the
Shenandoah Valley, the mountainous southwest, and the coastal plains that are slightly but
noticeably distinct from each other. To differentiate and characterize the micro-climates, NOAA
(National Oceanic and Atmospheric Administration) subdivides Virginia into six climatic
divisions, namely Tidewater, Eastern Piedmont, Western Piedmont, Northern, Central Mountain,
and Southwestern Mountain. On the other hand, to differentiate and characterize the topographic
relief, USGS (U.S. Geological Survey) subdivides Virginia into five physiographic divisions,

namely Coastal Plain, Piedmont, Blue Ridge, Valley and Ridge, and Appalachian Plateaus. The
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Coastal Plain division is between the Atlantic coast and the fall line. It includes the Eastern
Shore and major estuaries of Chesapeake Bay. The Piedmont division is a series of sedimentary
and igneous rock-based foothills east of the mountains which were formed in the Mesozoic era.
The region, known for its heavy clay soil, includes the Southwest Mountains around City of
Charlottesville. The Blue Ridge division is a physiographic province of the Appalachian
Mountains with the highest points in the state, the tallest being Mount Rogers. The Valley and
Ridge division is west of the mountains and includes the Great Appalachian Valley. The region
is carbonate rock based and includes Massanutten Mountain. The Cumberland Plateau and the
Cumberland Mountains are in the southwest corner of Virginia, south of the Allegheny Plateau

(Figure 3.1).
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Figure 3.1. The Virginian climatic and physiographic divisions superimposed by the topographic elevation contours
at a 50-m interval.

3.1.2 Rain Gauges

This study overlaid the climatic and physiographic divisions, resulting in 13 zones (Figure 3.2
and Table 3.1), within which the 57 rain gauges with 15-min rainfall data are located. Note that
there is no such rain gauge in one of the zones (i.e., CPZ03). This project did some analyses by
pooling together the rainfall data at the rain gauges within each of the climatic-physiographic

zones, as detailed in the following contexts.



Table 3.1. The climatic-physiographic zones with inclusive rain gauges.
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Climatic-

Physiographic Zone Climatic Division Physiographic Division Rain Gauge ID
CPZ01 CD1 (Tidewater) PGD1 (Coastal Plain) 4464}:5 f ?f 800,
CPZ02 CDI (Tidewater) PGD?2 (Piedmont) 448129
CPZ03 CD2 (Eastern Piedmont) PGD1 (Coastal Plain) None

440778, 440993,
. . 441322, 441929,
CPZ04 CD2 (Eastern Piedmont) PGD2 (Piedmont) 442941, 443192,
443200, 444414
440166, 441614,
. . 446178, 446692,
CPZ05 CD3 (Western Piedmont) PGD2 (Piedmont) 447025, 447338,
449272
CPZ06 CD3 (Western Piedmont) PGD3 (Blue Ridge) 440561, 445690
442159, 442729,
CPZ07 CD4 (Northern) PGD2 (Piedmont) 446712, 447130,
447164, 448396
CPZ08 CD4 (Northern) PGD3 (Blue Ridge) 440720, 445851
. 442663, 443229,
CPZ09 CD4 (Northern) PGD4 (Valley and Ridge) 448046, 448149
442044, 442208,
443310, 444128,
. . 445142, 445423,
CPZ10 CD5 (Central Mountain) PGD4 (Valley and Ridge) 445595, 445880,
448062, 448172,
449159
CD6 (Southwestern . 443272, 444246,
Cpzil Mountain) PGD3 (Blue Ridge) 448547, 449169
440766, 446955,
CPZ12 CD%&‘SEZSW“ PGD4 (Valley and Ridge) 448022
449060, 449301
CPZ13 CD6 (Southwestern PGDS5 (Appalachian 442269, 444180,

Mountain)

Plateaus)

444410, 449215
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Figure 3.2. The Virginian climatic and physiographic divisions superimposed by 57 rain gauges with 15-min rainfall
data.

3.2 Available Data

3.2.1 Rainfall Data

This thesis used 15-min rainfall data for the historical (prior 2013) periods of 57 rain gauges in
Virginia and the projected precipitation time series by twelve pairs of Regional Climate Model
(RCM) and Global Circulation Model (GCM). The data on 15-min precipitation observed at 57
rain gauges were downloaded from the NOAA National Climatic Data Center (NCDC) website
(https://www.ncdc.noaa.gov/data-access/land-based-station-data). The gauges were grouped by
the climatic-physiographic zones (Table 3.1 and Figure 3.2). Herein, it was hypothesized that the
data at the gauges within a same zone are from a same population and can be pooled together
into one dataset for statistical analysis. The rationale behind this hypothesis is that the spatial
variability of precipitation across the zone might be statistically insignificant because each CPZ
has a similar micro-climate and a similar physiology, as stated above. However, given the
limited time, this project could not test this hypothesis using a statistical technique. A test will be

done once a follow-up research will be awarded.



26

For a given rain gauge, the record only has times when precipitation was nonzero. To make the
record consecutive at a 15-min interval, the times when precipitation was zero were added back
by executing a Microsoft® Excel VBA program developed by the project team. In addition, the
record has missing values for a time interval or more on a record day and/or for one day or more
in a record year. The missing values were filled by executing another VBA program, which
estimates a missing value as a function of the responding values at the neighboring gauges of this

rain gauge. This function is expressed as:

)

J

L (Eq.3-1)
’ m

where Px,j is the estimated 15-min precipitation of gauge x at time j; P, is the mean annual

precipitation of gauge x; Pi,j is the observed 15-min precipitation of gauge i at time j; P.is the

mean annual precipitation of gauge i; and m is the number of the neighboring gauges of gauge x.

The mean annual precipitations of the 57 gauges, obtained from NOAA-NCDC and der Leeden

(1994), are given in Table 3.2.

Table 3.2. The 57 rain gauges and their climatic-physiographic zones.

Gauge Name ID Begin Date End Date Elevation Mean Annual Divisions Zone
(m) Precipitation
(mm)"
Painter 2 W 446475 05/02/1971 09/30/2012 9.1 1121.79 CD1®PGD1 CPZ01
CPZ01Wakefield 1 NW 448800 05/31/1985 02/28/2013 344 1204.72 CD1®PGD1
Williamsburg 2 N 449151 05/02/1971 02/28/2013 21.3 1236.35 CD1®PGD1
Stony Creek 2 N 448129 05/02/1974 04/30/1985 32.0 1193.04 CD1®PGD2 CPZ02
Blackstone Water Wor 440778 05/03/1971 03/31/1974 128.0 1133.95 CD2®PGD2 CPZ04
Bremo Bluff 440993 07/31/1986 02/28/2013 68.6 1087.75 CD2®PGD2
Camp Pickett 441322 03/31/1974 02/28/2013 100.6 1169.42 CD2®PGD2
Columbia 2 SSE 441929 05/07/1971 05/31/1986 88.4 1000.32 CD2®PGD2
Farmville 2 N 442941 07/31/2009 12/31/2012 137.2 1126.24 CD2®PGD2
Fredericksburg 2 443200 08/31/1978 02/28/1993 36.6 1044.51 CD2®PGD2
Fredericksburg National Park 443192 05/02/1971 08/31/1978 274 1044.51 CD2®PGD2
John H Kerr Dam 444414 05/07/1971 02/28/2013 76.2 1103.50 CD2®PGD2
Altavista 440166 12/31/1983 02/28/2013 161.2 1118.11 CD3®PGD2 CPZ05
Chatham 441614 05/06/1971 02/28/2013 198.4 1149.60 CD3®PGD2
North Garden 446178 05/31/1971 02/29/1992 209.1 1129.46 CD3®PGD2

Philpott Dam 2 446692 05/06/1971 05/31/2009 3423 1278.38 CD3®PGD2
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Randolph 5 NNE 447025 05/12/1971 01/31/1984 107.0 1077.36 CD3®PGD2
Rocky Mount 447338 05/06/1971 02/28/2013 400.8 1189.74 CD3®PGD2
Woolwine 4 S 449272 12/31/1983 02/28/2013 457.2 1293.88 CD3®PGD2
Bedford 440561 01/31/1996 02/28/2013 3743 1122.68 CD3®PGD3  CPZ06
Montebello Fish Hatchery 445690 04/30/1971 08/31/2007 812.9 1125.29 CD3®PGD3
Culpeper Riverside Coast Guard 442159 07/01/1979 12/31/2003 79.2 1046.62 CD4®PGD2  CPZ07
Elkwood 6 SE 442729 06/04/1972 06/02/1984 100.0 1045.29 CD4®PGD2
Piemont Research Station 446712 05/07/1971 02/28/2013 158.5 1112.90 CD4®PGD2
Remington 2 447130 07/07/1979 02/28/1989 853 1120.14 CD4®PGD2
Richardsville 447164 06/30/1984 04/30/1987 105.2 1044.08 CD4®PGD2
The Plains 2 NNE 448396 05/01/1971 09/30/2004 161.5 1118.87 CD4®PGD2
Big Meadows 440720 05/02/1971 07/31/1976 1079.0 1385.19 CD4®PGD3  CPZ08
Mount Weather 445851 05/02/1971 01/31/1987 505.7 1099.57 CD4®PGD3
Edinburg 442663 06/30/1996 03/31/1999 2829 896.11 CD4®PGD4  CPZ09
Front Royal 443229 01/01/1979 03/31/1990 283.5 1039.37 CD4®PGD4
Star Tannery 448046 05/02/1972 01/31/2012 289.6 1023.62 CD4®PGD4
Strasburg 2 ESE 448149 12/31/1978 04/30/1984 195.1 1068.64 CD4®PGD4
Cobington Filter Plant 442044 12/31/1972 08/31/2011 374.9 952.75 CD5®PGD4  CPZ10
Dale Enterprise 442208 09/11/1978 01/31/2009 413.9 922.02 CD5®PGD4
Gathright Dam 443310 12/31/1983 02/28/2013 539.5 986.54 CD5®PGD4
Hot Springs 444128 09/04/1970 08/31/2011 681.5 1097.41 CD5®PGD4
Lynnwood 445142 09/30/1983 12/01/1983 309.1 938.17 CD5®PGD4
Mc Gaheysville 2 S 445423 04/30/1971 11/30/1983 331.9 1149.60 CD5®PGD4
Millgap 2 NNW 445595 09/01/1976 02/28/2013 737.9 1124.71 CD5®PGD4
Mustoe 1 SW 445880 06/30/1982 10/28/2007 725.4 1135.89 CD5®PGD4
Staunton Water Treatment Plant 448062 12/31/1972 08/31/2007 51.5 989.96 CD5®PGD4
Stuarts Draft 448172 05/01/1979 05/29/1984 442.0 1058.43 CD5®PGD4
Williamsburg 2 S 449159 07/01/1978 08/31/2011 499.9 1029.32 CD5®PGD4
Galax Water Plant 443272 04/01/1972 02/28/2013 719.3 1005.84 CD6®PGD3  CPZl11
Indian Valley 444246 04/30/1973 09/30/1993 823.0 1063.93 CD6®PGD3
Trout Dale 3 SSE 448547 03/31/1974 02/28/2013 865.3 1077.98 CD6®PGD3
Willis 449169 09/30/1993 02/28/2013 856.5 1144.78 CD6®PGD3
Blacksburg National Weather 440766 03/31/2003 02/28/2013 604.1 1060.70 CD6®PGD4  CPZI2
Pulaski 446955 04/01/1972 02/28/2013 563.9 949.20 CD6®PGD4
Staffordsville 3 ENE 448022 11/30/1993 02/28/2013 594.4 1000.25 CD6®PGD4
White Gate 449060 12/31/1983 09/30/1993 563.9 965.88 CD6®PGD4
Wytheville 1 S 449301 12/31/1983 02/28/2013 637.9 968.63 CD6®PGD4
Davenport 2 NE 442269 12/31/1983 05/31/1986 488.0 1157.38 CD6®PGD5  CPZ13
Hurley 4 S 444180 03/31/1973 12/31/2009 331.6 1135.39 CD6®PGD5
John Flannagan Lake 444410 12/31/1983 11/30/1991 445.0 1144.02 CD6®PGD5
Wise 3 E 449215 12/31/1983 02/28/2013 776.9 1206.25 CD6®PGD5

(11 The black number is the average of the values from https://www.ncei.noaa.gov/data/climate-normals-deprecated/access/clim20/va and
https://www.ncdc.noaa.gov/cdo-web/datatools/normals and when both present the mean annual precipitations, whereas, it is the value from one of
these two websites whichever presents the mean annual precipitation. On the other hand, the red number is from der Leeden (1994).

For a rain gauge, its neighboring gauges (Table 3.3) were selected as those that are within a

geographic distance of 50 km and have relatively fewer missing values. In the table, a rain gauge

of interest is highlighted in red, while its neighboring gauges are highlighted in black. At a time
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when the precipitation at the rain gauge was filled, the neighboring gauges with observations

were used in Eq. 1 and those without observations were excluded.

For each of the 57 rain gauges, the missing-filled 15-min precipitation time series was used to

~

generate a dataset of annual maximum 15-min precipitation (designated = "™ for description

purpose, where subscript “15m” signifies the duration of 15 min;andi=1, 2, ..., 57, signifies

~

the gauge). For a given observation year, the element value of Kisn was computed as the
maximum of the observed values (at gauge 1) within this year. In addition, for each of the other
eleven durations of longer than 15 min, the durational precipitation time series was formulated
based on the missing-filled 15-min precipitation time series: the interval values of the durational
time series was computed as accumulation (from beginning of the record) of the observed values
of 15-min precipitation the duration apart. For instance, for the duration of 30 min, the first value
of the 30-min precipitation time series was computed as the summation of first two observed
values of the corresponding 15-min precipitation time series, the second value of the 30-min
precipitation time series was computed as the summation of third and fourth observed values of

the 15-min precipitation time series, and so on. For the duration of 72 h, the first value of the 72-

h precipitation time series was computed as the summation of first 288 (= 72x60+15) yalyes
of thel5-min precipitation time series. As a result, eleven more time series, which respectively
have durations of 30 and 45 min and 1, 2, 3, 4, 6, 12, 24, 48 and 72 h, were formulated for the
rain gauge. Further, for each of the eleven-time series and for a given observation year, the

annual maximum durational precipitation is computed. This generated another eleven datasets of

~ ~ ~

. . . Xooo % X, X, X, X,
annual maximum durational precipitation for gauge i, namely i, Xasmi Fihi - Foni - Bani - Rani

6h,i , Xlzh,i , X24h,i , X48h,i , and X72h.i .

X
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Table 3.3. Groups of the neighboring rain gauges (signified by their IDs) for filling missing values.!!

Group 01: 443229,
448149, 448046,
442663, 445851,
442208, 440720,
446712, 442159,
447164, 442729,
447130, 445423

Group 02: 445851,
448149, 448046,
443229

Group 03: 442663,
448149, 448046,
443229, 440720,
442208

Group 04: 445142,
445423, 442208,
440720, 448062

Group 05: 440720,
445142, 445423,
446712

Group 06: 448062,
448172, 445690,
445142, 445423,
446178

Group 07: 446178,
445142, 448172,
448062, 440993,
445423, 445690,
441929

Group 08: 445690,
446178, 448172,
448062, 449159

Group 09: 445595,
445880, 449159,
443310, 444128,

Group 10: 442044,
443310, 444128,
445595, 445880,
445690, 449159

Group 11: 440766,
446955, 448022,
449060, 444246,
449169, 449301,
443272

Group 12: 449301,
449060, 446955,
443272, 448547

Group 13: 444246,
449169, 440766,
446955, 449272

Group 14: 443272,
446955, 444246,
449169, 449301,
448547

Group 15: 446692,
449272, 444246,
449169, 447338

Group 16: 447338,
446692, 449272,
441614

Group 17: 441614,
440166, 447338,
446692

Group 18: 440561,
440166, 447338

Group 19: 440166,
440561, 441614,
447338, 447025

Group 20: 448547,
446955, 449301,
443272

Group 21: 447025,
440778, 444414,
440166, 442941

Group 22: 440778,
441322, 447025,
444414, 442941,
448129

Group 23: 448129,
440778, 441322,
448800, 444414,
449151

Group 24: 448800,
440778, 441322,
448129, 449151,
444414

Group 25: 449151,
446475, 448129,
448800, 440778,
441322

Group 26: 446475,
449151

Group 27: 442159,
442729, 443192,
443200, 447130,
447164, 446712

Group 28: 446712,
442159, 440720,
442729, 447164,
447130, 440993

Group 29: 444414,
440778, 447025,
441322

Group 30: 442941,
447025, 440993,
441322

Group 31: 440993,
441929, 442941,
446178, 446712

Group 32: 442269,
444410, 444180,
449215, 446955,
449301, 448547

Group 33: 448396,
448149, 447130,
443229, 445851,
442729, 448046

In a given group, a rain gauge highlighted in red was filled by the other rain gauges of this group.

3.2.2 RCMs Predicted Precipitation

The predicted historic (i.e., pre-2013) and future (i.e., 2038 ~ 2070) data on regional

precipitation at a 3-h time interval and a 50-km spatial resolution were downloaded from the

North American Regional Climate Change Assessment Program (NARCCAP) website

http://www.narccap.ucar.edu. To date, NARCCAP has generated twelve different dynamically

downscaled datasets (Table 3.4), and all twelve datasets of precipitation for the grids (Figure 3.3)

that cover Virginia were used in this study. The time series of precipitation were extracted from

the NARCCAP “.nc” files using a computer program written in r language by the project team.
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The extracted time series were stored in plain text files, which in turn were uploaded into Excel®

spreadsheets for spatial and temporal downscaling.

Table 3.4. The twelve dynamically downscaled datasets by NARCCAP.

Dataset Regional Climate Model (RCM) General Circulation Model (GCM)
i CROM Coons

: ECe2 fadOM3

; HRMS fidO A3

; Mt fiado M3

i ROMS GiL

B WRRG caons

© GRCM x ECP2 o HRM3

a MMsI % RCM3

Figure 3.3. The centers of each 50-km grid cell for the six RCMs (not drawn to a scale). (Source:
http://www.narccap.ucar.edu/data/gridpoint-maps.html).

3.3 Downscaling Methods

Downscaling of the RCMs’ predictions was realized by four steps. First, the predicted 3-h
precipitation at a rain gauge by an RCM (hereinafter referred to as RCM-predicted gauge
precipitation) was computed as the inverse-distance-weighted average of the RCM’s predictions
for the four modeling grids surrounding the gauge. Second, the RCM-predicted gauge

precipitation was corrected for possible errors in accordance with the observations at this same
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gauge, deriving the spatially downscaled gauge precipitation. The equations used in this step
were derived by regressing the observed annual maximum 3-h precipitations over the RCM-
predicted annual maximum gauge 3-h precipitations for the historic period. Third, the spatially
downscaled gauge precipitation was disaggregated to derive the 15-, 30- and 45-min and 1- and
2-h gauge precipitations. Fourth, the spatially downscaled gauge precipitation for a longer
duration of 6, 12, 24, 48, or 72 h was derived from that for the duration of 3 h (i.e., the result of
the second step). Herein, to alleviate the burden of data processing, the annual maximum
durational precipitations rather than the time series were downscaled. The basic assumption is
that the extreme values are independent of the mathematical operations involved in the

downscaling procedure.

3.3.1 Spatial Downscaling

As shown in Figure 3.3, the centers of the 50-km grids are different for the six RCMs. For each
RCM, its grid layer was overlaid with the layer of the rain gauges (Figure 3.2) in ArcMap® to
identify the four grids surrounding each gauge. Subsequently, the geographic distances from the
four grid centers to the rain gauge were calculated. At a given time, the RCM’s predictions for
the four grids were averaged using the inverses of the distances as the weights, resulting in a

spatially averaged 3-h prediction. In addition, for each of the 57 rain gauges, the observed

~

(formulated) 3-h time series Xas was regressed on the synchronic spatially averaged 3-h time
series. That is, the regression was done for the record period of the gauge using the
synchronically paired values of observed and spatially averaged 3-h precipitation. Further, taking
the spatially averaged 3-h precipitations from 2038 to 2070, this regression equation was used to
generate a 3-h precipitation time series at this gauge for this future period (i.e., downscale the

projected precipitation). The regressions and computations were executed in Excel® 2010.
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3.3.2 Temporal Downscaling
For each of the 57 rain gauges and for each of the six RCMs, the two spatially-downscaled 3-h

precipitation time series, one for the record period and another for the future period, were used to

~ ~

: o Y,,. Z,. :
generate two datasets of annual maximum 3-h precipitation, namely *"' and "', respectively.

To generate the annual maximum precipitation time series of 15, 30 and 45 min, and 1,2 and4 h

~ ~ ~ ~ ~ ~

. Voo Yoo v Yoo Yoo oY, . Zii Ly,
(designated ~"mi, ¥, Yeswi TiniT2miand 4 for the record period, and T, Tomi

~ ~ ~ ~ ~ ~ ~ ~

7. 7. 7. X X X X, X,
Zisma i T and T for the future period), i, Cmi | Ksms i i and Hani wwere

~ ~ ~

X, . Y, . Z, .. . . .
separately regressed over = *™ and then use ~*"'and " in the responding regression equations to
get the responding time series. Herein, it was assumed that the regression equations were held
regardless of the climatic conditions (Menabde et al., 1999; Socolofsky et al., 2001; Chang and

Hiong, 2013; Mirhosseini et al., 2013). The regressions were implemented by each of the

~ ~

. . . R X, . X, .
climatic-physiographic zones shown in Figure 3.2. For example, to regress ~ "™ over ~ ' for

~

CPZ01 (Table 3.1), the time series of K sni at the three rain gauges within this zone were pooled

~

together into one 15-min dataset, while the time series of Xas at these same three rain gauges
were pooled together into one 3-h dataset. To capsulate the datasets, if one value in the 3-h
dataset corresponds to two or more values in the 15-min dataset, the arithmetic average, median,
75th percentile, and maximum of the multiple values were calculated, resulting in five capsulated
datasets: one for 3-h and four for 15-min. The four capsulated 15-min datasets were separately

regressed over the capsulated 3-h dataset. The regression equation with a largest coefficient of

~ ~

. . . X, . X, .
determination (R2) was chosen as the relationship between ~ "' and ~ **', and adopted to
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~ ~

Y, Z. ) ) ) ) ) .
generate "™ and ~"™'. Both linear and nonlinear equations as well as piecewise regressions

were tried to best fit the data.

On the other hand, to generate the annual maximum precipitation time series of 6, 12, 24, 48, and

~ ~ ~ ~ ~

. Yo, Yo Yoo Yoo oo Yo . Zo: Ly Lo,
72 h (designated ~ %', i MR fand TP for the record period, and oM, TR M

~ ~

7, Z, . . . . .
#niand ™ for the future period), the accumulation procedure discussed in section 2.2.1 was

~ ~

applied to Yo and Zan, , respectively.

~ ~

. . Y. Y. v Y. Y,
As a result, for each rain gauge and each RCM, twelve time series ("™, ™, Yosmi | “thi - oni

Y, Yo, Yoo Yo Voo Vi Y, .
i A e T e e fand ™) were generated for the record period and another

b b b b b

~ ~ ~ ~ ~

: L Ly g Ly, Ly, Ly Ly, Ly, Ly Ly L. 7.
tWClVe tlme SCI‘ICS( lJm,l’ 30m,1’ Z45m,i’ lh,l’ 2h,1’ 3h,1’ 4h,1’ 6h,1’ 12h,1’ 24h,1’ 4811,1’ and 7211,1)

were generated for the future period. In total, 16,416 (= 57 gauges * 12 RCMs * 24 time series
per gauge per RCM) datasets were generated. Again, all regressions and computations were

executed in Excel® 2010.

3.3.2 Reliability Analyzing
We use all the 15-min rainfall data for the historical periods of 55 rain gauges (exclude station
442663 and 442941 for insufficient data) in Virginia to generate a box plot to analyze the

reliability of the origin data (see Fig 3.4).
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Among the 57 rain gauges, 25 of them were found to have a record period of 30 years or longer.
According to Fig 3.4, the median values of annual maximum 15-min precipitation in all stations
are under 5S0mm. Max values of annual maximum 15-min precipitation in station 443272,
444246, 445851, 446178 and 447338 are observed to be over 150mm, which means
extraordinary rainfall events mainly happen in CPZ05 and CPZ08, the southern area of the
Virginia along the Blue Ridge. On the other hand, strong rainfall events are relatively lacking in

eastern Piedmont and Valley and Ridge (CPZ04, CPZ10, CPZ12 and CPZ13).

Generally, collected raw data shows no obvious contradiction with site topography, data is

relatively reliable.
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CHAPTER 4

RESULTS AND DISCUSSION
4.1 Downscaling Results
As discussed before, downscaling of the RCMs’ predictions was realized by four steps. First, the
predicted 3-h precipitation at a rain gauge by an RCM (hereinafter referred to as RCM-predicted
gauge precipitation) was computed as the inverse-distance-weighted average of the RCM’s
predictions for the four modeling grids surrounding the gauge. Second, the RCM-predicted
gauge precipitation was corrected for possible errors in accordance with the observations at this
same gauge, deriving the spatially downscaled gauge precipitation. Third, the spatially
downscaled gauge precipitation was disaggregated to derive the 15-, 30- and 45-min and 1- and
2-h gauge precipitations. Fourth, the spatially downscaled gauge precipitation for a longer
duration of 6, 12, 24, 48, or 72 h was derived from that for the duration of 3 h (i.e., the result of
the second step). Herein, to alleviate the burden of data processing, the annual maximum
durational precipitations rather than the time series were downscaled. The basic assumption is
that the extreme values are independent of the mathematical operations involved in the
downscaling procedure.
The equations used in the second step (see Table 4.1) were derived by regressing the observed
annual maximum 3-h precipitations over the RCM-predicted annual maximum gauge 3-h
precipitations for the historic period, whereas, the equations used in the third step (see Table 4.2)
were derived by regressing the observed annual maximum precipitations for a shorter or 4-h
duration over those for the duration of 3 h. Both regressions were done by each of the climatic-
physiographic zones. In this regard, the data at the rain gauges within a zone of interest were

pooled together and then capsulated by excluding any abnormal and/or redundant values.
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Table 4.1 The regression equations of RCM-predicted over observed 3-h annual maximum rainfall.

Coefficient of
RCM Zone Regression Equation Determination
(R
CRCM-CCSM CPZ01 Pons = 7.84(Po | — 44.76 0.86
CPZ02 Panone = 6.82(Poy e | — 34.60 0.87
CPZ04 Panone = 7-57 (Papy s | — 45.09 0.96
CPZ05 Paone = 10.01(Pay | — 64,51 0.87
CPZ06 Paone = 10.29(Payn | —61.20 0.87
CPZ07 Paone = 11.59(Payn | — 96,41 0.93
CPZ08 Fooie = 17.68( Paye, | — 15341 0.84
CPZ09 Papors = 3.74(Pa e ) — 7.66 Poy e = 15.0 mm 0.95
Piie = 64.29(Pay, | — 930,36 Fuyn, = 15.0 mm 0.92
CPZ10 Popore = 7-18( Py e | — 42,31 0.88
CPZ11 Papons = 7-46( Py 0, ) — 37.43 0.80
CPZ12 Popore = 6.47( Py | — 35.77 0.90
CPZ13 Popore = 6.T8( Py o | — 42.87 0.95

Table 4.2. The regression equations of observed shorter duration over 3-h annual maximum rainfall.

Coefficient of
Zone Duration Regression Equation Determination
(R?)
CPZ01 15 min Pis ot = 1. 76 Py ]M"t 0.67
30 min Piow aie = 1. 54 Py e ]M't 0.83
45 min Picw ot = 1. 450 Py e ]Mg 0.89
lh Poes = 1.22(Pa ) 0.95
2h Poyo = 1.04(Po ) 0.99
4h Puote = 107 Pay s ]HI1 0.99
CPZ02 15 min Picwats = 0.25(Pay ) 0.89
30 min Piow ate = 0. 210 Py, e ]“5 0.70
45 min Picu aie = 0.55/ Fg,wm]m 0.71
1h Pinsis = 0.36( Py, ]1'1'g 0.84
2h P = 0.86( Py, ]1'1'7 0.96
4h Fupore = L0010 Py, ]1""I1 0.99
CPZ04 15 min Prowae = 1.08( Py ) 0.90
30 min Paon et = 1. 03Py s, ]M& 0.97
45 min Py at = 1. 05 Py, o ]ﬂ‘=WI 0.98
1h Py = L01( Py, ]'m 0.99
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LIk

( 1.00
2h Py s =1-uu'.F3|H.-m:|
1.16(Pau ) 0.99
F jabs — L I Eh s
4h s - Tm o
CPZ05 15 min F15m ol — 1. ﬁl F_th,_.h.,jlﬂ&s %7
i P ol — 1.0 LI el
30 min St s . Fs :IM‘J XT
i P S, ol — 0.9 LI Zh, el
45 min A5m ol o(n :Iw 087
P jals — 1.0 I Eh s
lh h il y F3 :Imt 59
P jals — 0.8 | 1,000
2h Hh ol . 3 — 99
4h P ot =1-1?'.F3|H.-m:|
0.58(Pausc) 0.66
i P S el — Uh I Eh ol
CPZ06 15 min F—_— e jltm =
i P ol — U I Eh ol
30 min —_— - ; )M& =
i P S ol — Ls I Eh ol
45 min —_— . : _ o
lh Py it =u'99|-F3||-u|.u.:|
' e 0.95
2h Py st =u'92|-F3||-u|.u.:|
/ T 0.98
4h Py it =1-25|.F3|.¢-Lu.:|
= 0.56(Puune) 0.64
CPZ07 15 min | P— ZI: Fsl.um)ﬂ\” e
i P maln — 0.7 I Eh ol
30 min B, ol . )ﬂw s
i P S el — 0. I T el
45 min —_— . _ -
lh P st =u'69|-F3||-u|.u.:|
' e 0.94
2h Pryos = 0.401 Fsl.a.-mj
/ a3 0.98
4h Piyos = 1.491 Fsl.a.-mj
P 1.26(Pau) 0.89
i S oly — Lo LI el
CPZ08 15 min —_— e ZIM& o
I P i ols — Lo LI Zh, el
30 min _— o :IM, -
i P S, ol — 1. | ks
45 min —_— . . _ .~
lh Py ons =1-1?'.F3|H.-m:|
/ T 0.99
2h Py s =1-05'.F3|H.-m:|
1.18(Pau ) 0.95
P jabs — L I Xh ol
4h Eh s ?B[Fs )Ms 055
CPZO9 15 min I:I15||| ol — 0. EI Fslwmjlﬂ\” 063
i P ol — 0.8 I Zh, ol
e - 73(P ]{m 0.72
i P S, ol — 0. VI Zh, ol
45 min 5m,als . :IW e
P jals — 0.7 I Xh ol
l1h T o F3 :Ims X
P jals — 0. I Xh ol
2h i o F3 :I1.1J1 X7
P jals — 1. | 1,00
4h s " : )“T X
i 5 =1. L B
CPZ10 15 min Picon, ac : Fsl hhjlﬂ‘” Tl
i P mols — 0.7 W E Eh ol
30 min i, s » Fs )M; T
i P T 0. E Eh ol
45 min 45, s - ¥ :Iﬂ‘lﬁ T
P b =0.7 0 3 ol
lh 1 ik - F3 :|1.1:I"-:l o0
P b =0.6 . 1l
2h Th ol 3 — o8
4h :|

Piyois = 1.18( Pan i
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CPZ11 15 min Pics . = 0.65] F.tha.ll.ujlﬂ&& 0.67
30 min Prsuatn = 1.08(Py ) 0.80

45 min Psuatn = 1.06(Py ) 0.88

lh Pruos = 1.06(Payun | 0.91

2h Povet = 117 (P ) 0.96

4h Ponet = 1.26(Piune ) 0.96

CPZ12 15 min Pics . = 0.56] Fsl.qmj{m 0.61
30 min P . = 0.82( F.*Il‘-.-h.-.jlﬂ\m 0.78

45 min Prou o = 0. 67(Pau) 0.84

Lh Prusse = 0.69(Po ) 0.89

2h Prase = 0.69 (P ) 0.96

4h Povase = 142 (P ) 0.98

CPZ13 15 min Pres . = 0.65( F;..ah,,jlﬂ\” 0.62
30 min Prsn e = 0. 69 Py 0.82

45 min Pres . = 0.59( F;..ah,,jltﬁ 0.89

th Prase = 0.54 (P ) 0.91

2h Prvuse = 0.84(Pun ) 0.94

4h Povase = L51(Pa ) 0.98

The equations used in the fourth step (see Table 4.3) were derived by regressing the RCM-

predicted annual maximum gauge precipitations for a longer duration (i.e., 6, 12, 24, 48, or 72 h)

over the RCM-predicted annual maximum gauge precipitations for one or more shorter durations

spanning the entire RCM modeling period.
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Table 4.3. The regression equations of RCM-predicted longer- over shorter-duration annual maximum rainfall.

Coefficient of

Zone Duration Regression Equations Determination
(R
CPZ01 6h Panons = 1.854 + 1. 530 Py, cw ) 0.84
12h Pionans = 4. 084+ 1.266( Paun, ) 0.78
24 h Prin e = 3.870 + 1.207( Piayon ) 0.68
48 h Pusion = —0.997 + 1.266( Poy. | 0.77
72 h Propons = 1. 922 + 1073 Pigyon ) 0.92
CPZ02 6h P = 1.625 4+ 1. 534 (P} 0.85
12 h Pionans = 6-953 + 1. 184 P, ) 0.80
24 h Prnote = 7-177 + 1.099( Pizy o) 0.70
48 h Pion ot = 4.560 + 1.116( Pauyon ) 0.69
72 h Proy o = Z. 907 + 1051 Py i ) 0.92
CPZ04 6h P = 1.072 + 1. 494 (P ) 0.73
12 h Piri o = 4.803 + 1.241( Py, ) 0.78
24 h Prin e = 7-670+ 1073 Prayon ) 0.68
48 h Pisn ot = 5.770 + 1.094( Poy, o) 0.68
72 h Propons = 1. 671+ 1.081( P, un ) 0.89
CPZ05 6h P = 0,780+ 1.602 (P ) 0.77
12h Pirnow = 2.557 + 1.362( Pau. ) 0.81
24 h Prn e = 8.552 + 1.067( Prayon ) 0.70
48 h Pion ot = 8.935 + 1.023( Pouyon ) 0.65
72 h Pz o = 5.039 + 1018 P, o ) 0.85
CPZ06 6h Panone = —0.569 + 1.738 (P ons) 0.82
12h Piznons = 3.004 + 1.332( Pap ) 0.82
24 h Prn ot = 9-135+ 1.033(Piayon ) 0.65
48 h Pisn e = 7-652 + 1.034( Poyy ans ) 0.62
72 h Py one = 7-421+ 0.966( Py, o ) 0.80
CPZ07 6h P = 0.967 + 1. 554(Pm )} 0.74
12 h Piznons = 3.896 + 1.295( Payun. | 0.78
24 h Prin e = 6.300 + 1.140( Pyzyen ) 0.67
48 h Pusion = —3.961 + 1.3800( Poypun. | 0.76
72 h Przyons = 0.945 + 1. 115 Py, o ) 0.91
CPZ08 6h P — $.249 + 1. 224 (Panons) 0.74
12 h Piznow = 4.937 + 1.237( Payun. | 0.70
24 h Pran e = 6.353 + 1.149(Piay an ) 0.62
48 h Pusion = —0. 244 + 1. 2580 Py | 0.67
72 h Py o = 2.249 + 1088 Py, one ) 0.88
CPZ09 6h P = E.206+ 1. 226(Bm )} 0.72
12 h Piznows = 3.697 + 1.302( Payun. | 0.76
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24 h Pripons = 7-544 + 1. 109 Py, o ) 0.67
48 h Pisn ot = 2-952 + 1.182( Payyun ) 0.63
72 h Pro o = 3. 862 + L.06Z( Py, o ) 0.86
CPZ10 6h Poron = 1.555+ 1551 (P o) 0.83
12 h Piznow = 4. 470+ 1.264( Payn. ) 0.80
24 h Prin ot = 7-913 + 1.065( Pyzy o) 0.68
48 h Pion ot = 7-181 + 1.047( Payy ) 0.61
72 h Prri o = 6. 315 + 098 Z( Py, ) 0.82
CPZ11 6h Popons = 0.574 + 1. 650(Pay, o ) 0.87
12 h Piznow = 1.922 + 1.388( Payun 0.86
24 h Prn ot = 2.939 + 1L.257( Przy o) 0.74
48 h Pion ot = 3.291 + 117 7( Pogy ) 0.74
72 h Propons = 1. 818 + 1.091( Pigy, u ) 0.91
CPZ12 6h Fanows = 0.145 + 1. 693 (Pay, . | 0.87
12 h Piziwn = 2. 798 + 1.336( Payun. | 0.86
24 h Priione = 3461+ 1.213( Py, un ) 0.79
48 h Pion ot = 6.856 + 1.077( Pryy o) 0.72
72 h Prrons = 8. 380 + 0.961( Pigy, ) 0.85
CPZ13 6h Parn = 4140+ 1. 281 (Pn) 0.70
12 h Pizi o = 6. 500 + 1.2000 Py, ) 0.63
24 h Pran ot = 2-287 + 1263 Pizy ) 0.75
48 h Pion ot = Z-502 + 1.145( Pryy o) 0.74
72 h Frzione = 3. 038 + 1.062( Py, une | 0.83

The National Hydrography Dataset (NHD) (i.e., hydrography) was downloaded from the USGS

website http://viewer.nationalmap.gov/viewer. NHD is a comprehensive set of digital spatial data

about surface water features (e.g., rivers). This study used the 8-digit hydrologic cataloging units

(HUC:s or watersheds) presented by the NHD. Totally, there are 53 such HUCs in Virginia. In

this chapter, we chose HUC2080202 (including 8 different stations from CPZ06 and CPZ10) as a

sample to analyze our downscaling equations and results.
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4.1.1 Spatial Downscaling
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Fig 4.1 Spatial downscaling results in 8 different stations with 3h precipitation data.
Fig 4.1 shows the result of spatial downscaling in 8 different stations under CRCM_CCSM
model with 3h precipitation data. According to the figure, the values from CRCM_CCSM have
very similar median value with the observation data but cannot represent those extreme values
(maximum and minimum values) that well. In most of the occasions, CRCM_CCSM model
overestimates both maximum and minimum values and make the precipitation data more
dispersed than history records but generally, this model successfully simulates the rainfall events
in Virginia and can be used in the prediction of precipitation in the future for further studies of
IDF curves.
4.1.2 Temporal Downscaling
Fig 4.2 shows the result of temporal downscaling in 8§ different stations under CRCM_CCSM
model with 15min precipitation data. According to Fig 4.1 and Fig 4.2, under a 15-min duration,
the CRCM_CCSM model performed even better than under 3-h duration. The two datasets have
not only very similar median value, but also have similar distribution. However, instead of being

overestimated under 3-h duration, those extreme values (maximum and minimum values) have



been underestimated as an inadequacy under 15-min duration.
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Fig 4.2 Spatial downscaling results in 8 different stations with 15min precipitation data.
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Fig 4.3 Spatial downscaling results in 8 different stations with 24h precipitation data.




44

450
400
350
300

250

200
150 -

Annual Max Precipitation of 72h {(mm)

Fig 4.4 Spatial downscaling results in 8 different stations with 72h precipitation data.

Fig 4.3 and Fig 4.4 show the results of temporal downscaling in HUC2080202 under
CRCM_CCSM model precipitation data with a duration of 24h and 72h. Comparing with 3-hour
values, overestimations happened in not only representing those extreme values (maximum and
minimum), but also in those ordinary events. All the precipitation values from the model have
been deconcentrated and raised in varying degrees. In some stations (especially in station

440561) this phenomenon is particularly serious.

4.2 Results from Different RCMs

To compare the prediction results from different RCMs, we applied the equations from table 4.1
to all other 11 RCM-GCMs with the assumption that the equations were independent of the
RCM-GCM models, trying to find whether they have statistical significance. We applied a
significance level of o = 0.05/12=0.004167 and did t-test between every two different RCMs.

Table 4.4 shows the results. According to table 4.4 we can find that most RCMs have no
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statistical significance under same RCM but different GCMs (only except CRCM). CRCM is a
good RCM which is statistically significant from all other RCMs while RCM3 CGCM3 is only
significant from CRCM models. Besides, most RCM-GCMs have 3 to 5 similar prediction
models, which means practically we do not have to apply all these 12 models, several selected

ones should be enough for further studies.
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4.3 Discussion

The previous section reviewed the downscaling results of the CRCM_CCSM model. In the first
two steps we corrected the possible statistical bias from the model and created our own version
of the model that is well adjusted to a particular region. The main purpose of this step of spatial
downscaling is to get a better match of the model output to the observations, which followed the
suggestions from previous study (Brown et al., 2008). The results of the spatial downscaling
generally responded as expected. According to the figures above, we can basically draw the
conclusion that equations from table 4.1 can represent or predict precipitation eigenvalues with
relative accuracy under a duration of 3 hours and performed well in adjusting to a different
region.

The temporal downscaling results showed that CRCM_CCSM model can better reflect the
historical values under shorter duration but overestimate the values under longer duration. This is
under expectation for there are other studies that draw similar conclusions. Mirhosseini et al.
(2013) used six different dynamically downscaled datasets to analyze the impact of climate
change on IDF curves in Alabama. Their results revealed the precipitation pattern for short
rainfall durations (i.e., less than 4 h), but for long durations (i.e., greater than 4 h) a large
uncertainty on projected rainfall intensity made it difficult to draw any inclusive conclusions
about expected changes of future rainfall intensity. That is, system bias or uncertainty
accumulates over a long period of time and finally leads to significant difference between

historical observations and model simulations.

Due to instrument accuracy and technical issues, a large amount of repeating data appeared in
history records, observation data seemed to have a more concentrated distribution. However,

predictions from RCMs cannot reflect this feature and after another process of temporal
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downscaling using equations from table 4.2 and 4.3, system bias from downscaling could be
cumulatively amplified and finally lead to the overestimations under longer durations. This
phenomenon generally responds to an important consideration when interpreting fine-scale
climate information mentioned in chapter 2: deriving climate projections at local scales is a
multistep process and at each step, assumptions and approximations are made. Uncertainties are
inherent in projections of changes in climate and their impacts. They arise from different sources

and need to be kept in mind, whether explicitly quantified or not.

Furthermore, CRCM_CCSM cannot represent or predict those extreme rainfall events that
precisely, which may have some influence on the further studies of IDF curves. In one step of
generating IDF curves, the Fréchet, Weibull, and Gumbel distributions were tentatively fitted to
the Weibull points for the whole record period as well as the periods of the sub-datasets. Based
on the goodness of fit, we will select a best distribution for each rain gauge. Although individual
extremum does not affect the distribution of the hole dataset, but it is possible that accidents
happen. The resulting impacts should be kept in mind in follow-on steps.

Since uncertainty is inherent to the projections, an estimate of it should always be included and
carried through the downscaling process. Such an estimate should at least include different
potential future climate states and ideally should also estimate the influence of the downscaling
procedure on the final results. That is the reason why in this study we took 12 different RCM-
GCM models into account. In previous studies, Mirhosseini et al. (2013) used six different
dynamically downscaled datasets (HRM3 HADCM3, CRCM_CGCM3, HRM3 GFDL,
CRCM_CCSM, RCM3 GFDL, and ECP2_GFDL) to analyze the impact of climate change on

IDF curves in Alabama but didn’t explain why excluded RCM3 CGCM3 and ECP2 HADCM3.
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This can be explained by the t-test results that they have no statistical significance with
RCM3 GFDL and ECP2 _GFDL.
However, there is still another possibility that failures happen when equation sets for
CRCM_CCSM are applied to other models. Usually, different RCMs contain distinct dynamical
schemes and physical parameters, which means that RCMs driven by the same GCM can
produce different results. However, we applied the equations from table 4.1 to all other 11 RCM-
GCMs with the assumption that the equations were independent of the RCM-GCM models.
Various RCMs differ in their numerical, physical, and technical aspects, it is reasonable that
failures happen when equation sets for CRCM_CCSM are applied to other models. What’s more,
limited by time, table 4.2 showed results only from a single rain gauge, which can hardly
represent the general situation. Thus, results from table 4.2 can only be considered as a very
rough, beforehand criterion for computational efficiency concern. More related calculation is

required in further steps of studies.
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS
5.1 Conclusions
This thesis developed a statistical downscaling approach, which consists of a series of regression
equations, to spatiotemporally downscale the RCMs’ rainfall predictions in accordance with the
observed 15-min rainfall data at the gauges in Virginia. From the development of this research
thesis so far, we can basically draw the conclusion that the CRCM_CCSM model can better
reflect the historical observations under a short duration but tends to overestimate the values
under a long duration. The equations from Table 4.1 can be used to represent or predict

precipitation eigenvalues with a good accuracy for a duration of 3 hours or shorter.

Because of the large amount of duplicate values in the history records, the observed data have a
more concentrated distribution. However, the RCMs’ predictions fail to reflect such a
distribution and thus after another process of temporal downscaling using the equations from
Tables 4.2 and 4.3, system biases might be cumulatively amplified, leading to the
overestimations under longer durations. Furthermore, that the CRCM_CCSM model has a
difficulty in precisely predicting some extreme rainfall events may somewhat influence practical

applications of the model’s predictions.

The CRCM is a distinctive RCM because its predictions are statistically different from the
predictions of any other RCM models. In contrast, the predictions from the RCM3 model are
statistically similar with those of other RCM models. Thus, to be cost-effective, practical studies
may not need to examine the predictions of all twelve RCM models. It is likely good enough to
use the predictions of seven of the models, namely the CRCM_CCSM, CRCM_CGCM,

ECP2 HADCM3, HRM3 GFDL, MM5I HADCM3, RCM3 GFDL and WRFG_CCSM.
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5.2 Recommendations
The downscaling approach developed in this thesis has the capability of generating future
precipitation data in the state of Virginia for watershed simulation and management and
hydrologic engineering design. However, due to the time limitation, the downscaling equations
were developed using the predictions of one of the twelve RCM models. Also, this thesis could
not apply the developed equations to all rain gauges across the entire state. Future studies should

verify and apply the equations for all climatic-physiographic zones of Virginia.

In terms of the existing results, while the simple liner regression shows its practicality for
durations of 3 hours or shorter but tends to underestimate or overpredict some extreme
precipitations for longer durations. This may be a drawback for some practical applications that
need long-duration precipitations. In this regard, future studies should test nonlinear equations

and/or more sophisticated algorithms.

With the assumption that the equations are independent of the RCM-GCM models, the twelve
different RCM datasets generated by NARCCAP are found to have no necessity to take all of
them into account in the subsequent computations. Chapter 4 applied the equations presented in
Table 4.1 to the other eleven models. The technical concern of this assumption is that each of the
models has different levels of simplification of the ocean-atmosphere-landscape physical
processes as well as its own boundary conditions and limitations. Future studies should verify

this assumption by redeveloping similar equations using these other models’ predictions.
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