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ABSTRACT 

 
SPATIOTEMPORAL DOWNSCALING RAINFALL PREDICTIONS OF NORTH 
AMERICAN REGIONAL CLIMATE CHANGE ASSESSMENT PROGRAM FOR 

ENTIRE VIRGINIA 
 

Zhaoyi Cai 
Old Dominion University, 2019 

Director: Xixi Wang 

This thesis developed a statistical downscaling approach, which consists of a series of 

linear regression equations, to spatiotemporally downscale the rainfall predictions from 

North American Regional Climate Change Assessment Program (NARCCAP) in 

accordance with the 15-min observed rainfall data at the rain gauges across the state of 

Virginia. NARCCAP has generated twelve different region-global climate models (RCM-

GCMs) with a temporal resolution of 3 hr and a spatial resolution of 50 km over the 

entire America. Although it has been downscaled already, such resolutions are still too 

coarse to represent the rain gauges. This means that the RCM-GCMs’ predictions need to 

be further downscaled for watershed planning and management as well as hydrologic 

engineering design. In this regard, this thesis developed the statistical downscaling 

approach using the predictions by one of the RCM-GCMs and then validated the 

applicability of the approach using the predictions by the other RCM-GCMs. The 

development and validation were implemented by comparing the RCM-GCMs’ 

predictions with the observed data. Future studies should better utilize the predictions of 

all twelve RCM-GCMs and try some nonlinear algorithms to minimize either 

underestimating or overpredicting some extreme rainfalls for a duration of longer than 3 

hr. 
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PREFACE 

 
In the past century, the concentration of greenhouse gases (GHGs), including CO2, in the 

Earth’s atmosphere has been rising due to increasing industrial activities. This has caused, 

and will continue to cause, large-scale variations in atmospheric processes, which in turn 

may lead to the decrease in precipitation amount but increase in extreme rainfall intensity, 

and atmosphere temperature. The overarching goal of this thesis was to advance our 

understanding of non-stationarity resulting from climate change. The specific objective 

was to downscale the predictions of various region-global models (RCM-GCMs) 

ensembles for the state of Virginia, generating extreme rainfall datasets for developing 

probability-based rainfall intensity-duration-frequency (IDF) curves, which allow us to 

take into account influences of the non-stationarity in designing hydraulic structures, 

increasing the structures’ resilience while avoiding either over or under committing 

resources. 

This thesis is organized into five chapters. Chapter 1 (Introduction) describes the 

problem and challenge from climate change and puts forward the thesis goal and study 

objective. Chapter 2 (Literature Review) overviews the historical development, evolution, 

and application of various RCM-GCMs, summarizes the commonly used downscaling 

methods, and highlights the research needs. Chapter 3 (Methods) describes the methods 

used by this thesis study. Chapter 4 (Results and Discussion) presents the results of this 

thesis and discusses their validity and applicability. Chapter 5 (Conclusions and 

Recommendations) concisely summarizes the major findings from this thesis study and 

makes recommendations for future studies.          
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CHAPTER 1 

INTRODUCTION 

1.1 Problem Statement 

An intensity-duration-frequency (IDF) curve is a mathematical function that relates rainfall 

intensity with its duration and frequency of occurrence. Quantifying extreme rainfall 

characteristics (i.e. intensity, duration, and frequency) is imperative in hydrologic engineering 

design. In this regard, for a given duration and return period, the rainfall intensity can be 

determined from the rainfall IDF curve. In practice, IDF curves have also been widely used as an 

effective tool in approximating extreme rainfall for storm water management and other water-

related infrastructure designs. 

In the past century, the concentration of greenhouse gases (GHGs), including CO2, in the Earth’s 

atmosphere has been rising due to increasing industrial activities. This has caused, and will 

continue to cause, large-scale variations in atmospheric processes, which in turn may lead to the 

decrease in precipitation amount but increase in extreme rainfall intensity, and atmosphere 

temperature. Such changes in rainfall characteristics can invalidate the existing IDF curves, 

which were developed by assuming non-stationary climates, leading to either over or under 

committing resources and an unknown risk in designing infrastructures. Current design standards 

are mainly based on the IDF curves developed using historic climate information. For example, a 

dam that is designed to control a 100-year flood may provide a significantly lower level of 

protection if the intensity and duration of the 100-year storm event increases. To adapt to future 

climates, it is imperative to update the current standards for water infrastructure design and to 

evaluate possible influences of climate change on the existing IDF curves. 

Changes in the hydrologic cycle resulting from greenhouse gases have been projected to cause 
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variations in rainfall intensity, duration, and frequency. Incorporating potential effects of climate 

change into engineering design is practically needed to reduce uncertainty and increase resilience 

of infrastructure. In this regard, revisiting and updating the existing IDF curves for future climate 

scenarios are raising more attention. 

In terms of how extreme rainfall characteristics would be modified in the future, Golbahar et al. 

(2013) found that a large uncertainty of the projected rainfall intensities by six climate models 

for long (> 4 h) durations makes it difficult to draw any strong conclusions about the expected 

changes on future rainfall intensity in Alabama. The inconsistent results can be attributed to the 

difference in 1) physical parameterizations, especially of radiative and precipitation-forming 

processes, among different General Circulation Models (GCMs) and Regional Climate Models 

(RCMs); and 2) initial and boundary conditions for each climate projection. Given the large 

uncertainty in the output from paired RCMs-GCMs, performing an uncertainty analysis and 

creating probability based IDF curves has been considered as an emerging research need. Alain 

et al. (2007) compared the CRCM-simulated annual May to October maximum rainfall depth 

(MOAM) series (2-, 6-, 12-, and 24-h durations) to the available historical records over Southern 

Quebec, Canada. Those authors found that increases in regional MOAM values can be detected 

between the control and future periods and that uncertainties in these changes tend to increase 

with increase of return period and/or duration. Thus, multi-model ensembles will need to be 

analyzed to quantify such uncertainties. Similarly, Emori et al. (2005) showed that the simulation 

of extreme daily precipitations was highly dependent on model parameterization, implying that a 

model with a higher resolution does not necessarily result in better predictions of future climate 

than a model with a lower resolution. These ensembles must include the use of outputs of various 

combinations of the GCMs and RCMs to take into account possible future scenarios, which 
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represent how socioeconomic developments, technology advancements, and greenhouse gas 

emissions would be conceptualized and mathematically described. 

1.2 Objective 

The overarching goal of this thesis was to advance our understanding of non-stationarity 

resulting from climate change. The specific objective was to downscale the predictions of 

various RCM-GCMs ensembles for the state of Virginia, generating extreme rainfall datasets for 

developing probability-based IDF curves, which allow us to take into account influences of the 

non-stationarity in designing hydraulic structures, increasing the structures’ resilience while 

avoiding either over or under committing resources.      
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CHAPTER 2 

LITERATURE REVIEW 

Predictions of future climates have been extensively studied and well documented in existing 

literature. Some of the existing documents focus on the development and validation of various 

prediction models, while others focus on applications of the predicted results. Given the large 

amount of such documents, this chapter was carved by following the overview presented by 

Africa and Latin American Resilience to Climate Change Project (2014) from the United States 

Agency for International Development, with significant enrichments from other sources and the 

author’s insights. Its main purpose was to identify what has been done and what needs to be done, 

highlighting the research necessity and contributions of this thesis.      

2.1 General Circulation Model or Global Circulation Models (GCMs) 

Decision makers are increasingly demanding climate information at the national to local scale in 

order to address the risk posed by projected climate changes and their anticipated impacts. To 

respond to the needs of decision makers to plan for climate change, a variety of reports, tools, 

and datasets provide projected climate impacts at spatial and temporal scales much finer than 

those at which the projections are made. It is important to recognize the variety of assumptions 

behind the techniques used to derive such information and the limitations they impose on the 

results. The main tools used to project climate are General Circulation Models (GCMs), which 

are computer models that mathematically represent various physical processes of the global 

climate system. General or global circulation models (GCMs) simulate the Earth’s climate via 

mathematical equations that describe atmospheric, oceanic, and biotic processes, interactions, 

and feedbacks. They are the primary tools that provide reasonably accurate global-, hemispheric-
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, and continental-scale climate information and are used to understand present climate and future 

climate scenarios under increased greenhouse gas concentrations. 

A GCM is composed of many grid cells that represent horizontal and vertical areas on the 

Earth’s surface. In each of the cells, GCMs compute the following: water vapor and cloud 

atmospheric interactions, direct and indirect effects of aerosols on radiation and precipitation, 

changes in snow cover and sea ice, the storage of heat in soils and oceans, surfaces fluxes of heat 

and moisture, and large-scale transport of heat and water by the atmosphere and oceans. 

The spatial resolution of GCMs is generally quite coarse, with a grid size of about 100–500 

kilometers. Each modeled grid cell is homogenous, (i.e., within the cell there is one value for a 

given variable). Moreover, they are usually dependable at temporal scales of monthly means and 

longer. In summary, GCMs provide quantitative estimates of future climate change that are valid 

at the global and continental scale and over long periods. 

Although GCMs are valuable predictive tools, they cannot account for fine-scale heterogeneity 

of climate variability and change due to their coarse resolution. Numerous landscape features 

such as mountains, water bodies, infrastructure, land-cover characteristics, and components of 

the climate system such as convective clouds and coastal breezes, have scales that are much finer 

than 100–500 kilometers. Such heterogeneities are important for decision makers who require 

information on potential impacts on crop production, hydrology, species distribution, etc. at 

scales of 10–50 kilometers. 

2.2 Downscaling Methods 

Readily available climate change projections are provided at global and continental spatial scales 

for the end of the 21st century (Intergovernmental Panel on Climate Change [IPCC], 2007). 

These projections, however, do not fit the needs of sub-national adaptation planning that requires 
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regional and/or local projections of likely conditions five to 10 years from now. Moreover, 

decision makers are interested in understanding the impacts of climate change on specific 

sectors, e.g., agricultural production, food security, disease prevalence, and population 

vulnerability. 

In response to this demand, numerous impact and vulnerability assessments produced at different 

scales, from global to local, provide climate change impact results at spatial scales much finer 

than those at which projections are initially made. To produce such results, combinations of 

methods and indicators are often used, each with its own assumptions, advantages, and 

disadvantages. In reports, these essential factors may not be adequately communicated to the 

reader, thus leaving him/her without the ability to understand potential discrepancies between 

different reports. Often, global or continental-scale information is directly used to produce local-

scale impact maps, which is not appropriate since this large-scale information does not account 

for differences at the local scale. 

Downscaling is a technique that is used to extract high-resolution information from regional 

scale variables produced by coarse resolution models. Any information that is presented at 

spatial scales finer than 100 kilometers x 100 kilometers and temporal scales finer than monthly 

values has undergone a process called downscaling. While it produces climatic information at 

scales finer than the initial projections, this process involves additional information, data, and 

assumptions, leading to further uncertainties and limitations of the results, a consequence that is 

often not made explicit to end-users. International organizations or national governments 

currently provide no official guidance that assists researchers, practitioners, and decision makers 

in determining climate projection parameters, downscaling methods, and data sources that best 

meet their needs. Since the research community is still developing downscaling methods, users 
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often need to read highly technical and specialized explanations in order to understand and 

adequately apply the results for impact studies, planning, or decision-making.  

The followings are important considerations and recommendations to keep in mind when 

designing and interpreting fine-scale information on climate change and its impacts: 

1) Downscaling relies on the assumption that local climate is a combination of large-scale 

climatic/atmospheric features (global, hemispheric, continental, regional) and local 

conditions (topography, water bodies, land surface properties). Representation of the latter is 

generally beyond the capacity of current GCMs. 

2) Deriving climate projections at local scales is a multistep process and at each step, 

assumptions and approximations are made. Uncertainties are inherent in projections of 

changes in climate and their impacts. They arise from different sources and need to be kept in 

mind, whether explicitly quantified or not. 

3) Downscaling can be applied spatially and temporally. Oftentimes, several downscaling 

methods are combined to obtain climate change information at desired spatial and temporal 

scales. 

There are two principal ways to combine the information on local conditions with large-scale 

climate projections: 

Dynamical: by explicitly including additional data and physical processes in models similar to 

GCMs but at a much higher resolution and covering only select portions of the globe1. This 

method has numerous advantages but is computationally intensive and requires large volumes of 

data as well as a high level of expertise to implement and interpret results, often beyond the 

capacities of institutions in developing countries. 
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Statistical: by establishing statistical relationships between large-scale climate features that 

GCMs and local climate characteristics provide. In contrast to the dynamical method, the 

statistical methods are easy to implement and interpret. They require minimal computing 

resources but rely heavily on historical climate observations and the assumption that currently 

observed relationships will carry into the future. However, high quality historical records often 

are not available in developing countries. 

2.3 Dynamical Downscaling 

Global climate models (GCMs) with the ability to capture large-scale circulations are useful 

tools for climate simulation. RCMs take the large-scale atmospheric information supplied by 

GCM output at the lateral boundaries and incorporate more complex topography, the land-sea 

contrast, surface heterogeneities, and detailed descriptions of physical processes in order to 

generate realistic climate information at a spatial resolution of approximately 20 to 50 

kilometers. However, GCMs have limited suitability in representing regional climate variability, 

especially for regions with complex terrain, owing to the coarse resolution and simple physical 

parameterizations used in GCMs. The dynamical downscaling technique consists mainly of 

nesting high-resolution regional climate models (RCMs) into GCMs or using reanalysis data 

within a limited area of interest. RCMs apply higher resolution topography, the land-sea contrast, 

surface heterogeneities, and finer physical processes to simulate climate more accurately. 

Since the RCM is nested in a GCM, the overall quality of dynamically downscaled RCM output 

is tied to the accuracy of the large-scale forcing of the GCM and its biases. Despite recovering 

important regional-scale features that are underestimated in coarse-resolution GCMs, RCM 

outputs are still subject to systematic errors and therefore often require a bias correction as well 

as further downscaling to a higher resolution. 
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2.3.1 Regional Climate Models (RCMs) 

An RCM is like a GCM but has higher resolution and additional regional information, which 

enables it to better represent local landscape and possibly local atmospheric processes. The 

global model simulates the response of the global circulation to changes in atmospheric 

composition through a large number of processes, but some of them need to be approximated due 

to the coarse resolution of the models. On the other hand, at the resolution of 25–50 km for 

portions of the globe, the RCM is able to capture some of those smaller-scale processes more 

realistically. Atmospheric fields (e.g., surface pressure, wind, temperature, and humidity) 

simulated by a GCM are fed into the vertical and horizontal boundaries of the RCM. Locally 

specific data and physics-based equations are then used to process this information and obtain 

regional climate outputs. The primary advantage of RCMs is their ability to model atmospheric 

processes and land cover changes explicitly. Although there has been great advancement during 

the past decade in the technical ability of RCMs to simulate regional climate, significant 

challenges and concerns still exist. Since smaller grid cells, more surface information, and often 

more processes are included in an RCM, the number of computations might be as large, if not 

larger, than in a GCM that covers the entire globe4. Thus, RCMs are computationally demanding 

and may require as much processing time as a GCM to compute projections (Wilby et al., 2009). 

They also require a substantial amount of input, e.g., surface properties and high-frequency 

GCM information. In addition, complex calibration procedures are often needed to make realistic 

simulations. 

Just like GCMs, RCMs have difficulty accurately simulating convective precipitation, which is a 

major concern for tropical regions. Most RCMs also do not accurately simulate extreme 

precipitation — a systematic bias that can worsen as the resolution is increased. Statistical bias 



   

 

10 

corrections often need to be performed to better match the model output to the observations 

(Brown et al., 2008). In some cases, fine adjustments to the convective schemes can improve the 

realism of simulated rainfall, but these adjustments require substantial expertise and reduce 

geographic portability — that is, they create a version of the model that is well adjusted to a 

particular region but that may perform poorly elsewhere. 

The quality of RCM results also depends on the driving GCM information. For example, if the 

GCM misplaces storm tracks, there will be errors in the RCM’s precipitation climatology (Wilby 

et al., 2009). Additionally, different RCMs contain distinct dynamical schemes and physical 

parameters, which means that RCMs driven by the same GCM can produce different results. 

Finally, the grid-box size of an RCM is typically greater than 10 kilometers, which is still too 

coarse for hydrological and agricultural impact studies that require more local- or station-scale 

climate information (Benestad, 2009). To obtain higher resolution results, statistical methods are 

used in lieu of RCMs, or RCM output is further downscaled via statistical means. 

Generally, the RCMs are being adopted worldwide as they offer many advantages such as (i) 

giving intense events that will be smoothened in coarse resolution but may still miss the most 

extremes; (ii) giving phenomenological values diurnal cycle; (iii) having more numerical 

stability and accuracy as these cover only a fraction of the globe and require short-time steps; (iv) 

providing improvement in climate simulations, especially for precipitation that has high spatial 

variability; and (v) boundary conditions based on actual observations that provide information on 

fine-scale climate behavior besides isolating GCM error from the errors intrinsic to RCM. The 

RCMs have some limitations too: for example, (i) simulation is dependent upon the boundary 

conditions supplied from other source; (ii) climate needs parameterization for sub grid-scale 

processes, surface atmosphere coupling, and radiation transfer and cloud microphysics; (iii) only 
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a limited number of scenario runs are available, and the “time slice” approach is used; (iv) the 

outputs of the dynamically downscaled RCM are dependent on the precision of the forcing GCM 

and its unfairness (Seaby et al., 2013); (v) the outputs of the RCM are liable to  systematic errors 

and may involve a method of bias removal in addition to downscaling techniques for higher 

resolution; and (vi) climate information in grid-box size of an RCM is at higher resolution (larger 

than10 km) than local- or station-scale, which make such downscaling inappropriate for 

hydrologic and agricultural impact studies (Benestad, 2009). 

RCMs are developed by research institutions that have sufficient computational capacity and 

technical expertise. Various RCMs differ in their numerical, physical, and technical aspects. The 

most commonly used RCMs in climate change downscaling studies include the U.S. Regional 

Climate Model Version 3 (RegCM3); Canadian Regional Climate Model (CRCM); UK Met 

Office Hadley Centre’s Regional Climate Model Version 3 (HadRM3); German Regional 

Climate Model (REMO); Dutch Regional Atmospheric Climate Model (RACMO); and German 

HIRHAM, which combines the dynamics of the High Resolution Limited Area Model 

(HIRLAM) and European Centre-Hamburg (ECHAM) models. 

Although the above models have been developed primarily over North America and Europe, they 

can be adapted to any region of the globe by incorporating appropriate information on terrain, 

land-cover, hydrology, and so on; hence, several RCMs can be used over a given region. 

However, downscaled results can differ depending on which RCM(s) is used. It is important to 

recognize that a single RCM will most likely not provide ‘accurate’ results. 

In this thesis, we chose six different RCMs from the North American Regional Climate Change 

Assessment Program (NARCCAP). The general NARCCAP strategy (as in most RCM 

applications) consists of two phases. In Phase I, six RCMs were forced with global reanalysis 
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from the National Center for Environmental Prediction/Department of Energy (NCEP/DOE) 

reanalysis as the boundary conditions. Because the reanalysis effectively consists of weather 

prediction model analysis fields (with “frozen” model versions and analysis systems), it is 

appropriate to compare the RCM output with observations on a time step basis. In the second 

phase, GCM output was used to provide boundary conditions for both historic and future climate 

runs. For the historic run, given the chaotic nature of the atmosphere as represented in the GCM 

boundary conditions, comparisons with observations is only possible in a statistical context. The 

six RCMs participating in NARCCAP are the Hadley Regional Model 3 (HRM3), the Regional 

Climate Model version 3 (RCM3), the Canadian Regional Climate Model (CRCM), the NCEP 

Experimental Climate Prediction Center Regional Spectral Model (ECPC), the MM5‐ 

PSU/NCAR mesoscale model (MM5), and the Weather Research and Forecasting model (WRF). 

In Phase I of NARCCAP, 25-year (1980-2004) RCM simulations were implemented using the 

NCEP/DOE Reanalysis for boundary conditions. In Phase II, each RCM was nested within at 

least one GCM at 50 km spatial resolution for the periods 1971-2000 and 2041-2070. In this 

thesis, all 12 combinations of RCMs and GCMs for Phase II had been archived and all of the 

RCM‐based analyses used seasonal and annual mean precipitation (P) derived from 3-hour 

NARCCAP output. 

2.3.2 Approaches Developments 

Coarse-grid GCM simulation output is used for initial and lateral boundary conditions, known as 

“one-way nesting approach” (Mearns et al., 2003). The “nested” RCM approach was first applied 

in climate change studies in the late 1980s by Dickinson, Errico, Giorgi, and Bates (1989). 

However, most researches focused more on improving the technical ability of RCMs to simulate 

regional climate in the next 20 years. Even though one-way nested approaches have generally 
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been used in many RCM simulations, feedback from RCM to GCM could still hardly be found 

until the 21st century. Two-way nesting means an interactive numerical model integration, where 

a part of the integration area is computed at a finer horizontal resolution than the coarser resolved 

residual area. The basic idea behind this technique is the reduced computing time compared to an 

integration at the finer resolution over the whole integration area. Two-way nesting techniques 

have already been applied between atmospheric limited area models at different horizontal 

resolutions (Phillips and Shukla, 1973). Lorenz and Jacob (2005) developed a two-way nested 

ECHAM4-REMO atmospheric climate model system, integrated numerically stable for a 10-year 

period using a two-way nesting region and found a positive influence on the simulation of the 

global climate, even in regions not covered by the two-way nesting domain. Also, they found 

that the systematic error can be reduced globally by a more detailed representation of this 

particular region. Bowden et al. (2012) compared the three nudging techniques in the WRF 

model using two-way nesting to determine the influence of interior nudging on mean error. Jeon 

et al. (2019) also implemented an online two-way nesting framework to improve global surface 

tides in the Hybrid Coordinate Ocean Model (HYCOM). In all this research, high-resolution 

child domains are coupled with relatively low-resolution parent domains for computational 

efficiency. 

2.4 Statistical Downscaling 

Statistical downscaling involves the establishment of empirical relationships between historical 

and/or current large-scale atmospheric and local climate variables. Once a relationship has been 

determined and validated, future atmospheric variables that GCMs project are used to predict 

future local climate variables. Statistical downscaling can produce site-specific climate 

projections, which RCMs cannot provide since they are computationally limited to a 20 to 50 
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kilometers spatial resolution. However, this approach relies on the critical assumption that the 

relationship between present large-scale circulation and local climate remains valid under 

different forcing conditions of possible future climates. It is unknown whether present-day 

statistical relationships between large- and regional-scale variables will be upheld in the future 

climate system. The main advantage of statistical downscaling methods is that they are 

computationally inexpensive and appropriate when computational resources are limited. 

Regression-based downscaling is a widely applied method in practice. It formalizes 

mathematically the relationship between large-scale predictors and the small-scale predictand. 

Because of its much lower computational cost, statistical downscaling is almost always used for 

multi-model downscaling. Statistical downscaling relies on empirical mathematical relationships 

to go from large-scale predictors to fine scale predictands. These relationships are often much 

faster to apply than dynamical downscaling, which makes them ideal for downscaling large 

ensembles of GCMs for multiple time periods or scenarios. However, they are subject to the 

stationarity assumption that the relationship between the predictors and predictands continues to 

hold, even in a changed climate. Although statistical models are valuable tools for downscaling 

multi-model ensembles, they do not produce a full complement of variables like dynamical 

downscaling. 

Oftentimes, dynamical and statistical approaches are used in conjunction. Dynamical-statistical 

downscaling involves the use of an RCM to downscale GCM output before statistical equations 

are used to further downscale RCM output to a finer resolution. Dynamical downscaling 

improves specific aspects of regional climate modeling and provides better predictors for further 

statistical downscaling to higher-resolution output. Statistical-dynamical downscaling is a 

somewhat more complex approach but is less computationally demanding in comparison to 
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dynamical downscaling. This method statistically pre-filters GCM outputs into a few 

characteristic states that are further used in RCM simulations. 

Statistical downscaling consists of a heterogeneous group of methods that vary in sophistication 

and applicability. They are all relatively simple to implement but require a sufficient amount of 

high-quality observational data. Most statistical downscaling methods can be classified into three 

main categories: Perfect Prognosis, Model Output Statistics and Weather Generators. 

2.4.1 Approaches Developments 

The basic premise behind Perfect Prognosis (PP) approaches to statistical downscaling is that 

GCMs are able to simulate the large-scale atmospheric climate fields realistically, even if fields 

with high spatial variability, like precipitation, are poorly simulated. Thus, statistical 

relationships are sought with variables in which there is high confidence, while ignoring those in 

which there is low confidence. Most PP approaches disregard any residual noise term although 

some newer PP approaches explicitly provide a noise model to help capture the variability and 

extremes. Approaches that include a noise model are often referred to as stochastic, while those 

that do not are termed deterministic. 

Building a PP downscaling scheme requires two steps that are often performed together. They 

are the identification of suitable, observed large-scale predictors, and the development of the 

statistical relationship between them and the local-scale observations. It is important that 

predictors that capture the effects of climate change are included in the scheme if it is to be used 

to downscale future projections. This consideration needs to be kept in mind when identifying 

predictors based on historical time series that may contain only a small climate change signal. In 

general, the predictor choice will vary depending on the region and season. Various large-scale 

predictors for downscaling precipitation have been explored in Wilby and Wigley (2000), along 
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with a comparison of the observed and simulated fields. Often these predictors are high-

dimensional fields of grid-based values. Since these fields frequently have high levels of spatial 

correlation, the grid-point values are not independent. Thus, it is relatively common to reduce the 

dimensionality of the predictor field in some way. Common techniques for this include principal 

component analysis (Hannachi, 2007), canonical correlation analysis (Hertig and Jacobeit, 2008; 

Palatella et al., 2010), maximum covariance analysis (Tippett et al., 2008), support vector 

machine (Nayak and Ghosh, 2013), and physically-motivated transformations such as using an 

ENSO index or weather types (Wu et al., 2010).  Weather types are circulation patterns or 

regimes that occur frequently in a location. They can be defined subjectively, by visually 

inspecting synoptic maps, or objectively using clustering and classification algorithms. 

There are many ways to establish the statistical relationship between the predictors and 

predictands in PP, though in each case the relationship is calibrated using observed variables 

before being applied to climate model output. Each statistical model has its own set of 

assumptions and level of complexity. Among the simplest models are linear regression models. 

These assume that the variables involved are Gaussian-distributed, which is not true of 

precipitation fields on short timescales, including daily. This assumption has been relaxed in the 

framework of the generalized linear model. Also, the linearity dependence has been replaced by 

non-parametric smooth functions in the generalized additive model (e.g., Vrac et al., 2007). All 

of these methods focus on predicting the mean conditional on a set of predictors. In order to 

quantify the variance (or higher-order moments) dependence on a set of predictors, vector 

generalized linear models can be used.  

Several non-linear regression techniques have also been applied to the statistical downscaling 

problem. Such techniques include the application of artificial neural networks to downscale 
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precipitation (e.g., Haylock et al., 2006). Another method that has been applied to downscaling is 

the analogue method (e.g., Zorita and von Storch, 1999). In this method, a selected metric is used 

to identify the most similar situation in the historical record and the corresponding local 

observations are used as the prediction. One major limitation of this approach is that it cannot 

produce precipitation amounts that have not been observed in the past. 

The many different statistical models that can be used in PP downscaling make various 

assumptions and have various limitations. All PP approaches do, however, share two major 

assumptions. Firstly, that suitable predictors are well-simulated by the GCM; that is, only fields 

that have been evaluated and found to perform well should be used. Secondly, that the 

relationship identified between the predictor and predictands is stationary. That is, it is assumed 

that, although the climate changes, the relationship between the identified variables does not 

change. 

2.4.2 Model Output Statistics 

Unlike PP techniques, Model Output Statistics (MOS) methods develop statistical relationships 

between simulated predictors and observed predictands. They are most often applied to climate 

model-simulated fields of the same variable being predicted. That is, a MOS method can be used 

to correct the RCM-simulated precipitation field, in order to account for the difference between 

areal-gridded means and local point observations of precipitation. As such, MOS methods can 

often be thought of as statistical corrections to RCM-simulated outputs; indeed, they have been 

used in numerical weather prediction (NWP) for some time (Glahn and Lowry, 1972; Kalnay, 

2003). 

If the RCM simulation is driven by an atmospheric re-analysis, then there is a direct 

correspondence between the simulation and observations. In this case, the MOS method will 
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relate the simulated and observed time series through regression techniques. If, on the other 

hand, the RCM simulation is not driven by a re-analysis, then this direct relationship does not 

exist between the simulation and observations. In this case, the MOS methods can only be used 

to link the distributions of the variables. 

At their simplest, MOS methods provide a bias correction of the present-day simulated field to 

match the observations. For variables such as temperature, this is usually a simple arithmetic 

(e.g., additive) correction while, for precipitation, this is applied as a scaling factor, often 

calculated and applied separately for each month or season. A more complex approach is 

quantile matching. In this approach, different intensities are considered individually such that the 

simulated cumulative distribution function is adjusted to match the observed cumulative 

distribution function. Similar bias-correction approaches have been further developed to account 

for persistence in the precipitation fields (Johnson and Sharma, 2012). 

2.4.3 Weather Generators 

Weather generators are statistical models that produce random sequences of climate variables 

with statistical properties that match those of the observed variables. Weather generators were 

not originally developed with spatial downscaling but are typically used in temporal downscaling. 

For example, they are used to generate daily sequences of weather variables (e.g., precipitation, 

maximum and minimum temperature, humidity, etc.) that correspond to monthly or annual 

averages or amounts. Temporal downscaling is necessary for some impact models that require 

local spatial data at a daily resolution, which GCMs cannot reliably provide. Weather generators 

produce sequences of daily values, but since different weather sequences may be associated with 

a given set of, for example, monthly values, multiple sequences commonly are generated to be 

further used in impact models. This method usually generates very long time series to assist in 
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the study of floods, planning for large water engineering projects, and so on. As downscaling 

tools, they are often used with the statistical relationships being developed from observed data. 

The same statistical properties are calculated on both a present-day and future climate simulation. 

The simulated changes in these properties are then applied to the observed parameters (Semenov 

and Barrow, 1997). 

2.5 Summary 

In most cases, a sequence of different methods is needed to obtain results at the desired 

resolution; however, the analysis of select reports presenting changes in climate and/or their 

impacts has shown the following points: 

1) Information on downscaling and the limitations of the results are often not appropriately 

highlighted, leading the user to believe that the results are “true” and valid at the resolution 

presented. Extensive reading of technical documentation is often needed to uncover all the 

steps and assumptions that led to the final results. 

2) Uncertainties inherent in projections and additionally arising from applied downscaling are 

often not presented, quantified, nor discussed, leading the user to interpret the numerical 

results at face value. 

3) Validation of downscaled results (on historical data) is often omitted; comparing downscaled 

results to high-resolution observed information would highlight systematic biases and the 

limitations of results. 

The above deficiencies most frequently result from simple oversight by the authors of the report 

or their efforts to make it easy to use. However, they are important, and an expert user may be 

able to detect them and estimate the limitations of the results. The overall diversity of the 
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approaches and methods in existing reports and publications reflects the diversity of the goals 

and resources of each assessment. Thus, there is no single best downscaling approach, and 

downscaling methods will depend on the desired spatial and temporal resolution of outputs and 

the climate characteristics of the highest impact of interest. In light of current approaches and 

practices reviewed in this report, it is possible to make the recommendations that follow: 

1) When designing assessments of climate change and its impacts at sub-regional scales, a 

thorough evaluation of the information needs and the relevance of existing information 

should be carried out first. If the need for an original downscaling of the projections is 

confirmed, the approach should be selected based on the information needs and also, 

importantly, on available resources (data, computing resources, expertise, and timeframes).  

2) When using/interpreting existing results/reports, the coarse resolution of the initial 

projections and the scales at which they are valid need to be kept in mind. Any results 

presenting fine-scale spatial details or using high temporal resolution data have undergone a 

manipulation (usually a sequence of manipulations) of the original projections, whether this 

process is described or not. It is only through an evaluation of the employed downscaling 

procedure that the validity of the results at a fine resolution and the value added over initial 

coarse projections can be assessed. Results that look detailed may actually not be robust; in 

general, a rigorous downscaling process requires including additional information, and a 

simple interpolation from coarse- to fine-scale may not lead to reliable results. Therefore, it is 

important to understand (and research if not directly available) at least the broad aspects of 

the applied downscaling. 

3) Since uncertainty is inherent to the projections, an estimate of it — quantitative or at least 

qualitative — should always be included and carried through the downscaling process. Such 



   

 

21 

an estimate should at least include different potential future climate states and ideally should 

also estimate the influence of the downscaling procedure on the results. 



   

 

22 

 
CHAPTER 3 

METHODS 

3.1 Study Site  

This thesis was conducted for the entire state of Virginia, most of which is located within the 

Chesapeake Bay Watershed. The state has a humid subtropical climate, with an annual average 

of 35 to 45 days of thunderstorm activity and an average annual precipitation of 1080 mm. The 

average temperature varies from -3°C in January to 30°C in July.  

3.1.1 Site Characteristics 

Virginia has a significant topographic relief, with elevations varying from Virginia Beach in the 

east at sea level to Mount Rogers in the west at 1746 m above sea level. The major gradations 

occur at the edges of the Atlantic Ocean, the end of the Piedmont, and the Blue Ridge and 

Allegheny chains of the Appalachian Mountains. The moderating influence of the ocean from the 

east, powered by the Gulf Stream, also creates the potential for hurricanes near the mouth of 

Chesapeake Bay. Cold air masses arrive over the mountains, especially in winter, which can lead 

to significant snowfalls when coastal storms, known as nor’easters, move up the Atlantic coast. 

The interaction of these elements with the state's topography creates micro-climates in the 

Shenandoah Valley, the mountainous southwest, and the coastal plains that are slightly but 

noticeably distinct from each other. To differentiate and characterize the micro-climates, NOAA 

(National Oceanic and Atmospheric Administration) subdivides Virginia into six climatic 

divisions, namely Tidewater, Eastern Piedmont, Western Piedmont, Northern, Central Mountain, 

and Southwestern Mountain. On the other hand, to differentiate and characterize the topographic 

relief, USGS (U.S. Geological Survey) subdivides Virginia into five physiographic divisions, 

namely Coastal Plain, Piedmont, Blue Ridge, Valley and Ridge, and Appalachian Plateaus. The 
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Coastal Plain division is between the Atlantic coast and the fall line. It includes the Eastern 

Shore and major estuaries of Chesapeake Bay. The Piedmont division is a series of sedimentary 

and igneous rock-based foothills east of the mountains which were formed in the Mesozoic era. 

The region, known for its heavy clay soil, includes the Southwest Mountains around City of 

Charlottesville. The Blue Ridge division is a physiographic province of the Appalachian 

Mountains with the highest points in the state, the tallest being Mount Rogers. The Valley and 

Ridge division is west of the mountains and includes the Great Appalachian Valley. The region 

is carbonate rock based and includes Massanutten Mountain. The Cumberland Plateau and the 

Cumberland Mountains are in the southwest corner of Virginia, south of the Allegheny Plateau 

(Figure 3.1). 

Figure 3.1. The Virginian climatic and physiographic divisions superimposed by the topographic elevation contours 
at a 50-m interval. 

3.1.2 Rain Gauges 

This study overlaid the climatic and physiographic divisions, resulting in 13 zones (Figure 3.2 

and Table 3.1), within which the 57 rain gauges with 15-min rainfall data are located. Note that 

there is no such rain gauge in one of the zones (i.e., CPZ03). This project did some analyses by 

pooling together the rainfall data at the rain gauges within each of the climatic-physiographic 

zones, as detailed in the following contexts. 
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Table 3.1. The climatic-physiographic zones with inclusive rain gauges. 

Climatic-
Physiographic Zone Climatic Division Physiographic Division Rain Gauge ID 

CPZ01 CD1 (Tidewater) PGD1 (Coastal Plain) 446475, 448800, 
449151 

CPZ02 CD1 (Tidewater) PGD2 (Piedmont) 448129 

CPZ03 CD2 (Eastern Piedmont) PGD1 (Coastal Plain) None 

CPZ04 CD2 (Eastern Piedmont) PGD2 (Piedmont) 

440778, 440993, 
441322, 441929, 
442941, 443192, 
443200, 444414 

CPZ05 CD3 (Western Piedmont) PGD2 (Piedmont) 

440166, 441614, 
446178, 446692, 
447025, 447338, 

449272 

CPZ06 CD3 (Western Piedmont) PGD3 (Blue Ridge) 440561, 445690 

CPZ07 CD4 (Northern) PGD2 (Piedmont) 
442159, 442729, 
446712, 447130, 
447164, 448396 

CPZ08 CD4 (Northern) PGD3 (Blue Ridge) 440720, 445851 

CPZ09 CD4 (Northern) PGD4 (Valley and Ridge) 442663, 443229, 
448046, 448149 

CPZ10 CD5 (Central Mountain) PGD4 (Valley and Ridge) 

442044, 442208, 
443310, 444128, 
445142, 445423, 
445595, 445880, 
448062, 448172, 

449159 

CPZ11 CD6 (Southwestern 
Mountain) PGD3 (Blue Ridge) 443272, 444246, 

448547, 449169 

CPZ12 CD6 (Southwestern 
Mountain) PGD4 (Valley and Ridge) 

440766, 446955, 
448022 

449060, 449301 

CPZ13 CD6 (Southwestern 
Mountain) 

PGD5 (Appalachian 
Plateaus) 

442269, 444180, 
444410, 449215 
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Figure 3.2. The Virginian climatic and physiographic divisions superimposed by 57 rain gauges with 15-min rainfall 
data. 

 

3.2 Available Data 

3.2.1 Rainfall Data 

This thesis used 15-min rainfall data for the historical (prior 2013) periods of 57 rain gauges in 

Virginia and the projected precipitation time series by twelve pairs of Regional Climate Model 

(RCM) and Global Circulation Model (GCM). The data on 15-min precipitation observed at 57 

rain gauges were downloaded from the NOAA National Climatic Data Center (NCDC) website 

(https://www.ncdc.noaa.gov/data-access/land-based-station-data). The gauges were grouped by 

the climatic-physiographic zones (Table 3.1 and Figure 3.2). Herein, it was hypothesized that the 

data at the gauges within a same zone are from a same population and can be pooled together 

into one dataset for statistical analysis. The rationale behind this hypothesis is that the spatial 

variability of precipitation across the zone might be statistically insignificant because each CPZ 

has a similar micro-climate and a similar physiology, as stated above. However, given the 

limited time, this project could not test this hypothesis using a statistical technique. A test will be 

done once a follow-up research will be awarded. 
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For a given rain gauge, the record only has times when precipitation was nonzero. To make the 

record consecutive at a 15-min interval, the times when precipitation was zero were added back 

by executing a Microsoft® Excel VBA program developed by the project team. In addition, the 

record has missing values for a time interval or more on a record day and/or for one day or more 

in a record year. The missing values were filled by executing another VBA program, which 

estimates a missing value as a function of the responding values at the neighboring gauges of this 

rain gauge. This function is expressed as: 

m
i, j

i 1 i
x, j x

P
PP P

m
==
∑

                                                       (Eq.3-1) 

where Px,j is the estimated 15-min precipitation of gauge x at time j;  is the mean annual 

precipitation of gauge x; Pi,j is the observed 15-min precipitation of gauge i at time j; is the 

mean annual precipitation of gauge i; and m is the number of the neighboring gauges of gauge x. 

The mean annual precipitations of the 57 gauges, obtained from NOAA-NCDC and der Leeden 

(1994), are given in Table 3.2. 

Table 3.2. The 57 rain gauges and their climatic-physiographic zones. 
Gauge Name ID Begin Date End Date Elevation 

(m) 
Mean Annual 
Precipitation 

(mm)[1] 

Divisions Zone 

Painter 2 W 446475 05/02/1971 09/30/2012 9.1 1121.79 CD1PGD1 CPZ01 
CPZ01Wakefield 1 NW 448800 05/31/1985 02/28/2013 34.4 1204.72 CD1PGD1  
Williamsburg 2 N 449151 05/02/1971 02/28/2013 21.3 1236.35 CD1PGD1  

Stony Creek 2 N 448129 05/02/1974 04/30/1985 32.0 1193.04 CD1PGD2 CPZ02 

Blackstone Water Wor 440778 05/03/1971 03/31/1974 128.0 1133.95 CD2PGD2 CPZ04 
Bremo Bluff 440993 07/31/1986 02/28/2013 68.6 1087.75 CD2PGD2  
Camp Pickett 441322 03/31/1974 02/28/2013 100.6 1169.42 CD2PGD2  
Columbia 2 SSE 441929 05/07/1971 05/31/1986 88.4 1000.32 CD2PGD2  
Farmville 2 N 442941 07/31/2009 12/31/2012 137.2 1126.24 CD2PGD2  
Fredericksburg 2 443200 08/31/1978 02/28/1993 36.6 1044.51 CD2PGD2  
Fredericksburg National Park 443192 05/02/1971 08/31/1978 27.4 1044.51 CD2PGD2  
John H Kerr Dam 444414 05/07/1971 02/28/2013 76.2 1103.50 CD2PGD2  

Altavista 440166 12/31/1983 02/28/2013 161.2 1118.11 CD3PGD2 CPZ05 
Chatham 441614 05/06/1971 02/28/2013 198.4 1149.60 CD3PGD2  
North Garden 446178 05/31/1971 02/29/1992 209.1 1129.46 CD3PGD2  
Philpott Dam 2 446692 05/06/1971 05/31/2009 342.3 1278.38 CD3PGD2  
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Randolph 5 NNE 447025 05/12/1971 01/31/1984 107.0 1077.36 CD3PGD2  
Rocky Mount 447338 05/06/1971 02/28/2013 400.8 1189.74 CD3PGD2  
Woolwine 4 S 449272 12/31/1983 02/28/2013 457.2 1293.88 CD3PGD2  

Bedford 440561 01/31/1996 02/28/2013 374.3 1122.68 CD3PGD3 CPZ06 
Montebello Fish Hatchery 445690 04/30/1971 08/31/2007 812.9 1125.29 CD3PGD3  

Culpeper Riverside Coast Guard 442159 07/01/1979 12/31/2003 79.2 1046.62 CD4PGD2 CPZ07 
Elkwood 6 SE 442729 06/04/1972 06/02/1984 100.0 1045.29 CD4PGD2  
Piemont Research Station 446712 05/07/1971 02/28/2013 158.5 1112.90 CD4PGD2  
Remington 2 447130 07/07/1979 02/28/1989 85.3 1120.14 CD4PGD2  
Richardsville 447164 06/30/1984 04/30/1987 105.2 1044.08 CD4PGD2  
The Plains 2 NNE 448396 05/01/1971 09/30/2004 161.5 1118.87 CD4PGD2  

Big Meadows 440720 05/02/1971 07/31/1976 1079.0 1385.19 CD4PGD3 CPZ08 
Mount Weather 445851 05/02/1971 01/31/1987 505.7 1099.57 CD4PGD3  

Edinburg 442663 06/30/1996 03/31/1999 282.9 896.11 CD4PGD4 CPZ09 
Front Royal 443229 01/01/1979 03/31/1990 283.5 1039.37 CD4PGD4  
Star Tannery 448046 05/02/1972 01/31/2012 289.6 1023.62 CD4PGD4  
Strasburg 2 ESE 448149 12/31/1978 04/30/1984 195.1 1068.64 CD4PGD4  

Cobington Filter Plant 442044 12/31/1972 08/31/2011 374.9 952.75 CD5PGD4 CPZ10 
Dale Enterprise 442208 09/11/1978 01/31/2009 413.9 922.02 CD5PGD4  
Gathright Dam 443310 12/31/1983 02/28/2013 539.5 986.54 CD5PGD4  
Hot Springs 444128 09/04/1970 08/31/2011 681.5 1097.41 CD5PGD4  
Lynnwood 445142 09/30/1983 12/01/1983 309.1 938.17 CD5PGD4  
Mc Gaheysville 2 S 445423 04/30/1971 11/30/1983 331.9 1149.60 CD5PGD4  
Millgap 2 NNW 445595 09/01/1976 02/28/2013 737.9 1124.71 CD5PGD4  
Mustoe 1 SW 445880 06/30/1982 10/28/2007 725.4 1135.89 CD5PGD4  
Staunton Water Treatment Plant 448062 12/31/1972 08/31/2007 51.5 989.96 CD5PGD4  
Stuarts Draft 448172 05/01/1979 05/29/1984 442.0 1058.43 CD5PGD4  
Williamsburg 2 S 449159 07/01/1978 08/31/2011 499.9 1029.32 CD5PGD4  

Galax Water Plant 443272 04/01/1972 02/28/2013 719.3 1005.84 CD6PGD3 CPZ11 
Indian Valley 444246 04/30/1973 09/30/1993 823.0 1063.93 CD6PGD3  
Trout Dale 3 SSE 448547 03/31/1974 02/28/2013 865.3 1077.98 CD6PGD3  
Willis 449169 09/30/1993 02/28/2013 856.5 1144.78 CD6PGD3  

Blacksburg National Weather 440766 03/31/2003 02/28/2013 604.1 1060.70 CD6PGD4 CPZ12 
Pulaski 446955 04/01/1972 02/28/2013 563.9 949.20 CD6PGD4  
Staffordsville 3 ENE 448022 11/30/1993 02/28/2013 594.4 1000.25 CD6PGD4  
White Gate 449060 12/31/1983 09/30/1993 563.9 965.88 CD6PGD4  
Wytheville 1 S 449301 12/31/1983 02/28/2013 637.9 968.63 CD6PGD4  

Davenport 2 NE 442269 12/31/1983 05/31/1986 488.0 1157.38 CD6PGD5 CPZ13 
Hurley 4 S 444180 03/31/1973 12/31/2009 331.6 1135.39 CD6PGD5  
John Flannagan Lake 444410 12/31/1983 11/30/1991 445.0 1144.02 CD6PGD5  
Wise 3 E 449215 12/31/1983 02/28/2013 776.9 1206.25 CD6PGD5  
 [1] The black number is the average of the values from https://www.ncei.noaa.gov/data/climate-normals-deprecated/access/clim20/va and 
https://www.ncdc.noaa.gov/cdo-web/datatools/normals and when both present the mean annual precipitations, whereas, it is the value from one of 
these two websites whichever presents the mean annual precipitation. On the other hand, the red number is from der Leeden (1994). 

For a rain gauge, its neighboring gauges (Table 3.3) were selected as those that are within a 

geographic distance of 50 km and have relatively fewer missing values. In the table, a rain gauge 

of interest is highlighted in red, while its neighboring gauges are highlighted in black. At a time 
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when the precipitation at the rain gauge was filled, the neighboring gauges with observations 

were used in Eq. 1 and those without observations were excluded. 

For each of the 57 rain gauges, the missing-filled 15-min precipitation time series was used to 

generate a dataset of annual maximum 15-min precipitation (designated i,m15X~ for description 

purpose, where subscript “15m” signifies the duration of 15 min; and i = 1, 2, …, 57, signifies 

the gauge). For a given observation year, the element value of i,m15X~  was computed as the 

maximum of the observed values (at gauge i) within this year. In addition, for each of the other 

eleven durations of longer than 15 min, the durational precipitation time series was formulated 

based on the missing-filled 15-min precipitation time series: the interval values of the durational 

time series was computed as accumulation (from beginning of the record) of the observed values 

of 15-min precipitation the duration apart. For instance, for the duration of 30 min, the first value 

of the 30-min precipitation time series was computed as the summation of first two observed 

values of the corresponding 15-min precipitation time series, the second value of the 30-min 

precipitation time series was computed as the summation of third and fourth observed values of 

the 15-min precipitation time series, and so on. For the duration of 72 h, the first value of the 72-

h precipitation time series was computed as the summation of first 288 (= 156072 ÷× ) values 

of the15-min precipitation time series. As a result, eleven more time series, which respectively 

have durations of 30 and 45 min and 1, 2, 3, 4, 6, 12, 24, 48 and 72 h, were formulated for the 

rain gauge. Further, for each of the eleven-time series and for a given observation year, the 

annual maximum durational precipitation is computed. This generated another eleven datasets of 

annual maximum durational precipitation for gauge i, namely i,m30X~ ,  45m,iX , i,h1X~ , i,h2X~ , i,h3X~ , i,h4X~ , 

i,h6X~ , i,h12X~ , i,h24X~ , i,h48X~ , and i,h72X~ . 
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Table 3.3. Groups of the neighboring rain gauges (signified by their IDs) for filling missing values.[1] 
Group 01: 443229, 
448149, 448046, 
442663, 445851, 
442208, 440720, 
446712, 442159, 
447164, 442729, 
447130, 445423 

Group 02: 445851, 
448149, 448046, 
443229  

Group 03: 442663, 
448149, 448046, 
443229, 440720, 
442208 

Group 04: 445142, 
445423, 442208, 
440720, 448062 

Group 05: 440720, 
445142, 445423, 
446712  

Group 06: 448062, 
448172, 445690, 
445142, 445423, 
446178 

Group 07: 446178, 
445142, 448172, 
448062, 440993, 
445423, 445690, 
441929 

Group 08: 445690, 
446178, 448172, 
448062, 449159 

Group 09: 445595, 
445880, 449159, 
443310, 444128,  

Group 10: 442044, 
443310, 444128, 
445595, 445880, 
445690, 449159 

Group 11: 440766, 
446955, 448022, 
449060, 444246, 
449169, 449301, 
443272 

Group 12: 449301, 
449060, 446955, 
443272, 448547 

Group 13: 444246, 
449169, 440766, 
446955, 449272 

Group 14: 443272, 
446955, 444246, 
449169, 449301, 
448547 

Group 15: 446692, 
449272, 444246, 
449169, 447338 

Group 16: 447338, 
446692, 449272, 
441614 

Group 17: 441614, 
440166, 447338, 
446692 

Group 18: 440561, 
440166, 447338 

Group 19: 440166, 
440561, 441614, 
447338, 447025 

Group 20: 448547, 
446955, 449301, 
443272  

Group 21: 447025, 
440778, 444414, 
440166, 442941 

Group 22: 440778, 
441322, 447025, 
444414, 442941, 
448129 

Group 23: 448129, 
440778, 441322, 
448800, 444414, 
449151 

Group 24: 448800, 
440778, 441322, 
448129, 449151, 
444414 

Group 25: 449151, 
446475, 448129, 
448800, 440778, 
441322 

Group 26: 446475, 
449151 

Group 27: 442159, 
442729, 443192, 
443200, 447130, 
447164, 446712 

Group 28: 446712, 
442159, 440720, 
442729, 447164, 
447130, 440993 

Group 29: 444414, 
440778, 447025, 
441322 

Group 30: 442941, 
447025, 440993, 
441322 

Group 31: 440993, 
441929, 442941, 
446178, 446712 

Group 32: 442269, 
444410, 444180, 
449215, 446955, 
449301, 448547 

Group 33: 448396, 
448149, 447130, 
443229, 445851, 
442729, 448046 

  

[1] In a given group, a rain gauge highlighted in red was filled by the other rain gauges of this group.   

 
3.2.2 RCMs Predicted Precipitation 

The predicted historic (i.e., pre-2013) and future (i.e., 2038 ~ 2070) data on regional 

precipitation at a 3-h time interval and a 50-km spatial resolution were downloaded from the 

North American Regional Climate Change Assessment Program (NARCCAP) website 

http://www.narccap.ucar.edu. To date, NARCCAP has generated twelve different dynamically 

downscaled datasets (Table 3.4), and all twelve datasets of precipitation for the grids (Figure 3.3) 

that cover Virginia were used in this study. The time series of precipitation were extracted from 

the NARCCAP “.nc” files using a computer program written in r language by the project team. 
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The extracted time series were stored in plain text files, which in turn were uploaded into Excel® 

spreadsheets for spatial and temporal downscaling. 

Table 3.4. The twelve dynamically downscaled datasets by NARCCAP. 
Dataset Regional Climate Model (RCM) General Circulation Model (GCM) 

1 CRCM CCSM 
2 CGCM3 
3 ECP2 GFDL 
4 HadCM3 
5 HRM3 GFDL 
6 HadCM3 
7 MM5I CCSM 
8 HadCM3 
9 RCM3 CGCM3 

10 GFDL 
11 WRFG CCSM 
12 CGCM3 

 

Figure 3.3. The centers of each 50-km grid cell for the six RCMs (not drawn to a scale). (Source: 
http://www.narccap.ucar.edu/data/gridpoint‐maps.html). 

3.3 Downscaling Methods 

Downscaling of the RCMs’ predictions was realized by four steps. First, the predicted 3-h 

precipitation at a rain gauge by an RCM (hereinafter referred to as RCM-predicted gauge 

precipitation) was computed as the inverse-distance-weighted average of the RCM’s predictions 

for the four modeling grids surrounding the gauge. Second, the RCM-predicted gauge 

precipitation was corrected for possible errors in accordance with the observations at this same 



   

 

31 

gauge, deriving the spatially downscaled gauge precipitation. The equations used in this step 

were derived by regressing the observed annual maximum 3-h precipitations over the RCM-

predicted annual maximum gauge 3-h precipitations for the historic period. Third, the spatially 

downscaled gauge precipitation was disaggregated to derive the 15-, 30- and 45-min and 1- and 

2-h gauge precipitations. Fourth, the spatially downscaled gauge precipitation for a longer 

duration of 6, 12, 24, 48, or 72 h was derived from that for the duration of 3 h (i.e., the result of 

the second step). Herein, to alleviate the burden of data processing, the annual maximum 

durational precipitations rather than the time series were downscaled. The basic assumption is 

that the extreme values are independent of the mathematical operations involved in the 

downscaling procedure. 

3.3.1 Spatial Downscaling 

As shown in Figure 3.3, the centers of the 50-km grids are different for the six RCMs. For each 

RCM, its grid layer was overlaid with the layer of the rain gauges (Figure 3.2) in ArcMap® to 

identify the four grids surrounding each gauge. Subsequently, the geographic distances from the 

four grid centers to the rain gauge were calculated. At a given time, the RCM’s predictions for 

the four grids were averaged using the inverses of the distances as the weights, resulting in a 

spatially averaged 3-h prediction. In addition, for each of the 57 rain gauges, the observed 

(formulated) 3-h time series i,h3X~  was regressed on the synchronic spatially averaged 3-h time 

series. That is, the regression was done for the record period of the gauge using the 

synchronically paired values of observed and spatially averaged 3-h precipitation. Further, taking 

the spatially averaged 3-h precipitations from 2038 to 2070, this regression equation was used to 

generate a 3-h precipitation time series at this gauge for this future period (i.e., downscale the 

projected precipitation). The regressions and computations were executed in Excel® 2010. 
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3.3.2 Temporal Downscaling 

For each of the 57 rain gauges and for each of the six RCMs, the two spatially-downscaled 3-h 

precipitation time series, one for the record period and another for the future period, were used to 

generate two datasets of annual maximum 3-h precipitation, namely i,h3Y~  and i,h3Z~ , respectively.  

To generate the annual maximum precipitation time series of 15, 30 and 45 min, and 1, 2 and 4 h 

(designated i,m15Y~ , i,m30Y~ , 45m,iY , i,h1Y~ , i,h2Y~ , and i,h4Y~  for the record period, and i,m15Z~ , i,m30Z~ , 

45m,iZ , i,h1Z~ , i,h2Z~ , and i,h4Z~  for the future period), i,m15X~ , i,m30X~ ,  45m,iX , i,h1X~ , i,h2X~ , and i,h4X~  were 

separately regressed over i,h3X~  and then use i,h3Y~ and i,h3Z~ in the responding regression equations to 

get the responding time series. Herein, it was assumed that the regression equations were held 

regardless of the climatic conditions (Menabde et al., 1999; Socolofsky et al., 2001; Chang and 

Hiong, 2013; Mirhosseini et al., 2013). The regressions were implemented by each of the 

climatic-physiographic zones shown in Figure 3.2. For example, to regress i,m15X~  over i,h3X~  for 

CPZ01 (Table 3.1), the time series of i,m15X~  at the three rain gauges within this zone were pooled 

together into one 15-min dataset, while the time series of i,h3X~  at these same three rain gauges 

were pooled together into one 3-h dataset. To capsulate the datasets, if one value in the 3-h 

dataset corresponds to two or more values in the 15-min dataset, the arithmetic average, median, 

75th percentile, and maximum of the multiple values were calculated, resulting in five capsulated 

datasets: one for 3-h and four for 15-min. The four capsulated 15-min datasets were separately 

regressed over the capsulated 3-h dataset. The regression equation with a largest coefficient of 

determination (R2) was chosen as the relationship between i,m15X~  and i,h3X~ , and adopted to 
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generate i,m15Y~  and i,m15Z~ . Both linear and nonlinear equations as well as piecewise regressions 

were tried to best fit the data.  

On the other hand, to generate the annual maximum precipitation time series of 6, 12, 24, 48, and 

72 h (designated i,h6Y~ , i,h12Y~ , i,h24Y~ , i,h48Y~ , and i,h72Y~ for the record period, and i,h6Z~ , i,h12Z~ , i,h24Z~ , 

i,h48Z~ , and i,h72Z~ for the future period), the accumulation procedure discussed in section 2.2.1 was 

applied to i,h3Y~  and i,h3Z~ , respectively.  

As a result, for each rain gauge and each RCM, twelve time series ( i,m15Y~ , i,m30Y~ , 45m,iY , i,h1Y~ , i,h2Y~ , 

i,h3Y~ , i,h4Y~ , i,h6Y~ , i,h12Y~ , i,h24Y~ , i,h48Y~ , and i,h72Y~ ) were generated for the record period and another 

twelve time series ( i,m15Z~ , i,m30Z~ , 45m,iZ , i,h1Z~ , i,h2Z~ , i,h3Z~ , i,h4Z~ , i,h6Z~ , i,h12Z~ , i,h24Z~ , i,h48Z~ , and i,h72Z~ )  

were generated for the future period. In total, 16,416 (= 57 gauges * 12 RCMs * 24 time series 

per gauge per RCM) datasets were generated. Again, all regressions and computations were 

executed in Excel® 2010. 

3.3.2 Reliability Analyzing 

We use all the 15-min rainfall data for the historical periods of 55 rain gauges (exclude station 

442663 and 442941 for insufficient data) in Virginia to generate a box plot to analyze the 

reliability of the origin data (see Fig 3.4). 
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Among the 57 rain gauges, 25 of them were found to have a record period of 30 years or longer. 

According to Fig 3.4, the median values of annual maximum 15-min precipitation in all stations 

are under 50mm. Max values of annual maximum 15-min precipitation in station 443272, 

444246, 445851, 446178 and 447338 are observed to be over 150mm, which means 

extraordinary rainfall events mainly happen in CPZ05 and CPZ08, the southern area of the 

Virginia along the Blue Ridge. On the other hand, strong rainfall events are relatively lacking in 

eastern Piedmont and Valley and Ridge (CPZ04, CPZ10, CPZ12 and CPZ13). 

Generally, collected raw data shows no obvious contradiction with site topography, data is 

relatively reliable. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 Downscaling Results 

As discussed before, downscaling of the RCMs’ predictions was realized by four steps. First, the 

predicted 3-h precipitation at a rain gauge by an RCM (hereinafter referred to as RCM-predicted 

gauge precipitation) was computed as the inverse-distance-weighted average of the RCM’s 

predictions for the four modeling grids surrounding the gauge. Second, the RCM-predicted 

gauge precipitation was corrected for possible errors in accordance with the observations at this 

same gauge, deriving the spatially downscaled gauge precipitation. Third, the spatially 

downscaled gauge precipitation was disaggregated to derive the 15-, 30- and 45-min and 1- and 

2-h gauge precipitations. Fourth, the spatially downscaled gauge precipitation for a longer 

duration of 6, 12, 24, 48, or 72 h was derived from that for the duration of 3 h (i.e., the result of 

the second step). Herein, to alleviate the burden of data processing, the annual maximum 

durational precipitations rather than the time series were downscaled. The basic assumption is 

that the extreme values are independent of the mathematical operations involved in the 

downscaling procedure. 

The equations used in the second step (see Table 4.1) were derived by regressing the observed 

annual maximum 3-h precipitations over the RCM-predicted annual maximum gauge 3-h 

precipitations for the historic period, whereas, the equations used in the third step (see Table 4.2) 

were derived by regressing the observed annual maximum precipitations for a shorter or 4-h 

duration over those for the duration of 3 h. Both regressions were done by each of the climatic-

physiographic zones. In this regard, the data at the rain gauges within a zone of interest were 

pooled together and then capsulated by excluding any abnormal and/or redundant values. 
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Table 4.1 The regression equations of RCM-predicted over observed 3-h annual maximum rainfall. 

RCM Zone Regression Equation 
Coefficient of 
Determination 

(R2) 
CRCM-CCSM CPZ01  0.86 

 CPZ02  0.87 

 CPZ04  0.96 

 CPZ05  0.87 

 CPZ06  0.87 

 CPZ07  0.93 

 CPZ08  0.84 

 CPZ09  

 

0.95 

0.92 

 CPZ10  0.88 
 CPZ11  0.80 

 CPZ12  0.90 

 CPZ13  0.95 

 

Table 4.2. The regression equations of observed shorter duration over 3-h annual maximum rainfall. 

Zone Duration Regression Equation 
Coefficient of 
Determination 

(R2) 
CPZ01 15 min  0.67 

 30 min  0.83 
 45 min  0.89 
 1 h  0.95 
 2 h  0.99 

 4 h  0.99 
CPZ02 15 min  0.89 

 30 min  0.70 
 45 min  0.71 
 1 h  0.84 
 2 h  0.96 
 4 h  0.99 

CPZ04 15 min  0.90 
 30 min  0.97 
 45 min  0.98 
 1 h  0.99 
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 2 h  1.00 
 4 h  0.99 

CPZ05 15 min  0.62 

 30 min  0.74 

 45 min  0.85 

 1 h  0.87 

 2 h  0.99 

 4 h  0.99 

CPZ06 15 min  0.66 
 30 min  0.74 
 45 min  0.79 
 1 h  0.84 
 2 h  0.95 
 4 h  0.98 

CPZ07 15 min  0.64 
 30 min  0.78 
 45 min  0.88 

 1 h  0.91 
 2 h  0.94 
 4 h  0.98 

CPZ08 15 min  0.89 
 30 min  0.95 

 45 min  0.95 
 1 h  0.96 
 2 h  0.99 
 4 h  0.95 

CPZ09 15 min  0.55 

 30 min  0.63 

 45 min  0.72 

 1 h  0.76 

 2 h  0.94 

 4 h  0.94 

CPZ10 15 min  0.67 

 30 min  0.81 

 45 min  0.88 

 1 h  0.88 

 2 h  0.96 

 4 h  0.98 
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CPZ11 15 min  0.67 

 30 min  0.80 

 45 min  0.88 

 1 h  0.91 

 2 h  0.96 

 4 h  0.96 

CPZ12 15 min  0.61 

 30 min  0.78 

 45 min  0.84 

 1 h  0.89 

 2 h  0.96 

 4 h  0.98 

CPZ13 15 min  0.62 

 30 min  0.82 

 45 min  0.89 

 1 h  0.91 

 2 h  0.94 

 4 h  0.98 

 

The equations used in the fourth step (see Table 4.3) were derived by regressing the RCM-

predicted annual maximum gauge precipitations for a longer duration (i.e., 6, 12, 24, 48, or 72 h) 

over the RCM-predicted annual maximum gauge precipitations for one or more shorter durations 

spanning the entire RCM modeling period. 
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Table 4.3. The regression equations of RCM-predicted longer- over shorter-duration annual maximum rainfall. 

Zone Duration Regression Equations 
Coefficient of 
Determination 

(R2) 
CPZ01 6 h  0.84 

 12 h  0.78 
 24 h  0.68 
 48 h  0.77 
 72 h  0.92 

CPZ02 6 h  0.85 
 12 h  0.80 
 24 h  0.70 
 48 h  0.69 
 72 h  0.92 

CPZ04 6 h  0.73 
 12 h  0.78 
 24 h  0.68 
 48 h  0.68 
 72 h  0.89 

CPZ05 6 h  0.77 

 12 h  0.81 

 24 h  0.70 

 48 h  0.65 

 72 h  0.85 

CPZ06 6 h  0.82 
 12 h  0.82 
 24 h  0.65 
 48 h  0.62 
 72 h  0.80 

CPZ07 6 h  0.74 
 12 h  0.78 
 24 h  0.67 
 48 h  0.76 
 72 h  0.91 

CPZ08 6 h  0.74 
 12 h  0.70 
 24 h  0.62 
 48 h  0.67 
 72 h  0.88 

CPZ09 6 h  0.72 
 12 h  0.76 
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 24 h  0.67 
 48 h  0.63 
 72 h  0.86 

CPZ10 6 h  0.83 

 12 h  0.80 

 24 h  0.68 

 48 h  0.61 

 72 h  0.82 

CPZ11 6 h  0.87 

 12 h  0.86 

 24 h  0.74 

 48 h  0.74 

 72 h  0.91 

CPZ12 6 h  0.87 

 12 h  0.86 

 24 h  0.79 

 48 h  0.72 

 72 h  0.85 

CPZ13 6 h  0.70 

 12 h  0.63 

 24 h  0.75 

 48 h  0.74 

 72 h  0.83 

The National Hydrography Dataset (NHD) (i.e., hydrography) was downloaded from the USGS 

website http://viewer.nationalmap.gov/viewer. NHD is a comprehensive set of digital spatial data 

about surface water features (e.g., rivers). This study used the 8-digit hydrologic cataloging units 

(HUCs or watersheds) presented by the NHD. Totally, there are 53 such HUCs in Virginia. In 

this chapter, we chose HUC2080202 (including 8 different stations from CPZ06 and CPZ10) as a 

sample to analyze our downscaling equations and results. 
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4.1.1 Spatial Downscaling 

Fig 4.1 Spatial downscaling results in 8 different stations with 3h precipitation data. 

Fig 4.1 shows the result of spatial downscaling in 8 different stations under CRCM_CCSM 

model with 3h precipitation data. According to the figure, the values from CRCM_CCSM have 

very similar median value with the observation data but cannot represent those extreme values 

(maximum and minimum values) that well. In most of the occasions, CRCM_CCSM model 

overestimates both maximum and minimum values and make the precipitation data more 

dispersed than history records but generally, this model successfully simulates the rainfall events 

in Virginia and can be used in the prediction of precipitation in the future for further studies of 

IDF curves. 

4.1.2 Temporal Downscaling 

Fig 4.2 shows the result of temporal downscaling in 8 different stations under CRCM_CCSM 

model with 15min precipitation data. According to Fig 4.1 and Fig 4.2, under a 15-min duration, 

the CRCM_CCSM model performed even better than under 3-h duration. The two datasets have 

not only very similar median value, but also have similar distribution. However, instead of being 

overestimated under 3-h duration, those extreme values (maximum and minimum values) have 
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been underestimated as an inadequacy under 15-min duration.  

Fig 4.2 Spatial downscaling results in 8 different stations with 15min precipitation data. 

Fig 4.3 Spatial downscaling results in 8 different stations with 24h precipitation data. 
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Fig 4.4 Spatial downscaling results in 8 different stations with 72h precipitation data. 

Fig 4.3 and Fig 4.4 show the results of temporal downscaling in HUC2080202 under 

CRCM_CCSM model precipitation data with a duration of 24h and 72h. Comparing with 3-hour 

values, overestimations happened in not only representing those extreme values (maximum and 

minimum), but also in those ordinary events. All the precipitation values from the model have 

been deconcentrated and raised in varying degrees. In some stations (especially in station 

440561) this phenomenon is particularly serious. 

4.2 Results from Different RCMs 

To compare the prediction results from different RCMs, we applied the equations from table 4.1 

to all other 11 RCM-GCMs with the assumption that the equations were independent of the 

RCM-GCM models, trying to find whether they have statistical significance. We applied a 

significance level of α = 0.05/12=0.004167 and did t-test between every two different RCMs. 

Table 4.4 shows the results. According to table 4.4 we can find that most RCMs have no 
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statistical significance under same RCM but different GCMs (only except CRCM). CRCM is a 

good RCM which is statistically significant from all other RCMs while RCM3_CGCM3 is only 

significant from CRCM models. Besides, most RCM-GCMs have 3 to 5 similar prediction 

models, which means practically we do not have to apply all these 12 models, several selected 

ones should be enough for further studies.  
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4.3 Discussion 

The previous section reviewed the downscaling results of the CRCM_CCSM model. In the first 

two steps we corrected the possible statistical bias from the model and created our own version 

of the model that is well adjusted to a particular region. The main purpose of this step of spatial 

downscaling is to get a better match of the model output to the observations, which followed the 

suggestions from previous study (Brown et al., 2008). The results of the spatial downscaling 

generally responded as expected. According to the figures above, we can basically draw the 

conclusion that equations from table 4.1 can represent or predict precipitation eigenvalues with 

relative accuracy under a duration of 3 hours and performed well in adjusting to a different 

region. 

The temporal downscaling results showed that CRCM_CCSM model can better reflect the 

historical values under shorter duration but overestimate the values under longer duration. This is 

under expectation for there are other studies that draw similar conclusions. Mirhosseini et al. 

(2013) used six different dynamically downscaled datasets to analyze the impact of climate 

change on IDF curves in Alabama. Their results revealed the precipitation pattern for short 

rainfall durations (i.e., less than 4 h), but for long durations (i.e., greater than 4 h) a large 

uncertainty on projected rainfall intensity made it difficult to draw any inclusive conclusions 

about expected changes of future rainfall intensity. That is, system bias or uncertainty 

accumulates over a long period of time and finally leads to significant difference between 

historical observations and model simulations. 

Due to instrument accuracy and technical issues, a large amount of repeating data appeared in 

history records, observation data seemed to have a more concentrated distribution. However, 

predictions from RCMs cannot reflect this feature and after another process of temporal 
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downscaling using equations from table 4.2 and 4.3, system bias from downscaling could be 

cumulatively amplified and finally lead to the overestimations under longer durations. This 

phenomenon generally responds to an important consideration when interpreting fine-scale 

climate information mentioned in chapter 2: deriving climate projections at local scales is a 

multistep process and at each step, assumptions and approximations are made. Uncertainties are 

inherent in projections of changes in climate and their impacts. They arise from different sources 

and need to be kept in mind, whether explicitly quantified or not. 

Furthermore, CRCM_CCSM cannot represent or predict those extreme rainfall events that 

precisely, which may have some influence on the further studies of IDF curves. In one step of 

generating IDF curves, the Fréchet, Weibull, and Gumbel distributions were tentatively fitted to 

the Weibull points for the whole record period as well as the periods of the sub-datasets. Based 

on the goodness of fit, we will select a best distribution for each rain gauge. Although individual 

extremum does not affect the distribution of the hole dataset, but it is possible that accidents 

happen. The resulting impacts should be kept in mind in follow-on steps. 

Since uncertainty is inherent to the projections, an estimate of it should always be included and 

carried through the downscaling process. Such an estimate should at least include different 

potential future climate states and ideally should also estimate the influence of the downscaling 

procedure on the final results. That is the reason why in this study we took 12 different RCM-

GCM models into account. In previous studies, Mirhosseini et al. (2013) used six different 

dynamically downscaled datasets (HRM3_HADCM3, CRCM_CGCM3, HRM3_GFDL, 

CRCM_CCSM, RCM3_GFDL, and ECP2_GFDL) to analyze the impact of climate change on 

IDF curves in Alabama but didn’t explain why excluded RCM3_CGCM3 and ECP2_HADCM3. 
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This can be explained by the t-test results that they have no statistical significance with 

RCM3_GFDL and ECP2_GFDL. 

However, there is still another possibility that failures happen when equation sets for 

CRCM_CCSM are applied to other models. Usually, different RCMs contain distinct dynamical 

schemes and physical parameters, which means that RCMs driven by the same GCM can 

produce different results. However, we applied the equations from table 4.1 to all other 11 RCM-

GCMs with the assumption that the equations were independent of the RCM-GCM models. 

Various RCMs differ in their numerical, physical, and technical aspects, it is reasonable that 

failures happen when equation sets for CRCM_CCSM are applied to other models. What’s more, 

limited by time, table 4.2 showed results only from a single rain gauge, which can hardly 

represent the general situation. Thus, results from table 4.2 can only be considered as a very 

rough, beforehand criterion for computational efficiency concern. More related calculation is 

required in further steps of studies. 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

This thesis developed a statistical downscaling approach, which consists of a series of regression 

equations, to spatiotemporally downscale the RCMs’ rainfall predictions in accordance with the 

observed 15-min rainfall data at the gauges in Virginia. From the development of this research 

thesis so far, we can basically draw the conclusion that the CRCM_CCSM model can better 

reflect the historical observations under a short duration but tends to overestimate the values 

under a long duration. The equations from Table 4.1 can be used to represent or predict 

precipitation eigenvalues with a good accuracy for a duration of 3 hours or shorter.  

Because of the large amount of duplicate values in the history records, the observed data have a 

more concentrated distribution. However, the RCMs’ predictions fail to reflect such a 

distribution and thus after another process of temporal downscaling using the equations from 

Tables 4.2 and 4.3, system biases might be cumulatively amplified, leading to the 

overestimations under longer durations. Furthermore, that the CRCM_CCSM model has a 

difficulty in precisely predicting some extreme rainfall events may somewhat influence practical 

applications of the model’s predictions. 

The CRCM is a distinctive RCM because its predictions are statistically different from the 

predictions of any other RCM models. In contrast, the predictions from the RCM3 model are 

statistically similar with those of other RCM models. Thus, to be cost-effective, practical studies 

may not need to examine the predictions of all twelve RCM models. It is likely good enough to 

use the predictions of seven of the models, namely the CRCM_CCSM, CRCM_CGCM, 

ECP2_HADCM3, HRM3_GFDL, MM5I_HADCM3, RCM3_GFDL and WRFG_CCSM. 
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5.2 Recommendations 

The downscaling approach developed in this thesis has the capability of generating future 

precipitation data in the state of Virginia for watershed simulation and management and 

hydrologic engineering design. However, due to the time limitation, the downscaling equations 

were developed using the predictions of one of the twelve RCM models. Also, this thesis could 

not apply the developed equations to all rain gauges across the entire state. Future studies should 

verify and apply the equations for all climatic-physiographic zones of Virginia.  

In terms of the existing results, while the simple liner regression shows its practicality for 

durations of 3 hours or shorter but tends to underestimate or overpredict some extreme 

precipitations for longer durations. This may be a drawback for some practical applications that 

need long-duration precipitations. In this regard, future studies should test nonlinear equations 

and/or more sophisticated algorithms. 

With the assumption that the equations are independent of the RCM-GCM models, the twelve 

different RCM datasets generated by NARCCAP are found to have no necessity to take all of 

them into account in the subsequent computations. Chapter 4 applied the equations presented in 

Table 4.1 to the other eleven models. The technical concern of this assumption is that each of the 

models has different levels of simplification of the ocean-atmosphere-landscape physical 

processes as well as its own boundary conditions and limitations. Future studies should verify 

this assumption by redeveloping similar equations using these other models’ predictions. 



   

 

52 

 
REFERENCES 

Benestad, R. E. (2009). Downscaling precipitation extremes. Theoretical and Applied 

Climatology, 100(1-2), 1-21. 

Bowden, Jared, Otte, Tanya, Nolte, Christopher, and Otte, Martin. (2012). Examining interior 

grid nudging techniques using two-way nesting in the WRF model for regional climate 

modeling." Journal of Climate 25.8: 2805-823. 

Biau, Zorita, Von Storch, Wackernagel, and Biau, G. (1999). Estimation of precipitation by 

kriging in the EOF space of the sea level pressure field. Journal of Climate 12.4: 1070-085. 

Brown, C., Greene, A. M., Block, P., & Giannini, A. (2008). Review of downscaling 

methodologies for Africa climate applications. IRI Technical Report, 08-05: IRI 

Downscaling Report, International Research Institute for Climate and Society, Columbia 

University. 

Chang CW, and Hiong S. (2013). Estimation of sub-daily IDF curves in Singapore using simple 

scaling. In: Proceedings of International Conference on Climate Change Effects: Impacts 

World 2013. Potsdam, New York, NY, May 27-30. 

Dickinson, R., Errico, R., Giorgi, F., & Bates, G. (1989). A regional climate model for 

the western United States. Climatic Change, 15(3), 383-422. 

Emori, S., and S. J. Brown. (2005). Dynamic and thermodynamic changes in mean and extreme 

precipitation under changed climate. Geophysical Research Letters, 32.17 (2005). 

Glahn, H., and D. Lowry. (1972). The use of model output statistics /MOS/ in objective weather 

forecasting. Journal of Applied Meteorology 11: 1203-211. 

Hannachi, A. (2007). Pattern hunting in climate: a new method for finding trends in gridded 

climate data. International Journal of Climatology 27.1: 1-15. 



   

 

53 

Haylock, Malcolm R., Gavin C. Cawley, Colin Harpham, Rob L. Wilby, and Clare M. Goodess. 

(2006). Downscaling heavy precipitation over the United Kingdom: a comparison of 

dynamical and statistical methods and their future scenarios. International Journal of 

Climatology 26.10: 1397-415. 

Hertig, E., and J. Jacobeit. (2008). Downscaling future climate change: temperature scenarios for 

the Mediterranean area. Global and Planetary Change 63.2: 127-31. 

Jeon, Chan-Hoo, Maarten C Buijsman, Alan J Wallcraft, Jay F Shriver, Brian K Arbic, James G 

Richman, and Patrick J Hogan. (2019). Improving surface tidal accuracy through two-way 

nesting in a global ocean model." Ocean Modelling 137: 98-113. 

Johnson, Fiona, and Ashish Sharma. (2012). A nesting model for bias correction of variability at 

multiple time scales in general circulation model precipitation simulations. Water Resources 

Research 48.1. 

Kalnay, Eugenia, and Ming Cai. (2003). Impact of urbanization and land-use change on climate. 

Nature 528-31. 

Kreft, Ita G. G, Jan De Leeuw, and Rien Van Der Leeden. (1994). Review of five multilevel 

analysis programs: BMDP-5V, GENMOD, HLM, ML3, VARCL. The American Statistician 

48.4: 324-35 

Lorenz, Philip, and D Jacob. Influence of regional scale information on the global circulation: a 

two‐way nesting climate simulation. Geophysical Research Letters 32.18 (2005). 

Mailhot, A., S. Duchesne, D. Caya, and G. Talbot. (2007). Assessment of future change in 

intensity–duration–frequency (IDF) curves for southern Quebec using the Canadian Regional 

Climate Model (CRCM). Journal of Hydrology, 347 (1-2): 197-210.  



   

 

54 

Menabde M, Seed A, and Pegram G. (1999). A simple scaling model for extreme rainfall. Water 

Resources Research 35(1): 335-339. 

Mirhosseini, G., P. Srivastava, and L. Stefanova. (2013). The impact of climate change on 

rainfall intensity–duration–frequency (IDF) curves in Alabama.  Regional Environmental 

Change, 13(1): 25-33. 

Nayak, Munir, and Ahmad Ghosh. (2013). Prediction of extreme rainfall event using weather 

pattern recognition and support vector machine classifier. Theoretical and Applied 

Climatology 114.3-4: 583-603. 

Palatella, Miglietta, Paradisi, and Lionello. (2010). Climate change assessment for 

Mediterranean agricultural areas by statistical downscaling. Natural Hazards and Earth 

System Sciences 10.7: 1647-1661. 

Phillips, N., and J. Shukla. (1973). On the strategy of combining coarse and fine grid meshes in 

numerical weather prediction. Journal of Applied Meteorology 12: 763-70 

Seaby, L. P., Refsgaard, J. C., Sonnenborg, T. O., Stisen, S., Christensen, J. H., & Jensen, K.H. 

(2013). Assessment of robustness and significance of climate change signals for an ensemble 

of distribution-based scaled climate projections. Journal of Hydrology 486(0), 479-493. 

Semenov, M, and A. Barrow. (1997). Use of A stochastic weather generator in the development 

of climate change scenarios. Climatic Change 35.4: 397-414. 

Socolofsky S, Adams E, and Entekhabi D. (2001). Disaggregation of daily rainfall for 

continuous watershed modeling. Journal of Hydrologic Engineering 6(4): 300-309. 

Solomon, S, and Intergovernmental Panel on Climate Change. Climate Change 2007 the 

Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report 



   

 

55 

of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New 

York, NY, USA: IPCC. 

The United States Agency for International Development, A review of downscaling methods for 

climate change projections (2014). Africa and Latin American Resilience to Climate Change 

Project. Retrieved from http://www.ciesin.org/documents/Downscaling_CLEARED_000.pdf 

Tippett, M, T DelSole, S Mason, and A Barnston. (2008). Regression-based methods for finding 

coupled patterns. Journal of Climate: 4384-398. 

Wilby, R.L., and T.M.L. Wigley. (2000). Precipitation predictors for downscaling: observed and 

general circulation model relationships. International Journal of Climatology 20.6: 641-61. 

Wilby, R. L., Troni, J., Biot, Y., Tedd, L., Hewitson, B. C., Smith, D. M., & Sutton, R. T. (2009). 

A review of climate risk information for adaptation and development planning. International 

Journal of Climatology, 29(9), 1193-1215. 

Willems, P., and M. Vrac. (2011). Statistical precipitation downscaling for small-scale 

hydrological impact investigations of climate change. Journal of Hydrology 402.3-4: 193-

205. 

Wu, R, S, Yang, S, Liu, L, Sun, Y, Lian, and Z, Gao. (2010). Changes in the relationship 

between northeast China summer temperature and ENSO. Journal of Geophysical Research: 

Atmospheres 115.D21. 



   

 

56 

 
Bio Sketch 

Zhaoyi was born in 1995 in Fuzhou, China, with the family name of Cai. After completing his 

schoolwork at Fuzhou No.1 High School in 2013, Zhaoyi was enrolled into the Southeast 

University in Nanjing, China, in School of Transportation, majoring in City Underground Space 

Engineering. In 2017, he received a B.S. in Engineering. In August 2017, Zhaoyi began classes 

towards a M.S. degree in Civil Engineering at Old Dominion University (ODU). 


	Spatiotemporal Downscaling Rainfall Predictions of North American Regional Climate Change Assessment Program for Entire Virginia
	Recommended Citation

	TABLES OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	1.1 Problem Statement
	1.2 Objective

	LITERATURE REVIEW
	2.1 General Circulation Model or Global Circulation Models (GCMs)
	2.2 Downscaling Methods
	2.3 Dynamical Downscaling
	2.3.1 Regional Climate Models (RCMs)
	2.3.2 Approaches Developments
	2.4 Statistical Downscaling
	2.4.1 Approaches Developments
	2.4.2 Model Output Statistics
	2.4.3 Weather Generators
	2.5 Summary

	METHODS
	3.1 Study Site
	3.1.1 Site Characteristics
	3.1.2 Rain Gauges
	3.2 Available Data
	3.2.1 Rainfall Data
	3.2.2 RCMs Predicted Precipitation
	3.3 Downscaling Methods
	3.3.1 Spatial Downscaling
	3.3.2 Temporal Downscaling
	3.3.2 Reliability Analyzing

	RESULTS AND DISCUSSION
	4.1 Downscaling Results
	4.1.1 Spatial Downscaling
	4.1.2 Temporal Downscaling
	4.2 Results from Different RCMs

	CONCLUSIONS AND RECOMMENDATIONS
	5.1 Conclusions
	5.2 Recommendations

	REFERENCES
	Bio Sketch

