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ABSTRACT

ALGEBRAIC GRID GENERATION
USING
TENSOR PRODUCT B-SPLINES

Bonita Valerie Saunders
01d Dominion University, 1985
Director: Dr. Philip W. Smith

In general, finite difference methods are more success-
ful if the accompanying grid has lines which are smooth
and nearly orthogonal. This thesis discusses the develop-
ment of an algorithm which produces such a grid when given
the boundary deScription.

Topological considerations in structuring the grid
generation mapping are discussed. In particular, this
thesis examines the concept of the degree of a mapping
and how it can be used to determine what requirements are
necessary if a mapping is to produce a suitable grid.

The grid generation algorithm uses a mapping composed
of bicubic B-splines. Boundary coefficients are chosen
so that the splines produce Schoenberg's variation diminish-
ing spline approximation to the boundary. Interior coeffi-
cients are initially chosen to give a variation diminishing
approximation to the transfinite bilinear interpolant of

the function mapping the boundary of the unit square onto
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the boundary of the grid.

The practicality of optimizing the grid by minimizing
a functional involving the Jacobian of the grid generation
mapping at each interior grid point and the dot product
of vectors tangent to the grid lines is investigated.

Grids generated by using the algorithm are presented.
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1. INTRODUCTION

Grid generation is the numerical development of curvi-
linear coordinate systems. In recent years grid generation
has been the key to solving partial differential equations
on arbitrarily shaped regions by finite difference methods.
Although much of the motivation for grid generation has
come from fluid dynamics, the techniques apply to any area,
such as electromagnetics and heat transfer, which involves
the solving of partial differential equations on a physical
domain.

Inherent in grid generation techniques is a mapping
T from some canonical domain such as a square or rectangle
in two dimensions, or cube in three dimensions, onto the
physical domain on which the partial differential equations
are to be solved. The image of a mesh on the canonical,
or computational, domain will be a grid on the physical
domain. When the grid boundary coincides with the boundary
of the physical domain, the system generated is called
a boundary fitted coordinate system.

A boundary fitted coordinate system allows one to
apply boundary conditions exactly, thus avoiding interpola-
tion errors. However, such a system may make the equations
to be solved more complex [Sm].

The distribution of the coordinate lines, or grid
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lines, should be smooth, but concentrated in areas where a
large gradient occurs in the physical solution. As stated
by Thompson, Warsi and Mastin [TWM], "the grid points may
be thought of as a finite set of observers of the physical
solution, stationed to be most effective in covering all
of the action on the field." Ideally, the grid should

be adaptive, that is, coupled with the physical solution
so that it automatically redistributes its grid lines to
obtain the desired regions of concentration as the solution
evolves. However, the interior lines should not cross

the physical boundary and should be nearly orthogonal at
the intersection points to avoid large truncation errors
in the finite difference approximations.

Grid generation is based on the observation that
finite difference computations are much easier to make
on a uniform mesh over a canonical domain such as a square
or cube than on a grid over an irregularly shaped region.
Therefore, the partial differential equations to be solved
must first be transformed so that the computational coordi-
nates become the independent coordinates. The resulting
equations may then be expressed as finite difference equa-
tions on the computational domain.

Grid generation techniques may be divided into two
general types: partial differential equation methods and
algebraic methods. P.d.e. methods include elliptic, hyper-
bolic and conformal mapping techniques. All of these methods

involve the solving of partial differential equations to
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obtain the grid coordinates. The simplest elliptic method
for grid generation uses the Laplace equations

a*g = 2% + 92€ = 0

A%n = 8°n + 3°n = 0

where ¢ and n are the computational coordinates and x and y
are the physical coordinates in two dimensions. The equations
are first transformed so that the independent and dependent
variables are interchanged. Then the new equations are

solved for x and y in terms of ¢ and n. Some control over

the grid cell spacing can be accomplished by introducing
control functions P(g,n), Q(g,n) and solving the Poisson

equations [TWM, p. 39]

P(gsn)

n

A% E

A*n = Q(g,n).
Solving the Laplace equations

a*g = 0

A*n = 0
with boundary conditions

Ey = ny

Ey = -ny
produces a conformal transformation [TWM, p. 11]

Starius [St, p. 27] shows that solving an initial value

problem satisfying

Xn = -ygF

Yn = Xxgf
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4
where F is chosen so that the system is hyperbolic produces
a hyperbolic grid generating system. Grids generated from
elliptic equations are generally smooth regardless of the
type of boundary, but slope discontinuities propagate through
hyperbolically generated grids [St]. Generating a grid
using conformal mapping techniques requires careful selec-
tion of the boundary data, making it difficult to structure
the grid to obtain a high concentration of grid points
in areas of large gradients in the physical solution. More
grid points may have to be added in order to capture regions
of rapid change such as shocks and boundary layers. Also
in p.d.e. generated systems the Jacobian information needed
for the transformation of the equations being solved must
be computed numerically.

In algebraic methods an explicit functional relation-
ship between the computational and physical domains 1is
defined. Therefore, no p.d.e. need be solved to obtain
the grid coordinates and the Jacobian matrix can be computed
analytically. Such methods allow more precise controls
of the grid structure making it easier to concentrate grid
points in large gradient areas. However, algebraically
generated grids are more sensitive to point distributions
on the boundary and, in general, may not be as smooth as
those generated by elliptic techniques [Sm]. Slope discon-
tinuities on the boundary may propagate into the field.
Nevertheless, a variety of techniques have been used to

produce acceptable smoothness in algebraically generated grids.
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This thesis discusses an algebraic grid generation
technique for creating boundary fitted coordinate systems.
This technique uses a mapping which is a sum of tensor
product B-splines. Chapter 2 discusses degree theory,
explaining how the degree of a mapping can be used to deter-
mine what conditions must be met if an algebraic transforma-
tion is to produce a suitable grid. Chapter 3 presents
the tensor product grid generation mapping and discusses
the properties of B-splines to show their suitability for
use in such a mapping. Chapter 3 also introduces a func-
tional which can be used to change the coefficients in
the mapping in order to enhance the smoofhness and orthogo-
nality in the generated grid.

Chapter 4 discusses the computer program TENTEST
which uses the techniques presented in Chapter 3 to generate
grids on arbitrarily shaped two-dimensional domains. Some
of the grids created using TENTEST are illustrated and
discussed in Chapter 5. Conclusions and suggestions for

further study are presented in Chapter 6.
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2. APPLICATIONS OF DEGREE THEORY

This chapter discusses degree thoery and shows how
the degree of a mapping can be used to help determine what
requirements are necessary if a transformation T is to
produce a suitable grid.

Since the distribution of grid lines should be smooth
with concentration in areas 6f large gradients in the
physical solution, the image of T should cover the entire
physical domain, that is, T should be onto. Also, the trans-
formation should be one to one. In terms of the grid, this
means that the grid lines should not overlap the physical
boundary and should intersect only at points corresponding
to intersection points on the mesh in the computation domain.

Requiring T to be one to one and onto is equivalent
to saying that the system T(s)=p must have one and only one
solution in the computational domain for each point p in
the physical domain. This provides the moctivation for
looking at the following general problem:

Pick an open set DcRn, where R" is euclidean n-space,
and let C be an open bounded set such that CeD. If

M is a continuous mapping and yeRn is given, how

F:DeR™ =R
many solutions of F(x)=y exist in C?
The difficulty in solving this problem lies in the

fact that in general the solutions do not vary continuously
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with F or y. This difficulty may be resolved by looking
instead at the difference between the number of solutions
for which the Jacobian of F is positive and the number of
solutions for which the Jacobian of F is negative. Loosely,
this is what is called the degree of F at y with respect

to C.

2.1 Defining the Degree of a Mapping

A more precise definition of the degree of a mapping
F takes on different forms depending on what restrictions
are placed on F. What follows are essentially the defini-

tions presented in references [S] and [O0].

2.1-1 Definition. Let C<R" be an open bounded set and let

F:C<R" -~ R" be continuously differentiable on C. Pick
y¢F(aC) and let r = {xeC|F(x) = y}. If F’(x) is nonsingular
for all xer then one defines the degree of F’at y with
respect to C by

deg(F,C,y) = «Ir sign det F"(x).

In [0], Ortega and Rheinboldt actually define the
degree in terms of an integral and then show that it has
the equivalent form given above.

On removing the restriction that det F" (x) # 0 for
xel the definition becomes

deg(F,C,y) = lim deg(F,C,y,)

—-®

where lim Y =Y and each element of {yk}

-0

satisfies Y £ F(aC) and det F’(x) # 0 whenever F(x) = Y-
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Actually, one can make the stronger statement that

for any such sequence {yk} there is a kO such that
deg(F,C,y) = deg(F,C,yk) for kzko [0, p. 159].

The Weierstrass approximation theorem makes it
possible to extend the definition of the degree of a mapping

to a continuous function.

2.1-2 Definition. Let F:CcR"~ R" be continuous on the

bounded open set C. Define FI| = SUYP F(x)| where |-
C x¢C

is the Euclidean norm. Then for ydF(aC) one defines the
degree of F at y with respect to C by

deg(F,C,y) = lim deg(Fj,C,y)
j—om

where {Fj} is a sequence of maps which are continuously

differentiable on an open set D>C and which satisfy

lji-.mw H FJ-F ”C=O

2.2 Properties of the Degree

The principal properties of the degree are given

below. Excellent proofs may be found in [S], [0] and [H].

2.2-1 Theorem. Let F:Ce=R"= R" be continuous on the open

bounded set C and letT = {xeC|F(x)=y}. For any ydF(aC)

there exists a quantity, deg(F,C,y), which has the properties
listed below. It is:

1. Integer valued

2. Invariant under homotopy
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+1 . .
n+i. Rn is continuous, then

If W:Cx[0,1]eR
for any zeR" satisfying W(x,t) # z whenever
(x,t)e aCx [0,1], deg(W(-,t),C,z) is constant
for all te [0,11.

3. Dependent only on boundary values

Fepl _pN . _
If G:CeR"-R" is continuous and Glac = F%C ,

then deg(F,C,y)=deg(G,C,y).

4. Invariant under translation

For any zeR".
deg(F-z,C,y-z)=deg(F,C,y).

5. Invariant for points which can be connected by a

continuous path avoiding F(aC)

See Figure 1.

6. Invariant under the excision from C of any clesed

set Q satisfying Qnr = @

In other words, if Qnr=@, then deg(F,C,y) =
deg(F,C-Q,y). 1In particular, if Q=C, deg(F,C-Q,y)=0.
This property will be called the Excision Property.
The Excision Property can be used to prove a very
important result which is called the Kronecker Theorem in
[0, p. 1611].

2.2-2 Theorem (Kronecker). If F:CcR"= R" is continuous on

the bounded open set C, y#¢F(aC) and deg(F,C,y) # 0, then
the equation F(x)=y has a solution in C.
Proof: Suppose F has no solutions in C. Let Q=C. Since
ydF(Q), the Excision Property implies deg(F,C,y)=0.

Q.E.D.
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F(aC)
C F(C)

dEQ(F,C,yo) = deg(F,C,)’l)

i | i ted
igure 1. Invariance of the degree.wpen points connec
Fig by a continuous path avoiding F(aC).
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2.3 A Topological Definition of the Degree

Dugundji [D] presents an alternate formulation for
the degree of a mapping. He defines the degree of a
mapping f:5S- S where S is the unit n-sphere in Rn, that is,

S = {xeR"| x| = 1M
This degree can be shown to be equivalent to the analyti-
cally defined degree in the previous sections.

Before defining this degree, several terms must be

discussed.

2.3-1 Definition. A set Ecr" is called a linear variety

if xl,xzeE implies Ax1+(1—x)x2eE for all real a.

2.3-2 Definition. A hyperplane in R" is an (n-1) dimen-

sional linear variety. If n=1 then a hyperplane will be a

point. For n=2 it will be a line, and for n=3 it is a plane.

2.3-3 Definition. If {xo,xl,...,xn} is a set of n+l points

in Rn, then the convex hull is called an n-simplex. It will

be denoted by & = (xo,xl,...,x ).

n

The points XgsXpse--sX, are called the vertices of the

n-simplex. If the vertices lie on a hyperplane in Rn, then

1 n
i,.'.’x.)

the n-simplex is said to be degenerate. Now if (x i

are the coordinates of point Xi then the volume of an

n-simplex [F, p. 208] is giver by
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I Jdet (X=X _ 3Xo=X_seeerX =X_)
o8 ( 1 70272 "o n "o
_ 1 .1 1 1. !
= l, X]=Xo  XomXg X=X,
nl!
det . . .
n ._n n ._n n .n
17X X27Xo **° Xp7X%g

An n-simplex is degenerate if and only if

det(xl—xo,xz—xo,...,xn-xo)=0.

The next three definitions will be used to explain

the term "ordered n-simplex."

2.3-4 Definition. A binary relation A in a set A is a

subset AcAxA.

2.3-5 Definition. If A is a binary relation in a set A,

then A is trichotomous if exactly one of the following is
true for each x,yeA:

XAy, X=Yy, YAX.

2.3-6 Definition. Let A be a binary relation in a set A.

Then A is a total order if it is transitive and trichotomous

[&, p. 2].

2.3-7 Definition. An ordered n-simplex [D, p. 336] is an

n-simplex together with a total ordering on its vertices.

Therefore, if the vertices XgoXpsewesX of an n-simplex

n

satisfy Xo<Xy <ewo<Xps then "<" totally orders the set

Ixgsxqs.oixp L Therefore, the n-simplex &= (x_,X|,...,x

O’ n)
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is an ordered n-simplex. Such a simplex will be denoted
(61 = [xy,xys....x,J. The sign of the ordered simplex

is the sign of det(xl-xo,xz-x seeasX =X ).

o n "o

Now suppose XgsXps=-esXg_] is a set of n points on S
having a diameter less than 1 so that the convex hull of
the set does not contain the origin. Then the convex hull
can be projected onto S by choosing the points on S lying
on the directed rays which start at the origin and pass
through the convex hull. The points on S form what will be

called the spherical (n-1) - simplex & = (Xo""’xn-l)‘

The spherical simplex & is degenerate if and only if
XgsXpoeeesXp 15 lie on a hyperplane in RM passing through
the origin, that is, if and only if (x ,x;,...,x, ;,0) is a

degenerate n-simplex in R". An ordered spherical (n-1) -

simplex is a spherical (n-1)-simplex with a total order
on its vertices. The sign of an ordered spherical
(n-1)-simplex [6] = [xo,...,xn_ll is defined to be the sign

of the n-simplex [xo,...,x 0] in R" [D, p. 3371].

n-1°
The next two definitions, which can be found in
[D, p. 337], complete the terminology needed to define the

Dugundji degree.

2.3-8 Definition. A triangulation a of S is a decomposition

of S into a finite number of nonoverlapping, nondegenerate
spherical (n-l)-simplexes such that each face of an (n-1)-

simplex is the common face of exactly two (n-1)-simplexes.
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2.3-9 Definition. Suppose S and =z are unit n-spheres in

RM. (Different symbols are used to make the concepts mare

clear.) Let a be a triangulation of S. A proper vertex

map e:A -2 is a map defined only on the vertices of the
spherical (n-1)-simplexes in A and is such that whenever

XgsXpae-sXy_q are vertices of a simplex in A, the set

n-

lo(xy)s0(xy)s..o0(x,_)}ez has diameter less than 1.

Under the proper vertex map ¢:A-Z there will be a
unique simplex ¢f{o) lying on = corresponding to each simplex
oeA. There will be a unique ordered (n-1)-simplex

w[o]=[¢(xo), dxl),..., dxn_l)] on £ corresponding to each

ordered (n-1-spherical simplex [o] . The sign of [o] may
differ from that of ¢[o], and the family of sets {¢ (o)]|oea}
may not form a triangulation of 2 since it may contain
overlapping simplexes and degenerate simplexes. However,
the family does have the fundamental property presented in

the following theorem which Dugundji proves [D, p. 237].

2.3-10 Theorem. Suppose A is a triangulation of S and

9:A —Z a proper vertex map. Let y be any point not on the
boundary of any set e¢(o). If p(y,s,9) is the number of
positive ¢lo] containing y and n(y,a,¢) is the number of
negative, then the number D(y,a,¢)=p(Yy, 4, 0)-n(y,a,9) is the
same for all yez not on the boundary of any o(o).

Since D(y, & ¢) is independent of y it can be denoted

D(A,(p).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



15

Now if F:S- = is continuous then the compactness
of S makes it possible to find a triangulation a of S such
that the diameter of F(o) is less than ! for each oceA.

Then if Ppia-Z is the proper vertex map defined by
¢F(x) = F(x) for each vertex x of 4, Dugundji [D, p. 339]
shows that the number D(A,¢F), where oF is the proper vertex

map associated with A, is independent of the triangulation

of S. He calls the quantity D(A,¢F) the degree of F.
Since 4 and o actually depend only on F, D(A,wF) can be

denoted D(F).
Like the analytically defined degree, this degree

is invariant under homotopy [D, p. 239].

2.3-11 Theorem. If F:S -z is homotopic to F:S~%, then

D(F) = D(F).

Now let V be the unit n-ball in R", that is,
V= {xer"| Ix |<l}. Dugundji's degree can be extended to a
continuous map H:V -V provided H[S maps S into S. S is
clearly the boundary of V. Dugundji calls such maps regular.
The technique for determining the degree of H is analogous
to what is done to obtain D(F) for F:S—-S. V is triangulated
into n-simplexes such that each face not on S is the face

of exactly two n-simplexes. Then a regular vertex map 1is

defined on the triangulation. ¢ is a regular vertex map
of a triangulation A of V if ¢ maps each vertex on S to a

point on S and ¢IS is a proper vertex map. To calculate
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the degree of H, which will be denoted Dreg(H)’ one chooses
the regular vertex map ¢,:a-V defined by ¢H(x) = H(x) for
any vertex xsA. Then choosing yeV—-S such that y is not
on the boundary of any ¢H(c) one computes

Dreg(H) = (number of positive ¢H[o] containing y)

- (number of negative @H[o] containing y).

Dreg(H) depends only on H, and if H and Q are homotopic
in such a way that the image of S remains on S throughout
g(H) = Dreg(ﬁ). Further-
more, Dugundji proves the following very useful result.

the entire deformation, then Dre

2.3-12 Theorem. Suppose H:V-V is a regular map. Let

F=H|g:S =S. Then D(F) = D, (H).

This theorem provides the information needed to show
that Dugundji's degree is equivalent to the analytically
defined degree. The following lemma will be used in the

proof.

2.3-13 Lemma. Suppose the following hypotheses are given:

1. H:V-V is a continuously differentiable regular
map
2. yeV=S and r = {xeV|H(x)=y}
3. H"(x) is nonsingular for all xer
Then there exists a triangulation A of V with associated
regular vertex map ®H such that whenever oeA contains Xxer
and wH[OJ is nondegenerate,

sign ¢H[c] = sign det H’(x).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



17

Proof: For each xeI choose a neighborhood NX of x so that
either sign det H’(p)>0 for all points peN or sign

det H°(p)<0 for all points peNx. Choose the neighborhoods
small enough so that the family of sets {NXIXsP} is dis-
joint. Then triangulate V so that each NX contains a non-
degenerate equilateral simplexox in which x lies, that

is, a nondegenerate simplex in which the distance between
any two vertices is the same. Call this triangulation a.
Now suppose o, eA and Sy = (xo,xl,...,xn) with the vertices

labeled so that [oX] = [xo,xl,...,x j is positive. Since

n

ou(x;) = H(x;), 1 =0, 1,...,n, the sign of ¢, [0 ]

= sign det [H(xl) - H(xo),...,H(xn) - H(x.)].

o

) + o(]x,-x_|) for

However, H(xi)-H(xo) = H'(xo) (xi-x i o'

0
i=l,...,n. Therefore, the sign of g [ox] = sign det

[H’(xo)(xl—xo) + o(lxl—xol),...,H’(xo)(x -x_ )} + o{x_-x_)1.

n""o n_ "o
Now if lxi—xol = e for i=zo0,1,...,n then expanding the deter-
minant above yields det [H’(xo)(xl-xo,...,xn—xo)] plus terms

of order o(en). Therefore, det [H’(xo)(xl-x

O’ )]’

which has order O(sn), is the dominant term, and the other

...,Xn-X0

terms can be neglected. Consequently, the sign of

)]

0’ Xn %o

sign [(det H’(xo))'(det (xl-x

¢H[cx] sign det [H’(xo)(xl—x

X -X_)1

0>"""*"n "o

sign det H’(xo) since [cXJ is positive. However,

since xosNx, sign det H’(xo) = sign det H’(x).

Q.E.D.
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2.3-14 Theorem. Suppose H:V -V is a continuously differen-

tiable regular map. Pick yeV-S and letp = {xeV]H(x) = y}.

Let F=H kzs -S. If H°(x) is nonsingular for all xer then

D(F) = deg (H,V,y).

Proof: Since 2.3-12 says D(F) = D (H), it suffices to

reg

show that Dre (H) = deg (H,V,y).

g

Choose a triangulation 4 of V as specified in 2.3-13
and let Py be the regular vertex map associated with a.
Without loss of generality, one can assume that ¢H(o) is
nondegenerate for all cea because any degenerate ¢H(o) can
be approximated by a nondegenerate simplex ¢(oc) where ¢ is
defined on éll vertices p in A so that |¢(p)-¢H(p)[<e
for a given e. According to Dugundji [D, p. 338], D(a,¢) =
D(A,¢H) = D(H) if e is sufficiently small.

Furthermore, one can also assume that y does not lie
on the boundary of any ¢H(o) for oea since property number
5 of Section 2.2 implies deg(H,V,y) = deg(H,V,p) for all
peV-S.

Therefore, it follows from 2.3-13 that Dre (H) =

g
number of positive mH(o) containing vy
- number of negative ¢H(o) containing y

= I sign det fo).
Xel

Q.E.D.
The following corollary shows that the restriction

that H"(x) be nonsingular for all xer can be removed.
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2.3-15 Corollary. Suppose H:V -V is a continuously

differentiable regular map. Pick yeV¥-S and let
r = {xeV|H(x)=y}. Let F=H[S:S-*S. Then D(F)=deg(H,V,y).
Proof: By Ortega and Rheinboldt [0, p. 1591, there exists
a sequence {yk} which converges to y and has the following
properties:

1. Each yde(S)

2. For each Yy det H(x) # 0 for all x such that

H(x)=y
3. For some ko, deg(H,V,y)=deg(H,V,yk) for all

k>k

So pick k* so that k*>k, and whenever k>k*, y,eV=S. Then
by 2.3-14 D(F):deg(H,V,yk*)=deg(H,V,y).
Q.E.D.
It should be noted that this corollary still holds
if H maps some of the interior points outside of V. The
points outside of V can be projected onto S so that one

obtains a mapping from V into V.

2.4 Applications to Grid Generation

The usefulness of degree theory in grid generation
surfaces when one studies a grid generating transformation
T. One might immediately note from the Kronecker theorem
that determining the degree at every point in the physical
domain would show whether or not T were onto. Unfortunately,

the degree is not always easy to compute in practice.
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One therefore looks instead at how the degree can be used
to prove some things about those quantities, such as the
Jacobian of T, which can be easily computed.

Recall that if AcR", BeR"

, then A homeomorphic to B
means there is a continuous one to one, onto mapping from
A to B whose inverse is also continuous. It is clear that
T should be a homeomorphism from the computational domain
onto the physical domaih.

The following result shows that if T is a homeomor-
phism, its Jacobian does not change sign.

In all of the theorems which follow I _=[0,1]", JT =

Jacobian of T, c%=interior of C, Cc=comp1ement of C,aC =

boundary of C and aeR" is homeomorphic to In'

2.4-1 Theorem. If T is a homeomorphism from In to @ and T

is continuously differentiable, then the Jdacobian, JT, of T
has one sign in Iﬁ, i.e., either JT(x)>0 for all XeIﬁ or
JT(x)<0 for all XEIg.

Procof: Suppose by way of contradiction that JT(xO)>O while

0 _ -
JT(x1)<O for some xo,xleIn. Let yO-T(xO) and yl‘T(Xl)’
Define p:[0,1]1~R" by

P(t) = T ( (1-t)x +tx;).

Then p(O):yo, p(l):yl, and p(t)dT(aIn) for te[0,1]. Hence,
by property 5, l=deg(T,Ig,yo)=deg(T,Ig,yl) = -1. There-
fore, either JT(x)>0 or JT(x)<0 for all XEIg.

Q.E.D.
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In an algebraic grid generation algorithm, the con-
struction of T will be based on boundary information.
The next theorem shows that requiring T to be a homemor-
phism from the boundary of the computational domain to
the boundary of the physical domain will insure that the

image of T covers all of the physical domain.

2.4-2 Theorem. If T:In-*Rn is continuously differentiable

and T maps aIn homeomorphically onto ag, then T(In):>g.
Proof: Let S be the unit n-sphere in RN By Dugundji
[D, p. 353], the Dugundji degree D of a map which is a
homeomorphism from S to S is +1 or -1. But aIn and aQ
are homeomorphic to S. Therefore, from 2.3-15 it follows
that for any yer, deg(T,Ig,y) = +* 1. Therefore, by the
Kronecker Theorem (2.2-2) o lies in the image of T.
Q.E.D.

Smith and Sritharan [SS] show that if an additional

hypothesis is added, one can obtain a much stronger conclu-

sion:

2.4-3 Theorem. If T:In ~R" is continuously differentiable,

T maps aIn homeomorphically onto ag and JT(x) # 0 for all

-

XeIg, then T is & homeomorphism from I to q.
The next theorem shows that the Jacobian changes sign

when the image of T overlaps the physical boundary. Theorenm

2.4-3 and Theorem 2.4-4 show that it is important that T be

constructed so that its Jacobian does not change sign.
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2.4-4 Theorem. Suppose T:In-*Rn has the following properties:
1. T is continuously differentiable
2. T maps aIn homeomorphically onto a@Q
3. m(T(In)—Q)>O
Then JT has a sign change.
Proof: Let C(I,) ={xeI, |dT(x) = 01 Sard's Theorem [0,
p. 130] says that m(T(C(I_)))=0. Since m(T(I }-q)>0, there
exists z*e T(In)—ﬂ such that T(x) = z* implies JT(x) # O.
Now, choose ws[T(In)]C. By property 5,
deg (T,10,z%) = deg (T,I10,w) = 0. Since deg (T,I],z*) =

Z sign JT(x), the Jacobian values at all x satisfying
{x|T(x)=z*}

T(x) = z* must cancel each other.

Q.E.D.

2.5 Additional Topological Questions

Section 2.4 suggests other questions which should
be asked. Can a continuously differentiable homeomorphism
from aIn to 99 always be extended to a continuously
differentiable homeomorphism from In toqe? If not, under
what conditions is such an extension possible? How can
one guarantee that a mapping from In to R" will be a
diffeomorphism?

The answers to these questions will provide valuable
information for creating an algebraic grid generation
mapping. Although this paper does not answer all of these

questions, partial answers were presented in the previous
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section. Also, the following example shows that contin-
uously differentiable boundary homeomorphisms cannot always

be extended.

2.5-1 Example. Suppose T:IZ-'R2 is continuously differen-
tiable and maps the boundary of the square homeomorphically
onto the boundary of the nonconvex region @ shown in figure
2. Let p be the point indicated and ap = (Agn). If

- A
T, (p) =-§l(p) and T,(p) = aT(p) then
3 an

T(p+ap) = T(p) + T (p)(ap) + o(|ap])
= T(p) + agTy(p) - anTy(p) + o(]ap])

When |ap| is small, the terms of order o(|ap|) are
negligible in size when compared to Ang(p) and AnTz(p).
Therefore, those terms may be neglected from the equation
above. However, then it is clear that T(p+ap)} must lie
outside the boundary of @. Consequently, T cannot be a
homeomorphism from 12 to @. This is illustrated in figures
3 and 4 which show the result of attempts to construct a
tensor product spline transformation that maps the square
onto @. In each case points overlap the boundary near
the "V" shaped corner.

The first grid was obtained by choosing the B-spline
coefficients so that the transformation approximated a
transfinite bilinear interpolation mapping. This is dis-
cussed in Chapter 4. The second grid was obtained by chang-
ing some of the coefficients in order to minimize a func-

tional which is described in the next chapter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-T,(p) T(p)

Mapping the square onto a nonconvex region.

® p+Ap

Figure 2.
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- Figure 3. Initial grid on nonconvex domain.
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Figure 4. Optimized grid on nonconvex domain.
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3. AN ALGEBRAIC GRID GENERATION MAPPING

In this chapter an algebraic grid generation tech-
nique which uses a transformation consisting of tensor
product B-splines is discussed. In the first section,
finite difference approximations to the transformed deriva-
tives of a first order partial differential equation are
examined. The effect of the size of the Jacobian on smooth-
ness and orthogonality is discussed, and its influence
on local truncation error is examined. . The next section
defines the particular transformation of interest in this
paper and discusses the properties of the building blocks
for this transformation: kth order B-splines. The final
section discusses a functional which can be used to modify
the transformation so that the grid lines are distributed
more smoothly and are nearly orthogonal at points of inter-

section.

3.1 A First Order Example

If &€ and n are the computational coordinates, satis-
fying 0<g<l and O<n<l, and x and y are the physical coor-
dinates, then the grid on the physical domain will consist

of coordinate lines produced by a mapping

T(E,n) = (X(i,n))
)’(E’n)
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If uy = F(x,y,u,ux,uy) is a first order partial differen-

tial equation defined on the physical domain, then the

chain rule yields (u

. un) = (ux u.) x J where J = [?g Xnl, the

g Ye yn_l

Jacobian matrix for the transformation T. Hence

(u. u -1

X y)

(ug upy) x J

(ug up) x [yn 'Xn] JT
~Yg Xg

where JT = |[J| = Xgynq - Xnpye. It is clear that the partial

differential equation can be transformed once the elements
of J are computed. These elements may be approximated

by differences when explicit formulas are not available.
The transformed expressions for u, and uy show immediately
that the grid must be structured so that JT # 0 at all
mesh points (g,n)-

Once the partial differential equations are trans-
formed, difference approximations can be written for ug
and un. Large truncation errors in the approximations
will affect the solution of the partial differential equa-
tions. One can obtain an expression for the truncation
error at mesh point (gi,n.) by doing a Taylor series expan-

J

sion at (g,,n;). If u.., = u(Eg;

P2 N i ] ,n.), then

177

1]

2 3
Uipi,j = Ui * Ugsg + Ugg (A') + Uggg (A%) + HOT
! = Ujj - Ugag *+ U - u )3 + HoT
i-1,3 ij glg EE —?é_ EEE _35_
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where HOT = higher order terms. Subtracting these two

equations and solving for ug yields

2
Uu. = Uu. T . - u (ag}® + HOT
£ i+1,] i-1,] EEE ==
Z2 AE
Similarly,
u - u, - u___ (am)? 4 HOT

n T Yi,541 i,j-1 nnn —g-

2 An

Therefore

< 2 2
u = l__ (.Ynf’gu‘)’gonl-') - ! (.yt]uggg(AE) -)’gUm—m(An) )

JT 6J

where 6g U and 6 U are the central difference approximations

for u. and u , respectively. The truncation error is

13
S (Votgge (8g) FYgUnnq (8,)%) + ...
Now if r = (;), then
IT = Xg¥y = Xp¥g
= (rgxrn) . (0,0,1)T
= lrgl Irnlsin €

where © is the angle of intersection of the grid lin=zs

at (¢,n). Again, the importance of JT # 0 is evident,

but one can also see why the grid lines should be as ortho-
gonal as possible. The expression for JT implies that

the truncation error is inversely proportional to sin e.
However, according to Thompson, Warsi and Mastin [TWM,

p. 82] a departure from orthogonality of up to 459 is

usually tolerable.
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3.2 B-splines

The mapping T discussed in this paper has the form

m n T
z X
i1 j=1aijsij(€’n-) 0<E<]
X( E, T}) =
T( & n) = [y( & n)]
m n
z pX
i1 j=lsijBij(€’") 0<n<l
S —

where the Bi i=l,...m; j=1,...,n are tensor products

j’

of B-splines and the coefficients “ij’ Bij’

i=l,...,m;
j=1l,...,n are real numbers. In this section, the terms
B-spline, spline function and tensor product B-spline are
defined, and some of the important properties of these

functions are discussed.

3.2-1 Defining B-splines

The following definition is from A Practical Guide

to Splines by Carl de Boor [de B, p. 108].

3.2-1-1 Definition. If t = {ti }is a nondecreasing sequence,

then the i-th normalized B-spline of order k for knot se-

quence t is defined by

Bi k,t(X) = (ty,-t;) LT,

k-1
i 1""’ti+k]("x)+ where xeR.

The sequence t may be finite, infinite or biinfinite.

k-1

+ denotes the kth

The expression [t;,....t; , J(--x)

k-1
+

of the polynomial of degree k which interpolates (--x)_‘:‘l

divided difference of (- -x) or the leading coefficient
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. k-1
at ti""’ti+k' The notation (--x)+ represents the trun-
cated power function (t»-x)f:'1 which is defined by
k-1
(T-X)E-l ={(T-X) for T>x
0 for T<x

The <+ indicates that the kth divided difference above should

be evaluated by holding x fixed and considering (r-x)_}:'l

as a function of = only. Nevertheless, since Bi,k,t(x)
changes as one chooses different values for x, it is clearly
a function of x.

The definition above differs slightly from the original
definition given by Curry and Schoenberg. Their B-spline

Mi,k,t is related to Bi,k,t by the equation

Mi,k,t = [k/(ti+k-ti)] Bi,k,t [de B, p. 1091].

3.2.2 Properties of B-splines

A kth order B-spline Bi Kot is a piecewise polynomial

of degree k-1 with breakpoints at ti,...,t 0On each

i+k*

interval (tj,t ) Bi K.t is a polynomial of degree k-1

j+l
or less. For convenience it will be assumed that Bi K.t
is continuous from the right at breakpoints.

B-splines have many properties which make them
convenient for applications involving computers. One impor-
tant property is their small support. If xé[ti,ti+k],

)k—l

then (t-x + will be a polynomial of degree k-1 or less
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k-1 .
on [trti+k]' Hence [ti"“’ti+k] (T—XL = 0. Therefore,

B (x) = 0 for x¢ [ti,t.

ik, t f+kd-

This implies that the support of Bi

at most k intervals of the form [tj,tj+1]. Therefore,

ie i
KLt can lie in

if {Bi} represents the sequence of B-splines of order Kk
for the knot sequence t = {ti}, it follows that only the k
B-splines Bj-k+1’ Bj-k+2""’Bj can have support in any

given interval [tj,tj+1].

The next two results, which are proved in [de B,
p. 110] and [de B, p. 1301, respectively, show that B-splines

form a partition of unity, i.e., the sequence {Bf consists

of nonnegative functions which sum up to 1.

3.2.2-1 Theorem. If {Bi} is the sequence of B-splines of

order k for a nondecreasing sequence t = {tih then

_ a-1 -
% Bi(x) = s Ei(x) =1

i=p-k+l
for any xE(tpxq) where p and g are such that p-k+1 and
g+k-1 lie in the index set for t.

3.2.2-2 Theorem. If B; is the ith element of the sequence

of B-splines of order k for a nondecreasing sequence
t = {ti}, then Bi(x)>0 for ti<x<ti+k'
One can think of the "B" in B-splines as representing

the word "basis," for when the knot sequence t is chosen
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appropriately, the kth order B-splines for t form a basis

for the piecewise polynomial space Pk Eove is the

Pk,g,v
notation used by de Boor [de B, p. 100] to represent the
space of piecewise polynomials of degree k-1 which have
breakpoint sequence £ and which satisfy smoothness conditions

specified by v. If € = {Ei}T+1, then the nonnegative
sequence v = {vi}g gives the number of smoothness conditions

at each Ei, i=2,...,m. For example, if v, = 3 then any

feP must have at least 3 smoothness conditions at

k’g,v

13 that is, the function, its derivative and'second deriva-

E’

tive must be continuous at Ez. The dimension of Pk £ v

is km—g v -
i=2

The following theorem of Curry and Schoenberg [de B,C]
shows how the knot sequence t should be chosen so that

the corresponding B-spline sequence forms a basis for Pk £ v

3.2.2-3 Theorem (Curry and Schoenberg).

Let ¢ = {ai}T+1 be a strictly increasing sequence and
v = {“i}g be a nonnegative integer sequence such that

v: and let

v.<k for all i. Set n = k+@¥
iz i= =2 !

2(k'\)1) = km-

=3

t = {ti}?+k be a nondecreasing sequence such that

(1) ty<tpse--<tysey and gpy <ty <houk
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(ii) for i=2,...,m, the number gi occurs exactly

k—\ﬁ times in t.
Then the sequence Bl""’Bn of B-splines of order k for

the knot sequence t is a basis for Pk £, v viewed as

functions on [tk,tn+1].

This theorem shows how the number of knots at a break-
point translates into the amount of smoothness there.
Since the number €i occurs exactly k- v times in t and
Vi represents the number of smoothness conditions at 5>
the number of smoothness conditions at &, equals k minus
the number of knots at g - Hence if k=4 and ?j’ Zijim’
occurs exactly once in t then the piecewise polynomials

generated by Bl,...,B will satisfy three smoothness condi-

n
tions at Ej, i.e., the piecewise polynomials, their first
derivative and their second derivative will be continuous

t g;.
a %

3.2.3 Spline Functions

In early studies of splines, a spline function of
order k was defined to be a piecewise polynomial of degree
k-1 with k-2 continuous derivatives. However, in this

paper the more general definition in [de BJ] is used.

3.2.3-1 Definition. If t = {ti} is a nondecreasing sequence,

then a spline function of order k with knot sequence t is

any linear combination of the B-splines of order k for
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the knot sequence t. If one denotes the collection of all

such functions by Sk t then

- I . i
Sk,t -{iai Bi,k,t'“i real for all i}.

It is clear that when t has the form described in the Curry

and Schoenberg theorem 3.2.2-3, S . =P on [ttt .q]-

k,t ka £, Vv

The first derivative of a spline function f“i B « t

can be found by using the differences between successive
coefficients. The following result, proved in [de B, p.
138], shows that the derivative of a spline function of

order k will be a spline function of order k-1.

3.2.3-2 Theorem. Let ?“i B; | be a kth order spline

function constructed with B-splines Bi K.t corresponding

t0 a nondecreasing sequence t = {ti}. Then the first deri-

. % o - .
vative of i 8y k.t is given by

3 e
d(je; By k) = 1(k-1) o505 1 By p 1.t

dx tivk-1"%

The value of a spline function f = ?u. B at a

j Ti.k,t

point x satisfying ti<x<ti+1 is a convex combination of

the k coefficients O fokm o % For if ti<x<ti+1, then

f(x) = Jzon- B B

3 j,k,t(x) = } x) with the B.

ke STt Jaket

satisfying f Bj,k,t(x)= 1 and Bk(x)zo for all j.
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B-spline coefficients model the functions that they
represent. In other words, the coefficients are
approximately equal to the value of the function at certain
points. This is illustrated in the next section.

Carl de Boor [de B] proves the following result con-
cerning the relationship between a spline function and
its B-spline coefficients. The notation Ilfll[a,b] denotes

max [f(x) |.
xela,b]

3.2.3-3 Theorem. Let %ai B be a kth order spline

i,k,t

function constructed with B-splines Bi k.t corresponding

to a nondecreasing sequence t = {ti}' Then there exists a

positive constant Dk’ depending only on k, so that for all
i,

.| < Dy | |2, B.
leg | < DillFey BJ,k,‘c”[ti+1,’ci+k_11

3.2.4 Variation Diminishing Splines

Given an f known to lie in Pk £ v one can write it

in the form f = g “iBi' The Curry and Schoenberg Theorem
i=1
(3.2.2-3) shows hcw one obtains the B-spline basis and

the following lemma suggests how one might obtain the

coefficients. Its proof may be found in [de B, p. 1161].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



37

3.2.4-1 Lemma (de Boor and Fix). Let Bi be the sequence

of B-splines of order k for a nondecreasing sequence
t = {ti}. Let A4 be the linear functional defined for all
() k-l-r¢(k-1-r)(1.)f(r)(

i ri) where
0

k-
r=

e(t) = (T, 4-t) .. (¢4

1+k't) /{(k-1)! and T, is some arbi-

trary point in the open interval (ti’ti+k)' Then

X Bj = °ij for all j.

Hence, if f = a; B; it follows that o, l<k<n may

n
=
i=1

be found by computing Akf = xk(;u. B

) = «,. By explicitly
i i k

i
writing out the expression for Akf one can easily show

[de B, p. 159] that e; = f(r;) + o(jt]) if ©; is any point

in (t.,t. ) and |t| = ™% (¢

itk i i+1'ti}' However, if

- * ] nra * _ -
T. = ti, 1<i<n where ti = (t + ... 4+ ti+k-1) / (k-1) then

1+1

f(t?) + O([tlz). Choosing ai=f(ti) for 1<i<n yields a

il

et

shape preserving approximation called Schoenberg's variation
diminishing spline approximation [de B, p. 159]. So if

? the variation diminishing spline approximation

. *
tx = {ti}
to f, vf, is defined by

— *
vf = f(ti) Bi'

n
z
i=1

This spline reproduces polynomials of degree one, i.e.,

if f is a straight line then vf = f. For any f the number of
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times the spline approximation crosses a given line will

be less than or equal to the number of times f crosses the
line. From this it follows that if f is nonnegative, then

vf is nonnegative and if f is convex then vf is édnvex. How-
ever, since v has these shape preserving properties, it is
not a very high order approximation. 1In fact, if g is a
function defined on [a,b] and g has m continuous derivatives
for some m>2, then de Boor [de B, p. 161] states that

2 . .
lfg—vgll[a’bjfpg’kltl , where Cq k 15 @ constant depending

on the order of the spline function k and the function g.

No matter how large m is, no exponent larger than 2 can be
put in the inequality. De Boor shows that it is possible to
obtain other spline approximations which are more accurate,
but variation diminishing splines are convenient for appli-
cations such as computer-aided design and grid generation

where shape preservation is important.

3.2.5 Tensor Product B-splines

3.2.5-1 Definition. Let R be the set of real numbers. If

V is a linear space of functions mapping some set X into R
and W is a linear space of functions mapping some set Y into

R, then for each veV and weW the tensor product, vaw of v

and w is defined by
vaw(x,y) = v(x)w(y) for (x,y)eXxY.
Furthermore, the set of all finite linear combinations of

the form vaw for some veV and weW is called the tensor
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product, VBW of V with W.

A typical element u of VEBW has the form

Bw.)

oy (V58w

=1

™M 3

where ajeR, vjev, wjew for j=1,...,n.

If V and W are the linear spaces of spline functions

S and Sk p respectively, then the elements of VEBW are

h,s
linear combinations of tensor product B-splines. A tensor

product B-spline B, is defined by Bij(x,y)=Bi (x)B

j h,s(XIBy g 1 (Y)

where Bi h

s is the ith B-spline of order h for the knot

sequence § = {si} and Bj K.t is the jth B-spline of order k
for the knot sequence t = {tj}. An element u of VBW will

be called a tensor product spline and will have the form

Zza B

YT F %15 Pij

where aist for all i,j. When h=k=4 u may also be called

a bicubic spline.
Many of the properties of tensor product B-splines
follow trivially from B-spline properties. For example,

the tensor product B-spline Bij will be positive on its

support since both B.

i.h,s and Bj,k,t are positive on their

support. Furthermore, the support of Bi is small. Since

J
i,h,s(x) = 0 for xﬂbi,si+h] and Bj,k,t(Y) = 0 for yé[tj,tj+k]

it is clear that Bij(x,y) = 0 if eitherx¢ls;,s, T or

B

y¢&j,tj+k]. Hence the support of Bij lies in the shaded
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area shown in figure 5.
Tensor product B-splines also form a partition of

unity. It follows from 3.2.2-1 that £2B (x,y) =
: 1j ij
B (x)2ZB (y) = 1 for any (x,y) e(sp,s

&b “B )x(t,.,t ) where p
i 0§

q

and q are such that p-h+l and q+h-1 lie in the index set
for sequence s and r-k+1 and m+k-1 lie in the index set
for sequence t.

Partial derivatives of tensor product splines are
easy to compute since they reduce to derivatives of spline

functions.

8 (22 o B (x,y)) 3 2z, B (x)B (y)
X i1j ij 1] ox 1j7ij i j

= 3B (y) d (3, B (x))
J ] dx i7ij i

(z , B (x,y)) 3z B (x)B (y)
171§ 1] 8y ij ij i i

@I@
<

= 3B (x) d (3, B (y)
i1 dy %5

3.3 A Smoothing Functional

The mapping T described in this paper uses tensor
product B-splines to map the unit square onto a physical
domain of arbitrary shape. This section shows that
choosing the coefficients of the tensor product B-splines
so that they minimize a certain functional can improve
the quality of the physical grid produced by T. This

functional is described and conditions under which it will
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have a minimum are examined.

3.3.1 Characteristics of the Functional

The coefficients of the mapping defined by

m  n N
z z
x(g,n)|_
T(g,n) = |y(g,n)
m n
z z
i=1 J=IBIJBIJ(E’H) Oiﬂil

can be divided into two groups: boundary coefficients and
interior coefficients. T uses the boundary coefficients,

“ij’Bij’ j=1,...,m and “imBime i=1l,...,n to map the boun-

dary of the square onto the boundary of the physical domain.
Hence, the flexibility of their values is limited. The

rest of the coefficients, the interior coefficients, can

be moved around in order to change the characteristics

of the physical grid. To produce orthogonality in the grid
lines and maximize the smoothness of the distribution of
grid lines one can choose the interior coefficients to

minimize the functional

F =/1 wyf(29TY? +(2a1\?\aA + ﬁ w,(Dot) 2dA
2 3E an 2

JT(g,n)

where

Jacobian of T at (g,n)

ax (g,n) 3x (g,n)
e} an

m

(Esn) _al (Esﬂ)
an

Q
<

@
m
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=a_X(€,n) E_}i(g,n) 'a_)’(g:ﬂ)ﬂ(g:ﬂ)s

ot an X3 on
Dot (53‘1) = a_T (E,n) '_aI (.gsn)

o on

= r_'al (EsnT _a_)i (E,n)
oL an
dy (&,n) ay (g,n)

g an

ax (g,n) ax (g,n) + a8y (g.n) 8y (g, n)
3E an g an

and wl(g,n), wz(g,n) = weight functions evaluated at (g,n).
After the minimization of F is completed, where Wy is large

the variation of the Jacobian values at nearby points will

be small. Hence, Wy can be used to decrease skewness in
a grid. Where Wo is large, Dot will be small causing the

grid lines to approach orthogonality.
To avoid the tedious differentiation and integration
of tensor product B-splines, the following discrete approxi-

mation to F can be implemented in computer algorithms:

p g I 2 2
ST §=”1’1((”1+1,j‘ )" T, 509T45) )Agm
(Aa)2 (An)2
R wl(Dot. )
W ot, . AEAN
i=1 j=1 ¢ 1
where
0 = g<g,<.. g = 1,
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JT.. = JT (ginj), Dotij = Dot (gfnj),

Ag = 1/(p-1), an = 1/(g-1), and

the parameters Wy and W, are weight functions. Both F
and G depend only on the coefficients of the tensor product
B-splines which compose T.

Now

m n
8x (&,n) = £ = a.. 8 (B..(g,n))
ER i=1 j=1 '3 Y

m n
ax (&,n) = = z .. 3 (B..(g,n))
B0 i=1 j=1 Y @ Y

m n
8y (g€,n) =2 z B8.. 8 (B..(g,n))
3E i=] j=1 3w U

m n
8y (€,n) = 2  B.. 8 (B..(g,n)).
0 i=1 j=1 Y3y Y

Thus, for £€,n fixed, JT{(E,n) is a linear function in each

coefficient aij’Bij’

i=l,...,m, j=1,...,n and Dot (g,n)
is a quadratic polynomial in each coefficient. Since the
terms involving Dot (£€,n) and JT (£,n) are squared in G,
one can see that G is actually a quartic polynomial in
each coefficient. This suggests an elementary iteration

method for finding the minimum of G: +the cyclic coordinate

method [B, p. 271].
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The cyclic coordinate method is a multidimensional
search technique for minimizing a function of several vari-
ables without using derivatives. It searches for a minimum
along each coordinate direction. This method, when applied
to a differentiable function, converges to a point where
the gradient is zero [B, p. 2731. It can be applied to

G if one treats each coefficient «..,8

ij° i=l,...,m,

ij’
j=l,...,n as a variable representing a particular coordinate
direction. This technique is discussed further in the

next chapter.

The importance of requiring that the Jacobian of T be
of one sign was illustrated in Chapter 2. For this reason,
if possible, the feasible region for the minimization
problem is chosen to be a region where the Jacobian of T is
nonnegative. Now since B-splines have small support, any
given coefficient « or B8 only affects the Jacobian

rs rs
of T at a small number of points on the unit square mesh.

By solving the inequality J7>0 for o at each of these

rs

points one can determine on what interval g must lie so

that the Jacobian values at the points it affects are non-
negative. This inequality is easy to solve since JT is

linear in ¢ Repeating this procedure for each coefficient

will, in most cases, produce a satisfactory approximation
to the desired feasible region. However, since the boun-
dary coefficients are fixed, there may sometimes be problems

near the boundary. This is the case with the nonconvex
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region examined in Section 2.5. The Jacobian will remain
negative at one of its corner points even after the domain
for the coefficients is restricted by using the procedure
above. This is because the boundéry points are fixed and
not affected by the procedure. The Jacobian will also

remain negative near this corner because of continuity.

3.3.2 Convergence of the Smoothing Functional

Under what conditions will the discrete smoothing
functional G converge to a minimum value? 1Is it important
that G be restricted to a region where the Jacobian of T is
nonnegative? What happens if one of the tensor product
coefficients becomes large?

These are some of the questions which might be asked
about G. The notation defined below will be used to discuss
these problems:

{Ar}is a sequence in which each term represents a set

of coefficients for the mapping T:I2 R2 defined by

m n o
z ..B.. (g,
a1 511 1j(&n)
T(g,n) = ,0<E<1, 0<n<l.
m n
.:B:.(E,
tol J;=1 *13813 (e n)
Each Ar E;n be considered a discrete function defined

by
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A(s,1,3) = | g if s =2 [ 1=heeom d=lon.

Tr denotes thé—mapping obtézned when the coefficients
given by Ar are used for T.

JTr denotes the Jacobian of Tr'

_ max

,Arlmax - s,i,j’Ar(s’i’j)l'

It follows that if the sequence {Ar}of coefficients

converges to a single point then the corresponding values
of G also converge. Hence, it is important to determine
conditions which guarantee the convergence of the coeffi-
cient sequence. Well, since the elements of {Ar} can be

viewed as points in R2mn

, the sequence converges if and

only if it is a Cauchy sequence; however, a necessary condi-
tion for the convergence of {Ar} is that the sequence be
bounded. The following theorem and corollary show how the

Jacobian affects the boundedness of the sequence.

3.3.2-1 Theorem. Suppose for all r Tr maps 612 homeomor-

phically onto aq. If JTr(E,n)ZO for all r and all points
0 . . -

(g,n) ¢ IZ’ then either {Ar} is bounded or JTr(go,no) =0

for some point (go,no) € Ig.
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Proof: By way of contradiction, suppose {Ar} is not bounded
and JTr(g,n)>0 for all r and all points (g,n) « Ig. For

| >N

any integer N there exists an A e{A } such that |A max >N~

N "N

N ™N

But this implies that either & |[>N or |8
ij ij

|>N for some

i,j. Now since g is bounded there exists M>o such that
|5|5M for all Pen. From3.2.3-3 it follows that for large

enough N, max T, (g.n)[>2M.
N

0<g<l1
0<n<1
Hence TrN maps some point (grnl) £ Ig outside 3ag. Now

. 0
since JTr >0 on IZ’ m(T

(12)—9 )>0. But then 2.4.4 says
N "N

that JTr has a sign change.
N
Q.E.D.

The corollary below follows immediately.

3.3.2-2 Corollary. Suppose for all r Tr maps 12 homeomor-

phically onto aq. If JTr(g,n)>O for all r and all points

(g,n) e Ig, then {Ar} is bounded.

One would like to show that the requirement JTr(g,n)zo

for all r and all points (g,n) € Ig is sufficient to guarantee
the boundedness of {Ar}' As indicated in 3.3.2-1, it is

clear that if the magnitude of a coefficient is large enough,
then the mapping Tr associated with the coefficient will

map some point in 19 outside an. However, it is no longer
2
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clear that m(Tr(IZ)—Q)>O since JTr(g,n) may be 0 outside aq.

Thus 2.4.4 cannot be used to obtain the contradiction that
JTr must have a sign change as was done in Theorem 3.3.2-1.
Although the writer has been unable to devise an acceptable
proof tc date, further study may show that the inequality,

m(Tr(IZ)'Q)>0’ is actually true.
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4. PROGRAM TENTEST

This chapter discusses the computer program TENTEST
which algebraically generates grids using tensor product
cubic B-splines. A listing of TENTEST is given in the
appendix at the end of this paper.

The first section of this chapter presents the major
steps involved in the computer algorithm. Sections 2
through 5 examine the important features of the program,

briefly discussing the subroutines involved.

4.1 The Algorithm

Although TENTEST contains almost a thousand lines
of code, it is based on the following eight step algorithm:
i. Input knot sequences {s;} and {t } consisting

of values from [0,1].

ii. Compute the tensor product cubic B-splines
corresponding to the knot sequences.

iii. Choose initial coefficients to form a bicubic
spline mapping from the square to a physical
domain.

iv. Use the mapping to plot a grid on the physical
domain.

v. If grid satisfactory, stop. If grid unsatisfac-
tory, continue.

vi. Input weights for smoothing functional.

vii. Complete one iteration of minimization routine
to obtain new coefficients.
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viii. Go to step iv.

There also exists a batch version of TENTEST which
allows the user to request several iterations of the minimi-
zation routine at a time. All the information needed to
plot the initial and final grids is stored in files which
can be interactively accessed after the execution of the
program is completed.

The programs were run on a PRIME 750 computer. The
PRIMOS operating system, coupled with a PLOT 1@ graphics
package, was used to interactively draw the grids on a
Tektronics 4014 terminal. The PRIME 750 can communicate
at a baud rate of up to 9600 thus making it satisfactory

for interactive graphics.

4.2 Computing the Tensor Product B-splines

Since B-splines are determined by the knots with
which they are associated, the first concern of the user
is to choose appropriate knot sequences. The user must
pick two sequences s={si} and t:{tj}, placing them in
file TENSORDAT. The user actually picks only the "interior"
knots for each sequence. In other words, he constructs
two increasing sequences of numbers between 0 and 1. After
reading the numbers from file TENSORDAT, TENTEST places
four 0's at the beginning of each sequence and four 1's
at the end of each sequence. By 3.2.2-3 (Curry and Schoenberg)

and 3.2.3-1, the cubic B-splines associated with s and t
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form bases for spline sbaces 54 s and 54 The functions

, L7
in ea;h of these spaces will have three continuity condi-
tions at each interior knot. The products of the B-splines

will form a basis for the tensor product of S4 s and S4 £

The tensor product B-splines can be used to construct

a transformation T on the square which maps the boundary
of the square onto the boundary of a physical domain

as described in Chapter 3. The user may obtain a better
approximation to the boundary of the physical domain by
increasing the number of interior knots in s and t or by
redistributing the knots. This is discussed in more detail
in Section 4.5.

On a given pxqg mesh on the square with mesh points B
(gu,nv), u=l,...,p, v=l,...,q, the values of the tensor
product B-splines which compose T are fixed. Since these
tensor product B-splines are the products of B-splines
Bi,i=1,...,m and Bj,j=1,...,n for some m and n, it is con-

venient to store the function values and first derivatives

of these B-splines at each gy and ny - Subroutine COMSPLINE

uses the de Boor routine BSPLVD [de B, p. 288] to compute
these values. BSPLVD calculates the function value and
derivatives of all the nonvanishing B-splines at a given
point. COMSPLINE stores the function values and first
derivatives in two arrays: XSPLINE and YSPLINE. Therefore,
after a call to COMSPLINE is completed, XSPLINE will con-

tain the function value and first derivative of each B-
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spline in {Bj}i®] at &, u=l,...,p and YSPLINE contains
the function value and first derivative of each B-spline
in {Bj}jgl at ny,v=l,...,q. Computing T or its partial
derivatives at a mesh point becomes a matter of calculating
the sum of the products of the tensor product coefficients
with the appropriate elements of XSPLINE and YSPLINE.
This computation is done in subroutine TENVALF.

The next section explains how the coefficients are

chosen initially.

4.3 Choosing the Initial Coefficients

Many different methods can be used to choose the
coefficients initially. Since B-spline coefficients model
the function they represent, one might simply choose the
boundary coefficients to equal points along the boundary
of the physicalldomain, and choose the interior coefficients
to equal points known to lie in the interior of the physical
domain. However, this creates the problem of deciding
which interior points should be chosen as coefficients.
Ideally, the original coefficients should produce a grid
which is somewhat smooth so that only a few iterations
are needed to obtain an acceptable degree of smoothnass
and orthogonality.

For this reason, the computer program described in
this paper initially selects coefficients which produce
an approximation to the transfinite bilinear interpolant

of a mapping V:IZ - R2 satisfying v:aIZ.* 8. In reality
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one need only define V on aIZ. The user may provide para-
metric equations which map the boundary of the square onto
the boundary of the physical domain, or simply input a

set of boundary points for the physical domain. 1In the
first instance V is defined by using the pérametric equa-
tions. In the latter case V is obtained by linearly inter-
polating between successive boundary points. The parametric
equations below map the four sides of'the unit square onto

the four sides of the trapezoid as shown in figure 6.

V(g,0) = g;(8) = (2561)
V(1,n) = g,(n) = (3+n>
2n
V(g1) = g5(g) = (ga )
V(0,n) = gg(n) = (l-n)
2n

The transfinite bilinear interpolant U of V is defined

by

u( g, n) (1-n)V(EO0) + nV(&,1)
+ gV(1l,n) + (1-g)V(0, n)
(1-8)(1-n)V(0,0) - £(1-n)V(1,0)

(I-8)nV(0,1) - gnV(l,1).

U agrees with V on the boundary of the square and hence
interpolates V at an infinite number of points. Transfinite
interpolants are discussed by William J. Gordon and Charles
A. Hall in [G].

The program selects initial coefficients which pro-

duce a variation diminishing spline approximation to U.
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3

Figure 6. Mapping from computational domain to physical
domain.
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Hence, if T is constructed from tensor products of B-splines

Bi=B

1’4’5, i:l"oo,m and Bj=Bj,4,t,j:1"°"n’ whlch corres-

pond to knot sequences s= {si} T:? and t= {tj}?if, respec-

tively, then the initial coefficients of the tensor product

splines are 3:11 }
1]
si=(si+1,+...+si+3)/3, i=l,...,m and tj=(t

f = U(sf,t*), i=l,...,m; j=1,...,n where

)/3,

+...+1:J.+3

j+1
j=l,...,n. Since variation diminishing splines yield exact
approximations to linear polynomials, T will reproduce
the boundary of any physical domain which can be divided
into four line segments. Arbitrarily shaped boundaries
can be approximated as accurately as desired by increasing
the number of knots used to define the tensor product splines
or by changing the placement of knots to increase the concen-
tration in complex shaped areas of the boundary.

The initial tensor product coefficients are constructed
in subroutines BOUNCOEF and INNERCOEF. Figure 7 shows
a grid on a trapezoid domain constructed with a mapping T

having coefficients as described above. The grid is the

image of T over an equally spaced mesh on the square.

4.4 Minimizing the Smoothing Functional

In TENTEST, the cyclic coordinate method is used
to find the minimum of the smoothing functional G described
in Section 3.3. As the name suggests, this method attempts
to find the minimum of a multivariable function by cyclicly

searching in the direction of each coordinate axis. For
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Figure 7. Trapezoid Grid
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G, the coordinate directions are represented by the tensor

BIJ’ i=1,...,m; j=1,...,n.

product coefficients ojje
The user must first decide what size mesh should
be used to obtain a grid with acceptable smoothness and
orthogonality. G is a function of 2mn coefficients, however,
since the boundary coefficients are fixed only 2(m-2)(n-2)
coefficients are free. Therefore, in general, the mesh
used for the minimization technique should contain at least
2(m-2)(n-2)points.
The user must also decide on the size of the weights
WisWs for G. One can choose constant weights for both
JT and Dot, or choose a weight function for Dot which pro-
duces more orthogonality near the boundary of the grid
than in the interior. Small constant weights of values
between 1 and 10 can be used initially to determine how
they affect the smoothness and orthogonality of the grid.
Changing coefficient @

(or B; ) changes the value

J J
of the mapping T only on the support of the tensor product
B-spline Bij' Therefore, in order to locate the minimum

of G in the direction represented by aij

consider the sum over those terms in G which contain the

one need only

value of JT or Dot at mesh points (g, n) lying on the support

of B Subroutine CORANGE determines the range of summa-

ij-
tion associated with each tensor product coefficient for
a given mesh on the square, and function GF computes the
sum over the range indicated by CORANGE. Figure 8 shows

the support of a tensor product B-spline associated with
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n+4

j=1- The shaded sec-

knot sequences s= {si}T:? and t= {tj}

tion represents the support of tensor product B-spline

86 5- In order to minimize in the direction of coefficient

e 5 it would be sufficient to look at the sum

-6 7 2 6 7 2a€
GF = 3 & WI(JT1+1,j'JTij) An+: % WI(JTi,j+1'J 'j)
i=3 j=3 88 124 j=2
+ 6 7 5
z oz wZ(Doti.) AEAT.
i=4 j=3 J

Like G, the partial sum, GF, will be a quartic polynomial
in each coefficient.

All of this information is used by the minimization
routine FFMIN. Each call to FFMIN produces one complete
iteration of the cyclic coordinate method. For each coeffi-
cient, the routine first determines the interval on which
the coefficient must lie if JT is to be nonnegative at most of
the mesh points affected by the coefficient. Then it calls
either TESTMIN®, TESTMINL, TESTMINR, or TESTMINB depending
on whether the interval is biinfinite, has a left endpoint,
a right endpoint, or two endpoints. The chosen subroutine
finds the location of the minimum of GF on the interval
and changes the value of the appropriate coefficient accor-

dingly.

4.5 Distribution Functions

If solutions of partial differential equations on

a domain are to be accurate, the grid on the domain must
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be concentrated in areas of rapid change such as boundary
layers and shocks. In most cases concentration near the
boundary of the domain can be easily accomplished through
the use of distribution functions.

Rearranging the points on the square mesh changes
the distribution of grid points on the physical domain. A
nonuniform distribution of points on the square mesh can

be viewed as the image of functions qal:Il - 1y, and

<p2:I1 - I1 defined on £ and n, respectively. The grid is

then generated by the mapping T defined by
T(g,n) = Tog(g,n)
where @:I2 -*12 satisfies
elg.n) = jo;(€)
?o(n).

This is graphically illustrated in figure 9. The grid on
the physical domain is the image under T of an equally
spaced mesh on the square.

In the current version of TENTEST, the user may
request one of three distributions for £ and n: uniform,
exponential, or arctangent. Selecting the uniform option
produces an equally spaced distribution. The distribution
function is simply the identity function on Il' If the

exponential option is selected, TENTEST calls routine

EXPONENTIAL which maps zel, into ¢(zg) = L

ec -1
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where ¢ is a nonzero constant. If ¢>0, ¢ concentrates

the grid lines near the line corresponding to z=0. If
c<0, ¢ concentrates the grid lines closer to the line
corresponding to g=1. The grid in figure 10a was produced

with wl(E) = £ and mz(n) = ¢(n). The constant ¢ is 4. In
figure 10b, ¢1(€) = &(E) with c=5 and ¢2(n) = n. The

degree of concentration increases or decreases as |c]| is

increased or decreased. In figure 1l0c, ml(g) = ¢(g) with

c=2 and mz(n) = 1.
TENTEST <calls ARCTANGENT when the user selects the

arctangent distribution option. ARCTANGENT maps z;sI1 into

v(z) = arctangent (2cz-c) - arctangent (-c)
arctangent (c¢) - arctangent (-c)

where ¢ 1s a positive constant. This function concentrates
grid lines near points corresponding to z=0 and ¢g=1 simul-
taneously. This is shown in figure 10d with ¢1(€) = &,
9,(n) = v(n) and c=5.

Future improvements to TENTEST might include the
addition of more distribution functions and the creation
of a routine which allows the user to create his own dis-
tribution function by interactively digitizing points on
the unit square. The routine would then create a variation
diminishing spline approximation to the points to form

the distribution function.

Since the distribution functions described in this

section are defined on Il’ they can also be used to
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Figure 10. Concentrating grid points on trapezoid domain.
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redistribute the knots which define the tensor product
B-splines that form T. This will pefmit the user to con-
centrate more knots in areas mapped to complex portions

of the physical boundary so that T produces a better boun-
dary approximation. Presently the user can choose to keep
the original distribution on the knots or choose t¢ redis-
tribute the knots to obtain an exponential or arctangent

distribution.
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5. RESULTS AND DISCUSSION

This chapter examines some of the grids produced by
TENTEST. Physical domains of various shapes are illustrated.
Some of the grids are for actual objects, such as an airfoil
or part of the space shuttle, but most are simply grids on
domains of various shapes and sizes chosen to illustrate
the range of the program.

The user's chief concern is the creation of an accept-
able grid on a given physical domain in the shortest amount
of time possible. Since the grid will be the image of a
continuous mapping on the square, the best technique is to
minimize the smoothing functional by using a grid generated
from a coarse mesh. Then, once the new coefficients are
obtained, the user can request that the grid be plotted
using a much finer mesh. This technique is illustrated in
the examples which follow. Most of the examples contain at
least four grids: The image under T, with its initial
coefficients, of a coarse sﬁuare mesh; the image of a finer
mesh; the image of the coarse mesh after several iterations
of the minimization procedure; and the image of a finer mesh
after application of the minimization procedure. Any other
grids shown are chosen to illustrate grid concentration or
other points of interest. 1In all the examples shown, only

constant weight functions were used in the smoothing functional.
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The first four examples show grids on domains with
common geometric shapes: a trapezoid, a quadrilateral
with unequal, nonparallel sides, a triangle and a circle.
Since the domains are simply connected and convex, only a
few interior points are needed for the sequences s and t
which determine the tensor product B-splines that compose T.

The next three examples show grids on domains which
are not convex. The major concern with such grids is the
overlapping of grid lines near the boundary.

The last examples deal with grids around concrete
objects such as an airfoil or part of the space shuttle.
The irregular boundaries of some of these grids make it
necessary to use more knots to define T.

For convenience, the following notation is used in

this chapter.

Ng number of B-splines Bi in the sequence corres-

ponding to knot sequence s, or 4 + number of

interior knots in s.

Nn = number of B-splines Bj in the sequence corres-
ponding to knot sequence t, or 4 + number of

interior knots in t.

wj = constant weight multiplied times the terms in
the smoothing functional involving the Jacobian,
JT, of T.

wd = constant weight multiplied times the terms in

the smoothing functional containing Dot.
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Ng x Ny will be the dimension of the tensor product

spline space generated by Bij = Bi X Bj,
j =1,...Ng. cpu = central processing unit - main control

i=1,...,Ng;

section of a computer.

5.1 Convex Domains

The first three examples, which have linear boundaries,
require only one interior knot for each of the knot sequences
s and t. The simplicity of the domains also means that
a very coarse grid can be used to minimize the smoothing
functional. Four or five iterations produce good results.
The circular grids in the fourth example require more

interior knots.

5.1.1 Trapezoid

In this example Ng = Np = 5 and wj = wd = 1. The
first picture in figure 11 is the grid obtained using the
initial coefficients in Section 4.3. It is the image under
T of an equally spaced 5x5 mesh on the square. This is
the grid on which the minimization procedure was applied.
Note that the number of grid points is 25, while the number
of free coefficients is given by 2(Ng-2)(N,-2) = 18.

Figure 11b is a finer grid constructed using the same
coefficients. Figure llc shows how the initial 5x5 grid
changes after five iterations of the minimization procedure.
The new coefficients produce grid lines that appear to

be nearly orthogonal at most grid points. The image under
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the new T of a 20x20 mesh is given in figure 11d. The
amount of cpu time used in the optimization process was
1 minute and 25 seconds.

In figure 12 the weights wj and wd have been changed
to show what effect they have in the minimization process.
Figure 12a shows how the initial 5x5 grid is changed after
only three iterations when wj=0 and wd=1. Orthogonality
is more pronounced, but the grid spacing is no longer as
smooth. In the refined grid in 12b the spacing is very
skewed near the top boundary. Figure 12c shows the 5x5
grid after five iterations with wj=1 and wd=0. The spacing
is smoother but the grid lines are not orthogonal. Figure

12d shows a finer grid.

5.1.2 Quadrilateral with Unequal Sides

Again, in this example NE = Nn = 5 which means
sequences s and t each contain one interior knot. Also,
wj=wd=1. The minimization procedure was applied on the
5x5 grid shown in figure 13a. Five iterations of the
technique produced the grid in 13c. Figures 13b and 13d
show refined versions of the grids in 13a and 13b, respec-
tively. The five iterations of the minimization procedure
required 2 minutes and 16 seconds of cpu time. In figure
14 the optimized grids are concentrated near different
parts of the boundary. 1In l4a an exponential distribution

with parameter c=4 has been put on n. Figure 14b shows

an exponential distribution on £ and n with c=4 in each
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Figure 12a wj=o0, wd=l Figure 12b wj=o0, wd=l

Figure 12¢ wj=1, wd=o Figure 12d wj=1l, wd=o0

Figure 12 Effect of weights, wj and wd
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Figure 13a Original grid Figure 13b Original grid
' refined

Figure 13c Optimized grid Figure 13d Optimized grid
refined

Figure 13 Grids on quadrilateral with unequal sides.
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Figure 14b Exponential dis-
tribution of g tribution on g
and n.

Figure l4c Arctangent dis- Figure 14d Arctangent dis-
tribution on ¢ tribution on q

Figure 14 Concentrating gridpoints on quadrilateral.
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case. In figures 14c and l4d, an arctangent distribution

with c¢=5 has been placed on & and n, respectively.

5.1.3 Triangle

In the previous examples, it was clear that each
side of the unit square should be mapped to a side of the
four-sided physical domain, but in the case of a triangle,
which has three sides, this cannot be done. The boundary
must be divided into four sections. The simblest thing
to do is to divide one of the sides of the triangle into
two parts so that two sides of the unit square are mapped
ontoc one side of the triangle as shown in figure 15. Figure
16a shows the initial 5x5 grid constructed with Ng = Np = 5
and wj=wd=1. Figure 16b shows a 20x20 grid constructed
using the same coefficients. After five iterations of
the minimization procedure, the initial 5x5 grid is trans-
formed into figure 16c. Figure 16d shows a finer grid.

Optimization required 2 minutes and 22 seconds of cpu time.

5.1.4 Circle

Variation diminishing splines reproduce straight
lines exactly, but the same cannot be said about their
approximation of nonlinear curves. For such curves the
accuracy of the approximation depends on the number of
knots used to define the spline function. For this reason
more knots are needed to obtain a satisfactory mapping of

the unit square onto a circular physical domain. For the
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Figure 15 Division of triangular boundary into four sections.
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refined

Figure 16 Grids on triangular domain.
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grids shown in figure 17, Ng = Ny = 9 and wj=wd=1. Hence,
there are five interior knots in both sequence s and
sequence t.

Note that 2(Ng-2)(Nn-2) = 98. Although this number
indicates that a mesh of at least 98 points should be used
for the minimization routine, the 8x8 grid shown in figure
17a seems to produce an acceptable grid. One reason for
this might be that the initial grid in l7a already appears
to be quite smooth and orthogonal at most points. The
major problems with orthogonality occur near the areas
to which the corners of the square are mapped. These areas
are indicated by the arrows in 17a. Figure 18a shows how
the initial grid is changed after fifteen iterations of
the minimization procedure. Figures 17D ahd 18b show finer
grids. The fifteen iterations of the minimization procedure

required 20 minutes and 14 seconds of cpu time.

5.2 Nonconvex Domains

The grids in this section show some of the difficulties

in creating grids on domains which are not convex sets.

5.2.1 Nonconvex Quadrilateral

Figure 19 shows the shape of the domain. This example
was first mentioned in Section 2.5. The boundary of the
unit square is mapped onto the boundary of the domain as
indicated in figure 2. Example 2.5-1 shows that T will

not map the square homeomorphically onto the domain even
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Figure 17a Original grid

Figure 17b Original grid refined

Figure 17 Grids on circular domain.
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Figure 18b Optimized grid refined

Figure 18 Grids on circular domain after optimization.
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Figure 19 Nonconvex quadrilateral.
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after the coefficients are changed. This fact is supported
by the negative Jacobian present at one of the corners of
the square. The negative sign suggests that points near
that corner will be mapped outside of the physical domain.
This is confirmed by the grids illustrated. 1In this
example, Ng = Nn = 5 and wj=wd=1. The 5x5 initial grid
shown in figure 20a was used for the minimization procedure.
The enlarged picture in figure 20b shows a finer grid.
Figure 2la shows the result of four iterations of the
minimization procedure. The nonnegative Jacobian require-
ment pulls the grid lines into the interior of the domain.
However, figure 22 shows an enlarged version of the corner
which indicates that part of the grid still overlaps the
boundary. This means that the minimization routine was
unable to restrict all of the coefficients to intervals
where the Jacobian of T is nonnegative.

This is further indicated in figure 21b which shows
a finer version of the grid in figure 2la. The four itera-
tions of the minimization brocedure required 1 minute and

1 second of cpu time.

5.2.2 Puzzle Pieces

The next two domains, illustrated in figure 23, look
like pieces from a puzzle. In each case Ng = 19, Nn = 5,
wj=1 and wd=10.

Grids on the first domain are shown in figures 24

and 25. The minimization procedure was performed on the
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Figure 20a Original grid

Figure 20b Original grid refined

Figure 20. @Grids on nonconvex quadrilateral domain.
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Figure 2la Optimized grid

Ffigure 21b Optimizad grid refined

Figure 21 Optimized grids on nonconvex quadrilateral domain.
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Figure 22 Enlarged corner of optimized grid.
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22x8 grid in figure 24a. Figure 24b shows a finer grid.

Figure 24c shows the grid obtained after forty iterations
and figure 24d shows a finer grid. The grids in figure
25 show how the initial grid changes after two, five and
fifteen iterations. The grid obtained after forty itera-
tions is shown again for comparison. On this domain Tentest
is able to pull all of the grid lines into the interior
of the domain.

Grids on the second domain are shown in figure 26.
The initial 22x8 grid is shown in figure 26a and figure
26b shows a finer grid. After forty iterations, the initial
grid is transformed into 26c and a finer grid is shown in
26d. Figure 27a shows a grid on the first domain concen-
trated near the bottom boundary by using an exponential
distribution on n with ¢=4. Figure 27b shows a grid on
the second domain concentrated near the top by using an
exponential distribution on n with c=-4.

The forty iterations used for the first domain
required 1 hour, 42 minutes and 23 seconds of cpu time, but
the second domain required 2 hours, 4 minutes and 46 seconds

for forty iterations.

5.3 Grids for Specific 0Obijects

This section deals with grids about particular objects
such as an airfoil. The boundaries often have peculiarities
which make it difficult to obtain satisfactory grids. In

many cases it may be difficult to maintain smoothness in
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Figure 25a After two
iterations

Figure 25c After fifteen
iterations

Figure 25b After five
iterations

Figure 25d After forty
iterations

rigure 25 Grids obtained after various iterations.
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Figure 26a Original Figure 26b Original grid
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Figure 26 Grids on second puzzle shaped domain.
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the grid while increasing orthogonality. Often the user

must try to find an acceptable balance. He must also attempt
to concentrate the grids in areas where rapid changes are
likely to occur when partial differential equations are

solved on the domain.

5.3.1 Airfoil

The grids in this example are for the Karmdn -
Trefftz airfoil. The parameters Ng = 19, Ny = 9, wj=1 and
wd=.5. Hence, there are 15 knots in the s sequence and
5 knots in the t sequence. Figure 28 shows how the domain
can be viewed as having a boundary consisting of four parts.
The minimization procedure was performed on the 21x12 grid
in figure 29a. The grid lines appear to be orthogonal
everywhere except near boundaries 1, 2 and 4. Note the
sharp corners behind the airfoil. After one iteration the
corners have been eliminated and the angles of the lines
near the airfoil are not as acute. This is shown in
figure 29b and in the finer grid in figure 30a.

Solutions on a grid about an airfoil are usually more
accurate if a higher concentration of points is placed
near the airfoil boundary since this is the area most
affected as air moves over the airfoil. Figure 30b shows
a 30x30 grid concentrated near the airfoil boundary by
using an exponential distribution on n with constant c=4.

The minimization procedure required 6 minutes and

36 seconds of cpu time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Figure 29a Original grid

Figure 29b Optimized grid

Figure 29 Grids for Karman - Trefftz airfoil.
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Figure 30b Optimized grid concentrated near airfoil boundary.

Figure 30 Optimized grids for Karman - Trefftz airfoil.
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5.3.2 Spike-Nosed Body

According to [Sm, p. 130], the spike-nosed configura-
tion occurs frequently in supersonic flow. R. E. Smith
states that supersonic flow about such bodies is unsteady,
with separation occurring near the nose-shoulder region.
Therefore, the grids must be concentrated in that area
[Sm, p. 48]. The boundary data for the grids shown in
this section can be found in [Sm, p. 60]. Rotating the
bottom boundary around a horizontal axis of symmetry produces
a Cclearer picture of the actual body. The ratio of the
length of the nose to the height of the shouider is 2.14.

As in the previous example, Neg = 19, Npy = 9, wi=1
and wd=0.5. The 2Ix12 initial grid in figure 3la was used
for the minimization procedure. Two iterations produce a
small amount of orthogonality near the bottom boundary as
shown in figure 31b. Additional iterations produce an
undesirable wiggle in the grid lines near the shoulder.
Figure 32a shows a finer grid and figure 32b shows a grid
concentrated near the bottom boundary by using an exponen-
tial distribution on n with c=4.

The two iterations of the minimization procedure

required 13 minutes and 1 second of cpu time.

5.3.3 Shuttle

The grids in this example are for a model of the
space shuttle. The optimized grids are the result of ten

iterations on the 32x12 grid shown in figure 33. Para-
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Figure 32a Optimized grid refined ol

Figure 32b Optimized grid concentrated near boundary of
spike-nose body.

Figure 32 Optimized grids for spike-nosed body.

AReproduced with permission E)f the copyright owner. Further reproduction prohibited without permission.



98

meters Ng = 29, Ny = 9, wj=wd=1. Ten iterations of the
minimization procedure produce a small amount of orthogona-
lity near the boundary of the shuttle as shown in figure
34. Figure 35 shows an optimized 32x20 grid concentrated
near the shuttle boundary using an exponential distribution
on n with c=4. The ten iterations of the minimization
procedure required 1 hour and 43 minutes of cpu time. The
32x12 grid in figure 33 is the largest grid on which the

minimization procedure has been applied.
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6. CONCLUSIONS

This paper has examined an effective algebraic
method for creating boundary fitted coordinate systems.
The method, which involves a mapping T composed of tensor
product B-splines allows one to regulate grid characteris-
tics by adjusting the coefficients of the splines. Modifying
the coefficients so that they minimize a smoothing functional
enhances the smoothness and orthogonality of the grids
generated by T.
The method is implemented in the program TENTEST
which gives the user control over the number and cohcentra—
tion of grid points. The user can also regulate the amount
of smoothness and orthogonality in the grids by the selec-
tion of weight functions for the smoothing functional.
Suggestions for future revisions of TENTEST include
the addition of more distribution functions to allow greater
control over grid concentration. One might also investi-
gate the possibility of adjusting the boundary coefficients
during the optimization process so that the boundary points
of the grid are affected by the minimization procedure.
Ultimately, the true test for a grid comes when it

is actually used to solve partial differential equations.
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Therefore, the next stage of research must include solving
problems on several grids produced by TENTEST. Then it
may be possible to change the program into an adaptive
technigque which rearranges the grid points in response
to gradient information from the evolving solution.

Once these things are accomplished, one may attempt
to use the technique to generate grids on more complicated
multiconnected domains. This may involve the study of
techniques for grid patching.

Also, the Prime 750 computer is an excellent machine
for graphics, but not very fast in solving problems involv-
ing a large amount of computations. Hence, the possibility
of creating a version of TENTEST which operates efficiently
on a vector computer such as the VPS 32 at NASA Langley
Research Center should be investigated. This will permit
the user to run much larger and more complicated problems.

Finally, once this grid generation technique has
been thoroughly developed for two dimensional domains, a
three dimensional technique can be attempted. T would
become a mapping from the unit cube to the desired physical
domain, composed of the tensor product of B-splines in
the three coordinate directions. As in the two dimensional
case, characteristics of the grid would be changed by

changing the coefficients of the tensor product B-splines.
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00001 TRk k ok kR k kR ok ke Rk ook ook ek

00002
00003:C
» 00004:C
00005
00006:C
00007:C
00008:C
00009:C
00010:C
00011:C
00012:C
00013:C
00014:C
000153
00014:C
00017:C
00018:C
00019:C
00020:C
00021:C
00022:C
00023:C
00024:C
00025
00026:C
00027:C
00028:C
00029:C
000303C
00031:C
000323
000331:C
00034:C
000351C
00036:C
00037:C
00038:C
00039:C
00040:C
000413C
000423
00043:C
00044:C
000453
00046:C
000471
00043:C
0004%:C
00050:C

PROGRAM TENTEST

TENTEST MAPS A SRUARE GRID {(0,1)X{0,1) ONTO
8 PHYSICAL DOMAIN OF ARBITRARY SHAFE THROUGH THE USE OF
TENSOR PRODUCT B-SPLINES. THE ORIGINAL KNOT SEQUENCES
MAY BE CHOSEN TO HAVE AN EQUALLY SPACED DISTRIBUTION,
EXPONENTIAL DISTRIRUTION, OR ARCTANGENT DISTRIRUTION.
SIMILAR CHOICES CAN RE MADE FOR THE DISTRIBUTION OF
GRIDPOINTS ON THE SQUARE.

TENTEST CONSTRUCTS AN INITIAL GRIDI GENERATION MAFFING
CONSISTING OF A LINEAR COMEINATION OF TENSOR FRODUCT
B-SPLINES WITH THE COEFFICIENTS CHOSEN S0 THAT THE MAPFPING
YIELDS A VARIATION DIMINISHING SFLINE AFPROXIMATION
TO THE TRANSFINITE RILINEAR INTERFOLANT OF A
FUNCTION WHICH MAPS THE ROUNDARY OF THE UNIT SQRUARE
ONTO THE BOUNDARY OF THE PHYSICAL DOMAIN.

IF THE USER REGUESTS A NEW GRIII, TENTEST REARRANGES
THE COEFFICIENTS IN AN ATTEMPT TO MINIMIZE A FUNCTIONAL
G INVOLVING THE DIFFERENCE IN THE JACOGRIAN OF THE GRID
GENERATION MAPPING AT ADJACENT MESH POINTS AND' THE LOT
FRODUCT OF VECTORS TANGENT TO THE GRII LINES ON THE
PHYSICAL DOMAIN.

ROUTINES

EXPONENTIAL
ARCTANGENT
FIXKNOTS
KOUNCOEF
INNERCOEF
COMSFLINE
TENVALF
TENSORVAL
JACOR
CORANGE

GF

FFMIN

CRIT
TESTHMINO
TESTHMINR
TESTMINL
TESTMINE
CURIC
EXTREMES
NORM
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000593C
00040:C
000513C
000623

00063:C
000645C
000653

000662C
0004671:C
000683C
00069:C
00070:C
000713C
00072:C
00073:C
00074:C
000752

00075:C
00077:C
00078:C
000793C
00080:C
00081:C
00082:C
00083:C
00084:C
000853

00084:C
00087:C
00088:C
00089:C
00090:C
000913C
000923

000933C
00094:C
000953

00096:C
00097:C
00098:C
00099:C
001003C
001013C

THE FOLLOWING SUEBROUTIMES ARE ALSO RERUIREI.
THEY MAY BE FOUND IN "A PRACTICAL GUILE TO SFLINES®

BY CARL DE

ESPLVB. ..

RSPLVIL. .

INTERV,...

RVALUE. ..

ROOR, SFRINGER-VERLAG, 1978.

COMPUTES THE VALUE OF ALL FOSSIELE
NONZERD E-SPLINES OF A GIVEN ORLER AT
A& GIVEN POINT.

COMPUTES THE VALUE AND' DERIVATIVES
OF ALL R-SPLINES WHICH IO NOT VANISH AT
A GIVEN POINT

DETERMINES THE KNOT INTERVAL ON WHICH 6
GIVEN POINT LIES. 1ITS OUTPUT IS THE
SURSCRIPT IDENTIFYING THE KNOT WHICH IS
IMMEDIATELY LEFT OF THE POINT.

CALCULATES THE JDERIV-TH DERIVATIVE

OF A SPLINE FUNCTION WHOSE COEFFICIENTS
ARE STORED' IN ARRAY RCOEF. THE VALUE OF
JIOERIV IS PROVIDED RY THE USER.

TENTEST USES ROUTINES FROM & FLOT10 GRAPHICS

PACKAGE TGO PLOT THE GRIDS.

VARIAERLES

NKNDTX, NKNOTY

AND

NEWNOTX ,NEWNOTY. .DIIMENSIONS FOR SQUARE MESH.

NXsNY.oo DIMENSION OF SPLINE SFACE IN X
DIRECTION,Y HIRECTION.

KXe oo QUANTITY OF NUMBERS TO BE ADDELD TGO THE FRONT
ANI! BACK OF THE INTERIOR X KNOT SEQUENCE.
ORIER OF B-SFLINES IN X DIRECTION.

KYeoo QUANTITY OF NUMBERS TO BE AIDEDR TO THE FRONT
AND BACK OF THE INTERIOR Y KNOT SEQUENCE.
ORDER OF EB-SPLINES IN Y DIIRECTION.

FNX,FNY. oo NUMEERS TO BE PLACED AT THE FRONT OF

ENXyENY .o
INX,INY s
INTX, INTY..

TXsTYuus
ALPHA,BETA,

THE X AND' Y KNOT SEQUENCES, RESFECTIVELY.
NUMEERS TO BE PLACED' AT THE BACK OF THE
X AND' Y KNOT SEQUENCES,RESFECTIVELY.

DIMENSIONS OF INTERIOR X AND Y KNOT SEQUENCES,

RESPECTIVELY.

INTERIOR X KNOT SEQUENCE,INTERIOR Y KNOT SEQ.

X KNOT SEQUENCE, Y KNOT SERUENCE.
‘e ARRAYS CONTAINING COEFFICIENTS OF
TENSOR PRODUCT SPLINE MAFPING.
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001023

00103:C
00104:C
001053

00104:C
00107:C
00108:C
00109:C
0011903C
00111:C
00112:C
00113:C
00114:C
001133

00116:C
00117:C
00118:C
00119:C
00120:C
00121:C
00122:C
00123:C

AR
AND

108

APyEP ... ARRAYS CONTAINING COBRDINATES FOR

SRUARE HESH.

LEFTX,LEFTY... ARRAYS IDENTIFYING KNOT INTERVALS

ON WHICH SQUARE MESH COORDINATES LIE.
(LEFTX(I)=J IMPLIES TX{D<=A{I){TX{J+1))

Wil,W2.4, WEIGHTS FOR JACOBIAN,DOT PRODUCT TO

BE USET! IN SMOOTHING FUNCTIONAL.

ArToes TUO-DIMENSIONAL ARRAYS CONTAINING COCRUDINATES

OF GRIL' FOINTS TO BE PLOTTEL.

KOUNTE. .. VARIABLE USED' TO COUNT ITERATIONS OF

MINIMIZATION PROCEINURE, OR
NUMEER OF CALLS TO ROUTINE FFMIN.

AUTHOR: RONITA VALERIE SAUNLERS
DATE: JULY 1985

00124 Cicksksickick g kiokisiook koo koo ook ook k ok kool ook

001258
001246:C
001272
001282
001273
001302
001313
001323
001333
001343
001352
001362
001373
001382
001393
00140
00141:
001423
001433
00144:
001452
001452
001472
00143:
001471
001308
001513
00132

111

2

2

2
&

COMMON/COEF/ALPHA(100,100),BETA{100,100)

COMHON/KNOTS/TX(100),TY{100)

COMMON/PARAN/FROUNT

COMMON/PARAMZ2/AC100) , B(100) s NX, NY,KX,KY
+LEFTX{100),LEFTY(100)

COMMON/KNOT/NKNOTX , NKNOTY

COMMON/WEIGHTS/W1,W2

COMMON/SPLINES/XSFLINE(S0,100,2),YSFLINE{30,100,2)

COMMON/RANGE/IFIRST(100),ILAST(100),JFIRST(100)
» JJLAST(100)

REAL X(100,100),BCOEF(100),INTX{190),INTY(100)
»Y(100,100),AP(100),BP(100)

CHARACTER%X10 NAME

INTEGER*2 STRING(28)

INTEGER%2 NUME,.IATE(S)

INTEGER*2 TIME,TIME1l,TIMER

EQUIVALENCE (STRING(1),DATE)

EQUIVALENCE (STRING(4),TIME)

EQUIVALENCE (STRING(S),TIMEL)

EQUIVALENCE (STRING(7),TIMEZ)

NUME=28

CALL TIMDAT(STRING,NUNE)

WRITE(1,111) DATE

FORMAT (3A2)

WRITE(1,222) TIME,TIME1l,TIMER2

FORMAT(146,16,16)
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001533 PI=3.14159

00134:¢ OFENC12,FILE="TENSORIAT’)

001553 OPEN(13,FILE="NEWDATA’)

001562 OFEN(14,FILE="0RGRID’)

001573 © OPEN{14,FILE='0RIG2")

001583 W1=0

001593 W2=0

001603 KOUNTE=0

001613 FRINTX,INPUT NKNOTX,NKNOTY’
001623 " READ(1,%) NKNOTX,NKNOTY

001633 NSAVEX=NKNOTX

001647 NSAVEY=NKNOTY

001653 PRINTX, “WHAT IS KX’

00166+ REAL{1,%) KX

001672 PRINTX, ’WHAT IS KY’

001683 READ{(1,%) XY

001693 REALI(12,%) FNX,BNX,FNY,HENY

001703 READN(12,%) INX,INY

001713 REAII{12,%) (INTX{I},I=1,INX)
001722 READCIZ,X) (INTY(I),I=1,INY)
001732 PRINT¥, DISTRIBUTION FOR X KNOTS’
001743 PRINTX, “1=EQUALLY SPACELR,2=EXPONENTIAL,3=ARCTANGENT*
001753 REAL{1,%) KODEX

00176+ IF{(KOIEX-2) 5,10,15

00177: 10 CALL EXPONENTIAL (INTX,INX,2.)
001782 GOTO 3

001793 15 CALL ARCTANGENT (INTX,INX,5.)
001803 S PRINTX, DISTRIBUTION FOR Y KNOTS’
00181:¢ FRINTX, 1=EQUALLY SPACEIl,2=EXPONENTIAL , 3=ARCTANGENT‘
00182 REALI(1,%) KODEY

001833 IF(KOIEY-2) 16,18,19

00184: 13 CALL EXPONENTIAL(INTY,INY,2.)
00185: GO TO 16

001852 19 CALL ARCTANGENT(INTY,INY,5.)
001873 16 CONTINUE

00188 X=INX+KX

001893 NY=INYHKY )

00190+ CALL FIXKNOTS(KX,KY,FNX,FNY,ENX,ENY,
001912 X INX,INY,INTX,INTY)

001922 CALL BOUNCOEF (KX,KY,NX,NY)

001933 CALL TINNERCOEF (KX,KY,NX,NY)

001942 WRITEC1S,%) ((ALPHACI,J),J=1,NY),I=1,NX)
001953 WRITE(15,%) ((BETA(I,J)sJ=1,NY),I=1,NX)
0019462 0 SO0 I=1,NKNOTX

001973 A{I)=FLOAT{I-1)/(NKNOTX-1)

001983 [0 20 .J=1,NKNOTY

001993 B(D=FLOAT(J-1)/(NKNOTY-1)

00200 IF(A(I).GE.1.0) A(I)=,99999

00201 IF(R(J)GE.1.0) R(J)=.99999

00202: 20 CONTINUE
002033 30 CONTINUE
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002043 FRINTX, “DISTRIRUTION FOR COMPUTATIONAL X/

002053 PRINTX,’1=EQUALLY SPACEL, 2=EXFONENTIAL,3=ARCTANGENT’
00206¢ READ(1,%) KODEXX :

00207 IF(KODEXX-2) 22,24,26

00208: 24 CALL EXPONENTIAL(A,NKNOTX,2.)

002093 GOTO 22

002102 26 CALL ARCTANGENT(A,NKNOTX,3.)
00211: 22 CONTINUE

002122 PRINTX,‘DISTRIRUTION FOR COMPUTATIONAL Y’

002133 PRINTX, ' 1=EQUALLY SPACEL,2=EXPONENTIAL,3=ARCTANGENT’
002143 READII(1,%) KODEYY

002158 IF{KODEYY-2) 30,32,34

002163 32 CALL EXPONENTIAL(R,NKNOTY,2.)

002172 GOTO 30

00218% 34 CALL ARCTANGENT(E,NKNOTY,S.)
00219 30 CALL COMSPLINE

00220 CALL CORANGE (NKNOTX,NKNDTY)

00221 00 70 I=1,NKNOTX

002223 0 &0 J=1,NKNOTY

00223 CALL TENVALF{ALFHA,LEFTX{I),LEFTY{(J3) KX,KY,1,J,
002243 ¥ X{I,0),0,0)

0022353 CALL TENVALF(BETA,LEFTX{(I),LEFTY(J),KX,KY,I,J
0022462 ¥ ,Y(I,0),0,0)

00227F 60 CONTINUE
00228: 70 CONTINUE

00229 FRINTX, ' JACORIAN YES(1) OR NO(0)~

002304 READI{1,%) JCOLE

00231% IF(JCOLE.ER.1) GOTO 700

002321 PRINTX, COMPUTE DERIVATIVES YES{1) OR NO(0)’

002332 READN(1,%) KCODE

002343 IF(KCOIE.EQ.0) GOTO 80

00233 PRINTX, INFUT DERIVATIVES DESIREL FOR X,Y DIRECT’
0023461 READI(1, %) JING, JOY

002371 PRINTX,’ X Y X COMP DERIV Y COMP DE
002382 D0 400 II=1,NKNOTX

00239 oo 300 JJ=1,NKNOTY

002403 CALL TENVALF (ALPHA,LEFTX(II) ,LEFTY {JJ) 4KX,KY, 1T,y
002413 X XI, JOX, JIY) »
002423 CALL TENVALF{(RETA,LEFTX{II1),LEFTY(JJ)KX,KY,II,JJ,
002432 ¥ YL, JDX,JDY)

002443 PRINTX,A(II),E(JJ) XTI, YL

002435% 3500 CONTINUE

002445 600 CONTINUE

00247: GOT0 80

002487 700 CALL JACORINX,NYsKX,KY,0,B)
002493 80 CONTINUE

002503 CALL EXTREMES(X,Y, THAX, THIN, NKNOTX, NKNOTY)
002312 CALL NORM{X,Y,TMAX, THIN, NKNQTX,NKNOTY)
002323 FPAUSE

00253 NN=2 - :

0023543 NAME=/PRODUCT GRID
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00255

»

*
002563

.

00238
002392
002602
0025612
002623
002633
00264
00265
002653
00267:
002683
00267:
002703
002712
002723
002733
002743
00275
002763
002773
00278¢
002792
002803
00281:
002821
00283:
002841
00285
00286:
002873
00288:
002389
002901
00291
002923
00293
002942
002938
002943
002972
002933
00299
003003
00301
003023
003032
003041
00305
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100

200

300
400

410

401

WRITE(13,%) NAME
URITE(13,XINKNOTX,NKNOTY y NN, NN
WRITE(13,%) (X(I,1),I=1,NKNOTX)
WRITE(13,%) (Y(I,1),I=1,NKNOTY)
WRITE(13,%) (X(I,NKNOTY),I=1,NKNOTX)
WRITE(13,%) (Y(I,NKNOTY),I=1,NKNOTX)
WRITE(13,%) X(1,1),X(1,NKNOTY)
WRITE(13,%) Y(1,1),Y(1,NKNOTY)
WRITE(13,%) X(NKNOTX,1),X{NKNOTX,NKNOTY)
WRITE(13,%) Y(NKNOTX,1),Y{NKNOTX,NKNOTY)
CALL INITT(960)

CALL TWINDO(0,760,0,750)

CALL TWINDO(-.07,1.07,-.07,1.07)

0 200 I=1,NKNOTX

CALL MOVEA(X(I,17,Y(I,1))

L0 100 J=1,NKNOTY

CALL DRAWA(X(I,J),Y(I,J))

CONTINUE

CONTINUE

DO 400 J=1,NKNOTY

CALL MOVEA(X(1,0),Y{(1,J))

0 300 I=1,NKNOTX

CALL DRAWA(X(I,D ,Y(I,h)

CONTINUE

CONTINUE

WRITE(14,%) NKNOTY,NKNOTX

WRITE(14,%) ((X{I,J),I=1,NKNOTX),J=1,NKNOTY)
WRITE(14,%) ((Y(I,J),I=1,NKNOTX),J=1,NKNOTY)
CALL MOVARS(0,750)

CALL ANMORE

PRINTX,ITERATION’ ,KOUNTE

PRINTX,’ NX=’,NX,~’ NY=",NY

IF (KDUNTE.ER.0) GOTO 410

PRINTX,’ JACOBIAN WEIGHT=',W1

PRINTX, /0ORTHOG WEIGHT=’,42

111

FPRINT%, ' OPTIMIZED ON‘,NSAVEX,’ RY’,NSAVEY,’ GRIDR

KOUNTE=KOUNTE+1

PRINTX, ‘00 YOU WANT TO CHANGE THE GRII, YES OR NG(0)’
READI(1,%) KODE

IF(KODE.EQ.0) GOTOD 339

PRINTX, /CURRENT WEIGHTS ARE’,W1,W2
FRINTX,’NEW WEIGHTS, YES(1) OR NO(0)’
REAL(1,%) KW

IF(KW.ER.D) GOTO 401

PRINTX, INPUT WEIGHTS FOR JACOR,ORTHOG’
REATI{1,%) Wi,u2

CONTINUE

NKNOTX=NSAVEX

NRKNOTY=NSAVEY

CALL FFMIN(ERMAX)

PRINTX, 0QUTFUT JACORIAN,YES(1) OR NO(O)’



003061
003073
003081
00309
003103
003113
003123
00313
00314:
00313
00316
003173
003183
003193
003201
00321 ¢
003223
00323
003241
00325
003263
00327
00328¢
003293
00330
00331¢
003323
003333
003343
00335
00336
Q0337 ¢
003383
00339
003403
00341:
003423
00343:
003443
003453
003443
003472
003483
003493
003503
Q03518
003521
003332
0033543
003538
003546
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399

302

460

458

470
480

REALI{1,%) JKOLE

IF(JKOIE.EQ.O) GOTO 399

CALL JACOB(NX,NY,KX,KY,A,R)

CONTINUE

PRINTX, CHANGE NUM OF GRIDFOINTS, YES{(1) OR NO{0O)’
REALII(1,%) KODE

IF{KOIE.EQ.0) GOTO 301

FRINTX, ENTER NUMBER OF GRIDPOINTS FOR X DIRECTION,
Y DIRECTION’

BEAD(1, %) NEWNOTX,NEWNOTY

NRNOTX=NEWNDTX

NKNOTY=NEWNOTY

GOTO 502

CONTINUE

NEWNOTX=NRNOTX

NEUNOTY=NKNOTY

CONTINUE

CALL ERASE

0 450 I=1,NEWNOTX

0 423 J=1,NEWNOTY
AP(I)=FLOAT(I-1)/(NEWUNOTX-1)

BP(J)=FLOAT (J-1)/(NEWNOTY-1)
IF{AP(I).GE.1.0) AP(I)=.99999
IF{RP{J).GE.1.0) BP(J)=.9999

CONTINUE

CONTINUE

PRINTX, ‘IISTRIBUTION FOR COMPUTATIONAL X’
PRINTX, '1=EQUALLY SFACEL,2=EXPONENTIAL,3=ARCTAN’
READI{1,%) KODE3X

IF(KODE3X-2) 452,454,436

CALL EXPONENTIAL (AF,NEUNOTX,2,)

GOTO 452

CALL ARCTANGENT (AP ,NEWNOTX,5.)

CONTINUE

PRINTX, 'DIISTRIRUTION FOR COMPUTATIONAL Y~
READC1,%) KODE3Y

IF(KODE3Y-2) 458,440,462

CALL EXPONENTIAL (BP,NEWNOTY,2.)

GOTO 458

CALL ARCTANGENT (EBP,NEWNOTY»3.)

CONTINUE

00 480 I=1,NEUWNOTX

N0 470 J=1,NEUNDTY

. CALL TENSORVAL(ALPHA,NX,NY,KX,KY,AP(I),

BP(J)4X(I,0),0,Q)

CALL TENSORVAL (RETA,NX,NY,KX,KY,AF{(I),BP(D),
Y{I;J),050)

CONTINUE

CONTINUE

CALL EXTREMES{X,Y,TMAX, THIN,NEWNOTX,NEWUNGTY)
CALL NORM(X,Y,TMAX, TMIN,NEWNOTX,NEWUNOTY)
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00357
003581
00359
003603
00361
00362;
003632
003643
003635+
003663
00367
00368
003691
003703
00371
003723
003733
003743
003751

00376:C
00377:C
00378
003793C
00380:C
00381:C
00382:C
00383:C
00384:C
0038352
003864:C
00387:C
00388:C
00389:C
00390:C
00391:C
003923
00373:C
003942
003953
003942
00397
003982
003993
004002
00401
004023
00403:C
00404:C
004053

FPAUSE
GOTO 338

339 CONTINUE

TH
FO
u

Fu
PA

VA

10

CALL FINITT(0,7560)
PRINT%X, KX IS ’,KX
FRINT%,’KY IS ‘,KY
"~ PRINTX, DISTRIBUTIONS’
PRINTX, “1=EQUALLY SPACEL,2=EXFONENTIAL ,3=ARCTANGENT’
PRINT*,’X KNOT DIST., IS‘,KOLEX
FRINTX,’Y KNOT DIIST. IS’,KOLEY
PRINTX, COMPUTATIONAL X DIST IS/ ,KODEXX
PRINTX, COMPUTATIONAL Y DIST IS‘,KODEYY
CLOSE(12)
CLOSE(13)
CLOSE(14)
CALL TIMDAT(STRING,NUMR)
WRITE(1,222) TIME,TIME1l,TIMER2
STOF”
END

SUBRROUTINE EXPONENTIAL{X,N,AC)

IS ROUTINE PRODUCES AN EXPONENTIAL DISTRIRUTION OF
INTS BY SUBSTITUTING AN ORIGINAL SET OF NUMEERS
LYING BETWEEN O AND' 1 INTO THE EXPONENTIAL

NCTIDN (EXP(AXU)-1.)/(EXP(AC)-1) WHERE AC IS &
RAMETER WHOSE VALUE IS SUPFLIED RY THE USER.

RIABLES

X++ o THIS AN ARRAY WHICH ON INPUT CONTAINS THE ORIGINAL
SET OF NUMERERS AND ON OUTFUT CONTAINS THE EXPONENTIAL
DISTRIRUTION OF NUMEBERS.

N.++.SIZE OF ARRAY X

AC. .PARAMETER IN EXPONENTIAL FUNCTION

REAL X(100)

0 10 I=1,N

U=X(I
X(D)=(EXP(ACXU)-1.)/(EXF{AC)-1.)
IF (X{I2.GE.1.0) X{I)=.99999
CONTINUE

RETURN

END

SUBROUTINE ﬁRéTﬁNGENT(X,NyﬁC)
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00406:C
00407
00408:C
00409:C
00410:C
00411:C
00412:C
00413:C
004143C
00415:C
004161C
00417:C
00418:C
00419:C
00420:C
00421:C
00422:C
004232
004243
004252
004263
004272
004283
004292
004303
004313
00432:C
004333
004341C
004353
004363
00437:C
00433:C
00439:C
00440:C
00441:C
0044230
00443:C
00444:C
00445:
004446:C
00447:C
00448:C

00449:¢C

00430:C
Q0451:C
00452:C

114

THIS ROUTINE PROIIUCES AN ARCTANGENT DISTRIRUTION

OF POINTS BY SURSTITUTING AN ORIGINAL SET OF NUMEERS
U LYING BETWEEN O AND' 1 INTD THE ARCTANGENT FUNCTION
{ATANCAC) -ATANC-ATANC-AC) ) /{ATANCAC) -ATAN(-AC))
WHERE AC IS A PARAMETER WHOSE VALUE IS

SUPPLIED BY THE USER.

VARIABLES

X++.THIS AN ARRAY WHICH ON INPUT CONTAINS THE ORIGIMAL SET
OF NUMEBERS AND ON QUTPUT CONTAINS THE ARCTANGENT DISTRIRUT
OF NUMBERS.

N.+.SIZE OF ARRAY X

AC. . FARAMETER IN ARCTANGENT FUNCTION

REAL X(100)
g 10 I=1i,N
U=X(I)
XD =(ATAN(Z . XACXU-AC) -ATANC-AC) )
X /(ATAN(AD) -ATAN(-AC))
IF(X{I),GE.1.0) X({I)=,99999
10 CONTINUE
RETURN
END

SURROUTINE FIXKNOTS(RX,KY,FNX,FNY,BNX,ENY,INX,
X INY;INTX;INTY).

THIS ROUTINE FLACES KX COFIES OF FNX &T THE
EEGINNING OF THE INTERIOR X KNOT SEQUENCE,
KY COPIES OF FNY AT THE BEGINNING OF THE
INTERIOR Y KNOT SEGUENCE, KX COPIES OF BNX AT THE
END OF THE INTERIOR X KNOT SEQUENCE AND KY COPIES
OF BNY AT THE ENI OF THE INTERIOR Y KNGT SEGUENCE.

INFUT

KXsee QUANTITY OF NUMBERS TO BE ADDED TO THE FRONT
ANDN BACK OF THE INTERIOR X KNOT SEQUENCE.
ORDER OF B-SPLINES IN X DIRECTION,

KYoos RUANTITY OF NUMEERS TO ERE ADDED TO THE FRONT
ANIt BACK OF THE INTERIOR Y KNOT SERUENCE. ORIER
OF B-SPLINES IN Y DIRECTION.

FNX,FNY.us NUMRERS TO BE PLACED' AT THE FRONT OF
THE X AND' Y KNOT SEQUENCES, RESPECTIVELY.
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00457:C
00438:C
00459:C
00440:C
00461:C
004623
0045634C
004464:C
00465:C
004466:C
00467
00468:C
004469:C
004701
00471
004721
004733
004741
004752
004763
00477
004781
004791
004801
004313
004823
00483
004841
00485
004861
00487
004883
00489
004903
00491
004921
00493
00494:C
00495:C
004943
004973
00498:C
00499:C
003500:C
003501:C
¢0302:C
005032
003504:C
00303:C
00504:C
00507:C
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BNX3ENY.u NUMEERS T8O BE PLACED! AT THE RACK OF THE

X AND Y KNOT SEQUENCES,RESPECTIVELY.

INXsINY 0o IIIMENSIONS OF INTERIGR X AND' Y KNOT SEQUENCES,

RESPECTIVELY.

INTXyINTY... INTERIOR X KNOT SEQUENCE,INTERIOR Y KNOT SEQ.

OUTPUT(IN COMMON)

TXsTYe0uo X KNOT SERUENCE, Y KNOT SERUENCE

COMMON/KNOTS/TX(100),TY(100)
REAL INTX(1),INTY(1)
NX=INX+KX
NY=INY+KY
10 100 I=KX+1,NX
J=I-KX
TRLI)=INTX{D)
100 CONTINUE
o0 200 I=KY+1,NY
J=I-KY
TY(I)=INTY(D
200 CONTINUE
0 S I=1,KRX
TX{I)=FNX
INDEX=I+NX
TX{INDEX) =BNX
CONTINUE
0 6 I=1,KY
TYCI)=FNY
INDEX=T+NY
TY(INDEX ) =ENY
& CONTINUE
RETURN
END

w

SUEROUTINE ROUNCOEF (KX,KY s NX,NY)

THIS ROUTINE COMPUTES THE ROUNDARY COEFFICIENTS
FOR TWO TENSOR FROIUCT B-SPLINES (X,Y COMFONENTS).
SPECIFICALLY, IT COMPUTES ALPHA(I,1),BETA{I,1) AND
ALPHACINY) ,BETA(I,NY) FOR I=1 TO NX3
ALPHA(1,J) ,BETA(1,J) AND ALPHA(NX,J),RETAINX,J)
FOR J=1 TO NY.

COEFFICIENTS ARE CHOSEN SO THAT THERE IS A
UVARIATION DIMINISHING APFROXIMATION ALONG THE
HOUNEARY .



00308:C
00509:C
00310:C
00311:C
00312:C
00513:C
00514:C
00515:C
00316:C
00517:C
003138:C
00519:C
005290:C
00521:C
00522
005233
00524:
003253
003263
005273
005281
00329
005303
005313
003323
003333
005343
005352
0035364+
005373
005333
00339:
003401
003413
003423
0035432
00544;
003453
005462
005478
005483
00549:
005503
005513
005521
003533
00554
003558
0035463
00357%
003533
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INFUT

KX,KY...ORDER OF SPLINE IN X DIRECTION, Y DIRECTION
NXyNY. . .OTMENSION OF SPLINE IN X DIRECT, Y RIRECT.

BOTH COEFFICIENT SEQUENCES WILL HAVE DIMENSION
NXXNY

QuUTFUT

(IN COMMON)
BOUNDARY COEFFICIENTS FLACED! IN ALPHA.BETA ARRAYS.

COMMON/COEF /ALPHA(100,100) ,BETAC100,100)
COMMON/RNOTS/TX(100),TY(100)
DIMENSION TXSTAR(100),TYSTAR{100)
GI1X{T)=2.%T+H1.,
G1Y(T)=0.
G2X{T)=3,+T
G2Y{(T)=2.%T
G3X{T)I=4,.XT
G3Y(T)=2,
G4X(T)=1.-T
GAY(T)=2.%T
PI=3.14159
0O 100 I=1,NX
SUM=0.
g 50 J=1,KX-1
SUM=SUM+TX{I+D
S0 CONTINUE
TXSTAR(I)=SUM/(KX-1)
100 CONTINUE
DO 200 J=1,NY
SuM=0.,
00 150 K=1,KY-1
SUM=SUM+TY( J+K)
150 CONTINUE
TYSTAR{J)=SUM/(KY-1)
200 CONTINUE
[0 300 I=1,NX
A=TXSTAR(I)
ALPRACI,1)=61X(MA
RETACI,13=6G1Y{(A)
ALPHACI,NY)=G3X{A)
BETACINY)=G3Y(A)
300 CONTINUE
DO 400 J=1,NY
B=TYSTAR(I)
ALFHA (NX, J3=G2X{(R)
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00559
005602
003618
00562
003638
005642
003658
00366:C
00367:C
003683
00569:C
00570:C

00576:C
00577:C
00378:C
00379:C
00580:C
00381:C
09382:C
00383:C
00384:C
0038352

00386:C
00587:C
00383:C
00589:C
005990:C
0059113C
00592:

00593:C
00394:C
005958
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BETA{NX,J)=6G2Y(K)

ALPHA (L, J)=64X(R)

BETAC1,J)=G4Y(R)
400 CONTINUE

RETURN

END

SUBROUTINE INNERCOEF (KX,KY,NX,NY)

THIS ROUTINE COMPUTES THE INNER COEFFICIENTS
FOR TWC TENSOR PRODUCT E-SPLINES (X,Y COMPONENTS)
SPECIFICALLY, IT COMPUTES ALPHA(I,J),EBETA{I,J) FOR
I=2 TO NX-1, J=2 TO NY-1.

THE COEFFICIENTS ARE COMFPUTED THROUGH THE USE OF
TRANSFINITE BILINEAR INTERFOLATION., THE
INTERPOLANTS ARE EVALUATED AT FOINTS SO THAT THE
RESULTING COEFFICIENTS PRODUCE & VARIATION
DIMINISHING SPLINE APPROXIMATION TO THE
TRANSFINITE BILINEAR INTERPOLANT.

INPUT

KXyKY...ORDER OF B-SPLINES IN X DIRECTION,Y IIIRECTION
NX,NY.. .DIMENSION OF SFLINE SPACE IN X DIRECT,Y DIRECT

EOTH COEFFICIENT SERUENCES WILL HAVE DIMENSION
NXENY
TX,TY(IN COMMON) ... KNOT SERQUENCE FOR X UIRECT,Y
OIRECTION

QUTPUT{IN COMMON)

INTERIDR COEFFICIENTS FLACED IN ALFHA,RETA ARRAYS

005%96:C |

003971
00398
00399
006008
006013
00502
006032
00604
006051
0060613
004607
006081
006092

COMMON/COEF /ALPHA(100,100) ,BETA(100,100)
COMMON/RNOTS/TX(100),TY(100)
DIMENSION TXSTAR(100),TYSTAR(100)
G1X(T)=2.XT+1.,
G1Y(T)=0.
G2X(T)=3.4T
G2Y(T)=2.%T
G3X(T)=4.,%T
G3Y(T)=2,
G4X(T)=1.-T .
G4Y(T)=2,%T :
FAOGY) =81 00% (1. =Y 63X (X XY
¥ FE2X(YIXX+(1,-X)XB4X(Y)
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006103
00611
006123
006132
006144
00615!
006164
00617
006183
00619%
006203
00621¢
006223
00623
006243
006251
006263
006273
006283
006293
006303
006313
006323
006333
006344
004358
006363
006372
006333
006392
006403
00641:C
00642C
00643:C
006443
00645¢
006463C
00547:C
006483C
00649:C
00650:C
00651:C
00652¢

004659:C
00660:C

30

100

300
400

Ui
va
ME

ON

IN

(1

118

X-G1X(0)¥{1,=X)X{1,=Y)-B2X(0IKRXK(1.~Y)
K-G3IX(0)K(1,=X)XY-G2X{1.,)XXXY

FY(X,Y)=6G1Y{X)¥(1,~Y)+63Y(X) XY
X FG2Y (YIRX+(1.~-X) ¥X64Y(Y)
¥ —GLY(OIR (L, ~X)I%(1.-Y)-G2Y{OIRXK(1,-Y)
K-G3Y(0)K(1.~X)XY-6G2Y{1,) KXXY

PI=3.14159

00 100 I=1,NX

SUM=0.,

00 50 J=1,KX-1

SUM=SUM+TX{I+)

CONT INUE

TXSTAR(I)=SUM/(KX-1)

CONT INUE

00 200 J=1,NY

SUM=0,

0 150 K=1,KY-1

SUM=SUM+TY ( J+K)

CONTINUE

TYSTAR(J)=SUM/(KY-1)

CONT INUE

00 400 I=2,NX-1

0 300 J=2,NY-1

A=TXSTAR(ID)

B=TYSTAR(J)

ALPHA(I, J)=FX(A,B)

RETALI, )=FY(A,K)

CONT INUE

CONTINUE

RETURN

END

SUEROUTINE COMSPLINE

THIS ROUTINE COMFUTES AND STORES THE FUNCTION
LUES AND' FIRST DERIVATIVES OF ALL THE NON-
NISHING E-SPLINES AT EACH POINT OF A SQUARE
SH.

IN ADDITION, IT DETERMINES THE KNDT INTERVAL

WHICH EACH MESH COORDIINATE LIES.

PUT

N COMMON)

fisBess ARRAYS CONTAINING COORLINATES FOR SQUARE

MESH, FOINTS OF EVALUATION FOR R-SFLINES.
NKNOTX,NKNOTY...NUMBER OF ELEMENTS IN A,R.

KX¢KYoss ORDER OF B-SPLINES IN X DIRECTION, Y
DIIRECTION.

TXrTYeuo X KNOT SEQUENCE FOR EB-SPLINES,Y KNOT
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- 00661:C SEQUENCE FOR B-GPLINES.,

006622 NXsNY oo DIMENSION OF SFLINE SPACE IN X DIRECTION,
00653:C Y DIRECTION

00664:C

00663:C OUTPUT
00666:C (IN COMMON)

00667:C
0064683C XSPLINE,YSPLINE..THREE DIIMENSIONAL ARRAYS CONTAINING

00669:C FUNCTION VALUES AND FIRST LERIVATIVES OF
0046703C E-SFLINES IN X DIRECTION, Y DIRECTION AT
004671.4C EACH ELEMENT OF A,E. THE FIRST SURSCRIFT
006723C IDENTIFIES THE B-SPLINE, THE SECONI

00673:C SURSCRIPT REPRESENTS THE POINT OF EVALUATION
006743C ANDY THE THIRD SUBSCRIPT (1 OR 2) INDICATES
00675 WHETHER THE VALUE REPRESENTS A FUNCTION
006763C EVALUATION OR DERIVATIVE EVALUATION., HENCE
00477:C XSPLINE(3,2,1) WILL CONTAIN THE VALUE OF THE
00678:C B-SPLINE IN THE X DIRECTION, E(3), AT A(2).
00679:C

00480:C LEFTX,LEFTY++. - ARRAYS ILDENTIFYING KNOT INTERVALS OM

00481:C ‘ WHICH MESH COORDINATES LIE. LEFTX(3)=4 WOULD
00682:C MEAN THAT a(3) LIES BETWEEN TX(4) ANI' TX(4+1)
00683:C ’

00684:C REQUIRED ROUTINESS

00685 RSPLVD

006841C BSPLVR

0046871 INTERV

00688:C

00689 COMMON/PARAM2/A(100) ,K(100) ,NXyNY KX, KY ,LEFTX (10D)

00690 ¥ LLEFTY(100) :

00491 COMMON/SPLINES/XSPLINE(50,100,2),YSFLINE(S50,100,2)

00692} COMMON/KNOTS/TX(100),TY(100)

006933 COMMON/KNOT/NKNOTX , NKNOTY

00694 REAL DBIATX(4,2),WORK(4,4)

00695 INERIV=2

00696 JOERIV=2

006974C

006%93:C INITIALIZATION

004699:C

00700 NUMX=NX+KX

007013 NUMY=NY+KY

00702 0 3 I=1,NX

00703 0 2 J=1,NKNOTX

00704 0 1 KK=1,2

00705 XSPLINE(I,J,KK)=0.,

00706 1 CONTINUE

00707 2 CONTINUE

00708 3 CONTINUE

00709 00 9 I=1,NY

00710 [0 8 J=1,NKNOTY

00711 10 7 KK=1,2
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007122
007132
007142
007153
007162
00717
007182
007193
007203

007213

007222
007233
007243
007253
007268
00727:
007283
007291
007302
00731
00732:
00733
007343
0073352
00736%
007371
007332
007391
007402
007413
007423
007431
00744%
007453
00746
007472
00748:
007493
007302
00751:
00752

007532
00754
007351
00736
007573
00758
007593
007608
00761
007622

c
C
c

£
c

iC

000N

IS IS
NN
[0 o

[
2]

291
292
29

293
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YSPLINE(I,J,KK)=0,

CONTINUE

CONTINUE

CONTINUE

g 25 I=1,NKNOTX

CALL INTERW{TX NUMX,A(I1)LEFTX(I),HFLAG)
CALL BSPLVI{TX,KX,A(I),LEFTX(1),WORK,DBIATX, IDERIV)
oo 252 JJ=1,2

0 231 II=1,KRX

IR=LEFTX(I)-KX+1I

IF(IR.LE.Q) GOTO 231
XSPLINECIR,I,J)=IRIATX(II,JJ)

CONTINUE

CONTINUE

CONTINUE

PRINT%, 10 ALL X SEG EQUAL ALL Y SEG YES(1) DR NO{0)’
REALI(1,%) KODE

IF(KODE.ER.O) GOTO 28

0 27 JJ=1,NRKNOTY

LEFTY(JH=LEFTX(JJ)

0o 272 KK=1,2

0 271 II=1,NY
YSPLINE(II,JJ,KK)=XSFLINE(II,JJ,KK)
CONTINUE

CONT INUE

CONTINUE

GOTO 293

CONTINUE

D0 29 J=1,NKNOTY

CALL INTERV(TY,NUMY,B{(J),LEFTY(J),HFLAG)
CALL BSPLVIKTY,KY,BR(I),LEFTY(J) ,WORK,DBIATX, JOERIV)
g 292 JJ=1,2

10 291 II=1,KY

JE=LEFTY (J)-KY+II

IF(JB.LE.G) GOTO 291 :
YSPLINE{JE,J,JJ)=DRIATX(II,JJ)

CONTINUE

CONTINUE

CONTINUE

CONTINUE

RETURN

END

SUBROUTINE TENVALF(ARR,LEFTX,LEFTY,KX,KY

X »I,J,VALUE,IDERIV,JIERIV)

TENVALF COMFUTES PARTIAL DERIVATIVES FOR A TEMSOR

FRODUCT SPLINE FUNCTION AS INDICATED BY THE PARAMETERS
IDERIV, JDERIV. :
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00763:C
00764:C INFUT

007651

007564:C ARR. .o ARRAY OF COEFFICIENTS FOR SFLINE
00767:C FUNCTION

00768:C I,dess INDICIES FOR POINT OF EVALUATION
007469 {(A(I),R(D),WHERE #A,R ARE ARRAYS
00770:C WHICH CONTAIN COORIINATES OF A
00771:C - SGUARE MESH.

00772:C LEFTX... VALUE INDICATING KNOT INTERVAL
00773:C ON WHICH A(I) LIES

00774:C LEFTYeee VALUE INLIICATING KNOT INTERVAL
00775:C ON WHICH RB(J) LIES

00776:C KX¢KY'uo ORDER OF EB~SPLINES IN X-DIRECTION,
00777:C Y DIRECTION

00778:C IDERIV... ORDER OF DERIVATIVE DESIRED FOR X
00779:C DIRECTION

00780:C JIOERIV... ORDER OF DERIVATIVE DESIRED FOR Y
00781:C OIRECTION

007822 (IN COMMON)

00783:C XSPLINE, YSPLINE., .ARRAYS CONTAINING FUNCTION
00784:C VALUES AND' FIRST DERIVATIVES OF R~SFLINES IN
90785:C - X DIRECTION, Y DIIRECTION AT EACH POINT
00786:C : GIVEN IN ARRAYS #,ER

00787:C :

00788:C OUTPUT

00789:C

00790:C VALUE. .. VALUE OF TENSOR PROLDUCT SPLINE
00791:C 0R DERIVATIVE :

007923

00793 COMMON/SPLINES/XSPLINE(S0,100,2),YSPLINE{50,100,2)
00794: DIMENSION ARR(100,100)

007953 VALUE=0.,

00796 0 13 JJ=1,KY

007971 JB=LEFTY-KY+JJ

00798: IF(JR.LE.Q) GOTO 13

00799 o0 12 II=1,KX

008003 IB=LEFTX-KX+11

00801 IF(IR.LE,0) GOTO 12

008023 UALUE=VALUE+ARR (1K, JR)XXSPLINE(IR, I,IDERIV+L)
00803 ¥ XYSPLINE(JR,J, JOERIV+1)

00804 12 CONTINUE
00805: 13 CONTINUE

008062 RETURN

008071 END

00808:C

00809:C

008103 SUBROUTINE TENSORVAL(ARR,NX,NY,KX,KYA,E,VALUE
00811 ¥ ,J0X,J0y)

00812:C THIS ROUTINE CALCULATES THE VALUE OF A& TENSOR FRODUCT
00813:C SPLINE AT THE FOINT (A,R).
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00814:C
008153

00814:C
00817:C
00818:C
00817:C
00820:C
00821:C
00822:C
00823:C
00824:C
008253

008246:C
00827:C
00828:C
00829:C
00830:C
00831:C
008323

008333

00834

008333

008362

008373

00838:

008393

00840

00841:C
008423

00843:C
008443

008435:C
00844:C
00847:C
00848:C
00849:C
0085303C
00831:C
00832:C
008353:C
00834:C
008551

008346:C
00837:C
008358:C
00859:C
00860:C
00861:C
00862

00843:C
00864:C

122

INPUT

ARR... ARRAY OF COEFFICIENTS®

NX,NY.. . DIMENSION OF SPLINE SPACE IN X DIIRECT.,

Y DIRECTION. ARRAY ARR WILL HAVE
DIMENSION NXKNY.
KXsKY., .ORDER OF B-SPLINES IN X DIRECT,Y DIRECT
fisBses. FOINT OF EVALUATION

(IN COMMON)
TXsTY...KNOT SERUENCE FOR X DLRECTy
Y DIRECT.

OUTPUT

VALUE.. .VALUE OF TENSOR PROIUCT SPLINE AT (A,K)
COMMON/RNOTS/TX(100),TY(100)
TIIMENSION BCOEF(100),ARR(100,100)
CALL INTERV(TY,NY,E,LEFTY,NFLAB)
VALUE=0.,
0g 10 J=1,KY

10 REOEF(J)=BVALUE(TX,ARR{1,LEFTY-KY+J) ,NX,KX,A,JIX)
VALUE=BEVALUE(TY(LEFTY-KY+1) ,RCOEF ,KY,KY, B, JIY)
RETURN
ENI!

SUERROUTINE JACDRB{NX,NY,KX,KYsA,R)

THIS ROUTINE COMPUTES THE JACORIAN OF A
TENSOR PRODUCT EB-SFLINE MAPFPING.

INPUT
NXyNY. o DIMENSION OF SPLINE IN X
HIRECTION,Y LDIRECTION
KXsKY4 o ORLER OF B-SPLINES IN X DIRECTION
Y DIRECTION
AsBees ARRAYS CONTAINING EVALUATION
POINTS '

(IN COMMON)

ALFHA,BETH. . .COEFFICIENTS OF B-SPLINES

NRKNOTX,NKNOTY .NUMBER OF ELEMENTS IN
ARRAYS AE

QUTPUT(TO TERMINAL)

AsBees ARRAYS CONTAINING EVALUATION
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00865:C POINTS

00866:C AJCORIAN. . JACORIAN AT EACH POINT

00847:C

0084631 COMMON/COEF /ALPHA(100,100) ,BETA{100,100)

00869 COMMON/KNOT/NKNOTX , NKNOTY

008703 REAL A(1003,R{(100)

008712 PRINTX,’ X Y JACORIAN’
008723 PRINT%,” /

00873: ['0 20 I=1,NKNOTX

008743 ID 10 J=1,NKNOTY

00875 II=1

008762 JJ=J

008773 CALL TENSORVAL (ALPHA,NX,NYKX,KY,A(ID),E{(JD),
00878 ¥ XOFIRST,1,0)

008791 CALL TENSORVAL (ALPHANXsNY,KXsKYsA(IT) 2RI,
00880 ¥ YIFIRST,0,1)

00881 CALL TENSORVAL (BETAsNX,NY,KX,KY,A(II),Ek{(JJ),XOSEC,
00882: x 1,00 -
008833 CALL TENSORVAL(EBETA,NX,NY,KX,KY,A(II),R(JJ),YIISEC,
00884 X 0,1)

00885 AJCORIAN=XDFIRSTXYUSEC-XDSECXYIFIRST

008863 PRINT¥,AC(II),B(JJ),AJCORIAN

00887¢ 10 CONTINUE

00888 20 CONTINUE

00889 RETURN

00890 ENDI

00891:C '

00892:C

008933

008943 SUBROUTINE CORANGE(NKNOTX,NKNOTY)

00895:C

008945:C CORANGE DETERMINES THE RANGES OF SUMMATION
00897:C NEEIDED TO MINIMIZE THE SHOOTHING FUNCTIONAL G IN
00898:C EACH COORININATE IIRECTION.

00899:C SPECIFICALLY, FOR EACH COEFFICIENT ALFHAC(I,J),
00900:C OR BETA(I,J), IT DETERMINES THE RANGE OF INIICES FOR
00901:C THE HESH POINTS LYING ON THE SUPFDRT OF THE TENSOR
00902:C PRODUCT B-SPLINE HAVING SUBSCRIPTS I.J. IT PLACES
00903:C THE SMALLEST IN IFIRST(I) AND JFIRST(J) ANL THE
00904:C LARGEST INDICES IN ILAST(I) AND JLAST(J). THESE VALUES
00905:C DETERMINE WHICH TERMS IN G SHOULD EE SUMMED WHEN
00906:C MINIMIZING THE SMOOTHING FUNCTION IN THE DIIRECTION
00907:C REFRESENTED' RY THE COEFFICIENT ALPHA(I,J) OR BETA(I,J).

00903:C

00909:C  INPUT

00910:C '

00911:C NKNOTX, NKNOTY . . .HIMENSIONS FOR SQUARE MESH

00912: OR NUMERER OF ELEMENTS IN ARRAYS AR
00913:C (IN COMMON)

00914:C ArB.vs ARRAYS CONTAINING COORIIINATES FOR
00915:C SQUARE MESH
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00916:C
00917:C
00918:C
00919:C
009203C
00921:C
00922:C
00923:C
00924:C
00925
00924

[ R e N

o
(=4
0
3 P
~N
s TP 40 O o0 »
]

00933:C
00934:C
009352
00936:C
00937:C
009381
009392
009403
009412
009422
009432
009441
009452
009462
009471
009482
00949
009501
00951:
00952¢
009332
009541
009358
009562
00937
00953+
00959:
00960
009613
009623
00963
00964
009565¢
009662

124

NXsNT s DIMENSION OF SPLINE SFACE IN X DIIRECT.

»Y DIRECTION OR
TOTAL NO. OF B-SPLINES IN X DRIRECTION,
Y DIRECTION

RXpKY v oo ORLUER OF B~SPLINES IN X DIRECTION,

Y TIRECTION

LEFTX,LEFTY+ss ARRAYS IDENTIFYING KNOT INTERVALS

ON WHICH SQUARE MESH COORLINATES
LIE. (LEFTX{(I)=J IMPLIES
TX(I) <=ADILTX{ D)

QUTPUT

190

20
30

40

30

IFIRST,JFIRST.. ARRAYS CONTAINING STARTING

POINTS FOR THE RANGES OF SUMMATION
CORRESFONDING TO EACH COEFFICIENT
ALPHA(L,J),BETA(I, D).

ILAST,JLAST.. ARRAYS CONTAINING FINAL

POINTS FOR THE RANGES OF SUMMATION
CORRESFONDIIING TO EACH COEFFICIENT
ALFPHA(I» J) »BETA(TI )

COHMON/PARAMZ/A(100) yR{I100) , NX, NY oKX, KY,
LEFTX(100) ,LEFTY(100)
COMMON/RANGE/IFIRST(100),ILAST(100),JFIRST(100),
JLAST(100)

0 50 I=1,NX

IF(I.EQ.1) THEN

I11=1

ELSE

II=IFIRST(I-1)

ENDIF

IF(I.GELEFTX(II)-(RX-1) +ANDLILELLEFTX(II))
GOTO 20

II=II+1

GOTO 10

IFIRST(I)=11I

IT=II+1

IF(II.GT.NKNOTX) GOTO 40
IF(ILLTLLEFTX(II)-(KX-1)) GOTO 40

GOTO 390

ILAST(I)=II-1

CONTINUE

D0 100 J=1,NY

IF{J.EQ.1) THEN

JJ=1

ELSE

JJ=JFIRST(J-1)

ENDIF

60 IF(J.GE.LEFTY(ID —{RKY-1) . ANLLJLLELLEFTY(JI))

b4

GOT0 70
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00957:

00968:

00949

009702

009713

009723

00973:

00974

009752

00976

00977

00978:C
00979:C
00980:C
009813

009821

00983:C
00984:C
00985:C
00986:C
00987:C
00988:C
00989:C
00990:C
00991:C
009922

00993:C
00924:C
00995:C
009946:C
00997:C
00998:C
00999:C
01000:C
01001:C
010023

01003:C
01004:C
01005:C
01006:C
01007:C
010083:C
01009:C
01010:C
01011:C
01012:C
01013:C
01014:C
010135:¢C
01016:C

01017:C.

125

JJ=JdJd+l
GOTO 60
70 JFIRST(J)=JJ
80 Jd=JdJ+1
IF(JJ.GT.NKNOTY) GOTO 90
IF(JLT.LEFTY{JD -(KY-1)) GOTO 90
GOTO 80
20 JLAST(J)=JJ-1 :
100 CONTINUE
RETURN
END

.REAL FUNCTIDN GF(II,JD)

FUNCTION GF COMPUTES THE SUM OF THE TERMS IN
THE SMOOTHING FUNCTIONAL G OVER THE RANGES INDICATED

BY IFIRST(II),JFIRST{JJ) AND ILAST(II), JLAST(JID).
INPUT
IT:Jddeses INRICES FOR COEFFICIENT INVOLVELD

IN MINIMIZATION,
(IN COMMON)
NKNOTX,NKNOTY. . .IIIMENSIONS FOR SQUARE HESH

OR NUMBER OF ELEMENTS IN ARRAYS A,R
ArBess ARRAYS CONTAINING COORLINATES FOR
SQUARE MESH
NXyNY oo IITHENSION OF SPLINE SFPACE IN X DIRECT.

»Y DIRECTION OR
TOTAL NO. OF B-SFLINES IN X DIRECTION,
Y DIRECTION
KXsKY+ oo ORLER OF B-SPLINES IN X DIRECTION,
Y DIRECTION
LEFTX,LEFTY... ARRAYS IDENTIFYING KNOT INTERVALS
ON WHICH SQUARE MESH COORLIINATES
LIE., (LEFTX{I)=J IMPLIES
TXCD L=A{1)<TX(J+1)

IFIRST,JFIRST.. ARRAYS CONTAINING STARTING
POINTS FOR THE RANGES OF SUMMATION
CORRESPONIIING TO EACH COEFFICIENT
ALPHAC(I,J) »BETA(I, ).
ILAST,JLAST.. ARRAYS CONTAINING FINAL
POINTS FOR THE RANGES OF SUMMATION
CORRESPONDING TO EACH COEFFICIENT
‘ ALPHA(I,J) »BETA(I,J)
Wi, UW2... JMEIGHTS FOR JACORIAN, DOT PRODUCT
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01018:C OUTPUT

01019:C
01020:C
01021:C
01022:C
010232
01024:
010253
01026%
010272
010282
010293
01030:
0103132
010322
010333
01034:
: 010353
01036¢
010372
010383
010373
01040:
010413
01042
010432
01044:
010452
010448
010472
01048
010492
01050
010512
01032
010532
010348
010552
010362
010572
01058¢
01059:
01060
010613
010628
01063:
010642
01065
01066
01057
010533
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100
200

GF.eo FARTIAL SU

M0
APPROPRIATE RANGE.

REAL AJ(30,30),00T(30,30)
COMMON/PARAM2/8(100) yR(100) ,NX,NY ,KX,KY,
LEFTX(100),LEFTY{100)
COMMON/COEF/ALFPHA(100,100),BETA(100,100)
COMMON/KNOT/NKNOTX ,NKNOTY
COMMON/WEIGHTS/W1,42
COMMON/RANGE/IFIRST(100),ILAST(100),JFIRST(100),
JLAST(100)

NUMX=NKNOTX

NUMY=NKNOTY

DELX=1./(NUMX-1.)

DELY=1./(NUMY~-1,)

SDELX=DELXXDELX

STELY=DELYXDELY

SUM=0,0

IF=IFIRST(II)

JF=JFIRST(JD)

IL=ILAST(IID)

JL=JLAST(JJ)

IF(IF.GT.1) IF=IF-1

IF(JF.6T.1) JF=JF-1

IF(ILLTWNUMXY IL=IL+1

IF(JL.LT.NUMY) JL=JL+1

o 200 J=JdF,JL

g 100 I=IF,IL

CALL TENVALF{ALPHA,LEFTX(I),LEFTY(J) ,KX,KY,I,Jy
F1X,1,0)

CALL TENVALF(RETA,LEFTX{I),LEFTY{J) KX,KY,I,Jdy
FiY,1,D)

CALL TENVALF(ALPHA,LEFTX(I) ,LEFTY{J) yKX,KY,I,Jy
F2X,0,1)

CALL TENVALF(BRETA,LEFTX{I),LEFTY(J) KX,KY,I,J,
F2Y,0,1)

AJ(I, D=F1XKF2Y-F2X)F1Y
HOT(I,)=F1X¥F2X+F1YXF2Y

SUM=SUM+LOT(I,J)%%2

CONTINUE

CONTINUE

SUM1=0.

SUM2=0.

0 400 J=JF,JL-1

Do 300 I=IF,IL-1

IF(I.EG.1.ANDII.J.EQ.1) GOTO 300
IF(I.ER.,1.ANI.J.EQG.NUMY-1) GOTO 300
IF(I.EQ.NUMX-1.AND.J.EQ.1) GOTG 300
SUM1=SUMI+(AJ(I, D-AI T, J+1) ) %x2

F TERMS IN G OVER THE
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010692

010703

01071:

010722

01073:

01074:

010752

010762

01077:C
01078:C
01077:C
010803

01081:C
01082:C
01083:C
010841C
01083:C
010846:C
01087:C
01088:C
01087:C
01090:C
01091:C
010922

01093:C
01094:C
01093:C
01096:C
01097:C
01098:C
01099:C
01100:C
01101:C
011023

01103:C
01104:C
01105:C
01106:C
01107:C
01108:C
01109:C
011103C
01111:C
01112¢

01113:C
011143C
01115:C
01116:C
01117:C
01118:C
01119:C

SUM2=8UM2+{AJ(T+1,J)-AJ(T,J) ) k&2

300 CONTINUE
400 CONTINUE

SUM1=SUM1XDELX/DELY
SUM2=5UM2XTELY/DELX
GF=W1%(SUM1+SUM2) +U2%DEL XXDELYXSUM
RETURN

ENL

SUBROUTINE FFMIN(ERMAX)

FFMIN SEARCHES FOR THE MININMUM OF THE SMOOTHING
FUNCTIONAL G. EACH CALL TO FFMIN PRODUCES ONE
COMPLETE ITERATION OF THE CYCLIC COORDINATE METHOL,
A& MULTIDIMENSIONAL SEARCH TECHNIGUE FOR MINIMIZING
A FUNCTION OF SEVERAL VARIAERLES WITHOUT USING
DERIVATIVES, THE ROUTINE SEARCHES FOR A HINIMUM
ALONG EACH COORI'INATE LIIIRECTION.

IN FFMIN THE COORRINATE DIIRECTIONS ARE REPRE-

SENTED BY THE TENSOR FRODUCT COEFFICIENTS .FOR EACH
COEFFICIENT THE ROUTINE FIRST DETERMINES THE
INTERVAL ON WHICH THE COEFFICIENT MUST LIE IF THE
JACORIAN OF THE TENSOR PRODUCT MAPPING IS TO BE
NONNEGATIVE AT ALL MESH POINTS AFFECTED BY THE
COEFFICIENT. IT THEN CALLS EITHER TESTMINO, TEST-
MINL, TESTMINR, OR TESTMINB DEPENDING ON WHETHER
THE INTERVAL IS BIINFINITE, HAS A LEFT ENDPOINT,
A RIGHT ENDPOINT, OR TWO ENDPOINTS. THE CHOSEN
SUEROUTINE FINDS THE LOCATION OF THE HMINIMUM OF
GF ON THE INTERVAL ANDI CHANGES THE AFPROFRIATE
COEFFICIENT ACCORDINGLY.

INPUT
(IN COMMON)

ALFHA,BETA. . ARRAYS CONTAINING COEFFICIENTS OF
TENSOR FRODUCT SFPLINE MAPPING.

AyBess ARRAYS CONTAINING COORIINATES FOR
SQUARE MESH.
NXpNYeuo DIMENSION OF SPLINE SPACE IN X DIRECT.

»Y DIRECTION OR
TOTAL NO. OF E-SPLINES IN X DIRECTION,
Y DIRECTION.
KXsKY o oo ORDER OF B-SPLINES IN X DIRECTION,
Y DIRECTION. .
LEFTX,LEFTY... ARRAYS IDENTIFYING KNOT INTERVALS
ON WHICH SQUARE MESH COORDINATES
LIE. {LEFTX{I)=J IMPLIES
TXCD<=ACII<TX(I+1))
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01120:C
01121:C
01122!
01123:C
01124:C
01125¢
01126:C
01127:C
01128
01129:C
01130:C
01131:C
01132
01133:C
01134:C
01135:C
01136:C
01137:C
01138:C
01139:C
01149:C
01141:C
01142:
01143
01144:
01145}
01146}
01147:
01148}
01149}
011503
011513
01152
01153:
01154
01155
011561
01157:
011583
01159}
01160}
01161}
01162
01163¢
01164!
01165}
011668
01167}
011681
01169¢
01170}

e

e
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ou

wa

IFIRST,JFIRST.. ARRAYS CONTAINING STARTING
POINTS FOR THE RANGES OF SUMMATION
CORRESPONDIING 7O EACH COEFFICIENT
ALPHA(L, ) »BETA(I,J) .

ILAST,JLAST. . ARRAYS CONTAINING FINAL
POINTS FOR THE RANGES OF SUMMATION
CORRESFONIIING TO EACH COEFFICIENT
ALPHACI, 1) »BETA(I,J) .

Wi, UW2.ss WEIGHTS FOR JACORIAN, DOT PRODUCT
TO ERE USELD! IN GF. '

NKNOTX,NKNOTY. .. IIMENSIONS FOR SQUARE MESH :
OR NUMBER OF ELEMENTS IN ARRAYS A,E.

TPUT

ERMAX. .. MAXIMUM CHANGE IN THE COEFFICIENTS
AFTER A& COMPLETE ITERATION.

{IN COMMON)

ALPHAYEBETA. . ARRAYS CONTAINING NEW COEFFICIENTS
FOR TENSOR PRODUCT SFLINE MAPPING.

COMMON/COEF/ALPHA(100,100) ,RETA{100,100)

COMMON/PARAMZ/A(100) ,H(100) pNX,NY ,KX,KY,
¥ LEFTX(100),LEFTY{100)

COMHON/RANGE/IFIRST{100),ILAST(100),JFIRST(100),
X JLAST(100)

COMMON/PARAM/FKOUNT

COMMDN/WEIGHTS/W1,UW2

COMMON/KNOT/NKNOTX , NKNOTY

REAL LEND,LINT,AJ(2)

INTEGER CTEST

FRKOUNT=0

ERMAX=0.

I8 500 I=2,NX-1

0 400 J=2,NY-1

IF=IFIRST(I)

IL=ILAST(I)

JF=JFIRST(D)

JL=3LAST(D

MKOUNT=0

CONTINUE

HOLD=GF(I,.J)

MTEST=MKOUNT/2%2

IF(MTEST.EQ.MROUNT) THEN

HOCO=ALFHA(I,

ELSE

HOCO=BRETA(I,J)

ENDIF

LENII=-10,0E8

RENII=10,0E8
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01171
011723
011732
011743
01175:
011762
01177¢
011783
011792
011803
011813
011823
011832
01184
01185¢
011862
011873
01188
011893
01190¢
011913
011922
011933
011943
011953
011962
011973
01198:
011992
012002
012012
01202
012032
012042
0120353
012068
012072
012083
012092
012103
012112
012122
012133
012143
012152
012146
012173
012183
012192
01220
012213

10

100
200

129

RFLAG=0

IFLAG=0
o 200 1I=IF.IL
0 100 JJ=JF,JL
IF{MKOUNT/2%2.EQ.MKOUNT) THEN
ALFHA(I , )=0.
ELSE
BRETA(I, D=0,
ENDIF
g 10 K=1,2
CALL TENVALF(ALFHA,LEFTX(II),LEFTY{JJ) yKX,KY,1I,
JJF1X,1,0) :
CALL TENVALF(RBETA,LEFTX(II) ,LEFTY(JJ)yKXsKY,11I,
JJeF1Y,1,0)
CALL TENVALF (ALPHA,LEFTX(II),LEFTY{JJ) 4KXsKY,1I,
J3,F2%,0,1)
CALL TENVALF(RETALLEFTX(II),LEFTY(JJ),KXsKY,II,
JJyF2Y,0,1)
AJ(RK)=FI1XXF2Y-F2XXF1Y
IF(MROUNT/2%2.EQ.MKOUNT) THEN
ALFHACI, ) =1,
ELSE :
RETA(I yJ)=1 .
ENDIF
CONTINUE
D=AJ(1)
C=AJ{2)-I
IF(C.GT,1.,0E-7) THEN
LINT=-I/C
IF(LINT.GT.LENDI) THEN
IF(LINT.LE.REND) THEN
LEND=LINT
ELSE
IFLAG=-1
ENIIF
ENDIF
ELSE IF{(C,LT.~1.,0E-7) THEN
RINT=-1/C
IF{RINT.LT.RENI) THEN
IF{RINT.GE,LEND) THEN
RENDI=RINT
ELSE
IFLAG=-1
ENDIF
ENDIF
ELSE
KFLAG=KFLAG+1
ENDIF
CONTINUE
CONT INUE
CTEST=(ILAST(I)-IFIRST{ D)+ ) ¥{JLAST(I-JFIRST(I)+1)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



130

012228 IF(KFLAG.EQ.CTEST.OR.IFLAG.EQ.-1) THEN
012233 IF(MKOUNT/2%2,.EQ.MRKOUNT) THEN
012243 ALFHA{T , J)=(LEND+RENIN /2,
012253 ELSE
0122562 BETA{I,J)={LENIMHRENID/2.
012271 ENDIF
012282 ELSE IF{LEND.LT.-1.0E7.AND.REND.GT.1.0E7) THEN
012293 CENTER=0.0
012303 CALL TESTMINO{MKOUNT,I,J)
01231 ELSE IF(LEND.LT.-10.0E7) THEN
012322 CENTER=0.0
01233: CALL TESTMINR(MKOUNT,I,J,LENI,RENID
012343 ELSE IF{REND.GT.10.E7) THEN
012352 . CENTER=0.0
012363 CALL TESTHMIMNL (MKOUNT,I,J,LENI,RENI)
01237: ELSE
- 012383 CENTER=(LENIHRENIN /2.
012392 CALL TESTMINE{MKOUNT,I,J,LEND,RENIV)
012403 ENIIF
012413 82=GF(I,J)
012423 DIFF=HOLD-52
012438 IF(HOLL.LT.52) THEN
012443 IF(MTEST.ER.MKOUNT) THEN
01245: ALPHA(I, J)=HOCO
0124463 ELSE
012472 BETA(I,J)=HOCO
012482 ENDIF
01249: S2=HoLn
012503 RIFF=0,
012513 ENDIF
012523 IF(ABS(IIIFF) .GT.ERHAX) ERMAX=ABS(LIFF)
012532 FRINT, FUNCTION VALUE IS’,82
012542 PRINT#¥, COUNT IS’,FRKOUNT
012335¢ KFLAG=0
012363 MKOUNT=HKOUNT+1
012571 IF {MKOUNT.NE.MKOUNT/2%2) GOTO S

01258 400 CONTINUE
01259 S00  CONTINUE

012602 RETURN

012611 END

01262:C

01263:C

01264:C

012653 SUERDUTINE CRIT{CENTER,C1,C2,C3,C4,C5,NROOTS,R,MKOUNT,
012662 ¥ I,

01267:C

01268:C CRIT FINIS THE COEFFICIENTS OF THE 4TH DEGREE

01269:C POLYNOMIAL REFRESENTING GF AND COMPUTES ITS CRITICAL
01270:C FOINTS, I.E., IT FINDS THE POINTS FOR WHICH THE DERIVATIVE
01271:C OF THE POLYNOMIAL IS 0.

01272:C
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01273:C  INPUT

012743

012738 CENTER... NUMEBER AT CENTER OF INTERVAL TO BE
012746:C CONSIDERED. IF INTERVAL IS INFINITE THEN
01277:€ CENTER ASSIGNED & VALUE OF 0.

01278:C MKOUNT., ., MKOUNT EVEN MEANS THE COEFFICIENT
01279:C INVOLVEDR IN MINIMIZATION IS IN THE ALFHA
01280:C ARRAY. MKOUNT Ot MEANS THE COEFFICIENT
01281:C IS IN THE RETA ARRAY.

012823 I,d.. SURSCRIPTS FOR COEFFICIENT INVOLVELD
01283:C IN MINIMIZATION

01284:C (IN COMMON)

012853 ALPHARETA. . ARRAYS CONTAINING COEFFICIENTS OF
01286:C TENSOR FRODUCT SPLINE MAPFPING.

01287:C AyBese ARRAYS CONTAINING COORDINATES FOR
01288:C SQUARE MESH.

01289:C NXeNYouo DIMENSION OF SPLINE IN X DIRECTION
01290:C »Y DIRECTION OR

01291:C TOTAL NO. OF R-SFLINES IN X LIRECTION,
01292 . Y DIRECTION.

01293:C KXyKY0 oo ORLER OF E~SPLINES IN X NIRECTION, °
01294:C Y DIRECTION.

01295:C LEFTX,LEFTY... ARRAYS IDENTIFYING KNOT INTERVALS
01296:C IN WHICH SQUARE MESH COORDINATES
01297:C LIE. (LEFTX{(I)=J IMPLIES

01298:C TXCD=ATIISTR(IHL))

01299:C

01300:C WisW20e, WEIGHTS FOR JACORIAN, IIOT FRODUCT
01301:C TO BE USEDN IN GF.

01302:C NKNOTX,NKNOTY .. . DIMENSIONS FOR SQGUARE MESH

01303:C OR NUMEER OF ELEMENTS IN ARRAYS A,E.
01304:C FKOUNT ... PARAMETER CONTAINING NUMBER OF CALLS TO
01305 GF

01306:C AKe oo ARRAY CONTAININ FOINTS -2,-1,0,1,2
01307:C WHICH ARE USEL' AS TEST POINTS IN
01308:C DETERMINING THE COEFFICIENTS OF THE
01309:C 4ATH DEGREE POLYNOMIAL WHICH AFPROXI-
01310:C MATES GF.

01311:C

01312:C QUTPUT

01313:C

01314:C €i,C2,C3,C4,C5.. COEFFICIENTS OF 4TH DEGREE FOLYNOMIAL.
01315:C Cl1 IS THE COEFFICIENT OF THE 4TH DEGREE TERHN.
01316:C NROOTS... NUMBER OF CRITICAL FOINTS

01317:C Reos ARRAY CONTAINING CRITICAL FOINTS
01318:C

013192 REAL R(3),BK(3)

013202 COMMON/COEF/ALFHA(100,100),BETA(100,100)

013213 COMMON/PARAM2/A(100) ,B(100) 4 NX,NY KXy KY,LEFTX(100)
013223 X LLEFTY(100> -

013232 COMMON/KNOT/NKNOTX,NKNOTY
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013248 COMMON/WEIGHTS/UW1 pi2
013254 COMMON/FARAM/FRKOUNT

01326¢ COMMON/XKS/XK(5)

013272 IF (MKOUNT/2%2.EQ.MKOUNT) THEN
01328: DO 100 IK=1,5

01329 ALFHACI, D=XK(IK)+CENTER

01330 BRKCIKY=GF (I, :
013312 FKOUNT=FKOUNT+1

01332: 100 CONTINUE

013333 ELSE

01334 00 200 IK=1,5

01335: RETA(I,J)=XK(IK)+CENTER
01336 BK(IK)=GF{I,J)

01337: FKOUNT=FKOUNT+1

01338: 200 CONTINUE

01339 ENDIF

01340¢ D=XK(4)

013413 B1=RK(1)

01342 R2=BK(2)

01343 K3=REK(3)

01344; E4=RK(4)

013453 BS=BK(5)

01344 CS=R3

01347 SUM=-E5+8.X(E4-E2)+K1

01348: C4=1,/(12.%D)XSUM

013493 SUM=-E5+14.X(R44+B2)-30,%¥R3-K1
01350 £3=1,/(24, XI%XD) XSUM

013513 SUM=F5~2 X (B4-E2)-K1

01352 C2=1,/(12, XOIXOIXD) XSUM

01353 SUM=R5-4 ., X{B4+E2)+6 . KE3+H1
01354 C1=1,/(24,xI%X4) XSUM

01355 IF (ARS{C1).LT.1.0E-04) GOTO 300
013568 CALL CURIC(4.%C1,3.%C2,2.%C3,C4,NR0O0TS,R)
013573 RETURN

01358 300 CONTINUE

01359 NRDOTS=-1

013560 RETURN

013613 ENII

01362:C

01343:C

013464:C

01365 SUBROUTINE TESTMINO(HKOUNT,I,J)
01384:C

013467:C FOR A GIVEN COEFFICIENT ALFH&(I,J) OR EETA{I,J)

0r368:C TESTMINO FINDS AND TESTS THE CRITICAL POINTS OF
01369:C THE 4TH DEGREE POLYNOMIAL REPRESENTING GF TO

01370:C DETERMINE WHICH POINT YIELLS THE SMALLEST VALUE FOR GF
013713C WHEN GF IS VIEWED' AS A FUNCTION OF THAT COEFFICIENT.
01372:C THE NUMBER CHOSEN BECOMES THE NEW WALUE FOR

01373:C ALPHA(I,J) OR BETS(I,J) .

01374:C
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01375:C
01376:C
01377:C
013738:C
01379:C
01380:C
013811:C
01382:C
01383:C
01384:C
013853

01386:C
01387:C
01388:C
01389:C
01390:C
013%1:C
013922

01393:C
£1394:C
01395:C
01394:C
01397:C
01398:C
01397:C
01400:C
01401:C
014022

01403:C
01404:C
014035:C
01406:C
01407:C
01408:C
01409:C
01410:C
01411:C
01412:C
014133C
01414:C
014152

014162

014173

014183

01419¢

01420:

01421

014223

01423¢

01424:

014252

INFUT

MKOUNT .« » MKOUNT EVEN MEANS THE COEFFICIENT
INVOLVED IN MINIMIZATION IS IN THE ALFHA
ARRAY. MKDUMT OID' MEANS THE COEFFICIENT
: IS IN THE BETA ARRAY.
Tedes SUBSCRIFTS FOR COEFFICIENT INVOLVED
IN MINIMIZATION
(IN COMMON)
ALPHA,BETA. . ARRAYS CONTAINING COEFFICIENTS OF
TENSOR PROIMUCT SFLINE MAFFING,

AsBoere ARRAYS CONTAINING COORDINATES FOR
. SQUARE MESH.
NXsNY. oo DIMENSION OF SPLINE IN X DIRECTION

+Y DIRECTION OR
TOTAL NO. OF B-SPLINES IN X DIRECTION,
Y DIRECTION.
KXeKY ' oo ORIER OF B-SPLINES IN X DIRECTION,
Y DIRECTIDN,
LEFTX,LEFTY... ARRAYS IDENTIFYING KNOT INTERVALS
IN WHICH SQUARE MESH COORDIINATES
LIE. (LEFTX(I)=J IMFLIES
TX{D<=ACI)<TX{J+1))

. WiW2.., WEIGHTS FOR JACORIAN, DOT FROTUCT
TO EE USED' IN GF.
NKNOTX,NKNOTY. . .DIMENSIONS FOR SQUARE MESH
OR NUMEER OF ELEMENTS IN ARRAYS A,B.

FROUNT o PARAMETER CONTAINING NUMERER OF CALLS TO
GF
AKe s ARRAY CONTAINING FOINTS -2,-1,0,1,2

WHICH ARE USED AS TEST POINTS IN
DETERMINING THE COEFFICIENTS OF THE
4TH DEGREE FOLYNOMIAL WHICH APFPROXI-
MATES GF.

QuUTFUT
ALPHA(I,J) OR BRETA(I,J)..NEW VALUE FOR COEFFICIENT

COMMON/COEF /ALFHA(100,100) ,BETA(100,100)

COMMON/PARAM2/A(100) ,R{100) s NX,NY KX, KY,LEFTX(100),
¥ LEFTY(100)

COMMON/KNOT/NKNOTX, NKNOTY

COMMON/WEIGHTS/W1, U2

COMMON/FARAM/FRKOUNT

COMMON/XRKS/XK(9)

REAL R(3)

FHR)=C1¥RXK4+CIARURKRICIXRARICARRICT

g 50 IK=1,5

XK{IK)=FLOAT(IK)-3.
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01426 50 CONTINUE

014273 CALL CRIT(0,C1,C2,C3,C4,C5,NRO0TS,R,MKOUNT,I,4)
01428 IF(NRDOTS.NE.-1) GOTO 55

014273 RETURN

01430: 35 CONTINUE

014313 THIN=10.0E10

014323 0 600 IR=1,NROOTS

014333 FHINN=FM(R(IR))

01434: IF(FMINNLLT THIN) THEN

014353 TMIN=FMINN

014362 IMIN=IR

014373 ENDIF

01438: 600 CONTINUE

01439 IF(MKOUNT/2%2,.EQ.MKOUNT) THEN

014403 ALPHAC(Iy J)=R(IMIN)

014413 ELSE

01442% RETA(I,)=R{(IMIN)

01443; -ENDIF

01444: RETURN

014435 END

01445:C

01447:C

01448:C )

014493 SURROUTINE TESTMINR(MKOUNT,I,J,LEND,RENID
01430:C

01451:C FOR A GIVEN COEFFICIENT ALPHA(I,J) OR BETA(I.J)

01452:C TESTMINR FINIS ANDI TESTS THE CRITICAL FQOINTS OF
01453:C THE 4TH DEGREE FOLYNOMIAL REPRESENTING GF TO

01454:C DETERMINE WHICH FOINT YIELDS THE SMALLEST VALUE FOR GF
01453:C WHEN GF IS VIEWED AS A FUNCTION OF THAT COEFFICIENT.
014356:C THE SMALLEST VALUE IS COMPARED WITH THE VALUE AT THE
01457:C RIGHT ENDFOINT OF THE INTERVAL (LENK,RENI

01458:C 7O DETERMINE AT WHAT NUMRER THE MINIMUM VALUE

01459:C OF GF OCCURS. THE NUMEER CHOSEN RECOMES THE NEW
01460:C VALUE FOR ALFHA(I,J) OR RETA(I,J) .

01461:C

01462:C INPUT

014463:C

01464:C MROUNT o0 o MKOUNT EVEN MEANS THE COEFFICIENT

014653 INVOLVED IN MINIMIZATION IS IN THE ALFHA
01466:C ARRAY. MKOUNT ODD! MEANS THE COEFFICIENT
014571C IS IN THE BETA ARRAY.

01448:C Iydee SUBSCRIFTS FOR COEFFICIENT INVOLVED
014469:C IN MINIMIZATION

01470:C LENIH, RENIts » LEFT AND' RIGHT ENIFOINTS FOR

01471:C INTERVAL. LEND' IS A NEGATIVE NO. WITH VERY
014723 LARGE MAGNITUDE INDICATING THAT THE LEFT
01473:C ENDPOINT IS INFINITE.

01474:C (IN COMMON)

014732 . ALFHA,BETA. . .ARRAYS CONTAINING COEFFICIENTS OF

01475:C TENSOR FRODUCT SFLINE MAFPING.
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01477:C ArEyvs ARRAYS CONTAINING COORIINATES FOR
014783C SQUARE MESH. '

01479:C NXyNYoo o DIMENSION OF SPLINE IN X LDIRECTION
01480:C »Y HIRECTION OR

01481:C TOTAL NO, OF B-SPLINES IN X DIRECTION,
01482 Y DIRECTION.

01483:C KXsKYo s ORIER OF B-SFLINES IN X DIRECTION,
014841C Y DIRECTION.

01485 LEFTX,LEFTY... ARRAYS IDENTIFYING KNOT INTERVALS
01484:C IN WHICH SOUARE MESH COORIINATES
01487:C LIE. (LEFTX(I)=J IMFLIES

01488:C - TX(D) Z=a(T)<TX(I+1))

01489:C

01490:C WisW2,.. WEIGHTS FOR JACORIAN, DOT PRODUCT
01491:C TO RE USEDl IN GF.

014923 NKNOTX,NKNOTY. . .DIMENSIONS FOR SQGUARE MESH

01493:C OR NUMEER OF ELEMENTS IN ARRAYS A,ER.
01494:C FKOUNT 4o FARAGMETER CONTAINING NUMBER OF CALLS TO
01495:C GF

014943C XKows ARRAY CONTAININ FOINTS -2,-1,0,1,2
014%7:C WHICH ARE USEDl AS TEST FOINTS IN
01498:C DETERMINING THE COEFFICIENTS OF THE
01499:C 4TH DEGREE POLYNOMIAL WHICH AFPROXI-
015001:C MATES GF.

01501:C

01502:C OUTPUT

01503:C

015043C  ALFHA(I,Jd) OR BETA(I,J)..NEW VALUE FOR COEFFICIENT
£15053C

015063 COMMON/COEF /8LPHAC 100, 100) ,RETA{100, 100)

01507¢ COMMON/PARAM/FKOUNT

015083 COMMON/PARAM2/A(100),B{100) yNX;NY,KX,KY

01509 ¥ JLEFTX(100),LEFTY(100)

015103 COMMON/KNOT /NKNOTX , NKNOTY

01511 COMMON/WEIGHTS/W1 ,u2

01512 COMMON/XKS/XK(S)

01513 REAL R(3),LEND

015143 FM(R)=C1XR¥X¥4+C2XR¥R¥R+CIXRXRICAKRICS

01515 XK¢1)=REND

01514 10 50 IK=2,5

015173 XK{IK)=RENI-FLOAT(IK)+1,

01518¢ 50 CONTINUE

01519 CALL CRIT{(0,C1,C2,C3,C4,C5,NROOTS, Ry MKOUNT,I,J)
015203 IF(NRDOTS.NE.~1) GOTD 55

015218 PRINTX, 'WARNING #1 COEF IS 0’

015223 RETURN

01523 55 CONTINUE

01524 TMIN=10.E10

01525 1R=0 ‘

015242 0 $00 IRDOT=1,NROGTS

01527 IF(R(IROOT).LE.RENI) THEN
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015282
015292
01530¢
015312

013323

0153463
01537¢
0153832
01539
01540¢
01541¢
015423
01543}
0135443
013458
01546¢
015473
01548
015492
015503
01551:
01"2.
01553¢
01454‘
015358
015568
01557:
013583

01559:

0156903

01561:5C
015623

01543:C
015643

01545:C
01566:C
01587:C
01548:C
015469:C
01570:C
01571:C
01572%

01573:C
01574:C
01575:C
015761C
01577:C
01578:C

-

-

.

L4
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IR=IR+1
R{IR)=R{IR0OGT)
ENTIF

600 CONTINUE

NROOTS=1IR
IF{NROGBTS.EQ.0Q) THEN
IF (MKOUNT/2%2,ER.MKOUNT) THEN
ALPHACT, J)=REND
TMIN=FM(REND)
ELSE
RETA(I,J)=REND
THIN=FH(RENID)
ENDIF
ELSE
G 700 IRDOT=1,NRODTS
FMINN=FM(R({IRDOT))
IF(FMINNLLT.THIN) THEN
THIN=FMINN -
IMIN=IRDOT
ENRIF

700 CONTINUE

FMINN=FM(RENID
IF(FMINNL.LT.THIN) R{(IMIN)=RENI
IF(MKOUNT/2%2,EQ.MKOUNT) THEN
ALPHACT , D =R{IMIN)
TMIN=FM(R(IMIN))
ELSE
BETA(I,J)=R(IMIN)
THIN=FM(R{IMIN))
ENDIF
ENDIIF
RETURN
ENIi

-SUBROUTINE TESTMINL{MKOUNT,I,J,LEND,RENID

FOR A GIVEN COEFFICIENT ALFHA(I,J) OR RETA{I,J
TESTMINL FINDIS AND TESTS THE CRITICAL POINTS OF
THE ATH DEGREE POLYNOMIAL REPRESENTING GF TO
DETERMINE WHICH POINT YIELD'S THE SMALLEST VALUE FOR GF
WHEN GF 1S5 VIEUWED' AS A FUNCTION OF THAT COEFFICIENT.
THE SMALLEST VALUE IS COMPAREI WITH THE VALUE AT THE
LEFT ENDPODINT OF THE INTERVAL (LEND,RENID
TO DETERMINE AT WHAT NUMEBER THE MINIMUM VALUE
OF GF OCCURS. THE NUMEBER CHOSEN BRECOMES THE NEUW
VALUE FOR ALFHA(I,J) OR EBETA(I,J) .

INPUT
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01579:C MROUNT o ¢ o MKOUNT EVEN MEANS THE COEFFICIENT
01580:C INVOLVED IN MINIMIZATION IS IN THE ALPHA
01581:C ARRAY. MKOUNT OOD MEANS THE COEFFICIENT
013821 IS IN THE RETA ARRAY.

01583:C I,J.» SUBSCRIPTS FOR COEFFICIENT INVOLVED
01384:C IN MINIMIZATION

01383:C LENL, REND. . LEFT AND' RIGHT ENIFOINTS FOR

01386:C . INTERVAL. RENI' IS A VERY LARGE NUMEER,
01587:C INIICATING THAT THE RIGHT ENDPOINT IS
01588:C INFINITE.

01389:C (IN COMMON)
01590:C ALFHA,BETA. . ARRAYS CONTAINING COEFFICIENTS OF

01591:C TENSOR PRODUCT SFLINE MAPPING.
0159213 AsBass ARRAYS CONTAINING COORDINATES FOR
01593:€C SQUARE MESH.
015%4:C NXsNY s DIMENSION OF SPLINE IN X DIRECTION

- 01593:C »Y DIRECTION OR
01596:C TOTAL NO. OF R-SPLINES IN X DIRECTION,
01597:C Y DIRECTION.
01598:C RXsRY oo ORDER OF B-SPLINES IN X DIRECTION,
01599:C Y DIRECTION.
01600:C LEFTX+LEFTY+..» ARRAYS IDENTIFYING KNOT INTERVALS
01601:C IN WHICH SQUARE MESH COORLDINATES
016023 LIE. (LEFTX{I)=J IMFLIES
01603:C TX(D=ACI)<TX(J+1))
01604:C
016038 Wi,W2.4, WEIGHTS FOR JACOEIAN, [OT PROIUCT
01606:C TO BE USED' IN GF.
015607:C NKNOTX,NKNGTY .. +IIMENSIONS FOR SQUARE MESH
01408:C OR NUMRBRER OF ELEMENTS IN ARRAYS A,E.
01609:C FROUNT . PARAMETER CONTAINING NUMEBER OF CALLS TO
0146102 GF
01611:C XKoo ARRAY CONTAININ POINTS -2,-1,0,1,2
01612:C WHICH ARE USED AS TEST POINTS IN
01613:C DETERMINING THE COEFFICIENTS OF THE
01614:C ATH DEGREE POLYNOMIAL WHICH APPROXI-
015133¢C MATES GF.
016146:C
01517:C 0OUTPUT
01618:C .
01619:C ALPHACI,J) OR BETA(I,J)..NEW VALUE FOR COEFFICIENT
01620:C
016212 COMMON/COEF/ALPHA(100,100) ,RETA(100,100)
016223 COMMON/PARAM/FKOUNT
016232 COMMON/PARAMZ/A(100),B{100) 4 NXNY KX KY
016243 ¥ JLEFTX{(100),LEFTY{100)
016252 COMMON/RNOT/NKNOTX , NKNOTY
016262 COMMON/WEIGHTS/W1,U2
016272 COMMON/XKS/XK(3)
01628 REAL R{3),.LEND
016293 FH{R)=C1XR¥X4+C2XR¥RKR+CI¥RXR+CAXR+CS
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01530¢ AR{1)=LEND

016312 IO 50 IK=2,3

016322 XK{IK)=LENIMHFLOAT(IK)-1,
01633: 50 CONTINUE

016342 CaLL CRIT(0,C1,C2,C3,C4,C5,NRDOTS,RyMKOUNT,
016352 X I,

0146363 IF(NROOTS.NE.-1) GOTO S5
016373 PRINTX, 'WARNING #1 COEF IS 0’
016383 RETURN

016392 95 CONTINUE

0146403 TMIN=10.0E10

014413 IL=0

016423 [0 600 IR=1,NROOTS

016433 IF(R(IR).GE.LENIDTHEN

016442 IL=IL+1

016452 RCIL)=R{IR)

0156462 ENDIF

01647: 600 CONTINUE

0146482 NROOTS=IL

016493 IF(NRDOTS.EQ.0) THEN

016503 IF (MKOUNT/2%2,EQ.MKOUNT) THEN
016512 ALPHACT » J)=LEND

016523 THIN=FH(LENDD

016532 ELSE

016543 BETA(I,J)=LEND

0165353 THIN=FM{LENID

016342 ENDIF

016573 ELSE

01658¢ 0 700 IR=1,NRO0OTS

016591 FMINN=FM{R(IR))

0164603 IF(FMINNLLT.THIN) THEN
016513 THMIN=FHINN

01465623 IMIN=IR

0165633 ENDIF

01664 700 CONTINUE

014653 FHINN=FM(LENI)

014658 IF{FMINN.LT.THIN) R{IHIN)=LEND
01667 - IF (MKOUNT/2%2.ER.MKOUNT) THEN
01648 : ALPHACI, J)=R{IMIN)

0144693 THIN=FM(R(IMNIN))

01670¢ ELSE

016713 BETA(I, J)=R{IMIN)

01672 THIN=FM(R{IMNIN))

016733 ENDIF

0r674: ENDIF

016753 RETURN

016763 END

01477:C

014678:C

01679:C :

016803 SURROUTINE TESTMINE{MKOUNT,I,J.LENI,RENID
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014681:C
0146823

01683:C
01684:C
01683:C
01686:C
01687:C
01683:C
01689:C
014690:C
014691

01692:C
014693:C
01694:C
01695:C
015696:C
01697:C
01498:C
01699:C
01700:C
01701:C
01702:C
01703

01704:C
017052

01706:C
01707:C
01708:C
01709:C
01710:C
01711:C
01712:C
01713:C
01714:C
01715

01716:C
017173

01718:C
01719<C
01720:C
01721:C
01722¢

01723:C
01724:C
01725:C
01726:C
01727:C
01728:C
01729:C
01730:C
01731:C

FOR A& GIVEN COEFFICIENT ALFHA(I,J) OR EETA{I,.D
TESTHMINE FINDIS AMD' TESTS THE CRITICAL FOINTS OF
THE 4TH DEGREE POLYNOMIAL REPRESENTING GF TO
DETERMINE WHICH POINT YIELDS THE SMALLEST VALUE FOR GF

WHEN GF IS VIEWELD
THE SMALLEST VALUE

AS A FUNCTION OF THAT COEFFICIENMT.
IS COMPARED WITH THE VALUE

AT THE ENDIPOINTS OF THE INTERVAL (LENIt,RENID

TO DETERMINE AT WH
OF GF OCCURS. THE
VALUE FOR ALPHA(I,
INPUT

MKOUNT o 0 o

I,Jd..
LENIN, RENII, o

{IN COMMON)
ALPHA,BETA. .

ArHeus

NXyNY .o

KXyKYs oo

LEFTX,LEFTY...

Wi,W2.,.
NRKNOTX yNKNOTY s o o
FRKOUNT .o

XK".

AT NUMBER THE MININUM VALUE
NUMBER CHOSEN RECOMES THE NEW
J) OR BETALI,Jd)

MKOUNT EVEN MEANS THE COEFFICIENT
INVOLVED IN MINIMIZATION IS IN THE ALFHA
ARRAY . MKOUNT ODD MEANS THE COEFFICIENT
IS IN THE RETA ARRAY.

SURSCRIPTS FOR COEFFICIENT INVOLVED

IN MINIMIZATION

LEFT AND RIGHT ENDFOINTS FOR

INTERVAL

ARRAYS CONTAINING COEFFICIENTS OF
TENSOR FRODUCT SFLINE MAPFING.
ARRAYS CONTAINING COCRDINATES FOR
SQUARE MESH.

DIMENSION OF SPLINE IN X DIRECTION
+Y DIRECTION OR

TOTAL NO. OF B-SFLINES IN X HIRECTION,
Y DIRECTION,

ORDER OF B-SPLINES IN X DIRECTION,
Y DIRECTION.

ARRAYS IDENTIFYING KNOT INTERVALS
IN WHICH SQUARE MESH COORIIMNATES
LIE. (LEFTX(I)=J IMFLIES
TX(D=AD<TX(I+L))

WEIGHTS FOR JACORIAN, LOT FRODUCT

TO BE USEDN IN GF.

DIMENSIONS FOR SQUARE MESH

OR NUMBER OF ELEMENTS IN ARRAYS AE.
FARAMETER CONTAINING NUMBER OF CALLS TGO
GF

ARRAY CONTAININ POINTS -2,-1,0,1,2
WHICH ARE USED AS TEST POINTS IN
DETERMINING THE COEFFICIENTS QF THE

4TH DEGREE POLYNOMIAL WHICH AFFROXI-

MATES GF.

CDUTFUT
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01732:C

01733:C ALFHA(I,J) OR BETA{I,J)..NEW VALUE FOR COEFFICIENT
01734:C

01735¢ COMMON/COEF/ALPHA(100,100),BETA(100,100)
01736 COMMON/PARAN/FKOUNT

017371 COMMON/PARANZ/A(100) , B1100) ,NXs NY KX, KY
017382 X LLEFTX{100),LEFTY(100)

017393 COMMON/RKNOT/NKNOTX, NKNOTY

01740 COMMON/WEIGHTS/W1 ,U2

017411 COMMON/XKS/XK{S)

017423 REAL R{3),LENL

017433 FM(R)=C1XR¥XX4+C2KR¥RXRICIXRXRICARRACS
01744 CENTER=(LEND4RENID /2,

0174351 XK{1)=LENI-CENTER

017462 XK(2)=({LEND-CENTER) /2.

017471 XK{(3)=0,

017482 XK{4)=(RENI-CENTER)/2,

01749: XK(3)=REND-CENTER

017301 . CaALL CRIT(CENTER,C1,C2,C3.C4,C5,NROOTS,R,MKOUNT,
017512 ¥ I,

017323 IF (NROOTS.NE.-1) GOTO 35

017533 RETURN

01734F 355 CONTINUE

017553 THIN=10.0E10

017363 IB=0

017571 0 600 IR=1,NROOTS

017583 IF(R(IR)+CENTER.GE.LENI. AN R(IR)+CENTER,LE.RENI) THEN
017593 IR=IE+1

017603 R{IR)=R({IR)

017613 ENDIF

01762% 600 CONTINUE

017633 NROOTS=1E

017642 IF(NROOTS.ER.Q) THEN

017653 IF(MKOUNT/2%2.EQ.HKOUNT) THEN -
017663 ALFHACT, J)=CENTER

017673 TMIN=FM(CENTER)

01758 ELSE

017693 BETA(I,J)=CENTER

017703 THIN=FH(CENTER)

017713 ENDIF

017722 ELSE

017733 g 700 IR=1,NROOTS

01774 FMINN=FM(R(IR))

017753 IF(FMINNLLT.TMIN) THEN

017763 THIN=FMINN

017773 IMIN=IR

017783 ENDIF

01779% 700 CONTINUE

01780 FMINNL=FM{LEND)

017813 FMINNR=FM(RENL)

01782¢ IF(FMINNL.LT.FHINNR) THEN
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017833
01784:
017853
01786¢
017873
01788¢
01789
01790
01791
017928
017933
017943
01795
017968
017971
01798
01799:C
01800:C
01801:C
018023
01803:C
01804:C
01803:C
01806:C
018073
01808:C
01809:C
01810:C
01811:C
01812
0:223:C
01814:C
01815:
01814:C
01817:C
01818:C
01319¢
018203
01821
018223
018233
018241
018253
018241
018273
018233
01829
01830:
01831
018323
018332

141

IF(FMINNL.LT.TMIN) THEN
. ROIMIN)=LENI
THIN=FM(LEND)
ENDIF
ELSE IF(FMINNR.LT.TMIN) THEN
R{IMIN)=REND
TMIN=FM(RENID
ENDIF
IF (MKOUNT/2%2,EQ, MKOUNT) THEN
ALFHA(T,J)=R(IMIN) +CENTER
ELSE
BETA{T,.J)=R(IMIN) +CENTER
ENDIF '
ENDIF
RETURN
! ’
BN

52

SUBROUTINE CURIC{(A3,A2,A1,A0,NROOTS,RR)

CURIC COMPUTES THE RGOTS OF A CURIC POLY-
NOMIAL USING FORMULAS FROM *HANDROOK OF
MATHEMATICAL TAELES AND' FORMULAS®™ RBY RICHARI
STEVENS BURINGTON,FH.D'., MCGRAW-HILL ,NEW YORK,
1962,

INPUT
A3+02,41,A0.. COEFFICIENTS OF CURIC POLY-
NOMIAL

OUTFUT

NROOTS. .. NUMBER OF DIIFFERENT REAL ROOTS
RRves ARRAY CONTAINING REAL ROOTS

REAL RR(3)

PI=3.1415

F=A2/43

Q=A1/83

R=A0/A3 .
A=1./3.X(3.¥Q~-F%P)

B=1./27 X2 KPXPYP~-9 . XPXGRT+27 . XR)
IF ¢(ABS{R).LT.1.0E-06) THEN
SIGNE=0.

ELSE

SIGNB=R/ARS(EK)

ENIDIF

BR=RE%XR/4.

AAR=AXAXAS2T . .

TEST=BE+AAM
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018341
01833
01836
01837
018383
01839
018403
018412
018422
018433
018443
01845:
018441
01847:
018483
018493
018503
018313
018522
018333
0183543
018538
018563
01857
01858
018592
018603
018612
018621
018463:
018643
018633
018662
01867:C
01868:C
01869:C
01870
01871:C
01872:C
01873:C
01874:C
018735:C
01876:C
01877:C
01878:C
01877:C
018801:C
01881:C
018823
01883:C
01884:C

10

142

IF(TEST.LT.0) THEN

NROOTS=3
FHI=ACOS{-SIGNEXSART{BB/(-AAA)))
SRT=SGRT{-A/3.)
RR¢1)=2,%SRTXCOS{FHI/3.)
RR(2)=2.XSRTXCOS{PHI/3.+2.%P1/3.)
RR(3)=2.XSRTXCOS(PHI/3.+4.%P1/3,)
ELSE IF(TEST.GT.0) THEN
NROOTS=1

S1=-,3%R+SART(TEST)
S$2=-,5XB-SGRT{(TEST)

IF (ARS(S1),LT.1.0E-04) THEN
SIGNS1=0.

ELSE

SIGNS1=51/ARS(51)

ENDIF

IF (ARS{S2).LT.1.0E~06) THEN
SIGNS2=0.,

ELSE

SIGNS2=52/ABS(S2)

ENIIIF
RR{1)=SIGNSIX(ARS(S1IX¥{1,/3.))
+SIGNS2X (ABS(S2IXXK(1.,/3.))

ELSE

NRDOOTS=2
RR{1)=-SIGNBX2.XSQRT(-A/3.)
RR{2)=5IGNBXSART(-A/3.)

ENDN IF

0 10 1=1,3

RR{I>=RR(I)-P/3.

CONTINUE

RETURN

END

SUBRROUTINE EXTREMES{X,Y,THAX, TMIN,NR,NC)

EXTREMES FINDS THE MAXIMUM AND MINIMUM VALUES

AMONG THE ELEMENTS OF TWO TUWO-DIMENSIONAL ARRAYS.

INPUT

XeooX COMPONENT
YooY COMPONENT
NR. . .DIMENSION OF X ARRAY
NC...[IIMENSION OF Y ARRAY

guTPUT
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01835:C
01886:C
01887:C
018882
018892
018903
018912
018923
018933
018942
0189353
018962
018973
018983
018993
019003
01901:C
019023
01903:C
019043
019032
01906:C
0199072
01908:C
01909:C
01910:C
01911:C
01912:
01913:C
01914:C
0191a:C
019162C
01917:C
01918:C
01919:C
01920:C
01921:C
01922:C
01923:C
01924:C
01925:C
019262
01927:
019283
019293
019303
01731
019323
01933
019343
BOTTOM
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THAX. « + MAXIMUM VALUE IN ARRAYS
THIN. . .MINIMUM VALUE IN ARRAYS

REAL X(100,100),Y(100,100)
THAX=X{1,1)
THIN=X(1,1)
00 20 I=1,NR
10 10 J=1,NC
IF(X{I,J) BT . THAX) THAX=X(I,J)
IF(X{I, ) LT THIN) THMIN=X{I,J)
IF(Y(I,J).GT.THAX) THMAX=Y{I,J)
IFCY{IsJ) LT TMIN) TMIN=Y(I,])
10 CONTINUE
20 CONTINUE
RETURN
ENIt

SUEROUTINE NORM(X,Y,TMAX,THIN,NR,NC)

THIS ROUTINE NORMALIZES THE VALUES OF TWO
TWO DIMENSIONAL ARRAYS 80 THAT THEY LIE

BETWEEN 0 ANI' 1 INCLUSIVE,

INFUT

XeooX COMPONENT ARRAY ON INPUT ANI
NORMALIZED X COMPONENT ARBAY ON OUTFUT
Y...Y COMPONENT ARRAY ON INPUT AND
NORMALIZED Y COMPONENT ARRAY ON OUTPUT
NR..,.DIMENSION OF X ARRAY
NC...IIIMENSION OF Y ARRAY
THAX. o JHMAXIHUM VALUE IN ARRAYS
THIN, . .MINIMUM VALUE IN ARRAYS

SUTPUT

Xo+ oNORMALIZED X ARRAY
Y. NORMALIZER Y ARRAY

REAL X(100,100),Y(100,100)

00 20 I=1,NR

NQ 10 J=1,NC

XL, D=A(X{I, D -THIN)/{THAX-THIN)

Y{I, D=(Y(I,)-TMIN)/(THAX-THIN)
10 CONTINUE

-20  CONTINUE

RETURN
END
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