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E�cient algorithms for graphs with few P4’s

Luitpold Babela ;∗, Ton Kloksb;1, Jan Kratochv-.lb;2, Dieter Kratschc,
Haiko M0ullerc, Stephan Olariud

aZentrum Mathematik, Technische Universit�at M�unchen, 80290 M�unchen, Germany
bDIMATIA, Charles University, 118 00 Praha 1, Czech Republic

cFriedrich-Schiller-Universit�at Jena, Fakult�at f�ur Mathematik und Informatik, 07740 Jena, Germany
dDepartment of Computer Science, Old Dominion University, Norfolk, VA 23529, USA

Abstract

We show that a large variety of NP-complete problems can be solved e�ciently for graphs
with ‘few’ P4’s. We consider domination problems (domination, total domination, independent
domination, connected domination and dominating clique), the Steiner tree problem, the vertex
ranking problem, the pathwidth problem, the path cover number problem, the hamiltonian circuit
problem, the list coloring problem and the precoloring extension problem. We show that all
these problems can be solved in linear time for the class of (q; q− 4)-graphs, for every ;xed q.
These are graphs for which no set of at most q vertices induces more than q− 4 di<erent P4’s.
c© 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

Motivated by a number of practical applications (see, e.g., [17]), the classes of
(q; t)-graphs have been introduced in [3] in order to capture local density properties
of a graph. Speci;cally, in a (q; t)-graph no set of at most q vertices induces more
than t distinct P4’s. In particular, the (q; q− 4)-graphs extend and generalize the well
known and intensively studied cographs and several classes of graphs with few P4’s,
as e.g. P4-sparse graphs and P4-extendible graphs for which many NP-complete graph
problems can be solved by linear time algorithms [7,10,15,17]. Note that the cographs
are precisely the (4; 0)-graphs, the P4-sparse graphs are the (5; 1)-graphs and the C5-free
P4-extendible graphs coincide with the (6; 2)-graphs.

It was shown in [1] that the weighted versions of the clique and independent set
problem and the chromatic number and clique cover problem, can all be solved in
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linear time for (q; q − 4)-graphs, for ;xed q. In a later paper [2], it was shown
that also the treewidth and minimum ;ll-in problem can be solved in linear time for
these classes of graphs. These results are due to a unique tree representation of the
primeval decomposition, introduced by Jamison and Olariu [16]. It turns out that,
in case of (q; q − 4)-graphs for ;xed q, the problems mentioned above can be
solved e�ciently for the subgraphs corresponding to the leaves of this tree (the
p-components), and that the graph parameters for the subgraphs corresponding to
internal nodes can be computed from the corresponding parameters of the children
of the node.

In this work, we show that a large variety of problems can be solved e�ciently for
(q; q− 4)-graphs. We consider various domination problems, the vertex ranking prob-
lem, the Steiner tree problem, pathwidth, vertex ranking, path cover and hamiltonicity,
and also the listcoloring and precoloring extension problems. We show that all these
problems can be solved in linear time for the class of (q; q−4)-graphs, for every ;xed q,
using a dynamic programming technique on the primeval tree decomposition.

In [15] it was shown that the path cover number can be computed and hamiltonicity
can be decided in linear time for P4-sparse and P4-extendible graphs. We extend these
results by showing that path cover and hamiltonicity can be solved in linear time for
(q; q−4)-graphs for every ;xed q, thereby settling an open problem mentioned in [15].

We organized this paper as follows. We start with some preliminaries on the primeval
decomposition, the homogeneous decomposition and the class of (q; q−4)-graphs. Then
we give for each of the problems some preliminaries, we show how the problem can
be solved for the two basic operations disjoint union and disjoint sum and, ;nally, we
present e�cient algorithms for (q; q − 4)-graphs. For some of the problems we show
how homogeneous substitutions can be handled.

2. Preliminaries

In [16], Jamison and Olariu introduced the homogeneous decomposition of a graph,
which extends the well-known modular decomposition (see, e.g., [22]). We use
the primeval tree decomposition introduced in [16], and the characterization of the
p-components of (q; q − 4)-graphs given in [3] to solve a variety of problems for
(q; q− 4)-graphs.

As usual we denote by Pk a chordless path on k vertices (i.e. a Pk means an induced
path).

De�nition 1. A graph G = (V; E) is p-connected if for every partition of V into
nonempty subsets V1 and V2 there is a crossing P4, that is, a P4 with vertices both in
V1 and in V2.

De�nition 2. A maximal subset C of vertices such that G[C] is p-connected is called
a p-component of G.
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It is easy to see (see, e.g., [16]) that each graph has a unique partition into
p-components. The p-components are connected and closed under complementation,
i.e., a p-component of G is also a p-component of TG.

De�nition 3. A partition (C1; C2) of a p-component C into nonempty subsets C1 and
C2 is called a separation of C if every P4 with vertices both in C1 and in C2 has both
midpoints in C1 and both endpoints in C2.

A p-component C is called separable if there is a separation (C1; C2) of C.

De�nition 4. A subset M of V with 16|M |6|V | is called a module if each vertex
outside is either adjacent to all vertices of M or to none of them. A module M is
called a homogeneous set if 1¡ |M |¡ |V |.

The graph obtained from a graph G by shrinking every maximal homogeneous set
to one single vertex is called the characteristic graph of G.

A graph is called split graph if its vertex set splits (can be partitioned into) a clique
K and an independent set S. One of the results of [16] (see also [1]) is the following.

Lemma 1. A p-connected graph G is separable if and only if its characteristic graph
is a split graph.

Furthermore, in [16] it is shown that the separation (C1; C2) of a separable p-compo-
nent C is unique. Clearly, if (K; S) is the splitting of the characteristic graph of G[C],
then every module M ⊆C1 shrinks to a vertex in the clique K , and every module M ⊆
C2 shrinks to a vertex in the independent set S.

We need the main result of [16], called the structure theorem.

Theorem 1. For an arbitrary graph G exactly one of the following conditions is
satis@ed:

• G is disconnected.
• TG is disconnected.
• There is a unique proper separable p-component H of G with separation (H1; H2)
such that every vertex outside H is adjacent to all vertices in H1 and to no vertex
in H2.

• G is p-connected.

2.1. The primeval decomposition

In order to de;ne the primeval decomposition tree we introduce three graph oper-
ations each acting on two graphs G1 and G2, corresponding with the ;rst three cases
of the structure theorem.
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• For operation 0, both G1 and G2 are arbitrary graphs. Operation 0 takes the disjoint
union of G1 and G2.

• For operation 1, both G1 and G2 are arbitrary. Operation 1 takes the disjoint sum
of G1 and G2, i.e., every vertex of G1 is made adjacent to every vertex of G2.

• For operation 2, G1 is not arbitrary: G1 is a separable p-connected graph with
separation (V 1

1 ; V
2
1 ). G2 is an arbitrary graph. Operation 2 makes every vertex of G2

adjacent to every vertex of V 1
1 and to no vertex of V 2

1 .

These operations suggest a tree representation for arbitrary graphs which is unique
up to isomorphism. For our purposes it is more convenient to deal with a binary tree
which can be constructed from the original tree in a straightforward way. The leaves of
this rooted binary tree are exactly the p-components of the graph. The root corresponds
with the input graph G. Internal nodes are labeled with integers i ∈ {0; 1; 2} where an
i-node means that the subgraph at this node is obtained by an i-operation applied to
the two subgraphs corresponding to the two sons of the node.

2.2. The homogeneous decomposition

The homogeneous decomposition [16] involves, additionally, the homogeneous sets
of the graph. Given the primeval tree, it constructs a new tree representation by —
loosely speaking — replacing homogeneous sets by single vertices. This substitution is
reVected by a fourth operation. Let G0; H1; : : : ; Hk be disjoint graphs and let {x1; : : : ; xk}
be a set of vertices of G0. The graph G arises from G0; H1; : : : ; Hk by means of a
3-operation if every vertex xi in G0 is replaced by the graph Hi in the obvious way
(i.e. all the edges between Hi and Hj are added if xi and xj are adjacent in G0). In the
resulting decomposition tree, the leftmost child of a 3-node represents the characteristic
graph, the other children are the subtrees which represent the maximal homogeneous
sets as illustrated in Fig. 1.

Baumann [4] developed linear time algorithms which compute the primeval and
the homogeneous decomposition tree of an arbitrary graph. These algorithms depend

Fig. 1. A graph and the associated homogeneous decomposition tree.
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strongly on known methods which compute the modular decomposition of a graph (see,
e.g., [8]).

2.3. (q; q− 4)-graphs

Babel and Olariu introduced the following classes of graphs [3].

De�nition 5. A graph is a (q; t)-graph if no set of at most q vertices induces more
than t distinct P4’s.

Clearly, the (4; 0)-graphs are exactly the cographs. A graph is called P4-sparse if
it has no induced subgraph isomorphic to one of seven p-connected graphs on ;ve
vertices and it turns out that the P4-sparse graphs are exactly the (5; 1)-graphs. A
graph is called P4-extendible if and only if it has no p-component with more than ;ve
vertices. (see [15]). Thus, the C5-free P4-extendible graphs are exactly the (6; 2)-graphs.

The aim of this subsection is to recall the characterization of the p-components of
(q; q− 4)-graphs presented in [3].

De�nition 6. A spider is a split graph consisting of a clique and an independent set
of equal size at least two such that each vertex of the independent set has precisely
one neighbor in the clique and each vertex of the clique has precisely one neighbor in
the independent set, or it is the complement of such a graph.

De�nition 7. A spider is thin if every vertex of the independent set has precisely one
neighbor in the clique. A spider is thick if every vertex of the independent set is
nonadjacent to precisely one vertex of the clique.

Notice that a P4 is both thick and thin and that this is the smallest spider.
The main reason for the linear time solvability of the various problems for

(q; q − 4)-graphs with ;xed q is that the p-components are of a very speci;c type.
This is reVected by the following characterization found by Babel and Olariu [1,3].

Theorem 2. Let G be p-connected.

1. If G is a (5; 1)-graph then G is a spider.
2. If G is a (7; 3)-graph then |V |¡ 7 or G is a spider.
3. If G is a (q; q− 4)-graph; q= 6 or q¿8; then |V |¡q.

3. Vertex ranking

In this section, we describe a linear time algorithm for the ranking problem on
(q; q− 4)-graphs for ;xed q. This generalizes the early results of [24] for the ranking
problem on cographs.
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De�nition 8. Let G=(V; E) be a graph and let t be some integer. A (vertex) t-ranking
is a numbering c :V → {1; : : : ; t} such that for every pair of vertices x and y with
c(x) = c(y) and for every path between x and y there is a vertex z on the path with
c(z)¿c(x).

The (vertex) ranking number of G denoted by �r(G) is the smallest value t for
which the graph G admits a t-ranking.

Notice that a ranking is a proper coloring of the graph.

De�nition 9. Let G= (V; E) be a graph and let a and b be nonadjacent vertices of G.
Then S ⊂V is an a; b-separator if the removal of S separates a and b in distinct con-
nected components. If no proper subset of the a; b-separator S is itself an a; b-separator
then S is a minimal a; b-separator. Finally, S ⊂V is a minimal separator of G if S is
a minimal a; b-separator for some nonadjacent vertices a and b of G.

The following lemma appeared ;rst in [9].

Lemma 2. If G is a complete graph on n vertices; �r(G) = n. Otherwise;

�r(G) = min
S

(
|S| + max

C
�r(C)

)
;

where the minimum is taken over all minimal separators S and the maximum is taken
over all components C of G − S.

A graph H is a supergraph of a graph G if H has the same vertex set as G and the
edge set of G is a subset of the edge set of H . A graph G is chordal if each cycle of G of
length greater than 3 has a chord, i.e. an edge joining two non consecutive vertices
of the cycle. A graph H is a triangulation of a graph G if H is a chordal supergraph
of G. A triangulation H of G is P4-free if H has no P4 as induced subgraph, i.e. H
is a cograph.

We denote by !(G) the clique number of the graph G, i.e. the maximum cardinality
of a clique of G. For most of our proofs in this section we will make use of the
following result presented in [23].

Theorem 3. For any graph G;

�r(G) = min{!(H) |H is a P4-free triangulation of G}:

First, we consider the disjoint union and the disjoint sum of two graphs.

Lemma 3. Let G be the disjoint union of G1 and G2. Then

�r(G) = max(�r(G1); �r(G2)):
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Lemma 4. Let G be the disjoint sum of G1 = (V1; E1) and G2 = (V2; E2)

�r(G) = min(�r(G1) + |V2|; �r(G2) + |V1|):

Proof. Consider a P4-free triangulation H of G. If two vertices of V1 are not adjacent
in H and two vertices of V2 are not adjacent in H then we obtain a chordless cycle of
length 4, which is a contradiction since H is chordal. Hence, either V1 or V2 induces
a complete subgraph in H . This proves the lemma.

Given the primeval decomposition tree of a (q; q− 4)-graph, we start computing the
ranking numbers of the leaves of the tree. By Theorem 2 these leaves are either spiders
or graphs of bounded size (with less than q vertices). If the graph is a spider, then the
ranking number can be determined using the following lemma given in [24].

Lemma 5. Let G be a split graph with clique K and independent set S such that
every vertex of K has at least one neighbor in S. Then �r(G) = |K | + 1.

If the leaf corresponds to a graph of bounded size, we can simply list all P4-free
triangulations in constant time, and look for the one that minimizes the clique number.

Now, we consider an internal vertex of the primeval tree. If the label of this vertex is
a 0-operation, the ranking number of the subgraph can be determined from the ranking
number of the two sons using Lemma 3. If the label is a 1-operation, we can use
Lemma 4.

In the rest of this section we concentrate on the type 2-operation. Hence, we assume
that the graph G is obtained from a separable p-connected graph G1 = (V1; E1) with
separation (V 1

1 ; V
2
1 ) and a graph G2 = (V2; E2) by making every vertex of G2 adjacent

to every vertex of V 1
1 . Since G1 is a p-component, G1 is either a spider or a graph

with less than q vertices of which the characteristic is a split graph by Theorem 2 and
Lemma 1.

3.1. G1 is a spider

First, consider the case where G1 is a spider. Let K be the clique and S be the
independent set of G1. Then the separation of G1 is (K; S).

Lemma 6. If V2 
= ∅ then �r(G) = �r(G2) + |K |.

Proof. Label the vertices of G2 by an optimal ranking with 1; : : : ; �r(G2). Label the
vertices of K with �r(G2) + 1; : : : ; �r(G2) + |K |. Finally, label all vertices of S with 1.
This is a ranking of G implying �r(G)6�r(G2) + |K |.

Now we show �r(G)¿�r(G2) + |K |. Consider a P4-free triangulation H of G.
Then the subgraph H2 of H induced by V2 is a P4-free triangulation of G2. Hence,
!(H)¿!(H2) + |K |¿�r(G2) + |K |. This proves the lemma.
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3.2. |V1|¡q and the characteristic of G1 is a split graph

We consider two types of triangulations of G. First, we consider those P4-free tri-
angulations H1 of G1 for which V 1

1 is a clique. Let G∗ be the graph obtained from
G by making a clique of V 1

1 . Let H2 be a P4-free triangulation of G2. Notice that the
2-operation of H1 and H2 in this case is always a P4-free triangulation of G. Hence

�r(G∗) = min
H1

max(!(H1); �r(G2) + |V 1
1 |);

where the minimum is taken over all P4-free triangulations H1 of G1 for which V 1
1 is

a clique.
Now, consider the case of a P4-free triangulation H where V 1

1 is not a clique. Let x
and y be the two nonadjacent vertices of H [V 1

1 ]. Then x and y belong to a maximal
homogeneous set X ⊆V 1

1 of G, since the characteristic graph of G1[V 1
1 ] is complete.

Let SX = V 2
1 ∩ N (X ).

Notice that every minimal x; y-separator of H contains at least the common neigh-
bours of x and y in H . Since in a chordal graph every minimal separator must be a
clique (see, e.g., [11]) we see that (V 1

1 \X )∪SX ∪V2 must be a clique in H . If we make
(V 1

1 \ X ) ∪ SX ∪ V2 into a clique, and X into a chordal cograph with minimum clique
number, it follows that the only P4’s left in the graph must have vertices in V 2

1 \SX and
V 1

1 \ X , where V 1
1 \ X is a clique. Hence, to obtain the optimal clique number of this

type we have to determine the ranking number of every graph G1[(V 1
1 \X )∪ (V 2

1 \SX )]
with V 1

1 \ X turned into a clique, for every maximal homogeneous set X ⊆V 1
1 of G1.

Since G1 has at most q vertices this can be done in constant time.
Hence we obtain the following result.

Theorem 4. For every integer q¿4; there is a linear time algorithm to determine the
vertex ranking number of a (q; q− 4)-graph.

4. Pathwidth

We show that the pathwidth problem can be solved in polynomial time for (q;
q−4)-graphs for every ;xed q. Note that the pathwidth problem remains NP-complete
for starlike graphs [12] and that the characteristic of each starlike graph is a split graph.

De�nition 10. A path-decomposition of G is a sequence [X1; X2; : : : ; X‘] of subsets of
vertices, such that

• every vertex appears in some subset,
• the endvertices of every edge appear in some common subset, and
• for every vertex x, the subsets containing x appear consecutively in the sequence.

The pathwidth of a graph equals the minimum width of a path-decomposition, where
the width of a path-decomposition is the maximum size of a subset minus one.
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A graph G is an interval graph if it is an intersection graph of a collection of
intervals of the real line. Interval graphs form a subclass of the class of chordal graphs
(see also [11]). We make use of the well known result (see, e.g., [5]) that the pathwidth
of a graph G is equal to the smallest clique number of any interval supergraph of G
decreased by one.

We consider the disjoint union and disjoint sum.

Lemma 7. Let G be the disjoint union of G1 and G2. Then

pw(G) = max(pw(G1); pw(G2))

Lemma 8. Let G be the disjoint sum of G1 = (V1; E1) and G2 = (V2; E2). Then

pw(G) = min(pw(G1) + |V2|; pw(G2) + |V1|)

Proof. Let H be an interval supergraph of G. Hence, either V1 or V2 is a clique in H .
Suppose V2 is a clique in H . Then !(H)=!(H [V1])+ |V2|. Since H [V1] is an interval
supergraph of G1 we obtain !(H)¿pw(G1) + 1 + |V2|. Taking an interval supergraph
H1 of G1 with !(H1) = pw(G1) + 1 and making V2 a clique we obtain an interval
supergraph H of G with !(H) = pw(G1) + 1 + |V2|.

Analogously !(H)¿pw(G2) + |V1| for each interval supergraph H of G,
where V1 is a clique of H , and there is an interval supergraph H for which equality
holds.

For (q; q − 4)-graphs we start again with the primeval tree. First, we compute the
pathwidth of the leaves. These leaves are either spiders or graphs of bounded size. If
the graph is of bounded size, we can simply try all interval supergraphs to ;nd the
pathwidth. The following lemma leads to formulas for the pathwidth of spiders. For a
proof of this lemma see [19].

Lemma 9. Let G be a split graph with maximum size clique K . Then the pathwidth
is either |K | or |K | − 1. The pathwidth is |K | − 1 if and only if there are vertices x
and y in K with N (x) ∩ N (y)⊆K .

The following corollary takes care of those leaves that are spiders.

Corollary 1. If G is a thin spider with |K |¿ 1 then pw(G)= |K |− 1. If G is a thick
spider with |K |¿ 2 then pw(G) = |K |.

Now, we can concentrate on the type 2-operation. We assume that the graph G is
obtained from a separable p-connected graph G1=(V1; E1) with separation (V 1

1 ; V
2
1 ) and

a graph G2 = (V2; E2) by making every vertex of G2 adjacent to every vertex of V 1
1 .
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Since G1 is a p-component, G1 is either a spider or a graph with less than q vertices
of which the characteristic is a split graph (Theorem 2 and Lemma 1).

4.1. G1 is a spider

First, we consider the case where G1 is a spider. Let K be the clique and S be the
independent set of G1. Thus, (K; S) is the separation of G1.

Lemma 10. If V2 
= ∅ then pw(G) = pw(G2) + |K |.

Proof. Let H be an interval supergraph of G. Then !(H)¿!(H [K ∪V2])¿pw(G2)+
1 + |K |. Thus, pw(G)¿pw(G2) + |K |.

We show that there is a path-decomposition of G of width pw(G2) + |K |. Take a
path-decomposition [X1; X2; : : : ; X‘] of G2 with width pw(G2). Let S = {s1; s2; : : : ; sq}.
Then [X1 ∪K; X2 ∪K; : : : ; X‘ ∪K; {s1}∪K; {s2}∪K; : : : ; {sq}∪K] is path-decomposition
of G and its width is pw(G2) + |K |.

4.2. |V1|¡q and the characteristic of G1 is a split graph

Let (V 1
1 ; V

2
1 ) be the separation of G1. We consider two cases. First, we consider

triangulations of G into an interval graph where V 1
1 is a clique.

4.2.1. Triangulations with V 1
1 a clique

Let G∗ be the graph obtained from G by making a clique of V 1
1 . By Lemma 8, an

optimal path-decomposition of G∗[V2 ∪V 1
1 ] can be made by adding V 1

1 to every subset
of an optimal path-decomposition for G2.

We claim that G∗ has an optimal path-decomposition in which all subsets con-
taining a vertex of G2 occur consecutively. Let P = [X1; X2; : : : ; X‘] be an optimal
path-decomposition of G∗ without this property. Let Xi be the leftmost and Xk be the
rightmost subset containing a vertex of G2. For j=i; : : : ; k let Yj=Xj\V2 and Zj=Xj\V 2

1 .
Then P′ = [X1; : : : ; Xi−1; Yi; : : : ; Yk ; Zi; : : : ; Zk ; Xk+1; : : : ; X‘] is a path decomposition such
that width(P′)6width(P) since V 1

1 ⊆Zj for j = i; : : : ; k. This proves the claim.
Therefore, the algorithm to compute the pathwidth of G∗ works as follows. Com-

pute all possible path-decompositions for G∗[V1]. We can of course restrict to those
path-decompositions with subsequent subsets not equal; hence, the set of all possible
path-decompositions of G∗[V1] is bounded by a constant depending only on q.

Let P=[X1; : : : ; X‘] be such a path-decomposition. Add X0 =X‘+1 = ∅. Consider the
subsequence Xi; : : : ; Xj of subsets that contain the clique V 1

1 and determine the minimum
of |(Xs ∩ Xs+1) \ V 1

1 | for s = i − 1; : : : ; j. Let the minimum cardinality be attained for
(Xt ∩ Xt+1) \ V 1

1 . Then a path-decomposition for G∗ can be obtained by making an
optimal path-decomposition for G2, adding V 1

1 ∪ (Xt ∩Xt+1) to every subset and putting
this sequence of subsets between Xt and Xt+1 in the path-decomposition P. Then the
width of this path-decomposition is max(width(P); pw(G2) + |V 1

1 ∪ (Xt ∩ Xt+1)|).
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Consequently, the pathwidth of G∗ can be computed in linear time.

4.2.2. Triangulations with V 1
1 not a clique

Now, consider the case where V 1
1 is not a clique in an optimal interval supergraph

H of G. Then there is a maximal homogeneous set X of G1[V 1
1 ] with vertices x and

y that are nonadjacent in H . The common neighbors of x and y must form a clique
in H . Hence, in H , (V 1

1 − X ) ∪ SX ∪ V2 is a clique, where SX is the set of all those
vertices of V 2

1 which are adjacent to a vertex in X (and thus to all vertices of X ) in G.
Hence, an optimal path-decomposition for G[V 1

1 ∪ SX ∪ V2] with clique (V 1
1 − X ) ∪

SX ∪ V2 consists of an optimal path-decomposition of G[X ] with SX ∪ V2 ∪ (V 1
1 − X )

added to every subset. Since |X |¡q, an optimal path-decomposition of G[X ] can be
found in constant time.

If |V2|¡q then the graph G has at most 2q− 2 vertices, thus its pathwidth can be
determined in constant time. Otherwise, the optimal width of a path-decomposition of
G for which the maximal module X of G[V 1

1 ] is not a clique is equal to the optimal
width of a path-decomposition of G[V 1

1 ∪ SX ∪ V2] with clique (V 1
1 − X ) ∪ SX ∪ V2.

This is a consequence of the fact that a subset (V 1
1 − X ) ∪ (S − SX ) can be added to

the latter path-decomposition without increasing its width, since |V2| − 1¿q− 1.
Varying over all possible maximal modules X of G1[V 1

1 ] we obtain the smallest
width of a path-decomposition of G in this case.

Theorem 5. For every integer q¿4; there exists a linear time algorithm to compute
the pathwidth for (q; q− 4)-graphs.

5. Path cover and hamiltonicity

In this section, we show how to decide hamiltonicity and how to compute the path
cover number of a (q; q − 4)-graph for ;xed q in linear time. This extends the corre-
sponding results of [15] on P4-sparse and P4-extendible graphs.

De�nition 11. A family P1; : : : ; Pk of paths in G is called a path cover of G if every
vertex of G is contained in exactly one of these paths. The path cover number $(G)
of G is the minimum cardinality of a path cover of G.

First, we consider the disjoint union and the disjoint sum of two graphs.

Lemma 11 (Hochst0attler [15]). Let G be the disjoint union of G1 and G2. Then
$(G) = $(G1) + $(G2).

Lemma 12. Let G be the disjoint sum of G1 and G2. Let m = max($(G1) − |V2|;
$(G2) − |V1|). Then G is hamiltonian if and only if m60. The path cover number
satis@es $(G) = max(1; m).
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Proof. Assume G is hamiltonian. Consider a hamiltonian cycle of G. It induces a path
cover P1; : : : ; P‘ for G1 and a path cover Q1; : : : ; Q‘ for G2. Then clearly $(G1)6‘6|V2|
and $(G2)6‘6|V1|. Hence m60.

For the remaining parts of the proof we refer to Lemma 3 in [15].

Notice that the hamiltonian circuit problem is NP-complete for split graphs
[11, p. 155].

Now we consider spiders.

Lemma 13 (Hochst0attler [15]). Let G be a spider with clique K . If G is a thin spider
then $(G) = � 1

2 |K |�. If G is a thick spider with |K |¿ 2 then G is hamiltonian.

We concentrate on the type 2-operation. We assume that the graph G is obtained
from a separable p-connected graph G1 =(V1; E1) with separation (V 1

1 ; V
2
1 ) and a graph

G2 = (V2; E2) by making every vertex of G2 adjacent to every vertex of V 1
1 . Since G1

is a p-component, G1 is either a spider or a graph with less than q vertices of which
the characteristic is a split graph (Theorem 2 and Lemma 1).

5.1. G1 is a spider

We can refer one more time to [15]. Let the clique of G1 be K .

Lemma 14. If G1 is a thin spider then

$(G) = $(G2) + max(0; � 1
2 |K |� − $(G2))

and if G1 is a thick spider with |K |¿ 2 then $(G) = $(G2).

5.2. |V1|¡q and the characteristic of G1 is a split graph

Any path cover P1; : : : ; P‘ of G contains a path cover of G2 of size j with
$(G2)6j6|V2|, which can be obtained by removing all vertices of G1. Consider the
paths containing vertices of G1 and G2 in any path cover of G. These are at most q
paths since |V1|¡q. Removing all vertices in V 1

1 from these paths, we obtain at most
2q subpaths in G2.

By the above observations we may shrink all subpaths of G2 in a path of a path
cover of G into a single vertex. Therefore, we consider graphs Hj which are obtained
by a 2-operation of G1 with separation (V 1

1 ; V
2
1 ) and an empty graph on j vertices.

Clearly, $(G) can be computed in constant time if |V2|62q. Thus, we may assume
2q¡ |V2|. Then $(G) can be obtained by computing the path cover number of all
graphs Hj for which either $(G2)6j62q, if $(G2)62q, or only for H2q, if 2q¿$(G2).
These values can be computed in constant time since there are at most 2q graphs Hj
and each of these graphs has at most 3q vertices.
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Now, $(G) = min{$(Hj): $(G2)6j62q} if $(G2)62q and $(G) = $(H2q) +
$(G2) − 2q if 2q¿$(G2).

Hamiltonicity can be checked in a similar manner. Thus, we obtain the following
result.

Theorem 6. For every integer q¿4; there exists a linear time algorithm to decide
whether a (q; q− 4)-graph is hamiltonian and to determine its path cover number.

6. Independent domination

In the following sections, we demonstrate that various domination problems can be
solved very e�ciently on (q; q− 4)-graphs.

De�nition 12. A set D of vertices is a dominating set if every vertex in V \ D has a
neighbor in D.

The minimum dominating set problem asks to determine a dominating set of smallest
cardinality. In the weighted version, each vertex v of the graph is assigned a nonnega-
tive weight w(v) and the problem is to ;nd a dominating set of smallest total weight.

In many applications (see, e.g., [13,14]) dominating sets are subject to additional
constraints. In particular, one is frequently interested in dominating sets which are either
independent or cliques or induce connected subgraphs. The parameters *i(G); *cl(G),
and *c(G) denote, respectively, the independent domination number, the dominating
clique number, and the connected domination number, that is, the smallest weight of
an independent, complete, and connected dominating set in G.

In this section, we show how the independent domination problem can be solved
using the homogeneous decomposition of a graph. The following lemma is obvious.

Lemma 15. If G is the disjoint union of graphs G1 and G2 then

*i(G) = *i(G1) + *i(G2):

Lemma 16. Let G be the disjoint sum of graphs G1 and G2. Then

*i(G) = min(*i(G1); *i(G2)):

Proof. An independent dominating set in G contains vertices from exactly one of the
subgraphs Gi.

Now, we consider a 3-operation. Let H be a homogeneous set in G. We denote
by N (H) the set of all neighbors of vertices from H . If an independent dominating
set contains no vertices from N (H) then it must consist of an independent dominating
set in H and an independent dominating set in G\(H ∪ N (H)). On the other hand,
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if it contains a vertex from N (H) then it does not contain a vertex from H . This
observation implies that *i(G)= *i(GH ), where GH denotes the graph obtained from G
by replacing H by a single vertex of weight *i(H).

Hence, if G arises by a 3-operation involving homogeneous sets H1; : : : ; Hk , then it
su�ces to solve the problem on the characteristic graph of G. Naturally, the weight of
the vertex representing the homogeneous set H is *i(H).

Assume that G arises by a 2-operation. Then G consists of a separable p-component
G1 and of a subgraph G2 outside G1 which is adjacent to G1 as stipulated in Theorem 1.
By Lemma 1, the characteristic graph of G is a split graph. If the weights of all vertices
representing homogeneous sets are already known, then we can easily solve the problem
for G. For that purpose, denote the vertices of the clique by y1; : : : ; yr and the vertices
of the independent set by z0; z1; : : : ; zs. The vertex z0 represents the homogeneous set
G2 and, by convention, belongs to the independent set. If an independent dominating
set in the split graph contains a vertex from the clique, say yi, then it must contain
all vertices from the independent set that are nonadjacent to yi. If an independent
dominating set contains no vertex from the clique then it must contain all vertices
from the independent set. This shows the following statement.

Lemma 17. Let G be a split graph with clique K = {y1; : : : ; yr} and independent set
S = {z0; : : : ; zs}. Then

*i(G) = min


 s∑

j=0

w(zj); min
16i6r


w(yi) +

∑
zj �∈N (yi)

w(zj)




 :

We now restrict to weighted (q; q− 4)-graphs. If G contains fewer than q vertices,
for some ;xed q, then *i(G) can be determined in constant time. If G is a spider then
we can apply Lemma 17. This immediately implies the following result.

Theorem 7. For every integer q¿4; the independent domination number of a
(q; q− 4)-graph can be computed in linear time.

7. Connected and clique domination

We now consider the problem of ;nding a smallest weight connected dominating
set. If G is the disjoint union of G1 and G2 then no connected dominating set exists.
This is indicated by writing *c(G) = ∞.

Lemma 18. Let G be the disjoint sum of G1 and G2. Then

*c(G) = min
i=1;2

(*c(Gi); wmin(G1) + wmin(G2));

where wmin(Gi) denotes the smallest weight of a vertex from Gi.
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Proof. A smallest weight connected dominating set in G consists either of a smallest
weight connected dominating set in one of the subgraphs Gi or it consists of precisely
two vertices from di<erent subgraphs G1 and G2.

Consider the problem of ;nding a dominating clique. If G is the disjoint union of
two graphs G1 and G2 then no dominating clique exists. Hence, *cl(G) = ∞.

If G is the disjoint sum of G1 and G2 then either a dominating clique is a clique in
one of the two subgraphs, or two vertices, one from each subgraph.

Assume that G arises by a 3-operation involving the homogeneous sets H1; : : : ; Hk .
Consider an arbitrary set Hi. Clearly, any connected dominating set in G must contain
at least one vertex from N (Hi). Therefore, a smallest weight connected dominating set
contains at most one vertex from Hi and, if this is the case, this vertex has smallest
weight in Hi. Hence, we can restrict the problem to the characteristic graph of G.
Naturally, the vertex which represents Hi has weight wmin(Hi).

The same idea applies if G arises by a 2-operation. We can restrict our attention to
the characteristic graph which now is a split graph.

It is easy to verify that the minimum dominating clique problem can be treated in a
quite analogous manner. In case of a 2- or a 3-operation we have to ;nd a dominating
clique in the characteristic graph. Hence, for the computation of *cl(G) we can adopt
the ideas used to determine *c(G).

We have shown that the weighted independent dominating set problem can be solved
very easily when restricted to split graphs. However, it is known that the connected
dominating set problem is NP-complete for split graphs [20] which also implies the
NP-completeness of the minimum dominating clique problem on split graphs (see also
[13]).

Hence, in the case of a 2-node, we cannot obtain *c(G) and *cl(G) as easily as this
was possible for *i(G). Here, it is still an open problem to compute these parameters
for the characteristic graph of G. Nevertheless, the problems are easy to solve for
(q; q− 4)-graphs.

We consider the leaves of the primeval decomposition of a (q; q − 4)-graph. If G
contains fewer than q nodes, the parameters *cl(G) and *c(G) can be determined in
constant time.

Assume that G is a spider. Denote the vertices of the clique by y1; : : : ; yr and the
vertices of the independent set by z1; : : : ; zr , such that yi is adjacent (resp. nonadjacent)
to zi if G is a thin (resp. thick) spider.

Lemma 19. If G is a thin spider then

*cl(G) = *c(G) =
r∑
i=1

w(yi):

If G is a thick spider then

*cl(G) = *c(G) = min
16i¡j6r

(w(yi) + w(yj)):
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Proof. If G is a thin spider then the clique is the only minimal connected dominating
set. If G is a thick spider then a minimal connected dominating set must consist of
two vertices from the clique.

Now, we consider a 2-operation. If G1 is a spider then the characteristic of G is
a spider plus one additional vertex which is adjacent precisely to the vertices of the
clique. In this case, *cl(G) and *c(G) are computed in the same way as in the previous
lemma. If G1 has less than q vertices then the characteristic of G has at most q vertices.
Hence, we can compute *cl(G) and *c(G) in constant time.

This provides the next result.

Theorem 8. For every integer q¿4; the connected domination number and the dom-
inating clique number of a (q; q− 4)-graph can be computed in linear time.

8. Domination and total domination

A further problem which has attracted considerable attention in recent years is the
minimum total dominating set problem (see, e.g., [6,21]). The task involves ;nding
a dominating set which contains no isolated vertices. We denote by *(G) and *t(G),
respectively, the domination number and the total domination number, that is, the
smallest weight of a dominating set and of a total dominating set in G.

Lemma 20. Let G be the disjoint union of G1 and G2. Then

*(G) = *(G1) + *(G2):

Lemma 21. Let G be the disjoint sum of G1 and G2. Then

*(G) = min
i=1;2

(*(Gi); wmin(G1) + wmin(G2)):

For *t(G) we obtain analogous results.
Let now H be a homogeneous set in G. If a minimum dominating set D in G contains

no vertices from N (H) then it consists of dominating sets in H and in G\(H ∪N (H)).
If D contains a vertex from N (H) then at most one vertex from H belongs to D and
this vertex has smallest weight. Hence, we have

*(G) = min (*(H) + *(G \ (H ∪ N (H))); *(GH ));

where GH is the graph which arises from G by replacing H by an independent set
of size two with one vertex having smallest weight in H and the other vertex having
weight ∞ (the second vertex guarantees that a vertex from N (H) must belong to a
minimum dominating set). An analogous equality holds for *t(G), however, in GH it
su�ces to replace H by one vertex of smallest weight. Since a total dominating set
D contains no isolated vertices, it is clear that at least one vertex from N (H) must
belong to D.
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Let G arise by a 2-operation with a separable p-component G1 with separation
(V 1

1 ; V
2
1 ) and a subgraph G2 outside G1 which is adjacent to all vertices of V 1

1 and to
no vertex of V 2

1 . By the previous arguments, we obtain

*(G) = min (*(G2) + *(G[V 2
1 ]); *(GG2 )):

Note that both the total dominating set problem and the dominating set problem are
NP-complete for split graphs [20].

We assume that a (q; q−4)-graph G is given along with its primeval decomposition
tree. If G corresponds to a leaf and if G has fewer than q vertices then both *(G) and
*t(G) can be determined in constant time (we write *t(G) =∞ in case G contains no
total dominating set).

Lemma 22. If G is a thin spider then

*(G) =
r∑
i=1

min(w(yi);w(zi)) and *t(G) =
r∑
i=1

w(yi):

If G is a thick spider then

*(G) = min
16j¡k6r

(
r∑
i=1

w(zi); w(yj) + w(yk); w(yj) + w(zj)

)

and

*t(G) = min
16j¡k6r

(w(yj) + w(yk)):

Consider a 2-operation. Since G is a (q; q − 4)-graph it follows that G1 has fewer
than q vertices or is a spider. In the ;rst case, both *(G[V 2

1 ]) and *(GG2 ) can be
computed in constant time since G[V 2

1 ] and GG2 have at most q+ 1 vertices. If G1 is
a spider then

*(G[V 2
1 ]) =

r∑
i=1

w(zi):

If G1 is a thin spider then

*(GG2 ) = min
16i6r


w(yi) +

∑
j �=i

min(w(yj);w(zj))


 :

If G1 is a thick spider then

*(GG2 ) = min
16i¡j6r

(w(yi) + w(yj);w(yi) + w(zi)):

Similarly, if G1 is a thin spider then we obtain

*t(G) =
r∑
i=1

w(yi)
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and, if G1 is a thick spider

*t(G) = min
16i¡j6r

(w(yi) + w(yj)):

The previous considerations immediately imply the following statement.

Theorem 9. For every integer q¿4; the domination number and the total domination
number of a (q; q− 4)-graph can be computed in linear time.

9. Steiner tree

The Steiner tree problem bears some similarity to the minimum connected dominat-
ing set problem.

De�nition 13. Given a set T of target vertices in a graph G=(V; E), a set S is called
a set of Steiner vertices if G[S ∪ T ] is connected.

We are interested in ;nding a smallest set S of Steiner vertices. Naturally, the
weighted version of the problem asks for a set S of smallest total weight. Such a set
S is usually called a Steiner set.

Lemma 23. Let G be the disjoint union of G1 and G2. If G1 and G2 both contain
vertices of the target set T then; obviously; no Steiner set S exists. If all vertices of
T belong to one of the subgraphs; say Gi; then S is completely contained in Gi.

Hence, in case of a disjoint union, we can restrict the problem to one of the sub-
graphs.

Lemma 24. Let G be the disjoint sum of G1 and G2. We distinguish two cases:

1. If G1 and G2 both contain vertices of T; then T induces a connected graph; and
so S = ∅.

2. If all vertices from T belong to some subgraph Gi then either S is completely
contained in Gi or S contains precisely one vertex; namely a vertex of smallest
weight; outside of Gi.

Hence, in case G is the disjoint sum of two graphs, we solve the problem restricted
to Gi and determine a vertex with smallest weight outside Gi. The Steiner set S is the
one of the two resulting sets which has minimum weight.

Let H be a homogeneous set in G. We consider three cases. First, assume that
T ⊆H holds. In this case, S is completely contained in H or consists of one vertex of
smallest weight in N (H).
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Next, assume that T ∩ H = ∅. Now, S contains at most one vertex from H and, if
this is the case, this vertex has smallest weight. Hence, we can restrict the problem to
the graph obtained from G by replacing H by some vertex of smallest weight in H .
Clearly, a Steiner set in the new graph is also a Steiner set in the original graph.

Finally, assume that T ∩H 
= ∅ and T * H . It is an easy observation that S contains
no vertices from H (if no vertex from T belongs to N (H) then at least one vertex
from N (H) must belong to S). This shows that, as before, it su�ces to study the graph
where H is replaced by a single vertex which represents the set T ∩H . A Steiner set
in the latter graph is again a Steiner set in the original graph.

Hence, if G arises by a 2- or 3-operation with homogeneous sets H1; : : : ; Hk then we
have to check whether T ⊆Hi holds for some i ∈ {1; : : : ; k}. In this case, we compute
a Steiner set in the subgraph Hi and determine a set containing a single vertex of
smallest weight from N (Hi). By the previous arguments, S is the set with smaller
weight. Otherwise, we have to compute a Steiner set in the characteristic graph of G
where each homogeneous set Hi with T ∩ Hi = ∅ is represented by one of its vertices
of smallest weight. The vertices representing sets Hj with T ∩ Hj 
= ∅ belong to the
new set T ′ of target vertices, together with the vertices from T which belong to none
of the homogeneous sets.

Note that the Steiner tree problem remains NP-complete when restricted to split
graphs [25].

In order to solve the problem for (q; q − 4)-graphs we ;rst have to show that the
problem can be solved e�ciently when restricted to the graphs corresponding to the
leaves of the primeval decomposition tree.

Let G be such a graph. If G has less than q vertices then the problem can be
solved in constant time. Assume that G is a thin spider. If |T |=1 then, clearly, S = ∅.
Therefore, assume that |T |¿2. If a vertex zi from the independent set of the spider
belongs to T and if yi is not in T then yi must belong to S. This fact su�ces to
construct the Steiner set S.

Now, let G be a thick spider and |T |¿2. If at least two vertices yi and yj of the
clique belong to T then T induces a connected graph and S = ∅. If only one vertex
yi of the clique belongs to T then we have to consider two cases. If zi is not in T
then T is connected and S = ∅. If zi belongs to T then S must contain one vertex
from the clique with smallest weight. Finally, if no vertex from the clique belongs to
T then again we have two cases. If all vertices from the independent set are in T
then S consists of two vertices from the clique having smallest weights. Otherwise,
write T = {z1; : : : ; zk}. Then S either contains only one vertex, namely a vertex of
smallest weight from {yk+1; : : : ; yr}, or it contains two vertices of smallest weight
from {y1; : : : ; yk}.

If G is the result of a 2-operation then the characteristic of G either has at most q
vertices or is isomorphic to a spider with one additional vertex adjacent precisely to
the clique. In the ;rst case, we can solve the problem in constant time, in the second
case we proceed analogously as above.

These observations imply that a Steiner set can be found e�ciently.
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Theorem 10. For every integer q¿4; the Steiner tree problem for a (q; q− 4)-graph
can be solved in linear time.

10. List coloring

The problem is NP-complete for cographs [18]. However, if we restrict the number
of colors in the union of the lists by a constant then it can be seen that the problem
is linear time solvable for (q; q− 4)-graphs for ;xed q.

De�nition 14. Given a graph G=(V; E) and for every vertex u, a list L(u) of admissible
colors for this vertex, G is called L-list colorable if vertices of G can be assigned colors
from their lists so that adjacent vertices receive di<erent colors.

Let G be a graph and let L be a list assignment such that |⋃u∈V L(u)| = k is a
constant. Let S(G) be the set of subsets of

⋃
u∈V L(u) such that S ∈ S(G) i< G has

an L-list coloring which uses exactly the colors of S. As
⋃
u∈V L(u) has 2k subsets,

S(G) can attain at most 22k values, which is still a constant number with respect to
the input size (of G). Obviously, G is L-list colorable i< S(G) 
= ∅.

Lemma 25. Let G be the disjoint union of G1 and G2. Then S(G) = {A ∪ B: A ∈
S(G1); B ∈ S(G2)}.

Lemma 26. Let G be the disjoint sum of G1 and G2. Then S(G) = {A ∪ B: A ∈
S(G1); B ∈ S(G2); A ∩ B= ∅}.

We further consider the type-2 operation. Let G be obtained from a separable
p-connected graph G1 with separation (V 1

1 ; V
2
1 ) and from a graph G2 by making every

vertex of V 1
1 adjacent to every vertex of G2. We set

T(G1) = {(A; B): ∃ L-coloring f s:t: A= f(V 1
1 ) and B= f(V 2

1 )}:

Lemma 27. S(G) = {A ∪ B ∪ C: (A; B) ∈ T(G1); C ∈ S(G2); A ∩ C = ∅}.

Then S(G) can be computed in constant time from T(G1) and S(G2) and it only
remains to show how T(G1) can be computed in linear time.
|V1|¡q: We simply consider all possible L-list colorings of G1 (there are at most

kq of them) and so T(G1) can be computed in constant time.
G1 is a spider: Since in any coloring of a spider the vertices of the clique part have

to be colored by mutually distinct colors, G1 is not list colorable if |V1|¿ 2k. In such
a case we output that G is not L-list colorable. If |V1|62k, G1 is of constant size and
we can again compute T(G1) in constant time by brute force.
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We summarize our results on list colorings in the following theorem.

Theorem 11. For @xed integers k and q; k-List-Coloring restricted to (q; q−4)-graphs
is solvable in linear time.

11. Precoloring extension

The restricted variant precolor extension is also solvable in polynomial time, even
if the total number of colors in each list is unbounded.

Precoloring extension is a special case of list-coloring where lists of admissible colors
are either one-element (such vertices are precolored) or equal L(u) (being the set of all
colors for such vertices u). We may assume that the precoloring is legal, i.e., no two
vertices precolored by the same color are adjacent. If k is the total number of colors,
the problem is referred to as k-PrExt. Note that not all k colors are necessarily used on
the precolored vertices. We will show that k-PrExt can be solved in polynomial time on
(q; q−4)-graphs even if k is not constant but rather part of the input. Towards this end
we denote by Pr(G) the set of colors used on precolored vertices, pre(G)= |Pr(G)| the
number of colors used on the precolored vertices, and by p(G) the minimum number
of additional colors needed for a precoloring extension.

So G is feasible for k-PrExt i< p(G)6k − pre(G).

Lemma 28. Let G be the disjoint union of G1 and G2. Then

p(G) = max{p(G1) − |Pr(G2) \ Pr(G1)|; p(G2) − |Pr(G1) \ Pr(G2)|; 0}:

Lemma 29. Let G be the disjoint sum of G1 and G2. Then p(G) = p(G1) + p(G2).

We further consider the type-2 operation. Let G be obtained from a separable
p-connected graph G1 with separation (V 1

1 ; V
2
1 ) and from a graph G2 by making every

vertex of V 1
1 adjacent to every vertex of G2.

G1 is small: We try all possible precoloring extensions of G1 using the colors of
the precoloring of G1 and variable colors for the extension. For each such coloring
f we determine the minimum number of additional colors needed for extending the
coloring to G. We know that G2 itself needs p(G2) new colors and that these have to
be di<erent from all colors used on V 1

1 .

1. Use as many colors of Pr(G2) \ Pr(G1) as possible on the variable colors that are
used on V 2

1 only.
2. Unify as many as possible of the remaining variable colors used only on V 2

1 with
the new colors used on G2.

3. The remaining variable colors on G1 and new colors on G2 have to be mutually
di<erent.
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Let the total number of new colors be pf(G). Then p(G) = minfpf(G) can be com-
puted in time linear in p(G2).
G1 is a spider: Unlike the case of list colorings with bounded number of colors, in

this case the size of G1 is not bounded. Consider an optimal coloring of G. Since G[V 1
1 ]

is a complete graph, the p(G2) new colors on G2 and the p11=|V 1
1 |−pre(G[V 1

1 ]) colors
on unprecolored vertices of G[V 1

1 ] must be all di<erent, and di<erent from colors in
Pr(G2)∪Pr(G[V 1

1 ]). We can color G and determine p(G) by the following procedure:

1. Use as many colors of Pr(G[V 2
1 ]) \ Pr(G[V 1

1 ]) as possible on the p11 unprecolored
vertices of G[V 1

1 ];
2. Use the remaining colors of Pr(G[V 2

1 ]) − Pr(G[V 1
1 ]) (if there are any left) as the

new colors on G2;
3. Use fresh new colors for colors needed on G2 and for vertices of G[V 1

1 ] which were
not colored in Steps 1 and 2;

4. Color the unprecolored vertices G[V 2
1 ] using colors used on G[V 1

1 ].

We clearly get an optimal coloring since each of the Steps 1–4 uses the minimum
possible number of new colors.

Claim. In Step 4 we can color all vertices of G[V 2
1 ] since each such vertex is nonad-

jacent to at least one vertex of G[V 1
1 ] and the color of any such vertex can be used.

Claim. Step 1 can be performed in polynomial time. Consider the bipartite graph
H induced in G1 by unprecolored vertices of V 1

1 and by precolored vertices of V 2
1 ,

vertices precolored by the same color being uni@ed into a single vertex representing
that color. Then the maximum number of colors of Pr(G[V 2

1 ]) which can be used on
V 1

1 is the size of a maximum matching in TH , the bipartite complement of H , and
this can be computed in polynomial time.

Note that the preceding claim applies to any split graph G1. However, it uses a
bipartite matching algorithm and as such it is not known to be linear. The special
structure of spiders can be used to prove linearity.

If G1 is a thick spider then TH has maximum degree at most 1 and so the size of a
maximum matching is simply the number of edges of this graph.

Let G1 be a thin spider. Then H is a bipartite graph whose vertices in H [V 1
1 ] have

degrees 61. If the other part of H; Pr(G[V 2
1 ]), contains a vertex (color) adjacent to all

vertices of H [V 1
1 ] then this color cannot be used on V 1

1 and H is a star plus isolated
vertices (on the side of colors). In this case, the size of a maximum matching is either
p11 or |Pr(G[V 2

1 ])| − 1, whichever is smaller. It is easy to see that TH contains a full
matching (of size |Pr(G[V 2

1 ])| or p11) otherwise.
We summarize our results on precoloring extensions in the following theorem.

Theorem 12. For @xed integer q; k-PrExt restricted to (q; q − 4)-graphs is solvable
in polynomial time.
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