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Advances in Space Radiation Shielding Codes

JOHN W. WILSON1*, RAM K. TRIPATHI1, GARRY D. QUALLS1,
FRANCIS A. CUCINOTTA2, RICHARD E. PRAEL3,
JOHN W. NORBURY4, JOHN H. HEINBOCKEL5,
JOHN TWEED5 and GIOVANNI DE ANGELIS5

Space / Radiation / High-energy ions
Early space radiation shield code development relied on Monte Carlo methods and made important

contributions to the space program. Monte Carlo methods have resorted to restricted one-dimensional
problems leading to imperfect representation of appropriate boundary conditions. Even so, intensive com-
putational requirements resulted and shield evaluation was made near the end of the design process.
Resolving shielding issues usually had a negative impact on the design. Improved spacecraft shield design
requires early entry of radiation constraints into the design process to maximize performance and mini-
mize costs. As a result, we have been investigating high-speed computational procedures to allow shield
analysis from the preliminary concept to the final design. For the last few decades, we have pursued deter-
ministic solutions of the Boltzmann equation allowing field mapping within the International Space Sta-
tion (ISS) in tens of minutes using standard Finite Element Method (FEM) geometry common to
engineering design methods. A single ray trace in such geometry requires 14 milliseconds and limits
application of Monte Carlo methods to such engineering models. A potential means of improving the
Monte Carlo efficiency in coupling to spacecraft geometry is given.

INTRODUCTION

The interaction of radiation with materials is of impor-
tance to understanding our environment1) and in the appli-
cation of health based procedures2). Early methods of space
radiation shield evaluation relied largely on Monte Carlo
codes3,4) and made important contributions to NASA engi-
neering programs such as Apollo, Lunar Orbiter, Viking,
Supersonic Transport5), High Speed Civil Transport6)… Yet,
slow computational procedures did not allow early entry of

radiation constraints into the design process and off-opti-
mum solutions to shielding problems continue to plague
final designs7,8). Even today, simulations with full 3D Mon-
te Carlo codes often use methods with questionably simpli-
fied shielding geometry to increase computational speed in
which, for example, ISS is approximated as a 20.7 g/cm2

thick aluminum cylindrical shell9) leading to an overesti-
mate of the neutron flux within ISS since neutron leakage
is minimal in this configuration. The use of a 3D Monte
Carlo code within such a simplified geometry will lead to
erroneous overestimates of the charged particle shielding
since anisotropic shield distributions within ISS are known
to be a major factor in astronaut exposure estimates10). The
development of high-speed computational procedures
allows early entry of radiation constraints into the design
optimization process11) and Monte Carlo methods should
still play a role in final design evaluation with full opti-
mized geometry. This is especially true with the recent
advances of the LAHET Monte Carlo code with addition of
nucleus-nucleus reactions under the ISABEL nuclear reac-
tion option12–14) and planned extensions. We examine herein
the errors introduced by the simplifying models used with
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Monte Carlo codes and propose a method of resolving the
current inefficient coupling of Monte Carlo methods to
engineering models.

DETERMINISTIC METHOD

The relevant transport equations are the linear Boltzmann
equations for the flux density φj(x,ΩΩΩΩ,E) for particle type j
and are written as

ΩΩΩΩ •∇∇∇∇φj (x,Ω,Ω,Ω,Ω,E) ==== Σ∫ σjk(Ω,ΩΩ,ΩΩ,ΩΩ,Ω',E,E')φk(x,ΩΩΩΩ',E') dΩΩΩΩ' dE'
–σj(E) φj(x,Ω,Ω,Ω,Ω,E) (1)

where σj(E) and σjk(Ω,ΩΩ,ΩΩ,ΩΩ,Ω',E,E') are the shield media macro-
scopic cross sections. The σjk(Ω,ΩΩ,ΩΩ,ΩΩ,Ω',E,E') represent all those
processes by which type k particles moving in direction ΩΩΩΩ'
with energy E’ produce a type j particle in direction ΩΩΩΩ with
energy E (including decay processes). Note that there may
be several reactions that produce a particular product, and
the appropriate cross sections for equation (1) are the inclu-
sive ones. Exclusive processes are functions of the particle
fields and may be evaluated once the particle fields are
known. The total cross section σj(E) for the medium for each
particle type is

σj(E) = σj,at(E) + σj,el(E) + σj,r(E) (2)

where the first term refers to collision with atomic electrons,
the second term is for elastic nuclear scattering, and the
third term describes nuclear reactions where we have
ignored the minor nuclear inelastic processes. The corre-
sponding differential cross section σjk(Ω,ΩΩ,ΩΩ,ΩΩ,Ω',E,E') is similar-
ly delineated (note, k = j for atomic and elastic processes).
Many atomic collisions (~106) occur in a centimeter of ordi-
nary matter, whereas ~103 nuclear coulomb elastic colli-
sions occur per centimeter, while nuclear reactions are sep-
arated by a fraction to many centimeters depending on
energy and particle type. Solutions use the atomic collisions
as first perturbation with special methods used for neutrons
for which atomic cross-sections are taken as zero. The solu-
tion of equation (1) involves hundreds of multi-dimensional
integro-differential equations that are coupled together by
thousands of energy dependent cross terms and must be
solved self-consistently subject to boundary conditions.

The nuclear reactive cross sections can be written in the
following form

σjk,r(ΩΩΩΩ,ΩΩΩΩ’,E,E’) = σjk,iso(E,E’) + σjk,for(ΩΩΩΩ,ΩΩΩΩ’,E,E’) (3)

where the first term is isotropic and associated with lower
energy particles produced including target fragments and
the second term is highly peaked in the forward direction

and is associated mainly with direct quasi-elastic events,
charge exchange, and projectile fragments. Surprisingly
even nucleon-induced reactions follow this simple form and
the isotropic term extends to relatively high energies15). As
an example of nucleon induced reactions, the following
form has been used in versions of FLUKA15) as follows

σjk,r(ΩΩΩΩ,ΩΩΩΩ’,E,E’) = νjk(E’)σjkr(E’)fjk(E,E’)gR(ΩΩΩΩ •ΩΩΩΩ’,,,,Ε,ΑΤ)
(4)

where the Ranft factor used in early versions of FLUKA is

gR(ΩΩΩΩ •ΩΩΩΩ’,,,,Ε,ΑΤ) = ΝR exp[–θ2/λR] π/2 ≥ θ ≥ 0 (5)

and constant for larger values of production angle θ and λR

given by Ranft as

λR = (0.12 + 0.00036AT/E) (6)

although new generalized fits are being derived. This sepa-
ration in phase space is exploited in the present HZETRN
code for efficient computational procedures and contributes
to the neutron albedo.

Atomic interactions limit the contributions of charged par-
ticles in the transport process. For example, the protons and
alpha particles produced in aluminum below 100 A MeV con-
tribute to the fluence only within a few centimeters of their
collision source and the heavier ions are even more restricted.
This is an important factor in that the transported secondary
charged particle flux tends to be small at low energies and
the role of additional nuclear reactions are likewise limited.

We rewrite equation (1) in operator notation in which the
field functions φj(x, ΩΩΩΩ, E) are combined in a vector array ΦΦΦΦ
as

ΦΦΦΦ = [φj(x,Ω,Ω,Ω,Ω,E)] (7)

with the drift term replaced by a diagonal matrix operator as

D = [Ω Ω Ω Ω •∇∇∇∇] (8)

and the interaction kernel into an operator containing diag-
onal [σj(E)] and lower triangular elements related to
σjk(Ω,ΩΩ,ΩΩ,ΩΩ,Ω',E,E') given as

I = [Σ∫ σjk(Ω,ΩΩ,ΩΩ,ΩΩ,Ω',E,E') dΩΩΩΩ' dE' – σj(E)] (9)

The interaction operator I has three parts associated with
atomic, elastic, and reactive processes as given in equation
(2). Equation (1) is then rewritten with each contribution
(atomic, elastic, reactive) shown separately as

[D – Iat – Iel]•ΦΦΦΦ ==== Ir •ΦΦΦΦ (10)

where the first two physical perturbation terms (also diago-
nal operators) are shown on the left-hand side and have been
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SPACE RADIATION SHIELDING S89

adequately resolved in past research. The reaction cross sec-
tion is separated by equation (3) into isotropic and forward
components for which equation (10) may be written as cou-
pled equations

[D – Iat – Iel + σσσσr]•ΦΦΦΦfor = {∫∫∫∫ σσσσr,for(Ω,ΩΩ,ΩΩ,ΩΩ,Ω',E,E') dΩΩΩΩ' dE'}•
ΦΦΦΦfor ≡ ΞΞΞΞr,for ΦΦΦΦfor (11)

and

[D – Iat –Iel + σσσσr]•ΦΦΦΦiso = {∫∫∫∫ σσσσr(Ω,ΩΩ,ΩΩ,ΩΩ,Ω',E,E') dΩΩΩΩ' dE'}•ΦΦΦΦiso

+ {∫∫∫∫ σσσσr,iso(E,E') dΩΩΩΩ' dE'}•ΦΦΦΦfor ≡ ΞΞΞΞr • ΦΦΦΦiso + Ξr,iso • ΦΦΦΦfor

(12)

where ΦΦΦΦ = ΦΦΦΦfor + ΦΦΦΦiso and the operator Ξr is the integral portion
of Ir. Equation (11) is a Volterra equation and can be solved
as a Neuman series16,17)  which can be either evaluated directly
or proscribed as a marching procedure in either a perturbative
sense as the current form of HZETRN or nonperturbative sense
(future version of HZETRN) as described elsewhere18). The
cross term in equation (12) gives rise to an isotropic source
of light ions and neutrons of only modest energies. Spectral
contributions to the Neuman series depend on the particle
range and probability of surviving nuclear reactions which
establish the functional form of the G matrix (G = [D – Iat

–Iel + σσσσr]–1) as the inverse of the differential operator on the
left of equations (11) and (12). The second term of the Neuman
series is proportional to the probability of nuclear reaction
that is limited by the particle range as discussed above. It is
well known that nuclear reactions for the charged particles

below a few hundred A MeV are infrequent for which rapid
convergence has been demonstrated17).

The remaining problem is solution for the transport of the
low-energy neutron and light ion isotropic sources in equa-
tion (12) that dominate the solution below about 70 A MeV.
In this region light ion transport is completely dominated by
the atomic interaction terms and only a very small fraction
have nuclear reactions making only minor contributions to
the particle fields. This is especially true for the target frag-
ments, which can be solved in closed form16,17).

The neutrons have no charge and are dominated at low
energies by elastic and reactive nuclear processes. We further
expand equation (12) for the single neutron component as

[Ω Ω Ω Ω •∇∇∇∇ + σn] φn(x,Ω,Ω,Ω,Ω,E) ≡ ∫ σnn(Ω,ΩΩ,ΩΩ,ΩΩ,Ω',E,E') φn(x,ΩΩΩΩ',E') dΩΩΩΩ'
dE' + [ΞΞΞΞr,iso•ΦΦΦΦfor + ΞΞΞΞr•ΦΦΦΦ(12)]n (13)

where the last term is from coupling to the solution of equa-
tion (12). The neutron spectrum is greatly degraded in ener-
gy on the first collision and what remains of the low-energy
neutron transport is the last issue to be resolved. This is the
typical nuclear engineering problem for which a multitude
of methods have been developed such as the Sn, multigroup,
and collocation methods already applied to versions of
HZETRN. It is mainly a question of computational efficien-
cy and we continue to investigate this issue. Monte Carlo
methods have been helpful in evaluation of these computa-
tional procedures in simple geometry.

Fig. 1. Neutron spectra within the Shuttle on STS-36 with old and new fits to JSC Bonner sphere data.
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ROLE OF BOUNDARY CONDITIONS

The deterministic HZETRN code (solving equation (13)
by multigroup) is of sufficient generality to solve the sim-
plified Shuttle geometry using the long cylindrical shell
(MSFC)9), the sector analysis (UH using a 100 g/cm2 slab
geometry)19), spherical shell (ORNL)20), and the actual
Shuttle geometry (HZETRN)8) during STS-36 with results
for neutrons and protons shown in figures 1 and 2 respec-
tively. The results of the Bonner sphere measurements of
Johnson Space Center on STS-36 with the original analysis

using a simple power-law spectrum (JSC old) and the new
JSC analysis using a bimodal power-law spectrum21) are
shown in figure 1 for comparison. It is clear that the actual
geometry matters and the actual geometry (HZETRN)
seems the best approximation to the latest analysis (JSC) of
the Bonner sphere data. There are similar large differences
for the proton spectra as a function of boundary conditions
as shown in figure 2. Prior comparison of calculated proton
spectra with telescope measurements on STS-48 have vali-
dated the use of HZETRN with real geometry on Shuttle
(see figure 3)22).

The limitation of long computation times for ray tracing

Fig. 2. Calculated proton spectra within the Shuttle on STS-36 according to various geometry models.

Fig. 3. Calculated and measured proton spectra produced within the Shuttle by GCR on STS-48.
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SPACE RADIATION SHIELDING S91

in engineering FEM models which severely limits Monte
Carlo application to ISS (14 msec per ray on a 16 processor
Onyx2) has some hope of gaining performance on reconfig-
urable computers (Field Programmable Gate Arrays, or
hypercomputer). This is a similar calculation as that done by
high-performance video cards using Gate Arrays. These
computers have massive inherent parallel capability able to
search many facets in parallel and will be the focus of future
research in support of implementing the multiple-charged
ion transport Monte Carlo version of LAHET or the JAERI
HZE version of HETC.

CONCLUSIONS

The primary limitation of Monte Carlo is the interface
with large scale engineering FEM models which require an
average 14 msec to process a single segment of a Monte
Carlo history on a 16 processor Onyx2. An approach to
high-speed Monte Carlo using hypercomputers is suggested
as a means to make such calculations practical since mega-
processor scaleup of cpu based methods will likely fall short
and is inordinately expensive. Deterministic methods have
demonstrated high-speed computations on modest cpu
based implementations enabling development of advanced
engineering design methods and are reasonably validated
with flight measurements and Monte Carlo simulations in
simple geometry.
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