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A Survey of Matrix Completion Methods
for Recommendation Systems

Andy Ramlatchan, Mengyun Yang, Quan Liu, Min Li, Jianxin Wang, and Yaohang Li*

Abstract: In recent years, the recommendation systems have become increasingly popular and have been used

in a broad variety of applications. Here, we investigate the matrix completion techniques for the recommendation

systems that are based on collaborative filtering. The collaborative filtering problem can be viewed as predicting the

favorability of a user with respect to new items of commodities. When a rating matrix is constructed with users as

rows, items as columns, and entries as ratings, the collaborative filtering problem can then be modeled as a matrix

completion problem by filling out the unknown elements in the rating matrix. This article presents a comprehensive

survey of the matrix completion methods used in recommendation systems. We focus on the mathematical models

for matrix completion and the corresponding computational algorithms as well as their characteristics and potential

issues. Several applications other than the traditional user-item association prediction are also discussed.

Key words: matrix completion; collaborative filtering; recommendation systems

1 Introduction

Technology has given corporations and consumers more
analytical capabilities than ever before, largely due to
the birth of big data, and the possibilities that spring up
from its utilization. Users can easily answer almost any
encountered question, and in many cases, can answer
unexpected questions. Personal mobile devices can

collect data on every communication a person makes,
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every image a person captures or receives, every video a
person records or receives, and every online transaction
a person makes.
can now store all the needed information. This is
of incredible value to such corporations because the
entire activities of a person can inform them on his/her
particular daily habits, and this can be aggregated from
an entire group. On the other hand, the huge amount
of data also makes it difficult for the users to make
decisions that best fit their needs. A similar difficulty

More importantly, corporations

is presented in the corporations providing commodities
and services, as it becomes difficult to process the data
to understand the user behaviors.

Fortunately, the recent advances in the field
of recommendation systems (a.k.a. recommender
systems or recommender engines), a sub-field of
machine learning, have provided the capability of
making predictions based on the past activities of
a user or his/her associations with other users’
behaviors. Many computational algorithms have been
developed for recommendation systems, which can
predict the future interests of users based on past
preferences considering how much and how little
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a user may prefer one item over another, such as
user rankings. Recommendation systems have attracted
much attention in both research and practice, since
they can narrow complex and difficult decisions into
a few recommendations. The recommendation system
techniques have been applied in diverse fields, including

U musicl?, television'®!, books!*!, e-learningl!,

movies!
web search!®, jokes!”!, news!®!, bioinformatics'® °!, and
engineering! %!,

Generally, a recommendation system is a subset
of the information filtering systems, whose goal
is to predict the rating a user would give to
an item of commodity. The recommendations are
typically made through either content-based filtering
or collaborative filtering approaches. The content-based
filtering approaches utilize a set of discrete features that
characterize a commodity and build a user profile that
indicates the items the user liked in the past. Then, items
with similar properties are recommended. Instead of
using item features and user profiles, the collaborative
filtering approaches produce recommendations based
on a user as well as other users’ past behaviors. The
fundamental assumption under collaborative filtering
is that if the users share similar ratings in the
past on the same set of items, then they would
likely rate the other items similarly. Content-based
filtering and collaborative filtering can be combined
to build hybrid recommendation systems, which often
demonstrate better recommendation precision than pure
recommendation approaches.

In literature, a few surveys overview different
aspects of recommendation systems. Bobadilla et
al.l'"l presented the evolution of recommendation
systems. Kunaver and Pozrl"?! reviewed the work
done in the area of recommendation diversity.
Burke!!3! discussed the implementation issues in hybrid
recommendation systems. Desrosiers and Karypis!!#
provided a survey on recommendation methods based
on neighborhood information. He et al.l'>! emphasized
on the influences of human factors in recommendation
systems. Campos et al.l'® developed a review on
recommendation approaches dealing with temporal
context information. Yang et al.l'”l investigated how
social network information can be adopted by
recommendation systems. Kla$nja-Milicevic et al.l'8]
studied recommendation systems for online-based
education and learning. Yera and Martinze!'”! examined
the fuzzy tools used in recommendation systems.
Recently, Kotkov et al.?Y! considered serendipity within
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recommendation systems. In this article, we focus on
the matrix completion methods in collaborative filtering
approaches. This is because the collaborative filtering
problem can often be modeled as a matrix completion
problem, whose goal is to fill out the unknown values
where the users are not inclined to certain items.
We overview the mathematical models for matrix
completion used in recommendation systems. We then
survey the computational algorithms designed for these
models, analyze their characteristics, and discuss the
potential issues.

The rest of this survey article is organized as follows.
In Section 2, the matrix completion problem and
low-rank assumption are discussed. Various matrix
completion models are analyzed in Section 3, and the
computational algorithms considering these models are
described in Section 4. Then, in Section 5, the uses of
recommendation systems based on matrix completion
on several applications other than traditional user-item
association predictions are discussed. Finally, Section 6
summarizes our conclusions and research directions.

2 Matrix Completion Problem

A typical collaborative filtering scenario in
recommendation systems can be modeled as a
matrix completion problem. Given a list of m users
{ui,ua,...,uy} and n items {i1,iz,...,in}, the
preferences of users toward the items can be represented
as an incomplete m x n matrix A, where each entry
either represents a certain rating or is unknown. The
ratings in A can be explicit indications, such as scores
given by the users in scales 1 — 5 or ordinal favorability
(e.g., strongly agree, agree, neutral, disagree, and
strongly disagree). These ratings can also be implicit
indications, e.g., item purchases, website/store visits, or
link click-throughs. It is generally assumed a user rates
a specific item only once. As a result, recommendations
can be made by filling out the unknown entries and
then ranking them according to the predicted values.

Denoting A as the complete set of N entries in A
with known ratings, the general matrix completion
problem is defined as finding a matrix R such that

Ryi = Aui,

for all entries (1,i) € A. In addition, we denote A as
the complement set to A, and P4(A) as an orthogonal
projector onto A which is an m X n matrix with
the known elements of A preserved and the unknown
elements as 0 s211. However, since the number of known
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entries is less than the overall number of entries, there
exist infinitely many solutions. Nevertheless, it is
commonly believed that only a few latent factors!??!
influence how much a user likes an item. For example,
studies show that the attributes of actor/actress, director,
and decade contribute most to a user’s preference to a
movie. This relatively small number of influence factors
compared to the total number of users or items in the
rating matrix A provides a guiding framework to fill in
the missing values and to select the correct complete
matrix. This corresponds to the low-rank assumption in
matrix completion, i.e., the rating matrix A is low-rank
or approximately low-rank. The low-rank assumption
in matrix completion also agrees with the well-known
Occam’s razor principle in machine learning, whose
goal is to find the “simplest” complete matrix X that
is consistent with the known ratings in A.

3 Mathematical Models

Starting from the baseline model, we investigate various
mathematical models, deterministic and probabilistic,
that have been developed to address the matrix
completion problem. The fundamental assumption is
that a low-dimensional representation of users and items
exists, although probably unknown, which can be used
to accurately model the user-item association. Such
low-dimensional representation is often characterized
by a low-rank matrix. We also study models that employ
various regularization methods and incorporate various
constraints in the completed matrix.

3.1 Baseline model

Denoting p as the average rating among all known
ratings in the rating matrix A, the baseline model!?’! fills
out a missing element R,,; by

Ryi =+ by + b; ()
where b,, and b; represent the observed deviations of
user ¥ and item i from p, respectively. The training
parameters b, and b; can be estimated by solving the
following least squares problem:

min | Po(R) = Pa(A)] + 4 (;(bu)2 + Z(bz-)z)
@

where A is the regularization parameter. The first term
[PA(R) = PA(AE = X 1iyea(Rui — Ayi)? attempts
to minimize the training error, while the second term
A(X, (bu)? + X, (bi)?) serves as the regularizing term
to avoid overfitting by penalizing the magnitudes of b,,
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and b;.
3.2 SVD model

The fundamental idea of the Singular Value
Decomposition (SVD) model proposed by Sarwar
et al.?* is to decompose the rating matrix A into a user
feature matrix, a singular value matrix, and an item
feature matrix of low-rank. Starting from a normalized
matrix Ayorm, by filling out the missing elements with
preliminary simple predictions, the SVD model carries
out an SVD operation on A, such that

Anorm = UEVT (3)
where X is a diagonal matrix with descendently sorted
singular values deposited in its diagonal entries, and

the U and V columns contain the corresponding left
and right singular vectors, respectively. By truncating

1
the diagonal matrix X to a top-r rank X, then U, X/?

1

and V. X7 represent the latent factor vectors for users

and items, respectively. The dot product of the u-th
1 1

row of U, X? and the i-th row of V,X? yields the
predicted u-th user rating of the i-th item. Sarwar et
al.>>! employed a “folding-in” technique to build an
SVD by incrementally adding new users and items so
that the SVD model can be scalable and built faster;
however, this may lead to quality loss. Instead of
carrying out the dot product operation, Billsus and
Pazzanil?®! used the latent vectors as feature vectors
to train an artificial neural network to predict the user
ratings.

3.3 Matrix factorization model

The matrix factorization model is a generalization
of the SVD model, which intends to find a low-
rank matrix factorization to approximate A. Assuming
an r-dimensional vector x, is associated with each
user ¥ and measures the latent factors influencing the
preference of items, and an r-dimensional vector y; is
associated with each item i and represents the latent
factors influencing i, the matrix factorization model
uses the dot product yiTxu to capture the correlation
between user u and item i. The predicted rating then
becomes

Ryi = yi Xy )

Assuming the columns of X and Y contain all x,,
and y; vectors, respectively, the goal of the matrix
completion is to estimate

R=Y"X (5)
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The parameters to be learned are the user feature
vectors x, and the item feature vectors y;, which can
be done by minimizing the Frobenius norm error as
follows:

min [[Pa(R) = Pa(A)lI; (6)

The potential problem of model (6) is that minimizing
the Frobenious norm can easily lead to overfitting by
biasing to the known entries.

3.4 [2-regularized matrix factorization model

To avoid overfitting the observed user-item ratings,
the /2-norm regularized matrix factorization method!?”)
uses [2-norm to regularize the learning parameters
by penalizing their magnitudes. Based on the matrix
factorization model (6), this can be done by minimizing
the regularized /2-norm error of x,, and y; in addition
to the Frobenious norm error term as follows?8!:

min [ Pa(R) = Pa(4)l+

A (Z ENEESY ||yi||2) )

where A; is a constant controlling the extent of
regularization.

A more sophisticated [2-regularized matrix
factorization model can be built on top of the baseline
model by considering the user deviation b, and the
item deviation b;. Then, each predicted rating IAQM in R
becomes

Rui = po+ by + bi + y{x, (®)
The parameters to be learned become by, b;, x,, and
vi, which can be done by minimizing the regularized

[2-norm error as follows:
min | P4(R) = Pa(4)lF+
X Y (b b7+ Il + 1yil?)
(u,i)eA
where A, is the regularization parameter. Because there
are more training parameters, this model often yields a
more accurate prediction.

Prediction accuracy in regularized
factorization algorithm can often be improved by
incorporating additional information or factors. Vozalis
and Marqaritis®! utilized demographic data as an
additional source of information. A more famous
example is the SVD++ method®”!, which is considered
as the model with the highest accuracy in the Netflix
Prize3!l. The SVD++ enhances the regularized
SVD model by considering implicit feedback as

€))

matrix
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an additional indication of user preferences. In the
SVD++, in addition to the latent factor x, associated
with each user u, which measures the latent factors
of u influencing the preference of items, a set of
item vectors are incorporated, relating to each item
rated by the user u. Then, the user vector becomes
Xy + |W(u)|_% > jeRr@) Pj> and the predicted rating
of user u for item i is calculated as
Rui = +by +bi +y7 | xu + |W(M)|_% Z Dj
Jj€R()
(10)
where W(u) denotes the set of items associated with
user u. The parameters to be learned are by, b, xy,
pj, and y., which can be done by minimizing the
regularized squared error as follows:

min  [|PA(R) — Pa(A)|2+

b*,x*,p*,y*
Ay b+ b7+ il +
(u,i)eA
2
_1
X + W[ ) p; (1)

jE€R )

where A3 is the regularization parameter for model (11).

3.5 [l-regularized SVD model and [1/12-
regularized SVD model

Other regularization methods other than the /2-norm
can also be incorporated to the SVD model. The
I1-regularized SVD model*?! can generate sparse
solutions, and the minimization problem then becomes
min [ PA(R)=Pa(A)F+Aa D (xul+lyil) (12)
(u,i)eA
where A4 is the regularization parameter controlling the
extent of the /1-norms of the decomposed matrices y;
and x,,.

Considering that [1-regularization can generate
sparse solutions, while /2-regularization often leads to
more accurate predictions, the /1/[2-regularized SVD
model attempts to benefit from both by combining the
[1-norm and /2-norm. As a result, the corresponding
minimization objective function becomes

min || PA(R) = Pa(A)[F+

As Y @lxll® + i)+

(u,i)eA
(I —a)(|xul + [y: D) (13)
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where « is a tunable parameter to balance the /1-norm
and /2-norm terms, and where A5 is the regularization
parameter controlling the extent of the /1- and /2-norms
combination.

3.6 Spectral regularization model

Instead of applying regularization on the decomposed
matrices, Mazumder et al.?3, inspired by Candes and
Tao?!l, proposed a spectral regularization model that
uses the nuclear (trace) norm of the recovered matrix
R, which is defined as the sum of the singular values in
R. The objective of the matrix regularization model is
to balance the minimization of the approximation errors
in the known entries and the nuclear norm of R,

1
min 2 || PA(R) — PA(AE + A6 Rl (14)

where Ag is the regularization parameter controlling the
extent of the nuclear norm. Note that Formula (14) is a
convex model for completing matrix A.

3.7 Rank minimization model

Under the low-rank assumption, the matrix completion

problem can be formulated as a matrix rank

optimization problem such that
ngn rank(R),

(15)
S.tt., Ry; = Ayi,(u,i) € A

where rank(R) denotes the rank of matrix R.
Unfortunately, finding the exact solution for the
above rank optimization problem is well-known to
be NP-hard*. Nevertheless, the low-rank matrix
approximation is the general principle used in the
matrix completion algorithms for recommendation
systems.

3.8 Nuclear norm minimization model

The rank optimization problem can be relaxed to a
nuclear norm (trace norm) optimization problem'®! by
minimizing the sum of the singular values of R. Then,
the matrix completion problem is reformulated as a
convex optimization problem such as
min | R,
R (16)
s.t., Ry;i = Ayi, (u,i) eA
where || - ||« denotes the nuclear norm. Candes
and Recht!®®! showed that the solution obtained by
optimizing the nuclear norm is equivalent to that
obtained by rank minimization in Formula (15), under
certain mild conditions.
If the application is “noisy”, the nuclear norm
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minimization problem can be modeled as
min || R||«,
R (17)
S.t, |Ryi — Ayi| <68,(u,i) e A
where § is the tolerance parameter to relax the R,; =
Ayi, (u,i) € A condition in Formula (16).

3.9 Matrix factorization minimization model

For recommendation systems that involve the
completion of a large matrix, handling the intermediate
m x n matrices RV) at each iteration step is costly from
both computation and storage point of view. Instead
of storing the complete recovered matrix, the matrix
factorization minimization model uses an r-rank matrix
factorization, R = XY, to represent the completed
matrix R. Then, the matrix completion problem is
formulated as a non-convex quadratic optimization
problem by minimizing the sum of the Frobenius norms
of X and Y:
min(1XIF + 1Y [12),
’ (18)
S.t., PA(XY) = Pa(A)

Assuming that X is m x r and Y is r X n, and
r < m,n, the storage requirement of XY becomes
(m 4+ n) x r, which is significantly less than that of
the m x n matrix R. Recht et al.’7! shows that if
r is sufficiently greater than the rank of the optimal
solution of the nuclear norm minimization model, the
non-convex quadratic optimization is equivalent to the
nuclear norm minimization.

An alternative matrix factorization model is designed
for matrix completion by Wen et al.[*8, which leads to
the low-rank matrix fitting (LMaFit) algorithm:

min(| XY = Z|),
’ (19)
s.t., PA(Z) = PA(A)

Similar to Formula (18), although the minimization
is convex, the constraint is not. Consequently, Formula
(19) is also a non-convex optimization model, which
cannot guarantee globally optimal solutions.

3.10 Probabilistic model

The matrix completion problem is addressed by
statistical models starting from the probabilistic Latent
Semantic Analysis (pLSA) model®!. In pLSA, the focus
is on the conditional probability P(A,;|u, i) that a user
u rates an item i with rating A,;. The fundamental
idea is to derive a low-dimensional representation of the
observed user-item ratings in terms of their affinity to
hidden variables c!!. The probability of co-occurrence



Andy Ramlatchan et al.:

is modeled as a mixture of conditionally independent
multinomial distributions:

P(6:u.i) = Y P(c)P(ulc)P(ilc) =
P@u) Y P(clu)P(ilc) (20)

where 0 is a vector of the unknown parameters. Then,
by incorporating a variational distribution V(c;u,i)®
and defining a risk function R(6, V), such that

1
RO, V) =— N Z Z Vic;u,i)(log P(u|c)+
(u,i)eA ¢
log P(cli)) 21
the model maximizes the negative log-likelihood
function:

L(@):-% > Piu.i) =

(u,i)eA
1 .
N Z Z(log P(u|c) + Ilog P(cli)) =
(u,i)ed

1 . [log (P(ulc)log P(cli))\
-V 2 ZV(C’“”)( Viciu.i) )_

(u,i)eA ¢
R(,V) — %H(V(c; u,i)) (22)

where H (V') is the entropy of variational distribution
V.

In addition to pLSA, numerous probabilistic models
can be used to predict user-item ratings, including
Bayesian  probabilistic
regression-based latent factor model!*!, latent Dirichlet
allocation!*!! 42]

matrix  factorization®*),
, probabilistic factor analysis!*?!, and
restricted Boltzmann machine3. However, these
models are not covered in this paper. Interested readers
can find the details in the above references.

3.11 Constraints on the completed matrix

Many applications require the completed matrix to have
a certain property. For example, if the matrix to be
completed is a covariance matrix, it is expected to be
semi-positive definite. Moreover, the predicted negative
value becomes meaningless in many applications. For
example, in the user-item affinity prediction problem,
it is difficult to explain the meaning of a predicted
negative rating. The non-negative matrix completion
intends to guarantee that all elements recovered are non-
negatives. The non-negative matrix completion problem
becomes a constraint satisfaction problem by adding the
non-negative constraints:
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1
in — || PA(R) — PA(A)|2 + A7|| R «,
ngnzll A(R) — PA(A)|IE + A7 R||« 23)

st,R=>0
Similarly, assuming A is an n X n symmetric matrix, the
semi-positive definite constraint™**! can be imposed in a
similar way, such that
min51PA(R) = PR+ AsllRL
s.t, R>0
where R > 0 indicates that R is semi-positive definite
and A7 and Ag are regularization parameters.

4 Computational Algorithms for Matrix
Completion in Recommendation Systems

In this section, considering the mathematical models
described in Section 3, we review several popularly
used recommendation algorithms based on matrix
completion, including Alternative Least Square
(ALS), spectral regularization with soft threshold,
Alternating Direction Method of Multipliers (ADMM),
Proximal Forward-Backward  Splitting  (PFBS),
Singular Value Thresholding (SVT), Accelerated
Proximal Gradient (APG), Fixed Point Continuation
(FPC), nonlinear Successive Over-Relaxation (SOR),
Stochastic Gradient Descent (SGD), and Expectation
Maximization (EM) algorithms.

4.1 Alternative least square

The ALS algorithm is designed for the /2-regularized
matrix factorization model (Formula (7)). However,
because of the term yl.Txu for calculating R,;, the
objective function in Formula (7) is non-convex and
optimizing Formula (7) is NP-hard. Nevertheless, if x,,
can be fixed by treating its variables as constants, the
minimization objective of Formula (7) would become
a convex function of y;1??1. Alternately, y; can then be
fixed by treating its variables as constants and then the
objective of Formula (7) becomes a convex function
of x,. Therefore, in ALS, when one is fixed, the
other is calculated, and this process is repeated until
convergence is reached. This derivation process for the
user vectors x,, for all u can be expressed as

. . . . -1 .
XD = Y(J)T(Y(])Y(J)T + er) X,

and similarly, the process for calculating the item
vectors y; for all i is

. , , . -1 .
YU = X(J)T(X(j)X(J)T +er) y O,

i
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where [, is an r X r identity matrix.

The benefit of using the ALS approach is that it can
be computationally parallelized, since the calculation
for each vector does not depend on the results of
the other; therefore, it is an efficient optimization
technique.

Replacing the Gram matrix XXT in the ALS
algorithm with a kernel K(x;T,x;T) function which
measures the similarity between observation vectors
may lead to better prediction results>”). Paterek!*”!
reported that K(x;T,x;T) = > %=1 s a good
choice. The ALS algorithm can also be accelerated
by integrating with other approaches. For example,
Hastie et al.®! combined Soft-Impute and ALS
algorithms to obtain a Soft-Impute-ALS algorithm
which outperforms both.

4.2 Spectral regularization with soft threshold

The Soft-Impute algorithm®*! is designed for the

spectral regularization model (Formula (14)) by
replacing the unknown elements from a soft-
thresholded SVD at every iteration step. Starting
from an initial matrix R(®), Soft-Impute carries out the
following iterations,

R* < Pa(4) + Pz(R'D),

RU+D D (R"),
where D), is the matrix shrinkage operator on threshold
A defined as the shrinkage of the singular values less

than A and their associated singular vectors, i.e.,
o =A

Di(R) = ) (o — Mugvy.
k

where oy is the k-th singular value of R, and uj and
v are the corresponding left and right singular vectors,
respectively. In the Soft-Impute algorithm, [P4(A4) —
P4(RY)] + RY) replaces Pa(A) + P;(RY)) during
iterations such that the first part [P4(A) — Po(RY)]
is sparse and the second part R ) is low-rank, which
can be efficiently stored and manipulated. Moreover,
partial SVD algorithms are used to fast-calculate the D,
operator at each iteration step.

4.3 Proximal forward-backward

algorithm

The PFBSM¢=# is a soft-thresholding algorithm
popularly used in signal analysis and image processing.
Given the spectral regularization model (Formula (14)),
the PFBS solution is formulated by the fixed point
equation:

splitting
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R = Ds)o(R +8PA(A— R)),
for § > 0. Here, D, is the proximity operator of
A6l Rll+
simplified PFBS algorithm can be expressed using the
following iteration steps:
1 :
RUTD D8jAG(Y(J))7
yU+h . RUFD 8j+1PA(A — R(H‘l))‘

Then, given Y © as the initial matrix, a

4.4 Alternating direction method of multipliers

The ADMMPY algorithm adopts the form of a
decomposition-coordination procedure to break an
optimization problem into small local sub-problems and
coordinates the solutions of these sub-problems to the
global problem. The ADMM combines the advantages
of dual decomposition and augmented Lagrangian
methods for optimization problems.

The ADMM algorithm for matrix completion starts
from the following model, which is equivalent to model
(14) by introducing a separation matrix variable Y, such
that

!
min = Pa(Y) = Pa(A)lIF + A6l R,
s.t., Y = R.
Then, the augmented Lagrangian function becomes

L(R,Y,Z) = %HPA(Y) — PA(A) |3+

AolIRIlx +(Z.Y = R)+ 21 = RI

where Z € R™" is the Lagrange multiplier of the
linear constraint, p is the penalty parameter for the
violation of the linear constraint, and (-) denotes the
standard trace inner product. Applying the original
ADMMP! algorithm to the augmented Lagrangian
function, the following iterative scheme can be
obtained:
RUFD arg min L(R, Y(j), Z(j)),
X

YYD  argmin L(RVTD Y, Z(j)).
Y

The updated Lagrange multiplier ZU D233 jg

generalized as
zU+D  70) 4 )/p(Y(j+1) _ R(j+1)),
where y denotes the learning rate with a suggested
range of 0 < y < @ Here, RU*D can be obtained
by applying the matrix shrinkage operator, i.e.,
7 ()

RUTD = D, (YU) + —) :
0 p

and Y U+ can be obtained using the inverse operator:
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) )
Y(j'H):R(j'H)—ﬂ—FPA (A_(R(j-i-l)_ﬁ))_
P

P

The ADMM algorithm is particularly suitable for
handling matrix completion problems with additional
constraints. Similar to the general matrix completion,
ADMM have been used to address a model equivalent
to the non-negative matrix completion model (Formula
(23)) by introducing a separation matrix variable[>* 3!

1
min > Pa(Y) — PA(DIF + As| Rl

s.t., Y = Rand Y > 0.

All iteration steps are similar to that of the general
matrix completion problem excluding that for obtaining
YU+D guch that

(Y(j-H))A =0, Pa(A + pR(j) _ Z(j)) ,
p+1

(Y(j+l))1i =04 (PA (R(j) _ 2)) ,
0

where Q4 is an operator that projects the parameter
matrix X onto the non-negative space, such that

Xui» iqul' < 0;

0, otherwise.

O+ (X)ui =

In the above method, Q4 is computed to generate
YU+, which cannot strictly guarantee non-negative
elements in RU*Y . Nevertheless, when an appropriate
penalty parameter p is selected, |Y — R|Z becomes
small when convergence is approached, which can
satisfy the non-negative requirements of many practical
applications.

For the semi-positive definite matrix completion
model (Formula (24))*4, R € S must be satisfied,
where S’ denotes the cone (manifold) of positive
semidefinite matrices in the space of symmetric n X n
matrices. To satisfy this constraint, the iteration to
obtain RU+D0 becomes

N AV ]n> ’
P

RUTD — Pgn (Y(j-H)
+
where [, is an n X n identity matrix, and PSi is a
projector operator, which is computed by carrying out
an eigen decomposition on its parameter matrix and
then eliminating the eigenvalues less than 0 and their
corresponding eigenvectors.

4.5 Singular value thresholding

The SVT algorithm!®! is a first-order algorithm for
solving the nuclear norm optimization problem using
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1
min EIIRII;Z: + 7[Rl

S.t., Ryi = Ayi,(u,i) € A

with a threshold parameter t. An iterative gradient
ascent approach formulated as Uzawa’s algorithm!??! or
linearized Bregman iterations!*! is applied, such that

RO « D (Y ®),

YD  y® 4 5ps(A4 - RD),
Here, § is the step size. Unlike the ADMM, PFBS,
and Soft-Impute algorithms, which lead to solutions of
spectral norm regularization model (Formula (14)), the
SVT algorithm actually converges to the approximated
solution of the nuclear norm minimization model
(Formula (16)). This is because a very large t value
is usually picked so that the || R| « term dominates the
%H R||Z term in the minimization objective.

The SVT algorithm considers the global pattern of
A and seeks a complete matrix X with minimized
nuclear norm to recover the missing entries in A.
However, it has a problem of computational cost,
where the matrix shrinkage operator D, which
requires calculating the SVD to obtain the singular
values and vectors of Y@ is repeatedly computed
at every iteration step. Cai and Osher’! reformulated
D (YD) by projecting Y@ onto a 2-norm ball and
then applying complete orthogonal decomposition and
polar decomposition to the projection, which saves
50% or more computational time compared to the
SVT implementation with full SVD. A more popular
alternative strategy is to compute partial SVD for
the singular values of interest. This is because only
those singular values over t are concerned in D;.
The partial SVD implementations based on Krylov
subspace algorithms, such as Lanczos algorithm with
reorthogonalization, can efficiently accelerate the SVT
algorithm if the number of singular values exceeding
T is significantly less than min (m,n). However, if
this number gets over 0.2 min (m, ), the computational
cost of partial SVD using Krylov subspace method
can exceed that of full SVD!®!, Alternatively, recent
studies show that the partial SVD calculation based
on randomized SVDP®!, rank revealing technique!>!,
single-pass SVDI® and subspace reuse!®!! can keep
D computation cost low throughout SVT iterations.

4.6 Accelerated proximal gradient

Toh and Yun'®?! proposed an APG algorithm for the
nuclear norm regularized model (Formula (14)). In
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the APG algorithm, for a given Y, a quadratic
approximation of %HPA(R) — P4(A)||% at Y is given
such that

SIPAR) = PACOIE ~ 311 Pa(Y) = PaC) IR+

(Pa(Y) = Pa(A) R=Y) + R~ Y|},
where 7 > 0 is a proximal parameter. Substituting
the quadratic approximation in Formula (14), the
minimization model becomes

min Agt Rl + 3R — (7 — e(Pa(¥) ~ Pa(A)) .
Then, APG generates (RY), Y () tU+D) by the
following iterative scheme:

tU-D _q
—
RV « Dy (¥ D =2 (Pa(Y D) — Pa(A))),

1))2
[U+D 1+ \/1;4@0)) .

Linear search-like, continuation, and truncation
techniques have been applied to accelerate APG.

yU) — pW + (R(j) _ R(j_l)),

4.7 Fixed point continuation

Recently, Ma et al.!®}! designed an FPC algorithm,
which is a matrix extension of the fixed point iterative
algorithm for the /1-regularized problem!*’); to solve
the nuclear norm regularized linear least squares
problem (Formula (14)). The fundamental idea of
the FPC algorithm is based on an operator splitting
technique. As an extended result from Ref. [49], R*
is the optimal solution to Formula (14) if and only if

0 € A0 R*[lx + Pa(R™) — P4(A).

Considering the following equivalent model,
0 € TA60||R* [« + R*—(R* — T (PA(R*) — PA(A))),
FPC applies operator splitting by setting
Y* = R* —t(Ps(R") — Pa(A)),
and the above model becomes
0 € TAcI||R™ ||« + R* = Y™ .
Then, R* = D, (Y'*) is the optimal solution of
mlgn TA6|| R« + %HR —Y*|2.

This leads to the following FPC iteration scheme:

YD RY —2(PA(RY)) = Pa(4)),

RU+D Dmgf“’(y(j))’
)ngﬂ) < max (r])téj),)t_@,

where the parameter 0 < n < 1 specifies the reduction

rate of Ag and A¢ > 0. The global convergence of the
FPC algorithm is also given in Ref. [63].
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4.8 Nonlinear successive over-relaxation algorithm

Based on the matrix factorization model (Formula
(17)), Wen et al.’¥! addressed the matrix completion
problem using a nonlinear SOR algorithm (LMaFit).
The LMaFit algorithm introduces a Lagrange multiplier
A, such that A = P4(A), to Formula (19) and obtains
the Lagrange function:

LX.Y.Z.8) = JIXY~Z[5~(A, Pa(Z)~Pa(4).

Differentiating L(X, Y, Z, A) and introducing an SOR-
style weight parameter w, the LMaFit iterations are
obtained such as , _ _
Zo <« wZV) 4 = O))X(])Y(j),
X(@) « Zy YDy Dy DN,
Y(0) < (X(@)'X (@) (X (@) Za),
Pi(Z()) < Pi(X(0)Y(w)),
Pa(Z(w)) < Pa(A),
where 1 denotes the Moore-Penrose pseudo-inverse

operation, and A is the complement of A. Then, the

residual ratio

[ Pa(A — X(@)Y(w))|F
PA(A—=XDYD)|Ig

is monitored. If y(w) < 1, X(w),Y(w), and Z(w)

are taken as XU+ yU+D zU+D  regpectively, in

the next iteration; otherwise, adjust @ accordingly.

y(w) =

More details on setting @ can be found in Ref. [38].
At every LMaFit iteration, the computationally costly
SVD operations are avoided and only least square
operations are needed, which makes the LMaFit
algorithm computationally efficient in large-scale
matrix completion problems.

Notice that when w =1, the SOR iteration
is equivalent to the GaussSeidel (GS) iteration.
Nevertheless, when  is appropriately set, the SOR
iterations in the LMaFit lead to significant convergence
acceleration compared to GS iterations.

4.9 Stochastic gradient descent

The [2 matrix factorization regularization problem
(Formula (8)) can be solved by SGD optimization!®4l,
which iterates over all known ratings. For each (u,i) €
A, the prediction error e,; is calculated as

eyi = Ryi — Ry;.
Then, the parameters by, b;, x,, and y; are trained

iteratively according to the opposite directions of the
gradients:
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b(j+1) - b(j) + y(e('/:) _ )tzb;(,j))»
b(l+1) - b(/) + y(e(J) bi(j))’

XD D) 4y DD 33Dy,

+1
yz(j )(_yl(j)+)/(€(]) ) -2 ylj))

where y is the learning rate. Takacs et al.[®) extended
the above model by dedicating different learning rates
(y) and regularization (1) values for different learning
parameters to obtain better accuracy.

In the SVD++ algorithm for Formula (11), the SGD
iteration scheme accordingly becomes

bIHY b+ y (el — 136$)).
b(/+1) <—b(/) _|_y(e(l) lsbl-(j)),

XU xO) 4y @Dy D _ ) yx ),
y,(”l) <y

y(e (J)(x(J) + |[W(u)|"2 Z p(J) _2 le))

keR(u)
P < p 4 (e IRy
for VI € R(u).
Compared to the SVD model, the SVD++ model
often results in improved accuracy as it considers
implicit feedback; however, the tradeoff is that there are
significantly more parameters to train, which makes the
SVD++ model difficult to scale to very large datasets.
The SGD optimization method can also be applied
to the /1 matrix factorization regularization problem
(Formula (11)) and the [1//2 matrix factorization
regularization problem (Formula (12)). Defining a
vector sign function SGN(x), such that

sgn(x1)
SGN() =| |,
sgn(x,)
where sgn(-) denotes the signum function for a scalar,

for model (11), the iteration scheme for updating the
latent factor vectors x,, and y; becomes

xI D < xP +y(e)yi” = AiSGNG )

_/\3pl(j)),

and
yl(]-l-l) (_yl(])+y(€(]) ) )L4SGN(yl-(]))),

respectively. For Formula (12), the iteration scheme for

updating x,, and y; then becomes
xflj+1) - XL(/)‘F

/\50[ . .
yep v = Z=SONGY) = a5l —a)x?)

and

A Survey of Matrix Completion Methods for Recommendation Systems 317
+1
yl(J ) yl(J)+
N oo Asa
ylegx) — S=SONG) = As(1 =)y,

respectively. The other iteration steps are similar to
that of SGD for the /2-regularized matrix factorization
model (Formula (8)).

4.10 Expectation maximization algorithm

The parameters of the probabilistic models, such as
pLSA, are learned using the EM algorithm™!. In the
EM algorithm, the parameters are estimated iteratively,
starting from an initial guess. Each iteration computes
an Expectation (E) step and a Maximization (M) step
in alternation/®®!, The E-step uses the current estimate
of the parameters to obtain the distribution for the
unobserved variables, given the observed values of the
known variables. The M-step re-estimates the model
parameters to maximize the log-likelihood function.

In the pLSA model, at the j-th iteration, the E-
step calculates the tightest upper bound given the
current parameters /) with respect to the variational
distribution V') such that
VUtD (e u,i;09) =P(clu,i; 0V)) =

P(ilc; 0D P(clu; 6
Yo P(ile’; D) P(c|u; 0WD))
The upper bound of the negative log-likelihood function

becomes
R(Q(j+1), V(j+1)) —

1 . .

-V > Y VU (e, i 09)) (log P(ule)+
(u,i)eA ¢

log P(cli)).

The M-step then maximizes the above upper bound
of the log-likelihood function R(6V D, VU +D) with
respect to ATV, The EM iterations are repeated
until the likelihood improvement is smaller than a pre-
determined threshold value.

The EM algorithm is often a non-convex optimization
process.
either improves the true likelihood or reaches the local
maximum.

It has been shown that each EM iteration

5 Applications for Recommendation
Systems Using Matrix Completion

In addition to the wusual applications of user-
item association prediction, here we present other
applications of recommendation systems based matrix
completion.
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5.1 Computational drug repositioning

Computational drug repositioning is an important
and efficient approach to identify new treatments
with known drugs. Luo et al.®! modeled the drug
repositioning problem as a recommendation system
(DRRS) to discover new disease indications for drugs.
In the DRRS, the related data sources and validated
information of drugs and diseases are integrated to
construct a heterogeneous drug-disease interaction
network (Fig. 1). Then, the heterogeneous network is
represented as a large adjacency matrix (Fig. 2) where
the unknown drug-disease associations are presented
as blank entries. A fast SVT algorithm!®!! is used
to complete the drug-disease adjacency matrix with
predicted scores for unknown drug-disease pairs. The
comprehensive experimental results show that the
DRRS improves the prediction accuracy compared with
the other state-of-the-art approaches in both system-
wide and de novo predictions.

Fig.1 Heterogeneous drugs-diseases network.

]
¥
"
Drug -Disease
Assocaions
]

Fig. 2 Association matrix.
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5.2 Sports game results predictions

The National Collegiate Athletic Association (NCAA)
Men’s Division I Basketball Tournament, commonly
known as “March Madness”, is one of the most popular
sporting events in the United States. Every year,
68 out of 364 NCAA Division I teams are selected
after the regular season to participate in a single
elimination tournament for the NCAA men’s basketball
championship. By arranging every team on rows and
columns, a matrix of games is displayed in Fig. 3,
where a blue dot represents a game between two teams
in the regular season.

Ji et all®”%l employed matrix completion
recommendation systems to predict the March
Madness results. Game parameters, including field
goals percentage, three pointers percentages, free
throw percentages, offensive rebounds, defensive
rebounds, assists, turnovers, steals, blocks, and fouls,
were predicted by completing the game parameter
matrices. These predicted parameters provided a
predicted scenario of a game of two teams that have
never met in the regular season. These parameters were
fed to a neural network to finally predict the outcome
of the March Madness playoff games. In 2015 March
Madness, this method correctly predicted the outcomes
of 49 out of 63 games.

5.3 Business to business electronic commerce

The use of recommendation systems toward electronic

Fig. 3 Game matrix of 364 NCAA division I basketball
teams. The x- and y-axes represent the NCAA teams and each
point indicates there is a match between the two team during
the regular season.
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commercial or e-commerce applications focusing on
Business-to-Customer (B2C) approaches has been
discussed previously, such as the Netflix problem.
These e-commerce B2C applications also include
online retailers such as Amazon, Best Buy, Walmart,
and most other corporations that dominate the
retail industry. However, another application of
recommendation systems used in commerce is Business
to Business (B2B) transactions, where like those B2C
online retailers, these B2B recommendation system
users try to minimize the information overload and
allow a computational algorithm to provide effective
business intelligence.

The attributes of a typical B2B e-commerce
recommendation system can be classified into the
following main categories: system inputs, system
processes, and system outputs. The system includes
data collected from the business, which comprise
industry specific conditions, supplier data, past and
current customer activities, and customer ratings
about goods and services!®®!. In this way, the B2B
recommender functions similarly to the content-
based filtering approaches in B2C systems; however,
they differ in their outputs, as the B2B system
is not focused on delivering a computationally
derived associated product to the customer, but on
establishing links between a business and another
stakeholder and identifying potential opportunities
with other businesses. For instance, the system
can use website browsing data and consequent
purchases to evaluate advertising effectiveness, and
then make recommendations for partnerships with
marketing companies. Another approach could be
in supply chain management, where the system
makes recommendations for suppliers based on past
performances of deliveries in terms of timeliness
and quality, and the sales that resulted from the
manufacturers. This data can help the business in
negotiating prices, discovering opportunities, and
evaluating the return-on-investment on any given
decision.

5.4 Gene expression predictions

Over the last 50 years, one of the most dynamic fields
of study in biomedical research has been investigations
into protein folding and its effects on gene expression.
The genomic manifestations of many human diseases
and pathological conditions are related to protein
folding!”"!. This is a process that describes how a
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protein can exist in four possible states. The first state
is the “unfolded state”, in which a protein has been
assembled with all the proper chemical components,
but is not functional. The second state is the “molten
globule”, or partially folded state. The third state is
the “native state”, in which the protein is folded into its
proper three-dimensional structure and is biologically
functional. The fourth possible state is the amyloid fibril
state, in which the protein is misfolded and becomes
deformed. These latter two states have captivated
many biological scientists because their impacts on
the expression of genes lead to neurodegenerative
diseases, such as Alzheimer’s disease, Parkinson’s
disease, Huntington’s disease, Bovine Spongiform
Encephalopathy, and Rheumatoid Arthritis.

Advances in high performance computing have
allowed researchers to investigate the effects of gene
expression, and have led to the use of extremely
large datasets to predict how genes are expressed
based on their underlying protein structure. One such
method is the use of low-rank matrix completion on
known and sparse gene expression levels to recommend
future gene expressions. A low-rank matrix is formed
based on the underlying biological conditions. For
instance, it is generally known that many genes interact
with each other; therefore, interdependent factors
contribute to the protein folding phases, leading to gene
transcription, and ultimately gene expression, which
can be characterized computationally in a correlated
data matrix. Since gene expression values are likely to
exist in a low-dimensional linear subspace, the resulting
matrix can be considered as a low-rank matrix!’!. Then,
the techniques discussed in the previous sections, such
as the minimization of the nuclear norm can be applied
to recover and complete the matrix, thereby yielding a
prediction on the final gene.

5.5 Microblogging recommendations

In a digital age where many people across the globe get
their information from social networking platforms, the
popular “microblogging” site Tumblr where users can
share short messages to a wide audience can employ
the advantages of recommendation systems to allow
users find other similar messages or microblogs. Since
message posts are generally short, a large number of
such messages are generated every day, leading to
mass amounts of dynamic text data, in addition to
images. However, unlike other collaborative filtering
approaches where users rank preferences, with Tumblr
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the ratings are in a more binary form; users simply
chose to follow or not follow a post. However, this
can be simplified by incorporating users activities
and the contents of their posts which can include
a combination of text, tags, or images’?!. These
activities are then analyzed using machine learning
techniques, such as a convolutional neural network,
where all relevant features from the vast datasets can
be obtained. Additionally, the features can be examined
by employing a second neural network known as
“word2vec”, which transforms text data into a vector
where words in similar contexts are closer to each other
with multiple degrees of similarity!’3. Ultimately, the
missing information from users who do not follow other
users can essentially be supplanted by the activities they
have performed in their own posts. By incorporating
features from users, the matrix completion models can
be used to make recommendations in the inductive
setting, where predictions can be made for users not
present in the training data set.

6 Conclusion

Matrix completion approaches have become important
methodologies in recommendation systems, which
are often more accurate than the nearest-neighbor
approaches. Motivated by the famous Netflix Prize
problem, many recommendation system models have
been proposed and many computational algorithms
have been accordingly developed. This survey aims
to provide a comprehensive review of the matrix
completion models and algorithms for recommendation
systems, although it is unlikely to cover all models and
algorithms available.

There have been quite a few research directions
that go beyond the recommendation systems based
on matrix completion. In reality, the popularity of
an item may change over time. This can be solved
by incorporating temporal dynamics information into
the recommendation model. For example, Koren
and Bell'** proposed models that incorporate time-
changing factors to gain insight of how the influences
of two items rated by the same user decay over
time. In fact, a more general problem of matrix
completion is tenor completion, which is related
to recovering missing values in high-dimensional
data. Liu et all” defined trace norm for tensors
and extended the nuclear (trace) norm minimization
model for tensor completion. Moreover, the traditional
recommendation systems focus on prediction accuracy
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only. Nevertheless, in practical applications, objectives
such as diversity and novelty are also important,

although these may conflict with accuracy!”>!. Hence,
Co C . 76-78
multi-objective  optimization algorlthms[ ]

needed to find recommendations with respect to the
tradeoffs among conflicting objectives. Furthermore,
with the development of modern parallel and distributed
computing architectures, much effort has been put
on designing efficient parallel algorithms!®-% to
enable matrix completion techniques make efficient
recommendations for large-scale datasets.

Acknowledgment

This work was supported in part by the National
Natural Science Foundation of China (Nos. 61728211 and
1066471).

References

[1] T. Hofmann, Latent semantic models for collaborative
filtering, ACM Trans. Inf. Syst., vol. 22, no. 1, pp. 89-115,
2004.

[2] T. Hofmann, Unsupervised learning by probabilistic latent
semantic analysis, Mach. Learn., vol. 42, nos. 1&2, pp.
177-196, 2001.

[3] C. D. Charalambous and A. Logothetis, Maximum
likelihood parameter estimation from incomplete data via
the sensitivity equations: The continuous-time case, [EEE
Trans. Automat. Control, vol. 45, no. 5, pp. 928-934, 2000.

[4] A.P. Dempster, N. M. Laird, and D. B. Rubin, Maximum
likelihood from incomplete data via the EM algorithm, J.
Roy. Stat. Soc. Ser B Methodol., vol. 39, no. 1, pp. 1-38,
1977.

[51 R.M. Neal and G. E. Hinton, A View of the EM Algorithm
That Justifies Incremental, Sparse, and Other Variants.
Norwell, MA, USA: Kluwer, 1998.

[6] H. T. Zhu, Z. Khondker, Z. H. Lu, and J. G. Ibrahim,
Bayesian generalized low rank regression models for
neuroimaging phenotypes and genetic markers, J. Am.
Stat. Assoc., vol. 109, no. 507, pp. 977-990, 2014.

[71 S. N. Wood, Low-rank scale-invariant tensor product
smooths for generalized additive mixed models,
Biometrics, vol. 62, no. 4, pp. 1025-1036, 2006.

[8] H. M. Luo, M. Li, S. K. Wang, Q. Liu, Y. H. Li, and
J. X. Wang, Computational drug repositioning using low-
rank matrix approximation and randomized algorithms,
Bioinformatics, vol. 34, no. 11, 1904-1912, 2018.

9] C. Q. Lu, M. Y. Yang, F. Luo, E X. Wu, M. Lij, Y.
Pan, Y. H. Li, and J. X. Wang, Prediction of IncRNA-
disease associations based on inductive matrix completion,
Bioinformatics, doi:10.1093/bioinformatics/bty327.

[10] Y.Liang, D.L.Wu, G.R.Liu, Y. H. Li, C.L. Gao, Z.J. Ma,
and W. D. Wu, Big data-enabled multiscale serviceability
analysis for aging bridges, Digit. Commun. Netw., vol. 2,
no. 3, pp. 97-107, 2016.



Andy Ramlatchan et al.:

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

(27]

J. Bobadilla, F. Ortega, A. Hernando, and A. Gutiérrez,
Recommender systems survey, Knowl. Based Syst., vol. 46,
pp. 109-132, 2013.

M. Kunaver and T. PoZrl, Diversity in recommender
systems — A survey, Knowl. Based Syst., vol. 123, pp.
154-162, 2017.

R. Burke, Hybrid recommender systems: Survey and
experiments, User Model. User-Adapt. Interact., vol. 12,
no. 4, pp. 331-370, 2002.

C. Desrosiers and G. Karypis, A comprehensive survey
of neighborhood-based recommendation methods, in
Recommender Systems Handbook. Springer, 2010, pp.
107-144.

C. He, D. Parra, and K. Verbert, Interactive recommender
systems: A survey of the state of the art and future research
challenges and opportunities, Expert Syst. Appl., vol. 56,
pp. 9-27, 2016.

P. G. Campos, F. Diez, and I. Cantador, Time-aware
recommender systems: A comprehensive survey and
analysis of existing evaluation protocols, User Model.
User-Adapt. Interact., vol. 24, no. 1-2, pp. 67-119, 2014.
X. W. Yang, Y. Guo, Y. Liu, and H. Steck, A survey of
collaborative filtering based social recommender systems,
Comput. Commun., vol. 41, pp. 1-10, 2014.

A. Kla$nja-Milicevic, M. Ivanovic, and A. Nanopoulos,
Recommender systems in e-learning environments: A
survey of the state-of-the-art and possible extensions, Artif.
Intell. Rev., vol. 44, no. 4, pp. 571-604, 2015.

R. Yera and L. Martinez, Fuzzy tools in recommender
systems: A survey, Int. J. Comput. Intell. Syst., vol. 10,
no. 1, pp. 776-803, 2017.

D. Kotkov, S. Q. Wang, and J. Veijalainen, A survey of
serendipity in recommender systems, Knowl. Based Syst.,
vol. 111, pp. 180-192, 2016.

E. J. Candes and T. Tao, The power of convex relaxation:
Near-optimal matrix completion, IEEE Trans. Inf. Theory,
vol. 56, no. 5, pp. 2053-2080, 2010.

M. Udell, C. Horn, R. Zadeh, and S. Boyd, Generalized
low rank models, Found. Trends® Mach. Learn., vol. 9,
no. 1, pp. 1-118, 2016.

Y. Koren, R. Bell, and C. Volinsky, Matrix factorization
techniques for recommender systems, Computer, vol. 42,
no. 8, pp. 30-37, 2009.

B. M. Sarwar, G. Karypis, J. A. Konstan, and J. T. Ried],
Application of dimensionality reduction in recommender
system-a case study, in Proc. ACM WebKDD Web Mining
for E-Commerce Workshop, 2000.

B. Sarwar, G. Karypis, J. Konstan, and J. Riedl,
Incremental singular value decomposition algorithms for
highly scalable recommender systems, in Proc. 6'" Int.
Conf. on Computers and Information Technology, 2002.
D. Billsus and M. J. Pazzani, Learning collaborative
information filters, in Proc. 15" Int. Conf. on Machine
Learning, San Francisco, CA, USA: ACM, 1998.
A. Paterek, Improving regularized singular
decomposition for collaborative filtering, in Proc. KDD
and Workshop, San Jose, CA, USA, 2007.

value

A Survey of Matrix Completion Methods for Recommendation Systems

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

[36]

(37]

[38]

[39]

[40]

[41]

[42]

321

J. D. M. Rennie and N. Srebro, Fast maximum margin
matrix factorization for collaborative prediction, in Proc.
224 [Int. Conf. on Machine Learning, Bonn, Germany,
2005.

M. G. Vozalis and K. G. Margaritis, Using SVD and
demographic data for the enhancement of generalized
collaborative filtering, Inf. Sci., vol. 177, no. 15, pp. 3017—
3037, 2007.

Y. Koren, Factorization meets the neighborhood: A
multifaceted collaborative filtering model, in Proc. 14th
ACM SIGKDD Int. Conf. on Knowledge Discovery and
Data Mining, Las Vegas, NV, USA, 2008.

B. Hallinan and T. Striphas, Recommended for you: The
NETflix prize and the production of algorithmic culture,
New Media Soc., vol. 18, no. 1, pp. 117-137, 2016.

Y. C. Ji, W. X. Hong, Y. L. Shangguan, H. Wang, and
J. Ma, Regularized singular value decomposition in news
recommendation system, in Proc. 11'" Int. Conf. on
Computer Science & Education, Nagoya, Japan, 2016, pp.
621-626.

R. Mazumder, T. Hastie, and R. Tibshirani, Spectral
regularization algorithms for learning large incomplete
matrices, J. Mach. Learn. Res., vol. 11, pp. 2287-2322,
2010.

M. Kagie, M. van der Loos, and M. van Wezel, Including
item characteristics in the probabilistic latent semantic
analysis model for collaborative filtering, Al Commun.,
vol. 22, no. 4, pp. 249-265, 2009.

J. F. Cai, E. J. Candes, and Z. W. Shen, A singular value
thresholding algorithm for matrix completion, SIAM J.
Optim., vol. 20, no. 4, pp. 1956-1982, 2010.

E. Candes and B. Recht, Simple bounds for recovering low-
complexity models, Math. Program., vol. 141, nos. 1&2,
pp. 577-589, 2013.

B. Recht, M. Fazel, and P. A. Parrilo, Guaranteed
minimum-rank solutions of linear matrix equations via
nuclear norm minimization, SIAM Rev, vol. 52, no. 3, pp.
471-501, 2010.

Z. W. Wen, W. T. Yin, and Y. Zhang, Solving a
low-rank factorization model for matrix completion by
a nonlinear successive over-relaxation algorithm, Math.
Program. Comput., vol. 4, no. 4, pp. 333-361, 2012.

R. Salakhutdinov and A. Mnih, Bayesian probabilistic
matrix factorization using Markov chain Monte Carlo, in
Proc. 25" Int. Conf. on Machine Learning, Helsinki,
Finland, 2008.

D. Agarwal and B. C. Chen, Regression-based latent
factor models, in Proc. 15" ACM SIGKDD Int. Conf.
on Knowledge Discovery and Data Mining, Paris, France,
2009.

D. M. Blei, A. Y. Ng, and M. I. Jordan, Latent Dirichlet
allocation, J. Mach. Learn. Res., vol. 3, pp. 993-1022,
2003.

J. Canny, Collaborative filtering with privacy via factor
analysis, in Proc. 25" Annu. Int. ACM SIGIR Conf.
on Research and Development in Information Retrieval,
Tampere, Finland, 2002.



322

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

R. R. Salakhutdinov, A. Mnih, and G. E. Hinton, Restricted
boltzmann machines for collaborative filtering, in Proc.
24'M [z, Conf. on Machine Learning, Corvallis, OR, USA,
2007.

F. F. Xu and P. Pan, A new algorithm for positive
semidefinite matrix completion, J. Appl. Math., vol. 2016,
p. 1659019, 2016.

T. Hastie, R. Mazumder, J. D. Lee, and R. Zadeh, Matrix
completion and low-rank svd via fast alternating least
squares, J. Mach. Learn. Res., vol. 16, no. 1, pp. 3367—
3402, 2015.

J. F. Cai, R. H. Chan, and Z. W. Shen, A framelet-based
image inpainting algorithm, Appl. Computat. Harmon.
Anal., vol. 24, no. 2, pp. 131-149, 2008.

P. L. Combettes and V. R. Wajs, Signal recovery by
proximal forward-backward splitting, Multiscale Model.
Simul., vol. 4, no. 4, pp. 1168-1200, 2005.

I. Daubechies, M. Defrise, and C. De Mol, An iterative
thresholding algorithm for linear inverse problems with a
sparsity constraint, Commun. Pure Appl. Math., vol. 57,
no. 11, pp. 1413-1457, 2004.

E. T. Hale, W. T. Yin, and Y. Zhang, Fixed-point
continuation for £;-minimization: Methodology and
convergence, SIAM J Optim., vol. 19, no. 3, pp. 1107-
1130, 2008.

B. S. He, H. Yang, and S. L. Wang, Alternating
direction method with self-adaptive penalty parameters for
monotone variational inequalities, J . Optim. Theory Appl.,
vol. 106, no. 2, pp. 337-356, 2000.

D. Gabay and B. Mercier, A dual algorithm for the solution
of nonlinear variational problems via finite element
approximation, Comput. Math. Appl., vol. 2, no. 1, pp. 17—
40, 1976.

R. Glowinski, Numerical Methods for
Variational Problems. Springer, 1984.

R. Glowinski and P. Le Tallec, Augmented Lagrangian
and Operator Splitting Methods in Nonlinear Mechanics.
Philadelphia, PA, USA: SIAM, 1989, pp. 9.

F. Xu and G. He, New algorithms for nonnegative matrix
completion, Pac. J. Optim., vol. 11, no. 3, pp. 459-469,
2015.

Y. Y. Xu, W. T. Yin, Z. W. Wen, and Y. Zhang, An
alternating direction algorithm for matrix completion with
nonnegative factors, Front. Math. China, vol. 7, no. 2, pp.
365-384, 2012.

C. H. Chen, B. S. He, and X. M. Yuan, Matrix completion
via an alternating direction method, IMA J. Numer. Anal.,
vol. 32, no. 1, pp. 227-245, 2012.

J. F. Cai and S. Osher, Fast singular value thresholding
without singular value decomposition, Methods Appl.
Anal., vol. 20, no. 4, pp. 335-352, 2013.

N. Halko, P. G. Martinsson, and J. A. Tropp, Finding
structure with randomness: Probabilistic algorithms for
constructing approximate matrix decompositions, SIAM
Rev., vol. 53, no. 2, pp. 217-288, 2011.

H.Ji, W.J. Yu, and Y. H. Li, A rank revealing randomized
singular value decomposition (R3SVD) algorithm for low-
rank matrix approximations, arXiv: 1605.08134, 2016.

Nonlinear

Big Data Mining and Analytics, December 2018, 1(4): 308-323

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

W. J. Yu, Y. Gu, J. Li, S. H. Liu, and Y. H. Li, Single-
pass PCA of large high-dimensional data, in Proc. 26'"
Int. Joint Conf. on Artificial Intelligence, Catalina Island,
CA, USA, 2010.

Y. H. Li and W. J. Yu, A fast implementation of
singular value thresholding algorithm using recycling rank
revealing randomized singular value decomposition, arXiv:
1704.05528, 2017.

K. C. Toh and S. Yun, An accelerated proximal gradient
algorithm for nuclear norm regularized linear least squares
problems, Pac. J. Optim., vol. 6, no. 3, pp. 615-640, 2010.
S. Q. Ma, D. Goldfarb, and L. F. Chen, Fixed point and
bregman iterative methods for matrix rank minimization,
Math. Program., vol. 128, no. 1-2, pp. 321-353, 2011.

Y. Koren and R. Bell, Advances in collaborative filtering,
in Recommender Systems Handbook, F. Ricci, L. Rokach,
B. Shapira, and P. B. Kantor, eds. Springer, 2011.

G. Takdcs, 1. Pilaszy, B. Németh, and D. Tikk, Matrix
factorization and neighbor based algorithms for the
NETflix prize problem, in Proc. 2008 ACM Conf. on
Recommender Systems, Lausanne, Switzerland, 2008, pp.
267-274.

C. B. Do and S. Batzoglou, What is the expectation
maximization algorithm? Nat. Biotechnol., vol. 26, no. 8,
pp- 897-899, 2008.

H. Ji, E. O’Saben, A. Boudion, and Y. H. Li, March
madness prediction: A matrix completion approach, in
Proc. Modeling, Simulation, and Visualization Student
Capstone Conf., Suffolk, UA, USA, 2015.

H. Ji, E. O’Saben, R. Lambi, and Y. H. Li, Matrix
completion based model v2.0: Predicting the winning
probabilities of march madness matches,
Modeling, Simulation, and Visualization Student Capstone
Conf., Suffolk, VA, USA, 2016.

X. R. Zhang and H. S. Wang, Study on recommender
systems for business-to-business electronic commerce,
Commun. [IMA, vol. 5, no. 4, pp. 53-61, 2005.

T. P. Exarchos, C. Papaloukas, C. Lampros, and D.
I. Fotiadis, Mining sequential patterns for protein fold
recognition, J. Biomed. Inf., vol. 41, no. 1, pp. 165-179,
2008.

A. Kapur, K. Marwah, and G. Alterovitz, Gene expression
prediction using low-rank matrix completion, BMC
Bioinform., vol. 17, pp. 243, 2016.

D. Shin, S. Cetintas, K. C. Lee, and 1. S. Dhillon,
Tumblr blog recommendation with boosted inductive
matrix completion, in Proc. 24'" ACM Int. on Conf.
on Information and Knowledge Management, Melbourne,
Australia, 2015.

T. Mikolov, K. Chen, G. Corrado, and J. Dean, Efficient
estimation of word representations in vector space, in
Proc. Workshop at Int. Conf. on Learning Representations,
Scottsdale, AZ, USA, 2013.

J. Liu, P. Musialski, P. Wonka, and J. P. Ye, Tensor
completion for estimating missing values in visual data,
IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 1, pp.
208-220, 2013.

in Proc.



Andy Ramlatchan et al.:

[75] L. Z. Cui, P. Ou, X. H. Fu, Z. K. Wen, and N.
Lu, A novel multi-objective evolutionary algorithm for
recommendation systems, J. Parallel Distrib. Comput.,

vol. 103, pp. 53-63, 2017.
[76] K. Deb, Multi-objective optimization. in Search

Methodologies, E. K. Burke and G. Kendall, eds.
Springer, 2005.
[77] Y. H. Li, MOMCMC: An efficient Monte Carlo method

for multi-objective sampling over real parameter space,
Comput. Math. Appl., vol. 64, no. 11, pp. 3542-3556,
2012.

Andy Ramlatchan is a PhD student
in Computer Science at Old Dominion
University in Norfolk, VA, USA. He has
worked for the US government for several
years in multiple capacities where he
leveraged big data and machine learning
for various mission support programs. He
is currently a senior computer scientist at
NASA Langley Research Center in Hampton, VA, USA. His
main research interests include matrix factorization and tensor
completion for high dimensionality multi-modal sensor data.

Mengyun Yang received the BS degree in
mathematics from Shaoyang University in
2007, and the MS degree in computational
mathematics  from Hunan  Normal
University in 2012. He is a lecturer in
Shaoyang University and a PhD candidate
at Central South University, Hunan, China.
His current research interests include
matrix completion and bioinformatics.

Jianxin Wang received the BEng and
MEng degrees in computer engineering
from Central South University, China, in
1992 and 1996, respectively, and the PhD
degree in computer science from Central
South University, China, in 2001. He
is the vice dean and a professor in
Department of Computer Science, Central
South University, Changsha, China. His current research interests
include algorithm analysis and optimization, parameterized

A Survey of Matrix Completion Methods for Recommendation Systems 323

[78] W. H. Zhu, A. Yaseen, and Y. H. Li, DEMCMC-GPU:
An efficient multi-objective optimization method with
GPU acceleration on the fermi architecture, New Generat.
Comput., vol. 29, no. 2, pp. 163-184, 2011.

[79] B.Recht and C. Ré, Parallel stochastic gradient algorithms
for large-scale matrix completion, Math. Program.
Comput., vol. 5, no. 2, pp. 201-226, 2013.

[80] Y. Y. Xu, R. R. Hao, W. T. Yin, and Z. X. Su, Parallel
matrix factorization for low-rank tensor completion,
Inverse Probl. Imaging, vol. 9, no. 2, pp. 601-624, 2015.

algorithm, bioinformatics, and computer network. He is a

member of the IEEE.
': - .
i nd
L]
@ associate professor in computer science at
Old Dominion University, Norfolk, VA,
USA. His research interests are in protein structure modeling,
computational biology, bioinformatics, Monte Carlo methods,
big data algorithms, and parallel and distributive computing.

Quan Liu is a master student at Central
South University. His main research
interests  include machine learning,
recommender systems, and statistical
association study.

Min Li received the PhD degree in
computer science from Central South
University, China, in 2008. She is currently
a professor at the School of Information
Science and Engineering, Central South
University, Changsha, China. Her main
research interests include bioinformatics
and systems biology.

Yaohang Li received the BS degree from
South China University of Technology
in 1997, and the MS and PhD degrees
in computer science from Florida State
University, Tallahassee, FL, USA, in
2000 and 2003, respectively. He is an



	Old Dominion University
	ODU Digital Commons
	7-2018

	A Survey of Matrix Completion Methods for Recommendation Systems
	Andy Ramlatchan
	Mengyun Yang
	Quan Liu
	Min Li
	Jianxin Wang
	See next page for additional authors
	Repository Citation
	Original Publication Citation
	Authors


	tmp.1541696340.pdf.JSYTb

