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Imaging-based parametric resonance in an optical dipole-atom trap

S. Balik, A. L. Win, and M. D. Havey*
Department of Physics, Old Dominion University, Norfolk, Virginia 23529, USA

�Received 15 May 2009; published 6 August 2009�

We report sensitive detection of parametric resonances in a high-density sample of ultracold 87Rb atoms
confined to a far-off-resonance optical dipole trap. Fluorescence imaging of the expanded ultracold atom cloud
after a period of parametric excitation shows significant modification of the atomic spatial distribution and has
high sensitivity compared with traditional measurements of parametrically driven trap loss. Using this ap-
proach, a significant shift of the parametric resonance frequency is observed and attributed to the anharmonic
shape of the dipole trap potential.

DOI: 10.1103/PhysRevA.80.023404 PACS number�s�: 37.10.Gh, 37.10.Jk

Parametrically driven processes are ubiquitous in nature
and occur in a range of classical and quantum systems �1–5�.
In a parametrically driven system, a parameter may be har-
monically varied in time. For a one-dimensional harmonic
oscillator with a characteristic frequency �o, such excitation
generates resonances at frequencies �p=

2�o

n , where n is an
integer n=1,2 , . . . A familiar example is the inverted pendu-
lum, which may be stabilized against decay of small oscilla-
tions by appropriately driving the pivot point. One important
role of parametric excitation in atomic physics is its influ-
ence on ultracold atoms confined in magneto-optical �6�,
magnetic �7–10�, and optical dipole traps �11–15�. For situ-
ations where long-lived traps are desirable, excitation due to
noise in the trap parameters normally heats the atoms and
thus leads to atoms being expelled from the trap. Under some
circumstances parametric driving of a system with an anhar-
monic potential can also cool the atom cloud �7–9�. The
lifetime of the trap is limited by technical noise in any trap
parameters �12–14�, two important ones for optical dipole
traps being the pointing stability and the intensity noise char-
acteristics of the trapping lasers. In addition to this deleteri-
ous effect, parametric resonance is a useful and widely em-
ployed tool for characterizing the shape of the trap, including
the harmonic frequencies of the trap �14�. This is important
in experiments where the spatial shape of the trapping poten-
tial is needed for interpretation of the results. In experiments
in our laboratory, we are interested in obtaining a high den-
sity of atoms in an optical dipole trap, and in knowing the
peak density as well as possible. This requires that the num-
ber of atoms, atom temperature, and shape of the trapping
potential be well known. A main goal of these experiments is
to study the electromagnetic analog of Anderson localization
�16–19� in an ultracold gas.

In this paper we present experimental results on paramet-
ric excitation of a sample of ultracold 87Rb atoms confined in
an optical dipole trap. Such studies are frequently done by
measuring the relative number of atoms that are removed
from the trap as excitation parameters are varied. In the
present case we measure instead modification of images of
the ultracold cloud following parametric excitation and a
subsequent period of free expansion. Analysis of the images

provides a more sensitive measure of the effects of paramet-
ric excitation, including clear evidence of the frequency shift
of the parametric resonance frequency due to trap anharmo-
nicity �8,9,20�. In the following we provide a brief descrip-
tion of the experimental apparatus. This is followed by pre-
sentation of the measured images and their analysis.

A schematic of the experimental apparatus is shown in
Fig. 1. In the figure, the central part of the experimental
apparatus is a magneto-optical trap �MOT� confining ultra
cold 87Rb atoms. The MOT is a vapor-loaded trap formed in
a vacuum chamber with a base pressure �10−9 Torr. The six
MOT beams are derived from an external cavity diode laser
�ECDL� with the grating arranged in Littrow configuration.
The master diode laser is frequency locked to a saturation
absorption feature produced in a Rb vapor cell. The laser
power is increased by injecting the output into a slave laser,
thus providing more than 20 mW of light in trapping laser
beams of cross-sectional area �2 cm2. The slave output is
switched and spectrally shifted as required with an acousto-
optical modulator �AOM� to a frequency about 18 MHz be-
low the 87Rb F=2→F�=3 trapping transition. The repumper
laser is also an ECDL of the same design as the MOT laser
and is locked to the F=1→F�=2 hyperfine transition. The
repumper delivers a beam of maximum intensity
�0.6 mW /cm2 and is delivered along the same optical path
as the trapping laser beams. Repumper switching is con-
trolled with an AOM.

The cold atom sample is initially produced in the higher
energy F=2 hyperfine level. Direct absorption imaging mea-
surements of the peak optical depth on the F=2→F�=3
transition yielded, for this sample, bo�10 in a Gaussian ra-

*mhavey@odu.edu

FIG. 1. Schematic drawing of the experimental apparatus. In the
figure QUEST stands for quasi electrostatic trap, and charge
coupled device �CCD� represents charge coupled device. Drawing
not to scale.
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dius of ro=0.45 mm �21�. This corresponds to a total num-
ber of atoms �3.2�107 and a peak number density �2.2
�1010 atoms /cm3. However, the main goal is to transfer the
trapped atoms to a carbon-dioxide �CO2� laser-based optical
dipole trap. The 100 W CO2 laser operates at 10.6 �m. The
laser is focused to a radial spot size of �55 �m, and a
corresponding Rayleigh range of zR�750 �m. The CO2 la-
ser focal zone is overlapped with the MOT trapping region,
while the application of the CO2 beam itself is controlled by
a 40 MHz AOM, which directs the first-order diffracted
beam to the MOT. After the atom sample is formed in the
MOT, the CO2 laser is applied and the sample is compressed
and loaded into the quasi electro static trap �QUEST�. This is
done by detuning the MOT master laser 60 MHz to the low-
frequency side of the trapping transition, while simulta-
neously lowering the repumper intensity by an order of mag-
nitude. The resulting temporal dark spot MOT loads the
atoms into the lower-energy F=1 hyperfine component, with
about 15% of the MOT atoms transferred to the QUEST. It is
important to note that this transfer efficiency is measured
after a QUEST holding period of about 1 s, during which the
atomic sample collisionally evolves toward thermal equilib-
rium. Measurements of the QUEST characteristics, after the
hold period, by absorption imaging, parametric resonance,
and the measured number of atoms transferred show a
sample with peak density about 6�1013 atoms /cm3 and a
temperature of Toc=65 �K. The 1 /e lifetime of the confined
atoms is greater than 5 s, limited by background gas colli-
sions. The residual magnetic field in the sample area, when
the MOT quadrupole field is switched off, is estimated to be
a few mG.

Here we are concerned with parametric excitation of at-
oms confined to the QUEST and the sample characteristics.
The sample is excited by modulation of the CO2 power
which, for a Gaussian focused beam, determines both axial
and radial harmonic trap frequencies. Here these are about
1.25 kHz for radial excitation and 50 Hz for axial excitation;
imposition of acoustic modulation on the CO2 laser AOM in
the range 0–10 kHz is then sufficient to drive the fundamen-
tal parametric resonances. The characteristics of the modula-
tion are the modulation frequency f , the modulation time T,
and the modulation depth h. Detection of the result of exci-
tation is made in two ways, each based on measurements on
an image of the QUEST following a 3 ms period of free
expansion. The expansion period allows the density of the
sample to be reduced sufficiently that the QUEST becomes
optically thin, so that measurement of light scattered from
the sample is proportional to the number of atoms in the
sample. In the first more traditional method, loss of a certain
number of atoms is made through measurement of the total
intensity of light scattered from the sample. This trap loss
method measures the survival probability of atoms in the
trap. In the second method, and the one we focus on here, the
average peak intensity in the central region of the image is
measured; this is proportional to the survival probability of
atoms more localized spatially in the harmonic region of the
trap, even after a time T of parametric resonance. The main
measured quantities are fluorescence images of the expanded
atomic cloud, these being recorded for different h, T, and f .
Characteristic results are shown in Fig. 2, where the images

show a clear increase in the axial and radial Gaussian radii
and a loss in peak intensity as T is increased at fixed h and
f =2.5 kHz. We also draw attention to the change in shape of
the cloud with increasing T. This is due to heating of the
atom sample while it is confined and consequent expansion
in the weakly confining axial direction.

We begin our analysis by showing in Fig. 3�a� the excita-
tion spectrum in the spectral vicinity of the fundamental ra-
dial resonance. Two sets of data are displayed. In the first, we
show the total number of trap atoms surviving parametric
excitation, while in the second we show depletion of signal
from the central zone of the atom cloud image. The differ-
ences between the two are striking. First, even for the quite
large modulation depth of 15% the total trap loss, as a frac-
tion of the entire signal level, is clearly weaker than the
depletion signal. The second main feature is that the trap loss
signal is shifted by −0.3�1� kHz. Both aspects of the total
trap loss signals represent significant experimental disadvan-
tages if one wants to characterize the lower-energy portion of
the optical dipole trap potential. We attribute the frequency
shift to the anharmonic nature of the trapping potential; as
the average amount of excitation energy of atoms in the trap
increases, the resonance harmonic frequency for those atoms
decreases, shifting the resonance to lower values. Because
the resonances can be intrinsically quite broad, this shifts the
overall response to lower frequencies. One can envision the
process as parametric evolution of an atom distribution lo-
calized deep in the trap to a warmer one which is more
broadly distributed over the attractive part of the optical di-
pole potential. This leads to a “freezing out” of the paramet-
ric resonance condition and to a depletion of the number of
atoms in the deepest part of the atom trap. We emphasize that

T= 5 ms
I0 = 4.5(1) kcounts
r0= 280(20) µm

T= 20 ms
I0 = 3.9(1) kcounts
r0= 310(20) µm

T= 60 ms
I0 = 2.7(1) kcounts
r0= 370(20) µm

T= 100 ms
I0 = 1.9(1) kcounts
r0= 390(20) µm

T= 150 ms
I0 = 1.4(1) kcounts
r0= 410(20) µm

f = 2.5 kHz
h = 0.15

FIG. 2. �Color online� Typical images of the expanded cloud of
ultracold 87Rb atoms, after a period of parametric excitation. In all
cases the cloud is permitted to expand for 3 ms prior to imaging. Io

is the peak intensity in the central region of the image. ro is the
Gaussian radius of the image in the radial �vertical� direction, which
provides a spatial scale for the images.
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similar results are obtained for a range of h and T but that the
shift of the resonance to lower frequencies becomes more
pronounced as h is increased. Within the range of our data,
the resonance positions are insensitive to T. We illustrate the
point further in Fig. 3�b�, which shows the main axial reso-
nance for the same two measurement approaches used in Fig.
3�a�, but for a larger modulation depth of 20%. In this data,
there is no clear resonance for the trap loss signal, but a
distinct one appearing at about 105 Hz for the depletion sig-
nal. The spectral location of this resonance is within the ex-
perimental uncertainty, where it is expected based on the
spectral location of the fundamental radial mode at 2.5 kHz,
and assuming a trap formed at the focus of a Gaussian
trapping beam.

We now turn our attention to the role of the modulation
time T, which represents the amount of time that the trap
depth is modulated before the atoms are released. We point
out that this time scale is short compared to the 5 s hold time
of the atom sample. The variation with T of the intensity at
the peak of the image, for several modulation frequencies, is
shown in Fig. 4�a�. There we see that the peak image inten-
sity appears to decrease exponentially for a range of f . This
decrease is evident from the smallest T=5 ms, and continues
for a factor of 60 in T. In Fig. 4�b� the variation in the total
trap loss with T for the same modulation frequencies is
shown. In contrast to the peak intensity, the total intensity
decreases linearly with T, and further shows a threshold be-
low which minimal variation is measured. We qualitatively
interpret these results as follows: the atoms in the trap are

initially in thermal equilibrium at a temperature of approxi-
mately 65 �K. While the modulation is applied the average
energy of the atoms is expected to increase. Further, the 87Rb
elastic collision rate is quite large at the experimental condi-
tions, so the atomic cloud is expected to stay in approximate
thermal equilibrium. This temperature should increase as T
increases. Even if no atoms were thus removed from the trap,
the peak intensity would still decrease, for both the spatial
volume occupied by the atom cloud, and the rate of free
expansion are increased as temperature is increased. How-
ever, as the trap depth is finite, some of the atoms have
sufficient energy to leave the trap. This leads to a decrease in
the integrated image intensity and an additional decrease in
the peak image intensity. These arguments also explain why
there is a threshold in the appearance of trap loss; the aver-
age amount of energy deposited per atom in the system by
parametric excitation must be sufficiently large that a signifi-
cant number of them have a total energy larger the trap depth
before loss is observed. Measurements of the Gaussian width
of the images �as in Fig. 2� with increasing T provide a direct
measure of about 800 �K /s for the heating rate at constant
h and f , confirming this interpretation. We also point out that
there is an important relationship between the results of Figs.
4�a� and 4�b�: when the decrease in the total number of at-
oms in the trap is accounted for by the data in Fig. 4�b�, the

FIG. 3. �Color online� �a� Fundamental radial parametric reso-
nances for h=0.15 and T=200 ms. �b� Fundamental axial paramet-
ric resonances for h=0.20 and T=200 ms.

FIG. 4. �Color online� �a� Peak survival probability as a function
of T for several different parametric resonance excitation frequen-
cies. Note the exponential decay with time for longer modulation
times. �b� Relative survival probability as a function of T for several
different parametric resonance excitation frequencies. Note the lin-
ear decay with time for larger T. h=0.15.
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remaining decrease seen in Fig. 4�a� scales quantitatively as
the mean cloud temperature Tc

3/2, as is expected for the tem-
perature dependent decrease in the peak intensity of a Gauss-
ian atom cloud.

Finally, we suggest optimum conditions for observing
parametric resonance, at least for the range of conditions
explored here. First, measurement of the Gaussian radius of
the expanded sample is much more sensitive than measuring
trap loss, as indicated earlier. In fact, for h�0.1, we do not
observe convincing trap loss signals. Second, a useful em-
pirical scaling is that the cloud temperature which deter-
mines the squared Gaussian width, is given by Tc=Toc
+C�f�Th, where C�f� is a frequency dependent parameter

�5 mK /s at the peak of the fundamental resonance. We
point out that increasing T or h does not indefinitely increase
the mean temperature and size of the atom cloud. As pre-
dicted in �12,13�, above a certain critical amount of energy
deposition �35% of the trap depth, the temperature of the
atom cloud remains constant, additional energy going into
removing atoms from the trap. As shown elsewhere �22�, this
interpretation is supported by measurements similar to those
reported here.

We acknowledge the financial support of the National Sci-
ence Foundation �Grant No. NSF-PHY-0654226�.
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