1980

An Algorithm for the Electromagnetic Scattering Due to an Axially Symmetric Body with an Impedance Boundary Condition

F. Stenger

M. Hagmann

J. Scheing

Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_fac_pubs

Part of the Applied Mathematics Commons, and the Theory and Algorithms Commons

Repository Citation
https://digitalcommons.odu.edu/computerscience_fac_pubs/107

Original Publication Citation

This Article is brought to you for free and open access by the Computer Science at ODU Digital Commons. It has been accepted for inclusion in Computer Science Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.
An Algorithm for the Electromagnetic Scattering Due to an Axially Symmetric Body with an Impedance Boundary Condition

F. Stenger*

Department of Mathematics, University of Utah, Salt Lake City, Utah 84112

M. Hagmann

Department of Electrical Engineering, University of Utah, Salt Lake City, Utah 84112

AND

J. Schwing*

Department of Computer Science, Old Dominion University, Norfolk, Virginia 23508

Submitted by C. L. Dolph

Let B be a body in \mathbb{R}^3, and let S denote the boundary of B. The surface S is described by $S = \{(x, y, z): (x^2 + y^2)^{1/2} = f(z), -1 \leq z \leq 1\}$, where f is an analytic function that is real and positive on $(-1, 1)$ and $f(\pm 1) = 0$. An algorithm is described for computing the scattered field due to a plane wave incident field, under Leontovich boundary conditions. The Galerkin method of solution used here leads to a block diagonal matrix involving $2M + 1$ blocks, each block being of order $2(2N + 1)$. If, e.g., $N = O(M^2)$, the computed scattered field is accurate to within an error bounded by $Ce^{-\alpha M}$, where C and c are positive constants depending only on f.

1. Introduction and Summary

Let B be a bounded in \mathbb{R}^3, having surface S which is given by

$$S = \{(x, y, z): (x^2 + y^2)^{1/2} = f(z), -1 \leq z \leq 1\},$$

* Research supported by U. S. Army Research Contract DAAG-29-76-G-0210 at the University of Utah and by NRC Grants A-0201 and A-8240 at the University of British Columbia.
where \(f \) is an analytic function that is real and positive on \((-1, 1)\) and
\[
C_1 (1 + z)^{\alpha_1} (1 - z)^{\beta_1} \leq f(z) \leq C_2 (1 + z)^{\alpha_2} (1 - z)^{\beta_2}, \quad -1 \leq z \leq 1, \quad (1.2)
\]
where \(C_j, \alpha_j, \beta_j < 1 \) are positive constants. In this paper we describe an algorithm for computing the field scattered from \(B \) due to an incident field \(\vec{E}^0(\vec{r}) \) of the form
\[
\vec{E}^0(\vec{r}) = \vec{e} e^{i k_0 r}, \quad (1.3)
\]
where \(\vec{e} \) and \(k_0 \) denote the polarization and propagation vectors, respectively, and \(\vec{r} = x\hat{x} + y\hat{y} + z\hat{z} \), where \(\hat{x}, \hat{y} \) and \(\hat{z} \) are the unit vectors pointing in the direction of the \(x, y \) and \(z \) axes, respectively.

Let the body \(B \) (resp. free space) be homogeneous, with permittivity \(\varepsilon \) (resp. \(\varepsilon_0 \)), permeability \(\mu \) (resp. \(\mu_0 \)) and conductivity \(\sigma \) (resp. \(\sigma_0 \)), so that the refractive index of the body is
\[
N = \left(\frac{\mu}{\mu_0} \right) \left(\frac{\varepsilon}{\varepsilon_0} + \frac{i\sigma}{\omega\varepsilon_0} \right)^{1/2}, \quad (1.4)
\]
where \(\omega \) denotes the frequency of the incident field. We shall furthermore assume that
\[
|N| |k_0| \rho \gg 1, \quad (1.5)
\]
where \(\rho \) is the smallest radius of curvature of \(S \). This assumption enables us to apply the Leontovich boundary conditions \([15, 21]\)
\[
(\hat{n} \times \vec{E}) \times \hat{n} = n Z \hat{n} \times \vec{H} \quad (1.6)
\]
on the surface of the body, where
\[
\eta = \mu / (\mu_0 N), \quad Z = (\mu_0 / \varepsilon_0)^{1/2} \quad (1.7)
\]
and where \(\hat{n} \) denotes the outward unit normal to \(S \), and \(\vec{E} \) and \(\vec{H} \) denote the total electric and magnetic fields on \(S \). Conditions (1.5) and (1.6) are satisfied automatically if the body \(B \) is perfectly conducting, i.e. if \(\sigma = \infty \).

Condition (1.6) makes it possible to obtain a singular vector integral equation over \(S \) for the surface current \(\vec{K} \) on \(S \). In the present paper we describe an algorithm for solving this integral equation via the Galerkin method, using as basis functions
ELECTROMAGNETIC SCATTERING ALGORITHM 533

$$\psi_{mn}(z, \varphi) = e^{im \varphi} f^{1/2}(z)(1 - z^2)$$

$$\times \sin \left[\pi n^{1/2} \left\{ \log \left(\frac{1 + z}{1 - z} \right) - \frac{n}{N^{1/2}} \right\} \right]$$

$$\frac{1}{\pi n^{1/2}} \left\{ \log \left(\frac{1 + z}{1 - z} \right) - \frac{n}{N^{1/2}} \right\}$$

$$m = 0, \pm 1, \ldots, \pm N, \quad n = 0, \pm 1, \ldots, \pm M. \quad (1.8)$$

These basis functions effectively handle singularities of \bar{K} and $\partial \bar{K}/\partial z$ as a function of z, which occur at $z = \pm 1$; they are similarly very effective approximants in the ϕ variable, since the Fourier series of \bar{E}^s (and therefore \bar{K}) converges very rapidly. The singularities occurring in the kernel of the integral equation for \bar{K} are of the type $1/(z' - z)$ or $\log \left| z' - z \right|$ at $z = z'$, and of the type of $f^m(z), \ m = 0, 1, \ldots$ at $z = \pm 1$. The first of these is effectively handled by subtracting out the principal value. The remaining ones are effectively handled by means of the quadrature formula (see [22])

$$\int_{-1}^1 g(t) dt \approx h \sum_{k = -N}^{N} \frac{2e^{kh}}{(1 + e^{kh})^2} G \left(\frac{e^{kh} - 1}{e^{kh} + 1} \right)$$

after transforming the intervals $(-1, z')$ and $(z', 1)$ to $(-1, 1)$.

The integrations over S involve two variables, φ and z. While the integrations with respect to z must be carried out numerically, due to singularities of the kernel in the region of integration, the integrations with respect to φ are carried out explicitly, the results being expressed via hypergeometric functions. The hypergeometric functions have logarithmic singularities which were not present in the kernel; for this reason explicit integration and later evaluation of the hypergeometric function as described in the Appendix have an advantage over direct numerical integration, since any known direct numerical integration procedure such as the trapezoidal rule would poorly handle this type of singularity.

The use of the basis functions (1.8) thus leads to a block diagonal Galerkin system of equations, one system of order $2(2N + 1)$ for each m. By forming $2M + 1$ such blocks, and taking $N = M^2$, we arrive at an approximation \bar{K}_N of \bar{K} which is accurate to within an error ε, where $|\varepsilon| = O(e^{-CN^{1/2}})$ as $N \to \infty$ with $c > 0$ and independent of N. The use of (1.8) furthermore makes it possible to evaluate the scattered field \bar{E}^s by means of simple one-dimensional trapezoidal rule integrations. The error δ_N in our approximation \bar{E}^s_N of the scattered field \bar{E}^s satisfies the relation

$$|\delta_N(\vec{r})| = |\bar{E}^s(\vec{r}) - \bar{E}^s_N(\vec{r})| = O(e^{-CN^{1/2}}) \quad \text{as} \quad N \to \infty. \quad (1.10)$$

for all \vec{r} on the exterior of B and not arbitrarily close to B.
The paper is organized as follows.

The above problem of computing \mathbf{E}^s given \mathbf{E}^0 as in (1.3) and S as in (1.1) was studied in [20] for the perfectly conducting case and in [5] for the case as described above. The Galerkin approximating basis function used in [5, 20] are of the form $\psi_{mn} = \cos(m\varphi) S_n(z)$ and $\sin(m\varphi) S_n(z)$, where S_n is the linear spline which is zero at z_{n-1} and z_{n+1}, and 1 at z_n. Thus the resulting rate of convergence is $O(1/N^2)$ if f has no singularities at $z = \pm 1$ and $O(1/N^n)$ if, e.g., $f(z) \sim C(1 - z)^n$ as $z \to 1$, where it is assumed that the interval $(-1, 1)$ is divided into N equal subintervals. In addition, the quadratures used in [5, 20] converge very slowly as a result of the singularities present in the integral equation. Furthermore, the expression for the gradient of $G = e^{ik_0|\mathbf{r} - \mathbf{r}'|/(4\pi |\mathbf{r} - \mathbf{r}'|)}$ obtained in [5, 20] is incorrect.

The algorithm of the present paper is being checked out on a computer for the case of a sphere of radius 1 for which the surface current \mathbf{K} and the scattered field \mathbf{E}^s can be expressed explicitly. Using $M = 4$ and $N = M^2 = 16$, we expect to compute \mathbf{K} accurate to four significant figures, and for $r > 2$, \mathbf{E}^s is also expected to be accurate to four significant figures.

In Section 2 we describe the geometry of the surface. In Section 3 we derive a representation on the surface S for the incident plane wave. Section 4 contains a derivation of the integral equation for the surface current, as well as an integral expression for the scattered field in terms of this surface current. In Section 5 we describe the basis functions to be used in the Galerkin method of Section 7. Section 6 contains an approximate representation of the incident electric field, in terms of the basis functions of Section 5. In Section 7 we derive the Galerkin equations for the surface current, and we describe a method of computing the coefficients of this system, and for solving this system. In Section 8 we describe a procedure for evaluating the scattered field. In Section 9 we discuss the rate convergence of the procedure. Appendix A contains a study of the functions G_m derived in Section 7 as well as their derivatives. The results of this appendix illustrate the type of singular behavior of the functions G_m and thus they dictate the type of approximate methods to be used in order to achieve high accuracy, and they simplify our proof of convergence.

The rate of convergence of the method of this paper, namely, $O(e^{-C_N^{1/2}})$ using an approximation of the form

$$\sum_{m=-M}^{M} \sum_{n=-N}^{N} a_{mn} \theta_n(z) e^{im\varphi} \quad (N = M^2) \quad (1.11)$$

for each component of the surface current, is optimal, in a certain sense. By the results of [25], given any approximation method of type (1.11) which is to converge for all f analytic on $(-1, 1)$ and satisfying (1.2), the resulting
error of this method cannot converge to zero faster than $e^{-\gamma M^{1/2}}$, for some $\gamma > 0$.

Similar numerical methods have been considered [7, 8, 9, 12, 18] but it is believed that the order of convergence obtained is not as good as that demonstrated here. For further discussion of such methods see, for example, Anderson [2], whose proposed method considers a maximum period of 20 wavelengths. Barber and Yeh [3] and Waterman [27] have considered extended boundary methods, while Kennaugh [13] and Schultz et al. [19] have discussed other implementations using a product z, φ basis.

2. Geometry of the Surface

A point on the surface S is represented by

$$\vec{r} = f(z) \cos \varphi \hat{x} + f(z) \sin \varphi \hat{y} + z \hat{z},$$

(2.1)

where \hat{x}, \hat{y} and \hat{z} denote the unit vectors in the direction of the x, y and z axes, respectively.

It is convenient to introduce three unit vectors on the surface, \hat{n}, $\hat{\varphi}$ and $\hat{\ell}$, where

$$\hat{n} = \alpha(z) \cos \varphi \hat{x} + \alpha(z) \sin \varphi \hat{y} - f'(z) \alpha(z) \hat{z},$$

$$\hat{\varphi} = -\sin \varphi \hat{x} + \cos \varphi \hat{y},$$

$$\hat{\ell} = f'(z) \alpha(z) \cos \varphi \hat{x} + f'(z) \alpha(z) \sin \varphi \hat{y} + \alpha(z) \hat{z},$$

(2.2)

where

$$\alpha(z) = [1 + f'(z)^2]^{-1/2}.$$

(2.3)

The vector \hat{n} is the unit normal to the surface, $\hat{\varphi}$ is the unit vector at \vec{r}, pointing in the direction of increasing φ, and $\hat{\ell}$ is the unit longitudinal vector, pointing in the direction of increasing arc length. Thus \hat{n}, $\hat{\varphi}$, $\hat{\ell}$ and \hat{x}, \hat{y}, \hat{z} are related by means of the equations

$$\begin{pmatrix} \hat{n} \\ \hat{\varphi} \\ \hat{\ell} \end{pmatrix} = \begin{pmatrix} \alpha(z) \cos \varphi & \alpha(z) \sin \varphi & -f'(z) \alpha(z) \\ -\sin \varphi & \cos \varphi & 0 \\ f'(z) \alpha(z) \cos \varphi & f'(z) \alpha(z) \sin \varphi & \alpha(z) \end{pmatrix} \begin{pmatrix} \hat{x} \\ \hat{y} \\ \hat{z} \end{pmatrix}$$

(2.4)

and

$$\begin{pmatrix} \hat{x} \\ \hat{y} \\ \hat{z} \end{pmatrix} = \begin{pmatrix} \alpha(z) \cos \varphi & -\sin \varphi & f'(z) \alpha(z) \cos \varphi \\ \alpha(z) \sin \varphi & \cos \varphi & f'(z) \alpha(z) \sin \varphi \\ -f'(z) \alpha(z) & 0 & \alpha(z) \end{pmatrix} \begin{pmatrix} \hat{n} \\ \hat{\varphi} \\ \hat{\ell} \end{pmatrix}$$

(2.5)
3. THE INCIDENT ELECTRIC FIELD

Let the incident radiation be a plane wave, given by

$$E^0(\vec{r}) = \varepsilon e^{i\vec{k}_0 \cdot \vec{r}}, \quad (3.1)$$

where ε points in the direction of polarization, and \vec{k}_0 is the propagation vector which satisfies the relations

$$k_0 \equiv |\vec{k}_0| = \frac{\omega}{c} = \frac{2\pi}{\lambda},$$

$$\vec{k}_0 \cdot \varepsilon = 0. \quad (3.2)$$

We shall furthermore assume that \vec{k}_0 lies in the xz plane and makes an angle θ_0 with the z-axis. Thus

$$\vec{k}_0 = k_0 \sin \theta_0 \hat{x} + k_0 \cos \theta_0 \hat{z}. \quad (3.3)$$

It is convenient to set

$$\varepsilon = a_1 \varepsilon_1 + a_2 \varepsilon_2, \quad (3.4)$$

where a_1 and a_2 are scalars, while

$$\varepsilon_1 = \hat{y}, \quad \varepsilon_2 = -\hat{x} \cos \theta_0 + \hat{z} \sin \theta_0. \quad (3.5)$$

Borison [4] has shown that if $a_2 = 0$ (resp. $a_1 = 0$) then the backscattered electric field $E'(\vec{r})$ is polarized only in the direction ε_1 (resp. ε_2).

Using (2.5) and (3.5) we can express ε in components of $\hat{\phi}$, $\hat{\theta}$ and $\hat{\rho}$. We get

$$\varepsilon = a_1[a(z) \sin \varphi \hat{\rho} + \cos \varphi \hat{\phi} + a(z) f'(z) \sin \varphi \hat{\rho}]$$
$$+ a_2[-a(z)(\cos \theta_0 \cos \phi + \sin \theta_0 f'(z))\hat{\rho} + \cos \theta_0 \sin \varphi \hat{\phi}$$
$$- a(z)(\cos \theta_0 \cos f'(z) - \sin \theta_0)\hat{\rho}]. \quad (3.6)$$

Next, let us find the Fourier expansion of $E^0(\vec{r})$ on S. To this end we use the identity

$$e^{ix \cos \omega} = \sum_{m=-\infty}^{\infty} i^m J_m(x) e^{im\omega}, \quad (3.7)$$

where $J_m(x)$ denotes the Bessel function,

$$J_m(x) = \sum_{n=0}^{\infty} \frac{(-1)^n (x^2/4)^{m+n}}{n! (n+m)!}.$$
Using (2.1) and (3.3) we get
\[\vec{k}_0 \cdot \vec{r} = k_0 f(z) \sin \theta_0 \cos \varphi + k_0 z \cos \theta_0. \] (3.8)
Hence combining (3.1), (3.7) and (3.8) we find that the incident field on \(S \) is given by
\[\vec{E}^0(\vec{r}) = \hat{e} e^{ik_0 \cos \theta_0} \sum_{m=-\infty}^{\infty} i^m J_m(k_0 f(z) \sin \theta_0) e^{im\varphi}. \] (3.9)
where \(\hat{e} \) is given in (3.6). Combining (3.6) and (3.9) we get
\[\vec{E}^0(\vec{r}) = \{ [a_1 a(z) \sin \varphi - a_2 a(z)(\cos \theta_0 \cos \varphi + f'(z) \sin \theta_0)] \hat{n} \\
+ [a_1 \cos \varphi + a_2 \cos \theta_0 \sin \varphi] \hat{\phi} \\
+ [a_1 a(z) f'(z) - a_2 a(z)(\cos \theta_0 \cos f'(z) - \sin \theta_0)] \hat{\imath} \} \\
\cdot e^{ik_0 \cos \theta_0} \sum_{m=-\infty}^{\infty} i^m J_m(k_0 f(z) \sin \theta_0) e^{im\varphi}. \] (3.10)

4. THE SCATTERED FIELD AND THE INTEGRAL EQUATION FOR THE SURFACE CURRENT

The scattered field \(\vec{E}^s = \vec{E}^s(\vec{r'}) \) is given in terms of the total electric (\(\vec{E} \)) and magnetic (\(\vec{H} \)) fields on \(S \) by [26],
\[\vec{E}^s = -\int_S \{ i\omega \mu (\hat{n} \times \vec{H}) G + (\hat{n} \times \vec{E}) \times \nabla G + (\hat{n} \cdot \vec{E}) \nabla G \} dS, \] (4.1)
where it is assumed that the field vectors \(\vec{E} \) and \(\vec{H} \) have time dependence of the factored form \(e^{-i\omega t} \), and
\[G = G(\vec{r}, \vec{r'}) = \frac{1}{4\pi} \frac{\exp\{ik_0 |\vec{r} - \vec{r'}|\}}{|\vec{r} - \vec{r'}|}. \] (4.2)
The remaining vectors in the integrand (4.1) are expressed in terms of \(\vec{r} \), and \(\nabla \) is expressed in terms of \(\vec{r} \).
Let \(\vec{K} \) denote the surface current on \(S \), due to the fields \(\vec{E} \) and \(\vec{H} \). In view of the Leontovich boundary condition (1.6), \(\vec{K} \) satisfies the relations
\[\vec{K} = -\hat{n} \times \vec{H}, \quad \hat{n} \times \vec{E} = -\eta \vec{Z} \hat{n} \times \vec{K}, \]
\[\sigma = -\varepsilon \hat{n} \cdot \vec{E} = \frac{1}{i\omega} \nabla \cdot \vec{K}. \] (4.3)
Our development of the integral equation for $\tilde{\mathbf{E}}$ follows that in [5, 6]. We include the derivation from [5] for this equation, for the sake of completeness.

Let $\tilde{\mathbf{A}}$ be a continuous vector field tangent to S. Then the following results are valid, if S satisfies the Lyapunov conditions [17, p. 90]:

(a) The integral

$$I(\mathbf{r'}) = \int_S \tilde{\mathbf{A}}(\mathbf{r}) \mathbf{G}(\mathbf{r}, \mathbf{r'}) \, dS$$

is a continuous function of $\mathbf{r'}$ in \mathbb{R}^3.

(b) As $\mathbf{r'} \to \mathbf{r'}_0 \subset S$, the relations

$$n(\mathbf{r'}_0) \times \lim_{\mathbf{r'} \to \mathbf{r'}_0} \int_S \tilde{\mathbf{A}}(\mathbf{r}) \times \nabla \mathbf{G}(\mathbf{r}, \mathbf{r'}) \, dS$$

$$= \pm \frac{1}{2} A(\mathbf{r'}_0) + \int_S \mathbf{n}(\mathbf{r'}_0) \times [\tilde{\mathbf{A}}(\mathbf{r}) \times \nabla \mathbf{G}(\mathbf{r}, \mathbf{r'})] \, dS$$

are satisfied, where the plus (resp. minus) sign corresponds to an approach from the outside (resp. inside) of B.

(c) The term [17, p. 95]

$$\mathbf{n}(\mathbf{r'}) \cdot \int_S \tilde{\mathbf{A}}(\mathbf{r}) \times \nabla \mathbf{G}(\mathbf{r}, \mathbf{r'}) \, dS$$

is a continuous function of $\mathbf{r'}$ on S. The term

$$\mathbf{E}_3(\mathbf{r'}) = \int_S \mathbf{n}(\mathbf{r}) \cdot \tilde{\mathbf{E}}(\mathbf{r}) \nabla \mathbf{G}(\mathbf{r}, \mathbf{r'}) \, dS$$

suffers a discontinuity on transition through S equal to $\mathbf{n} \cdot \Delta \mathbf{E}_3$, where $\Delta \mathbf{E}_3$ is the difference of the values outside and inside. Therefore, the third term in \mathbf{E}_3 does not affect the tangential component, but reduces the normal component of \mathbf{E} to zero.

Since the total electric field $\tilde{\mathbf{E}} = \mathbf{E}^0 + \mathbf{E}^i$ is zero inside the scatterer, (4.1) yields

$$\lim_{\mathbf{r'} \to \mathbf{r'}_0 \in S} \mathbf{n}(\mathbf{r'}_0) \times \left\{ \int_S [i \omega \mu (\mathbf{n} \times \mathbf{H}) \mathbf{G} \right.$$

$$+ (\mathbf{n} \times \mathbf{E}) \times \nabla \mathbf{G} + (\mathbf{n} \cdot \tilde{\mathbf{E}}) \nabla \mathbf{G} \} \, dS - \mathbf{E}^0(\mathbf{r'}) \left\} = 0,$$

where the approach is from the inside.
Application of (b) gives

\[0 = \hat{n}(\vec{r}') \times \vec{E}^0(\vec{r}') + \frac{1}{2} \hat{n}(\vec{r}') \times \vec{E}(\vec{r}') - \hat{n}(\vec{r}') \times \int_S \left[i \omega \mu (\hat{n} \times \vec{H})G + (\hat{n} \times \vec{E}) \times \nabla G + (\hat{n} \cdot \vec{E}) \nabla G \right] dS. \]

(4.4)

Next, taking the limit as \(\vec{r}' \to \vec{r}_0' \) from the outside of \(B \) in (4.1) and using the relation

\[\hat{n}(\vec{r}_0') \times \vec{E}(\vec{r}_0') = \hat{n}(\vec{r}_0') \times \{ \vec{E}^0(\vec{r}_0') + \vec{E}'(\vec{r}_0') \} \]

we get

\[\hat{n} \times \vec{E} = \hat{n} \times \vec{E}^0 - \lim_{\vec{r}' \to \vec{r}_0'} \hat{n}(\vec{r}_0') \times \int_S \left[i \omega \mu (\hat{n} \times \vec{H})G \right. \]
\[+ (\hat{n} \times \vec{E}) \times \nabla G + (\hat{n} \cdot \vec{E}) \nabla G \left. \right] dS. \]

(4.5)

Adding (4.4) and (4.5), we get

\[\hat{n}(\vec{r}') \times \vec{E}(\vec{r}') + 2\hat{n}(\vec{r}') \times \int_S \left[i \omega \mu (\hat{n} \times \vec{H})G \right. \]
\[+ (\hat{n} \times \vec{E}) \times \nabla G + (\hat{n} \cdot \vec{E}) \nabla G \left. \right] dS = 2\hat{n}(\vec{r}') \times \vec{E}^0(\vec{r}'). \]

Defininitions (4.3) now yield

\[-\eta Z \hat{n}(\vec{r}') \times \vec{K}(\vec{r}') + 2\hat{n}(\vec{r}') \times \int_S \left\{ -i \omega \mu \vec{K}G - \eta Z (\hat{n} \times \vec{K}) \times \nabla G \right\} dS = 2\hat{n}(\vec{r}') \times \vec{E}^0(\vec{r}'). \]

This equation can be written in the equivalent form

\[\left[\frac{1}{2} \eta Z \vec{K}(\vec{r}') + \int_S \left\{ i \omega \mu \vec{K}G + Z(\hat{n} \times \vec{K}) \times \nabla G \right\} dS + \vec{E}^0(\vec{r}') \right]_{\tan \vec{r}' \in S} = 0. \]

(4.6)
Using Eqs. (4.3), the scattered field \mathbf{E}^s given by (4.1) is expressed in terms of K by means of the integral

$$\mathbf{E}^s = \int_S \left[i\omega \mu K G + \eta Z (\mathbf{n} \times K) \times \nabla G + \frac{1}{i\omega \varepsilon} (\nabla \cdot K) \nabla G \right] dS.$$ \hspace{1cm} (4.7)

5. THE BASIS FUNCTIONS FOR APPROXIMATING SURFACE CURRENT AND ELECTRIC FIELD

\mathbb{C} denotes the complex plane, let $d > 0$ and $d' > 1$, and let Ω_d and $A_{d'}$ be defined by

$$\Omega_d = \{ z \in \mathbb{C} : \arg \left[\frac{(1 + z)/(1 - z)} \right] < d \},$$

$$A_{d'} = \{ w \in \mathbb{C} : 1/d' < |w| < d' \}$$ \hspace{1cm} (5.1)

(see Figs. 5.1 and 5.2).

Let $H(\Omega_d)$ (resp. $H(A_{d'})$) denote the family of all functions g that are analytic in Ω_d (resp. $A_{d'}$) such that

$$\| g \|_{\Omega_d} = \sup_{z \in \Omega_d} | g(z) | < \infty \hspace{1cm} (\text{resp.} \hspace{0.5cm} \| g \|_{A_{d'}} = \sup_{z \in A_{d'}} | g(z) | < \infty).$$ \hspace{1cm} (5.2)

Let us set

$$v(z) = f(z)(1 - z^2),$$ \hspace{1cm} (5.3)

FIG. 5.1. The region Ω_d.

FIG. 5.2. The region $A_{d'}$.
where \(f \in H(\Omega_d) \) satisfies (1.2), \(f \neq 0 \) in \(\Omega_d \). Let \(H = H(d, d') \) denote the family of all functions \(F = F(z, w) \) such that

(i) \(F(z, e^{i\phi})/v(z) \) belongs to \(H(\Omega_d) \) as a function of \(z \) for all \(\phi \in [0, 2\pi] \);

(ii) \(F(z, w) \) belongs to \(H(A_d) \) as a function of \(w \) for all \(z \in [-1, 1] \).

We define a norm on \(H(d, d') \) by

\[
\|F\|_H = \max\{ \max_{\phi \in [0, 2\pi]} \|F\|_{\Omega_d}, \max_{z \in [-1, 1]} \|F\|_{A_d} \}.
\] (5.4)

If \(F \in H(d, d') \), we approximate \(F \) on \(\mathcal{S} = [-1, 1] \times [0, 2\pi] \) as follows,

\[
F(z, e^{i\phi}) \simeq l_{MN}(z, \phi) = \sum_{m = -M}^{M} \sum_{n = -N}^{N} a_{mn} \psi_{mn}(z, \phi),
\] (5.5)

where the \(a_{mn} \) are numbers and the \(\psi_{mn} \) are basis functions given by [23]

\[
\psi_{mn}(z, \phi) = e^{im\phi} \theta_n(z), \quad h > 0,
\]

\[
\theta_n(z) = f^{1/2}(z)(1 - z^2) \sin \left(\frac{\omega(z) - nh}{h} \right),
\] (5.6)

\[
\omega(z) = \log \left(\frac{1 + z}{1 - z} \right); \quad \text{sinc } x = \frac{\sin(\pi x)}{\pi x};
\]

The numbers \(a_{mn} \) are given by

\[
\left. \frac{1}{2\pi f^{1/2}(z_n)(1 - z_n^2)} \right. \int_0^{2\pi} F(z_n, e^{i\phi}) e^{-im\phi} d\phi,
\]

\[
z_n = \tanh(nh)/2.
\] (5.7)

Next, recalling the definition of \(f \) and relation (1.2), let us set

\[
\gamma_2 = \frac{1}{2} \min(\alpha_2, \beta_2), \quad \gamma = \min[(\pi dy_2)^{1/2}, \log d'].
\] (5.8)

Theorem 5.1. Let \(F \in H \), let \(N = M^2 \), and let \(h = [\pi d/(N\gamma)]^{1/2} \). Then there exist constants \(C, C_1 \) and \(C_2 \) which are independent of \(N \), such that

\[
\max_{(z, \phi) \in S^*} |F(z, e^{i\phi}) - l_{MN}(z, \phi)| \leq CN^{1/2}e^{-\gamma N^{1/2}},
\] (5.9)

\[
\max_{(z, \phi) \in S^*} \left| \frac{\partial}{\partial z} F(z, \phi) - \frac{\partial}{\partial z} l_{MN}(z, \phi) \right| \leq C_1 N e^{-\gamma N^{1/2}},
\] (5.10)

\[
\max_{(z, \phi) \in S^*} \left| \frac{\partial}{\partial \phi} F(z, \phi) - \frac{\partial}{\partial \phi} l_{MN}(z, \phi) \right| \leq C_2 N^{1/2} e^{-\gamma N^{1/2}},
\] (5.11)

where \(S^* = [-1, 1] \times [0, 2\pi] \).
Proof: It is shown in [16] that if \(g/v \in (\Omega_d) \), then by taking \(h = [\pi d/(\gamma^2 N)]^{1/2} \) there are positive constants \(C' \) and \(C'' \) such that

\[
\max_{z \in [-1,1]} \left| g(z) - \sum_{n=-N}^{N} \frac{f^{1/2}(z_n)}{v(z_n)} \theta_n(z) \right| \leq C' e^{-vN^{1/2}} \tag{5.12}
\]

and

\[
\max_{z \in [-1,1]} \left| g'(z) - \sum_{n=-N}^{N} \frac{f'(z_n)}{v(z_n)} \theta'_n(z) \right| \leq C'' N^{1/2} e^{-vN^{1/2}}. \tag{5.13}
\]

Similarly, it follows from Cauchy's theorem, that if \(G \in H(A_d) \), and if \(a_m \) is defined by

\[
a_m = \frac{1}{2\pi} \int_0^{2\pi} G(e^{i\phi}) e^{-im\phi} d\phi, \quad m = -M, -M+1, \ldots, M, \tag{5.14}
\]

then there are constants \(K' \) and \(K'' \) such that for all \(\phi \in [0, 2\pi] \),

\[
\left| G(e^{i\phi}) - \sum_{m=-M}^{M} a_m e^{im\phi} \right| \leq K'(d')^{-M} \tag{5.15}
\]

and

\[
\left| \frac{\partial}{\partial \phi} G(e^{i\phi}) - \sum_{m=-M}^{M} imae^{im\phi} \right| \leq K'' M(d')^{-M}. \tag{5.16}
\]

On noting that \(M = N^{1/2} \), inequality (5.9) is obtained if we use (5.11) and (5.15) in Theorem 6.2 in [24]. Similarly, (5.10) is a consequence of (5.13) and (5.15), while (5.11) follows from (5.12) and (5.16).

Theorem 5.2 [16]. If \(v/g^{1/2} \in H(\Omega_d) \), then there exists a constant \(K \) such that

\[
\left| \int_{-1}^{1} g(z) \theta_n(z) \, dz - h \frac{v(z_n)}{f^{1/2}(z_n)} \frac{g(z_n)}{v(z_n)} \right| \leq Ke^{-\gamma d/h}. \tag{5.17}
\]

This theorem shows that if \(g \) is any function such that \(v/g^{1/2} \in H(\Omega_d) \), then for \(h \) sufficiently small, the sequence \(\{\theta_n\}_{n \geq \infty} \) may be considered to be an orthogonal sequence, for practical purposes, and \(g \) may be expanded with respect to this sequence. The coefficients of this expansion take on the very simple form

\[
\frac{f^{1/2}(z_n)}{v(z_n)} g(z_n), \quad z_n = \tanh(nh/2). \tag{5.18}
\]

For purposes of numerical integration, we state the following.
THEOREM 5.3 [23]. Let \(g \in H(\Omega_d) \), and let \(|g(z)| \leq C(1 - z^2)^{\alpha-1} \) on \((-1, 1)\), where \(C, \alpha > 0 \). If \(N > 0 \) is an integer, and \(h = (2\pi d/aN)^{1/2} \), then there exists a constant \(C' \), independent of \(N \), such that

\[
\left| \int_{-1}^{1} g(z) \, dz \right| + h \sum_{n=-N}^{N} \frac{g(z_n)}{\omega'(z_n)} \leq C' e^{-\left(2\pi d N\right)^{1/2}}. \tag{5.19}
\]

Finally, Theorem 5.4 which follows describes the accuracy of the midordinate rule used in Sections 7 and 8 for integrating periodic functions.

THEOREM 5.4. Let \(d' > 0 \) and let \(g \in H(A_{d'}) \) be bounded on \(A_{d'} \). Then there exists a constant \(C \) depending only on \(g \) such that for \(M = 1, 2, 3, \ldots \),

\[
\left| \int_{0}^{2\pi} g(e^{i\phi}) \, d\phi - \frac{2\pi}{M} \sum_{k=1}^{M} g(e^{i(2k-1)\pi/M}) \right| \leq C(d')^{-M}. \tag{5.20}
\]

6. APPROXIMATION OF THE INCIDENT ELECTRIC FIELD

We shall make the approximation

\[
\vec{E}(\vec{r}) \cong \vec{E}(\vec{r}) = \sum_{m=-M}^{M} \sum_{n=-N}^{N} \left[\alpha_{mn}\hat{\theta} + \beta_{mn}\hat{\imath} \right] \psi_{mn}, \quad \vec{r} \in S, \tag{6.1}
\]

of the incident electric field, where \(\psi_{mn} \) are defined in Section 5. For the sake of convenience we shall use the notations

\[
z_n = \tanh(nh/2),
\]

\[
d_{mn} = \frac{i^m \exp\{ik_0 z_n \cos \theta_0\} J_m(k_0 f(z_n) \sin \theta_0)}{v(z_n)}. \tag{6.2}
\]

As will be seen in Section 7, we will approximate a slightly altered field \(\vec{J}^{0} \equiv \vec{vE}^{0} \), where \(\vec{v}(z) = f(z)(1 - z^2) \). Thus

\[
\vec{J}(\vec{r}) \cong \vec{E}(\vec{r}) = \sum_{m=-M}^{M} \sum_{n=-N}^{N} \left[\alpha_{mn}\hat{\theta} + \beta_{mn}\hat{\imath} \right] \psi_{mn}.
\]

The results of Sections 3 and 5 show that if \(\vec{r} \in S \) then each component of \(\vec{J}^{0} \) is in \(H(d, d') \). Using formulas (5.6), we have

\[
\alpha_{mn} = \frac{f^{1/2}(z_n)}{2\pi} \int_{0}^{2\pi} \vec{E}(\vec{r}) \cdot \vec{\phi} e^{-im\theta} \, d\phi \big|_{z=z_n},
\]

\[
\beta_{mn} = \frac{f^{1/2}(z_n)}{2\pi} \int_{0}^{2\pi} \vec{E}(\vec{r}) \cdot \vec{\imath} e^{-im\theta} \, d\phi \big|_{z=z_n}. \tag{6.3}
\]
If this is taken together with (3.10), we get
\[a_{mn} = f^{1/2}(z_n) \left[\frac{1}{2} a_1 (d_{m+1,n} + d_{m-1,n}) + \frac{\cos \theta_0}{2i} a_2 (d_{m-1,n} - d_{m+1,n}) \right], \]
\[\beta_{mn} = f^{1/2}(z_n) \{ [a_1 f'(z_n) + a_2 \sin \theta_0] a(z_n) d_{mn} \]
\[- \frac{1}{2} a_2 \cos \theta_0 a(z_n) f'(z_n) [d_{m+1,n} + d_{m-1,n}] \}. \]

7. Derivation of the Galerkin Equations for the Surface Current

Rather than solve (4.11) for \(\vec{K} \), it is numerically more convenient to define \(\vec{J} \) by
\[\vec{J}(\vec{r}) = v(z) \vec{K}(\vec{r}), \]
where
\[v(z) = f(z)(1 - z^2), \]
and to solve the resulting integral equation for \(\vec{J} \). This transformation helps to take into account the unknown singular behavior of \(\vec{K} \) at \(z = \pm 1 \), and enables us to effectively approximate both \(\vec{J} \) and its first derivative with respect to \(z \), by the methods of Section 5.

Substitution (7.1) replaces (4.6) by the equation
\[\left\{ \frac{1}{2} \eta Z \vec{J} + v \int_S \left[\frac{i\omega}{v} \vec{J} G + \frac{\eta Z}{v} (\vec{n} \times \vec{J}) \times \nabla G \right] \right. \]
\[+ \left. \frac{1}{i\omega e} \left(\nabla \cdot \frac{1}{v} \vec{J} \right) \nabla G \right\} dS + \vec{J}^0_\tan = 0, \]
where
\[\vec{J}^0 = v \vec{E}^0. \]

We now make the Galerkin approximation
\[\vec{J} \approx \vec{\varphi} = \sum_{m=-M}^{M} \sum_{n=-N}^{N} \left[a_{mn} \phi + b_{mn} \tilde{\phi} \right] \psi_{mn} \]
in (7.2), where the \(\psi_{mn} \) are defined as in (5.6), and the \(a_{mn} \) and \(b_{mn} \) are unknown numbers.

\(^1\) If \(S \) satisfies Liapunov conditions (see Section 4), then \(\vec{K} \) is bounded on \(S \). It is difficult to determine the exact singular behavior of the derivatives of \(\vec{K} \) at \(z = \pm 1 \).
Let us now recall that if \(\vec{r}, \vec{r}' \in S \), then
\[
R = |\vec{r} - \vec{r}'| = \left(f^2 + f'^2 - 2ff' \cos(\varphi - \varphi') + (z - z')^2 \right)^{1/2},
\]
\[
G = \frac{1}{4\pi} \frac{e^{ik_0R}}{R},
\]
where here and henceforth
\[
f = f(z), \quad f^* = f(z'), \quad \alpha = \alpha(z), \quad \alpha^* = \alpha(z').
\]

We shall also use the notations
\[
R_f = \frac{\partial R}{\partial f'} = \frac{f - f^* \cos(\varphi - \varphi')}{R},
\]
\[
R_z = \frac{\partial R}{\partial z'} = \frac{z - z'}{R},
\]
\[
R_\alpha = \frac{ff^* \sin(\varphi - \varphi')}{R},
\]
\[
(G', G^z, G^\omega) - (R_f, R_z, R_\alpha) \frac{d}{dR} G.
\]

Moreover, writing \(\sum_{m,n} \) for \(\sum_{m=-M}^{M} \sum_{n=-N}^{N} \), we have
\[
\hat{n} \times \vec{F} = \sum_{m,n} \begin{vmatrix} \hat{\phi} & \hat{t} & \hat{n} \\ 0 & 0 & 1 \\ a_{mn} & b_{mn} & 0 \end{vmatrix} \psi_{mn}
\]
\[
= \sum_{m,n} \left[-b_{mn} \hat{\phi} + a_{mn} \hat{t} \right] \psi_{mn},
\]
and also,
\[
\nabla G = \frac{1}{f} G^\omega \hat{\phi} + \alpha (f'G^f + G^z) \hat{t} + \alpha (G^f - f'G^z) \hat{n},
\]
\[
\nabla \cdot \left(\frac{1}{v} \vec{F} \right) = \frac{1}{f} \sum_{m,n} \left[\frac{a_{mn}}{v} \frac{\partial \psi_{mn}}{\partial \varphi} + \alpha b_{mn} \frac{\partial}{\partial z} \left(\frac{f}{v} \psi_{mn} \right) \right].
\]
Using these results, we get

\[
(n \times \vec{F}) \times \nabla G = \sum_{m,n} \left| \begin{array}{ccc}
\dot{\phi} & \dot{\mathbf{i}} & \dot{n} \\
-b_{mn} & a_{mn} & 0 \\
\left(\frac{1}{f'}\right)G^o & \alpha(f'G' + G^o) & \alpha(G' - f'G^o) \\
\end{array} \right| \psi_{mn} \\
= \sum_{m,n} \left[a_{mn} \alpha(G' - f'G^o)\dot{\phi} + b_{mn} \alpha(G' - f'G^o)\dot{\mathbf{i}} \\
\left\{ a_{mn} \cdot \frac{1}{f} G^o + b_{mn} \alpha(f'G' + G^o) \right\} \dot{n} \right] \psi_{mn},
\]

as well as

\[
\nabla \cdot \left(\frac{1}{v} \vec{F} \right) \nabla G = \left\{ \frac{1}{f} G^o \dot{\phi} + \alpha(f'G' + G^o)\dot{\mathbf{i}} + \alpha(G' - f'G^o)\dot{n} \right\} \\
\quad + \frac{1}{f} \sum_{m,n} \left[a_{mn} \frac{\partial \psi_{mn}}{\partial \phi} + ab_{mn} \frac{\partial}{\partial z} \left(\frac{f}{v} \psi_{mn} \right) \right].
\]

Substituting (7.4), (7.10), (7.11) as well as the approximation \(\vec{F}^0 \),

\[
\vec{F}^0 \equiv \vec{F} = \sum_{m,n} \left[a_{mn} \dot{\phi} + b_{mn} \dot{\mathbf{i}} \right] \psi_{mn},
\]

into (7.2), and recalling that

\[
dS = \frac{f}{\alpha} d\phi dz,
\]

we get

\[
\left\{ \frac{1}{2} \eta Z \sum_{m,n} \left[a_{mn} \dot{\phi}^* + b_{mn} \dot{\mathbf{i}}^* \right] \psi_{mn}^* \right. \\
\quad + v^* \int_{-1}^{1} \int_{0}^{2\pi} \frac{i \omega f}{\alpha v} \sum_{m,n} \left[a_{mn} \dot{\phi} + b_{mn} \dot{\mathbf{i}} \right] \psi_{mn} \\
\quad + \frac{\eta Z}{v} \sum_{m,n} \left[a_{mn} f(G' - f'G^o)\dot{\phi} + b_{mn} f(G' - f'G^o)\dot{\mathbf{i}} \right. \\
\quad - \left\{ a_{mn} \frac{1}{\alpha} G^o + b_{mn} f(G' - f'G^o) \right\} \dot{\mathbf{n}} \right\} \psi_{mn} \\
\left. + \frac{1}{i \omega \varepsilon} \left\{ \frac{1}{\alpha f} G^o \dot{\phi} + (f'G' + G^o) \dot{\mathbf{i}} + (G' - f'G^o) \dot{n} \right\} \psi_{mn} \right\}
\]
where the starred variables denote functions of \(z' \) and \(\varphi' \).

It is convenient to introduce several identities in order to reduce (7.14) to a system of linear algebraic equations. Equations (2.4) yield the identities

\[
\begin{align*}
\phi \cdot \phi^* &= \cos(\varphi - \varphi'), \\
\hat{\iota} \cdot \hat{\iota}^* &= -\alpha(z) f'(z) \sin(\varphi' - \varphi), \\
\hat{n} \cdot \hat{n}^* &= -\alpha(z) \sin(\varphi' - \varphi), \\
\phi \cdot \hat{\iota}^* &= \alpha(z') f'(z) \sin(\varphi' - \varphi), \\
\hat{\iota} \cdot \hat{n}^* &= \alpha(z') \alpha(z) \{1 + f'(z) f'(z') \cos(\varphi - \varphi')\}, \\
\hat{n} \cdot \hat{n}^* &= \alpha(z') \alpha(z) \{f'(z') \cos(\varphi - \varphi') - f'(z)\}.
\end{align*}
\]

These identities are useful for taking components of \(\phi^* \) and \(\hat{\iota}^* \) in (7.14).

Identities (7.16)-(7.23), which follow, serve to achieve further simplicity by enabling us to symbolically eliminate the integrations with respect to \(\varphi \).

Upon setting

\[
G(\vec{r}, \vec{r}') = \frac{e^{ik_0|\vec{r} - \vec{r}'|}}{4\pi |\vec{r} - \vec{r}'|} \equiv \sum_{m=-\infty}^{\infty} G_m e^{im(\varphi' - \varphi)}
\]

it follows that

\[
e^{im\varphi} G_m = \frac{1}{2\pi} \int_0^{2\pi} G(\vec{r}, \vec{r}') e^{im\varphi} d\varphi.
\]

Furthermore, notice that \(G_{-m} = G_m \). Therefore

\[
\frac{1}{2\pi} \int_0^{2\pi} G(\vec{r}, \vec{r}') e^{im\varphi} \cos(\varphi' - \varphi) d\varphi = \frac{e^{im\varphi'}}{2} [G_{m+1} + G_{m-1}]
\]

and

\[
\frac{1}{2\pi} \int_0^{2\pi} G(\vec{r}, \vec{r}') e^{im\varphi} \sin(\varphi - \varphi') d\varphi = \frac{e^{im\varphi'}}{2i} [G_{m+1} - G_{m-1}].
\]
By means of integration by parts, we furthermore find that

\[
\frac{1}{2\pi} \int_{0}^{2\pi} e^{im\phi} \frac{\partial G(\bar{r}, \bar{r}')}{\partial \phi} \, d\phi = -im \int_{0}^{2\pi} e^{im\phi} G(\bar{r}, \bar{r}') \, d\phi = -im e^{im\phi} G_m,
\]

(7.20)

\[
\frac{1}{2\pi} \int_{0}^{2\pi} e^{im\phi} \cos(\phi - \phi') \frac{\partial G}{\partial \phi} \, d\phi = -\frac{ie^{im\phi'}}{2} [(m + 1) G_{m+1} + (m - 1) G_{m-1}],
\]

(7.21)

\[
\frac{1}{2\pi} \int_{0}^{2\pi} e^{im\phi} \sin(\phi - \phi') \frac{\partial G(\bar{r}, \bar{r}')}{\partial \phi} \, d\phi = -\frac{e^{im\phi'}}{2} [(m + 1) G_{m+1} - (m - 1) G_{m-1}].
\]

(7.22)

We use (7.15) in (7.14) to take components of \(\phi \) and \(\mathbf{i} \). Then, recalling that

\[
\psi_{mn}(z, \phi) = e^{im\phi} \theta_n(z),
\]

(7.23)

where

\[
\theta_n(z) = \frac{\nu(z)}{f(z)^{1/2}} \text{sinc} \left(\frac{\omega(z) - nh}{h} \right),
\]

(7.24)

where \(\nu(z) \) is given in (5.3), and where

\[
\omega(z) = \log \left(\frac{1 + z}{1 - z} \right),
\]

(7.25)

we can symbolically carry out the integrations with respect to \(\phi' \) in the equation resulting from (7.14), by using (7.17)–(7.22). Upon equating coefficients of \(e^{im\phi} \) in the resulting equations, we obtain

\[
\frac{1}{2} \eta Z \sum_{n} a_{mn} \theta_n + \nu \sum_{n=\pm N} P^{mn} a_{mn} + Q^{mn} b_{mn} = -\sum_{n=\pm N} m a_{mn} \theta_n,
\]

(7.26)

\[
\frac{1}{2} \eta Z \sum_{n} b_{mn} \theta_n + \nu \sum_{n=\pm N} R^{mn} a_{mn} + S^{mn} b_{mn} = -\sum_{n=\pm N} m b_{mn} \theta_n,
\]

(7.26)

\[
m = -M, \quad -M + 1, \ldots, M.
\]
The coefficients P^{mn}, Q^{mn}, R^{mn} and S^{mn} depend on z', and are given by

\[
P^{mn} = \pi \int_{-1}^{1} \frac{\theta_n}{v} \left\{ G_{m+1} \left[\frac{i\omega f}{\alpha} + (m + 1) \eta Z + \frac{m(m + 1)}{i\omega \epsilon f} \right] \\
+ G_{m-1} \left[\frac{i\omega f}{\alpha} - (m - 1) \eta Z + \frac{m(m - 1)}{i\omega \epsilon f} \right] \\
+ G_{m+1}' \left[\eta Z f + \frac{m}{i\omega \epsilon} \right] \\
+ G_{m-1}' \left[\eta Z f - \frac{m}{i\omega \epsilon} \right] \\
- (G_{m+1}' + G_{m-1}') \eta Z f' \right\} dz,
\]

(7.27)

\[
Q^{mn} = \pi \int_{-1}^{1} \left[\frac{\theta_n}{v} \left\{ (G_{m+1} - G_{m-1}) \frac{\omega f f'}{\alpha} - (G_{m+1}^z - G_{m-1}^z) \frac{\eta Z f}{i\alpha} \right\} \\
+ \left(\frac{f_0 n}{v} \right)^2 \left\{ - \frac{1}{\omega \epsilon f} \left[(m + 1) G_{m+1} + (m - 1) G_{m-1} \right] \\
- \frac{1}{\omega \epsilon} (G_{m+1}' - G_{m-1}') \right\} dz,
\]

(7.28)

\[
R^{mn} = \pi \int_{-1}^{1} \frac{\theta_n}{v} \left\{ G_{m+1}^z \alpha f^{*z} \left[\frac{-\omega f}{\alpha} + i(m + 1) \eta Z + \frac{m(m + 1)}{\omega \epsilon f} \right] \\
+ G_{m-1}^z \alpha f^{*z} \left[\frac{\omega f}{\alpha} + i(m - 1) \eta Z - \frac{m(m - 1)}{\omega \epsilon f} \right] \\
+ G_{m+1} \alpha^{*z} \left[-2i mf' \eta Z \right] \\
+ G_{m+1}' \alpha f^{*z} \left[\frac{-\eta Z f}{i} + \frac{m}{\omega \epsilon} \right] \\
+ G_{m-1}' \alpha f^{*z} \left[\frac{\eta Z f}{i} + \frac{m}{\omega \epsilon} \right] \\
+ \alpha^{*z} \frac{\eta Z f'}{i} \left[G_{m+1}^z - G_{m-1}^z \right] \\
+ \frac{2m \alpha^*}{\omega \epsilon f} G_{m}' \right\} dz,
\]

(7.29)
\[S^{mn} = \pi \int_{-1}^{1} \left[\left(\frac{\theta_n}{\nu} \right) \alpha^* f^{*r} i \omega tf'^r | G_{m+1} + G_{m-1} | + 2 \alpha^* i \omega tf_m \right. \\
+ 2 \eta \frac{Z f^* a^*}{a} G_m' - \eta \frac{Z f^* f'^r}{a} | G_{m+1}^2 + G_{m-1}^2 | \\
\left. + \left(\frac{f n}{\nu} \right) \frac{\alpha^* f^{*r}}{i \omega t} | (m + 1) G_{m+1} - (m - 1) G_{m-1} | \right. \\
\left. + \frac{\alpha^* f^{*r}}{i \omega t} | G_{m+1}^2 + G_{m-1}^2 | \\
+ \frac{2 \alpha^*}{i \omega t} | G_m^2 | \right] dz. \]

In these equations \(f^{*r} = f'(z') \), \(a^* = [1 + (f^{*r})^2]^{-1/2} \). Next, setting \(z' = z = \tanh(\theta l/2) \) in (7.26) and using the relations
\[
\theta_n(z_l) = 0 \quad \text{if} \quad n \neq l \\
= v(z_l)/f^{1/2}(z_l) \quad \text{if} \quad n = l
\]
we arrive at the system
\[
\frac{1}{2} \eta Z a_m + f^{1/2}(z_l) \sum_{n=-N}^{N} \left[P_l^{mn} a_m + Q_l^{mn} b_m \right] = -\alpha_m, \\
\frac{1}{2} \eta Z b_m + f^{1/2}(z_l) \sum_{n=-N}^{N} \left[R_l^{mn} a_m + S_l^{mn} b_m \right] = -\beta_m,
\]
where we have used the notation
\[
P_l^{mn} = P^{mn}(z_l), \quad Q_l^{mn} = Q^{mn}(z_l), \\
R_l^{mn} = R^{mn}(z_l), \quad S_l^{mn} = S^{mn}(z_l).
\]

System (7.32) is a block diagonal system of the form
\[
\begin{bmatrix}
B_{-M} & & & \\
& B_{-M+1} & & \\
& & \ddots & \\
& & & B_M
\end{bmatrix}
\begin{bmatrix}
\tilde{a}_{-M} \\
\tilde{a}_{-M+1} \\
\vdots \\
\tilde{a}_M
\end{bmatrix}
=
\begin{bmatrix}
\tilde{a}_{-M} \\
\tilde{a}_{-M+1} \\
\vdots \\
\tilde{a}_M
\end{bmatrix},
\]

where each \(B_m \) is a complex matrix of order \(2(2N+1) \), and (since \(G_{-m} = G_m \)) \(B_m = B_{-m} \). The \(m \)th system
\[
B_m \tilde{a}_m = \tilde{a}_m
\]
in (7.34) corresponds to all of the equations (7.32), for fixed m. Thus if we denote by A_i^{mn} the 2×2 matrix

$$A_i^{mn} = f^{1/2}(z_i) \begin{bmatrix} P_i^{mn} & Q_i^{mn} \\ R_i^{mn} & S_i^{mn} \end{bmatrix} + \frac{1}{2} \eta Z \delta_{ni} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

(7.36)

then

$$B_m = \begin{bmatrix} A_{m,-N} & A_{m,-N+1} & \cdots & A_{m,0} \\ A_{m,-N+1} & A_{m,-N+2} & \cdots & A_{m,1} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m,N} & A_{m,N-1} & \cdots & A_{m,N+1} \end{bmatrix}$$

(7.37)

and

$$\alpha_m = \begin{bmatrix} a_{m,-N} \\ b_{m,-N} \\ a_{m,-N+1} \\ b_{m,-N+1} \\ \vdots \\ a_{m,N} \\ b_{m,N} \end{bmatrix}, \quad \alpha_m = -\begin{bmatrix} a_{m,-N} \\ b_{m,-N} \\ a_{m,-N+1} \\ b_{m,-N+1} \\ \vdots \\ a_{m,N} \\ b_{m,N} \end{bmatrix}.$$

(7.38)

7(b) EVALUATION OF P^{mn}, Q^{mn}, R^{mn} AND S^{mn}

It is convenient to set

$$\theta_n^m = \gamma_n, \quad \left(\frac{\theta_n m}{\nu}\right)' = \delta_n.$$

(7.39)

The following integrals appear in (7.27)–(7.30).

$$I_{mn}^{(1)} = \int_{-1}^{1} \gamma_n (f(\alpha)) G_m dz, \quad I_{mn}^{(4)} = \int_{-1}^{1} \gamma_n f' G_m dz,$$

$$I_{mn}^{(2)} = \int_{-1}^{1} \gamma_n G_m dz \quad (m \neq 0), \quad I_{mn}^{(5)} = \int_{-1}^{1} \gamma_n f' G_m dz \quad (m \neq 0),$$

$$I_{mn}^{(3)} = \int_{-1}^{1} \left[\frac{\gamma_n}{(af')}\right] G_m dz \quad (m \neq 0), \quad I_{mn}^{(6)} = \int_{-1}^{1} \gamma_n f G_m dz,$$

$$J_{mn}^{(1)} = \int_{-1}^{1} \gamma_n f G_m^* dz, \quad K_{mn}^{(1)} = \int_{-1}^{1} \gamma_n f f' G_m^* dz,$$

$$J_{mn}^{(2)} = \int_{-1}^{1} \gamma_n (1/\alpha) G_m^* dz, \quad K_{mn}^{(2)} = \int_{-1}^{1} \gamma_n (1/\alpha) G_m^* dz \quad (m \neq 0),$$
\[J_{m_n}^{(3)} = \int_{-1}^{1} \gamma_n(f/\alpha) G_m^f \, dz, \quad K_{m_n}^{(3)} = \int_{-1}^{1} \gamma_n(f/\alpha) G_m^z \, dz, \]
\[L_{m_n}^{(1)} = \int_{-1}^{1} \delta_n(1/f) G_m^f \, dz \quad (m \neq 0), \]
\[M_{m_n}^{(1)} = \int_{-1}^{1} \delta_n G_m^f \, dz, \]
\[N_{m_n}^{(1)} = \int_{-1}^{1} \delta_n G_m^z \, dz. \quad (7.40) \]

Notations (7.40) enable us to express (7.29), (7.30) in the "more computable" form

\[
P_{mn} = \pi i \omega \mu (I_{m+1,n}^{(1)} + I_{m-1,n}^{(1)}) + \eta Z [(m + 1) I_{m+1,n}^{(2)} - (m - 1) I_{m-1,n}^{(2)}] + \frac{m}{\omega \epsilon} \left[(m + 1) I_{m+1,n}^{(3)} + (m - 1) I_{m-1,n}^{(3)} \right] + \eta Z \left(J_{m+1,n}^{(1)} + J_{m-1,n}^{(1)} - K_{m+1,n}^{(1)} - K_{m-1,n}^{(1)} \right) + \frac{m}{\omega \epsilon} \left(J_{m+1,n}^{(2)} - J_{m-1,n}^{(2)} \right), \quad (7.41)\]

\[
Q_{mn} = \pi \left\{ \omega \mu (I_{m+1,n}^{(4)} - I_{m-1,n}^{(4)}) - \frac{\eta Z}{i} \left(K_{m+1,n}^{(3)} - K_{m-1,n}^{(3)} \right) + \frac{1}{\omega \epsilon} \left[(m + 1) L_{m+1,n}^{(1)} + (m - 1) L_{m-1,n}^{(1)} + M_{m+1,n}^{(1)} - M_{m-1,n}^{(1)} \right] \right\}, \quad (7.42)\]

\[
R_{mn} = \pi \alpha^* \mu^* \left\{ -\omega \mu (I_{m+1,n}^{(1)} - I_{m-1,n}^{(1)}) + \eta Z \left(I_{m+1,n}^{(2)} + I_{m-1,n}^{(2)} \right) + \frac{m}{\omega \epsilon} \left[(m + 1) I_{m+1,n}^{(3)} - (m - 1) I_{m-1,n}^{(3)} \right] - \frac{2i\eta Z m}{f^*} I_{mn}^{(5)} \right\} - \frac{\eta Z}{i} \left(J_{m+1,n}^{(1)} - J_{m-1,n}^{(1)} - K_{m+1,n}^{(1)} + K_{m-1,n}^{(1)} \right) + \frac{m}{\omega \epsilon} \left(J_{m+1,n}^{(2)} + J_{m-1,n}^{(2)} \right) \frac{2}{f^*} K_{mn}^{(2)}, \quad (7.43)\]
and

\[S^{mn} = \pi \alpha f^{*'} \left\{ i \omega \mu (I_{m+1,n}^{(4)} + I_{m-1,n}^{(4)}) + \frac{2}{f^{*'}} J_{mn}^{(6)} \right. \]

\[- Z \left(K_{m+1,n}^{(4)} + K_{m-1,n}^{(4)} - \frac{2}{f^{*'}} J_{mn}^{(3)} \right) \]

\[+ \frac{1}{i \omega \varepsilon} \left[(m + 1) L_{m+1,n}^{(3)} - (m - 1) L_{m-1,n}^{(3)} \right. \]

\[+ M_{m+1,n}^{(4)} + M_{m-1,n}^{(4)} + \frac{2}{f^{*'}} N_{mn}^{(4)} \left. \right\} \] \tag{7.44}

Integrals (7.40) can be simultaneously evaluated for all \(m, n \) by evaluating the quantities \(f, f', \alpha = (1 + f'^2)^{-1/2}, f^{*'} \) and \(\alpha^* = (1 + f'^2)^{-1/2}, \theta_n \) \((n = -N, -N + 1, ..., N)\), \(G_m, G'_m, \) and \(G'_m \). In view of \((A.2) \), we set

\[a(z') = \frac{1}{4 \pi^2} \frac{1}{f(z')} \frac{1}{|1 + jz'^2|} \log \left(\frac{1 + z'}{1 - z'} \right), \] \tag{7.45}

\[\mu_s = \frac{z'e^{ish} - 1}{e^{ish} + 1}, \quad \nu_s = \frac{z'e^{ish} + 1}{e^{ish} + 1}. \] \tag{7.46}

Then by splitting the range of integration into an integral with respect to \(z \) from \(-1\) to \(z'\) plus an integral with respect to \(z \) from \(z'\) to \(1\), we use the formulas

\[\int_{-1}^{1} G_m(z, z') g(z) \, dz \approx h \sum_{s = -N}^{N} \frac{e^{ish}}{(1 + e^{ish})^2} \left\{ (1 + z') G_m(\mu_s) + (1 - z') G_m(\nu_s, z') g(\nu_s) \right\}, \] \tag{7.47}

\[\int_{-1}^{1} G'_m(z, z') g(z) \, dz \approx h \sum_{s = -N}^{N} \frac{e^{ish}}{(1 + e^{ish})^2} \left\{ (1 + z') G'_m(\mu_s, z') g(\mu_s) + (1 - z') G'_m(\nu_s, z') g(\nu_s) \right\} \]

\[+ f'(z') a(z') g(z'), \] \tag{7.48}
\[\int_{-1}^{1} G_m^\varepsilon(z, z') g(z) \, dz \]
\[\approx h \sum_{s=-N}^{N} \frac{e^{sh}}{(1 + e^{sh})^2} \times \{ (1 + z') G_m^\varepsilon(\mu_s, z') g(\mu_s) + (1 - z') G_m^\varepsilon(v_s, z') g(v_s) \} \]
\[+ a(z') g(z'). \quad (7.49) \]

to approximate the various integrals (7.40).

In (7.47), (7.48) and (7.49), \(g \) is a suitable analytic factor of \(G_m, G'_m \) or \(G''_m \), as dictated by (7.40). The additional terms in (7.48) and (7.49) arise as a consequence of the identity
\[1 + z + z' + z' = 0. \quad (7.50) \]
whereas, if the formula used in (7.47) is used to approximate this singular integral, one has the identity
\[h \sum_{s=-N}^{N} \frac{e^{sh}}{(1 + e^{sh})^2} \left\{ \frac{1 + z'}{\mu_s + z'} + \frac{1 - z'}{v_s - z'} \right\} = 0. \quad (7.51) \]

That is, whereas formula (7.47) is accurate for evaluating
\[\int_{-1}^{1} g(z) \, dz, \quad \int_{-1}^{1} g(z) \log |z - z'| \, dz, \quad (7.52) \]
where \(g \) is analytic on \((-1, 1)\), when applied to the approximation of
\[I = P.V. \int_{-1}^{1} \frac{g(z)}{z - z'} \, dz \]
\[= \int_{-1}^{1} \frac{g(z) - g(z')}{z - z'} \, dz + g(z') P.V. \int_{-1}^{1} \frac{dz}{z - z'} \quad (7.53) \]
it yields an accurate approximation to
\[\int_{-1}^{1} \frac{g(z) - g(z')}{z - z'} \, dz. \quad (7.54) \]
8. APPROXIMATION OF THE SCATTERED FIELD

The scattered field \(\mathbf{E}^s \) is expressed in terms of \(\mathcal{K} \) by means of integral (4.7). Once \(\mathcal{F} \) has been obtained by means of Section 7, we form an approximation \(\tilde{\mathcal{F}} \) of \(\mathcal{K} \) by means of the equation (see Eq. (7.1))

\[
\tilde{\mathcal{F}} = \tilde{\mathcal{F}}(z, \varphi) = (1/\nu(z)) \mathcal{F}(z, \varphi),
\]

and we substitute \(\tilde{\mathcal{F}} \) for \(\mathcal{K} \) in (4.7) to get an expression for an approximation \(\tilde{\mathbf{E}}^s \) of \(\mathbf{E}^s \). In this section we shall give a detailed description of the evaluation of \(\tilde{\mathbf{E}}^s \).

We shall approximate \(\tilde{\mathcal{F}}(\mathbf{r}) \) for

\[
\tilde{\mathcal{F}} = \rho \cos \theta \mathbf{x}' + \rho \sin \theta \mathbf{y}' + z' \mathbf{z}',
\]

where \(\rho > f(z') \). If \(\rho \) is close to \(f(z) \), i.e., if \(\rho \) is close to the surface (say, \(|\rho - S| \leq 0.2 \) if \(N = 10 \)) then we recommend that the integration methods of Section 7 be used to evaluate the integrals. This would involve splitting the integrals from \(-1\) to \(1\) into integrals from \(-1\) to \(z'\) and from \(z'\) to \(1\), as in (7.47). For the sake of simplicity, we shall describe an algorithm for evaluating \(\tilde{\mathbf{E}}^s \), which is valid if \(\rho \) is not arbitrarily close to \(S \) (say, \(|\rho - S| > 0.2 \) if \(N \geq 10 \)). In this latter case it is convenient to integrate by parts in the integrals with respect to \(z \) which involve \(\theta_n \), so that the resulting integrals involve \(\theta_n \). This latter procedure enables us to avoid numerical integration, by means of the approximation

\[
\int_{-1}^{1} H(z) \omega(z) \, dz \approx h \frac{H(z_n)}{f^{1/2}(z_n) \omega'(z_n)},
\]

which we know to be accurate, by Theorem 5.2, where \(\omega_n = \theta_n/\nu \). See Fig. 8.1

![Figure 8.1](image-url)
Using (4.7), the scattered field may be expressed in the form

\[E_x^s(r) = E_x^s \hat{x} + E_y^s \hat{y} + E_z^s \hat{z}, \quad (8.4) \]

where \(E_x^s, E_y^s \) and \(E_z^s \) are scalar quantities. Upon substituting approximation (7.4) into (4.7) we get

\[E_x^s \approx \sum_{m,n} \left[a_{mn} P_{mn} + b_{mn} Q_{mn} \right], \quad (8.5) \]

\[E_y^s \approx \sum_{m,n} \left[a_{mn} R_{mn} + b_{mn} S_{mn} \right], \quad (8.6) \]

\[E_z^s \approx \sum_{m,n} \left[a_{mn} T_{mn} + b_{mn} U_{mn} \right]. \quad (8.7) \]

Relations (7.7)–(7.11) and (7.15)–(7.22) enable us to obtain explicit expression for \(P_{mn}, \ldots, U_{mn} \). Setting

\[\omega_n = \omega_n(z) = \frac{\theta_n(z)}{v(z)}, \quad (8.8) \]

we get

\[\mathcal{G}_s = \int_{-\infty}^{\infty} \int_{0}^{2\pi} \left\{ \frac{i \omega \mu}{\alpha} G \sum_{m,n} \left[a_{mn}(-\sin \varphi \hat{x} + \cos \varphi \hat{y}) \right. \right. \]

\[+ b_{mn}(f'\alpha \cos \varphi \hat{x} + f'\alpha \sin \varphi \hat{y} + \hat{z}) \left. \right] e^{i m \omega \varphi} \left. \right. \]

\[+ \eta Z \sum_{m,n} \left[a_{mn} f(G' - f'G^2)(-\sin \varphi \hat{x} + \cos \varphi \hat{y}) \right. \right. \]

\[+ b_{mn} f(G' - f'G^2)(f'\alpha \cos \varphi \hat{x} + f'\alpha \sin \varphi \hat{y} + \hat{z}) \]

\[- \left\{ a_{mn} \frac{1}{\alpha} G^2(\alpha \cos \varphi \hat{x} + \alpha \sin \varphi \hat{y} - f'\hat{z}) \right. \right. \]

\[+ b_{mn} f(f'G^2 + G^2)(\alpha \cos \varphi \hat{x} + \alpha \sin \varphi \hat{y} - f'\hat{z}) \left. \right\} e^{i m \omega \varphi} \left. \right. \]

\[+ \frac{1}{i \omega \varepsilon} \left\{ \frac{1}{\alpha f} G^2(-\sin \varphi \hat{x} + \cos \varphi \hat{y}) \right. \right. \]

\[+ (f'G^2 + G^2)(f'\alpha \cos \varphi \hat{x} + f'\alpha \sin \varphi \hat{y} + \hat{z}) \]

\[+ (G' - f'G^2)(\alpha \cos \varphi \hat{x} + \alpha \sin \varphi \hat{y} - f'\hat{z}) \left. \right\} \]

\[\cdot \sum_{m,n} \left[a_{mn} m \omega n + ab_{mn}(f \omega n \gamma) \right] e^{i m \omega \varphi} \] \[d\varphi \, dz. \quad (8.9) \]
Here \(G = e^{ik_b \eta}/4\pi R \); \(R = \{(z - z')^2 + f^2 + \rho^2 - 2f'\rho \cos(\varphi - \varphi')\}^{1/2} \). Collecting coefficients as indicated in (8.5)–(8.7), we get

\[
P_{mn} = \pi e^{im\phi} \int_{-1}^{1} \left\{ \frac{-\omega \mu f}{\alpha} \left[e^{i\phi} G_{m+1} - e^{-i\phi} G_{m-1} \right] \\ + i\eta Z \left[f \left((G_{m+1}^f - f' G_{m+1}^z) e^{i\phi} - (G_{m-1}^f - f' G_{m-1}^z) e^{-i\phi} \right) \\ + (m + 1) e^{i\phi} G_{m+1} + (m - 1) e^{-i\phi} G_{m-1} \right] \right\} \omega_n \, dz; \quad (8.10)
\]

\[
Q_{mn} = \pi e^{im\phi} \int_{-1}^{1} \left\{ i\omega \mu f' \left[e^{i\phi} G_{m+1} - e^{-i\phi} G_{m-1} \right] \\ - \frac{\eta Z f}{\alpha} \left[e^{i\phi} G_{m+1}^z + e^{-i\phi} G_{m-1}^z \right] \right\} \omega_n \, dz; \quad (8.11)
\]

\[
R_{mn} = \pi e^{im\phi} \int_{-1}^{1} \left\{ \frac{i\omega \mu f}{\alpha} \left(e^{i\phi} G_{m+1} + e^{-i\phi} G_{m-1} \right) \\ + \frac{1}{\omega \epsilon} \left[\frac{1}{f} \left((m + 1) e^{i\phi} G_{m+1} + (m - 1) e^{-i\phi} G_{m-1} \right) \right] \right\} \omega_n \, dz; \quad (8.12)
\]

\[
S_{mn} = \pi e^{im\phi} \int_{-1}^{1} \left\{ \omega \mu f' \left(e^{i\phi} G_{m+1} - e^{-i\phi} G_{m-1} \right) \\ + \frac{i\eta Z f}{\alpha} \left[e^{i\phi} G_{m+1}^z - e^{-i\phi} G_{m-1}^z \right] \right\} \omega_n \, dz; \quad (8.13)
\]
\[T_{mn} = -2\pi m e^{im\phi} \int_{-1}^{1} \left\{ \frac{i\eta Z f'}{G_m} - \frac{1}{\omega \alpha} G_m \right\} \omega_n \, dz; \quad (8.14) \]

\[U_{mn} = 2\pi e^{im\phi} \int_{-1}^{1} \left\{ i\omega f G_m + \frac{\eta Z f'}{\alpha} G_m \right\} \omega_n \\
+ \frac{1}{i\omega \varepsilon} G_m^\prime (f\omega_n) \right\} \right\} \, dz. \quad (8.15) \]

Let us next eliminate the \((f\omega_n)\) terms which appear in \(Q_{mn}, S_{mn}\) and \(U_{mn}\) above. Setting

\[\mathcal{I}_{mn} = \int_{-1}^{1} \left(\frac{1}{f} G_m \right) (f\omega_n) \, dz \quad (8.16) \]

we have, upon integration by parts,

\[\mathcal{I}_{mn} = \frac{1}{f} \left. G_m f\omega_n \right|_{-1}^{1} - \int_{-1}^{1} \left(\frac{1}{f} G_m \right)' f\omega_n \, dz. \quad (8.17) \]

Under the assumption made on \(S\) in Section 1, \(\bar{K}\) is bounded on \(S\), and therefore it follows, upon replacing \(\omega_n\) by \(\bar{K}\) in (8.15), that the first term on the right-hand side of (8.15) vanishes, provided that \(m \neq 0\) (see (A.1)). However, inspection of \(Q_{mn}\) and \(S_{mn}\) shows that we need never evaluate \(\mathcal{I}_{mn}\) if \(m = 0\). Thus

\[\mathcal{I}_{mn} = \int_{-1}^{1} \left. f' G_m \omega_n \right|_{-1}^{1} - \int_{-1}^{1} G_m' \omega_n \, dz, \quad m \geq 1, \quad (8.18) \]

where \(G_m' = dG_m/dz\).

Similarly, we have, for all \(m \geq 0,

\[K_{mn} = \int_{-1}^{1} G_m' (f\omega_n)' \, dz = -\int_{-1}^{1} (G_m)' f\omega_n \, dz \quad (8.19) \]

and

\[L_{mn} = \int_{-1}^{1} G_m' (f\omega_n)' \, dz = -\int_{-1}^{1} (G_m^\prime)' f\omega_n \, dz, \quad (8.20) \]

these being the only remaining terms requiring integration by parts in (8.10)–(8.15).
Hence, we make the definitions

\[I_{mn}^1 = \int_{-1}^{1} \frac{f}{\alpha} G_m \omega_n \, dz, \ m \geq 0; \]
\[J_{mn}^2 = \int_{-1}^{1} \frac{1}{\alpha} G_m^f \omega_n \, dz, \ m \geq 0; \]
\[I_{mn}^3 = \int_{-1}^{1} \frac{1}{\alpha} G_m \omega_n \, dz, \ m \geq 1; \]
\[J_{mn}^4 = \int_{-1}^{1} \frac{1}{\alpha} G_m^f \omega_n \, dz, \ m \geq 0; \]
\[I_{mn}^5 = \int_{-1}^{1} \frac{1}{\alpha} G_m \omega_n \, dz, \ m \geq 1; \]
\[J_{mn}^6 = \int_{-1}^{1} \frac{1}{\alpha} G_m^f \omega_n \, dz, \ m \geq 1; \]
\[I_{mn}^7 = \int_{-1}^{1} \frac{1}{\alpha} G_m \omega_n \, dz, \ m \geq 0; \]
\[J_{mn}^8 = \int_{-1}^{1} \frac{1}{\alpha} G_m^f \omega_n \, dz, \ m \geq 0. \]

Some of the quantities in (8.21) are not required for \(m = 0 \), since their coefficient in (8.10)-(8.15) is zero. In some cases this is fortunate, since some of the above integrals do not exist when \(m \) is taken to be zero. In terms of the above integrals (8.21) we may express terms (8.10)-(8.15) as follows.

\[P_{mn} = \pi e^{i m \phi} \left\{ -\omega \mu \left[e^{i \phi} I_{m+1,n}^{1} - e^{-i \phi} I_{m-1,n}^{1} \right] \right. \]
\[+ i \eta Z \left[e^{i \phi} (I_{m+1,n}^{1} - K_{m+1,n}^{1}) - e^{-i \phi} (I_{m-1,n}^{1} - K_{m-1,n}^{1}) \right] \]
\[+ (m + 1) e^{i \phi} I_{m+1,n}^{2} + (m - 1) e^{-i \phi} I_{m-1,n}^{2} \]
\[+ \frac{m}{\omega \epsilon} \left[(m + 1) e^{i \phi} I_{m+1,n}^{3} - (m - 1) e^{i \phi} I_{m-1,n}^{3} \right. \]
\[\left. + e^{i \phi} J_{m+1,n}^{2} + e^{-i \phi} J_{m-1,n}^{2} \right\}; \]

(8.22)
Each of the integrals (8.21) may now be accurately evaluated using the one-term formula (8.3), provided that \(F' \) is not unduly close to \(S \). We shall assume this to be the case. We shall, however, require \(G_m, G'_m, G''_m, dG_m/dz, dG'_m/dz \) and \(dG''_m/dz \) in order to evaluate integrals (8.21). Let us now describe the evaluation of these quantities.
To this end, let us set

\[c_j = \cos \left[\frac{2j - 2}{4N + 2} \pi \right], \]

\[\rho_j = \{(z - z')^2 + \rho^2 + f^2 - 2fp c_j\}^{1/2}, \]

\[\alpha_j = \frac{\partial \rho_j}{\partial \zeta} = \frac{z - z'}{\rho_j}, \]

\[\beta_j = \frac{\partial \rho_j}{\partial f} = \frac{f - \rho c_j}{\rho_j}, \]

\[\gamma_j = \frac{d \rho_j}{dz} = \alpha_j + f' \beta_j, \]

\[\delta_j = \frac{d}{dz} \alpha_j = \frac{1 - \alpha_j \gamma_j}{\rho_j}, \]

\[\epsilon_j = \frac{d}{dz} \beta_j = \frac{f' - \beta_j \gamma_j}{\rho_j}, \]

\[\omega_j = \frac{\frac{ik_0}{\rho_j} - \frac{1}{\rho_j^2}}, \]

\[\theta_j = \frac{-ik_0}{\rho_j^2} + \frac{2}{\rho_j^3}, \]

\[G_j^* = \frac{e^{ik_0 \phi_j}}{\rho_j}. \]

The relations

\[R = \{(z - z')^2 + \rho^2 + f^2 - 2fp \cos \theta\}^{1/2}, \]

\[G^* = \frac{e^{ik_0 R}}{R}, \]

\[G_m = \frac{1}{4\pi^2} \int_0^\pi G^* \cos m\theta \, d\theta, \]

\[\frac{dG_m}{dz} = \frac{1}{4\pi^2} \int_0^\pi \left(\frac{ik_0}{R} - \frac{1}{R^2} \right) \frac{dR}{dz} G^* \cos m\theta \, d\theta, \]

\[G'_m = \frac{\partial G_m}{\partial f} = \frac{1}{4\pi^2} \int_0^\pi \left(\frac{ik_0}{R} - \frac{1}{R^2} \right) R'G^* \cos m\theta \, d\theta, \]

\[G''_m = \frac{\partial G_m}{\partial z} = \frac{1}{4\pi^2} \int_0^\pi \left(\frac{ik_0}{R} - \frac{1}{R^2} \right) R'^2G^* \cos m\theta \, d\theta, \]
then show that given \(z, z' \) and \(\rho \), we can evaluate the six quantities referred to in the title of his section, for \(m = 0, 1, \ldots, M + 1 \) by means of the following algorithm.

Algorithm 8.1—Evaluation of \(G_m, G'_m, G''_m, (G'_m)', (G''_m)' \)

1. Evaluate each of the quantities \((8.28) \) for \(j = 1, 2, \ldots, 2N+2 \) as well as \(f = f(z) \) and \(f' = f'(z) \).
2. \((G_m, G'_m, G''_m, (G'_m)', (G''_m)') \) \(\leftarrow \) \((0, 0, 0, 0, 0) \).

\[
\begin{align*}
 &j \leftarrow 1 \\
 &d_0 \leftarrow 1 \\
 &d_1 \leftarrow c_j \\
 &d_m \leftarrow 2c_jd_{m-1} - d_{m-2}, \quad m = 2, 3, \ldots, M + 1 \\
 &G_m \leftarrow G_m + \frac{G_j}{d_m} \\
 &G'_m \leftarrow G'_m + \omega_j \beta_j G_j^* d_m \\
 &G''_m \leftarrow G''_m + \omega_j \alpha_j G_j^* d_m \\
 &G_m' \leftarrow G_m' + \omega_j \gamma_j G_j^* d_m \\
 &G'_m' \leftarrow (G'_m)' + [(\theta_j + \omega_j^3) \beta_j \gamma_j + \omega_j \varepsilon_j] G_j^* d_m \\
 &G''_m' \leftarrow (G''_m)' + [(\theta_j + \omega_j^3) \alpha_j \gamma_j + \omega_j \delta_j] G_j^* d_m \\
 &j : 2N + 2
\end{align*}
\]

(>) \((G_m, G'_m, G''_m, G'_m', (G''_m)') \) \(\leftarrow \frac{1}{4\pi(2N+2)} (G_m, G'_m, G''_m, G'_m', (G''_m)') \)
9. Convergence

The proof of the convergence of the approximation scheme presented in Sections 6 to 8 is quite simple, using Theorem A.1 and the results of Section 5.

Let us denote the right-hand side of (A.36) by A_lJ and, for $F \in H(d,d')$, let us denote l_{MN} by $P_{MN}(F)$, where $l_{MN}(z,\varphi)$ is defined in (5.5).

In view of Theorem A.1, and Section 5, we have

(a) $\|P_{MN} AJ - AJ\|_H \to 0$ for every $J \in H(d,d')$;
(b) $\|P_{MN} J^0 - J^0\|_H \to 0$;
(c) $\sup \|P_{MN}\| \leq 1 + \|I - P_{MN}\| < \infty$.

Hence according to [10, pp. 469-470] it follows that the approximation $\mathcal{F} = \mathcal{F}_{MN}$ produced by the algorithm of Sections 6 to 8 converges to the solution \mathcal{J} of Eq. (7.2). Moreover, by taking $N = M^2$, it follows that

$$\|\mathcal{J} - \mathcal{F}_{MN}\|_H = O(e^{-\gamma N^{1/2}})$$

(9.1)

for some $\gamma > 0$. Due to the quadratures and matrix solution involved in the actual algorithm we actually compute a perturbed solution \mathcal{F}_{MN}; however, due to the accuracy of the quadrature schemes described in Section 5, and since the resulting Galerkin matrix is not ill-conditioned, we also have

$$\|\mathcal{F}_{MN} - \mathcal{F}_{MN}\|_H = O(e^{-\gamma N^{1/2}}), \quad N \to \infty.$$

(9.2)

By combining (9.1) and (9.2), it thus follows that

$$\|\mathcal{J} - \mathcal{F}_{MN}\|_H = O(e^{-\gamma N^{1/2}}), \quad N \to \infty.$$

(9.3)

Finally, in computing the scattered field $\mathcal{E}^s = \mathcal{E}_{MN}$, as described in Section 8, we similarly have, by Theorem 5.2, that

$$\|\mathcal{E}^s - \mathcal{E}_{MN}\|_H = O(e^{-\gamma N^{1/2}}),$$

(9.4)

where \mathcal{E}_{MN} denotes the perturbed scattered field that we actually computed.

APPENDIX A: THE FUNCTIONS $G_m, \partial G_m/\partial f$ AND $\partial G_m/\partial z$.

In this Appendix we study the functions G_m, $G'_m - \partial G_m/\partial f$ and $G''_m = \partial G_m/\partial z$ which appear in Section 7 to 10. The results of this study will enable us to deduce the following:

(i) Each component of the solution \mathcal{J} of Eq. (7.2) is in $H(d,d')$.

409/78/2-14
(ii) If $m \geqslant 0$,
\[
G_m(z, z') = O(|f(z)|^m),
\]
\[
G'_m(z, z') = \begin{cases}
O(1) & \text{if } m = 0, \\
O(|f(z)|^{m-1}) & m > 0,
\end{cases}
\]
as $z \to \pm 1, z' \in (-1, 1)$;
\[
G''_m(z, z') = O(|f(z)|^m)
\]
and
\[
G_m(z, z') \sim \frac{1}{4\pi^2 f(z')} \log \frac{1}{|z - z'|},
\]
\[
G'_m(z, z') \sim \frac{-f'(z') \alpha(z')^2}{4\pi^2 f(z')(z - z')}, \quad \text{as } z \to z', z' \in (-1, 1).
\]
\[
G''_m(z, z') \sim \frac{-\alpha(z')^2}{4\pi^2 f(z')(z - z')}
\]

Results (A.1) proved to be useful for choosing the basis functions, in order to be able to obtain a convergent Galerkin method, while results (A.2) enabled us to choose the proper numerical integration technique for evaluating the singular integrals to get the coefficients P^{mn}, Q^{mn}, R^{mn} and S^{mn} in Sections 7–8.

Throughout this Appendix, the following notation is used:

\[
f = f(z), \quad f^* = f(z'),
\]
\[
v = \{(z - z')^2 + \alpha f^* \cos \theta \}^{1/2},
\]
\[
\kappa = \frac{4f^*}{v^2},
\]
\[
1 - \kappa = \frac{(f - f^*)^2 + (z - z')^2}{v^2}.
\]

(a) The functions G_m

The functions G_m (see Eqs. (7.16) and (7.17)) are defined given z, z' on $(-1, 1)$ by

\[
G_m = G_m(z, z') = \frac{1}{4\pi^2} \int_0^{\pi} \frac{e^{ik\theta R}}{R} \cos(m\theta) \, d\theta,
\]
where

\[
R = \{(z - z')^2 + f^2 + f'^2 - 2ff^* \cos \theta \}^{1/2}.
\]
In terms of (A.3), we therefore have

\[
R = v \left\{ \frac{1 - \kappa \cos^2 \theta}{2} \right\}^{1/2},
\]

\[
G_m = \frac{1}{2\pi^2} \int_0^{\pi/2} \frac{\sin \theta}{\sqrt{\nu(1 - \kappa \cos^2 \theta)}} \cos(2m\theta) d\theta.
\]

Expansion of the exponential in (A.6) and termwise integration yields

\[
G_m = \frac{1}{2\pi^2} \sum_{s=0}^{\infty} \frac{(-1)^s \nu^{2s} k_0^{2s}}{(2s)!} \left\{ \frac{J^s_m}{\nu} + i \frac{k_0 K^s_m}{2s + 1} \right\},
\]

where

\[
J^s_m = \int_0^{\pi/2} \{1 - \kappa \cos^2 \theta\}^s \cos(2m\theta) d\theta,
\]

\[
K^s_m = \int_0^{\pi/2} \{1 - \kappa \cos^2 \theta\}^s \cos(2m\theta) d\theta.
\]

The relationship

\[
\{1 - \kappa \cos^2 \theta\}^a \cos(2m\theta)
\]

\[
= \{1 - \kappa \cos^2 \theta\}^{a-1} \times \left[\left(1 - \frac{\kappa}{2}\right) \cos(2m\theta) - \frac{\kappa}{4} \cos(2m + 2)\theta - \frac{\kappa}{4} \cos(2m - 2)\theta \right]
\]

shows that

\[
J^s_m = \left(1 - \frac{\kappa}{2}\right) J^{s-1}_m - \frac{\kappa}{4} J^{s+1}_m + \frac{\kappa}{4} J^{s-1}_m,
\]

\[
K^s_m = \left(1 - \frac{\kappa}{2}\right) K^{s-1}_m - \frac{\kappa}{4} K^{s+1}_m + \frac{\kappa}{4} K^{s-1}_m,
\]

whereas, by (A.8),

\[
J^s_{-m} = J^s_m, \quad K^s_{-m} = K^s_m.
\]

Relationships (A.10) show that in order to evaluate \(G_m\) using (A.7), we need only know \(J^0_m\) and \(K^0_m\) for \(m = 0, \pm 1, \pm 2, \ldots\); we can then get the remaining \(J^s_m\) and \(K^s_m\) for \(s > 0\) using (A.10). To this end, integrating termwise (A.8) and using the identity

\[
\int_0^{\pi/2} \cos^{2n} \theta \cos(2m\theta) d\theta = \left(\frac{2n}{n + m}\right) \frac{\pi}{2^{2n+1}}
\]
we get

\[
J_0^m = \pi \left(\frac{1}{2} \right)_m \kappa^m F \left(\frac{1}{2} + m, \frac{1}{2} + m; 1 + 2m; \kappa \right),
\]

(A.13)

\[
\kappa_0^m = \pi/2 \quad \text{if} \quad m = 0,
\]

\[
= 0 \quad \text{if} \quad m \neq 0.
\]

In (A.13), \(F \) denotes the hypergeometric function. Thus we may compute \(J_0^m \) for \(0 \leq \kappa \leq 0.6 \) by means of the formula

\[
J_0^m = \pi \left(\frac{1}{2} \right)_m \kappa^m \sum_{n=0}^{\infty} \frac{\left(\frac{1}{2} + m \right)_n^2}{n!} (1 + 2m)^n \kappa^n
\]

(A.14)

whereas, if \(0.6 < \kappa < 1 \) (see [1, p. 559]) it is preferable to use the formula

\[
J_0^m = \kappa^m \sum_{n=0}^{\infty} \frac{\left(\frac{1}{2} + m \right)_n^2}{n!} \psi(n + 1) - \psi \left(\frac{1}{2} + m + n \right) - \frac{1}{2} \ln(1 - \kappa) \right] (1 - \kappa)^n.
\]

(A.15)

where

\[
\psi(1) = -\gamma = -0.5772156649,
\]

\[
\psi(\frac{1}{2}) = -\gamma - 2 \ln 2 = -1.963510026,
\]

\[
\psi(z + 1) = 1/z + \psi(z).
\]

Equation (A.15) shows that

\[
J_0^m \sim -\frac{1}{2} \ln(1 - \kappa) \quad \text{as} \quad \kappa \to 1^-.
\]

(A.17)

Now, by (A.3)

\[
1 - \kappa = \frac{v^2 - 4ff^*}{v^2} = \frac{(z - z')^2 + (f - f^*)^2}{v^2}
\]

\[
\sim \frac{[1 + f^*z']^2}{4f^*z^2} (z - z')^2 \quad \text{as} \quad z \to z'.
\]

(A.18)

so that, by combining (A.17) and (A.18), we get

\[
J_0^m \sim \ln \left[\frac{2f^*}{(1 + f^*z')^{1/2}} \frac{1}{|z - z'|} \right], \quad z \to z'.
\]

(A.19)
Using induction on (A.10), it thus follows that

\[J_m \sim 0 \quad \text{as} \quad z \to z', \quad s > 0. \]

(A.20)

In view of (A.7), (A.13), (A.19) and (A.20) it therefore follows that

\[G_m \sim \frac{1}{2\pi^2} \frac{J_m^0}{\nu} \sim \frac{1}{4\pi^2 f^*} \ln \left[\frac{2f^*}{(1 + f^* z' z)^{1/2}} \frac{1}{|z - z'|} \right] \quad \text{as} \quad z \to z', \]

(A.21)

which is the first of (A.2).

In view of (A.3), it follows that

\[\kappa = O(f) \quad \text{as} \quad z \to \pm 1, \]

(A.22)

for all \(z' \in [-1, 1] \). Hence by (A.13) and (A.14),

\[G_m = O(f|z|) \quad \text{as} \quad z \to \pm 1, \quad \text{for all} \quad z \in [-1, 1]. \]

(A.23)

(b) The functions \(G'_m, G''_m \)

Upon differentiating expressions (A.3) we get

\[v' \equiv \frac{\partial v}{\partial f} = \frac{f + f^*}{\nu}, \]

\[v' = \frac{\partial v}{\partial z} = \frac{z - z'}{\nu}, \]

\[\kappa' = \frac{\partial \kappa}{\partial f} = \frac{4f^* - 8ff^*(f + f^*)}{\nu^2}, \]

\[\kappa' = \frac{\partial \kappa}{\partial z} = -\frac{8ff^*(z - z')}{\nu^3}. \]

(A.24)

We therefore note that

\[2v' + \nu \frac{\kappa'}{\kappa} = \frac{v}{f}, \]

\[2v' + \nu \frac{\kappa'}{\kappa} = 0. \]

(A.25)
By means of these solutions as well as (A.10), we get the identities

\[G'_m = \frac{\partial G_m}{\partial f'} = \frac{1}{2\pi^2} \sum_{s=0}^{\infty} \left\{ \frac{(-1)^s v^{2s} k_0^{2s}}{(2s)!} \left[\frac{1}{f} J_m^s - \frac{\kappa'}{\kappa} J_m^{-s-1} \right] \right\} \]

(A.26)

and

\[G''_m = \frac{z - z'}{\pi^2 v^3} \sum_{s=0}^{\infty} \left\{ \frac{(-1)^s v^{2s} k_0^{2s}}{(2s)!} \right\} \times \left[\left(s - \frac{1}{2} \right) J_m^{-s-1} + \frac{-i v^2 k_0^3}{2(2s + 1)(2s + 3) K_m^s} \right] \]

(A.27)

These series may be readily computed using the identities

\[J_m^{-1} = \frac{\pi}{2} \left(\frac{3}{2} \right)_m \kappa^m 2^{-m} \Gamma \left(\frac{3}{2} + m; - \frac{1}{2} + m; 2m + 1; \kappa \right) \]

\[\sum_{n=0}^{\infty} \frac{\left(\frac{3}{2} + m \right)_n \left(\frac{1}{2} + m \right)_n}{(2m + 1)_n n!} \kappa^n, \quad 0 \leq \kappa \leq 0.6, \]

\[= \frac{\kappa^m}{1 - \kappa} + \frac{\kappa^m}{1 - \frac{1}{4}} \sum_{n=0}^{\infty} \frac{\left(\frac{3}{2} + m \right)_n \left(\frac{1}{2} + m \right)_n}{n! (n + 1)!} (1 - \kappa)^n \]

\[\left[\ln(1 - \kappa) + 2\psi \left(\frac{1}{2} + m + n \right) - 2\psi(n + 1) + \frac{1}{m + n + \frac{1}{2}} - \frac{1}{n + 1} \right] \]

if \(0.6 < \kappa < 1 \)

along with (A.10). These identities were obtained via a procedure similar to that used to get (A.14) and (A.15).

Expressions (A.26) to (A.28) enable us to deduce various growth properties of \(G'_m \) and \(G''_m \) as \(z \to z' \) and as \(z \to \pm 1 \).

By (A.28) and (A.3),

\[J_m^{-1} \sim \frac{\kappa^m}{1 - \kappa} \]

(A.29)

\[\sim \frac{4f^*\alpha^*}{(z - z')^2} \quad \text{as} \quad z \to z' \in (-1, 1) \]

and

\[J_m^{-1} = O(f^m) \quad \text{as} \quad z \to \pm 1. \]

(A.30)
Combining these results with the asymptotic identities

\[
\frac{\kappa^f}{\kappa} \sim \frac{f^*'(z - z')}{2f^*z^2}, \quad z \to z',
\]

\[
\sim \frac{1}{f}, \quad z \to \pm 1,
\]

(A.31)

and

\[
\frac{\kappa^z}{\kappa} \sim \frac{2f^*z^2(z - z')}{v^2}, \quad z \to z',
\]

\[
\kappa^z = O(f), \quad z \to \pm 1,
\]

(A.32)

we get

\[
G'_m \sim -\frac{1}{4\pi^2} \frac{f^*\alpha^*z^2}{f^*(z - z')}, \quad z \to z',
\]

(A.33)

\[
G^z_m \sim -\frac{1}{4\pi^2} \frac{\alpha^*z}{f^*(z - z')}, \quad z \to z'.
\]

Relation (A.10), (A.13), (A.26), (A.28) and (A.31) yield

\[
G'_m = O(1) \quad \text{if } m = 0 \quad \text{as } z \to \pm 1,
\]

(A.34)

\[
= O(f^{-m+1}) \quad \text{if } m > 0
\]

while relations (A.10), (A.13), (A.27), (A.28) and (A.32) yield

\[
G^z_m = O(f^m) \quad \text{as } z \to \pm 1.
\]

(A.35)

(c) Analyticity of \(\bar{K} \)

The above results show that

(i) \(G_m \) is bounded as a function of \(z \) on \([-1, 1]\), except at \(z = z' \), where it becomes unbounded according to (A.21);

(ii) \(G_m(z, z') \) is an analytic function of \(z \in \Omega_d \), except at \(z = z' \), where it has a singularity of the form (A.21).

In the following theorem \(H(d, d') \) is defined as in Section 5.

Theorem A.1. Let \(\bar{K} \) be the solution of Eq. (4.6), and let \(\bar{J} \) be defined by (7.1). Then each component of \(\bar{J} \) is in \(H(d, d') \).
Proof. Each component of the incident field \(\mathcal{J} \) (see Eq. (7.3)) is in \(H(d, d') \), where \(d' > 0 \) is arbitrary. In view of Eq. (7.2), we need only show that if \(J_i = (J_{1i}, J_{i0}) \) denotes a pair of functions in \(H(d, d') \), each of which is bounded on each of the sets

\[
S_1 = \{(z, \omega): z \in \Omega_d, |\omega| = 1\},
\]

\[
S_2 = \{(z, \omega): -1 \leq z \leq 1, 1/d' \leq |\omega| \leq d'\},
\]

where \(d' > 1 \) is arbitrary, then each of the components of

\[
J_2 = (J_{2i}, J_{20})
\]

\[
= \left\{ \int_S \left[\frac{i\omega u}{v} \vec{J}_i G + \eta \frac{Z}{v} (n \times \vec{J}_i) \times \nabla G
\right. \\
+ \left. \frac{1}{i\omega} \nabla \cdot \left(\frac{1}{v} \vec{J}_i \right) \nabla G \right] dS \right\}_{\tan} \tag{A.36}
\]

is in \(H(d, d') \).

By our assumption on \(f \) in Section 3, the solution \(\vec{K} = (K_1, K_2) \) of Eq. (4.2) is bounded on \(\mathcal{S} = [-1, 1] \times [0, 2\pi] \). Hence for \(z \in [-1, 1] \), each component of \(\vec{J}_1 \) has the form

\[
F(z, e^{i\omega}) = \sum_{-\infty}^{\infty} a_m(z) e^{im\omega}, \tag{A.37}
\]

where \(a_m/\nu \in H(\Omega_d) \); substituting this form of an expression into (A.36) for \(J_{1i} \) and \(J_{10} \) and noting that \(a_m/\nu = O(e^{-d'|z|}) \) \(\forall z \in [-1, 1] \) and for all \(d' > 0 \), we deduce, by inspection of (7.27)–(7.30) and (A.1) and (A.2) that \(|P^{mn}|, |Q^{mn}|, |R^{mn}| \) and \(|S^{mn}| \) are \(O(e^{-d'|z|}) \) for all \(d' > 0 \) and for all \(z \in [-1, 1] \).

That is, \(F(z, \omega) \in H(\Omega_d) \) as a function of \(\omega \), for all \(z \in [-1, 1] \).

Hence in order to complete the proof, we need only show that if \(\theta_n/\nu \in H(\Omega_d) \), then each of the right-hand sides of (7.27)–(7.30) is in \(H(\Omega_d) \).

In view of the results of parts (a) and (b) of Appendix A, the coefficients of \(\theta_n/\nu \) in the integrals (7.27)–(7.30) are of the following three types:

\[
a(z, z'), \quad a(z, z') \log |z - z'|, \quad a(z, z')/(z - z'),
\]

where \(a(z, z') \) is a bounded function in \(H(\Omega_d) \times H(\Omega_d) \). Hence, we need only show that given \(g \in H(\Omega_d) \), each of the functions \(g_1, g_2, \) and \(g_3 \), are analytic in \(\Omega_d \), where
\[g_1(z') = \int_{-1}^{1} a(z, z') g(z) \, dz; \]
\[g_2(z') = \int_{-1}^{1} a(z, z') \log|z - z'| g(z) \, dz; \tag{A.38} \]
\[g_3(z') = P.V. \int_{-1}^{1} \frac{a(z, z')}{z - z'} g(z) \, dz. \]

It is obvious that \(g_1 \in H(\Omega_d) \).

Next, if \(z' \in \Omega_d \cap \{\text{Im} \, z' > 0\} \) then \([11]\)
\[g_3^*(z') = \pi i a(z', z') g(z') + \pi i g_3(z'); \tag{A.39} \]
is analytic in this region, and indeed, by altering the path of integration in (A.39) to the lower boundary of \(\Omega_d \), we see that \(g_3^* \) is in fact analytic in \(\Omega_d \).

If we now return the path of integration to the interval \((-1, 1)\) and let \(\text{Im} \, z' \to 0 \), we find that for \(z' \in (-1, 1) \),
\[g_3^*(z') = \pi i a(z', z') g(z') + \pi i g_3(z'); \tag{A.40} \]
this expression shows that since both \(g_3^*(z') \) and \(\alpha(z', z') \) have an analytic extension into \(\Omega_d \), so does \(g_3 \). Hence \(g_3 \) is analytic in \(\Omega_d \).

Finally, writing \(g_2 \) in the form of a convergent sum
\[g_2(z') = \int_{-1}^{1} \sum_{k} a_k(z) \beta_k(z') \log|z - z'| \, dz, \tag{A.41} \]
where the functions \(a_n \) and \(\beta_n \) are in \(H(\Omega_d) \), we need only show that \(g_k^* \) is analytic in \(\Omega_d \), where
\[g_k^*(z') = \int_{-1}^{1} a_k(z) \log|z - z'| \, dz. \tag{A.42} \]

Upon differentiating this expression carefully, we see that
\[g_k^*(z') = P.V. \int_{-1}^{1} \frac{a_k(z)}{z - z'} \, dz. \tag{A.43} \]

By our argument involving \(g_3 \) above, it follows that \(g_k^* \) is analytic in \(\Omega_d \), i.e., \(g_k^* \) and hence \(g_2 \) is analytic in \(\Omega_d \). This completes the proof of Theorem A.1.

By assumption for the case of finite conductivity of the body \(B \), the function \(f \) is such that the surface \(S \) satisfies Liapunov conditions, in which
case the surface current \vec{K} is bounded on S. However, one notes that integrals (7.27)–(7.30) converge so long as $f|\theta_n/\nu| = o(1)$ as $z \to \pm 1$, i.e., so long as $fK = o(1)$ as $z \to \pm 1$. Thus our method gives answers even if S is cone-shaped at one or both ends, although the Liapunov conditions are then violated, and our results may have no physical significance.

REFERENCES

