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Let B be a body in R’, and let S denote the boundary of B. The surface S is 
described by S = ((x, y, z): (x’ + Y~)“~ = J(r), -1 (P < I}, where f is an 
analytic function that is real and positive on (-1, 1) and f(* 1) = 0. An algorithm 
is described for computing the scattered field due to a plane wave incident field, 
under Leontovich boundary conditions. The Galerkin method of solution used here 
leads to a block diagonal matrix involving 2M + 1 blocks, each block being of 
order 2(2N + 1). If, e.g., N = O(M*), the computed scattered field is accurate to 
within an error bounded by Ce-‘“’ ‘, where C and c are positive constants 
depending only on j 

1. INTRODUCTION AND SIJMMARY 

Let B be a bounded in R3, having surface S which is given by 

s = {(x, y, 2): (x2 + y2p2 = f(z), - 1 < 2 Q 11, (l-1) 
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where f is an analytic function that is real and positive on (-1, 1) and 

C,( 1 + z)“‘(l - z)D’ < f(z) < C,( 1 + z)-l( 1 - z)[$:. -1 <z < 1, (1.2) 

where Cj, aj ( 1 and /Ij < 1 are positive constants. In this paper we describe 
an algorithm for computing the field scattered from B due to an incident 
field E’(F) of the form 

where c and 5 (IsI = k, = w/c = 2x/A) denote the polarization and 
propagation vectors, respectively, and f = xi + J$ + z& where f, .9 and i 
are the unit vectors pointing in the direction of the x, y and z axes, 
respectively. 

Let the body B (resp. free space) be homogeneous, with permitivity E 
(resp. so), permeability ,B (resp. ,u~) and conductivity Q (resp. uo), so that the 
refractive index of the body is 

(1.4) 

where w denotes the frequency of the incident field. We shall furthermore 
assume that 

INI IkolP p 19 (1.5) 

where p is the smallest radius of curvature of S. This assumption enables us 
to apply the Leontovich boundary conditions [ 15,2 1 ] 

(n^xE)xR=yZn^Xt7 (1.6) 

on the surface of the body, where 

II = Plcuow~ 2 = cpO/Ep (1.7) 

and where n^ denotes the outward unit normal to S, and E and H denote the 
total electric and magnetic fields on S. Conditions (1.5) and (1.6) are 
satisfied automatically if the body B is perfectly conducting, i.e. if o = co. 

Condition (1.6) makes it possible to obtain a singular vector integral 
equation over S for the surface current E on S. In the present paper we 
describe an algorithm for solving this integral equation via the Galetkin 
method, using as basis functions 
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lymn(Z, p) = e’““f”‘(z)( 1 - z’) 

x sin [7rN112/log (j$-) -+I] 

xN”’ /log (z) -$I 

m = 0, f l,..., *N, n = 0, f l)...) fM. (1.8) 

These basis functions effectively handle singularities of I? and %/az as a 
function of z, which occur at z = f 1; they are similarly very effective 
approximants in the d variable, since the Fourier series of ,!?-’ (and therefore 
I?) converges very rapidly. The singularities occurring in the kernel of the 
integral equation for E are of the type l/(z’ - z) or log ] z’ - z 1 at z = z’, and 
of the type of f”(z), m = 0, l,... at z = f 1. The first of these is effectively 
handled by substracting out the principal value. The remaining ones are 
effectively handled by means of the quadrature formula (see [22]) 

(1.9) 

after transforming the intervals (-1, z’) and (z’, 1) to (-1, 1). 
The integrations over S involve two variables, u, and z. While the 

integrations with respect to z must be carried out numerically, due to 
singularities of the kernel in the region of integration, the integrations with 
respect to v, are carried out explicitly, the results being expressed via 
hypergeometric functions. The hypergeometric functions have logarithmic 
singularities which were not present in the kernel; for this reason explicit 
integration and later evaluation of the hypergeometric function as described 
in the Appendix have an advantage over direct numerical integration, since 
any known direct numerical integration procedure such as the trapezoidal 
rule would poorly handle this type of singularity. 

The use of the basis functions (1.8) thus leads to a block diagonal 
Galerkin system of equations, one system of order 2(2N + 1) for each m. By 
forming 2M + 1 such blocks, and taking N = M*, we arrive at an approx- 
imation EN of j? which is accurate to within an error 6, where 
1 El = O(eWcN”‘) as N+ 0~) with c > 0 and independent of N. The use of (1.8) 
furthermore makes it possible to evaluate the scattered field ,i? by means of 
simple one-dimensional trapezoidal rule integrations. The error 6, in our 
approximation pN of the scattered field ii;” satisfies the relation 

) &.(F)l = IF(F) - FN(f)l = O(eecN”‘) as N+co, 

for all ? on the exterior of B and not arbitrarily close to B. 

(1.10) 
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The paper is organized as follows. 
The above problem of computing @ given ,!?O as in (1.3) and S as in (1.1) 

was studied in [20] for the perfectly conducting case and in [5 ] for the case 
as described above. The Galerkin approximating basis function used in 
(5,201 are of the form v/,, = cos(m~) S,(z) and sin@(o) S,(z), where S, is 
the linear spline which is zero at znP i and z,+ , , and 1 at z,. Thus the 
resulting rate of convergence is 0(1/N*) if f has no singularities at z = f 1 
and 0(1/P) if, e.g., f(z) N C(1 -z)” as z + 1, where it is assumed that the 
interval (-1, 1) is divided into N equal subintervals. In addition, the 
quadratures used in [5,20] converge very slowly as a result of the 
singularities present in the integral equation. Furthermore, the expression for 
the gradient of G = e 

- -, ikolr-r l/(472 ] T-- r’ ]) obtained in [S, 201 is incorrect. 
The algorithm of the present paper is being checked out on a computer for 

the case of a sphere of radius 1 for which the surface current K and the 
scattered field p can be expressed explicitly. Using M = 4 and N = M* = 16, 
we expect to compute E accurate to four significant figures, and for r > 2, i? 
is also expected to be accurate to four significant figures. 

In Section 2 we describe the geometry of the surface. In Section 3 we 
derive a representation on the surface S for the incident plane wave. 
Section 4 contains a derivation of the integral equation for the surface 
current, as well as an integral expression for the scattered field in terms of 
this surface current. In Section 5 we describe the basis functions to be used 
in the Galerkin method of Section 7. Section 6 contains an approximate 
representation of the incident electric field, in terms of the basis functions of 
Section 5. In Section 7 we derive the Galerkin equations for the surface 
current, and we describe a method of computing the coefficients of this 
system, and for solving this system. In Section 8 we describe a procedure for 
evaluating the scattered field. In Section 9 we discuss the rate convergence of 
the procedure. Appendix A contains a study of the functions G, derived in 
Section 7 as well as their derivatives. The results of this appendix illustrate 
the type of singular behavior of the functions G, and thus they dictate the 
type of approximate methods to be used in order to achieve high accuracy, 
and they simplify our proof of convergence. 

The rate of convergence of the method of this paper, namely, O(e-CN1’2) 
using an approximation of the form 

amn 8,(z) eim” (N = M*) 
m=-M n=-N 

(1.11) 

for each component of the surface current, is optimal, in a certain sense. By 
the results of [25], given any approximation method of type (1.11) which is 
to converge for all f analytic on (-1, 1) and satisfying (1.2), the resulting 
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error of this method cannot converge to zero faster than EZ-“~“~, for some 
y > 0. 

Similar numerical methods have been considered [7, 8, 9, 12, 181 but it is 
believed that the order of convergence obtained is not as good as that 
demonstrated here. For further discussion of such methods see, for example, 
Andreson [2], whose proposed method considers a maximum period of 20 
wavelengths. Barber and Yeh (31 and Waterman [27] have considered 
extended boundary methods, while Kennaugh [ 131 and Schultz et al. [ 191 
have discussed other implementations using a product z, o basis. 

2. GEOMETRY OF THE SURFACE 

A point on the surface S is represented by 

F= f(z) cos fj9-f + f(z) sin rpy^ + zz”, (2*1) 

where f, 9 and r^ denote the unit vectors in the direction of the x, y and z 
axes, respectively. 

It is convenient to introduce three unit vectors on the surface, fi, @ and i, 
where 

n^ = a(z) cos cp2 + a(z) sin ~9 -f’(z) a(z).?, 

f$ = -sin ~2 + cos ~9, 

i = f’(z) a(z) cos qx? + f’(z) a(z) sin ~9 + a(z)& 

W) 

where 

a(z) = [ 1 + f’(z)*]-“*. (2.3) 

The vector n^ is the unit normal to the surface, 4 is the unit vector at 7, 
pointing in the direction of increasing p, and t^ is the’unit longitudinal vector, 
pointing in the direction of increasing arc length. Thus n^, 4, i and x^, y^, i are 
related by means of the equations ii 0 ( a(z) cos rp a(z) sin p -f’(z) a(z) 2 

Q zz -sin p cos rp 0 
Ii 1 

9 (2.4) 
t^ f’(z) a(z) cos fp f’(z) a(z) sin cp a(z) if 

and 

a(z) cos rp -sin rp f’(z) a(z) cos 
a(z) sin rp ~0s cp (2.5) 

-f’(z) a(z) 0 
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3. THE INCIDENT ELECTRIC FIELD 

Let the incident radiation be a plane wave, given by 

EO(f) = Be’“0 ?, (3.1) 

where E points in the direction of polarization, and 5 is the propagation 
vector which satisfies the relations 

(3.2) 

We shall furthermore assume that IO lies in the xz plane and makes an 
angle B. with the z-axis. Thus 

Lo = k, sin ~9~9 + k, cos 8,f. (3.3) 

It is convenient to set 

t=a,E, +a,&, 

where a, and a2 are scalars, while 

(3.4) 

cc, = v^, d,=-~cos6,+z^sin8,. (3.5) 

Borison [4] has shown that if a2 = 0 (resp. a, = 0) then the backscattered 
electric field ES(q is polarized only in the direction E, (resp. &). 

Using (2.5) and (3.5) we can express E in components of q?, t^ and n^. We 
get 

.E = a, [a(z) sin ofi + cos rpfj + a(z) f’(z) sin f$j 

+ a*[-a(z)(cos 0, cos (p + sin B,f’(z))R + cos 8, sin (pq? 

- a(z)(cos 0, cos f’(z) - sin B,)t). (3.6) 

Next, let us find the Fourier expansion of E’(f) on S. To this end we use 
the identity 

eixcosrp = 
,f PJ,(x) eim”, (3.7) 

m=--to 

where J,,,(x) denotes the Bessel function, 
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Using (2.1) and (3.3) we get 

k;, 3 f= k, f(z) sin 19, cos rp t k,z cos 8,. (3.8) 

Hence combining (3.1), (3.7) and (3.8) we find that the incident field on S is 
given by 

p(,3 =~eikorcosOo ,f i”J,(k,f(z) sin 0,) eimw, (3.9) 
m=-CX 

where E is given in (3.6). Combining (3.6) and (3.9) we get 

l?(F) = ([a,a(z) sin rp - a, a(z)(cos Be cos rp + f’(z) sin O,)]ii 

+ [a, cos rp + a2 cos f$ sin rp]f$ 

+ [a, a(z) f’(z) - u2 a(z)(cos 8, cos f@(z) - sin O,)]i) 
cc 

.e ikozcosOo i*J,(k,f(z) sin 8,) eim’. 
In= -cc 

(3.10) 

4. THE SCATTERED FIELD AND THE INTEGRAL EQUATION 
FOR THE SURFACE CURRENT 

The scattered field A!? = p”(F) is given in terms of the total electric @) 
and magnetic (R) fields on S by [26], 

[iwp(A x fi)G + (ti X E) X VG + (n^ I!?) VG] dS, (4-l) 

where it is assumed that the field vectors ,!? and a have time dependence of 
the factored form e-‘“‘, and 

(4.2) 

The remaining vectors in the integrand (4.1) are expressed in terms of r; and 
V is expressed in terms of F. 

Let x denote the surface current on S, due to the fields E and Z?. In view 
of the Leontovich boundary condition (1.6), K satisfies the relations 

(4.3) 
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Our development of the integral equation for i? follows that in [ 5, 6 1. We 
include the derivation from (5 ] for this equation, for the sake of com- 
pleteness. 

Let 2 be a continuous vector field tangent to S. Then the following results 
are valid, if S satisfies the Lyapunov conditions [ 17, p. 901: 

(a) the integral 

I(F) = 
1 

x((J) G(r; 7) dS 
s 

is a continuous function of F’ in R3. 

(b) As F’ -+ rh E S, the relations 

n(rJ x Jii* js A(F) x VG(J, F-‘) dS 

= f ; A(F;) + j n^(f,J x [if(f) x VG(r,, F)] dS 
s 

are satisfied, where the plus (resp. minus) sign corresponds to an approach 
from the outside (resp. inside) of B. 

(c) The term [ 17, p. 951 

f?(F) . 
I 

z(F) x VG(r; F’) dS 
S 

is a continuous function of J’ on S. The term 

E,(Y) 3 
i 

d(f) . E(f) VG(r; r”) dS 
S 

suffers a discontinuity on transition through S equal to n^ ’ AEJ, where Agj is 
the difference of the values outside and inside. Therefore, the third term in I? 
does not affect the tangential component, but reduces the normal component 
of E to zero. 

Since the total electric field ,!? = i?’ + i? is zero inside the scatterer, (4.1) 
yields 

lim ti(Fb) X c+FbSS [iw,u(n^ x fl)G 

+(nlxE)xVG+(n^.@VG]dS-&-‘) =O, 
I 

where the approach is from the inside. 
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Application of (b) gives 

0 = r?(F) x P(7) + @(r’) x E(F) 

- d(F) x 
1 

[iw,u(n” x fl)G + (8 x E) x VG + (n^. g) VG] dS. 
(4.4) 

s 

Next, taking the limit as F’ -+ Pb from the outside of B in (4.1) and using 
the relation 

we get 

+(n^x~)xVG+(L!?)VG]dS. 

Application of (b) yields 

pi(F) x E(F) = d(F) x P(f) - r?(F) 

x 
I 

[iwp(fi x H)G + (ri x I?) X VG + (ti . E) VG] dS. 
s 

(4.5) 

Adding (4.4) and (4.5), we get 

r!(F) x E(F) + 2A(F’j x j [ io,u(n^ x fi)G 
S 

+ (n^ x ,t?) x VG + (ti . E) VG] dS = 28(F) x l?‘(F). 

Definitions (4.3) now yield 

-vZn^(F’) x K(7) + 2fi(P’) x j 
s 

1 -iw,&G - qZ(ii x E) X VG 

- & (V . K) VG/ dS = 247) x p(F). 

This equation can be written in the equivalent form 

[ ;vz(Fy + j iwpRG + Z(n^ x I?) X VG 
S 

+&(VR)VG dSt,!?‘-‘(F’) 
I I 

= 0. 
tanF’Es 

(4.6) 
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Using Eqs. (4.3), the scattered field 6 given by (4.1) is expressed in terms 
of g by means of the integral 

p’“= io,uKG + +z(~^‘x K) x VG + & (V Q VG 1 ds- (4.7) 

5. THE BASIS FUNCTIONS FOR 
APPROXIMATING SURFACE CURRENT AND ELECTRIC FIELD 

C denotes the complex plane, let d > 0 and d’ > 1, and let ad and A,, be 
defined by 

Qd = {z E @: larg[(l + z)/(l - z)]I < d}, 

A,,={wEC:l/d’<jwJ<d’} 

(see Figs. 5.1 and 5.2). 

(5.1) 

Let H(Q,) (resp. I&4,,)) denote the family of all functions g that are 
analytic in R, (resp. Ad,) such that 

I g(z)l < Q) 

Let us set 

(rev. II gIlA,, = fz;, I &)I < 4. (5.2) 

v(z) = f(z)(l - zZ), 

FIG. 5.1. The region 8,. 

(5.3) 

FIG. 5.2. The region A,.. 
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where f E H(0,) satisfies (1.2), f # 0 in 0,. Let H = H(d, d’ ) denote the 
family of all functions F = F(z, w) such that 

(i) F(z, e’@)/v(z) belongs to H(Q,) as a function of z for all 
9 E [O, 2x1; 

(ii) F(z, w) belongs to H(A,,) as a function of w for all z E [-1, 1). 

We define a norm on H(d, d’) by 

(5.4) 

If F E H(d, d’), we approximate F on 9 = [-I, I] x [0,27r] as follows, 

Fk eioP) z LNk 9) = ,ZM n$eN %tWmn(Z, 917 (5.5) 

where the a,,,,, are numbers and the vmn are basis functions given by [23 ] 

v,,(z, 9) = eimq8,(z), h > 0, 

B,(z) = f “‘(z)( 1 - z*) sine [ Z+!L], 

l+z 
( ) 

sin(nx) 
w(z)=log 1-z ; sincx=-----. 

rlx ’ 

The numbers a,,,,, are given by 
1 

I 

2n 
a mn = 2nfl/2(z,)(1 _ z:) F(Z”, e’? e- imv d9, o 

(5.7) 
I, = tanh(nh)/2. 

Next, recalling the definition off and relation (1.2), let us set 

Y2 = f min (a,, P2), y = min[(n dyz)“‘, log d’]. (5.8) 

THEOREM 5.1. Let FE H, let N = M2, and let h = [nd/(yN)] ‘12. Then 
there exist constants C, C, and C, which are independent of N, such that 

cz~y$s, (F(z, e”“) - 1,&z, 9)I < CN”‘e-‘““*, (5.9) 

where S* = [-1, l] X [O, 2~1. 



542 STENGER.HAGMANN,AND SCHWING 

Proof: It is shown in ] 161 that if g/v E (Q,), then by taking 
h = [nd/(y,N)] ‘I* there are positive constants C’ and C” such that 

N f”2(Zn) 
max g(z)- \’ -B,(z) < cre-vdv’ ? (5.12) 

‘?E[-I.11 n=Y-,,J v(z,) 

and 

Similarly, it follows from Cauchy’s theorem, that if G E H(A,,), and if a, 
is defined by 

G(e’“) e-""" dq, m = -M, -M + l,..., M, (5.14) 

then there are constants K’ and K” such that for all (p E [0,2x], 

G(e”+‘) - 5 a,eimm (K’(dy 
m=-M 

and 

(5.15) 

-$ G(e’“) - ,f ima, eimq ( K”M(d’)-? (5.16) 
m=-M 

On noting that M = IV”‘, inequality (5.9) is obtained if we use (5.11) and 
(5.15) in Theorem 6.2 in [24]. Similarly, (5.10) is a consequence of (5.13) 
and (5.15), while (5.11) follows from (5.12) and (5.16). 

THEOREM 5.2 [ 161. If vg/f ‘I2 E H(Q,), then there exists a constant K 
such that 

1 

_ l g(z) &(z) dz - h v(“) g(z’) 
f"*(z,) W'(Z") G Ke- 

ndlh 

* 
(5.17) 

This theorem shows that if g is any function such that vg/f “’ E H(O,), 
then for h sufficiently small, the sequence {19,}?‘, may be considered to be 
an orthogonal sequence, for practical purposes, and g may be expanded with 
respect to this sequence. The coefftcients of this expansion take on the very 
simple form 

f”Y4 g(z ) 
v(z,) n ’ 

z, = tanh(nh/2). (5.18) 

For purposes of numerical integration, we state the following. 
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THEOREM 5.3 [23]. Let g E H(Q,), and let 1 g(z)] < C(l - z’)~-’ on 
(-1, I), where C,a > 0. rf N > 0 is an integer, and h = (2nd/aN)“*, then 
there exists a constant C’, independent of N, such that 

‘ g(z)dz- h 5 - gk) (2ndaW’/* < C’e- . (5.19) 
-I n= --N o’(zn) 

Finally, Theorem 5.4 which follows describes the accuracy of the midor- 
dinate rule used in Sections 7 and 8 for integrating periodic functions. 

THEOREM 5.4. Let d’ > 0 and let g E H(A,,) be bounded on A,,. Then 
there exists a constant C depending only on g such that for M = 1,2,3,..., 

g(e’“) drp _ $ 2 g(e’2k-1’“i~M’) < C(d’)-“. (5.20) 
k-l 

6. APPROXIMATION OF THE INCIDENT ELECTRIC FIELD 

We shall make the approximation 

of the incident electric field, where v,,,,, are defined in Section 5. For the sake 
of convenience we shall use the notations 

z, = tanh(nh/2), 

d = im exp(ik,z, cos f?,] f,(k, f (zJ sin 8,) (6.2) 
mn 

v(zn) 

As will be seen in Section 7, we will approximate a slightly altered field 
7 z VJ?‘, where v(z) = f (z)( 1 - z’). Thus 

The results of Sections 3 and 5 show that if FE S then each component of 
$ is in H(d, d’). Using formulas (5.6), we have 

a mn 

p 
mn 

(6.3 ) 
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If this is taken together with (3.10), we get 

a mn 

Pm, = f”2(z,>l lalS’(z,) + a2 sin e,J a(z,> 6, 

-fa2 co~~,a(z,)f’(z,)~d,+,,, + 4.. l.nl I. 

(6.4) 

7. DERIVATION OF THE GALERKIN EQUATIONS 
FOR THE SURFACE CURRENT 

Rather than solve (4.11) for & it is numerically more convenient to define 
.f by 

where 
J(F) = v(z) E(f), (7-l) 

v(z) = f(z)(l - z2), 

and to solve the resulting integral equation for j. This transformation helps 
to take into account the unknown’ singular behavior of E at z = f 1, and 
enables us to effectively approximate both 1 and its first derivative with 
respect to z, by the methods of Section 5. 

Substitution (7.1) replaces (4.6) by the equation 

(7.2) 

where 

P = vi?. 
We now make the Galerkin approximation 

(7.3) 

(7.4) 

in (7.2), where the w,,,,, are defined as in (5.6), and the a,,,,, and b,, are 
unknown numbers. 

I If S satisfies Liapunov conditions (see Section 4), then E is bounded on S. It is diffkult to 
determine the exact singular behavior of the derivatives of z at z = f 1. 
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Let us now recall that if F, r’ E S, then 

R=lf-r’J= (f’+f*‘-2fl” c0s($0+)+(z-z’)*}“*, 
1 eikoR 

G=--, 
471 R 

(7.5) 

where here and henceforth 

f-f(z), f * -f(z’), a = a(z), a* = a(z’). (7.6) 

We shall also use the notations 

Rf=E=f -f*cos(~-@) 
af R ’ 

Rz=E= ‘--I 
az R’ 

Rv = ff * sin(v - v’> 
R ’ 

(G’, G’, G”) = (Rf, R’, R”) $ G. 

(7.7) 

Moreover, writing Cm,,, for Ct= -,,, Cr= -N, we have 

(7.8) 

and also, 

(7.9) 
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Using these results, we get 

1 
t’ 

1 

(tix.P)xVG= x -1 
m,” (l/f;& .(f’&G’) a(G”-f’G’) 

w 
mn 

a,,a(G’-f’G’)Q+b,,a(G’-f’G’)f (7.10) 

+ G” + b,,a(f’Gf + G’) n^ ll/,,,n, 
! I 

as well as 

V +)VG= 
I 
~G~~+aV’G’+G’)i+a(G’-j’G’)n 

3 

1 .- 
=[ 

mn @In” a a f 
f m,n 

” aa, +abmn~ yvm, * (7.11) ( il 

Substituting (7.4), (7.10), (7.11) as well as the approximation y”, 

into (7.2), and recalling that 

dS =; du, dz, (7.13) 

we get 

; G’ c [%v,d* + b,,f*] w:,, m.n 

+ v* yG c [%nnQ + 4,m~l vmn m.n 

+-$-c [a,,f(C’-f’G’)$+b,,f(G’--f/G’)? 
m,n 

I 

1 
- amn- G” + kdV-‘c’+ G’)P w,, 

a 
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(7.14) 

where the starred variables denote functions of z’ and rp’. 
It is convenient to introduce several identities in order to reduce (7.14) to 

a system of linear algebraic equations. Equations (2.4) yield the identities 

f$ . g* = cos(y, - rp’), 

i. fj* = - a(z) f’(z) sin@ - rp), 

Ii $* = - a(z) sin@’ - q), 

4 i* = a(z’) f’(z’) sin(@ - o), 

i i* = a(z’) a(z)[ 1 + f’(z) f’(z’) cos(cp - cp’)], 

ii f* = a(z’) a(z)[f’(z’) cos(cp - qf) -f’(z)]. 

(7.15) 

These identities are useful for taking components of e* and i* in (7.14). 
Identities (7.16)-(7.23), which follow, serve to achieve further simplicity 

by enabling us to symbolically eliminate the integrations with respect to (0. 
Upon setting 

it follows that 

eimv’Gm = & 
J 
ln G(r; F) eimm &p. 
0 

(7.16) 

(7.17) 

Furthermore, notice that G _ m = G, . Therefore 

1 Zn 
I 

Go J 
G(F, P) eim” cos(cp’ - cp) dv = ~[Gm+, + G,-,] (7.18) 

and 

1 2n imop 

2K” J 
G(f, P) eim” sinb-@)dv=&&G,,,+, -G,-,]. (7.19) 

409/X3/2- 13 
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By means of integration by parts, we furthermore find that 

1 *n 
i 

eimo i?G(r, f’) . 2n 

St, a(o 
dq = --Im \ 

2n .(J 
.@V(r; f’) dq 

(7.20) 
. imo’ =-me G rn, 

1 
I 
Zn 

5Y, e imw cos(fp - (0’) g- d(o 
I 

=-$&z+ l)G,+,+(m-l)G,J, 
(7.2 1) 

sin((o _ ,p!) “G”, ‘) du, 

I 

=+@I+ l)G,+,-(m-l)G,-,I. (7.22) 

We use (7.15) in(7.14) to take components of @ and i Then, recalling that 

WAZ, P> = eimeen(z), (7.23) 

where 

V(Z) 
W) = f(z) l/2 

sine [ ,(Z~-nh], (7.24) 

where V(Z) is given in (5.3), and where 

w(z) = log (7.25) 

we can symbolically carry out the integrations with respect to I@ in the 
equation resulting from (7.14), by using (7.17)-(7.22). Upon equating coef- 
ficients of eimo in the resulting equations, we obtain 

i rlZ c a,,,” 0, -t v i [P”‘*a,,,” + Qmnb,,] = - 5 a,, 8,) 
” n=-N n=-N 

~rlZ~b,,,,,B,+v t [Rm”a,,+Sm”bm,]=- 2 P,,,,e,, 

(7.26) 

n R= -N n=-N 

m=-M, -M+ l,..., M. 
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The coefficients P”“, Qmn, R”” and S”” depend on z’, and are given by 

P%Tpj+3,+,[~+(m+ I)rlZ+*;;?-;!q 

+G,-, =-+I- l)qZim;~?--&‘] 
[ a 

+cf,+, vZf+& 
[ I 

+c’,-1 Cf-& 
[ 1 

-(G;+,+G’,-,)MT’ dz, I (7.27) 

-&h+ W,+,+(m-WLI 

-&%+, - %JI] dz, 

R”“=n -+i(m+ l)qZ+ 
m(m+ 1 

ocaf 

+ Gm-Ia*f*’ wf a+i(m- l)qZ- 
m(m - 1) 

maf 

+ G,a*[-2imf’qZ] 

+ Urn+ ,a*[*’ 
-SW I m - 

i W&C4 I 

+ cf,-, a*f *’ 1 
+a*f*’ FIG;+,-G;-,] 

(7.28) 

(7.29) 
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S”“‘=nj~, [ (~)/a*f*‘iquf’[G,,,+, +G,,-,I f2a*iqufi, 

Zfa* 
+ 2rl- 

a G’,-?l zfa;s*’ [G;, 3 + G&ml ]I 

W,+,-(m-W,-,1 (7.30) 

f a*f*’ ~lGfm+,+Gi-II 

in these equations f*’ = f’(z’), a* = [ 1 + df*‘)2] -I”. Next, setting Z’ = 
z, = tanh(lh/2) in (7.26) and using the relations 

~,(z,> = 0 if n#l 

= ~(Z,>/f”‘(Z,> if n=l 

we arrive at the system 

i ~ZU,, + f’12(z,) i [P;““a,, + Q;““b,,] = -a,,, 
n= -N 

; qZb,, + f”“(q) 5 [R;7”amn + S;““b,,J = -P,,,,, 
n=-N 

where we have used the notation 

Py = Prn”(Z,), QT” = Q”‘“(q), 

R;“” = Rmn(zI), S;“” = P”(z,). 

System (7.32) is a block diagonal system of the form 

(7.3 1) 

(7.32) 

(7.33) 

(7.34) 

where each B, is a complex matrix of order 2(2N+ I), and (since 
G-, = G,) B, = B-,. The mth system 

BJi, = a,,, (7.35) 
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in (7.34) corresponds to all of the equations (7.32), for fixed m. Thus if we 
denote by A;“” the 2 x 2 matrix 

AT” =f1’2(z,) [ ;;: $1 + ;Q%, [ :, 

then 
A!“-h’+ 1 WIN 

-N 
. . A - - N 

A",-N+' !?lN 
-N+I "' A -N+ 1 

and 

A;.+ A$,-N+l ,,, A;R _ 

0 
1 1 (7.36) 

(7.37) 

7(b) EVALUATION OF Pm”, Qmn,eRmn AND S"" 

It is convenient to set 

(7.39) 

The following integrals appear in (7.27)-(7.30). 

z”’ = l I 
mn I r,UP) G, dz, 1’4’ = 

mn 
c 

~,ff’G, dz, 
-1 -I 

p = 
I 

1 mn yn G, dz (m z 01, z(5) = mn ' ynf'G,dz(m#O), 
-1 I -1 

f13)= ;I [y,/(af)]G,dz (m#Oo), mn J^ 
~‘6’ = ,,,,, 1' y,,fG,,,dz9 

-1 

J”’ = 
I‘ 

l r,f@m dz, I 
1 

mn 
K(l) = mn y,J’G, dz, 

-1 -1 

.I$ = j’ y,( l/a) G’, dz, K(2) = mn I ’ y,(l/a)GI,dz(m+O), 
-1 --I 
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513) zz 
Inn 

.i 
’ ~,(f/a> G: dz, KEA = f ’ Y,l(f/a) G’, dz, 
-1 ” 1 

I 
’ L”’ = mn Sn(l/f) G, dz (m + Q 
-1 

l M’l’= 
mn I 

6,GI, dz, 
-I 

N”’ zz 
mn 

i 

’ S,Gz, dz. (7.40) 
-1 

Notations (7.40) enable us to express (7.29), (7.30) in the “more 
computable” form 

Pm* = 7r{ iop(Z~~ , ,” +z:‘l,“)+@[(m+ l)Z$,,,-(m- l)r’,211,n] 

+&[(m+ l)~~,,,-(m-l)~‘l.nl-S*, 
2itlZm fs, 

mn (7.43) 
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and 

Smn=7Ca*f*’ i~~(C:,,.+Irl!,,.+~I’R’) 
I 

-Z Kz,j:,,,+K:‘,.,- 
( 

+lg:, 
f 1 

(7.44) 

+& (m+ l)L!$,,-(m- W’,‘!,,” 
[ 

+ W&n +A4;:,,, + -li;NXI, 
f II 

. 

Integrals (7.40) can be simultaneously evaluated for all m, n by evaluating 
the quantities f, f’, a=(l+f’*)-I’*, f*’ and a*=(ltf*‘*)-I’*, 0, 
(n = -N, -N + I,..., N), G,, cr,, and cf,. In view of (A.2), we set 

1 
W) = $ f;z,) [l +jyz’)2] log 

1 +z’ 

( 1 
1’ 

Z’fP - 1 z/es* t 1 
P’s = es*+1 ’ 

v, = 
es* -I- 1 * 

(7.45) 

(7.46) 

Then by splitting the range of integration into an integral with respect to z 
from -1 to z’ plus an integral with respect to z from z’ to 1, we use the 
formulas 

c ’ G,&, z’> g(z) dz -1 
(7.47) 

1(1 + z’> G,&,) + (1 - z’) G&s 9 z’> g(v,)h 

i I G’,(z, z’) g(z) dz 
-1 

N sh 

zh ,T, (1 Jerh)Z ((1 -l-z’> G’,o1,9 z’) d.P,) + (1 -z’) cif,(vv z’) g(v,)J 

f f’(z’) a(z’) &‘), (7.48) 
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.I 

j 
G;,(z, z’) g(z) dz 

-I 

x ((1 + z’) Gz,o1,~, z’) gcU,> + (1 - z’) G’,(v,> z’) g(v,)J 

+ a(z’) g(z’). (7.49) 

to approximate the various integrals (7.40). 
In (7.47), (7.48) and (7.49), g is a suitable analytic factor of G,, Gf, or 

G’,, as dictated by (7.40). The additional terms in (7.48) and (7.49) arise as 
a consequence of the identity 

(7.50) 

whereas, if the formula used in (7.47) is used to approximate this singular 
integral, one has the identity 

l$Z’ 

P, - z’ 
+ 

1 -z’ - =o. 
v, - z’ I 

(7.5 1) 

That is, whereas formula (7.47) is accurate for evaluating 

I 
I 

g(z) dz, 
-1 i 

1 
g(z) log 1 z - z’ 1 dz, (7.52) 

-1 

where g is analytic on (-1, 1 ), when applied to the approximation of 

Z=P.V. - 
I 

’ dz> dz 
-, z-z’ 

’ g(z; 1 ;(“I dz + g(z’) P. V. ,’ , -+) (7.53) 
--I 

it yields an accurate approximation to 

i 
’ g(z) - dz’) dz 
--I z-z’ ’ 

(7.54) 
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8. APPROXIMATION OF THE SCAITERED FIELD 

The scattered field p is expressed in terms of R by means of integral 
(4.7). Once 7 has been obtained by means of Section 7, we form an approx- 
imation 2 of K by means of the equation (see Eq. (7.1)) 

2 = 2(z, rp) = (l/v(z)) q, PI, (8.1) 

and we substitute .,$? for K in (4.7) to get an expression for an approx- 
imation p of J?. In this section we shall give a detailed description of the 
evaluation of P. 

We shall approximate a’(f) for 

r’ = p cos @ii? + p sin (o’y^’ + z’.?, (8.2) 

where p > f(z’). If p is close to f(z), i.e., if r’ is close to the surface (say, 
1 r’ - S I< 0.2 if N = 10) then we recommend that the integration methods of 
Section 7 be used to evaluate the integrals. This would involve splitting the 
integrals from -1 to 1 into integrals from -1 to z’ and from z’ to 1, as in 
(7.47). For the sake of simplicity, we shall describe an algorithm for 
evaluating P, which is valid if r’ is not arbitrarily close to S (say, 
(r’ - S( > 0.2 if N > 10). In this latter case it is convenient to integrate by 
parts in the integrals with respect to z which involve en, so that the resulting 
integrals involve 8,. This latter procedure enables us to avoid numerical 
integration, by means of the approximation 

1^ 
l H(z) w,(z) dz z h H(z,) 
-1 f”*w W’G”) ’ 

which we know to be accurate, by Theorem 5.2, where o, = 0,/v. See Fig. 
8.1 

Y 
FIGURE 8.1 
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Using (4.7), the scattered field may be expressed in the form 

p”(f) = E;.f + E;,; + E:& (8.4) 

where E:, E; and E: are scalar quantities. Upon substituting approximation 
(7.4) into (4.7) we get 

Ei z c Iamnpmn + b,,Q,,L 
m,n 

(8.5) 

Es 2 c [a,,,,, T,,, + b,, U,,J. 
m,n 

(8.7) 

Relations (7.7F(7.11) and (7.15)-(7.22) enable us to obtain explicit 
expression for P”“,..., Urn”. Setting 

we get 

+ b,,(f’a cos pi? + f’a sin 99 + az^)] eimmmgn 

+ qZ c 
, L 

a,,f(Gf - S’G’)(-sin 92 + cos 99) 

+ b,,,;;C;‘- f’G’)(f ‘a cos 9.2 + f ‘a sin 99 + a,?) 

- am 
I 

b G’@(a cos qx? + a sin 99 - f’az”) 

+ b,,f(f’G’ + G’)(a cos qd + a sin 9y^ - f’az^) 11 eimvw, 

+ 1 
I 
L G”(-sin 92 t cos 93) 

iax af 

t (f’G’+ G’)(f’a cos 92 + f’a sin 99 t CL?) 

t (Gr- f’G’)(a cos 92 + a sin 99 -f/a.?) 
I 

imo, + ab,,dfw,)‘] eimv 
I 

d9 dz. (8.9) 
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Here G = eikOR/4rR ; R={(z-r’)*$f2$p2-2f’pcos(y-cp’)}”*. co]- 
letting coefficients as indicated in (8.5)-(8.7), we get 

1 
p,, = neimmd 

J I 
+ [ei@‘G,+, - e-i*‘G,-, ] 

t iqZlf;(c;‘,_, -f’G:,+,) ei4’ - (G/,-, -f’G’,- ,) e-i4’} 

t (m t l)eia’G,+, + (m - 1) epim’G,-,] 

t 2 L ((m + I)e’“G,+, 
[ f 

-(m - I)emi4G,-,} 

t (ei4@m+, + e-i4G~-,}]} w, dz; (8.10) 

1 
Q,, = neim*’ J I iwpfl’[ei4’G,+, t e-i4’G,-,] --I 

- % [ei4’G’,+, t e-i4’G’,e,J] w, 
$ ((m t 1) ei@‘G,+, -(m- l)e-‘“‘G,_,) 

+ eiQ’Gm+ 1 + e&“‘c’,- 1 VW,)’ dz; 1 I (8.11) 

R,, = neim4’ 
1 

J I -I 
7 (e”‘G,+ I t e-‘“‘G,,- *) 

+ vZ[f(ei4’(G’,+I -f’Gi+,) t eei4’(G’,-, -f’G’,-,)) 

+ (m + 1) ei4’G,+, - (m - 1) e-i4’G,-,] 

im -- 
[ 
-!- ((m t 1) ei4’G 

awe f 
m+l +(m- l)e-i4’G,-,) 

+ e’“‘cf,+ 1 - e-‘“‘Urn-, 
II 

W” dz; (8.12) 

S,, = neimrf w@‘(e”‘G,+, - emi4’G,,-,) 

t 7 [,&@‘G’,+, - e-‘“‘G~-,]] W, 

t 1) ei4’G,+ 1 t (m - 1) e-“‘G,,-,) 

+ ei4’cf,+ 1 - e-i4’G’m-, ($0,)’ ffz; 1 t (8.13) 
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T,, = - 2nmeimm’ irZf ‘G, - & GL 
i 

w, dz; (8.14) 

U,, = 27teim4’ icopfG m + lrzf G’” 
a m wn 1 

(8.15) 

Let us next eliminate the (fw,)’ terms which appear in Q,,, S,, and U,, 
above. Setting 

4n=f, (+.%) (fw,>‘dz (8.16) 

we have, upon integration by parts, 

(8.17) 

Under the assumption made on S in Section 1, K is bounded on S, and 
therefore it follows, upon replacing w, by g in (8.15), that the first term on 
the right-hand side of (8.15) vanishes, provided that m # 0 (see (A.l)). 
However, inspection of Q,, and S,, shows that we need never evaluate S,,, 
if m = 0. Thus 

?P,, = i 
1 f’ I 
-1 TGmWndZ - I 

G:, w, dz, m> 1, (8.18) 
-I 

where G; = dG,/dz. 
Similarly, we have, for all m > 0, 

K,,= ’ 
i 
_, G’, (fw,)’ dz = -1’ (Gf,)’ fw, dz 

-1 

and 

L,,E ’ 
I ~, CL, (fw,)’ dz = -i’ (G;)’ fw, dz, 

-1 

(8.19) 

(8.20) 

these being the only remaining terms requiring integration by parts in 
(8.10~(8.15). 
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Hence, we make the definitions 

z;, = 
I 

’ fc w dz m>O* 
-1 a 

Inn 3 / 3 

z;,= ’ 
!’ 

G,w, dz, m > 1; 
-1 

Iin= 
1 
’ 1 

-1 

zG,w,dz, m> 1; 

Z;, = 
I^ 

’ ff’G ,w, dz, m > 0; 
-1 

Ii,,= 
I 

’ f’G,,,w,,dz, m> 1; 
-1 

r”,,= 
i 

’ fG,w,,dz, m>O; 

ZL,,=/“$G,,,wtidz, m> 1; 
-1 

J;,= ’ 
I 

jGfmw,dz, m&O; 
-1 

J* = mn I 
’ ‘G$w,dz, m>O; 
-I a 

J3 = mn 
I 

’ fc;f,w,dz, m 20; 
-I a 

’ Kk,, = 
I 

ff’G’,w,, dz, m > 0; 
-1 

K* = mn I 
’ f G’ w dz m > 0. mn 7 / 7 
-1 a 

(8.21) 
K3 = mn I 

1 1 
-G’,w,dz, m> 1; 

-1 a 

ZP,,= ’ 
I 

Gkw, dz, m > 1; 
-1 

’ JP,, = 
1 

(G’,)‘fw,dz, m>O; 
-1 

’ KP,, = (GZ,)’ fw, dz, m > 0. 
-I 

Some of the quantities in (8.21) are not required for m = 0, since their 
coefficient in (8.10~(8.15) is zero. In some cases this is fortunate, since 
some of the above integrals do not exist when m is taken to be zero. In terms 
of the above integrals (8.21) we may express terms (8.1Ok(8.15) as follows. 

Pmn = 71eimm 
1 

-wp[eigZ~+,,n -e-‘vZ~p,qn] 

+illZ[ei(P(J~+,,,-K:,+,,,)-e-i”(J~~,,,-K:,-,,,) 

+ (m + 1) e”PIi+,., + (m - 1) eC’“Zk-,,,I 

+$[(m+ l)e’“Zi+,,.--(m- l)e’“Zi_,,, 

+ ei”Jj!,,+ ,,n + (8.22) 
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Q,, = neimm 
! 
iup[eiaZ~+ ,.n + em iwZim ,.n\ 

- qZ[e’“Ki+ ,,n + e-‘“Kf,- l,n] 

+&Km+ l)e’~(Z:,+,,,-ZP,+,,,) 

-(m- l)e-iW(Z:,+,,,-ZIP,-,,,) 

- e’“JP m+l.n - e-‘QJp 
m-Lnll ; 

R,, = neim” 
I 
iop[e’“Zf,,+ ,,” + e-i’Plk-,,n] 

+ @k@(Jk+l,n -Kk+,,A + e-‘“(Ji-,,, -#-,,,I 
+ (m + 1) eiVZi+l,n - (m - 1) e-‘“I~-,,,] 

-g[(m+ l)e’“Zk+,.,+(m- l)e-‘“Ii-,,, 

+ e’“Jk+ ,,” - e-“41* m-Lnl[ ; 

S,, = 71eimq 
I 

-iv 4 w@“Zi+ l,n-e Zm-l.nl 

+ iqZ[e’“Kf,+,,, - eCi”Kfn-,,n] 

---!-[Cm+ l)e’“(Z~+,,,-ZP,+,,,) 
+ (m- i)e-‘~(I:,-,,,-ZP,_,,,) 

- e’“JP m+l,n +e-ivJC,-, ,, 111; 

(8.23) 

(8.24) 

(8.25) 

T,,,, = -2nmeimrp 
! 

irlZZi,, - -& Ki,, ; 
I 

U,,,, = 2neimQ 
I 
iw&,, + qZJk, - & KP,, . 

I 

(8.26) 

(8.27) 

Each of the integrals (8.21) may now be accurately evaluated using the 
one-term formula (8.3), provided that F’ is not unduly close to S. We shall 
assume this to be the case. We shall, however, require G, , G’, , G’, , dG,/dz, 
dc’,/dz and dG’,/dz in order to evaluate integrals (8.21). Let us now 
describe the evaluation of these quantities. 
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To this end, let us set 

cj=cos [ $-$], 

pj’ ((Z-Z')2+p2+f2-2f,i?Cj}1'2~ 

aPj z - z’ 
Qj=F= 79 

ik, 1 
w,=pi-zy J 

The relations 

2 
B,=*+- 

Pj Pj ’ 
ikopJ 

G&p-. 

pi 

Rr {(z- z’)* + p* + f’ - 2fp cos e}l’*, 
ikoR 

p-L, 

R 

G, = $jn G* cos m6’ dt?, 
0 

(8.28) 

R’G* cos m0 de, 
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+ (g-$)*@-$-/ G* cosm8dB, 

cos m0 = 2 cos 8 cos (m - 1)8 - cos (m - 2)0 (8.29) 

then show that given z, z’ and p, we can evaluate the six quantities referred 
to in the title of his section, for m = 0, l,..., M + 1 by means of the following 
algorithm. 

Algorithm 8.1-Evaluation of G,, Cf,, GZ,, Gh, (Gf,)‘, (G’,)’ 

1. Evaluate each of the quantities (8.28) for j = 1,2,..., 2N+ 2 as well 
as f =f(z) and f’ =f’(z). 

2. (G,, G’,, G;, (G,)‘, (Gjn)‘, (G,)‘) + (0, 0, 0, 0, 0, 0). 

j+ 1 

d,+ 1 

I- 

d, ,- c.i 

d,e2cjd,_,-d,_,,ni=2,3 ,..., M+ 1 

G, + G, + G,&,, 

Cf, t Cf, + OjpjGj*d, 

G:, t Gz, +ojajGj*d m 

G:, + G:, + wj yj Gj*d, 

(Gf,)’ + (G’,)’ + [(Oj + W,‘)fijyj + OjEj] GTd, 

(G’,)’ + (G’,‘)’ + [ (ej + co;) aj yj + ojSj] Gj*d, 

j:2N+2 

-(<I 
(=> (G,, G’,, G;, Gin, <cf,>‘, (G’,)‘) 

m=O, l,..., M+ 1. 

+ & + 2) (G,, G/,, G',, Gh,, (G',)', (G',)') 
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9. CONVERGENCE 

The proof of the convergence of the approximation scheme presented in 
Sections 6 to 8 is quite simple, using Theorem A.1 and the results of 
Section 5. 

Let us denote the right-hand side of (A.36) by AJ, and, for FE H(d, d’), 
let us denote 1,, by P,,(F), where f&z, q) is defined in (5.5). 

In view of Theorem A.l, and Section 5, we have 

(4 IIb,AJ - -4, -+ 0 for every J E H(d, d’); 

@I /I%J”-.%,+O; 
cc> SUP IIPMNII < 1 + III-PMNII < 00. 

Hence according to [ 10, pp. 4694701 it follows that the approximation 
3 = &,,, produced by the algorithm of Sections 6 to 8 converges to the 
solution j of Eq. (7.2). Moreover, by taking N = M2, it follows that 

III- SMNII, = 0(e-q (9.1) 

for some y > 0. Due to the quadratures and matrix solution involved in the 
actual algorithm we actually compute a perturbed solution xMN; however, 
due to the accuracy of the quadrature schemes described in Section 5, and 
since the resulting Galerkin matrix is not ill-conditioned, we also have 

IIyMN -s-,,II, = O(ePN”), N-P 00. (9.2) 

By combining (9.1) and (9.2), it thus follows that 

Ilr-&,Nll,= O(e-yN”2), N-+ 03. (9.3) 

Finally, in computing the scattered field 6 = FM,,,,, as described in Section 8, 
we similarly have, by Theorem 5.2, that 

IlIP - gMNIl, = O(evYN”*), (9.4) 

where g’, denotes the perturbed scattered field that we actually computed. 

APPENDIX A: THE FUNCTIONS G,,~G,,,/~~AND aG,/az. 

In this Appendix we study the functions G,, G’, = aG,,,/af and 
Gh = aG,/az which appear in Section 7 to 10. The results of this study will 
enable us to deduce the following: 

(i) Each component of the solution J of Eq. (7.2) is in H(d, d’). 

409/78/2-14 
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(ii) If m > 0, 

Gf?t(z, z’> = O(lf(z)l”), 

G’,(z, z’) = O(l) 
1 

if m = 0, 
O(lf(z)lrn- ‘13 m > 0, 

G;(z, z’) = O(lf(z>l”> 

and 

G,(z, z’> - 
1 1 

4iiTfo10g Iz-Z’I ’ 

cf,<z, z’) - 
-f’(z’) a(z’)* 

47?f(z’)(z - z’) ’ 

- G’,(z, z’) - 
a(z’)* 

47?f(z’)(z - z’) 

as z-+ fl,z’E (-1, 1); 

(‘4.1) 

as z-+z’,z’E (-1,l). 

64.2) 

Results (A. 1) proved to be useful for choosing the basis functions, in order 
to be able to obtain a convergent Galerkin method, while results (A.2) 
enabled us to choose the proper numerical integration technique for 
evaluating the singular integrals to get the coefficients Pmn, Qm”, Rm” and 
S”” in Sections 7-8. 

Throughout this Appendix, the following notation is used: 

f =f (z), f* =f(z’), 

v = {(z - z’)2 + df + f *)2}l’2, 

w-* 
K=---i-- 

v ' 

lmK= (f-f*)‘t(z-z’)* 
v2 -------a 

(A.3) 

(a) The functions G, 

The functions G,(see Eqs. (7.16) and (7.17)) are defined given z, z’ on 
t-1, 1) by 

G, = G,(z, z’) = &j; q cos(m8) dtl, (A-4) 

where 

R={(z-z’)‘+f*tf**-2ff* cos9}“*. (A.9 
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In terms of (A.3), we therefore have 

565 

G, = & e ikorvl I -KCOS%” 
(A.6) 

v( 1 - K ~02 e/1/2 
cos(2m8) de. 

Expansion of the exponential in (A.6) and termwise integration yields 

where 

G,d-? 
2x2 e S-O 

J”, = { 1 - K COS’ e}s-“2 COS(hd) de, 

J 
n/2 

Kf,,= { 1 - K COS’ 8)’ COS(ho) do. 
0 

The relationship 

( I - K ~0~2 ey c~~(2d) 

= (1 -K COS28}a-’ 

X 
[C 1 

i - 5 cos(2me) - t COS(~~ + 2)e - t COS(~~ - 218 
I 

whereas, by (A.8), 

S,,,=fm, KS,=K:,. 

(A-7) 

64.8) 

(A.9) 

(A. 10) 

(A.11) 

Relationships (A.lO) show that in order to evaluate G, using (A.7), we 
need only know J”, and K$, for m = 0, f 1, f2,...; we can then get the 
remaining P, and KL for s > 0 using (A.lO). To this end, integrating 
termwise (A.8) and using the identity 

I n’2 COST* e cos(2me) de = 
( ) 

n Trn Z.- 
0 

22n+1 (A. 12) 
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Jo =E (a?lKrn -----F 
m 2 2’“m! 

(A.13) 
KO, = n/2 if m = 0, 

=o if m z 0. 

In (A.13), F denotes the hypergeometric function. Thus we may compute 
J”, for 0 < K < 0.6 by means of the formula 

Jo = E (f)mKrn co [<t + m)J 
m 2 2*“m! nTo (l+ 2m),n! K" 

(A. 14) 

whereas, if 0.6 < K < 1 (see [ 1, p. 5591) it is preferable to use the formula 

O” K+ + m),l* JOm=lcm c 
?l=O [n!]’ 

X[w(n+l)-v(f+m+n) ] -iln(l -K) (1 -K)“, (A.15) 

where 

w(~) = -y = -0.5772156649, 

y(f) = -y - 2 In 2 = -1.9635 10026, 

ly(z + 1) = l/z + v(z). 

Equation (A. 15) shows that 

Pm - -f In( 1 - K) as ~--t ll. 

Now, by (A.3) 

]-K=v2-4ff* 
V2 

= (z -zy2 + (f-f*>’ 
V2 

N [l +f*“](z-z/)2 
4f*” 

as z+ z’ 

so that, by combining (A. 17) and (A. 18), we get 

(A.16) 

(A.17) 

(A.18) 

2f* 1 1 (1 +f*ry IZAZz’( ’ z + z’. (A. 19) 



ELECTROMAGNETIC SCATTERING ALGORITHM 567 

Using induction on (A.lO), it thus follows that 

J”,-0 as 2 --f z’, s > 0. (A.20) 

In view of (A.7), (A.13), (A.19) and (A.20) it therefore follows that 

2f* 1 
(1 +f*‘2)“2 ]z -z’] 1 as z-+z’, 

(A.2 1) 

which is the first of (A.2). 
In view of (A.3), it follows that 

K = O(f) as z+fl, (A.22) 

for all z’ E [-1, 11. Hence by (A.13) and (A.14), 

G, = Odf’“‘) as z-*1, for all z E [-1, 11. 
(A.23) 

(b) The functions cf,, G’,’ 

Upon differentiating expressions (A.3) we get 

Lb z - z’ 

vz=z= v9 

&a”-Jf* w*u-+f*) 
af v2 v4 ’ 

aK 8ff* (z-z’) Kz=2=--;5-_* 

We therefore note that 

(A.24) 

(A.25) 

2vr+$LY 
K f’ 

2v’+&O. 
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By means of these solutions as well as (A.lO), we get the identities 

(A.27) 

KS, . II 
These series may be readily computed using the identities 

;+m;;+m;2m+ 1;~ 

ln( 1-K) + 2w 

(A.28) 

if 0.6 < K < 1 

along with (A.lO). These identities were obtained via a procedure similar to 
that used to get (A. 14) and (A. 15). 

Expressions (A.26) to (A-28) enable us to deduce various growth 
properties of G’, and G’, as z + z’ and as z + k 1. 

By (A.28) and (A.3), 

4f *‘ae2 
- (z-z’)2 

as z --t 2’ E (-1,l) 

and 

J, ’ = O(f”) as z+fl. (A.30) 

(A.29) 
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Combining these results with the asymptotic identities 

d f *‘(z - z’) -N- 
2f”2 ’ 

z --t z’, 
K 

---3 
; 

z+* 1, 

and 

KZ 2f*‘(z - z’) -N- 
K v2 ’ 

Z-+Z’, 

KL 
- = O(f), z-+*1, 
K 

we get 

G,f- ’ f*“lk2 
4n2 f* (z - z’) ’ 

z + z’, 

z -+ z’. 

(A.3 1) 

(A.32) 

(A.33) 

Relation (A.lO), (A.13), (A.26), (A.28) and (A.31) yield 

G;=O(l) if m=O 

= O(f”-‘) 
as z-+*1, 

if m>O 
(A.34) 

while relations (A.lO), (A-13), (A.27), (A.28) and (A.32) yield 

G’, = O(f”) as z+ fl. (A.35) 

(c) Analyticity of I? 

The above results show that 

(i) G, is bounded as a function of z on [- 1, 11, except at z = z’, 
where it becomes unbounded according to (A.21); 

(ii) G,(z, z’) is an analytic function of z E ad, except at z = z’, where 
it has a singularity of the form (A.21). 

In the following theorem H(d, d’) is defined as in Section 5. 

THEOREM A. 1. Let K be the solution of Eq. (4.6), and let J be defined by 
(7.1). Then each component off is in H(d, d’). 
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ProoJ: Each component of the incident field p (see Eq. (7.3)) is in 
H(d, d’), where d’ > 0 is arbitrary. In view of Eq. (7.2), we need only show 
that if f, = (Jil, Ji,) denotes a pair of functions in H(d, d’), each of which is 
bounded on each of the sets 

s, = {(z, w): 2 E R,, Iwl= 11, 

S,={(z,o):-l~z~l,l/d’~~Iwl~d’}, 

where d’ > 1 is arbitrary, then each of the components of 

(A.36) 

is in H(d, d’). 
By our assumption on f in Section 3, the solution K = (KI, K,) of 

Eq. (4.2) is bounded on .4u = I-1, l] X [0,27r]. Hence for z E [-1, 11, each 
component of J, has the form 

F(z, eirp) = f a,(z) eim’, 
--co 

(A.37) 

where a,,& E H(0,); substituting this form of an expression into (A.36) for 
J,, and J,, and noting that a,/v = O(e-d”m’) Vz E [-1, l] and for all d’ > 0, 
we deduce, by inspection of (7.27)-(7.30) and (A.l) and (A.2) that lPmnj, 
IQmn], ]Rm”l and IS”“/ are O(C~““‘) for all d’ > 0 and for all z’ E (-1, 11. 
That is, F(z, w) E N(A,,) as a function of w, for all z E I-1, 11. 

Hence in order to complete the proof, we need only show that if 8,/v E 
H(R,), then each of the right-hand sides of (7.27)-(7.30) is in H(f2,). 

In view of the results of parts (a) and (b) of Appendix A, the coefftcients 
of 0,/v in the integrals (7.27)-(7.30) are of the following three ‘types: 

a(-& z’), a(z, 2’) log Iz -z’], a(z, z’>/(z - I’), 

where a(z, z’) is a bounded function in H(Q,) x H(J?,). Hence, we need only 
show that given g E H(R,), each of the functions g,, g, and g, are analytic 
in R,, where 
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g&') = j; I u(z, z’) log ] z - z’ ] g(z) dz; 

I 
1 

g3(z’) = P. v. 
u(z, z’) 
~ g(z) dz. 

-I z-z’ 

It is obvious that g, E H(R,). 
Nextifz’EG?,n{Imz’>O} then [ll] 

gf(r’)=jfl 9 g(z) dz 

(A.38) 

(A.39) 

is analytic in this region, and indeed, by altering the path of integration in 
(A.39) to the lower boundary of ad, we see that g; is in fact analytic in ad. 
If we now return the path of integration to the interval (-1, 1) and let 
Im z’ -+ 0, we find that for z’ E (_l, l), 

gf(z’) = 7liu(z’, z’) g(z’) + nig3(z’); 64.4 > 

this expression shows that since both g$(z’) and a(z’, z’) have an analytic 
extension into R,, so does g,. Hence g, is analytic in 0,. 

Finally, writing g, in the form of a convergent sum 

sdz’) = j1 x dz) B&‘) log Iz - z’ I dz, 
-1 k 

(A.4 1) 

where the functions a,, and /I, are in H@,), we need only show that gz is 
analytic in C!,, where 

SW> = j;, ak(z) log ] z - z’ ] dz. (A.42) 

Upon differentiating this expression carefully, we see that 

’ g;‘(z’) = P.V. 
I 

“kodz. 
-, z-z’ 

(A.43) 

By our argument involving g, above, it follows that gz’ is analytic in Q,,, 
i.e., g$ and hence g, is analytic in R,. This completes the proof of 
Theorem A. 1. 

By assumption for the case of finite conductivity of the body B, the 
function f is such that the surface S satisfies Liapunov conditions, in which 
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case the surface current K is bounded on S. However, one notes that 
integrals (7.27)-(7.30) converge so long as fl0,/vl= o(l) as z + f 1, i.e., so 
long as fK = o( 1) as z -+ f 1. Thus our method gives answers even if S is 
cone-shaped at one or both ends, although the Liapunov conditions are then 
violated, and our results may have no physical significance. 
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