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Abstract: Electroosmotic flow (EOF) has been widely used in various biochemical microfluidic appli-
cations, many of which use viscoelastic non-Newtonian fluid. This study numerically investigates the
EOF of viscoelastic fluid through a 10:1 constriction microfluidic channel connecting two reservoirs on
either side. The flow is modelled by the Oldroyd-B (OB) model coupled with the Poisson–Boltzmann
model. EOF of polyacrylamide (PAA) solution is studied as a function of the PAA concentration and
the applied electric field. In contrast to steady EOF of Newtonian fluid, the EOF of PAA solution
becomes unstable when the applied electric field (PAA concentration) exceeds a critical value for a
fixed PAA concentration (electric field), and vortices form at the upstream of the constriction. EOF
velocity of viscoelastic fluid becomes spatially and temporally dependent, and the velocity at the
exit of the constriction microchannel is much higher than that at its entrance, which is in qualitative
agreement with experimental observation from the literature. Under the same apparent viscosity, the
time-averaged velocity of the viscoelastic fluid is lower than that of the Newtonian fluid.

Keywords: electroosmosis; microfluidics; elastic instability; non-Newtonian fluid; Oldroyd-B model

1. Introduction

Electroosmotic flow (EOF) uses electric field to control fluid motion, and has been
widely used in various microfluidic and nanofluidic applications such as fluid pump [1],
mixing [2], and polymer translocation in biosensing [3]. The existing studies of EOF
have been mainly focusing on Newtonian fluids [4,5]. However, in reality, EOF has been
widely used to control and manipulate biological fluids (e.g., blood, saliva, lymph, protein,
and DNA solutions) [6–8] and polymeric solutions [9], which exhibit non-Newtonian
characteristics. Therefore, investigating EOF of viscoelastic fluids is of practical importance.

Bello et al. [10] conducted the pioneering study on EOF of non-Newtonian fluid, and
measured EOF velocity of methyl cellulose solution in a capillary. Their results show
that EOF velocity of such polymer solutions is much higher than that predicted with
the classic Helmholtz-Smoluchowski velocity. Chang and Tsao [11] conducted similar
experiments and found the effective viscosity decreased because of the sheared poly-
meric molecules inside the electrical double layer (EDL). Theoretically, non-Newtonian
effects can be characterized by proper constitutive models relating the dynamic viscosity
and the rate of shear. Such constitutive models include power-law model [12], Carreau
model [13], WhiteMetzner model [14], Bingham model [15], Oldroyd-B (OB) model [16],
PTT model [17], Moldflow second-order model [18], Giesekus model [19], etc. Das [20]
developed an approximate solution for EOF velocity of power-law fluid between two
parallel plates. Zhao et al. [21,22] derived a generalized Helmholtz–Smoluchowski velocity
for EOF of power-law fluid in a slit microchannel. Later, Zhao and Yang [23,24] extended
the study to a cylindrical microcapillary. Olivares et al. [25] experimentally investigated
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EOF of a non-Newtonian polymeric solution and verified the generalized Helmholtz–
Smoluchowski velocity. Tang et al. [26] numerically investigated EOF of power-law fluid
using Lattice–Boltzmann method. Zimmerman et al. [13] carried out numerical simulation
of EOF of Carreau fluid in a T-junction microchannel, and found that the flow field signifi-
cantly depended on the non-Newtonian characteristics of the fluid. The aforementioned
studies on EOF of non-Newtonian fluid are limited to inelastic constitutive models (i.e.,
power-law and Carreau models). However, some fluids show both viscous and elastic
behaviors, which can be presented by viscoelastic constitutive models. There are existing
literatures investigating the characteristics of EOF of viscoelastic fluids [27–31], showing
that the viscoelasticity of the fluid affects the flow pattern and flow rate. Note that in the
aforementioned studies, the EOF of non-Newtonian fluid was assumed in a steady state.

Recently, EOFs of non-Newtonian fluids have been reported to be time-dependent
and show instabilities even at low Reynolds number (Re). Such EOFs are time-dependent
because of the nonlinear viscosity and elasticity of non-Newtonian fluids. Bryce and Free-
man [32] first reported the electro-elastic instability in EOF of PAA solutions through a
2:1:2 micro-scale contraction/expansion when the applied electric field exceeded a thresh-
old value. Later, Bryce and Freeman [33] reported that such instabilities insignificantly
enhanced the mixing in micro flows. Pimenta and Alves [34,35] later experimentally and
numerically studied the electro-elastic instabilities of PAA solutions in both cross-slot and
flow-focusing micro devices, and found that mixing efficiency was not improved signif-
icantly. Song et al. [36] experimentally and numerically studied the elastic instability in
EOF of viscoelastic polyethylene oxide (PEO) solutions through T-shaped microchannels,
and results demonstrated that the threshold electric field for onset of instability highly
depended on the PEO concentration. Song et al. [37] later extended the work by experi-
mentally investigating the fluid rheological effects on the elastic instability in EOF of six
types of phosphate buffer-based aqueous solutions through T-shaped microchannels. They
found that shear thinning effect of the fluid might account for the electro-elastic instabilities,
however, the fluid with high elasticity alone did not have instability, which is inconsistent
with the results of Pimenta [35]. The authors attribute the inconsistency to the neglect
of microstructural effects (e.g., polymer-wall interaction and electric effect on molecular
structure of polymer, etc.) of shear-thinning polymer solutions. However, this experimen-
tal result shows similarity to the work of Ko et al. [38], in which weakly shear-thinning,
viscoelastic polyvinylpyrrolidone (PVP), and PEO solutions exhibited Newtonian-like EOF
patterns, while shear-thinning and weakly elastic xanthan gum (XG) solution exhibited
disturbance and vortices, suggesting that fluid elasticity alone has an insignificant impact
on the steady-state EOF pattern. More recently, Sadek [39] experimentally investigated EOF
of viscoelastic fluids through different microchannel configurations, including hyperbolic-
shaped contractions followed by an abrupt expansion, and abrupt contractions followed
by a hyperbolic-shaped expansion, and EOF showed instabilities of elastic origin at very
low Weissenberg numbers (Wi) (i.e., Wi < 0.01).

There is only limited literature on numerical studies of electro-elastic instabilities.
Afonso et al. [40] numerically investigated the elastic instability of EOF through a cross-
slot geometry using the upper-converted Maxwell and the simplified Phan-Thien-Tanner
models, and a direct flow transition from steady symmetric state to unsteady flow without
crossing the steady asymmetric state at a critical Wi was observed. Pimenta and Alves [35]
numerically investigated the electro-elastic instabilities in cross-slot and flow-focusing
micro devices using OB model and Poisson-Boltzmann (PB) model. They found that strong
shear-dominated flow within the EDL at the corners had a more significant contribution
to the elastic instabilities than the extensionally dominated bulk flow. Song et al. [36]
numerically investigated EOF of PEO solution through a T-shaped microchannel. Their
model considered only the influence of PEO solution on the fluid viscosity, conductivity, and
zeta potential. Due to the neglect of fluid elasticity effect in the mathematical model, only
the electrokinetic flow phenomena of dilute PEO solution (i.e., ≤750 ppm) were captured.
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Both experimental and numerical investigations in the EOF instabilities of viscoelastic
fluid are limited, and the conditions proposed by various researchers for triggering the in-
stabilities in the EOF of viscoelastic fluids show inconsistency and remain unclear. Inspired
by the existing literature, in this work we numerically study EOF of viscoelastic fluids
through a 10:1:10 contraction microchannel. The geometry, which consists of a constriction
microchannel connecting two relatively big reservoirs on either end, is close to actual
microfluidic device. The time-dependent OB model and PB model are adopted to describe
the constitutive characteristics and the electrokinetic phenomenon, respectively. EOFs of
PAA solutions with various weight concentrations under different applied electric fields
are investigated. The effects of polymer concentration and applied electric field on the
elastic instability are studied, and a map in polymer concentration-electric field space for
predicting the onset of upstream vortices is formed.

2. Mathematical Model

We consider incompressible monovalent binary electrolyte solution such as KCl with
bulk concentration c0 mixed with PAA polymer solution of concentration cp, which fills a
microchannel of height Hc, length Lc, and width W connecting two identical reservoirs of
height Hr and length Lr on either side. The solid walls of the constriction microchannel
and the reservoirs are assumed to carry a constant negative zeta potential, ξ0. When
dealing with non-Newtonian fluids, a constant zeta potential has been widely accepted [41].
Huang et al. [41] compared theoretical and experimental results of PEO solutions, and
a constant zeta potential was proven for various PEO concentrations. Therefore, in the
current study, we neglect the effect of the polymer concentration on the wall zeta potential.
Two electrodes are placed at both ends of the reservoirs, and an external potential bias
U0 is applied between the inlet (Anode) and outlet (Cathode). Through the interaction
between the externally applied electric field and net charges accumulated within the EDL
in the vicinity of the charged walls, EOF flowing from the anode reservoir through the
constriction microchannel towards the cathode reservoir is generated. The apparent electric
field between the inlet and outlet is defined as Eapp = U0/(2Lr + Lc). In some applications,
there are slit microchannels with width much larger than height [42,43]. For example,
two-phase flow patterns were studied in a microchannel with 10-mm width and 50-µm
height [42]. For microchannels with such geometries, the flow can be simplified to a
2D problem [44]. Therefore, in the current study we assume that the channel width is
much larger than the channel height, and the flow can be simplified to a 2D problem as
schematically shown in Figure 1. A Cartesian coordinate system with origin fixed at the
center of the microchannel is adopted with the x-axis along the length direction and the
y-axis in the height direction.
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The solid walls of reservoirs and the constriction channel are negatively charged, and an electric field
is imposed by applying a potential difference between anode and cathode positioned in two fluid
reservoirs.
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The induced EOF of viscoelastic fluid is governed by the continuity and Navier–Stokes
equations:

∇·u = 0, (1)

ρ

(
∂u
∂t

+ u·∇u
)
= −∇p + ηs∇2u +∇·τ− ρE∇φExt, (2)

where u is the velocity; p is the pressure; ρ is the fluid density; ηs denotes the solvent
dynamic viscosity; τ is the polymeric stress tensor accounting for the memory of the vis-
coelastic fluid; t represents time; ρE and φExt represent, respectively, the volume charge
density within the electrolyte solution and the externally applied electric potential. For dif-
ferent types of viscoelastic fluids, various constitutive models have been developed to relate
the polymeric stress tensor τ and the deformation rate of the fluid, including WhiteMetzner
model [14], which is commonly used for shear-thinning fluid; PTT model [17], which has
good performance for prediction of viscosity at low shear rates; Giesekus model [19], which
is suitable for concentrated polymer solutions; and OB model [16], which is suitable for
dilute polymer solutions. Since OB model can properly fit the rheological behavior of
aqueous PAA solutions [45], OB model is adopted in this study. In the OB model, the
polymeric stress tensor, τ, is described as [16],

τ =
ηp

λ
(c− I), (3)

where ηp is the polymer dynamic viscosity; λ is the relaxation time of the polymer, which
refers to the time it takes for polymer chains to return to equilibrium after being disturbed;
c is the symmetric conformation tensor of the polymer molecules; and I is the identity
matrix.

For the OB model, the conformation tensor c is governed by [16],

∂c
∂t

+ u·∇c = c·∇u + (∇u)T ·c− 1
λ
(c− I). (4)

Typically, numerical simulation of viscoelastic flow is difficult to converge for high
Weissenberg number problem [46,47]. Computations were found to break down at frustrat-
ingly low values of Weissenberg number (usually around Wi = 1; precise critical value also
depends on the flow geometry) [48]. Therefore, the log-conformation tensor approach [47]
is adopted. In the log-conformation tensor method, a new tensor (Θ) is defined as the
natural logarithm of the conformation tensor,

Θ = ln(c) = R ln(Λ)R, (5)

where Λ is a diagonal matrix whose diagonal elements are the eigenvalues of c; and R
is an orthogonal matrix with its columns being the eigenvalues of c. Equation (4) for the
conformation tensor written in terms of Θ then becomes [46],

∂Θ

∂t
+ u·∇Θ = ΩΘ−ΘΩ + 2B +

1
λ

(
eΘ − I

)
. (6)

in the above, Ω and B are, respectively, the anti-symmetric matrix and the symmetric
traceless matrix of the decomposition of the velocity gradient tensor ∇u [46].

Then, the conformation tensor c is recovered from Θ,

c = exp(Θ). (7)

The total electric potential, Ψ, is decomposed in two variables, Ψ = φExt + ψ [35], with
φExt representing the potential originated from the externally applied electric potential
while ψ being the potential arising from the charge of channel walls. In this study, the EDL
thickness is on the order of nanometers (the calculation of EDL thickness will be shown
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in the next paragraph), while the microchannel height is on the order of micrometers.
Therefore, the Poisson–Boltzmann equation [49] is used to describe the potential, ψ:

∇·(ε∇ψ) = ρE = Fc0

(
exp

(
eψ

kT

)
− exp

(
− eψ

kT

))
. (8)

In the above, F is the Faraday’s constant (i.e., 96,485.33289 C·mol−1); e is the elementary
charge (i.e., 1.6021766341× 10−19 C); k is Boltzmann’s constant (i.e., 1.380649× 10−23 J·K−1);
T is the absolute temperature of the fluid (i.e., 295 K); and ε represents the permittivity of
the solution (i.e., 6.906266× 10−10 F·m−1). In this study, the bulk concentration c0 is 0.01
mM; z1 = 1 and z2 = −1. In a biocompatible solution with pH of 7.4, the concentration of
H+ is 10−7.4 mol/L, and the concentration of OH− is 10−6.6 mol/L. The concentration of
weak electrolyte is relatively low comparing with the background salt. Therefore, the weak
electrolyte is not considered in the current study. The EDL thickness can be calculated

by λD =
√

εkT
eF(z2

1c0+z2
2c0)

, which is 95 nm. The potential φExt is governed by the following

Laplace equation [50],
∇2φExt = 0. (9)

The boundary conditions are given as follows (Figure A4):
(1) At the Anode (edge AG in Figure A4): n·∇u = 0; p = 0; τ = 0; φExt = U0;

n·∇ψ = 0; Θ = 0; where n denotes the normal unit vector on the surface.
(2) At the Cathode (edge FL in Figure A4): n·∇u = 0; p = 0; n·∇τ = 0; φExt = 0;

n·∇ψ = 0; n·∇Θ = 0.
(3) On the reservoir walls (edges ABC, DEF, GHI, and JKL in Figure A4) and the

microchannel walls (edges CD and IJ in Figure A4): u = 0; n·∇φExt = 0; ψ = ξ0; n·∇Θ = 0;
n·∇p is obtained from the momentum equation; the components of τ are linearly extrapo-
lated.

The following initial conditions are specified within the domain: u = 0; p = 0; τ = 0;
φExt = 0; ψ = 0; Θ = 0.

Note that the electric potentials and the flow are only one-way coupling. The electric
potentials φExt and ψ are in a steady state, and they are independent on the flow. However,
the electric potentials affect the flow through the electrostatic force, which is the last
term in Equation (2). For Newtonian fluid, the third term, ∇·τ, in the right-hand-side of
Equation (2) is dropped, and the model includes Equations (1), (2), (8), and (9).

3. Numerical Method and Code Validation

The governing equations are numerically solved using the finite volume method by
RheoTool (version 4.1, https://github.com/fppimenta/rheoTool, accessed on 1 June 2020),
an open-source viscoelastic EOF solver [35] implemented in the open-source OpenFOAM
platform. The details of the solver can be found from the work of Pimenta and Alves [34,50].
To numerically solve the coupled Equations (1), (2), (6), (8), and (9) along with the boundary
and initial conditions, CUBISTA scheme [51] is used to discretize the convective terms in
Equations (2) and (6). Central differences are used for the discretization of Laplacian and
gradient terms. The time derivatives are discretized with three-time level explicit difference
scheme [52], which is of the second order of accuracy. The exponential source term in
Equation (8) is linearized using Taylor expansion up to the second term [53]. All of the
terms in the momentum equation (i.e., Equation (2)), except the pressure gradient and the
electric contribution, are discretized implicitly. A small time-step, ∆t = λ/105, is used to
ensure the accuracy. The well-known SIMPLEC (Semi-Implicit Method for Pressure-Linked
Equations-Consistent) algorithm [54] is used to resolve the velocity-pressure coupling.
An inner-iteration loop is used to reduce the explicitness of the method and increase its
accuracy and stability. The pressure field is computed by PCG (Preconditioned Conjugate
Gradient) solver, of which the tolerance and maximum iteration are set to be 1× 10−8 and
800, respectively. The velocity field is computed by PBiCG (Preconditioned Biconjugate

https://github.com/fppimenta/rheoTool
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Gradient) solver, of which the tolerance and the maximum iteration are set to be 1× 10−10

and 1000, respectively. The computational steps of the solver are as follows [34]:

Step 1. Initialize the fields {u, p,τ, φExt, ψ, Θ}0 and time (t = 0).

Step 1.1. Compute steady state φExt from Equation (9) and ψ from Equation (8).

Step 2. Enter the time loop (t = ∆t).

Step 2.1. Enter the inner iteration loop (i = 0).

Step 2.1.1. Compute Θi and τi by log-conformation method.
Step 2.1.2. Compute estimated velocity field u∗i by solving the momentum equa-
tion.
Step 2.1.3. ompute pressure field pi by enforcing the continuity equation.
Step 2.1.4. Correct the previously estimated velocity field using the correct
pressure field.
Step 2.1.5. Increase the inner iteration index (i = i + 1) and repeat the computa-
tion from Step 2.1.1, until the inner iteration criteria (i.e., maximum tolerance)
is satisfied.
Step 2.1.6. Set {u, p,τ, φExt, ψ, Θ}t = {ui, pi,τi, φExti, ψi, Θi}.

Step 2.2. Increase time, t = t + ∆t, and return to Step 2.1 until the simulation time is
reached.

Step 3. Stop the simulation and exit.

Structural mesh is adopted to discretize the computational domain. 90◦ corners of
the contraction channel (points I, J, C, and D in Figure 1) are smoothed by a fillet of 1 µm
in radius to avoid sharp turns. The 90◦ corners of the reservoirs (points H, K, B, and E in
Figure 1) are smoothed by a fillet of 2 µm in radius. To capture the EDL in the vicinity
of the charged walls, a finer mesh is distributed near the charged reservoir and channel
walls as shown in Figure 2. To reduce the number of mesh, we use a relatively low bulk
concentration c0 = 0.01 mM, and the EDL thickness is 95 nm in this study. In order to
capture the details in the EDL and to guarantee the accuracy, the mesh size near the charged
wall is set to be 10 nm so that there are 10 meshes within the EDL. There are 77,192 meshes
in the whole geometry. A mesh independence study, described in the Appendix A, is
performed to ensure the accuracy of the simulation.
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In this work, ηp and λ for 100 ppm, 250 ppm, and 1000 ppm PAA-water solutions [55] are
adopted to accomplish curve fitting as shown in Figure 3. The values of ηp and λ were experi-
mentally measured [56], and the slow retraction method was used to measure the relaxation
time. The polymer dynamic viscosity can be expressed as ηp = 2.22× 10−5·cp, and the re-
laxation time can be expressed as λ = 3.69× 10−3 + 3.94222× 10−5·cp + 9.68889× 10−5·cp

2,
where cp represents the weight concentration of PAA solution with the unit of ppm. The ηp
and λ for other cp studied in this work are estimated by the curve-fitting expressions.
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In a microfluidic channel with EDL thickness much smaller than the channel height,
the EOF velocity of a Newtonian fluid can be approximated by the Helmholtz–Smoluchowski
velocity formula [57],

u0 = − εξ0Ex

η0
, (10)

where Ex is the actual local electric field in the main stream direction, and η0 is the to-
tal viscosity of the fluid. To check the accuracy of our code, we simulate EOFs of both
Newtonian and viscoelastic fluids in the same geometry with Hc = 40 µm, Lc = 200 µm,
Hr = 400 µm, and Lr = 400 µm. Other parameters are set as U0 = 60 V, ξ0 = −0.11 V [58],
and ε = 6.906266 × 10−10 F·m−1. For Newtonian fluid, the total viscosity is set as
η0 = ηs = 0.00322 kg/(m·s). When the concentration of PAA solution is less than 2 ppm,
the relaxation time is less than 0.1 ms [56], and the fluid can be approximately treated as
Newtonian fluid. Therefore, for the OB model, parameters are set as ηs = 0.00317 kg/(m·s),
ηp = 0.00005 kg/(m·s), η0 = ηs + ηp = 0.00322 kg/(m·s), and λ = 0.1 ms. Figure 4a
depicts electric potential φExt(x, 0) along the x-axis when Eapp = 600 V/cm. The electric

field in the x-direction, − ∂φExt
∂x , in the constriction microchannel is 1820 V/cm, which is

about 10 times of the electric field in the reservoirs. This is because of the 10:1:10 contraction
geometry and current conservation. With the same electric conductivity, the electric field
is inversely proportional to the cross-sectional area of the geometry. Note that the actual
electric field within the constriction microchannel is about three times of the apparent
electric field, Eapp, which does not consider the cross-sectional variation of the geome-
try. EOFs of both Newtonian fluid and viscoelastic fluid reach a steady state. Figure 4b
shows the x-component velocity profiles, u(0, y), of the Newtonian fluid (solid line) and
the OB model (circles). The velocity first rises rapidly within the thickness of EDL, then
reaches a plateau in the cross section of the channel. When Ex = 1820 V/cm, the calculated
Helmholtz–Smoluchowski velocity is 4.29 mm/s, and the velocity at the center of the chan-
nel is 4.27 mm/s for both Newtonian and OB models. The relative difference between the
approximated velocity and the simulated velocity is less than 0.5%. In addition, the result
for OB model matches that of Newtonian fluid. Such consistency between Newtonian
model and OB model is because the polymer dynamic viscosity ηp is much smaller than the
solvent dynamic viscosity ηs, and the relaxation time of the polymer λ is also tiny. Under
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the considered condition, the elastic effect of the fluid is negligible and the OB fluid is
almost the same as Newtonian fluid with the same total viscosity.
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(b) the x-component velocity at the center of the constriction microchannel, u(0, y), for Newtonian model (solid line) and
OB model (symbol).

Afonso et al. [28] derived an analytical solution of viscoelastic EOF between two
parallel plates based on the Debey–Hückel approximation, which is valid under the con-
dition of low zeta potential (i.e., ξ0 < 25 mV). To further validate our code for OB
model, EOF of viscoelastic fluid with ηs = 0.001 kg/(m·s), ηp = 0.00222 kg/(m·s),
η0 = ηs + ηp = 0.00322 kg/(m·s), and λ = 8.6 ms in a straight 2D channel (with height
of 40 µm) is studied. These rheology parameters are corresponding to those of 100 ppm
PAA solution. U0 is set as 10 V, while ξ0 is chosen as −10 mV and −110 mV, respectively.
Under the considered conditions, the flows are steady state due to relatively low electric
field strength. Figure 5 depicts the x-component velocity profile at the center of the channel,
and our numerical results (triangles) are in excellent agreement with the analytical result
(line). Although the analytical solution is based on the Debey–Hückel approximation,
we find that the numerical result also agrees well with the analytical solution when the
zeta potential ξ0 is −110 mV. Therefore, the agreement of results attained from the OB
model and Newtonian model, which are also validated by the Helmholtz–Smoluchowski
approximation, as well as the agreement of analytical solution of OB model and numerical
results for EOF of viscoelastic fluid in a straight channel, validate our code.
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4. Results and Discussion

Newtonian fluid is investigated to provide the reference flow characteristic for the
contraction geometry. For the PAA solution with different concentration cp, the applied
apparent electric field Eapp is varied from low values to high (i.e., 100–600 V/cm). In this
section, first, we describe the flow pattern of Newtonian fluid and the time-dependent flow
patterns of PAA solutions. Then, the instabilities of PAA solutions with various Eapp and
cp are discussed and a flow map is formed based on the investigated values of Eapp and cp.
Finally, statistical results of cross-sectional average velocity are presented.

4.1. Instability of PAA Solutions

For Newtonian fluids with various total viscosities, the EOF reaches a steady state
under all conditions of the applied electric field strengths. There is no vortex occurring
in the reservoirs and the constriction microchannel. The streamlines of Newtonian fluid
show excellent symmetry about the x-axis. Additionally, the magnitude of the velocity,
U(x, y), is symmetric about the y-axis, U(x, y) = U(−x, y). For EOF of PAA solutions,
when Eapp and cp are relatively low, the flow pattern is similar to that of Newtonian
fluid, and the flow reaches a steady state without vortex. With increasing Eapp and cp,
however, the viscoelastic flow becomes time dependent and significant instabilities are
observed. Figure 6 depicts the streamlines at different times when Eapp = 100 V/cm and
cp = 500 ppm. Figure 7 depicts the streamlines at different times when Eapp = 600 V/cm
and cp = 150 ppm. Figure 8 shows the velocity magnitudes as a function of time at three
different locations, namely, upstream of the constriction microchannel (−3Hc, 0), center
of the constriction microchannel (0, 0), and downstream of the constriction microchannel
(3Hc, 0). For the EOF of both cp = 150 ppm and cp = 500 ppm, we observe strong
instabilities and upstream vortices.
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Figure 8. Velocity magnitudes at three different locations ((−3Hc, 0), (0, 0), (3Hc, 0)). (a) cp = 150 ppm and Eapp = 600 V/cm,
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Figures 6 and 7 show that the viscoelastic EOF is time-dependent. The streamlines
in the left inlet reservoir far away from the solid walls (AB and GH in Figure 1) and
near the entrance of the constriction microchannel show significant fluctuation and also
become asymmetric about the x-axis. However, the streamlines near the solid walls of both
reservoirs and in the outlet reservoir show insignificant change with time. Within 0.1 s,
vortices continuously form and disappear within the inlet reservoir right before the entrance
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the direction of the circulation is marked by red curved lines. The pair of vortices are in
opposite directions and form a stagnant region right before the entrance of the constriction
microchannel. Therefore, we call the induced vortices as entrance-centerline vortices.

For cp = 150 ppm and Eapp = 600 V/cm, the width and length of the vortices are
nearly the same as the height of the constriction microchannel (Hc), while for cp = 500 ppm
and Eapp = 100 V/cm, the width and the length of the vortices are about 2Hc. In the similar
geometry, however, Ko [38] did not observe vortices in their experiments with 200 ppm
PAA solution under Eapp ranging from 75 V/cm to 200 V/cm. The elastic instability
increases with increasing polymer concentration and the applied electric field. Our later
results discussed in the following section show that for cp = 200 ppm, the vortices occur
when the applied electric field exceeds the threshold value of 300 V/cm. Therefore, our
numerical results qualitatively agree with the experimental observation of Ko [38] under
their experimental condition. Table A1 in the Appendix A summarizes the EOF instabilities
from the literature. In Sadek’s [39] experimental study, small vortices at the entrance and
large upstream circulation flows were observed. For highly concentrated polymer solution,
downstream circulation flows were observed at a critical voltage. The upstream vortices
found in this study are distinct from the small vortices and large circulation flows found
in Sadek’s study [39] in terms of location. Note that the geometry in our study differs
significantly from the experimental study of Sadek [39], and we do not observe large
circulating flows near the reservoir corners and channel lips.

For Newtonian fluid, the EOF reaches a steady state, and the velocity magnitudes are
symmetric about the y-axis. Therefore, for Newtonian fluid, we have U(−3Hc, 0) = U(3Hc, 0).
However, as shown in Figure 8, the velocity magnitudes at three points (−3Hc, 0), (0, 0),
and (3Hc, 0) fluctuate around certain values and velocity magnitudes do not show symme-
try about the y-axis. For cp = 500 ppm and Eapp = 100 V/cm, as shown in Figure 8b, the
time-averaged velocity at the channel center is 0.201 mm/s with a standard deviation of
0.013 mm/s. The time-averaged velocity at downstream of the constriction microchannel
is 0.108 mm/s, which is about 2 times of that at upstream of the constriction microchannel
(i.e., 0.047 mm/s). For cp = 150 ppm and Eapp = 600 V/cm, the time-averaged velocities
at the upstream, center, and downstream of the constriction microchannel are, respectively,
0.19 mm/s, 2.82 mm/s, and 2.05 mm/s. The ratio of the downstream velocity to upstream
velocity is about 10 times. In contrast to Newtonian EOF, the flow velocity of viscoelastic
fluid at the downstream is significantly higher than that at the upstream, which has also
been experimentally observed in Ko’s [38] experiments, where a fluid jet after the constric-
tion microchannel was observed and the ratio of the velocity at the downstream centerline
to that at upstream of the constriction microchannel varies between 1 and 2 under Eapp
ranging from 75 V/cm to 200 V/cm and cp = 200 ppm.

Figure 8 also shows that EOF of cp = 500 ppm and Eapp = 100 V/cm presents stronger
instabilities than that of cp = 150 ppm and Eapp = 600 V/cm. Comparing Figures 6 and 7,
the streamlines show stronger fluctuation and larger upstream vortices for solution with
relatively high polymer concentration. Such trend suggests that although the increase
of both Eapp and cp can enhance the instabilities of the viscoelastic EOF, the polymer
concentration, cp, affects the instabilities of the EOF more significantly, which will be
further discussed in next section.

Figures 6 and 7 also show the spatial distribution of elastic normal stress τxx with
the color bar representing its magnitude. To clearly reveal it, Figure 9 depicts the spatial
distribution of τxx in the whole geometry for cp = 150 ppm and Eapp = 600 V/cm at
t = 1.78 s. Within the two reservoirs, the elastic normal stress is nearly zero at location
far away from the constriction microchannel. However, significant elastic normal stress is
induced near the entrance of the constriction microchannel and near the downstream lips.
Due to the contraction geometry, the electric field within the constriction microchannel is
about 10 times of that within the inlet reservoir as shown in Figure 4a, and the flow velocity
in the microchannel is significantly higher than that in the reservoir. For example, Figure 8
shows that the ratio of the time-averaged velocity within the microchannel to that in the
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inlet reservoir, U(0, 0)/U(−3Hc, 0), is 4.28 for cp = 500 ppm and Eapp = 100 V/cm and
10.79 for cp = 150 ppm and Eapp = 600 V/cm. Near the entrance of the microchannel, the
high velocity gradient results in a strong extension of polymer molecules, and consequently
induces significant elastic normal stress. Therefore, τxx experiences a rapid increase near
the entrance of the constriction microchannel. At the exit of the constriction microchannel,
similarly, a significant increase of τxx is induced at the exit lips. Figure 10a,b depict the
streamlines in the constriction microchannel and the color bar represents the velocity
magnitude, U, for cp = 150 ppm and Eapp = 600 V/cm and Newtonian fluid with the
same total viscosity and Eapp at t = 1.78 s, respectively. For the viscoelastic fluid, at both
the entrance and exit of the constriction microchannel, as shown by the dashed circles
in Figure 10a, velocity becomes spatially dependent along the y-axis. Velocity near the
walls of the constriction microchannel is significantly higher than that at the centerline
of the microchannel, and a local maximum occurs near the inlet/outlet corners of the
constriction microchannel. However, in the EOF of Newtonian fluid, as shown in Figure
10b, at both the entrance and exit of the constriction microchannel, the velocity magnitude
is more evenly distributed in the cross section of the constriction microchannel. Figure 10c
depicts the velocity magnitude profile at the entrance (2x/Hc = −5) and exit (2x/Hc = 5)
of the constriction microchannel. For Newtonian fluid, the velocity magnitude profile is
identical at 2x/Hc = ±5 and is symmetric about the x-axis. The ratio of the maximum
velocity magnitude near the channel walls to that at the centerline is 1.6. However, for PAA
solution, due to the elastic instability, the velocity magnitude profile is asymmetric about
the x-axis at 2x/Hc = ±5. In addition, the ratios of the maximum velocity magnitude near
the channel walls to that at the centerline are 9.7 and 4 at 2x/Hc = −5 and 2x/Hc = 5,
respectively, which are much higher than that of the Newtonian fluid. For Newtonian
fluid, the velocity profile is symmetric about the centerline of the microchannel (i.e., y = 0).
However, Figure 10c shows that the local maximum velocity near the top channel wall
differs from that near the bottom channel wall, and the velocity profile is asymmetric
about y = 0.
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Figure 9. Spatial distribution of the elastic normal stress τxx for cp = 150 ppm and Eapp = 600 V/cm
at t = 1.78 s.

As PAA solution flows from the microchannel into the outlet reservoir, fluid ve-
locity first decreases when fluid exits the microchannel and then increases in the outlet
reservoir, as shown by the region marked with a circle in Figure 10a and by the velocity
magnitude as a function of x at y = 0 in Figure 10d. The two dashed lines in Figure 10d
represent the entrance and exit of the constriction microchannel. EOF of Newtonian fluid
within the constriction is a plateau, and its velocity magnitude within the constriction is
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much higher than those at both reservoirs, and this is because the electric field within
the constriction microchannel is significantly higher than that in the reservoirs. However,
the velocity of PAA solution becomes spatially dependent within the constriction, and
a local maximum occurs before the exit and a local minimum occurs at the exit of the
constriction microchannel. In addition, a local maximum occurs at the downstream out-
let reservoir. Figure 10d also clearly shows that the velocity in the downstream outlet
reservoir is significantly higher than that at the upstream inlet reservoir. For example,
U(2x/Hc = 10.0)/U(2x/Hc = −10.0) = 3.37. The unexpected velocity decrease at the
microchannel exit and velocity increase at the downstream outlet reservoir do not occur
in Newtonian fluid as shown in Figure 10b,d. Such a phenomenon is probably because of
the extrudate swell effect of polymers [59]. At the exit of the constriction microchannel,
curved streamlines tilting toward the walls of the constriction microchannel are observed
in viscoelastic fluid, suggesting that fluid tends to flow toward the charged walls of the
microchannel. Such lateral velocity component results in the velocity’s increase near the
microchannel walls and velocity’s decrease near the centerline at the exit of the constric-
tion microchannel. In addition, the significant increase of τxx near the downstream lips
observed in Figure 9 can also be attributed to the extrudate swell effect of polymers when
polymer exits from the constriction microchannel to larger outlet reservoir.

Micromachines 2021, 12, x FOR PEER REVIEW 13 of 29 
 

 

constriction is a plateau, and its velocity magnitude within the constriction is much higher 
than those at both reservoirs, and this is because the electric field within the constriction 
microchannel is significantly higher than that in the reservoirs. However, the velocity of 
PAA solution becomes spatially dependent within the constriction, and a local maximum 
occurs before the exit and a local minimum occurs at the exit of the constriction micro-
channel. In addition, a local maximum occurs at the downstream outlet reservoir. Figure 
10d also clearly shows that the velocity in the downstream outlet reservoir is significantly 
higher than that at the upstream inlet reservoir. For example, U(2𝑥 𝐻ୡ⁄ = 10.0) U(2𝑥 𝐻ୡ⁄ = −10.0)⁄ = 3.37. The unexpected velocity decrease at the mi-
crochannel exit and velocity increase at the downstream outlet reservoir do not occur in 
Newtonian fluid as shown in Figure 10b,d. Such a phenomenon is probably because of 
the extrudate swell effect of polymers [59]. At the exit of the constriction microchannel, 
curved streamlines tilting toward the walls of the constriction microchannel are observed 
in viscoelastic fluid, suggesting that fluid tends to flow toward the charged walls of the 
microchannel. Such lateral velocity component results in the velocity’s increase near the 
microchannel walls and velocity’s decrease near the centerline at the exit of the con-
striction microchannel. In addition, the significant increase of 𝜏௫௫ near the downstream 
lips observed in Figure 9 can also be attributed to the extrudate swell effect of polymers 
when polymer exits from the constriction microchannel to larger outlet reservoir. 

 
Figure 10. Streamlines and velocity magnitude for 𝑐୮ = 150 ppm and 𝐸ୟ୮୮ = 600 V/cm and New-
tonian fluid at 𝑡 = 1.78 s: (a) 150 ppm PAA solution, (b) Newtonian fluid with same total viscosity 
as 150 ppm PAA solution, (c) velocity magnitude profiles at 2𝑥 𝐻ୡ⁄ = ±5, (d) velocity magnitudes 
profiles at 𝑦 = 0 (The blue dash lines show the position of the contraction microchannel). The 
color bar represents the velocity magnitude U. 

The generated elastic normal stress 𝜏௫௫ was typically used to explain the formation 
of vortices in pressure-driven viscoelastic flows within curved geometries [60–62]. It has 
been reported that the development of the polymeric elastic stresses is caused by the flow-
induced changes of the polymer conformation in the solution. Such changes of the poly-
mer conformation are strain-dependent, anisotropic, and dependent on the flow. The ex-
tra elastic stresses are nonlinear under shear and can alter the flow behavior. At low Reyn-
olds numbers where inertia is negligible, when the elastic normal stress exceeds by a cer-
tain amount the local shear stress, the flow transits from stable to unstable, and the vorti-
ces form at upstream of the constriction microchannel. Such elastic instabilities are often 

Figure 10. Streamlines and velocity magnitude for cp = 150 ppm and Eapp = 600 V/cm and
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The generated elastic normal stress τxx was typically used to explain the formation
of vortices in pressure-driven viscoelastic flows within curved geometries [60–62]. It has
been reported that the development of the polymeric elastic stresses is caused by the
flow-induced changes of the polymer conformation in the solution. Such changes of the
polymer conformation are strain-dependent, anisotropic, and dependent on the flow. The
extra elastic stresses are nonlinear under shear and can alter the flow behavior. At low
Reynolds numbers where inertia is negligible, when the elastic normal stress exceeds by
a certain amount the local shear stress, the flow transits from stable to unstable, and the
vortices form at upstream of the constriction microchannel. Such elastic instabilities are
often observed in flows with sufficient curvature [63–65], and some argue that curvature is
necessary for infinitesimal perturbations to be amplified by the normal stress imbalances
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in the viscoelastic flows [66]. However, other theoretical studies reported that viscoelastic
flows also showed a nonlinear instability in parallel shear flows, such as in viscoelastic
flows within straight pipes at low Reynolds numbers [67]. Although the formation of the
upstream vortices in the viscoelastic EOF shares the same mechanism as the pressure-driven
flow, the locations of the vortices found in this study are distinct from the typical lip and
corner vortices occurring in pressure-driven viscoelastic flows. This is probably because of
the different velocity profiles in the pressure-driven flow and the EOF. In pressure-driven
flow, the velocity is zero at solid walls and increases to a maximum at the centerline of the
geometry. However, the EOF velocity profile is nearly a plug flow as shown in Figure 4b.
The velocity increases from zero to a plateau within the EDL thickness, which is only on
the order of a few nanometers. For the pressure-driven flow, the highest velocity is at the
centerline of the geometry and the velocity near the wall is relatively low, resulting in the
stagnant region near the solid boundaries (lips and corners). However, EOF velocity in the
vicinity of the charged wall is almost the same as that in the channel centerline. For the
extensional flow of viscoelastic fluids, the stretched polymer molecules lead to large elastic
stresses, which significantly depend on the geometry and velocity profile. The induced
elastic stresses render the primary flow unstable and cause an irregular secondary flow.
The flow subsequently acts back on the polymer molecules and stretches them further,
causing a strong disturbance of the EOF and yielding a time-dependent EOF.

4.2. Elastic Instabilities under Various Eapp and cp

In order to study the effects of Eapp and cp on the instabilities of viscoelastic EOF, cp is
varied from 100 ppm to 500 ppm and Eapp is varied from 100 V/cm to 600 V/cm. Flow
patterns under different conditions of Eapp and cp are shown in Figures 11–14. At certain
Eapp (cp), EOF becomes more unstable with the increase of cp (Eapp). Figure 11 shows
the streamlines for different PAA concentrations under Eapp = 600 V/cm, and Figure 12
shows the streamlines within the constriction microchannel with the color bar representing
pressure for Newtonian fluid and τxx for PAA solutions. As shown in Figures 11 and 12,
when cp increases, the polymeric stress τxx at the entrance of the constriction microchan-
nel increases rapidly, resulting in the fluctuation of the streamlines at upstream of the
microchannel. When cp is relatively low (100 ppm), EOF of viscoelastic fluid is similar
to that of Newtonian fluid, and the flow is in a steady state. With an increase in the PAA
concentration up to 150 ppm, significant curvature of the centerline streamlines is observed,
and the streamlines become asymmetric about the x-axis and y-axis. As cp continuously
increases up to 200 ppm, a pair of upstream vortices in opposite flow directions are in-
duced at upstream of the constriction microchannel, forming a stagnant region as shown in
Figure 11d. The width and length of the pair of vortices are about 1.6 time of the constric-
tion microchannel height (i.e., 1.6Hc). Such vortices are found to grow significantly in size
with increasing cp, which is in qualitative agreement with the experimental observations
of Ko [38]. Within the constriction microchannel, as shown in Figure 12d, nearly 1/4 of
the microchannel length (i.e., 1

4 Lc) from the entrance shows a significant increase of τxx.
Near the downstream lips of the microchannel, a local maximum of the polymeric stress
τxx is observed. When cp increases to 250 ppm, the fluctuation of the streamlines and the
size of the vortices grow dramatically as shown in Figure 11e, in which the width and
length of the vortices are about 2.9 times of the microchannel height (i.e., 2.9Hc). The
region with significant value of τxx is near 1/3 of the microchannel length (i.e., 1

3 Lc), as
shown in Figure 12e. When cp further increases to 500 ppm, as shown in Figure 11f, the
vortices grow into 4.4 times of the constriction microchannel height (i.e., 4.4Hc). More than
half of the microchannel length shows a significant increase in τxx. Furthermore, a small
vortex is induced near the downstream lip of the microchannel, which is also reported in
experimental studies of Ko [38].
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Figure 12. Streamlines in microchannel of Newtonian fluid and PAA solutions with different concentrations under
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Figures 13 and 14 show the streamlines for cp = 150 ppm when Eapp is varied
from 100 V/cm to 600 V/cm with the color bar representing the magnitude of τxx. At a
relatively low electric field such as Eapp = 100 V/cm, EOF of PAA solution is similar to the
Newtonian fluid, and the flow is in a steady state and symmetric about channel centerline.
In addition, the induced polymeric stress τxx in the constriction microchannel is relatively
small. When Eapp increases up to 400 V/cm, centerline streamlines start to show notable
fluctuation and become asymmetric about the x-axis. At the entrance of the microchannel,
a slight increase of τxx is observed, however, significant increase of τxx is observed near the
microchannel walls and the downstream lips, as shown in Figure 14d. When Eapp increases
to 500 V/cm, a pair of upstream vortices are induced at upstream of the microchannel, and
the size of vortices is about the height of constriction microchannel. Additionally, as shown
in Figure 14e, significant τxx is induced near the entrance of the constriction microchannel.
However, when Eapp further increases to 600 V/cm, the size of the upstream vortices do

2.6 

0.0 

5.2 

- 2.6 

0.0 

5.2 

- 2.6 

0.0 -
0.0 5.2 

-

~ 
e:, 
11.. 

~ 

"' e:, 
Ji 

~ 

"' e:, 
~ ... 

nn 
0.0 

'? 
5.2 

5.2 

- 2.6 

0.0 

5.2 

- 2.6 

0.0 

5.2 

- 2.6 

0.0 

~ 

"' e:, 
~ ... 

~ 

"' e:, 
~ ... 

~ 

"' e:, 
~ ... 



Micromachines 2021, 12, 417 16 of 28

not show notable increase in comparison with that of Eapp = 500 V/cm. The results clearly
show that increase of cp and/or Eapp can magnify the elastic instabilities of the viscoelastic
EOF. However, the increase of cp has a more significant enhancing effect on the elastic
instabilities of the viscoelastic EOF than the increase of Eapp.
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Figure 15 depicts a flow map for the onset of vortices in unstable EOF as functions of
cp and Eapp. At a fixed cp (Eapp), vortices and unstable EOF occur when Eapp (cp) exceeds a
certain threshold value. For example, for cp = 200 ppm, the flow becomes unstable with the
occurrence of vortices when Eapp is above 300 V/cm. At relatively low PAA concentration
(i.e., cp = 100 ppm), it requires a very high electric field (up to 850 V/cm) to yield unstable
EOF with upstream vortices. In contrast, at relatively high cp (i.e., cp = 500 ppm), the
onset of vortices occurs at Eapp between 50 V/cm and 100 V/cm. An asymptotic curve
fitting is implemented to illustrate the transition condition from no upstream vortices to the
formation of upstream vortices, which is given as Eapp = 47.49 + 2892.25·0.987cp , where
cp represents the polymer concentration in ppm, and Eapp is the apparent electric field in
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V/cm. Above the curve in Figure 15, the EOF becomes time-dependent with upstream
vortices, and no vortex forms under the conditions below the curve. Note that the flow map
is only valid for the geometry considered in this study with the zeta potential of −110 mV.
The instabilities of the viscoelastic EOF are dependent on the value of zeta potential. A
comparison of the flow patterns of lower zeta potential (−70 mV) and higher zeta potential
(−150 mV) for 150 ppm PAA solution under Eapp = 600 V/cm in the Appendix A clearly
shows that higher zeta potential triggers stronger instabilities under the same condition. In
addition, the dimensionless numbers (Reynolds number and Weissenberg number) of the
studied conditions corresponding to Figure 15 are given in the Appendix A.
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Since the flow velocity is time-dependent, we first calculate the cross-sectional average
velocity over a period of ∆t = t2− t1, and then take the time-average to obtain the averaged
velocity as,

U =

∫ t2
t1

∫ Hc/2
−Hc/2 U(0, y)dydt

∆t·Hc
, (11)

We choose ∆t = 1 s in the current study. Figure 16a shows the average velocity at the
center of the constriction as a function of cp at different values of Eapp. In comparison, it also
shows the result of Newtonian fluid whose viscosity is the same as the total viscosity of PAA
solution under Eapp = 600 V/cm. Under the same Eapp = 600 V/cm, the average velocity
in the constriction microchannel of the Newtonian flow is about 6–12% higher than that of
the PAA solution. The decrease of the average velocity in PAA solution is attributed to the
induced polymeric stress at the entrance of the constriction microchannel. For Newtonian
fluid, the average velocity decreases as cp increases, which is due to the increase of viscosity
to make its viscosity be the same as that of PAA solution with the concentration of cp. For
PAA solutions, under the same Eapp the average velocity exponentially decreases as the
polymer concentration increases. One reason is attributed to the increase of total viscosity
with the increase in cp. In addition, the induced polymer stress within the constriction
increases with the increase of polymer concentration, as shown in Figure 12, and the
induced polymer stress slows down the flow.

Under the considered condition of c0 = 0.01 mM, the EDL thickness is only 95 nm,
which is much smaller than the height of the constriction. In Newtonian fluid, the EOF
velocity can be approximated by the well-known Helmholtz–Smoluchowski velocity for-
mula as described in Equation (10). We wonder if the average velocity of PAA solutions
can be still approximated with the Helmholtz–Smoluchowski velocity formula. Since
the actual local electric field within the constriction is much higher than the apparent

1000 .-----------------------, 

800 

600 
'? 
i 

'" 400 
tJ 

200 

0 

... ... 

100 200 

-
... 
... 

Vortex 
... 

• 

300 
cP (ppm) 

... 

• 

• o v01tex 
.a. Vortex 

-- Fitting curve 

... 

... 

400 

... 

... 

... 

... 

... 

... 

500 



Micromachines 2021, 12, 417 18 of 28

electric field Eapp, time-averaged electric field in the x-direction at the center of the con-
striction is used in the calculation of the Helmholtz–Smoluchowski velocity. Figure 16b
shows the average velocity as a function of the apparent electric field under various PAA
concentrations. The lines in Figure 16b represent the corresponding EOF velocity pre-
dicted by the Helmholtz–Smoluchowski velocity formula. At a fixed cp, as expected,
the EOF velocity increases with an increase in the applied electric field. In general, the
Helmholtz–Smoluchowski formula over predicts the velocity, and at a fixed cp the relative
error increases with the increasing Eapp. For example, for cp = 100 ppm, the relative errors
under Eapp =100 V/cm and 600 V/cm are, respectively, 1.2% and 8.6%. At a fixed Eapp,
the absolute error, which is the difference between the Helmholtz–Smoluchowski approx-
imated velocity and the average velocity obtained from the full numerical simulation,
increases with the increasing PAA concentration. However, the relative error shows no
notable change with the increasing cp. For example, at Eapp = 600 V/cm, the relative errors
for cp = 100 ppm, 300 ppm, and 500 ppm are, respectively, 8.7%, 9.6%, and 9.0%. To eval-
uate the applicability of the Helmholtz–Smoluchowski formula to approximate the velocity
of viscoelastic fluids for cp ranging from 100 ppm to 500 ppm, the minimum, average,
and maximum relative errors at different Eapp are calculated as shown in Table 1. When
Eapp ≤ 300 V/cm, the relative error is less than 5%. However, when Eapp ≥ 400 V/cm,
the relative error is larger than 5%, and the Helmholtz–Smoluchowski formula failed to
predict the velocity of the viscoelastic fluids accurately. In this study, the largest relative
error is 9.6% when cp = 300 ppm and Eapp = 600 V/cm.
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Table 1. Relative error between the Helmholtz–Smoluchowski velocity and the average velocity from
the full mathematical model.

Eapp(V/cm) 100 200 300 400 500 600

Minimum relative error 1.0% 1.3% 1.8% 5.5% 7.0% 8.5%

Average relative error 1.3% 1.6% 2.3% 5.9% 7.7% 8.9%

Maximum relative error 1.5% 1.9% 2.8% 6.5% 8.2% 9.6%

5. Conclusions

Electroosmotic flow (EOF) of viscoelastic fluid through a 10:1:10 constriction mi-
crochannel is numerically investigated as functions of the applied electric field and the
polymer concentration. In the current study, we neglect the effect of the polymer concen-
tration on the zeta potential of the channel walls. Comparing to the EOF of Newtonian
fluid, the following distinct results for viscoelastic EOF through a 10:1:10 constriction
microchannel are obtained:
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(1) When polyacrylamide (PAA) concentration (applied electric field) exceeds a critical
value, the EOF of viscoelastic fluid becomes time-dependent with upstream vortices
occurring in the inlet reservoir near the entrance of the constriction microchannel. In
contrast, EOF of Newtonian fluid is always in a steady state without vortices.

(2) For the viscoelastic EOF, significant polymer stress is induced near the entrance
within the constriction and near the downstream lips of the constriction, causing the
elastic instabilities of the viscoelastic EOF. The induced polymer stress is dramatically
magnified with the increase of polymer concentration and applied electric field.
However, the increase of polymer concentration shows a more significant enhancing
effect on the polymer stress than the increase of applied electric field.

(3) The EOF velocity of viscoelastic fluid within the constriction becomes temporally and
spatially dependent. Near the exit of the constriction, due to the extrudate swell effect
of the polymers, the velocity at the centerline first decreases at the exit followed by an
increase in the outlet reservoir.

(4) The velocity at the exit of the constriction is higher than that at the entrance of the
constriction because of the formation of upstream vortices, which is in qualitative
agreement with experimental observation obtained from the literature.

(5) Under the same total viscosity and applied electric field, the velocity of Newtonian
fluid is higher than that of viscoelastic fluid, which is attributed to the induced
polymeric stress within the constriction. When the applied electric field is less than
300 V/cm, the Helmholtz–Smoluchowski velocity formula can predict the cross-
sectional average velocity of viscoelastic fluid with PAA concentration up to 500
ppm, and the relative error is less than 5%. At a fixed PAA concentration, in general
the relative error of the Helmholtz–Smoluchowski approximation increases with an
increase in the applied electric field.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/mi12040417/s1. Video S1: The development of vortices for 500 ppm PAA solution un-
der 100 V/cm apparent electric field. t0 = 1.7 s and ∆t = 4.8 ms for each frame. Video S2:
The development of vortices for 150 ppm PAA solution under 600 V/cm apparent electric field.
t0 = 1.7 s and ∆t = 2.0 ms for each frame.
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Appendix A

Appendix A.1. Mesh Independence Study

Three different meshes are used to conduct the mesh independent study with
Eapp = 600 V/cm and cp = 100 ppm. As shown in Figure A1, there are 135,192, 95,252,
and 77,192 cells in mesh 1, mesh 2, and mesh 3, respectively. For mesh 1, the meshes near
the charged wall are 7 nm, so there are 14 meshes within the EDL thickness. In mesh 2 and
mesh 3, the meshes near the charged wall are 10 nm, and there are 10 meshes within the
EDL thickness. However, there are less meshes within the two reservoirs in mesh 3 than in
mesh 2. Figure A2 shows spatial distribution of the normal polymer stress and streamlines
of three different meshes at t = 1.78 s. The normal polymer stress and streamlines of three
meshes show no notable difference.

https://www.mdpi.com/article/10.3390/mi12040417/s1
https://www.mdpi.com/article/10.3390/mi12040417/s1
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Figure A3 shows the spatial distribution of velocity magnitudes along x = 0 and
y = 0 at t = 1.78 s. For velocity magnitude distribution along x = 0 (Figure A3a), the
maximum relative error occurs at y = 0. The maximum relative error for mesh 2 is
|Umesh2 − Umesh1|/Umesh1 = 0.9%, and the maximum relative error for mesh 3 is
|Umesh3 − Umesh1|/Umesh1 = 1.1%. The average relative errors for all sampling points are
0.45% for mesh 2 and 0.64% for mesh 3. For velocity magnitude distribution along y = 0
(Figure A3b), comparing to mesh 1, the average relative errors for all sampling points are,
respectively, 0.29% for mesh 2 and 0.72% for mesh 3.

Since the results from the above three meshes are in good agreement, we use mesh 3
to perform our other simulations.

:------------~---------
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Appendix A.3. Analytical Solution of Afonso et al

Based on PTT model, Afonso et al. [28] derived the analytical solution of mixed electro-
osmotic/pressure driven flows of viscoelastic fluids between parallel plates based on the
Debey–Hückel approximation. The analytical solution of the velocity profile across the
height of the channel is given as:

uE =

(
εψ0Ex

η
− 2Cκ2ελ2

[
εψ0Ex

η

]3
)(

A− 1
)
+

2
3

κ2ελ2
[

εψ0Ex

η

]3
× (A3 − 1) (A1)

where ε is the dielectric constant of the solution, A = ((cosh(κy))/(cosh(κH))),
κ2 =

((
2n0e2z2)/(εκBT)

)
, κB is the Boltzmann constant, and n0 is the ionic density.

For OB model, ε = 0. The Equation (A1) becomes uE =
(

εψ0Ex
η

)(
A− 1

)
.
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Table A1. Summary of current studies on elastic instabilities of viscoelastic EOF.

Geometry Fluids Electrical Parameters Instabilities

Constriction channel [32]
Contraction ratio: 2:1
Width: 200 µm and 100 µm
Depth: 20 µm

PAA (18 × 106 and 5 × 106 Da) with
20:80 vol.% methanol: water mixture.
1–480 ppm.

Electro-osmotic mobility:
(5.6± 0.5)× 10−4, (5.7± 0.7)× 10−4, and
(3.1± 0.2)× 10−4 cm2/Vs for polymer free,
high molecular weight, and low molecular
weight 120 ppm PAA solutions.
Electric field: 0–900 V/cm.

1. High molecular weight PAA solution leads to fluctuation
above a critical flow rate.

2. The fluctuation is dependent on the polymer concentration.

Cross slot channel [34,35]
Width: 100 µm
Height: 50 µm

PAA, 5 × 106 Da, 300 and 1000 ppm.

Electro-osmotic mobility: (6.4± 0.2)× 10−4,
7.2± 0.1)× 10−4cm2/Vs for 1000 ppm and
300 ppm PAA solutions.
∆V = 20− 140 V.

1. For both 300 ppm and 1000 ppm PAA solution, transition
from steady state to time-dependent state was observed at
∆V = 20–40 V.

2. The fluctuation of the EOF does not enhance mixing effect.

T-shaped channel [37]
Main-branch:
Width: 200 µm
Depth: 30 µm
Side-branch 1:
Width: 100 µm
Depth: 50 µm
Side-branch 2:
Width: 100 µm
Depth: 67 µm

Phosphate buffer-based aqueous
polymer solutions. (500 ppm XG, 5%
PVP, 2000 ppm PEO, 200 ppm PAA,
1000 ppm hyaluronic acid(HA)).

Electro-osmotic mobility:
3.5× 10−4, 0.1× 10−4, 4.6× 10−4, 0.1× 10−4,
and 4.2× 10−4 cm2/Vs for XG, PVP, HA,
PEO, PAA solutions.
∆V = 100–500 V.

1. Fluid shear-thinning might be the primary cause of
electro-elastic instabilities (fluctuation of velocity).

2. Fluid elasticity alone does not cause instability.
3. Threshold voltage for the onset of instability decreases

with the increase of polymer concentration.
4. Increasing the buffer concentration causes a rise of

threshold voltage.

Constriction channel [38]
Contraction ratio: 10:1
Width: 400 µm and 40 µm
Depth: 40 µm depth
Length of constriction: 200 µm

1 mM phosphate buffer-based
aqueous polymer solutions. (2000
ppm XG, 5% PVP, 3000 ppm PEO,
and 200 ppm PAA.)

Electro-osmotic mobility:
0.54× 10−4,
0.75× 10−4,0.06× 10−4, 0.14× 10−4,
1.82× 10−4 cm2/Vs for buffer, XG, PVP, PEO,
PAA solutions.
Electric field: 100–400 V/cm

1. Fluid elasticity alone does not cause instability.
2. Fluid shear-thinning effect alone caused counter-rotating

circulations in weakly elastic XG solution.
3. No electric field-dependent phenomenon was observed in

strong viscoelastic and shear-thinning PAA solutions.
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Table A1. Cont.

Geometry Fluids Electrical Parameters Instabilities

Hyperbolic/abrupt contraction with
abrupt/hyperbolic expansion [39]
Channel 1: (7.2:1)
Width: 401 µm and 56 µm
Depth: 100 µm
Length of constriction: 382 µm
Channel 2: (22.4:1)
Width: 403 µm and 18 µm
Depth: 100 µm
Length of constriction: 128 µm

1 mM borate buffer with 0.05% wt.
sodiumdodecylsulfate.
100, 300, 1000, and 10,000 ppm PAA
solutions.

Electro conductivity:
20.2, 55.5, 178.3 and 161.8 µS/cm for 100, 300,
1000, and 10,000 ppm PAA solutions.
∆V = 2.5–90 V.

1. For hyperbolic contraction, upstream vortices were
observed on high contraction ratio geometry. The vortices
grow with increasing electric field.

2. For abrupt contraction, small vortices were observed at the
entrance of low contraction ratio geometry.

3. For abrupt contraction, small vortices and large flow
circulation were observed near the entrance. Additionally,
large downstream vortices were observed for 1000 ppm
PAA solution.



Micromachines 2021, 12, 417 24 of 28

Appendix A.5. Results for Zeta potentials of −70 mV and −150 mV

Two other different zeta potentials (−70 mV and −150 mV) are studied for 150 ppm
PAA solution under Eapp = 600 V/cm. Figure A5 shows the results of −70 mV zeta
potential. Significant curvatures of the centerline streamlines are observed. However,
at other places, no significant disturbance is observed. Figure A6 shows the results of
−150 mV zeta potential. Similar to the results of−110 mV zeta potential, strong disturbance
is induced in the viscoelastic EOF. Upstream vortices form and disappear. An increase of
elastic normal stress is observed within the constriction microchannel. Figure A7 shows the
velocity magnitude at the center of constriction channel (i.e., (0,0)). When the zeta potential
is low (−70 mV), the velocity magnitude is almost steady state. However, when the zeta
potential is high (−150 mV), the velocity magnitude shows strong fluctuation. The results
for zeta potentials of −70 mV, −110 mV, and −150 mV show that the elastic instabilities
of the EOF of PAA solutions are dependent on the value of zeta potential. Higher zeta
potential induces larger electroosmotic velocity, and therefore stronger stretching of the
polymers at the entrance of the constriction microchannel. Higher velocity and polymer
normal stress lead to stronger instabilities of the viscoelastic flow.
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Appendix A.6. Dimensionless Numbers

Dimensional analysis is a useful tool to fully characterize the flow and identify the
dominant forces in complex flows of polymeric materials. Reynolds number (Re) is com-
monly used in rheological studies to determine whether the inertial force or the viscous
force is dominating the flow, which is given by: Re = ρul/η, where ρ is the fluid density, u
is the average velocity in the microchannel, l is the characteristic length scale (Hc), and η
is the fluid viscosity. In addition, the Weissenberg number (Wi) is used to assess the flow
elasticity of the PAA solutions, which is defined as: Wi = uλ/l, where λ is the relaxation
time. Based on our results, the Re is nearly zero, indicating that the inertial force of the EOF
is negligible. The Wi is on the order of 1, which indicates that the elastic effect in the flow
is significant.
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