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ABSTRACT

EXCIMER EMISSION FROM PULSED MICROHOLLOW CATHODE

DISCHARGES

Mohamed Moselhy 
Old Dominion University, 2002 

Director Dr. Karl H. Schoenbach

Microhollow cathode discharges (MHCDs) are direct current, high- 

pressure, non-equilibrium gas discharges. Direct current MHCDs in xenon and 

argon have shown to emit excimer radiation at 172 and 127 nm, respectively. 

Internal efficiency of excimer emission in DC MHCD was measured to be 6-9% in 

xenon, and 1-6%, depending on the gas flow rate in argon. This high efficiency is 

due to the high rate of rare gas excitation by electrons accelerated in the cathode 

fail and to subsequent three-body collisions in the high-pressure gas. The 

excimer power scales linearly with current; however, due to the increasing size of 

the source with increasing current, the radiant emittance and the current density 

stay constant at 1.5 W/cm2 and 0.3 A/cm2, respectively, at 400 Torr xenon. In DC 

operation, the current was limited to 8 mA to avoid thermal damage of the 

electrodes. In order to explore the discharge physics and the excimer emission at 

higher currents, the discharge was pulsed with a duty cycle of 0.0007. This 

allowed us to increase the peak power and current without increasing the 

average power. A discharge behavior different from the DC and quasi DC (ms 

pulsed) was observed when the pulse was reduced to values in the order of the 

electron relaxation time. For argon this is in the order of 36 ns at atmospheric
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pressure. Pulsing the discharge with such short pulses allows for heating the 

electrons without heating the gas. Applying electrical pulses of 20 ns duration to 

direct current MHCDs in xenon increased the excimer emission exponentially 

with the pulse voltage by more than two orders of magnitude over the DC value. 

At 750 V pulse voltage, an output VUV optical power of 2.75 W and internal 

efficiency of 20% was measured. Pulsing MHCDs in argon with a 10 ns pulse 

increased the intensity by a factor of six but the efficiency was not increased 

beyond the DC value. Electron density measurements using the Stark effect 

showed that the increase in excimer intensity was due to the increase in electron 

density and the increased electron energy caused by pulsed electron heating.
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CHAPTER I 

INTRODUCTION

An excimer lamp is a quasi-monochromatic ultraviolet (UV) light source 

emitting in a narrow wavelength range. This has been achieved by forming a gas 

discharge either in rare gases or rare gas halides [1-7]. Excimer lamps can be 

operated in DC, pulsed, RF, or externally pumped by an electron beam mode. 

The advantages of these lamps are mercury free operation, high efficiency, and 

no radiation in the infrared range, which make them suitable for processes 

requiring low operating temperatures [8]. Excimer lamps are used for ultraviolet 

(UV) curing, photolithography, pollution control, ozone generation, material 

deposition, and plasma panel displays. Different configurations have been 

utilized for excimer lamps such as dielectric barrier discharge, corona discharge, 

microwave discharge, and microhollow cathode discharge geometries and have 

been studied for over two decades.

UV and Vacuum Ultraviolet (VUV) radiation are currently considered two 

of the main tools for many applications since UV and VUV lamps, which do not 

generate harmful products, are environmentally clean. In addition, UV lamps 

have a low cost compared to other UV and VUV, sources such as excimer 

lasers. Applications that use UV radiation require large area processing, which 

can be achieved easily in many of the available UV sources. Examples of these 

applications are UV sterilization, UV lithography, UV curing, dye laser pumping, 

and photodecomposition. These applications require an efficient, high intensity

The journal model for this thesis is Applied Physics Letters.
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emission in a narrow wavelength range, which is available in excimer lamps.

UV lamps can be classified in different ways according to intensity, 

efficiency, output power, or emission spectrum. The emission spectrum of a UV 

lamp can be categorized into three main categories: a) line emission emitted by 

mercury lamps, b) broadband emission emitted by xenon arc lamps, and c) 

excimer emission lamps generated by dielectric barrier discharges, corona 

discharges, and microhollow cathode discharges.

Mercury lamps are low-pressure glow discharges, which have line 

emissions in a wide range from 184.9 nm to 579 nm. One of the most widely 

used models in laboratory spectrometry calibration is the Pen-Ray mercury lamp. 

This lamp is characterized by its high efficiency of the 253.7 nm line emission 

that reaches up to 70% and has a power density ranging from 40 jiW/cm2 to 20 

mW/cm2 [9]. Direct exposure to these lamps causes injury to the skin and eyes 

so covering a mercury lamp with a phosphor layer would convert the UV radiation 

into visible radiation that can be used for lighting purposes.

A short arc lamp is an example for a broad emission spectrum lamp. It is 

generally a spherical or slightly oblong quartz bulb with two electrodes separated 

by a few millimeters gap in which an arc is formed. The bulb is filled either with 

xenon, mercury vapor, or a mixture of both at high pressure. The output power is 

anywhere from a few hundred watts to a few kilowatts. With the small arc size 

and this amount of power, the arc is extremely intense; therefore, short arc lamps 

are usually used in movie theater projectors, searchlights, specialized medical 

equipment with fiber optic light delivery means, and some scientific equipment
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3

requiring an extremely intense light source. The emission range depends on the 

gas mixture used. For example, in xenon short arc lamps the emission extends 

from deep UV (below 300 nm) to infrared; the spectrum is continuous, with near 

infrared xenon lines more significant, which detract from the efficiency at which 

visible light can be produced. The high cost, short lifetime, and limited efficiency 

(1%) due to electrode losses make short arc lamps impractical for general- 

purpose lighting [10].

Different configurations have been used in excimer lamps. Dielectric 

Barrier discharges (DBDs) are of the most common excimer discharges. They 

are also referred to as silent discharges and are non-equilibrium gas discharge 

that can be operated in a wide pressure range from 0.1 to 10 bar. They had been 

mainly used for ozone and nitrogen oxide generation but recently have also been 

used for UV excimer generation in excimer lamps, flue gas treatments, surface 

modification, and pollution control. Their main advantage is large gas flow 

operation at atmospheric pressure, which can be used with non-equilibrium 

plasma conditions. DBDs are characterized by the presence of at least one 

insulating layer in contact with the discharge between two plane or cylindrical 

electrodes. This is mainly a capacitor configuration in which an RF power supply 

is used. When applying the voltage, a displacement current flows through the 

dielectric and a space charge is accumulated on the dielectric surface. As a 

result of this space charge, the electric field is intensified and a breakdown 

occurs. An atmospheric pressure electrical breakdown in such a dielectric barrier 

configuration occurs in a large number of statistically distributed microdischarges
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4

over the surface of the dielectric. The normal appearance of the discharge 

consists of a number of short-lived current filaments, with a duration of about 100 

ns or less, referred to as microdischarges. Each discharge is an almost 

cylindrical weakly ionized plasma channel with a radius of about 100 nm and 

spreads into a large surface discharge at the dielectric surface. When the voltage 

is applied to the DBD configuration, the electric field initiates a local breakdown in 

the gap. Electrons generated by the breakdown while propagating in the gap will 

avalanche producing a high space charge, and hence, self-propagating 

streamers are generated.

Kogelschatz has studied various gases for UV excimer radiation in DBD 

such as argon (Ar), xenon (Xe), and xenon chloride (XeCI) and has calculated 

the efficiency of UV generation in xenon as a function of the reduced electric field 

(E/n) [11]. Based on these calculations, a maximum efficiency of 40 % for a 

reduced electric field range of 40-120 Td (Td=10‘17 V cm2) can be expected. This 

range of reduced electric field provides both the required electron energy and 

density for an efficient excimer generation since higher electron density would 

result in quenching the excimer states by electronic collisions, which will reduce 

the efficiency. Recently, Mildren and Carman used short-pulse excitation with 

DBD lamps [12]. In their measurements they found that, due to this pulsed 

excitation, the efficiency increased by about 12 % with respect to the RF 

operation efficiency.

In the microwave region (0.3-10 GHz), the wavelength of the 

electromagnetic field becomes comparable to the dimensions of the discharge
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5

vessel used in microwave discharges, which necessitates special coupling 

mechanisms. Most microwave-induced plasmas are produced in a waveguide 

structure or resonant cavity. As the dimensions of the cavities diminish when the 

frequency increases, the maximum microwave frequencies used for discharge 

applications are usually below 3 GHz. A very common frequency is 2.45 GHz, 

which is also used in microwave ovens.

Since at these frequencies only the light electrons can follow the 

oscillations of the electric field, microwave plasmas are normally far from local 

thermodynamic equilibrium. They can be operated in a wide pressure range, 

starting from below 1 mbarto about atmospheric pressure. These discharges can 

produce large volume non-thermal plasmas of reasonable homogeneity. A typical 

microwave excimer lamp is composed of a power supply unit, a ventilation unit, 

and a lamp house containing two microwave generators and a discharge tube. 

The microwave power generated by two magnetrons is fed to a microwave cavity 

through waveguides and coupling antennas. The discharge tube is a sealed 

fused quartz containing excimer gas and air cooled during operation. Ametepe 

et. al reported conversion efficiencies from electrical power to optical power are 

from 20-40% [13]. Their high efficiency is due to gas cooling, which results in 

increasing the excimer intensity as a result of lower gas temperature.

Another configuration that can be used for excimer generation is the 

corona discharge. The electrodes in a corona discharge are simply a pin and a 

plane electrode. In this configuration the electric field is not uniform and is 

highest at the tip of the pin electrode. This nonuniform electric field leads to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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locally confined ionization channels and excitation processes long before a 

complete breakdown between the electrodes occurs [14]. Although sometimes 

corona discharges are undesirable, such as in power lines and communication 

antennas, they are found to be useful in air purification devices and radiation 

detectors and counters. Most recently corona discharges were used for excimer 

generation in rare gas halide mixtures [7]. In this experiment, a needle grid 

electrode configuration was used to produce a positive corona discharge in a 

mixture of He/Xe(Kr)/SF6/CCI4, which is used for multiwavelength excimer 

radiation sources. The positive corona discharge results in the excitation of the 

atoms and formation of excimer molecules mainly through electron impact and 

harpoon reactions, respectively.

Microhollow cathode discharge (MHCD) is another type of gas discharge 

between two electrodes separated by a dielectric layer 200 pm thick and a hollow 

structure in the center with a diameter in the range of 100-200 pm. MHCDs have 

evolved from hollow cathode discharges, which were used for high power laser 

and opening switches, had an opening in the mm range, and are normally 

operated at low pressure (mTorr to Torr range). According to White’s scaling law 

[15], the sustaining voltage scales with the product pD, where p is the gas 

pressure and D is the hole diameter. Keeping pD constant and decreasing the 

hole diameter, the gas pressure can be increased, which would be efficient for 

excimer formation. Different research groups have been studying MHCDs for 

excimer generation using rare gases and rare gas halides [Old Dominion 

University, Stevens institute, University of Illinois, University of Eriangen-
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Nuremberg]. DC MHCD has been established in xenon with an efficiency of 6-9% 

[3] at a low sustaining voltage of 200 V. Also it has been operated in argon, and it 

showed the possibility of operating multiple discharges in parallel, a concept 

which promises to be used as a flat excimer lamp [16].

The advantages of MHCDs are low cost, compact size, and low operating 

voltage. Although the obtained efficiency (6-9%) in xenon MHCD is lower than 

the theoretically calculated value of 30-40% [3], due to the high gas temperature, 

it is expected that by pulsing the discharge with short pulses (ns range), higher 

efficiency can be obtained. Also MHCDs have been obtained in Xe (172 nm), Ar 

(127 nm), and Ne (84 nm), which finds applications in semiconductor processing 

requiring short wavelength radiation for better resolution.
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CHAPTER II 

EXCIMER FORMATION AND DECAY

Excimers (excited dimers, trimers) are weakly bound excited states of 

molecules with a repulsive ground state [17]. Excimer lamps have a wide range 

of applications depending on their emission wavelength range, which depends on 

the gas used. Excimer gases are either rare gases such as Xe, Ar, Ne, and He or 

rare gas halides such as XeCI, ArF, KrF, and XeF. Figure (2.1) shows a chart of 

various excimer gases that have been used for excimer generation and the 

corresponding wavelength of each [18]. As can be seen, excimer emission from 

both rare gas and rare gas halides is in the UV and VUV range, and according to 

the required wavelength, a specific gas can be chosen.

Excimer formation requires mainly two conditions: a) high energy 

electrons, higher than the threshold energy for the excitation cross section, to 

excite the ground atoms, and b) high pressure, near atmospheric pressure, which 

makes the three-body collisions more favorable. Depending on the gas pressure 

range, excimer molecules will radiate either in the first continuum (low pressure), 

from high vibrational levels, or second continuum (high pressure), from low 

vibrational levels, as shown in figure (2.2) [19]. At very low pressures, excimer 

formation is less likely, and therefore, resonant line emission occurs when 

excited atoms emit spontaneously to the ground level. Figure (2.2) shows an 

energy level diagram of an excimer gas with the different possible emissions. 

The wavelength of the resonance line and excimer continua is shown in table 

(2.1).
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Figure (2.1) A chart of different excimer gases used in excimer lamps as a 

function of radiation wavelength [18].
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Figure (2.2) A typical energy level diagram for an excimer gas [19].
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Table (2.1) Resonance line and excimer continua radiation for Ar and Xe:

Rare Gas Resonance Line 1st Continuum 2na Continuum

Argon 106.4 110 nm 127 nm

Xenon 146.96 150 nm 172 nm

Excimer formation requires both high-energy electrons and high pressure, 

so three-body collisions will be more favorable. Excimer kinetics can be divided 

into three major processes: a) atoms excitation, which is the precursor for 

excimers; b) excimer formation; and c) excimer decay. The physics of these 

processes have been studied extensively to understand their main controlling 

parameters [17,20-22]. The high-energy electrons are obtained either from a 

high-energy electron beam, or by accelerating the secondary electrons in the 

cathode fall area as in MHCDs. Figure (2.3) shows the energy level diagram for a 

rare gas and the possible reaction that could take place [17]. Excimer formation 

can be described as due to excitation of the gas atoms by high-energy electrons 

to the metastable state (3P):

e + X -> X ' + e (2.1)

where X is the rare gas atom and X* is the excited metastable atom. The excited 

atom can decay emitting the resonance line or go through a three-body collision 

according to:

X* + X + X -» x ; + X (2.2)
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where X ’2 is the excimer molecule. This reaction is more favorable at high

pressures, and the excimer molecules decompose giving their excitation energy 

in the form of UV or VUV photons according to:

X': -► 2X + hv (2.3)

where hv is the excimer radiation. These reactions in addition to other transitions 

that could take place in excimer formation are shown schematically in figure (2.3) 

[171.

One of the first kinetic models for rare gas excimers was presented by 

Lorents [20] and was later modified by Wemer et. al [21]. In this model, the 

mechanism for selectively populating the excimer levels can be viewed as a 

sequence of collisional energy exchange. In the following sections, a model 

based on different works [17,20,21,23] in excimer formation is discussed.

2.1 Excimer Precursors

As mentioned earlier, high-energy electrons can be generated either 

through a gas discharge or using an electron beam. These electrons, when 

colliding with the gas atoms, result in either excitation or ionization depending on 

the electron energy.

X + e —> X* + 2e (2.4)

X + e -► X* + e (2.5)

X + e -► X” + e (2.6)

where X* is the rare gas ion, X* is the rare gas excited states ( 3Pi & 3P2), and 

X** is the higher lying states. Exciting the gas atoms is the first step in excimer 

formation as can be seen from equation (2.1). Also according to this model, X**
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Figure (2.3) Schematic diagram of the possible reaction that could take place in 

the process of excimer formation. The gas atoms (X) can be either excited (X ) or 

ionized (X+) by the electrons (e). At high pressure the excited atoms goes 

through a three-body collision forming the excimers (X2 ) at 1Z and 3S states. 

These excimers decompose while decaying and produce their energy in the form 

of UV or VUV photons [17].
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and X* are partly responsible for populating the X* state.

Collisional radiative recombination is the main loss mechanism for the X* 

atomic ion at low pressure; while at high pressure, it is through the formation of a 

diatomic molecular ion through three body collision:

X* + X + X - > X ; + X  (2.7)

This diatomic ion either will capture an electron followed by dissociation to 

the ground state (dissociative recombination):

X; + e X + X” (2.8)

or it will involve in cluster ion formation through three-body collision and then be 

lost by dissociative recombination as in equation (2.8):

x ; + x  + x - > x ; + x  (2.9)

As for the X** atoms, it relaxes via the reactions

X" + 2 X - » X : + X  (2.10)

XT + (X )-> X ' + X + (X) (2.11)

2.2 Excimer Formation

Excimer formation is achieved via three-body collision with the excited gas 

atom X’ according to:

X(3P1) + 2X -> x ; ( , S uv » o) +X  (2.12)

X(3P2) + 2X x ; (3Zuv » 0 )  + X (2.13)

Depending on the vibrational relaxation, low or high, the molecules will emit from 

the high or low vibrational levels corresponding to a 1st or 2nd continuum excimer 

emission, respectively:
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x ; ( '£ ttv » 0 ) + X -> x ; ( ' z uv«0) + X 

X ;(3Zuv » o ) + X - >  X*2( 3S uv = o) + X  

x ; ( lSttv » o )  -► 2X + hVl 

where hvi is the first continuum radiation energy or. 

x ; ( ' I ttv«o)-> 2X + hv2

where hv2 is the second continuum radiation energy.

2.3 Excimer Decay Mechanism and Loss Processes

A summary of the radiative lifetimes for various rare gases have been 

tabulated by Lorents [20] of which Xe and Ar lifetimes are listed in table 2.2.

Table 2.2 Radiative lifetime of Ar2 and Xe2:

Excimer molecule 3£ u (p s ) Ref.

Ar2 2.8 25
3.7 26

3.2 ±0.3 27
4.0 ±2.0 24

3.22 28
Xe2' 0.09 ±0.05 27

0.10±0.05 24
0.140 ±0.045 24

In the presence of hot plasma electrons, both the excimer states and their 

precursors will go through reactions of the type:

e + X2*(3Z) -► e + X2'(1 Z) (2.17)

(2.13)

(2-14)

(2.15)

(2.16)
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At high electron densities super elastic electron collisions can enhance electronic 

relaxation in both the atomic and excimer manifolds. However, superelastic 

collisions can destroy excimers by causing transitions to the ground state:

X2’ + e -> 2 X  + e (2.18)

The excited excimer species may also participate in a destructive process 

of the form:

X2' + X2 -» X2+ + 2X + e (2.19)

which is refered to as Penning ionization. The Penning process represents a 

significant loss mechanism at high excimer densities. An additional loss process 

that plays an important role specially with increasing temperature is the 

quenching of excimers by neutral atoms:

X2‘ + X -► X* + 2X (2.20)

A complete list of the kinetic processes in xenon with the rates of different 

reactions is given in table A.1 [29].
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CHAPTER III 

MICROHOLLOW CATHODE DISCHARGES

3.1 Hollow Cathode Discharges

Hollow cathode discharges are gas discharges between two electrodes 

where the plane cathode in plane electrodes glow discharge is replaced by a 

cathode with a hollow structure, and for a certain range of operating conditions, 

current and pressure, the negative glow is inside the hollow structure of the 

cathode [30]. Different geometric configurations such as cylinderical, spherical, 

slit, or helical have been presented for hollow cathode glow discharge as shown 

in figure (3.1) [30]. The voltage in hollow cathode discharges is found to be lower 

than that of plane electrodes at a constant current, and the current is orders of 

magnitude higher, corresponding to a much higher current denisty, at a constant 

voltage. This is refered to as hollow cathode effect. Measurements by White 

showed that the plasma in the hollow structure contains up to 1 eV electrons in 

concentrations greater than 1013 /cm3 [15].

Schaefer and Schoenbach have listed different mechanisms that might 

contribute to the hollow cathode effect [30]. One of these mechanisms is pendel 

electrons, where the electrons emitted from the cathode surface by secondary 

electron emission are accelerated in the cathode fall and result in increasing the 

excitation and inoization rates in the negative glow region. Electrons that didn't 

suffer from high energy loss in the negative glow are reflected back by the 

opposite cathode surface to the negative glow, which enhances the excitation 

process. This effect influences the electron energy distribution function (EEDF)
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Figure (3.1) Typical holllow cathode geometries a), b), c) cylinderical; d) 

spherical; e) parallel plate; g) slit; and h) hellical [30].
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in hollow cathode plasma as was measured by Gill and Webb [31]. They found 

that the EEDF close to the negative glow/dark space boundary has a non- 

maxwellian distribution with a high energy tail with energies higher than 100 eV 

as shown in figure (3.2) [31]. Similar to plane electrodes configuration, a 

threshold voltage has to be applied before breakdown. An expression for the 

breakdown voltage was derived by Eichron et. al for a one-dimensional hollow 

cathode discharge model [32]. A two-dimensional hybrid model of glow discharge 

in hollow cathode configuration showed similar V-l characteristics to plane 

electrodes at low current, Townsend discharge, as shown in figure (3.3) [33]. As 

the curent increases, a negative resistive behavior is observed coresponding to 

the the hollow cathode effect.

3.1.1 Lower limit of the Hollow Cathode Discharge

The lower limit in pressure for the hollow cathode effect is determined by 

the loss of pendel electrons, which reach the opposite cathode wall and are 

removed from the discharge. This condition leads to an expression for the 

minimum value of pD at which the hollow cathode discharge can be sustained

where no is the gas density at a pressure of 1 Torr, f is a loss factor, and <cr> is 

the average collision cross section. It was found that for Argon the critical value 

for pD is 0.026 T o it cm.

(3.1)
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Figure (3.2) Electron energy distribution function close 

glow/cathode dark space boundary showing the cathode fall 

and the first collision structure in details [31].

to the negative 

beam component
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3.1.2 Upper Limit of the Hollow Cathode Discharge

The upper limit for pD was found to be approximately 5 Torr cm in 

experimental studies performed in PERI laboratory [34], and a model describing 

the upper limit in pressure for hollow cathode discharge operation was 

presented. Increasing the current in hollow cathode discharge switches the 

discharge to an abnormal glow discharge, where increasing the current is 

obtained by increasing the cathode fall voltage and the slope of the current- 

voltage characteristic turns positive again. The pD value for the transition from 

the hollow cathode discharge to the abnormal glow discharge can be estimated 

by assuming that the pendulum motion of the electrons ceases to exist when the 

sum of the lengths of the two opposite cathode falls and the negative glow 

becomes smaller than the cathode hole diameter. The cathode fall thickness for 

plane cathodes is given by [35]:

dM = B */p  + B /J1 2 (3.2)

where B* and B are constants depending on the gas and electrode material, and 

J is the current density. The negative glow length for argon discharge and a 

potential drop of 200 V is lo = 1 cm at a pressure of po =1 Torr [36]. Assuming 

that this distance scales linearly with 1/p, then the condition for the upper limit in 

pD for hollow cathode discharges is:

pD = 2B*+2pB /J‘ - + l0p0 (3.3)

For argon (and an aluminum cathode), B* is 0.054 Torr.cm and B is 0.0034 

cm.A1/2 [35]. This upper limit was found to be much smaller than the 

experimentally obtained value of 5 Torr cm [34].
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Figure (3.3) Voltage-current characteristics for hollow cathode (solid line) and 

plane cathode (dashed line) geometries. At low current h1-h4 it is a Townsend 

discharge. With increasing current hollow cathode and then normal glow 

discharge up to hi 1. With further increase in the current, it switches to abnormal 

glow discharge [33].
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3.2 Microhollow Cathode Discharges (MHCDs)

According to White’s scaling law [15], the sustaining voltage of the 

discharge is scaling with pD and l/p as:

V = V(pD, 1/p) (3.4)

where V is the sustaining voltage and I is the discharge current. In his 

experiments, White has found that by keeping the pD product constant, higher 

pressure operation can be achieved by decreasing the hole diameter and the 

discharge showing similar characteristics. Hollow cathode discharges with 

smaller diameters in the range of hundreds of micrometers are referred to as 

“Microhollow Cathode Discharge" (MHCD). According to the experimentally 

obtained pD upper limit of operation of hollow cathode discharge of 5 Torr cm 

[34], decreasing the cathode hole diameter to 100-200 pm would allow to 

increase the operating pressure. Microhollow cathode discharges are direct 

current, high-pressure gas discharges between perforated electrodes, separated 

by thin layers of dielectric with thickness in the range of 100-250 pm and a hole 

diameter ranging from 100 to 200 pm. Different groups [3-6,16,39-45] have 

studied the characteristics of MHCDs in rare gases, rare gas halides as a VUV 

excimer source, and the possibility of operating arrays of MHCDs in parallel. 

Parallel operation of MHCDs at high pressure (several hundred T o its ) has been 

achieved by using single ballast (silicon layer) as the anode [39,42,43].

In DC operation of MHCD in xenon, the internal efficiency of excimer 

emission at 172 nm (output VUV optical power to input electrical power) was 

measured to be in the range of 6-9% [38]. The spectral measurements showed
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an increasing VUV radiation at 172 nm with increasing pressure and peaking at a 

pressure of 400 Torr, as can be seen in figure (3.4) [38]. The increasing intensity 

with pressure is due to the increasing three-body collision reactions and, hence, 

excimer formation. It was expected that the intensity would keep increasing with 

increasing pressure, but it peaked at 400 Torr and decayed. This is assumed to 

be mainly due to the increasing gas temperature, which would result in 

increasing the quenching processes and the loss of excimers. An l-V 

characteristic of MHCD was measured and showed a resistive behavior at low 

currents followed by a negative resistance effect (hollow cathode effect). The DC 

current was limited to 8 mA to avoid thermal damage of the electrodes. 

Measurements of the output VUV optical power showed a linear dependence on 

current.

Excimer emission from MHCDs in noble gases is constrained inside the 

hole, as long as the upper limit of pD is not exceeded, as a result of the pendel 

electrons. But VUV images of MHCD have shown the excimer emission to be 

both inside the hole and expanding on the cathode surface with increasing 

current as will be shown later. Since the pendel effect can’t be applied outside 

the hole there must be other mechanisms involved in the process. Another 

possibility for coupling in MHCDs is through excimer photons. In this case, 

photons would travel across the gap and secondary electrons will emit from the 

cathode surface when photons reach the cathode. In case of instability, at one 

side of the cathode hole, the gas temperature would increase and as a result, the 

excimer emission at this point would decrease along with the number of photons.
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With a lower number of photons the number of secondary electrons due to 

photon collision will decrease. The electron density also decreases producing a 

negative feedback. This model would be valid if the discharge was constrained in 

the hole, which is not the case, since the possibility of photons colliding with the 

cathode surface outside the hole is lower than inside. Photons would just go 

through the discharge, and hence, coupling through photons is less probable.
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Fig. (3.4) Pressure dependence of the VUV emission spectrum of high pressure 

MHCD in xenon [4].
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CHAPTER IV 

Experimental setup

4.1 Sample Configuration and Construction

A MHCD uses two electrodes separated by a dielectric layer with a 

thickness of 250 pm and a hole in the center with a diameter in the range of 100- 

200 |im [4]. Molybdenum was used as the electrode material due to its high 

melting temperature of 2896 K. In these experiments circularly shaped electrodes 

100 urn thick and 1.6 cm in diameter were used. Two different dielectric spacers 

were used, mica or alumina, with a thickness of 250 urn. The three layers (two 

electrodes and a dielectric) were stacked using either a 5-minute epoxy glue or a 

two components silver epoxy (hardener and silver epoxy) from Epoxy 

Technology. Silver epoxy was used in most of the experiments since its thermal 

characteristics allow working at higher temperatures compared to the 5-min 

epoxy which when used would result in contaminating the discharge chamber 

and would lowered the excimer radiation efficiency. A certain procedure was 

followed in preparing the sample. After cutting the disc electrode they are 

polished and cleaned with acetone in order to get rid of any deposits that might 

have been on the surface. Stacking the electrodes to the dielectric is achieved by 

applying a well-mixed one to one ratio of the two components of the epoxy glue 

between the discs and the dielectric near the edges away from the center. The 

next step is curing the epoxy by placing the sample in a high temperature oven of 

about 180 °C for at least 30 minutes.
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The hole of MHCD samples can be achieved either by mechanical or laser 

drilling. For samples with mica as a dielectric mechanical, drilling was used. Due 

to the hardness of alumina, mechanical drilling was not possible, and a KrF 

excimer laser radiating at 248 nm was used. The laser settings used for drilling 

are adjusted to a pulse energy of 22.9 mJ with a repetition rate of 100 Hz and a 

total number of 2,000 pulses. According to the best focusing that could be 

maintained, the resulting hole had a conical shape rather than cylindrical with a 

diameter ratio of 2/3 as is shown schematically in figure (4.1).

4.2 Electrical Circuit

4.2.1 DC Operation

MHCDs can be operated either in DC or pulsed. The DC circuit consists of 

the high voltage power supply and a 100 kn current limiting resistance (Rdr), to 

avoid damaging the sample during breakdown due to high current, and a 1 kO 

current viewing resistance (Rcvr) [34]. Figure (4.2) shows the electrical circuit 

used for DC operation [34]. Both discharge voltage and the voltage across the 

current viewing resistance (proportional to the current) were measured using a 

digital multimeter.

4.2.2 Pulsed Operation

There are two possible modes of pulsed operation. They can be 

characterized with respect to the characteristic time constants at overvolted 

conditions (discharge conditions where the applied voltage exceeds the 

sustaining voltage). These include the time constant for glow-to-arc transition, 

tga, and the time constant for melting the electrodes caused by the high current

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



28

Anode

Dielectric

Cathode

Figure (4.1) Typical MHCD sample

Cathode

J  Dielectric-V„

Anode

R. = 100 kn

Figure (4.2) DC electrical circuit [34]
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densities in microhollow cathode discharges at high overvoltage, xe. The values 

of these time constants are dependent on gas, over voltage, pressure, and 

cathode material. One of the main causes of glow-to-arc transition is a thermal 

instability, which is associated with change in gas density, N, due to heating the 

neutral components [46]. In an atmospheric pressure gas discharge in argon, the 

time constant of glow-to-arc transition was found to be in the range of 36 ns, as 

will be discussed in detail in chapter VI. The time constant for melting the 

electrodes at high current, te, is on the order of milliseconds.

The discharge can be operated using pulses with pulse rise and pulse 

duration longer than tga but short compared to the time for thermal damage of 

electrodes, te. This operation will be referred to as equilibrium pulsed operation 

[47]. Pulsing the discharge in this mode allows us to avoid the thermal loading 

and consequently to reach higher currents than in DC operation. In this case, the 

excimer emission is based on the same processes (electrons have the same 

energy distribution) as for DC operation. Using these long pulses, the transient 

temporal development of the excimer radiation during breakdown and discharge 

decay was explored.

Pulses with pulse risetime and short duration compared to any of the two 

time constants require nanosecond pulsing. In this mode, the electron energy 

distribution is shifted towards higher values and will be referred to as non

equilibrium pulsed operation. Experiments in atmospheric pressure air [48] had 

indicated that extremely short pulses could affect the electron kinetics without 

heating the plasma. The pulsed electric field shifts the electron energy
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distribution to higher values and consequently causes a nonlinear increase in the 

excitation and ionization rates and would convert into an increase in efficiency. 

Investigation of the response of MHCD to transient voltages allows for the 

measurements of relaxation time of electrons and radiation. Also better 

understanding of these phenomena allows optimization of excimer emission and 

provides data on particle kinetics.

4.2.2.1 Pulse Generator for Equilibrium Pulsed Operation

In equilibrium pulsed operation, a semiconductor pulser was built using a 

metal-oxide-semiconductor field-effect-transistor (MOSFET) as a switch. Figure 

(4.3) shows a schematic diagram of the circuit used for this mode of pulsed 

operation. The circuit can be divided to three main parts: trigger, driver, and 

switch. The driver is used to supply current to the gate of the MOSFET, which 

allows fast switching, and consists of two stages of Bipolar Junction Transistors 

(BJTs). A Stanford Research pulse generator model DG535 that supplies a 

controlled pulse repetition rate and width with amplitude of 4 V was used to 

trigger the driver. The third part of the circuit is the switching using an IGBT 

MOSFET model IXBH 40N160. The characteristics of this power MOSFET allows 

up to 1600 V output voltage with up to 33 A [49]. The switching time is in the 

range of 200-300 ns, which does not affect the performance for equilibrium 

pulsed operation. When the pulse is applied to the sample, the voltage increases 

up to the breakdown voltage and then drops to the sustaining voltage of the 

discharge of about 200-230 V as shown in figure (4.4). For time resolved 

measurements in pulsed operation, a Tektronix digital oscilloscope model TDS
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Figure (4.3) Schematic diagram of pulse generator used in equilibrium pulsed 

operation. The pulse width and duration is controlled by the trigger signal.
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Figure (4.4) A typical voltage transient for MHCD in xenon. The voltage increases 

till it reaches the breakdown voltage where V drops to the sustaining voltage.
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3054 was used. The voltage was measured using a voltage probe (TEK5100) 

with a maximum voltage of 2500 V and a 250 MHz bandwidth.

4.2.2.2 Pulse Generator for Non-Equilibrium Pulsed Operation

In this mode of operation, a Pulse Forming Network (PFN) was used in 

combination with a semiconductor switch. The pulse generator is similar in 

design to a system described in [50]. The main advantage of this PFN over using 

a MOSFET in an on and off mode is that it would provide a faster rise and decay 

time. This would allow for shorter pulses, and changing the cable length changes 

the pulse width. The PFN used in this experiment is a Blumlein circuit [51] that 

uses a coaxial cable (RG58) as an energy storage medium until it discharges in 

the load when the MOSFET is switched on. Figure (4.5) shows a schematic 

diagram of a typical Blumlein pulser where the coaxial cable builds up voltage 

until the switch turns on and discharges in the 50 Q matching load. In “ns” pulsed 

operation, the short pulses were superimposed to a DC discharge, which was 

archived in the circuit shown in figure (4.6). The diode serves as a buffer 

between the two circuits, so the 50 Q matching resistance wouldn't be seen by 

the DC circuit, which would prevent breakdown of the discharge. The pulse 

generator design in “ns” pulsed operation uses an n-channel enhancement 

MOSFET model DE275-102N06A (IXYS). The advantage of this MOSFET is its 

fast switching time in the range of 3-4 ns, which allows for short pulses in the 10 

ns range [49]. A typical voltage pulse is shown in figure (4.7) for different cable 

lengths.
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4.3 Discharge Ceil

The sample is placed in a stainless steel chamber and held with a macor 

holder with two copper rings for electrical connections. The chamber is 

connected to a turbo molecular pump that allows a vacuum down to 1C6 Torr. 

Due to the wavelength range that is being studied (UV and VUV), special 

windows with high transmittance must be used. The windows used are either 

MgF2 or LiF due to their high transmittance of 80-95 % at this wavelength range 

of 172 nm and 127 nm.

Two gases have been studied for VUV excimer generation in MHCDs, 

xenon (Xe) and argon (Ar). MHCD in xenon were operated in a static gas due to 

the high cost of high purity xenon (99.997%). In the case of argon discharges 

static operation resulted in a low efficiency, and many impurity lines were 

observed such as oxygen, nitrogen, and carbon. To overcome this problem, 

MHCDs in argon were operated in a flowing gas, and the flow rate was controlled 

by a mass flow meter controller model MFC8160 (coastal instruments). Figure 

(4.8) shows a schematic diagram of the discharge cell used.

4.4 Spectral Measurements

Different measurements have to be performed to measure an absolute 

value of the output optical power and can be categorized as arbitrary units 

spectral measurement, calibrated detector measurements, and correction for the 

spectral response of the used components.
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4.4.1 Spectrometer Setup

Two monochromators have been used for spectral measurements, the 0.2 

m and 0.5 m McPherson monochromator. For measurements of VUV excimer 

radiation in both xenon (172 nm) and argon (127 nm), a 0.2 m vacuum VUV 

McPherson monochromator (model 234/302) was used. This monochromator 

covers a spectral range from 50 nm to 300 nm and contains a concave 

holographic grating with a groove density of 1200 G/mm and is blazed at 150 nm 

[52]. The scanning can be controlled either manually or using a scanning 

controller model (789A-3) to control a stepper motor that controls the positioning 

of the grating. Figure (4.9) shows a schematic diagram of the monochromator 

setup. Since the monochromator is being used for VUV radiation measurements, 

it is connected to an ALCATEL DRYTEL 31 pump. For high spectral resolution, 

the slit widths (both entrance and exit) were adjusted to 100 |im. The light was 

collected using a detector assembly consisting of a sodium salicylate scintillator 

and a Hamamatsu photomultiplier tube (PMT) model R1533 that covers a wide 

spectral range from 30 to 600 nm [53]. The PMT power supply is a Hamamatsu 

model C3830 and the voltage applied to the PMT ranged between 800 V to 1200 

V according to the intensity of the detected signal. A program written to control 

the stepper motor and collect the data from the PMT after converting it using an 

analog to digital converter was used to collect the output of the PMT.
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Figure (4.9) 0.2 m VUV monochromator experimental setup.
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4.4.2 Electron Density Measurements

Electron density is an important factor in determining the efficiency of 

excimer formation. Thomson scattering, interferometry, and line broadening are 

examples of the techniques used for electron density measurements. Line 

broadening could be natural since the quantum states of an atom don’t have a 

single energy but a small spread in energy. Another type of broadening is the 

Doppler broadening by thermal particle motion and is proportional to T1/2, where 

T is the gas temperature. A third cause for line broadening is pressure or 

collisional broadening, which is sometimes referred to as Stark broadening. Stark 

broadening arises from the influence of nearby particles upon the emitting atom. 

A quasistatic approach assumes the atom to radiate in an environment that is 

effectively static during the period of emission. Any individual radiator 

experiences a shift in the wavelength, and the average over all shifts gives the 

line width and shape. The shift in the spectral line due to electric fields is called 

the Stark shift.

In order to calculate the line shape in the quasistatic approximation, the 

relation between the line frequency and the electric field have to be known. In the 

case of hydrogen, the Stark effect is linear, while for other atoms it is quadratic 

and is much smaller. Also in hydrogen, the Stark effect causes a symmetrical 

spread of initially degenerate lines, which causes no net shift of the line, while in 

other atoms, shifts as well as broadening of the lines occur. The electric field that 

results in this line broadening is a microfield due to the neighboring ions in the 

plasma. The Stark width for Ha (656.2 nm) is significantly narrower than for H0
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(486.1 nm) and that is why the broadening of the Hp line was used for electron 

density measurements [54].

For electron density measurements, a 0.5 m McPherson monochromator 

model 219 is used. The grating is blazed at 250-600 nm with a groove density of 

2400 G/mm. In this case, the spectra was collected using an ICCD-MAX camera 

system described in details later in this chapter. A schematic diagram of the 0.5 

m monochromator is shown in figure (4.10). Since wavelength calibration is 

critical for electron density measurements using the Stark effect, the ICCD 

camera was calibrated using a mercury line at 435.8 nm. The spectrum of the 

mercury line was recorded with the monochromator center wavelength being set 

at 435 nm. The center wavelength of the monochromator is changed and both 

the wavelength interval and the number of pixels representing the change of the 

mercury line position in the spectrum are recorded. Knowing the wavelength 

interval and the corresponding number of pixels allows us to calibrate the 

wavelength. For the above-mentioned setup, a 1 nm range is represented by 67 

pixels, and hence, the pixel size is 0.0149 nm. The ICCD camera has 512x512 

pixels, and so it covers a wavelength range of 7.6 nm.

4.4.3 Calibrated Detector Measurements

Two different calibrated detectors have been used for absolute power 

measurements: a calibrated radiometer (IL1400) with a calibrated detector 

(SED185) and photodiode (SXUV-100). The radiometer has an 8 mm diameter 

photocathode with a quartz window. The photocathode responsivity covers the 

range between 160-240 nm peaking at 185 nm, which is most suitable for xenon
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Figure (4.10) 0.5 m McPherson monochromator experimental setup.
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discharge (172 nm). The detector was placed in front of the discharge chamber 

at a distance of 1.9 cm with an air gap separation of 9 mm between the detector 

and the chamber window. The radiometer reading is given in W/cm2 unit, and by 

assuming a point source radiation from the discharge and multiplying by Aic in 

addition to taking the responsivity of the detector, oxygen absorption, and the 

transmittance of the window into consideration, an absolute value of the total 

emitted power can be calculated.

In the case of argon discharge, a calibrated photodiode (model SXUV- 

100) supplied by IRD was used. The diode is a 1x1 cm2 square area and covers 

a spectral range from 50 nm to 250 nm [55]. The diode was placed in the 

discharge chamber at a distance of 1.6 cm from the discharge with an optical 

filter in between. The transmission of the optical filter peaks at 125 nm and has a 

FWHM of 14.5 nm [56]. The output of the photodiode is measured using a 

KEITHLY 617 programmable electrometer giving the output in ampere units. 

Using the responsivity curve provided by the company, filter transmittance, and 

assuming a point source radiation in 4n solid angle, the total power can be 

calculated.

4.4.4 Pulsed Measurements

Both the radiometer and the photodiode are suitable for DC operation but 

can’t be used for pulsed operation. In “ms” pulsed mode, a different setup shown 

in figure (4.11) was used to measure the output optical power. This system 

consists of a one to one imaging system, optical filter, and a PMT detector 

assembly. The absolute measurements of the DC operation were used to
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calibrate the pulsed measurements. As for “ns” pulsed operation, the discharge 

was connected to the 0.2 m monochromator, and a time resolved output power 

was measured in the required wavelength range.

4.5 VUV Imaging

In addition to the electrical and spectral studies of the discharge, spatial 

development was recorded in both DC and pulsed modes of operation. A 

Princeton Instruments Intensified Charge Coupled Device (ICCD) camera model 

(ICCD-MAX) was used for this purpose. The temporal resolution of the ICCD 

camera system is 2 ns and can be used in the wavelength range from visible and 

down to 100 nm. The camera is controlled by an ST-133 controller that is 

controlled by an interface program (winview) supplied by the company. It can be 

operated either in a shutter mode (DC case) or in a gate mode (pulsed case). 

VUV images of the discharge were obtained with the whole system under 

vacuum, as shown in figure (4.12). According to the wavelength range, an optical 

filter is placed in the filter wheel. The lens used is a MgF2 with a 5 cm focal 

length. The whole imaging system was evacuated using a turbo molecular pump. 

As for images in the visible range, a quartz window was used instead of the 

optical filter.
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CHAPTER V 

RESULTS

Characterization of DC operation of Microhollow Cathode Discharge, both 

electrical and spectral, has been studied extensively. In this chapter, results of 

pulsed excimer emission from MHCD in xenon (Xe) and argon (Ar) will be 

presented. Electrical and spectral measurements of DC operation were repeated 

in order to relate it to the pulsed measurements.

5.1 DC Operation of MHCD

5.1.1 DC MHCD in Xenon [39,57-59]

Previous measurements of DC MHCDs in rare gases focused on 

characterization of the excimer source both electrically (l-V characteristics) and 

optically (spectral and absolute power measurements). Another characteristic is 

the spatial distribution that allows studying the excimer power density and its 

dependence on both pressure and current. This can be achieved by recording 

VUV images of the source as a function of both discharge current and gas 

pressure. The spatial distribution of VUV excimer radiation was measured using 

the ICCD-MAX system.

An l-V characteristic was measured for MHCD with sample configurations 

of 250 jim hole diameter, electrode thickness of 100 (am, and a 250 jim thick 

dielectric. Typical for a MHCD, the l-V characteristics can be divided to three 

regions: a) the positive resistive, which is referred to as Townsend discharge; b) 

a negative differential resistive part due to hollow cathode effect; and c) normal 

glow discharge as can be seen in figure (5.1), where the l-V characteristics and
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the VUV output power of MHCD in 400 Toit xenon dependence on current are 

shown. In the normal glow discharge region, the sustaining voltage is in the 

range of 200-250 V depending on the excimer gas and pressure range. The 

radiant power measurements of VUV excimer radiation at 172 nm showed a 

linearly increasing radiant power with increasing current. In DC experiments, the 

current was limited to 8 mA to avoid thermal damage of the sample.

To study the spatial distribution of the VUV excimer source and its 

dependence on both pressure and current, the imaging system setup described 

in chapter IV was used and adjusted for a magnification ratio of 10. For DC 

images, the current was kept below 8 mA, and the pressure was changed in the 

range of 100 to 760 Torr. Figure (5.2) shows VUV images of a 400 Torr xenon 

discharge with the current as a parameter. These images show that at low DC 

current, while the discharge is still in the positive resistive region, all the VUV 

radiation is concentrated within the hole forming a ring with a thickness of about 

40 (im [57,58]. At very low currents, it starts as a part of a ring and starts to fill the 

ring with increasing current. Further increasing of the current results in switching 

the discharge to the negative resistive mode. In this mode, the VUV excimer 

radiation starts to spread out of the cathode hole and over the cathode surface, 

and the excimer source increases with further increasing of the current. This 

increase of the source size would explain the increase of the radiant power with 

current.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



45

270

260

S  2 5 0
<D
3 ) 240
iS
O 230 

<D 220
E>
®  210
oco
Q  200 

190

180

250

200

Oo
Z)

150 <

§ o o
o o

L 100

50

(0
c
0)

1 82 3 4 5 6 7

Current (mA)
Figure (5.1) IV characteristics for MHCD in 400 Torr xenon for a hole diameter of 

250 jam. The voltage (hollow circles) has (a) positive resistance at low current, (b) 

negative resistance, and (c) constant at higher currents. The Intensity (solid 

circles) increases linearly with increasing current.
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Figure (5.2) End-on VUV images of MHCD at 400 Torr xenon. At low current the 

discharge is constrained in the hole and expands outside the hole on the cathode 

surface with increasing current.
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In addition to the current dependence of the excimer source, another 

parameter controlling the source size, gas pressure, was studied. Figure (5.3) 

shows the pressure dependence of the VUV excimer source on the gas pressure 

for a DC current of 3 mA in xenon discharge. While increasing the gas pressure 

from 200 to 760 Torr at a constant current of 3 mA decreased the source size, it 

increased the discharge. Using these images, a VUV excimer radiation profile 

was evaluated, and the radiant emittance defined as the power per unit source 

area was obtained. Figure (5.4) shows a radiant emittance profile dependence on 

pressure at a constant current of 3 mA in Xe discharge where the radiant 

emittance increased with increasing pressure up to 2 W/cm2 at atmospheric 

pressure [59].

5.1.2 DC MHCD in Argon

Moving towards shorter wavelength argon is another excimer gas with 

excimer emission at 127 nm that was studied for excimer emission. Experiments 

have been performed for both static and flowing gas in both DC and pulsed 

modes.

5.1.2.1 DC Discharge in Static Argon [60]

Spectra of a DC MHCD in static argon showed the excimer continuum 

peaking at 127 nm with features at 130 nm, which indicated superimposed line 

radiation. Two different dielectrics were used in these experiments, mica and 

alumina, and the spectra were obtained with a spectral resolution of 2 nm. Figure 

(5.5) shows the spectral emission of MHCD in static argon. The position of this 

line radiation in the spectrum pointed towards oxygen as impurity. Atomic oxygen
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Figure (5.3) End-on VUV images of MHCD in xenon at 3 mA for different 

pressures. The excimer source size decreases with increasing pressure for a 

constant current.
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Figure (5.4) Radiant emittance profile of MHCD in xenon at 3 mA. The radiant 

emittance increased with increasing pressure.
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Figure (5.5) Spectral emission of MHCD in static argon with mica as a dielectric. 

Impurity lines can be seen in the measured spectral range. The argon excimer 

continuum peaks at 127 nm and is superimposed by an oxygen line at 130 nm.
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is known to emit line radiation at around 130.4 nm. These transitions are 

components of the 2p4 3P<-2p3(4S°)3s3S0 triplet at 130.2 nm, 130.5 nm, and 

130.6 nm. Collisional dissociation of molecular oxygen in an argon discharge with 

added oxygen was expected to provide a high concentration of atomic oxygen, 

and a resonant transfer of energy to the oxygen atom by the argon dimer is likely. 

This would provide a source of line radiation, rather than excimer radiation with 

its relatively broad emission spectrum. In order to study this effect, the spectral 

emission of microhollow cathode discharges and the spatial distribution of the 

VUV source in well-defined argon/oxygen mixtures were measured.

The sample electrodes thickness was 100 pm, separated by a 250 pm 

dielectric layer, and with circular holes of 100 pm diameter. In this experiment, 

alumina, rather than mica, was used because of its tolerance to high temperature 

operation. The discharge was operated in a direct current mode, with sustaining 

voltages between 200 V and 300 V and currents in the two to ten mA range. The 

discharge gas was argon at high pressure, up to 1100 Torr, with admixtures of 

oxygen below 1%.

Measurements of the spectral distribution in pure argon (research grade) 

and evacuation of the discharge chamber revealed that even in this case 

impurities determined to a large extent the emission in the studied VUV range 

from 120 nm to 200 nm. With alumina, line radiation at 130 nm contributed, even 

for pure argon filling, to approximately 20% of the total optical power in the range 

from 120 nm to 140 nm, as shown in figure (5.6) where the ratio of the oxygen 

line to the excimer continuum peak is higher than that when mica was used as a
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Figure (5.6) Spectral emission of MHCD in static argon with alumina as a 

dielectric. The ratio of the oxygen line intensity to the excimer continuum is 

higher than the case of mica.
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dielectric. Spectra in a limited spectral range (129 nm to 132 nm) with the best 

spectral resolution achievable with the present diagnostic system (AA ~ 0.2 nm) 

showed two peaks at 130.2 nm and 130.5 nm shown in figure (5.7). The second 

line is asymmetric, indicating the presence of a third line, which can’t be resolved 

due to the resolution. This spectrum, therefore, seems to correspond to the 

atomic oxygen transitions 2p4 3P«—2p3(4S°)3s3S° triplet.

At high pressures of about 1100 Torr, the impurity lines, except the 

oxygen lines at 130.2 and 130.5 nm, become more dominant, which is shown in 

figure (5.8) (upper section) where the VUV spectrum of an MHCD in argon is 

shown for a pressure of 1100 Torr, compared to 830 Torr as in figure (5.6). With 

oxygen added, the intensity of the oxygen emission increases at the expense of 

the argon excimer emission (figure (5.8), lower sections) [60]. It reaches a 

maximum at approximately 4 Torr oxygen added to argon at 1100 Torr, 

corresponding to 0.36%. With increasing oxygen, not only the argon excimer 

radiation disappeared, but also the other oxygen lines in the spectrum almost 

vanished. However, at an admixture of 10 Torr oxygen to the 1100 Torr argon, 

molecular oxygen emission at 185 nm begins to emerge. The studies on the 

effect of various concentrations of oxygen in argon at a given pressure were 

performed at a discharge current of 10 mA. Reducing the current to the lowest 

possible current value of 2 mA (below that the discharge could not longer be 

sustained) for the same pressure showed a linear decrease in atomic oxygen 

emission with current.
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Figure (5.7) Oxygen lines at 130.2 and 130.5 nm. The second line profile is 

slightly asymmetric indicating the presence of a third line.
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Figure (5.8) Spectral emission of MHCDs in argon at 1100 Torr with increasing 

concentration of added oxygen. The oxygen lines at 130.2 nm and 130.5 nm 

reach a maximum intensity at 4 Torr of oxygen added to 1100 Torr of argon [60].
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Assuming that the emission is isotropic, the internal efficiency of the 

oxygen emitter was found to be 0.7% at oxygen concentrations of less than 

approximately 0.1% in argon (at 1100 Torr and a discharge current of 10 mA). 

This corresponds to a total optical power of about 15 mW per microhollow 

cathode discharge in the range covered by the optical filter. The efficiency 

decreases with increasing oxygen concentration, and for oxygen concentrations 

of 0.9% it is only 0.2%, as shown in figure (5.9). The decreasing efficiency is in 

part due to an increase in sustaining voltage at constant current. For a 10 mA 

discharge, the sustaining voltage increases from 225 V for the case where no 

oxygen was added to approximately 300 V for 0.9% oxygen concentration.

5.1.2.2 DC Discharge in Flowing Argon

Due to impurities in static argon operation, the excimer efficiency was 

lower than 1% and consequently a higher purity is required. This can be 

achieved by flowing the gas at a constant flow rate, which can be controlled 

using a flow meter such that the pressure is constant within the chamber. In early 

experiments, a Matheson flow meter was used to control the gas flow rate at 

about 175 seem, but it produced some leaking and the impurity lines still 

appeared in the emission spectra, as can be seen in figure (5.10). The oxygen 

line was still visible over the excimer continuum, and both the line and continuum 

intensities increased with increasing pressure. So a mass flow controller model 

MFC-8160 was used, which is vacuum tight and presents no leaks. Flowing 

argon at a much lower rate of 40 seem controlled by the MFC8160 flow meter 

improved the excimer emission, and almost all the impurity iines disappeared in
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Figure (5.9) Excimer efficiency for different oxygen ratios added to argon at a 

pressure of 1100 Torr at 10 mA.
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the range of 110 to 200 nm except for a small oxygen peak over the excimer 

continuum, as shown in figure (5.11).

Power measurements were taken using a calibrated photodiode SXUV- 

100 and showed an increasing power with increasing pressure up to 1100 Torr 

and almost linear dependence on current. Figure (5.12) shows VUV total radiant 

power for argon with a flow rate of 40 seem dependence on both pressure and 

current assuming an isotropic emission. From these power measurements, the 

efficiency of VUV excimer radiation of the argon discharge was calculated to be 

increasing with increasing pressure and tends to saturate at pressures higher 

than atmospheric, as shown in figure (5.13). At a pressure of 1100 Torr and a DC 

current of 3 m, an efficiency of 6% was measured, which is more than 6 times the 

case of static argon. This shows that the excimer radiation is highly affected by 

contamination produced by leaking or from the sample itself. Flowing the gas 

helped to reduce the concentration of this contamination.

5.2.1.3 VUV Imaging of DC MHCD in Flowing Argon

Similar to the xenon discharge, VUV images of MHCD in flowing argon 

showed the same behavior and dependence on current, as can be seen in figure 

(5.14a). For argon at atmospheric pressure and flowing at a rate of 40 seem, at 

low current, while the IV characteristics are in the positive resistive part, the VUV 

radiation is restricted to the hole. With increasing current, the discharge starts to 

expand on the cathode surface. An intensity profile, figure (5.14b), shows that the 

intensity increases with increasing current and spreads over the cathode area.
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Figure (5.11) Excimer spectrum of argon MHCD with flowing and static argon. 

Flowing argon increased the excimer continuum, and all the impurity lines 

decreased.
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Figure (5.13) Argon excimer emission efficiency increases with pressure and 

approaches a constant value of 6% at 1100 Torr at 3 mA.
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Figure (5.14b) The intensity profile of VUV emission in MHCD in argon. The 

intensity increases with increasing current and close to uniform over the surface.
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5.2 Equilibrium Pulsed Operation in Xenon [39,61-63]

The current in DC operation was limited to avoid thermal damage of the 

sample, and an alternative to increase the current was pulsing the discharge with 

long pulses so it would allow increasing the current without increasing the 

average electrical power. The pulse width used in these experiments is 0.7 ms at 

a pulse repetition rate of 10 Hz. This operation allowed us to increase the current 

up to 80 mA. No further increase was possible because the discharge became 

unstable, and high current pulses accompanied by very low excimer radiation 

corresponding to arc discharge started to appear. The pulse width in this case is 

long enough for the discharge to reach steady state. By increasing the current to 

80 mA the output VUV excimer power is still linearly increasing with increasing 

current, as shown in figure (5.15). In the same figure, it is shown that the 

sustaining voltage of the discharge stays constant, 225 V for 400 Torr xenon. 

Consequently, the internal excimer efficiency is constant and equal to the DC 

mode of about 6 to 9%, independent of current.

In this mode of pulsed operation, due to the large size of the excimer 

source, a one to one imaging system was used, and end-on VUV images of the 

excimer source were recorded. By synchronizing the camera to the triggering 

pulse of the discharge, the images were taken in the middle of the pulse (300 (is 

from the beginning of the pulse) with an exposure time of 200 (is. In “ms" pulsed 

operation, VUV images showed a similar dependence of MHCD excimer source 

size on pressure and current as in the DC case. Figure (5.16) shows VUV 

images of the excimer source observed end-on with pressure and current as
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Figure (5.15) In pulsed operation, the steady state voltage (open circles) is 

constant with increasing current resembling a normal glow discharge. The 

intensity (solid circles) is increasing with increasing current.
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Figure (5.16) End-on VUV images of pulsed operation for different currents at 

different pressures. Similar to the DC, case the source size increases with 

increasing current and decreases with pressure.
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parameters. Combining both DC and pulsed current measurements with the VUV 

images showed that at a constant pressure the spatially averaged current 

density, j -  4 i/nd2, where d is the diameter of the excimer source, stays constant. 

For example, for a 400 Torr xenon discharge, where it has maximum excimer 

efficiency, the averaged current density is 0.3 A/cm2. On the other hand, for 

constant current, the current density increases linearly with the square of the 

pressure, j = Cp2, where C is approximately 1 A/bar^cm2. Both of these two 

relations, a current density being independent of the current and scaling with the 

square of the pressure, are typical for normal glow discharges [64]. Although the 

average current density was found to be constant, indicating a homogeneous 

spatial distribution of the radiative emittance (power per unit area), VUV images 

and images in the visible spectrum show an inhomogeneous distribution of the 

excimer radiation, as can be seen in figure (5.16, 5.17). The contrast of figure

(5.17) at 70 mA pulsed current and 200 Torr xenon has been enhanced to 

demonstrate this effect. Whereas the intensity in the VUV decreases with 

reduced distance to the cathode opening (which is located right in the center of 

the luminous area), the intensity in the visible has maximum values in and close 

to the cathode hole area [63].

Side-on images in the visible range have shown that the thickness of the 

plasma layer, including both cathode fall and negative glow, is constant and in 

the range of 100-150 (im over the entire area.
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Figure (5.17) VUV (left) and visible (right) end-on images of xenon MHCDs at a 

pressure of 200 Torr and a current of 70 mA [63].
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A pronounced feature in the images of the plasma in the visible (figure

(5.17)) is channels extending from the central area to the plasma boundaries. 

These channels have been observed for most current and pressure conditions, 

except very low currents and very high pressures. Looking at the corresponding 

VUV images, these channels appear as areas of reduced excimer intensity. They 

represent plasma with higher gas temperature and electron density than the 

areas between them.

In these images, a dielectric layer determines the outer boundary of the 

plasma. When the plasma has extended to this dielectric, any increase in current 

leads to a transition from a normal glow to an abnormal glow, which the plasma 

prone to instabilities, limiting its use as an excimer source if the dielectric layer on 

top of the cathode is reached.

5.3 Non-Equilibrium Pulsed Operation of MHCD

5.3.1 Non-Equilibrium Pulsed Operation in Xenon [65-67]

For equilibrium pulsed operation, increasing the current increased the 

output VUV excimer radiation, but the efficiency remained equal to the DC case 

in the range of 6-9%. A promising method to increase the excimer efficiency in 

glow discharges is pulsed electron heating. Experiments in atmospheric pressure 

air [48] had indicated that extremely short pulses could affect the electron 

kinetics without heating the plasma. The pulsed electric field shifts the electron 

energy distribution to higher values and consequently causes a nonlinear 

increase in the excitation and ionization rates. This pulsed electron heating effect 

is considered to be responsible for the observed increase in the efficiency in
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barrier discharge excimer lamps [12], where increases in efficiency by a factor of

3.2 were obtained.

Pulsing MHCDs into the nonequilibrium condition can be achieved with 

low pulsed voltages of few hundreds volts. The “ns” pulse generator described in 

chapter IV was used to generate pulses with pulse duration of 20 ns, with peak 

voltages up to 750 V. The voltage pulse generated with this system is shown in 

figure (5.18) [67]. The FWHM is 20 ns and the rise and fall times are 10 ns. The 

pulse was applied to a dc microhollow cathode discharge in 400 Torr xenon. The 

sustaining dc voltage was 230 V and the dc current was 1 mA. The pulsed 

electric field causes an instantaneous increase in electron density, which after 

the pulse decays through recombination with a time constant of several 

microseconds. The discharge voltage drops from 230 V to approximately 100 V 

after the pulse and only the beginning of the recovery to the dc sustaining voltage 

is shown in figure (5.18), which is related to the temporal development in electron 

density.

Figure (5.18) shows the temporal development of the excimer emission at 

172 nm, the peak in the second xenon excimer continuum. The VUV radiation 

was spectrally resolved by means of a McPherson 302 and recorded with of a 

PMT (Hamamatsu R1533). Measurements of the pulsed spectral distribution 

showed that the electrical pulse did not affect the line profile, so the radiation at 

172 nm is representative of the total optical power in the VUV. The measured 

excimer emission is delayed with respect to the electric pulse, which is due to the 

time delay of the PMT that was measured as 50 ns. The peak in excimer
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Figure (5.18) Temporal development of voltage across the microhollow cathode 

discharge and the corresponding xenon excimer emission at 172 nm. The 

voltage before pulse application (< 200 ns) is the sustaining voltage of the dc 

discharge. After pulse application, the discharge voltage drops to 110 V and 

approaches the dc value after several microseconds. The solid bold line 

represents the temporal development of measured excimer emission. The dc 

value of the excimer power (indicated by DC in the figure) is less than 2 % of the 

peak power. The dashed line represents the modeling results [67].
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emission is at approximately 250 ns after the electrical pulse application. The 

FWHM of the excimer pulse is 350 ns, the decay time constant (1/e decay time) 

is 320 ns, and both are independent of pulse amplitude.

For a low peak pulse voltage up to 500 V, the excimer intensity stays at a 

constant value, the dc excimer emission. By increasing the amplitude of the 

pulsed voltage from 500 V to 750 V, the peak intensity increased exponentially, 

doubling every 50 volts. The absolute values of the optical power of the excimer 

pulse were obtained by measuring the excimer intensity at 1 mA dc with a 

calibrated detector and by relating this value to the value obtained by the 

temporal development of the emission, as shown in figure (5.18). Peak optical 

power is plotted versus peak voltage of the pulse in figure (5.19) [67]. Largest 

values are 2.75 W at a pulsed voltage of 750 V emitted from a single microhollow 

cathode discharge, which is more than two orders of magnitude compared to the 

DC case at 1 mA (20 mW).

In the case of pulsed operation, the efficiency is defined as the ratio of 

optical energy to electrical energy and is plotted in figure (5.19) versus voltage. 

The electrical energy was obtained by integrating over the temporal development 

of the product of voltage and current from the application of the voltage pulse to 

the time where the excimer pulse had decayed to about 10 % of its peak value. It 

was noticed that the efficiency decreases with increasing voltage up to 500 V 

from 8% to 4%. This is due to the fact that in this voltage range, the effect of the 

pulse on the excimer emission is negligible, but not the dissipated pulsed electric 

energy, which resulted in lowering the efficiency. Above 500 V the efficiency
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Figure (5.19) VUV optical power and corresponding excimer efficiency. Whereas 

the optical power increases exponentially, the efficiency increases linearly with 

pulsed voltage [67].
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increases linearly with voltage and reaches 20 % at an applied pulsed voltage of 

750 V, the largest voltage that our pulse generator provided.

Although the optical power increases exponentially, by a factor of 18 (0.15 

to 2.75 W) from 550 V to 750 V pulses applied, the time averaged radiant 

emittance of the source rises only by a factor of 2.5 (from 5.9 to 15.2 W/cm2). 

This is due to the fact that with increasing voltage and current, the area of the 

source expands. The diameter of the emitting area increases from 0.9 mm to 2.4 

mm (diameter of pulsed radiation only) when the pulse amplitude is increased 

from 550 to 750 V. Temporally resolved photographs of the excimer source are 

shown in figure (5.20) where the exposure time was set to 300 ns, and the 

camera trigger was delayed 100 ns from the pulse, such that it is centered right 

at the time when the excimer emission peaked. In this figure, a VUV image of DC 

discharge at 1 mA (upper left) was recorded in order to see the effect of applying 

the pulse over the DC discharge. The hole size is 100 pm and is located in the 

center of the image. When the pulse is applied to the DC discharge, the area 

closer to the center (closer to the hole) becomes higher in intensity, and the 

diameter of this area increases with increasing pulse voltage.

Although the excimer lifetime of xenon excimers is known to be in the 

range of 0.09 to 0.14 ps [24,27], the intensity decays exponentially with a time 

constant of 320 ns. In addition to radiative decay, quenching processes may be 

involved, and as a result, the decay would be faster. The rate equation for 

excimer decay is given by:
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Figure (5.20) VUV end-on images for “ns" pulsed operation. At low peak voltage

pulse, a higher intensity area is superimposed over the DC. With increasing

pulse voltage, both the diameter and the intensity of the superimposed area

increase.
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(5-3)

where X2 is the excimer density, Ak is the inverse spontaneous lifetime of the 

gas excimers, and kq[q ] is the sum of all quenching rates. According to equation 

(5.3) and an exponentially decaying intensity, the total decay time constant ( t )  is 

given by:

Taking this into consideration, the quenching processes rate was -0.145 us for an 

excimer lifetime of 0.1 (is. This is not possible and can be due to a slower 

excimer formation process resulting in three-body collisions with the excited 

atoms produced by the recombination of molecular ions, which would affect the 

decay process.

5.3.2 Non-Equilibrium Pulsed Operation in Argon

“ns” pulsed operation in flowing argon generated an increase in the 

intensity compared to DC operation, however, not as high as that in xenon. In 

argon, the peak intensity was only about five or six times that of the DC case, 

while in xenon it was almost two orders of magnitude higher. Figures (5.21) show 

the intensity pulse for different pulse voltages at 1100 Torr and 3 mA with a flow 

rate of 40 seem. For “ns" pulsed operation, the current was found to be mainly a 

capacitive current. This was verified by integrating the current pulse. The 

calculated capacitance according to:

- =  A lk +
t k jq ]

(5.4)

(5-5)
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Figure (5.21) VUV excimer intensity and its dependence on the peak pulse 

voltage for “ns” pulsed operation in 1100 Torr argon MHCD and a 3 mA DC 

current.
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was found to be 7 pF. Comparing this value with the calculated sample 

capacitance of 10 pF confirm this observation. When a 10 ns pulse was applied 

to the DC discharge, the VUV intensity increased exponentially with pressure. 

However, breakdown was reached at a pulse voltage of 800 V. Breakdown 

caused a high current pulse, thermal plasma, so no higher voltage was applied. 

The internal efficiency in this case is equal to or lower than in the DC case. 

Decreasing the pulse width would allow increasing the pulse voltage without 

breakdown, however the bandwidth limitation of the measuring equipment such 

as probes and oscilloscope limited the operation to 1 0  ns.

Following the same concept to calculate the quenching rate in argon as in 

xenon equation (5.4) was used with argon excimers lifetime of 3.4 us as an 

average to the known lifetime range of 2.8 to 4 ps [24-28]. The intensity decays 

exponentially with a time constant of 500 ns and so the quenching processes 

rate was found to be 0.56 ps. Quenching is therefore six times more effective 

than radiative decay. By varying the pulse voltage in the range of 600 to 800 V 

the quenching rate ranged between 0.5 and 0.6 jis, which is expected since 

quenching is dependent on the gas temperature and by applying “ns” pulses only 

electrons are heated without increasing the gas temperature.

5.4 Electron Density of MHCD in Argon

The electron density was measured by measuring Stark broadening of the 

Hydrogen-beta (Hp) at 486.1 nm. A line profile of the system is obtained by 

recording an atomic line of a mercury lamp. The nearest mercury line to the 

required range was 435.8 nm. The spectral measurements were performed using
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a 0.5 m McPherson monochromator with a grating blazed at 250-600 nm with a 

groove density of 2400 G/mm and the ICCD-MAX camera system at the exit slit 

for capturing the spectra. The measured mercury line was best fitted by a 

lorentzian profile, and the FWHM was found to be 0.32 A0. For pure argon 

discharge no hydrogen emission was detected. So, a very small ratio of 

hydrogen (1 %) was added to argon at atmospheric pressure and flowed at a rate 

of 40 seem. The discharge was operated in both DC and short pulse modes.

5.4.1 DC Electron Density Measurements

In DC measurements, the electron density dependence on current was 

measured. The operating pressure was maintained at atmospheric and the 

current was varied in the range of 3 to 11 mA. The Hydrogen line was captured 

using the ICCD camera and the best fit was a Lorentzian profile. The Stark 

broadening is measured as the difference of the FWHM of the hydrogen line and 

the FWHM of the mercury line. Figure (5.22) shows a comparison between the 

mercury line and a DC hydrogen line. In this figure, it is clear that the hydrogen 

line is wider than the mercury line. The electron density can be obtained by using 

the following relation [681:

ne =1.03*1016 (AA.(nm) ) 1488 cm -3 (5.6)

where AX is the Stark broadening FWHM. In the current range from 3 to 11 mA, 

the electron density increases linearly, as can be seen in figure (5.23), and was 

in the range of 1015 /cm3. While the current was increased by almost a factor of 4, 

the electron density increased by only a factor of 1.5. This can be explained from 

the following equation:
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Figure (5.22) A system profile is obtained by measuring the mercury lamp line at 

435.8 nm. For Hp line at 486.1 nm was recorded for both DC and pulsed 

measurements to obtain the Stark broadening and consequently the electron 

density.
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I = e * n • v • A  (5 .7 )

where I is the current, e the electron charge, n the electron density, v the drift 

velocity, and A is the area. The drift velocity is constant since the discharge 

voltage is constant. From this the current is proportional to both the electron 

density and the area, which was found to be linearly increasing also with 

increasing current and as could be seen from figure (5.23).

5.4.2 Pulsed Electron Density Measurements

For pulsed operation, a 10 ns pulse was applied to 10 mA DC discharge at 

atmospheric pressure and a time resolved electron density was measured. For a 

pulse voltage of 600 V, the electron density increased to 5x1016 cm' 3 and 

decayed exponentially with a time constant of 150 ns due to loss process, as can 

be seen in figure (5.24). This increase in the electron density as a result of 

applying the 10 ns pulse confirms the importance of these “ns" pulses for VUV 

excimer emission, since the density of excited atom increased by increasing the 

electron density.
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Figure (5.23) Electron density for DC MHCD in atmospheric pressure argon. The 

electron density increased linearly with increasing current. The electron density 
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Figure (5.24) Time resolved electron density measurements for “ns" pulsed 

operation of atmospheric pressure MHCD in argon for a pulse voltage of 600 V 

and a DC current of 10 mA. The electron density decayed exponentially with a 

time constant of 150 ns.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



84

CHAPTER VI 

DISCUSSION

6.1 From MHCD to Micro-Surface Discharge

VUV images of the excimer source have shown that the source size is 

dependent on both current and pressure, as can be seen from figures (5.2) and 

(5.3). At low current, the discharge represents a Townsend discharge where the 

discharge is inside the hole covering part or all of the cathode area depending on 

how low the current is. This Townsend discharge is observed in the positive 

resistive region of the l-V characteristics. Increasing the current beyond this 

range, the discharge starts to expand over the cathode surface. Increasing the 

current at a constant pressure, the discharge switches to a normal glow 

discharge, where the voltage stays constant with increasing current, and the 

diameter of the excimer source increase with increasing current and decrease 

with increasing pressure. For a normal glow discharge, the current density is 

independent of the current:

J = I/A = constant (6.1)

Hence, the area of the discharge is directly proportional to the current at a 

constant pressure. The spatially averaged current density was measured to be

0.3 A/cm2 in 400 Torr xenon. While the current density is independent of the 

current it is proportional to the square of the pressure [64] at constant current 

J = I/A = Cp2 (6.2)

and the area is inversely proportional to the square of pressure and would 

decrease with increasing pressure.
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Side-on images in 200 Torr xenon have shown the thickness of the 

cathode fall and negative glow layers to be in the range of 100 pm. The cathode 

fall thickness and negative glow length are dependent on the gas, gas pressure, 

and electrode material. The cathode fall thickness, dn, in a normal glow discharge 

is given by [36]

dn =3.76to(1+1/y) (6.3)
Ap

where y is the secondary electron emission coefficient, p is the pressure, and A is 

a constant. In argon discharge at a discharge voltage of 200 V and pressure of 1 

Torr, the negative glow length was measured to be 1 cm and is inversely 

proportional with pressure [36]. Hence, for a 200 Torr argon gas discharge with 

aluminum as the cathode y=0.12 and A=13.6 /cm.Torr and consequently dn=30 

pm, and the negative glow length is 50 pm, totaling 80 pm. Data of aluminum and 

argon were used to demonstrate that the measured discharge thickness is close 

to theoretical values.

Being a normal glow discharge is not surprising since experiments and 

modeling of hollow cathode discharge have shown that there exists an upper limit 

of the pD product of 5 Torr cm for a stable discharge operation inside the 

cathode hole [33,34]. When pD value exceeds the limit the coupling through 

pendel electrons ceases to exist and the discharge spreads over the cathode 

surface. Experiments of MHCD in argon with pressure up to 896 Torr and a hole 

diameter of 2 0 0  pm have shown a stable discharge inside the hole up to a
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pressure of 250 Torr (pD=5 Torr cm) and any further increase in the pressure 

leads to a filamentary discharge outside the hole [3 4 ].

In our experiment, the hole diameter used is 100 pm, and the pressure is 

up to atmospheric in xenon (pD=7.6 Torr cm) and 1100 Torr in argon (pD=11 

Torr cm). The pD product in this case exceeds the upper limit of MHCD, and the 

discharge acts as a normal glow discharge.

6.2 Spatial Distribution of Current Density in The Normal Glow

In equilibrium pulsed operation of low-pressure xenon discharge, the 

excimer intensity close to the cathode opening was found to be lower than at 

further distances as in figure (5.17) (VUV image), which can be explained from 

the following: For a constant transverse (with respect to the cathode surface) 

current density, shown in figure (6 .1 ), the radial current density increases with 

reduced distance, r, from the cathode opening according to [63]

r 2
J ,(r )= -i- (r -^ -)  (6.4)

2 t r

where rQ is the maximum radius of the plasma layer. This means that the gas 

temperature due to Joule heating is also expected to increase with reduced 

distance to the cathode hole. This temperature increase is detrimental for 

excimer emission [13]. Due to the expected higher electron density in the higher 

temperature plasma, recombination radiation losses, which vary with the square 

of the electron density, are more likely in this area. In addition, the increased gas 

temperature close to the cathode hole might, as a secondary effect, cause an 

increase in cathode temperature and consequently increased thermal emission 

of electrons from the cathode in addition to electron emission caused by ion
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impact. Thermal emission is known to cause a reduction in cathode fall voltage, 

and consequently a reduction in the number of high-energy electrons, required 

for the generation of the excimer precursors, as can be seen from the lower 

excimer intensity close to the cathode hole in figure (5.17).

6.3 Discharge Stability

High-pressure glow discharge in a plane electrode configuration has been 

one of the major issues due to the increased thermal instabilities at high 

pressure. The onset of these instabilities is dependent on the current and the 

current density of the discharge, whether it is higher or lower than the threshold 

value. It is more dominant at high pressure due to the previously mentioned 

dependence of the current density on the square of the pressure. These thermal 

instabilities are mechanisms perturbing homogeneous discharges at high 

pressures and currents in atomic and molecular gases [64,46,69]. They result in 

discharge contraction and in the formation of current filaments in which the 

degree of ionization and the gas temperature are higher than ordinary. As a 

result of this high temperature, the local atom (molecule) (N) concentration 

decreases, and the reduced electric field (BN) increases. An increase in the 

reduced electric field increases the ionization rate and consequently the electron 

density and the current density. This increases the joule heating and leads to a 

higher temperature, and the process is repeated. This positive feedback results 

in increasing the current density in the discharge and a glow-to-arc transition. In 

microhollow cathode discharge, this glow-to-arc transition was not observed and 

a normal glow discharge was maintained for the current and pressure range of
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operation. This is mainly due to the current range of operation in both DC and 

equilibrium pulsed operation, which didn’t exceed 80 mA. Thermal instabilities 

require a relatively high current, which would allow generating electrons through 

thermal heating and forming a hot cathode spot. A normal glow discharge with 

current below 100 mA is stable since the joule heating is not high enough to 

cause instabilities [70]. When the current is in the range of 100 to 200 mA a 

contracted channel with a confined radius tries to form and increases the current 

density at the cathode surface forming a hot spot. But since the current is not 

high enough to support this channel it switches back to a normal glow discharge. 

For current higher than 200 mA, a glow-to-arc transition occurs and an arc 

discharge is formed. Since the current in MHCDs didn’t exceed 80 mA, no glow- 

to-arc transition was observed. As for the case of non-equilibrium pulsed 

operation, a glow-to-arc transition would be possible due to the high current, in 

the range of hundreds of mA, but this transition wasn’t established because of 

the short pulse width which doesn’t allow for gas heating during the pulse.

6.4 Non-Equilibrium Pulsed Operation

6.4.1 Electron Energy

Excimer formation requires high-energy electrons, and it has been shown 

from the spectral measurements in both xenon and argon discharge that there 

are electrons with high energy enough to excite the gas atoms, precursors for 

excimer formation. In equilibrium pulsed operation, the efficiency stayed constant 

as in the DC case, although the intensity increased.
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Figure (6.1) Cross-section of microhollow electrodes, with the discharge plasma 

extending over the cathode surface. The arrows indicate the transverse and 

radial current density, Jt, Jr, in the plasma. The instabilities current diffuses in the 

negative glow.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



90

However, in non-equilibrium pulsed operation in xenon, a strong increase 

in optical power and the increase in efficiency was observed, which can be 

explained by nonequilibrium effects in the discharge plasma. Calculations and 

measurements in air plasmas with similar short pulses applied indicate that the 

nanosecond pulses cause electron heating without affecting the gas temperature, 

which would shift the electron energy distribution function (EEDF) to higher 

energies, as shown in figure (6.2) [48].

In order to obtain such an electron heating effect, the pulse duration 

should be less than the electron relaxation time. This allows us to heat the 

electrons, without heating simultaneously the gas, and consequently reduces the 

probability for glow-to-arc transition. The relaxation time of electron, t, to transfer 

the energy to the atoms is given by [69]

T = (6.5)
O Vm

where 5=2nrie/M and vm is the effective collision frequency for momentum 

transfer. For argon at atmospheric pressure 5 = 6 .8 6 -l0 -6  and vm = 4.03-1012 s*1 

[69]. In this case, the relaxation time in atmospheric pressure argon is t  = 36 ns.

Pulsing the discharge with pulses with pulse duration shorter than t  allows 

for heating the electrons and minimum energy transfer to the gas atoms during 

the time of the pulse application. Applying the pulse for such a short time 

guarantees therefore that glow to arc transition can be avoided because gas 

heating occurs after the voltage pulse is applied.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1Q-18

£ 10-19
c  
o

$  1 02 0
<0 co
S 10-21 

o

10'22
10-1 10° 101 10*  1 03 1 04 

Electron Energy (eV)

Figure (6.2) Ionization cross section, and the steady state (dashed) and transient 

(solid) EEDF for electrons in an atmospheric pressure air discharge [48].

mi
120Td

(non-equilibrium)
0 2-lonizatioa

ionization
32 Td

(equilibrium)

■ *     •  ......

b>
o ,

\n

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



92

6.4.2 Excimer Emission In Non-Equilibrium Pulsed Operation

The observed temporal response of the excimer emission to the 20 ns 

pulse (figure (5.18)) is consistent with experimental and theoretical results 

obtained on barrier discharges. A model by Adler et. al [71] was used to simulate 

excimer formation and decay. In his model, Adler presented the different 

reactions that take place in excimer formation and decay. The main reactions 

that control the process in barrier discharges, as well as in MHCDs, can be 

summarized in the following equations:

Xe(3P,) + 2Xe(,So) ^ - > X e ; ( l u, O ; , v » 0 )  + Xe(lS0) (6.6)

where a three-body collision takes place with the 3P2 meta stable state forming 

the excimer molecule. These excimer states either will decay radiatively (1st 

continua):

Xe',(lu, 0 ; , v  »  0) —-  >Xe ,(0 ;)-hhv(X nax = l51nm) (6.7)

or will go through a vibrational relaxation:

X e j( lu,0 ~ ,v  »  0) + Xe(l S0) — ►Xej(lu,0 " ,v  « 0) + Xe('S0) (6.8)

The low vibrational states decays radiatively in the 2nd continua:

X e j ( lu, 0 ”,v  a 0) — ll—► X e, (O *) + hv ( =172nm)  (6.9)

At high electron energy and density electron ion recombination processes 

and subsequent relaxation processes have to be taken into consideration since it 

can feed the excimer levels via the P and S levels:

X e * ( - P , ) + 2 X e ^ - > X e ; + X e  

X e ; (2Z )+ e '  — 2«-»Xe"+Xe('S0)

In this system a quasi-neutrality was assumed and hence:
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From the above reaction, a set of differential equations had to be solved [71]:

where p is the pressure, ccr is the recombination coefficient, k2 and k4 are rate 

coefficient and t 2 and t4  are the life times of the excimer states. These differential 

equations included the rate equations for xenon atomic ions (Xe*), xenon 

molecular ions (Xe+2), xenon metastable atoms (Xe(3p2)), high vibrational levels 

excimer (Xe(1u,v » 0 )) corresponding to the first continuum emission and low 

vibrational levels excimer (Xe(1u,vs=0)) corresponding to the second continuum 

emission; the initial conditions for these equations need to be known. At this point 

we had to guess the initial values, since measurements of the densities of the 

various excited and ionized species are not yet available for dc operation. For a 3 

mA DC current, 400 Torr xenon the estimated values were Xe+=2*1014 /cm3, 

Xe+2=2*1013 /cm3, Xe(3p2)=4*1013 /cm3, Xe(1u,v» 0 )=  4*1011 /cm3, and 

Xe(1u,v=0)=4*1011 /cm3. The results provide consequently only qualitative 

information and are shown in figure (5.18) (dashed line). They indicate that the 

rise of the excimer emission is due to three-body collision, forming the dimer, and

Xe(I,.v»0) Xe(l,.v»0) Xe(l, ,v»0)^  Xe(I,.v»0)

(6.12)

d
— n
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the fact that the fall time is determined by dimer recombination and radiative 

emission.

Applying a 10 ns pulse to argon discharge increases the intensity six times 

over the DC value, while in xenon it was more than two orders of magnitude. This 

is because the threshold of the excitation cross section of argon (11.55 eV) is 

higher than that of xenon (8.32 eV), so the excitation rate in xenon is expected to 

be higher than that in argon.

Applying short pulses with width in the range of 10-20 ns also increased 

the electron density in the discharge. In the DC operation, the electron density 

was in the range of 1015 /cm3. Applying these pulses increased the electron 

density by a factor of 50 to 5-1016 /cm3 and decayed exponentially with a time 

constant of 150 ns. This increase in the electron density results also in increasing 

the excimer intensity in a non linear relation since in argon the electron density 

increased by a factor of 50 while the intensity increased by only a factor of six.

Adler’s model was used to calculate the excimer state density and its 

dependence on the electron. The same initial conditions as mentioned above 

were used, and only the initial condition for atomic and molecular ions were 

changed corresponding to the change of the electron density. The model results 

showed a linear dependence of the excimer density on the electron density, as 

shown in figure (6.3).
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Figure (6.3) Dependence of the excimer state density on the electron density in 

non-equilibrium pulsed operation.
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6.5 Effect Of Contamination on Excimer Emission

Impurities cause reduction of excimer formation since the presence of 

impurities reduces the generation of the excited states. Another effect of the 

presence of impurities is the collisional quenching of the excited rare gas atoms, 

the precursors of the excimer. Possible sources of these impurities are a small 

leakage in the discharge chamber, water vapor remnant, deposition on the 

cathode surface, or even produced by the dielectric layer (AI2O3) and silver epoxy 

due to the high gas temperature. This is clear in figure (5.6) where atomic lines of 

oxygen and hydrogen were detected indicating the presence of water vapor in 

the chamber. Also some carbon lines were observed, and the source might be 

the silver epoxy since it is an organic compound. The effect of impurities can be 

seen by comparing figures (5.6) and (5.11). In figure (5.6) when the discharge 

was operated in static argon, due to the existence of oxygen, hydrogen, nitrogen, 

and carbon impurities the excimer emission decreased. On top of the argon 

excimer continuum, an oxygen triplet was observed. The reduction in excimer 

intensity and the excitation of the oxygen triplet is assumed to be due to resonant 

energy transfer from Ar2 excimers with an energy in excess of 9.54 eV, 

corresponding to wavelengths shorter than 130.2 nm, or possibly also from 

excited argon atoms at 13.2 eV, which serve as precursors for excimer formation 

and by increasing the oxygen concentration the excimer continuum disappeared. 

This effect is not totally unacceptable since it can be used for generating high 

intensity low wavelength emission, which can be used for advanced 

photolithography. Because of the small concentration of oxygen in argon, the
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reabsorption of the 130.4 nm radiation in the gas mixture is presumably 

negligible for distances relevant for such an application, typically on the order of 

centimeter. Looking at figure (5.11) where the gas discharge was achieved in a 

flowing gas, it can be seen that the impurity lines almost disappeared, and the 

excimer continuum intensity increased. This elimination of impurities increased 

the excimer efficiency from 1% (static) to 6 % (flow). Another effect of the 

presence of impurities is collisional quenching of the excited rare gas atoms, the 

precursors of the excimer.
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CHAPTER VII 

Summary

Two conditions have to be satisfied for excimer formation: a sufficient 

percentage of the electron with high-energy that excites the gas atoms and high 

pressure so that three body collisions between the excited atoms and two ground 

state atoms forming the excimer molecule would be more favorable. In this 

dissertation, two rare gases have been studied for excimer radiation: xenon at 

172 nm and argon at 127 nm. Microhollow cathode discharges are one of the 

configurations that can be used for excimer generation. The high-energy 

electrons in this configuration are established by accelerating the electron in the 

cathode fall, and due to the pendel effect, the ionization and excitation rate would 

increase in the negative glow region increasing the possibility of excimer 

formation.

Spatial distribution measurements of VUV radiation from MHCDs in xenon 

and argon showed that the source size increases with increasing current and 

decreases with pressure. In the case of MHCD in xenon, it was found that at a 

constant pressure of 400 Torr, the average current density stays constant at 0.3 

A/cm2, while at constant current it is proportional to the square of the pressure. 

These two relations are typical for a normal glow discharge. In addition, VUV 

intensity profiles in DC operation of MHCD in xenon showed an increasing 

radiant emittance with increasing pressure up to 2 W/cm2 at atmospheric 

pressure and a current of 3 mA.
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In DC operation, the current was limited to 10 mA to avoid thermal 

damage of the sample, so “ms" pulses were applied to the discharge to enable 

increasing the current without increasing the average power. Pulsing the 

discharge enabled increasing the current to 80 mA, and the intensity was linearly 

increasing with increasing current up to 1.25 W at 400 Torr at a constant voltage. 

In these steady state measurements the efficiency stayed constant at 7% similar 

to the DC value.

By applying short pulses with width in the ns range to the discharge, 

electrons are heated to higher energies without heating the plasma 

simultaneously. The pulse width was in the range of 10-20 ns, which is shorter 

than the time constant for glow to arc transition. Applying “ns” pulses to DC 

MHCDs in xenon resulted in increasing the intensity exponentially with increasing 

pulse voltage to 2.75 W and the efficiency linearly to 20% at a pulse peak pulse 

voltage of 750 V. Using the VUV images and power measurements, the radiant 

emittance was found to increase from 2 W/cm2 in DC operation to 15.2 W/cm2 in 

pulsed operation.

A power measurement of MHCD in flowing argon showed a linearly 

increasing intensity with increasing current and increases with increasing 

pressure. The DC efficiency of MHCD in flowing argon at a flow rate of 40 seem, 

a pressure of 1100 Torr, and a current of 3 mA was measured to be 6 %, which is 

six times that of static argon operation.

“ns" pulsed operation in flowing argon showed a slight increase in the 

intensity of about six times the DC level when a pulse was applied to the DC
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discharge with a pulse width of 10 ns. The intensity increased with increasing 

pulse voltage until a breakdown occurred associated with a high current pulse. In 

these measurements, the efficiency was found to be equal to or lower than the 

DC efficiency at 5-6%.

Electron density of 1015 /cm3 was measured in DC flowing argon at 

atmospheric pressure. By pulsing the discharge with a 10 ns pulse the density 

increased to 5.1016 /cm3 and decayed with a time constant of 150 ns.
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APPENDIX 

A. Kinetic Model for Xenon

A complete list of the kinetic processes in xenon and the rates of different 

reactions are given in table A.1 [29].

TABLE A.1 Kinetic model of xenon.
t o a i w  Raw* Reference

l .X e -  ♦ W U -X a ,*  4 X * 2x i o - , , [ jo o /T ,) ''1 29a. 29b
L X aT  + 2 X e -X e ,*  4 X e * X 1 0 - ‘JIS » /T , ) '“ 29c
LX$? ♦ » - X e * ,  +  X« 2J x i o - ’ r . - * ' 29d
I X t T  44—Xa** 4  2Xc l x i o - ’ r . * * * 29c
S. Xa** 4  Z X a -X e f*  + X * J x t o - , , cJoo /r,)'', 29
i X < * - X i * + X « i x i t r 29
T .X a T + X a - X a * 4 - « a i x i o - ,,( r t/ w » ' /* 29
*. X c*-*-2X e-X af0> 4  Xa ^ d X lO -^ M O /T ,)* '* * 29e. 29f
9 Xa* + 2 X a - X a f  * ♦ X a 2xtO ~” (JOO/Tr ) ,/* * 29g
Ma. a +  X ^ '  - a  4 u * x  io - *  * 29 (x 0.1)
K)b.« 4  Xa?“ *—a 4  Xaf*” 4 9 x 1 0 -* * 29 (x 0.1)
1 la. X * 4"  4  X a - X a f "  4  Xa ^ x i o - ’ t v x n j " * 29g
tlb .X e j0 ’ +  X e-X a? ,M -eXa L2XH>"‘, C7‘r /300),n 29g
J2.Xef“ ’ - 2 X a 4 * * 2.IXU T -9g
IJ -X a f^ -Z X e -^ A v IX  to* 29g
14. XtJ*" 4  Jht—Xm,’  ♦  a 1x10“  “ as* 29h. 29i
15. X af°* 4- *v—Xa,* 4 » 2 x lO - ‘*em-' 29h. 291
16.2Xef—Xe,* 4  2 X c 4 « ( X 10*11 29j
17.2 X a *-X a * + X a  +  # 1x10*'“ 29j
l l X i f t < - X % ’  t i e 5 X I0 - * * 29
19. Xa* 4  a - X t *  4  la u x u r * * 29
20. Xa? + i - 2 X a + » 4X10“* * 29 (x3)
1L Xa* 4 a—Xa 4  a JXtO“* * 29 (x3)
22. Xa{ 4  a—Xa? 4  Xa 4  a l x W _». 29
2X X af 4 a—Xaf* 4 a JX K )"** 29
24a. Xaf* 4  a—Xaf“ ' 4 1 6x10“ ’ * 29
24buX*r 4 r —X a f "  4 e 2X H )- ’ * 29
2J.Xe**—Xa* 4 * » <1X10* 29
2*.X a** 4  a—X a* 4  2a 2 X 1 0 -** 29
27. Xa* 4  a—X a** 4  a i x w - * * 29
2 L X a * * 4 4 -X a *  4 a «XH>“ ** 29
» . X e * * 4 * » - X a *  4 a IX  10~“  an* 29b
Ml 2Xa** — X a* 4 X a 4 r ix io ~ “ 29|
J l.2 X a T -X e ,*  4 2 X a 4 » t x u r * 29j
J2. Xa,* 4  a - X a *  4  X a 4 a lX l0 “ r * 29
IX  X af* 4  a—Xa,* a-2a 6x10“ * * 29
J 4 .X « r 4 * » -X a ,*  44 t x l0 “ **e»* ?<lh

*U aiw  areas*/*. an V v. s~‘ .o rcm * (w bae nocad) m y v w y m n .
* Xc* tactoda* the 6cVt  and i f f ,  sate*. wbicfa. ire  aananed to be a  tta tla tk il e q xX b riw .
• A i T . - I a V .
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