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Note 

No Antitwins in Minimal Imperfect Graphs 

STEPHAN OLARIU 

Department of Computer Science, Old Dominion University, 
Norfolk, Virginia 23508 

Communicated by the Editors 

Received November 6, 1986 

It is customary to call vertices x and y twins if every vertex distinct from x and y 
is adjacent either to both of them or to neither of them. By analogy, we shall call 
vertices x and y antitwins if every vertex distinct from x and y is adjacent to 
precisely one of them. Lovasz proved that no minimal imperfect graph has twins. 
The purpose of this note is to prove the analogous statement for antitwins. 0 1988 

Academic Press, Inc. 

Claude Berge proposed to call a graph G perfect if for every induced 
subgraph H of G, the chromatic number of H equals the largest number of 
pairwise adjacent vertices in H. At the same time he conjectured that a 
graph is perfect if and only if its complement is perfect. Lo&z [2] proved 
this conjecture which is known as the Perfect Graph Theorem. 

It is customary to call vertices x and y twins if every vertex distinct from 
x and y is adjacent either to both of them or to neither of them. By 
analogy, we shall call x and y antitwins if every vertex distinct from x and y 
is adjacent to precisely one of them. 

A graph G is minimal imperfect if G itself is imperfect but every proper 
induced subgraph of G is perfect. Lovasz [2] proved that no minimal 
imperfect graph has twins. The purpose of this note is to prove the 
analogous statement for antitwins. 

THEOREM. No minimal imperfect graph contains antitwins. 

Proof. Assume the statement false: some minimal imperfect graph G 
contains antitwins u and v. Let A denote the set of all neighbours of u other 
than v, and let B denote the set of neighbours of v other than u. 

As usual, a clique is a set of pairwise adjacent vertices, and a stable set is 
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a set of pairwise non-adjacent vertices; we let u and o denote the largest 
size of a stable set and a clique, respectively, in G. We claim that 

B contains a clique of size w  - 1 that extends into no clique of 
size o in A u B. (1) 

To justify this claim, colour G-v by co colours and let S be the colour 
class that includes U. Since G - S cannot be coloured by o - 1 colours, it 
contains a clique of size o; since G - S - v is coloured by w  - 1 colours, we 
must have v E C. Hence C- v is a clique in B of size o - 1. If a vertex x 
extends C-v into a clique of size o then x $ A (since A n S= 12/ and 
G - S - v is coloured by o - 1 colours) and x $ B (since otherwise x would 
extend C into a clique of size o + 1). Thus (1) is justified. 

The Perfect Graph Theorem guarantees that the complement of G is 
minimal imperfect; hence (1) implies that 

A contains a stable set of size c( - 1 that extends into no stable 
set of size a in A v B. (2) 

Now let C be the clique featured in (11 and let S be the stable set 
featured in (2); let x be a vertex in C that has the smallest number of 
neighbours in S. By (2), x has a neighbour z in S; by (l), z is non-adjacent 
to some y in C. Since y has at least as many neighbours in S as x, it must 
have a neighbour w  in S that is non-adjacent to x. Now U, z, x, y, w  induce 
in G a chordless cycle. Since this cycle is imperfect, G is not minimal 
imperfect, a contradiction. 

Chvatal et al. [l] call a graph G an (a, w)-graph if it satisfies the 
following conditions: 

(i) G contains exactly MIJ + 1 vertices. 

(ii) For every vertex w  of G, the vertex-set of G-w can be 
partitioned into c1 disjoint cliques of size o and into o disjoint stable sets of 
size a. 

(iii) Each vertex of G is included in precisely a stable sets of size a 
and in precisely o cliques of size o. 

(iv) Each stable set of size c( is disjoint from precisely one clique of 
size o and each clique of size w  is disjoint from precisely one stable set of 
size ~1. 

Padberg [3] proved that every minimal imperfect graph is an (a, w)- 
graph. However, there exist (cc, o)-graphs that contain antitwins. One such 
graph is featured in Fig. 1: the vertices 0 and 5 are antitwins. 
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FIGURE t 
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