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Quantitative estimates for approximation with positive linear operators are 
derived. The results are in the same vein as recent results of Berens and DeVore. 
Two examples are provided. 

1. INTR~DuCT10~ 

Berens and DeVore [ 1,2] have recently obtained quantitative estimates for 
L, approximation with positive linear operators. The results may be 
formulated as follows: Let I = [a, b] and let L,(I) (1 < p < co) denote the 
space of measurable real-valued pth power Lebesgue integrable functions f 
on I with ]]J]], = (J”: ]flP)‘@. For f E LJZ), define the second-order integral 
modulus of smoothness as 

w*,p(f, h) = sup Ilf(* + 4 - v-(*I +A* - f)llLp(,*,)~ O<t$h 

where Lp(Izl) indicates that the L, norm is taken over [a + t, b - t]. Let 
ei(t) = t’ for i = 0, 1,2. A linear map L from L,(I) into L,(I) is called a 
contraction if llLdf)llp 4 Ilfll, f or all f E L,(I). Let {L, ) be a sequence of 
positive linear operators from L,[a, b] into L&c, d], a < c < d < b, and 
define 
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and 
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In [l] it is shown that if {L,} is a sequence of positive linear contractions 
from &[a, b] into ,!,,[a, b], then, for f E &[a, b], 

where C, > 0 is independent off and n. 
In [2] it is shown that if (L,} is a sequence of positive linear operators 

from &[a, b] into LJc, d], then, for f E L,[u, b], 

ILdf) -fllL.&d~ Q G[fiy2p+1) Ilfll, + %,pu ~~‘“p+l’)l~ (1.2) 

where C, > 0 is independent off and n. Estimate (1.2) is good for large p, 
while (1.1) is effective for positive linear contractions with p close to 1. In 
general, (1.1) and (1.2) cannot be improved, and (1.1) is not valid for 
contraction operators that map L,[u, b] into L,[c, d], a < c < d < b. 

Many well-known sequences of positive linear operators have a rate of 
convergence that is better than that predicted by (1.1) and (1.2) (see, e.g., 
[ 1,7, lo]). These sequences satisfy the estimate 

Ilkm -fllL,Ic,dl G 4x, Ilfll, + %pU fiflP)l~ (1.3) 

where Mp > 0 is independent off and n. 
The estimate (1.3) is the L, analog of Freud’s optimal estimate [4] for 

approximation in the space C[a, b]. 
The purpose of this paper is to investigate conditions under which (1.3) 

can be attained. Specifically, let 

kp = (mown - cA.,Ie,d~~ 
IIL”(@ -XL XIILp[c,dp IILnW - xY9 x>ll;$P;’ 1)IY29 

where {L,} is a sequence of positive linear operators from L,[u, b] into 
L,[c, d]. We prove 

THEOREM 1. Let {L,} be uniformly bounded sequence of positive linear 
operators from L,[u, b] into L,[c, d], 1 Q p < 00, a Q c < d Q b, and assume 
,unp + 0 (n + a~). Then for f E L,[u, b] and n suficiently large, 

IWntf) - f IIL,Ie,d, Q CPc4, Ilf II1 + %pU && (1.4) 

where C, > 0 is independent off and n. 
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Estimate (1.4) is never worse than (1.2). If pip = 
max{IIL,(e,) - e,,llL,Ic,dI, IlU(f - ~1, x)IILp~c,dI L then estimate (1.4) is better 
than (1.1) (for p > 1) or (1.2), and it is equivalent to (1.3). This is the case 
for the convolution operators of [ 10, Remarks, p. 362 and Lemma 1, p. 3561. 

The second result requires some additional information about the approx- 
imation properties of {L,}. Here we deal with sequences {L,} such that 

P” = IIL”((f - XK XIlL&,d] (1.5) 
exists for each n and 

THEOREM 2. Let {L,} be a uniformly bounded sequence of positive 
linear operators from L,[a, b] into LP[c, d] such that trip + 0 (n --t co). 

(i) Ifp > 1 and f E L,[a, b], then 

IIu.f) -f IIL,M Q q&I Ilf Ilp + %d.L tnpn 

where M,, > 0 is independent off and n. 
(ii) If there exists a > 3 such that 

Ik(lt -xl=, X)lIL,[c,d] = WC”) (n-, 031, 

theqforf EL,[a,b], 

Ilf --ufIlL,[c,d] au;* Ilf II1 + %*v; fn,)L 
where M, > 0 is independent off and n. 

The estimates of Theorem 2 are equivalent to (1.3) and are better than the 
Berens-DeVore estimates when 

k = oWd(t - 4*, 411L,lc,dI) (n + 4. (1.6) 

This is the case for the Bernstein-Kantorovic operators of [ 1, 3, 71. 
However, even if (1.6) is not satisfied, the following example shows that the 
estimates of Theorem 2 can be sharp in cases where those of Theorem 1 are 
not; 

Fix a > 0, p > 0, and, for n sufficiently large, define 
L,:L,[O, 11 +L,[O, 11 by 

Mm xl = f (xl Ix--+[>~-~, 

n” n= 
=- 

2 I f 0 + xl 4 Ix-41 <n?. 
n-Q 
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Then L,(e,(t), x) = e,(x), i = 0, 1, and L, is not a contraction mapping. 
Additionally, we have 

L,((t -x)2, x) = 0, IX-fl>n-f 

=n -73, Ix-fl <n-b, 

and 
sup L,((t - x)~, x) = nw4”/5. 

O<X<l 

Theorem 1 yields 

[IL,(f) -fllL,,o,*l < Cp(llfl(pn(-2a-(~‘P))(2p’(2p+1)) 
+ w2,p(f, n(-2n-(4/p))(Pl(2p+1)))), 

while Theorem 2 yields 

II L”(f) - fll L,[O,l] G cpwllpn -2a + 02,pdf, n - “>>. 

The latter estimate is better than the former if a > /?, since 
n -a = o(n (-2a-(0/P))Pl(2P+ 1)) ( n + co) in this case. 

Assuming a > /3, then straightforward calculations establish the existence 
of constant k, > 0 independent of n such that 

IIL,((t- ;)+A - (x- ;)+ILpIo,,, > kpn-““+“P’, 

where 

(t - 4)+ = 0, o<t<f, 

=t-f, f<t<l. 

Since qp((t - f), ,6) = O(6 r + l/p) (6 + 0 + ), this shows that the estimate of 
Theorem 2 is sharp. 

2. PROOFS OF THE THEOREMS 

Let Lr’(Z) be the space of those functions f E L,(Z) with f’ absolutely 
continuous and f ” E L,(Z). 

The keys to the proofs of Theorems 1 and 2 are the following lemmas: 

LEMMA 1. Assume the hypotheses of Theorem 1 are satisfied. For all n 
su$‘?ciently large and for f E Lr’[a, b], 

IL(f) -f IIL,,C,dl G qxllf Ilp + Ilf “llPMP* 
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ProojI Let f E Ljf’[a, b] and assume f has been extended outside of 
[a, b] so thatf”(x) = 0 if x 6C [a, b]. 

For t E [a, b] and x E [c, d], we have 

Thus 

f(t) -f(x) =f’(x)(t -x) +J-’ (t - u)f”(U) du. 
x 

IILW) -f(x), 411Lp,c,dl G ID- IlL&.dI IlLAt - x9 4lIL&dl 

Fix 6 > 0. If It-xl < 6, then 

(t - u) f”(u) du I< 6 1’ If”(x + u)l du. 
0 

If ( t - XI > 6, then, using Hiilder’s inequality, 

<jt-x12-“PIlf”llp< ‘t$‘* Ilf”ll,. 

Thus 

< II JL,(eo, x> 1: If”(x + u)l du 11 
L,lcdl 

+ (Ilf”ll,/s”p> ItL”(@ - x)29 X)IIL,,c,d]* 

The first term is dominated by 

6 I/ (L,(eo~ -4 - e,> 1’ If’Yx + 4 du 
0 

I[ ,tc.dl 
+ 6 II : If”(x + u)l du It ,Ic.dl 

< 8*--l” llf”llp II’% - eO tlL,[c.d] + 6 l,s Ilf”(x + U)ll, du 

< if” tIp(Bz-“p IILnteO) - eOliL,[c,dl + s2>T 
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where the latter inequalities follow from Holder’s inequality, the generalized 
Minkowski inequality [9, p. 5921, and the fact that f”(x) = 0 if x @ [a, b]. 

Therefore 

Since IILW - XI’, -911LpIc,dl + 0 (n + co), we can choose, for n sufftciently 
lqe, 

6 = IIL,(t - xj2, x)II”Lldr$j’) 
to obtain 

where 

qnp = max~llLW - eOllL,Ic.d19 IIU(t - XI’, xIl?$%+ “1. 

Thus, we have 

IIL,df> -fllqc,d] < Ilfll~,lc,dl IILn(eO) - eo~lL,k,dl 

+ Ilf’ IIL,Ic.dl IIL,(@ - xh X)IILp,c.dl + 3 kf”ll,h,’ 

Using [5, Theorem 3.11, we obtain 

IIw..f) --Al L,[c,d] < c;(llfll, + Ilf”II,)&’ 

This completes the proof of Lemma 1. 

LEMMA 2. Assume the hypotheses of Theorem 2 are satisfied. Then, for 
f E LF’[a, b] and n suflciently large, 

IIJW-1 -f II L&c,d] < M;(llf lip + tlf "lip) tip, 

where h4; > 0 is independent off and n. 

Proof: (i) Assume p > 1 and f E LF’[a, b]. Proceeding as in the proof 
of Lemma 1, we have 

11 LnCf(t) - f cx>, X)llL.,(c.d] < Iif' h.,]c,d] iI L,((f - x>* x)llLp,c,d] 

(t - u>f “(u)du,x)l~ . 
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The last term is dominated by p,, ]]e(f”, x)]]~, where B(f”, x) is the 
Hardy-Littlewood majorant off” at x. As is well known, 

II Kf”~ XII, G K, Ilf”llp 
where K, > 0 depends only on p. 

Thus, 

IL(f) -Sllt,rc,dl < IlfllLmrc,dI IILnW - eollL~lc,dl 
+ IV’ IlL&.dl IILfI((~ - x)9 -dlLp(c,dl + K&G” IV” lip * 

The rest of the proof follows as in Lemma 1. 
(ii) Assume p = 1 and f E LF’[a, b]. Assume f has been extended 

outside of [a, b] so that f”(x) = 0 if x & [a, b]. Then, for x E [c, d] and 
6 > 0, 

I@-a)/81 

< c 
j=O 

L, jr_Xllo~i+‘)~lf~(X+U)I~~,X) 
( 

js<lt-xl<(i+lM 

< 6 Slf”(x+u)ldrr 
U 

L,(e,,x) 
0 1 

[(b-a)/61 
+ ,F, (j&T-’ fj+‘)s If”(x + u)l du ’ L,(It - xy, x). 

0 

Therefore, 

(t - u)f”(u) du, x) 

II L,tc.dl 

+ 11 Ln(I r - xIa, X)lh,,c,d] kf”lll ,g, ;;a’?: 7 

where the infinite series converges since a > 3, and where we have used the 
fact that f”(x) = 0 if x 6Z [a, b]. Choose 6 = ,uA’* to obtain 

where M > 0 is an absolute constant and 

qnl =max{llL,(eo)-eOII,,I,,dl,C1,}’ 
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The rest of the proof follows as in part (i). This completes the proof of 
Lemma 2. 

ForfEL,[a,b], I<p<co,andt>O,detine 

~*,,(.L 4 = ,E;$a bl {IIf- gll, + 41 gllp + II s”IIJ1 (2.1) 
P ’ 

and 

qLL 4 = ,,,i$ b, Ill.!-- gll,, + t II S”II,I. 
P ’ 

(2.2) 

These are the K-functionals of Peetre [8]. It is known [6] that there are 
constants si, i = 1,2,3,4, independent off and p, such that iff E L,[a, b], 
then 

sI ~2,p(.L 0 G K,,,(f, t*) < min(L t2> Ilfll, + ~2~2.pU 4 (2.3) 

and 

s, w2,J.L 4 < G,,U I21 < w,,,G t)* (2.4) 

Proof of Theorem 1. Letf E ~%,[a, b] and g E Lf’[a, b]. Since (L,) is a 
uniformly bounded sequence of positive linear operators from L,[a, b] into 
L&c, d], we have, by Lemma 1, 

IIJW-) - f II L,[c,d] < (1 + $I> Ilf - gllp + q&(II gll, + II Lf’llp) 

for all n sufficiently large, where R, > 0 is a uniform bound for (L,}. Take 
the infimum over all g E LF’[a, b] and use (2.1) and (2.3) to obtain (1.4). 

Proof of Theorem 2. The proof is the same as the proof of Theorem 1, 
except that Lemma 2 is used. 
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