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ABSTRACT 

 

ROLE OF IXODES SCAPULARIS SPHINGOMYELINASE-LIKE PROTEIN (ISSMASE) 

IN TICK PATHOGEN INTERACTIONS 

 
Pravesh Regmi 

Old Dominion University, 2020 

Director: Dr. Hameeda Sultana 

 

  Arthropod-borne diseases are one of the major concerns throughout the world. 

Ixodes scapularis (hard tick) is one of the major vectors that is involved in arthropod-

borne disease transmission. Langat virus (LGTV) is a model pathogen that is very 

similar to other medically important flaviviruses such as Tick-Borne Encephalitis virus 

(TBEV) and Powassan virus (POWV). Sphingomyelinase-like protein (IsSMase, a 

Sphingomyelinase D or SMase D, a venomous protein ortholog of spiders) is an 

enzyme present in ticks that helps to catalyze the hydrolysis of the sphingomyelin (cell 

membrane lipid) into phosphocholine and ceramide. The objective of our study is to 

delineate the role of IsSMase in exosome biogenesis upon LGTV infection in ticks. Our 

previous study showed that LGTV-infection enhanced the production and release of 

exosomes to mediate the transmission of flavi-viral proteins and infectious RNA 

genomes from the arthropod to the vertebrate host. Understanding the mechanism(s) of 

arthropod-borne flavivirus transmission via exosome biogenesis is very important. My 

MS thesis project explored the detailed role of IsSMase in tickborne viral replication and 

pathogenesis and provided molecular insights of viral modulated survival strategies in 

ticks. Our data, in specific, suggests an important role for IsSMase in regulating viral 

replication in ticks, and in general a mechanism for anti-viral pathways in medically 

important vectors. 
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1. INTRODUCTION AND BACKGROUND 

 

1.1 Vector and Vector-borne Diseases 

Vectors, in biological sciences, have several definitions. A vector is an organism 

(invertebrate or vertebrate) which acts as a carrier of an infectious agent among 

organisms of different species (Kuno and Chang, 2005). In a broader sense, different 

agents can be considered as a vector which includes living organisms like microbes and 

intermediate parasites, or an inanimate medium of infection like syringe and dust 

particles. In this chapter, we are more focused on hematophagous arthropod vectors 

(that feed on blood at either some or all stages of their lives) like ticks and mosquitoes. 

During blood feeding by these vectors, there is an entry of pathogen in the bloodstream 

of the host by various means. 

Vector-borne disease (VBD) is an important communicable disease with a 

specific feature of requiring a blood-feeding arthropod vector (an intermediate host) like 

tick or mosquito to transmit infectious agents between humans or from animals to 

humans. These arthropods transmit infectious agen ts like bacteria, virus, protozoa and 

filarial nematodes that cause disease in humans resulting in severe morbidity and 

mortality to cause global burden (Hill et al., 2005). Depending upon the type of 

etiological agents/pathogens, VBDs in humans can be classified as protozoan diseases 

(malaria, leishmaniasis, trypanosomiasis, Chagas disease), viral diseases (Japanese 

encephalitis, dengue hemorrhagic fever, yellow fever), filarial nematode diseases 

(onchocerciasis, lymphatic filariasis) and bacterial diseases (tularemia, Lyme disease) 

(Hill et al., 2005; WHO, 2017). 

According to World Health Organization (WHO, 2017), VBDs cause annual 

deaths of more than 700,000 which is more than 17% of all infectious diseases. Malaria 

is one of the most significant VBDs in the world causing 400,000 deaths every year. 

Most of the VBDs are preventable disease if informed protective measures are taken 

(WHO, 2017). However, it is unfortunate that the available measures for alleviating the 

impact of these VBDs are not sufficient and there is an increase in public health burden 

rate of some VBDs like dengue, malaria and leishmaniasis. Developing countries are 
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generally experiencing higher burden of VBDs (Hill et al., 2005). The reason behind it 

may be because some of them are under-reported and some disease burden could be 

difficult to be determined. The incidence of many VBDs are expected to rise over the 

next decade. Also, the emergence of new pathogenic strains and unidentified agents 

have resulted in an increasing public health concern.(Hill et al., 2005). 

 

1.2 Vector Control 

Controlling vector is one of the important strategies to prevent VBDs. Also, 

looking at the history, vector control has proven successful to eliminate diseases. For 

example, Onchocerciasis Control Program (OCP, 1974-2002) was able to eliminate 

onchocerciasis in 10 of 11 countries (in which it was operated) as a public health 

problem. In this program, vector control was done by spraying insecticides weekly in 

fast flowing rivers (that are the breeding sites of vector) to kill the larvae of the black fly 

(a vector) and break the life cycle of the parasite (WHO, 2020). Also, in most of the 

countries with temperate climates in the northern hemispheres, this strategy of vector 

control programs has led to the eradication of malaria. Despite the continuous effort 

made in this field, there are still a lack of effective vector-control programs for numerous 

VBDs. There are numerous reasons that limit the discovery and implementation of 

successful vector-control programs which include neglect of these researches in the 

past, reduction of the effectiveness of vector-control agents due to the emergence of 

resistance in vectors, poor understanding of the complex population and ecological 

structures of vectors due to their highly diverse species (Hill et al., 2005). 

 

1.3 Tick-borne Disease 

Some clinically important emerging tick-borne diseases (TBDs) in the United 

States are Lyme disease, babesiosis, anaplasmosis, Powassan virus disease, tularemia 

and spotted fever rickettsiosis (also includes Rocky Mountain spotted fever). State and 

local health departments (in 2017) have reported that there is a record number of 

above-mentioned TBD cases, which is increased from 48,610 cases in 2016 to 59,349 

cases in 2017 (CDC, 2018c). Data from Notifiable Disease Surveillance System 

(NNDSS) have shown that the number of tick-borne diseases have doubled in between 
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2004 and 2016, and also researchers have discovered seven new human infecting tick-

borne pathogens during this period (CDC, 2018b, c). According to CDC, prevention to 

these threats are not fully under control in the United States. In order to respond ticks 

and tick-borne diseases, vector control organizations are facing increasing demands 

(CDC, 2018a). 

 

1.4 Ixodes scapularis ticks 

Ixodidae is economically important and the largest family which consists of 13 

genera and 650 species approximately. The characteristic feature of this family is that 

there is a presence of a plain sclerotized scutum or shield on the dorsal side (mostly 

ornated in white or gold patterns against a gray or brown background). They feed on 

their hosts for long period of time (from several days to weeks depending on various 

factors like species, life stage or host type). All the Ixodid ticks contain 4 segments in 

the palp and paired chelicerae in their mouth parts with toothed hypostome situated 

ventrally (Sonenshine and Reo, 1991). 

 

1.5 Developmental cycle of I. scapularis 

Blood meal is not a prerequisite for mating of male and female I. scapularis. Male 

inserts its hypostome and chelicerae into female’s genital pore (while palps being 

spread on sides) during mating to transfer the spermatophore. Female then engorges 

the blood meal and finally drop off the host. After 14 days, female ticks lay multicellular 

eggs coated with wax from the genital pore. The eggs finally embryonate within 35 days 

and hatch into the larvae. These larvae start seeking for hosts in groups to feed. After 

finding an appropriate host, they feed for four days, engorge and drop off of the host. In 

approximately 28 days, larvae molt to the nymphal stage. After 14 days of molting, 

nymphal ticks become matured and start seeking the host to feed. Nymphs feed on host 

for 4-6 days, drop off of the host and undergo molting to emerge as adult male/female in 

4-5 weeks. It takes adults 14 days for maturation after which their cuticle stiffens and 

sclerotin forms, and they are ready to mate either during feeding on large mammals or 

off host (Kocan et al., 2015). 
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1.6 Development of tick cell culture 

 After the first report for the establishment of continuous tick cell lines (Bell-Sakyi 

et al., 2003), there are several ticks cell lines currently being reported. This discovery of 

tick cell lines has proven to be an important breakthrough because they opened a door 

for researchers for the study of tick biology and tick-pathogen interaction in vitro. Beside 

this, it has also decreased an animal dependence for research of ticks and tick-borne 

diseases. It was the I. scapularis derived cell lines that was used for the first time for the 

propagation of clinically important tick-borne pathogens like Borrelia, Rickettsia, 

Anaplasma, Ehrlichia and many viruses (Zivkovic et al., 2009). Beside this, ticks cell 

culture have recently been applied to genetic transformation studies and gene silencing 

(de la Fuente and Contreras, 2015). 

 

1.7 Langat Virus 

Langat virus (LGTV) is a virus of the genus flavivirus. It was isolated for the first 

time in Malaysia and neighboring Thailand from pools of Haemaphysalis and Ixodes 

granulatus ticks (Smith, 1956). The genus flavivirus contains approximately 70 viruses, 

and they can cause several diseases in humans like febrile illness, hemorrhagic fever, 

biphasic fever and encephalitis. The transmission of these flaviviruses into humans 

takes place by either bite from infectious ticks or mosquitoes or through blood 

transfusions (Gould and Solomon, 2008; Gritsun et al., 2003). Tick-borne flaviviruses 

are found in different parts of the world in Asia, Europe and in America which includes 

Powassan virus (POWV), Langat virus (LGTV), Tick borne encephalitis virus (TBEV), 

Louping ill virus, Kyasanur Forest disease virus and Omsk hemorrhagic fever virus. 

Most of the above mentioned viruses are closely related both genetically and 

antigenically and they are all the members of mammalian tick borne flaviviruses 

(Calisher et al., 1989; Gritsun et al., 2003). 

LGTV is low-pathogenic or non-pathogenic tick-borne flavivirus under natural 

conditions for humans. However, the virus is known to infect rodents like ground rats 

and the noisy, long-tailed rat. LGTV when inoculated intracerebrally in young laboratory 

mice causes encephalitis but it has not been found to cause an overt disease in adult 

rodents and non-human primates in their natural environment (Gritsun et al., 2003). 
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Since LGTV resembles both genetically and phylogenetically with TBEV (a deadly 

human pathogen) and does not cause disease in human, it is widely used as a model 

virus in the laboratory for the research related to TBEV (Marin et al., 1995; Price et al., 

1970). Also, LGTV was used as a live-attenuated vaccine to prevent TBEV infection but 

was discontinued because encephalitis was observed among few humans administered 

with this vaccine (Price et al., 1970). 

 

1.8 Exosome 

Exosomes are small secretory vesicles whose size range from 30 to 100 nm and 

are derived from cell’s endosomal pathway during the maturation of endosomes. The 

membranes of exosomes are rich in lipids like cholesterol, sphingolipids and ceramide 

(De Toro et al., 2015) as they are released from almost all cell types. Late endosomes 

are developed after the maturation of early endosomes which characteristically form 

Multivesicular Bodies (MVB) or Intraluminal Vesicles (ILV) inside endosome’s lumen. 

These MVBs/ILVs finally fuse with lysosomes and plasma membrane to degrade the 

contents within cells. This results to release those contents into the extracellular 

environment in the form of exosome (Beach et al., 2014). After the discovery of 

exosome, the biogenesis, composition and secretion of exosomes have been 

extensively studied. Exosomes were previously thought to be cell’s garbage bags but 

now they are considered as important nano-vehicles that transport specific cargo in and 

out of the cells (Villanueva, 2014). The mechanism of packaging these cargos into the 

vesicles, their biogenesis and excretion are poorly understood. However, these 

mechanisms are believed to be facilitated either through ESCRT (Endosomal sorting 

complex required for transport)-dependent pathway (Colombo et al., 2013) or ceramide-

dependent pathway (Trajkovic et al., 2008). 

In recent years, exosomes are proven to be a key facilitator of intercellular 

communications to perform various cellular processes like cell growth, differentiation, 

migration, immune cell modulation and neuronal signaling (Meckes and Raab-Traub, 

2011). Beside these, exosomes are considered to be a key player in spreading human 

diseases. For example, exosomes have been linked to tumor growth, progression and 

metastasis in cancer. Exosomes are present abundantly in circulating biological fluids 
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such as blood, urine and Cerebrospinal fluid (CSF) and it has already been discovered 

that exosomes contain specific RNAs, DNAs, proteins and lipids from their cells of origin 

(Meckes and Raab-Traub, 2011). 

Viruses are intracellular obligate parasites which hijack cellular pathways so that 

they can complete their replication and life cycle and some viruses are able to 

manipulate the host vesicular trafficking machinery pathway for their assembly and 

transmission. Some viruses such as human immunodeficiency viruses (HIV) are 

considered to hijack the exosome pathway by directly manipulating machinery involved 

in the biogenesis of exosomes, like the ESCRT proteins-dependent pathway (Votteler 

and Sundquist, 2013). These characteristics of exosomes have generated tremendous 

interest in the scientific community working in this field and it is being considered that 

exosomes function as delivery vehicles and they may be used in diagnostics and 

therapeutics. 

 

1.9 IsSMase 

Ticks are small arthropods which rely on host’s blood for its survival. So, ticks 

develop complex strategies to facilitate blood feeding for long period of time. These 

strategies include the production of several pharmacological agents in tick saliva that 

modulate the itch, pain, wound healing, blood clotting, immune responses and 

inflammation in the host (Alarcon-Chaidez et al., 2009). They make easier for ticks to 

feed for extended time period within the host and allowing ticks a sufficient amount of 

time to transmit pathogens into the host (Nuttall and Labuda, 2004). Among several 

pharmacological agents, a novel sphingomyelinase-like enzyme (IsSMase) in Ixodes 

scapularis tick is secreted in saliva which modulates the host adaptive immune 

response by inclining the host CD4+ T-cells to shift from a neutralizing Th1 cytokine 

response towards a Th2 cytokine profile. This IsSMase directly programs the CD4 T-

cells to express IL-4 (Interleukin-4), a hallmark of Th2 effects (Alarcon-Chaidez et al., 

2009). IsSMase is a neutral form of sphingomyelinase and it is Mg2+ dependent 

enzyme. The bioinformatics analysis showed that IsSMase gene in ticks is highly 

homologous to the sphingomyelinase D (SMase D) protein of Loxosceles venomous 

spider (Alarcon-Chaidez et al., 2009). Similarly, a bioinformatics sequence similarity 
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search done by a research group (Dias-Lopes et al., 2013) has identified several novel 

SMases D in different pathogenic organisms like bacteria, fungi, mites, ticks and 

spiders. 

Naked viruses are released by disruption of the plasma membrane from the 

infected host’s cells, however, in enveloped viruses, there is a presence of host cell-

derived lipid bilayer acquired during budding that surrounds the virus nucleocapsid 

(Kiyokawa et al., 2004). Membrane lipids are not randomly incorporated into viral 

envelope during the release of enveloped viruses. Virions may have different lipid 

composition than that of the host cell membrane (Kiyokawa et al., 2004). 

The flavivirus lifecycle is intimately associated to cellular lipids. RNA’s replication 

and acquisition of lipid envelope are associated not only with host cell membrane but 

also with specialized membranous structures derived from the endoplasmic reticulum 

(ER) (Gillespie et al., 2010). Flaviviruses possess a feature to selectively manipulate 

host cell lipid metabolism during infection and promote the synthesis and accumulation 

of specific lipids (glycerol-phospholipids, cholesterol, sphingolipids and fatty acids) 

within infected cells (Martin-Acebes et al., 2011). Among the cellular lipids, sphingolipids 

merit special attention since it is a major target tissue during flavivirus infection. These 

viruses can take advantages of sphingolipid content present in biological membranes to 

develop specialized membrane sites for RNA replication and particle biogenesis 

(Chukkapalli et al., 2012). Lipidomic analyses have shown that there is an increase in 

the content of both sphingomyelin (SM) and ceramide in flavivirus-infected cells. 

Ceramide is specifically associated with West Nile Virus (WNV, a flavivirus) replication 

and viral particle biogenesis (Aktepe et al., 2015; Martín-Acebes et al., 2014; Perera et 

al., 2012). For the first time, we showed that SM levels modulate LGTV infection or vice-

versa in vivo and in vitro, thus identifying this sphingolipid as a key cellular factor for 

LGTV replication. 

SMase D (also called as sphingomyelin phosphodiesterase D or phospholipase 

D) is an important toxin found in Loxosceles spp spiders’ venom and it is responsible for 

dermal necrosis (Forrester et al., 1978; Tambourgi et al., 1998). SMase D in spider 

results in the catalytic hydrolysis of SM lipid to form ceramide 1-phosphate (acyl 

sphingosine 1- phosphate) and choline, however the mammalian sphingomyelinase 
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converts SM into ceramide and phosphocholine, SM being one of the major constituent 

that is present in the outer surface of the lipid bilayer in the plasma membrane of most 

eukaryotic cells (De Andrade et al., 2006; Forrester et al., 1978).  

The presence of this toxic enzyme in spiders, ticks and bacteria (which are all 

medically important but are distantly related organisms) made it more interesting to 

study. Bioinformatics analysis on SMase D identified a common motif at the C-terminal 

end (with unknown function) supports the inference that these enzymes are originated 

from a broadly conserved glycerophosphoryl diester phosphodiesterase (GDPD) family, 

even though this motif is absent in this family (Cordes and Binford, 2006). These 

conserved C-terminal motifs (SMD-tail) help to make the entire internal structure of 

SMase D TIM barrel stable. The above mentioned works suggest that the enzyme 

SMase D are present widely in several genera, and they possibly act as a common 

pathogenic effector for a significant diversity of organisms (Dias-Lopes et al., 2013). 
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2. RESULTS 

 

2.1 Bioinformatics analysis showed IsSMase closely related to spider’s 

venomous protein ortholog 

As discussed earlier, the bioinformatics analysis of IsSMase gene in ticks 

showed homology with the SMase D protein of Loxosceles venomous spider (Alarcon-

Chaidez et al., 2009). Along with this, it was also identified that several novel SMases D 

were present in different clinically important pathogens like bacteria, ticks, fungi, spiders 

and mites (Dias-Lopes et al., 2013). The identity alignment of a novel 

sphingomyelinase-like enzyme, IsSMase (Q202J4) in Ixodes scapularis tick saliva gives 

an idea about this tick molecule to be an ortholog of venomous protein (Alarcon-

Chaidez et al., 2009). The IsSMase gene transcripts (194 bp product) were amplified in 

unfed nymphs, 24 hours partially fed nymphs and uninfected-tick cells (Figure 1). 

We performed detailed bioinformatics along with the comparative and feature 

prediction analysis of IsSMase protein (accession number ABD73957) with its orthologs 

from other ticks like Amblyomma maculatum (Hypothetical protein; AEO33547) and 

Rhipicephalus pulchellus (sphingomyelin phosphodiesterase; JAA56531), and other 

orthologs from spider like Loxosceles similis (loxtox protein; ANY30961), Hemiscorpius 

lepturus (venom toxin; API81381) and Scicarius patagonicus (Sphingomyelinase D; 

COJB69). ClustalW alignment of I. scapularis SMase D amino acid sequence showed 

40.7% and 43.1% identity with A. maculatum and R. pulchellus ticks respectively, and 

41.1%, 39.4% and 37.2% identity with S. patagonicus, H. lepturus and L. similis spider 

orthologs respectively (Figure 2A). A conserved motif/domain glycerophosphoryl 

diester-phosphodiesterase (GDPD-like SMase D-PLD) from SMase D family was found 

by the comparative sequence analysis of IsSMase protein with tick or spider orthologs 

(highlighted with a black box), and the underlined one being the predicted leader 

peptide for IsSMase (Figure 2A and 2B). Domain analysis showed that IsSMase and 

other SMase D orthologs share the catalytic sites. The residues (H34, H70, C76, and 

C80) highlighted with arrows are important for catalytic activity (Figure 2A). The catalytic 
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Figure 1. Amplification of I. scapularis Sphingomyelinase-like protein (IsSMase) from ticks and 
tick cells. 

PCR amplification of IsSMase from I. scapularis unfed or post-fed nymphal ticks or uninfected ISE6 tick 

cell line cDNA is shown. Similar size fragments were amplified from all three tested groups, and band of 

approximately 194 bp was detected on 1% agarose gel. Marker indicates size of the product amplified 

and NTC denotes no template control. M represents DNA ladder.  
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site lies in between 29-65 residues with two catalytic loops being identified (present in 

between 64-71 and 74-78 residues) (Figure 2B). There was an overlap observed in the 

magnesium binding site with the catalytic site which lied in between the residues 49/51-

109 (Figure 2B). 

The phylogenetic analysis revealed that IsSMase has a close relation and forms a clade 

that cluster with venomous spider ortholog SMase D. Both A. maculatum and R. 

pulchellus tick orthologs formed different sub-clades within the main clade, which 

suggests that there are differences in new genera ticks (Figure 3A). Also, Tick SMase D 

orthologs from A. maculatum and R. pulchellus showed that there is a high degree of 

divergence to IsSMase and the spider orthologs (Figure 3B). Apart from this, protein 

feature prediction analysis showed that there is a presence of twelve Protein Kinase C 

(PKC) phospho-sites (with 8 Threonine and 4 Serine residues), three Tyrosine Kinase 

phospho-sites (with 3 Tyrosine residues), two cAMP/cGMP dependent phospho-sites 

(with 1 each of Serine and Threonine residues), six Casein Kinase II phospho-sites 

(with 5 Serine and 1 Threonine residue), three N-myristoylation sites (with 3 Glycine 

residues) and two N-glycosylation sites (with 2 N-Linked (GlcNAc...) Asparagine 

residues) (Fig. 3C). The presence of these phosphor and protein modification sites in 

IsSMase suggest that the enzyme may be highly functional in ticks. 

 

2.2 IsSMase is not influenced by developmental changes in Ixodes scapularis 

tick’s life cycle 

To confirm the expression of IsSMase in ticks and support the bioinformatics 

analysis done above, we first performed Quantitative Real Time-PCR (QRT-PCR) 

analysis. It showed that IsSMase is expressed in all developmental stages of ticks 

(larvae, nymphs, adult males and adult females). This also gives an idea about the 

importance of this molecule in different developmental stages of ticks. The analysis 

showed that mRNA expression levels of IsSMase appeared to be lower in larval and 

nymphal ticks, and it was higher in adult male and adult female ticks (Figure 4A). 

However, there were not any significant differences (P >0.05) in expression of IsSMase 

among different developmental life cycle stages (Figure 4A). This result suggests that 

IsSMase transcripts are not influenced by developmental changes in ticks. 
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Figure 2. Sequence alignments and prediction analysis of IsSMase with tick and spider orthologs. 

(A) The deduced I. scapularis (Isc) SMase (IsSMase) amino acid sequence alignment (with other 

orthologs) using ClustalW program in DNASTAR Lasergene is shown. Matching residues are shaded in 

black color. GenBank accession numbers for Rhipicephalus pulchellus (Rpu) sphingomyelin 

phosphodiesterase, Amblyomma maculatum (Ama) hypothetical protein, Scicarius patagonicus (Spa) 

Sphingomyelinase D, Hemiscorpius lepturus (Hle) venom toxin, Loxosceles similis (Lsi) loxtox protein 

sequence is shown. VectorBase accession numbers for Isc, Rpu, Ama are provided. Total length of the 

amino acid sequence is provided at right end of each sequence. (B) Annotation/prediction analysis 

performed in DNASTAR, for IsSMase protein sequence is shown. The catalytic site and Magnesium 

binding sites and their overlap is shown. The underlined sequence indicates the glycerol-phosphodiester 

phosphodiesterase-like motif and the SMaseD consensus motif is shown as boxed amino acid sequence. 
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Figure 3. Bioinformatics comparison of IsSMase to other orthologs by phylogenetic analysis, 
percent identity, and protein feature prediction analysis.  

(A) Phylogenetic analysis comparing the IsSMase and other orthologs was performed in DNASTAR by 

ClustalW slow/accurate alignment method using Gonnet as default value for protein weight matrix. Scale 

at the bottom denotes amino acid substitutions per 100 amino acid residues. (B) Percent identity 

(horizontally above black boxed diagonal) and divergence (vertically below black boxed diagonal) of 

IsSMase nucleotide sequence in comparison to Rhipicephalus pulchellus (Rpu) sphingomyelin 

phosphodiesterase, Amblyomma maculatum (Ama) hypothetical protein, Scicarius patagonicus (Spa) 

Sphingomyelinase D, Hemiscorpius lepturus (Hle) venom toxin, Loxosceles similis (Lsi) loxtox protein 

sequence is shown. (C) Protein feature prediction analysis showing IsSMase protein modification sites 

and relevant amino acids as functionally active residues. IsSMase contains twelve Protein Kinase C 

(PKC) phospho-sites, six Casein Kinase II phospho-sites, two cAMP/cGMP dependent phospho-sites, 

three Tyrosine Kinase phospho-sites, two N-glycosylation sites, and three N-myristoylation sites. 
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2.3 IsSMase expression is reduced upon LGTV infection in both in vitro (tick 

cells) and in vivo (fed/unfed nymphs) 

It has been already shown that LGTV can readily infect ISE6 tick cells resulting in 

an increased viral load at 72 hours post-infection (p.i.) (Zhou et al., 2018). In this study, 

QRT-PCR analysis showed that unfed nymphal ticks generated by synchronous 

infection were positive for LGTV loads (Figure 4B). Viral loads were detected in all 

synchronously infected ticks; however the IsSMase transcript levels were reduced 

significantly (P<0.05) in LGTV-infected unfed nymphs (Figure 4C). We performed one 

more similar experiment in fed nymphs. This is a transmission experiment where LGTV-

infected I. scapularis ticks (generated by synchronous infection) was fed on uninfected 

mice, with ticks being collected at 24 hours during feeding. QRT-PCR analysis of LGTV-

PrM transcript levels showed that viral burden was significantly higher (P<0.05) in the 

infected fed nymphs in comparison to uninfected fed nymphs. We also found that 

IsSMase transcript levels were reduced significantly (P<0.05) in LGTV-infected fed 

nymphs as compared to uninfected ones (Figure 4E), and very similar to infected unfed-

nymphs. 

We performed another experiment to determine IsSMase levels in ISE6 tick cells (in 

vitro). For this, we first performed time dependent LGTV-infection in tick cells (with 

Multiplication of Infection; MOI=1) with two different time-points; early (24 hours p.i.) and 

late time points (72 hours p.i.). QRT-PCR analysis showed that there was a significant 

increase (P<0.05) in LGTV-infection over the time points of both 24 and 72 hours p.i. 

(Fig. 5A). And in these same samples, we found that IsSMase transcripts were 

significantly reduced (P<0.05) at both tested time points in infected groups when 

compared to the uninfected control groups (Figure 5B). We also performed a dose-

dependent experiment by infecting similar number of ISE6 tick cells for 72 hours p.i. 

with different MOIs (MOIs of 1, 2, and 3; uninfected group (MOI=0) considered as 

control). We observed that ISE6 tick cells were susceptible to LGTV infection at MOI 3, 

but they were not at MOI 1 and 2. Nearly 20-25% of tick cells showed cell death at MOI 

3 of LGTV-infection. LGTV-PrM transcript levels were found to be upregulated in all 

infected (MOI 1, 2 and 3) tick cells as compared to uninfected control (Figure 5C).  
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Figure 4. IsSMase expression is reduced upon LGTV infection in ticks.  

QRT-PCR analysis showing Issmase gene expression levels (A) in different developmental stages of 

ticks. Viral loads (B, D) or IsSMase transcripts levels (C, E) were shown in uninfected (UI) or LGTV-

infected (I) unfed (B, C) or partially fed (24 h post) (D, E) nymphs. Each square, circle, triangle, or 

inverted triangle indicates one tick (A-E). Open circles represent an uninfected (UI) group, whereas 

closed circles denote LGTV-infected (I) group (B-E). LGTV prM-E or IsSMase mRNA levels were 

normalized to tick beta-actin levels. P-value determined by Student’s two-tail t test is shown. The asterisk 

indicates significance, and ** or *** denotes a P value of less than 0.01 or 0.001, respectively. 
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IsSMase transcripts were also found to be significantly downregulated (P<0.05) 

at all tested MOIs in comparison to the uninfected control (Figure 5D). 

We also found that LGTV loads were abundantly present in tick cell-derived 

LGTV-infected exosomes (Figure 6A) which reproduced our previous published study 

(Zhou et al., 2018). However, we were unable to detect IsSMase transcript levels in tick 

cell-derived exosomes (Figure 6C). We did detect one of the exosomal marker (HSP70) 

transcript levels in the same exosome sample (Figure 6B). These data suggested that 

the levels of IsSMase were reduced/undetectable with the increase in LGTV-infection in 

unfed, fed (24 h) I. scapularis ticks and in ISE6 tick cells, and also in time and dose 

dependent manner. 

 

2.4 LGTV loads were reduced and IsSMase transcript levels were restored 

upon GW4869 inhibitor treatment 

Dihydrochloride hydrate (GW4869) is a selective inhibitor for neutral 

sphingomyelinase(s) (nSMase) which is permeable to cell membrane and affects the 

exosome release and production in cells. We performed an experiment to determine 

whether treatment with GW4869 (1 µM) with two different time points of 4 and 24 hours 

reduce the viral (LGTV) load in tick cells or not. QRT-PCR analysis revealed that the 

loads of LGTV were significantly reduced (P<0.05) at both 4 and 24 hours of GW4869 

treatment (Figure 7A and 7C) and this downregulation of LGTV loads/replication 

correlated with a significant upregulated expression (P<0.05)  of IsSMase in these tick 

cells at both tested time points (Figure 7B and 7 D). Experimental groups were 

compared to the mock group treated with vehicle DMSO that served as control. Equal 

volume of DMSO solvent that represented GW4869 inhibitor was used in our analysis. 

These data showed that there is a direct association of LGTV loads/replication in 

suppression of the levels of IsSMase in tick cells. This inhibition of LGTV loads due to 

the treatment of GW4869 suggest that the activity of IsSMase enzyme may also be 

affected in ticks.  
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Figure 5. Reduced IsSMase expression upon LGTV infection in time and dose dependent.  

QRT-PCR analysis showing LGTV viral loads (A, C) or Issmase gene expression levels (B, D) in time (A, 

B), or dose (C, D) response in ISE6 tick cells. LGTV loads (A) and IsSMase transcript levels (B) were 

determined at two different time points of 24 and 72 h p.i. In doses response panels (C, D), numbers (0, 

1, 2, 3) indicates multiplication of infection (MOI) corresponding to LGTV loads (C) or levels of IsSMase 

transcripts (D) in uninfected (0) or LGTV-infected (1, 2, 3 MOI) tick cells. Each circle indicates one 

sample. Open circles represent an uninfected (UI or 0) group, whereas closed circles denote LGTV-

infected (1, 2, and 3 in dose or I in time points), group. LGTV prM-E or IsSMase mRNA levels were 

normalized to tick beta-actin levels. P value determined by Student’s two-tail t test is shown. The asterisk 

indicates significance, and *, ** or *** denotes a P value of less than 0.05, 0.01, 0.001, respectively. 
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Figure 6. Exosomes derived from tick cells had low or undetectable levels of IsSMase.  

QRT-PCR analysis showing (A) detectable LGTV loads, (B) HSP70 transcript levels and (C) low or 

undetectable levels of IsSMase transcripts in tick cells that are uninfected (UI) or LGTV-infected (I) from 

two time points (24 and 72 h p.i.). Each circle, triangle or inverted triangle, or square represent one 

replicate. Open circles indicate uninfected (UI) and closed circles denotes LGTV-infected group of tick 

cell-derived exosomes. LGTV prM-E, hsp70 or IsSMase mRNA levels were normalized to tick beta-actin 

levels. P value determined by Student’s two-tail t test is shown. The asterisk * indicates significance and 

denotes a P value of less than 0.05. 

 

 

 

2.5 LGTV infection decreases IsSMase enzyme activity and build-up SM lipid 

Because LGTV infection in ticks reduced IsSMase transcript levels, we 

performed IsSMase enzymatic activity assay (at two different time points of 24 and 72 

hours p.i., with MOI=1 LGTV-infection) to address whether the increased replications of 

LGTV also affect the IsSMase enzymatic activity and its function. The enzyme activity 

assay revealed that LGTV infection in tick cells significantly reduced (P<0.05) IsSMase 

activity at an early tested time point (24 hours p.i.) however there was no difference 

observed at later tested time point (72 hours p.i.) (Figure 8A). 

Sphingolipids are the ubiquitous constituents of almost all the cellular 

membranes, including plasma membranes and membrane-bound organelles. SM plays 

an important role in signal transduction (Bartke and Hannun, 2009). The enzyme 

sphingomyelinase hydrolyzes SM to release phosphocholine into the aqueous 

environment and ceramide that diffuse through the plasma membrane (Bartke and 
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Hannun, 2009; Clarke et al., 2006). Hence, the reduced activity of IsSMase upon LGTV-

infection suggested accumulating lipid metabolism. We performed sphingomyelin 

quantification assay (at two time points p.i. with LGTV, 24 and 72 hours) to determine 

the SM levels in tick cells. This assay showed that the level of SM significantly 

increased (P<0.05) upon LGTV infection at both tested time points (24 and 72 h of p.i.) 

when compared with the respective uninfected controls (Figure 8B). This data suggests 

that there is an increase in SM levels with the decrease in IsSMase enzymatic activity 

upon LGTV infection in ticks. 

 

2.6 IsSMase activity is restored upon GW4869 treatment by suppressing LGTV 

induced SM lipid levels 

Since, the results from Figure 7 gave us an idea that the treatment of GW4869 inhibitor 

(at 1 µM) lowered the LGTV loads and restored the IsSMase transcript levels 

significantly, we designed an additional experiment to analyze IsSMase enzymatic 

activity and the SM levels. We treated tick cells with GW4869 inhibitor (1 µM) for 4 

hours and infected these cells with LGTV (MOI 1) and collected these cells for two 

different time points (24 and 72 hours p.i.). We found that upon GW4869 treatment, 

IsSMase enzyme activity was significantly (P<0.05) increased at an early tested time-

point (of 24 hours p.i.) compared to mock control (Figure 8C) suggesting that the 

IsSMase level has been restored by GW4869 treatment. No significant increase of 

IsSMase activity was observed in latter time points (72 hours p.i.). In contrast to the 

above result for IsSMase activity, SM lipid build-up was significantly inhibited (P<0.05) 

upon GW4869 treatment when compared to the LGTV-infected mock control group at 

both tested time points (of 24 and 72 hours p.i.) (Figure 8D). This data suggests that 

LGTV load is suppressed by GW4869 inhibitor in tick cells which in turn inhibited the 

SM lipid levels. This finally leads to the restoration of IsSMase enzyme activity and its 

function. 
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Figure 7. GW4869 treatment reduced LGTV loads and restored the IsSMase expression.  

QRT-PCR analysis showing reduced LGTV loads (A, C) or restored Issmase expression (B, D) upon 

GW4869 pre-treatment (1 µM) of ISE6 tick cells for either 4 h (A, B) or 24 h (C, D) followed by LGTV 

infection (for 72 h p.i.). Both mock and GW4869-inhibitor treated groups were infected with 1 MOI of 

LGTV. Mock represents the group treated with vehicle DMSO. Each circle indicates one sample replicate. 

Black circles represent LGTV-infected Mock group, whereas grey circles denote LGTV-infected GW4869 

inhibitor treated group. LGTV prM-E or IsSMase mRNA levels were normalized to tick beta-actin levels. P 

value determined by Student’s two-tail t test is shown. The asterisk indicates significance, and *, ** or *** 

denotes a P value of less than 0.05, 0.01, 0.001, respectively. 
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Figure 8. LGTV infection reduced IsSMase activity resulting in induced levels of sphingomyelin 
lipids but GW4869 treatment restored the infection-mediated effects.  

(A) Sphingomyelinase activity measurement assay showing reduction upon LGTV-infection at 24 h (p.i.). 

No differences were observed at 72 h p.i.. (B) Sphingomyelin quantification assay showing induction or 

accumulation of lipid upon LGTV-infection at both 24 and, 72 h post-infection. (C, D) Treatment with 

GW4869 (1 µM) inhibitor showing restoration of the LGTV-mediated reduced IsSMase activity and 

inhibition of the accumulated levels of sphingomyelin lipids. White bars represent uninfected (UI) and 

black bars denote LGTV-infected (I). Mock represent group treated with vehicle DMSO. Both mock and 

GW4869 groups were infected with LGTV (MOI 1) for indicated time points. IsSMase activity and lipid 

levels were measured in milliunits/ml. P value determined by Student’s two-tail t test is shown. The 

asterisk indicates significance, and *, ** denotes a P value of less than 0.05 or 0.01, respectively. 

  



22 
 

 

 

 

Figure 9. IsSMase expression is unaffected in presence of other pathogens.  

QRT-PCR analysis showing levels of IsSMase transcripts in unfed I. scapularis ticks infected with either 

an extracellular bacterium Borrelia burgdorferi or an intracellular bacterium Anaplasma phagocytophilum. 

Open circles indicate uninfected (UI) and closed circles denote infected (I) groups. IsSMase mRNA levels 

were normalized to tick beta-actin levels. No significance differences were noted between the uninfected 

and infected groups, respectively. 

 

 

The overall results from our study suggested that tick-borne LGTV suppress a 

spider venomous ortholog IsSMase enzyme levels and its activity in ticks which then 

induce SM lipid levels and may facilitate the replication of virus and their budding into 

exosomes for transmission. 
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3. DISCUSSION 

 

The molecular mechanisms that support the survival strategies of many of the 

vector-borne pathogens have not been clearly understood. IsSMase, a novel 

Sphingomyelinase-like enzyme in Ixodes scapularis tick saliva showed high homology 

with SMase D, which is sphingomyelinase D protein in Loxosceles venomous spider 

(Alarcon-Chaidez et al., 2009). The same study showed that IsSMase modulated the 

host adaptive immune response by inclining the host CD4+ T-cells and thus shift a 

neutralizing Th1 cytokines response towards a Th2 cytokines profile. IsSMase directly 

programmed CD4+ T cells in order to express Interleukin 4 (IL-4; a hallmark of Th2 

effect), which means that IsSMase can regulate the expression and programming of IL-

4. Same group of researchers has proposed that a freeze-thaw stable structure within 

this molecule may bind to a Toll-like receptors (TLRs) or receptors on innate immune 

cells or antigen presenting cells (like monocytes or dendritic cells) due to which Th2 

differentiation may switch on (Alarcon-Chaidez et al., 2009). 

We determined the role of IsSMase in tick-borne flavi-viral (LGTV) infection in 

this study. After the detailed bioinformatics and comparative analysis, it was confirmed 

that IsSMase in ticks and SMase D in venomous spider are protein orthologs. 

Sphingomyelinase D (SMase D) protein in venomous spider were known to have 

several isoforms. These isoforms are broadly classified into two major groups, class I 

and class II SMase D proteins. In class I SMase D proteins, a single disulphide bridge 

and variable loops are present, however, in class II proteins, an additional intra-chain 

disulphide bridge is present which connects a flexible loop with a catalytic loop. Class I 

proteins is relatively more toxic than class II (Binford et al., 2009; Dias-Lopes et al., 

2013; Pedroso et al., 2015; Zobel-Thropp et al., 2010). ClustalW alignment of SMase D 

amino acid sequence of I. scapularis (IsSMase) showed higher identity with A. 

maculatum and R. pulchellus ticks. However, the phylogenetic analysis showed that 

IsSMase formed a clade closer to the spider venom protein orthologs from H. lepturus, 

S. patagonicus, and L. similis. The protein feature prediction analysis showed IsSMase 

to be a multifunctional protein that have various active sites and motifs. Because there 
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are several phospho-sites present, IsSMase is perhaps regulated by the process of 

phosphorylation. 

IsSMase role in infections with tick-borne pathogen transmission has not been 

studied. Previous study has shown that some medically important arthropods (ticks and 

mosquitoes) secrete extracellular vesicles (EVs) containing exosomes which help to 

mediate the transmission of flavi-viral RNA and proteins/polyproteins into human cells 

(Zhou et al., 2018). The same study showed that infection of tick-borne LGTV was 

possible in I. scapularis (ISE6) tick cells leading to increased viremia at 72 hours post-

infection with the dissemination of viral proteins, both negative and positive strands of 

LGTV-RNA via secured exosomes. This study (Zhou et al., 2018) leaded us to further 

analyze the importance of neutral sphingomyelinase(s) in I. scapularis ticks upon LGTV 

infection. 

These findings from our study showed that LGTV infection reduced IsSMase 

levels in tick cells and unfed/fed ticks dramatically. The reduced IsSMase levels resulted 

to build SM lipid levels up which in turn might facilitate budding and release of 

exosomes containing LGTV viral RNA and proteins. Furthermore, upon GW4869 

inhibitor treatment, the reverse trend was seen where IsSMase expression was 

restored. This suggests that an involvement of GW4869 molecule results in inhibiting 

the replication and transmission of LGTV via blocking/inhibition of exosome release and 

dissemination. On the basis of results we observed, we assume that the viral replication 

is perhaps being interfered by the venomous properties of IsSMase and hence suggests 

that there might be an important role of this molecule in anti-viral pathways. The 

increased expression of IsSMase and its enzymatic activity after GW4869 treatment 

perhaps suggests a negative role for this enzyme in the biogenesis of exosome. 

Also, a report suggests that genome replication of positive-strand RNA viruses is 

facilitated by host lipids (Zhang et al., 2019). West Nile Virus (WNV) infection increased 

sphingomyelin levels both in vivo and in vitro due to which SM have been considered as 

an antiviral target against WNV pathogenesis (Martin-Acebes et al., 2016). 

Sphingolipids are considered as “choke points” for targeting the blockage of virus 

transmission during dengue virus infection and replication (Chotiwan et al., 2018). 

Several studies have shown that cell membrane components like sphingolipids facilitate 
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in almost every step of virus life cycles that include attachment and fusion of membrane, 

replication, protein sorting, intracellular transport and budding/exogenesis of viral 

particles and virions (Bartke and Hannun, 2009; Hannun and Obeid, 2018; Schneider-

Schaulies and Schneider-Schaulies, 2015). During viral genome replication, Influenza A 

virus (IAV) has been found to manipulate the cellular signaling and thus the sphingosine 

metabolism by activating the transcription factor NF-kB and the sphingosine kinase 

(Vijayan and Hahm, 2014). Also, during viral assembly and budding, human 

immunodeficiency virus (HIV) interacts directly with glycosphingolipids, however 

hepatitis C virus (HCV) uses the lipid components (Hirata et al., 2012; Schneider-

Schaulies and Schneider-Schaulies, 2015). Sindbis virus replicates better in the 

absence of acid sphingomyelinases (Jan et al., 2000). Measles virus activates the 

sphingomyelinases (SMases) whereas rhinovirus stimulates the ceramide-enrichment 

and endocytosis (Avota and Schneider-Schaulies, 2014; Dreschers et al., 2007). Our 

study suggested that the expression and activity of IsSMase is inhibited by LGTV and 

thus induced SM lipids’ production and accumulation. However, GW4869 (1 µM) 

treatment inhibited virus induced SM lipid production but restored IsSMase expression 

and activity as a feedback loop. This suggests IsSMase (venomous ortholog) specific 

role in inhibition of tick-borne viral replication given that Anaplasma phagocytophilum 

and Borrelia burgdorferi bacteria showed no significant reduction in IsSMase expression 

(Figure. 9). This specific viral-mediated IsSMase inhibition clearly indicates this enzyme 

functions in antiviral activity and indicates a new role of this venomous protein in tick 

defense mechanism(s). 
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4. MATERIALS AND METHODS 

 

4.1 Ticks, synchronous infections, and tick feeding on mice 

Unfed Ixodes scapularis ticks were obtained from BEI resources (ATCC)/CDC 

and were maintained in our laboratory. Ticks were kept with approximately 98% relative 

humidity at room temperature under a photo period of 10 h of darkness and 14 h of 

light. We followed published protocols for synchronous infection of Ixodes scapularis 

ticks (Mitzel et al., 2007; Taank et al., 2018). Unfed nymphs were kept in sterile 1.5 ml 

eppendorf tubes. Out of 48 nymphs (used in total), 24 nymphs (12 in each tube) were 

maintained as uninfected (controls) and remaining 24 (12 in each tube) were infected 

with LGTV by synchronous infection. For synchronous infection, nymphs were 

immersed into 0.5 ml of complete Dulbecco’s modified eagle’s medium (DMEM) 

containing 1×107 pfu/ml of LGTV. For the uninfected group (control), nymphs were 

immersed into DMEM media with no virus in it. These tubes were incubated at 34º C for 

45 minutes (tubes vortexed in every 10 minutes interval to redistribute ticks into the 

media). These tubes were then chilled on ice (for 2 minutes) and centrifuged at 200x g 

for 30 seconds. Nymphs were then taken out of media and washed twice with cold 1x 

PBS (by centrifugation) to get rid of virus and media being attached on the tick’s body 

surface. Ticks were then dried with Whatman paper and transferred into sterile 

collection tubes that had holed caps covered with sterile nylon mesh cloth. The 

uninfected and infected nymphs were kept in different tubes and labelled properly. 

Tubes containing ticks were kept in an incubator for 17 days maintained at room 

temperature and a relative humidity of 98%. LGTV-infected ticks generated by this 

method were used as LGTV-infected unfed ticks in the study. Remaining LGTV-infected 

ticks were partially fed (24 hours during feeding- DF) on wild type C57BL/6 mice 

(purchased from Charles River Laboratories, Inc.) and were pulled with forceps. 

Uninfected ticks being fed on naïve C57BL/6 mice, were used as controls. All animal 

experiments were conducted in strict accordance with the recommendations in the 

Guide for the Care and Use of Laboratory Animals of the NIH, USA. Institutional Animal 
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Care and Use Committee (IACUC; protocol # 18-011) approved the protocol for blood 

feeding of I. scapularis ticks on mice. 

 

4.2 In vitro tick cell culture, infection and exosome isolation from cell culture 

supernatants 

Ixodes scapularis ISE6 tick cell line was used in our study. Tick cells were grown 

and maintained in the same way as done by Zhou et al., 2018. LGTV virus used in this 

experiment was laboratory virus stocks of Wild type LGTV (LGT-TP21) strain 

maintained in Vero monkey kidney cells. 5×105 cells were seeded in 12-well plates, and 

infected with LGTV (with MOI 1, for two different time points (24 and 72 hours p.i.), or 

with three different MOIs of 1-3 for dose response collection at 72 hours p.i.). Exosomes 

were isolated from tick cell culture supernatants by differential ultracentrifugation 

method as described in recent studies (Théry et al., 2006). We used concentrated cell 

culture supernatants to isolate exosomes. Purified exosome were stored at -80 °C in 

RNA lysis buffer and used for RNA extractions. 

 

4.3 RNA extraction, cDNA synthesis, and QRT-PCR Analysis 

Total RNA extraction was done from both uninfected and LGTV-infected- 

nymphal ticks (unfed or 24 hours during feeding), ISE6 tick cells or exosomes derived 

from tick cells, by using Aurum Total RNA Mini kit (BioRad) and following company’s 

instructions. 1 μg of RNA was converted into cDNA using iScript cDNA synthesis kit 

(BioRad) by following company’s instructions. The generated cDNA was used as 

template for the amplification and determination of viral loads and IsSMase levels by 

performing QRT-PCR using the iQ-SYBR Green Supermix kit (BioRad, USA), following 

manufacturer’s instructions. Published forward and reverse primers were used to detect 

LGTV PrM-E transcripts (Zhou et al., 2018). IsSMase transcript detection was done 

using our primers pairs 5' CGCCGCTGGAGTAGACATC 3' and 5' 

GACCCACATCGAATCCCACA 3'. The hsp70 transcripts were amplified using 

published primers (Vora et al., 2018). Tick beta-actin is quantified with published 

primers, (Taank et al., 2018) to normalize the number of templates in all analysis. Equal 

volumes of cDNA samples were used in parallel for beta-actin, LGTV prM-E, IsSMase 
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and hsp70 primers. The preparation of standard curves was done by 10-fold serial 

dilutions starting from standard 1 to 6 of known quantities of other primers. For the 

internal controls, untreated samples were considered. 

 

4.4 Sphingomyelinase and sphingomyelin Quantification assays 

We used sphingomyelin quantification and colorimetric sphingomyelinase assay 

kits from SIGMA-Aldrich and followed all manufacturer’s instructions. We plated 5×105 

tick cells in 12-well cell culture plates and after overnight incubation; cells were infected 

with LGTV (MOI 1). We collected tick cells for two time points (24 and 72 hours p.i.) for 

both assays. Cell lysates were resuspended in 1 x PBS and processed for both 

sphingomyelin lipid levels and sphingomyelinase activity immediately. For each time 

point and reaction wells, 50 µl of samples (uninfected or LGTV-infected) were used as 6 

replicates. Respective zero (blank) and sphingomyelinase/sphingomyelin standards 

were considered as background in both assays.  Samples from both sphingomyelin and 

sphingomyelinase assays were measured at 655 nm or 570 nm absorbance. Using the 

standard values, curves were plotted, and enzymatic activity assay or SM lipid quantity 

was determined from the standard curve. 

 

4.5 Ethics Statement 

The Biosafety Level — 2 (BSL-2) infectious experiments that included Langat 

virus (in vitro infection of ISE6 tick cells and synchronous infection of nymphs with 

Langat virus) was done under the IACUC; protocol # 15-014. 

 

4.6 Statistics 

Statistical difference observed in data sets were analyzed using GraphPad 

Prism6 software and Microsoft Excel 2016. The non-paired, two-tail Student t test was 

performed (for data to compare two means) for the entire analysis. Error bars represent 

mean (+SD) values, and P values of <0.05 were considered to be significant in all 

analysis. Statistical test and P values are indicated for significance. Also, each figure 

legend describes the asterisk that indicate significance. 
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5. CONCLUSION 

 

Vector-borne disease (VBD) are important communicable diseases with a 

specific feature of requiring a blood-feeding arthropod vector (an intermediate host) like 

ticks and mosquitoes to transmit between humans or from animals to humans. Vector 

control is one of the important strategies to prevent VBDs. Some clinically important 

emerging tick-borne diseases (TBDs) are Lyme disease, babesiosis, anaplasmosis, 

Powassan virus disease, tularemia and spotted fever rickettsiosis (that also include 

Rocky Mountain spotted fever) (CDC, 2018c). Since LGTV resembles both genetically 

and phylogenetically with TBEV and POWV (deadly human pathogens) and does not 

cause disease in human, LGTV is widely used as a model virus in the laboratory (Marin 

et al., 1995). The bioinformatics analysis of IsSMase gene in ticks showed homology 

with the SMase D protein of Loxosceles venomous spider (Alarcon-Chaidez et al., 

2009). SMase D in spider results in the catalytic hydrolysis of SM lipid to form ceramide 

1-phosphate (acyl sphingosine 1- phosphate) and choline. However, the mammalian 

sphingomyelinase converts SM into ceramide and phosphocholine (De Andrade et al., 

2006; Forrester et al., 1978). 

In this study, we showed that in the presence of tick-borne LGTV, IsSMase is 

significantly reduced in both tick cells (in vitro) and ticks (in vivo). IsSMase levels and its 

activity were also affected upon viral replication. Our data showed LGTV-mediated 

suppression of IsSMase allowed accumulation of SM lipid levels and supported 

membrane associated viral replication and exogenesis. Inhibition of viral loads and SM 

lipid build up via GW4869 inhibitor reversed the IsSMase levels and restored its activity, 

thereby proposing an important role for this spider venomous ortholog IsSMase in 

regulating viral replication in association with membrane-bound SM lipids in ticks. Our 

study suggests a novel role for IsSMase, in vector defense mechanism(s) against tick-

borne virus infection, and perhaps its important function in anti-viral pathway(s). 
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