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ABSTRACT

GAMMA RAY OPTICS USING *Fe AND "*Ge
Walter C. McDermott III
Old Dominion University, 1996
Director: Dr. Gilbert R. Hoy

The research described herein is among the first attempts to test one of the more
popular theories for development of a gamma-ray laser. This work is a “marriage” between
the Borrmann effect, which is a consequence of the dynamical theory of x-ray diffraction,
and time-filtering, which comes from time-domain Méssbauer spectroscopy.

Our experiments involved the search for a nuclear Borrmann effect and the
subsequent time-filtering effect using *’Fe and  Ge. In both cases, no nuclear Borrmann
effect was observed; however, the methodology and criteria necessary for such an
observation with any isotope were documented. The procedures necessary for testing the
crystal samples for the ability to support a Borrmann effect, both prior to and after the
introduction of the parent nuclei, were derived for both a table-top x-ray system and a
synchrotron radiation facility. For the table-top system, energy dispersive photon detectors
were used to map the crystals in a computer-controlled goniometer system. At the
synchrotron facility, the technique of x-ray topography was used to determine crystal quality.
Additionally, a process was developed in which radioactive *As was introduced into natural
germanium single crystals via electro-deposition and subsequent annealing for the nuclear
Borrmann effect studies.

The experimental setup and circuitry required for observation of the time-filtering

effect were also developed and tested. The processing electronics used in the delayed
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coincidence circuit were optimized and the resulting configuration documented. Time
filtering experiments were performed on “’Fe and ™ Ge using both powder and crystalline
samples. During these investigations, a new method for studying the time-filtering effect
was investigated using the internal conversion channel. This led to the realization that the
currently accepted theory explaining time-filtering is incomplete, and requires further study

and experimentation.

Director of Advisory Committee: Dr. Gilbert R. Hoy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ACKNOWLEDGMENTS

I would like to express my sincere gratitude and thanks to my advisor, Dr. Gilbert
R. Hoy. I will always be indebted to him for his guidance and patience in the process of
preparing and performing the work that is reported in this dissertation. I will greatly miss
our discussions from which I have learned so much.

I would also like to thank the members of my dissertation committee: Dr.
Desmond Cook, Dr. Gary Copeland, Dr. Mark Havey, and Dr. John Adam. Iam greatful
for the enormous effort that was put forth by each of them during the reading of this
dissertation and the comments that they contributed.

A special thank-you goes to Mr. Bruce Hanna and his family for all of the moral
and “lab” support that they have given me. I do not know how I would have been able to
complete this degree without their contributions and friendship.

I also would like to thank Mr. Walt Hooks and his family for the friendship that
they have shown.

I am also deeply greatful to the staff of the Science Shop, Mr. Thurmond Gardner,
Mr. Bobby Powell, and Mr. Robert Kiszar, for there precision machining and swiftness in
which they delivered the parts that I needed to perform this research. I will not forget all
of the techniques of machining and electronics design that I have learned from them.

My thanks are also due to Dr. Peter Siddons and Dr. Jerome Hasting of the
National Synchrotron Light Source at Brookhaven National Laboratory and Dr. Michael

Dudley of The State University of New York at Stoney Brook for providing samples for

ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



this research and the excellent opportunity to learn about synchrotron radiation.

I would also like to thank Old Dominion University and the Department of
Physics for awarding me the Special Doctoral Research Assistantship and the GAANN
Fellowship.

Finally, I would like to thank my wife Pam for all of her support through this
ordeal. As proofreader, typist, critic, cheerleader, friend, and wife, no one could ask for

anyone better.

This work was partially supported by the Innovative Science and
Technology/Strategic Defense Initiative Office and administered by the Naval Research

Laboratory.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . ... ... . i il
LISTOFTABLES .. .. . . . . vi
LISTOFFIGURES . . ... . vil
Chapter 1. Gamma-Ray Optics . ....... ... .. ... .. ... .. ... ........... 1
1.1 Introduction .............. ... .. .. ... ... 1

1.2 TheModssbauer Effect ........... .. ... ... ... ... ... ... ..... 3

1.3 Modification to the Hannon and Trammel Theory . ................ .. 6

1.4 Organization of the Dissertation . ............................... 7
Chapter 2. Dynamical Theory and the Borrmann Effect . .. .. ...... .. .. .. .... 9
2.1 Characteristics of Kinematical and Dynamical Diffraction ............. 9

2.2 Simultaneous Diffraction . .......... ... ... ... ... ... ... .. ..., 11

2.3 Determining Reflection Conditions ............................. 14

24 TheTwoBeamBorrmannMode ............................... 18

2.5 The Two Beam Borrmann Effect: Wavefield Approach ........... ... 22

2.6 Multibeam BorrmannModes . ............ ... ... ... .. ... ...... 28

2.7 The Internal Source and Multibeam Borrmann Modes . .. ............ 29
Chapter 3. The Search for the Nuclear Borrmann Effect . . .. .. ... ... ... .. . ... 31
3.1 Imtroduction ............... .. ... 32

32 FeSingleCrystals .......... ... ... . ... ... .. ... ... 32

3.3 Ge Single Crystals: Sample Preparation . . ........................ 38

3.3.1 Origins of the Ge Single Crystals . ...................... 38

332 TheCuttingProcess ............. ... ... ... ........ 39

333 Alignment.......... ... .. ... ... 44

3.3.4 Testing for the Borrmann Effect - X-Ray Source ........... 45

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.4 7TAsDoped Ge Single Crystal Source Preparation . ... .............. 47

35 PGeDeCay . ... 52
3.6 Observation of Nuclear Borrmann Effect .. ........... ... ... .. . . .. 53
3.7 ConcludingRemarks ............. ... . ... .. .. . ... ... .. .. ... 58
Chapter 4. Time Filtering ... ... .. ... . ... . ... .. .. ... ... ........ 60
4.1 Introduction ................. ... ... 60
4.2 Theoretical Considerations ...................... ... .. .. .. ... 61
4.3 Mathematical Description ... .......... ... ..... ... .. ... .. .. 61
44 ExampleCurves .......... ... ... .. 65
Chapter S. Experimental Time Filtering . ... ... ... ... ... ... ... ... .. .. 70
51 Introduction ................. ... ... . ... 70
52 Experimental Setup .......... . ... .. ... ... .. . .. .. . ... 74
5.3 Fitting and Analysis Procedure ........... ... .. ... ... ... ... ... 79
5.4 Gamma Ray Time Filtering for ®Ge ........... ... ... ... ... .. ... 81
5.5 XRayTimeFilteringfor™Ge ................ ... ... ... ... ... .. 86
5.6 Iron Time Filtering: The GammaRayCase ................ ... .. .. 90
5.7 TIron Time Filtering: The XRayCase .. .................... .. .. .. 95
Chapter 6. Summary, Conclusions, and Future Directions ... .......... . . .. 105
6.1 The Nuclear Borrmann Effect .................... .. .. ... ... .. 105
6.2 Time-Filtering Effect . .. ........ ... ... .. ... .. . .. .. . .. .. .. .. 106
6.3 General Remarks .............. ... ... . ... . ... .. 107
References . ......... .. ... .. . 108
Appendices . . ... ... 111
Vita 131
A%

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LIST OF TABLES

Page
Table 5.1 "Ge Gamma-Ray Fit Parameters ........................... .. 86
Table 5.2 ™Ge X-Ray Fit Parameters .................................. 87
Table 5.3 *'Fe Gamma-Ray Fit Parameters . ......................... .. .. 95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LIST OF FIGURES

Figure

Figure
Figure

Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure

2.1

22

23

24

25

3.1

32

33

34

3.5

3.6

3.7

3.8

3.9

Intensity plot for the forward diffracted and diffracted beams for a) a
kinematical crystal, and b) a dynamical crystal . . ... ............. ... 12

Ewald’s Sphere of Reflection intersecting a plane in receiprocal space .. 14

Ewald’s Sphere of Reflection showing simultaneous diffraction . ... ... 16
Construction of a Bragg reflection showing the orientation of the electric
and magnetic fields associated with each wavevector . ........... ... 23
Standing Wave Figure . .............. ... ... .. ... .......... 27
Pulse-height spectrum showing the transmitted *’Fe radiation . ........ 33
Laue photograph . ....... ... ... .. . . .. . ... ... 35
Topography photograph ... ......... ... ... ... ... ... .. ... .... 37
Schematic representation of the procedure for measuring a rocking curve 40
Schematic representation of the eulariancradle . .. ... .............. 42
Barrel holder used to orient and cut the Ge single crystals . .. ... ... ... 43
Scan about the y angle to search for Borrmann transmissions . ... ... .. 46
Borrmann scan of the Ge (111) crystal showing the three-fold symmetry

BXIS . . 48
Schematic of the electroplating cell used to apply radioactive As onto
theGesinglecrystal ........ ... ... ... ... ... ... . ... ... ... .... 49

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 3.10
Figure 3.11
Figure 4.1

Figure 4.2
Figure 4.3

Figure 5.1

Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.9
Figure 5.10
Figure 5.11
Figure 5.12
Figure 5.13
Figure 5.14
Figure 5.15
Figure 5.16

Figure 5.17

Page

Laue scan of the transmitted 53 keV radiation for a Ge (111) crystal . . . . 54
Borrmann scan of the 13.26 keV gammaray . ..................... 56
Time-filtering curve for f=land Aw=0..... ... ... ........... ... 66
Time-filtering curve for B=10and Aw=0......................... 67
Time-filtering curve for B=10and Aw=7 ... . ..................... 69
Schematic diagram for the Co-""Fedecay ....................... 72
Schematic diagram for the ?As-"Gedecay ....................... 73
Pulse-height spectrum of ®Ge .. ............................... 75
Pulse-height spectrum of ?Ge (Enlarged) ........................ 76
Schematic of the coincidencesetup . ............................ 77
Background rate with High StopRate . ......................... 82
Time-Filtering Curve for ?Ge GammaRay ....................... 84
Plot of Residuals from the ?Ge GammaRay Fit .. ................. 85
Time-Filtering Curve for "Ge XRay ........................... 88
Plot of Residuals from the ?Ge X Ray Fit ....................... 89

Time-Filtering Curve for *’Fe Gamma Ray Using Two Nal(Ti) Detectors 91

Plot of Residuals from the *Fe GammaRay Fit ................... 92
Time-Filtering Curve for *’Fe Gamma Ray Using a Ge Detector . . . . ... 93
Plot of Residuals from the *’Fe Gamma Ray Fit (Ge Detector) . . ... ... 94
*’Fe Time-Filtering Curve Using 6.4 keV X Ray (Two Nal Detectors) .. 96

*’Fe Time-Filtering Curve Using 6.4 keV X Ray (Ge Detector) . . .. . ... 98

Pulse-height Spectrum of Filtered ’Fe Radiation .................. 99

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 5.18 57Fe Lifetime from ~8 keV Background . ....................... 101
Figure 5.19 Plot of 57Fe Time Filtering Using the 6.4 keV Xray, no prompt ... ... 103
Figure A.1 A Fresnel zone in a horizontalplane .. ......................... 112
Figure A.2 A Fresnel zoneintheverticalplane ... ......................... 114

Figure A.3  Schematic representation of the diffracted and forward diffracted
wavefields inside the crystal .. ............................... 117

e

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter One

Gamma-Ray Optics

1.1 Introduction

For many years, researchers have questioned the possibility of constructing a gamma-
ray laser (graser). Much theoretical work exists on the subject which is outlined in the paper
by Baldwin et al', however very little experimental work has been done to test the theory.
This research is a preliminary test that is based on one theoretical work that has been
introduced by Hannon, Trammel and coworkers®® of Rice University. The relevant
experimental details of the Hannon and Trammel theory are addressed in the papers and
doctoral thesis of Hutton®® and are discussed below.

The Hannon and Trammel theory uses crystalline optics and the Mossbauer effect

to provide a system that is capable of producing narrow beams of gamma radiation and also

stimulate emission of gamma rays from excited nuclei. The basic premise consists of the
implantation of excited nuclei whose transitions are of multipolarity M1 or higher, in a
nuclear-resonant perfect single-crystal environment. This configuration allows the decaying

nuclei to feed eigenmodes of the radiation field inside the crystal that suppress photoelectric
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absorption. Additionally, these eigenmodes provide a mechanism that allows the emitting
nuclei to couple to other excited nuclei in the crystal and possibly stimulate them to radiate.

In order to have enough nuclei for this coupling to occur, the crystal must be
sufficiently thick. Ordinarily this could pose a problem if electronic attenuation is
considered, since the radiation would be expected to simply get absorbed within the crystal.
However, as this is a single crystal, a phenomenon know as the Borrmann effect® becomes
an important consideration. The Borrmann effect, required when dealing with highly perfect
single crystals, allows radiation to travel through crystals that, from an ordinary attenuation
stand point, would be considered too thick. This is accomplished by having the electric field
of the radiation be near zero at the atomic sites. At the same time the electric field is at a
minimum, the magnetic field and electric-field gradient are near a maximum. This is due
to the Borrmann mode being comprised of a traveling wave in one direction (say the z
direction) and a standing wave in the directions perpendicular to the traveling wave (the x
and y direction). In a standing electromagnetic wave, the magnetic field and electric field
are /2 out of phase'®. Therefore, when one is a maximum, the other will be a near zero.
Using this phase relationship, the Hannon and Trammel theory predicts that a nuclear
radiator of multipolarity M1 or higher, which has a maximum magnetic or electric field
gradient at the nucleus, placed at a lattice site inside a perfect single crystal, could feed a
Borrmann mode and the radiation can get out of the crystal relatively unattenuated
electronically since these type of radiators will have a near zero electric field at the atomic
site.

Stimulated emission can be achieved in the Borrmann channel since the nuclei along
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the direction of the Borrmann channel are strongly coupled. This coupling is due to the
nuclear radiator having a near maximum magnetic field or electric field gradient at the

nucleus. This allows other excited nuclei to “see” each other. As one nucleus decays, it

may influence others to decay, thus causing a net “gain” in the photon field. If however the

gamma emitting nucleus were the only excited nucleus in the resonant crystal (i.e. all other

nuclei were in the ground state) then the gamma ray would not be able to exit the crystal due
to nuclear absorption and subsequent internal conversion.

This theory relies on the Mossbauer effect for the absorption and emission of the
gamma radiation. This is because any loss of energy to the photon through recoil will be
enough to move the centroid of the gamma ray energy line off resonance (or detuned) with
respect to other nuclei. If this would happen, then the photon would not be able to interact
with other excited state nuclei in the crystal. This would give the system zero gain as the
photon propagated through the medium resulting in no lasing. Therefore, the losses in
energy must be reduced to a minimum. This dependence on the recoilless emission and

absorption of gamma radiation requires a brief introduction to the Méssbauer effect.

1.2 The Mossbauer Effect

In 1957, while working on his doctoral thesis research studying resonance

fluorescence using the 129 keV first excited state energy level in '*'I, Rudolph L. Mossbauer

discovered the effect which eventually won him the Noble Prize in Physics'' in 1961 and

now bears his name. The now well-known Mossbauer Effect® is the recoilless emission and
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absorption of gamma radiation. Since the nucleus effectively does not recoil, the energy
width of the emission and absorption lines approach the lower limit governed by the
Heisenberg Time-Energy Uncertainty Principle. This is due to the ground state having an

infinite lifetime and hence no uncertainty in the energy of this level®.

Pe=—— (1.1)

InEq. 1.1, I'is the energy width of the state, 7 is the mean lifetime of the excited state, and
h is Planck’s constant.

To illustrate the properties and describe the background of the Méssbauer effect, it
is instructive to consider the process of nuclear resonance fluorescence. Nuclear resonance
fluorescence occurs when a nucleus makes a transition from an excited state to the ground
state by emitting a gamma ray. This gamma ray is then used to excite a nucleus of the same
type from the ground state to the excited state which in turn re-radiates this gamma ray not
necessarily in the original direction.

The first experiments designed to detect nuclear resonance fluorescence were
attempted in 1929 by Kuhn'*. These experiments were unsuccessful due to nuclear recoil
shifting the energy of the emitted gamma ray such that it was no longer on resonance, and
thermal Doppler broadening effects which broadened the spectral energy distribution of
gamma ray. At the time, nuclear recoil was understood to cause the energy of the emission
or absorption linewidths to be shifted'>. However, it was theorized that by thermally

broadening the linewidths of the gamma rays, some overlap of the lines would occur,
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resulting in some resonance phenomenon'®.

In order to obtain a significant probability of nuclear resonance fluorescence, the
absorption and emission energy distributions must strongly overlap!”. If either the emission
line or absorption line is displace with respect to energy, the probability of a resonance being
observed is decreased. Additionally, as Méssbauer discovered, if the linewidths are
thermally broadened, the amount of the observed resonance also decreases due to changes
in the recoilless fraction. From these principles, in the ideal case, resonance will be
strongest when the two line widths overlap exactly and have the same linewidth.

Consider a free nucleus that makes a transition from an excited state to the ground
state by emission of a gamma ray. By conservation of momentum, the nucleus will recoil

with an energy given by

E=—1 (1.2)

where Ej is the recoil energy, E, is the transition energy, M is the mass of the atom, and ¢
is the speed of light. In order for a gamma ray to induce an excitation from the ground state
to the excited state in a free nucleus of the same type, it must provide the transition energy
plus the recoil energy. If the gamma ray was originally emitted with recoil, it would be
deficient by 2E; with respect to the transition energy'®. This would effectively reduce the
absorption probability.

Now consider a nucleus bound in a solid -- specifically a crystal lattice. When the

nucleus emits a gamma ray, the nucleus recoils. Since the nucleus is in an atom that is on
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a crystal lattice, the whole atom recoils also. If the “spring constant” of the coupling of the
atoms is strong, then a macroscopic part of the crystal participates in the recoil by producing
phonons in the lattice. Since there are typically 10'® atoms in a crystal, the recoil energy is
negligibly small. This is easily seen by noting that the recoil energy in Eq. 1.3 is inversely
proportional to the mass, which in this case can be considered the mass of the crystal. This
large mass term makes the recoil energy small. From another point of view, the recoil
energy goes into producing phonons in the crystal lattice. Since phonons are quantized,
there exists a finite probability that the nucleus will emit without recoil'®. In this case, the
gamma ray is emitted with the “full” energy of the transition.

There are other factors that can cause a “detuning” in energy between the source and
absorber. These include an isomer (or chemical) shift, and relative thermal motion of the
nuclei. The thermal motion shows up only as a second order Doppler shift®®. This motion,
if large enough, can cause a significant shift in the resonance energy between the source and
absorber. The isomer shift occurs when the emitting nucleus and the absorbing nucleus are
in two different environments®. For example, if®” Co is placed in a Pd matrix and the
absorber is *’Fe in a natural Fe matrix, each nucleus (both the source and absorber) will “see”
different local magnetic and/or electric fields. These fields can produce a shift in the nuclear

levels such that the two nuclei are no longer exactly on resonance.

1.3 Modification to the Hannon and Trammel Theory

This thesis is based on the Hannon and Trammel theory with some subtle
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modifications. These modifications rely on a consequence of the Mossbauer effect called
time filtering in order for the gamma-ray to exit the single crystal medium.

The Hannon and Trammel theory predicts that a gamma-ray emitted from a nucleus
that is embedded deep inside a nuclear resonant single crystal will not be able to exit the
nuclear-resonant single crystal because of the nuclear absorption and subsequent internal
conversion. One way to circumvent this loss problem and is the basis of this thesis, is to
suppress the internal conversion channel or enhance the radiative channel. This
enhancement or speed-up of the radiative channel is a natural result of time-domain
Maossbauer spectroscopy™.

As the photon propagates through the resonant medium, it is absorbed and reradiated
into the forward direction. The absorption occurs at the center of the line which “eats out
the center” of the line. This broadens the linewidth. Invoking the Heisenberg time-energy
uncertainty principle again, as the spectral energy linewidth broadens, the associated lifetime
decreases. We interpret this “speed-up” in the lifetime as an enhancement of the radiative

channel.

1.4  Organization of the Dissertation

Our experiments in gamma-ray opiics include studies of the Borrmann effect and

time-domain Mossbauer spectroscopy (time filtering). The isotopes selected for study were

*'Fe, due to its large and well-known Mossbauer effect; and > Ge, due to the highly perfect

single crystals for which Ge is known. Theoretical explanations and experimental work for
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the Borrmann effect are given in Chapters Two and Three, respectively. Theoretical
descriptions and experimental work for time-domain Mossbauer spectroscopy (time filtering)

are given in Chapters Four and Five. Conclusions are given in Chapter Six.
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Chapter Two

Dynamical Theory and the Borrmann Effect

2.1 Characteristics of Kinematical and Dynamical Diffraction

The Borrmann effect, first discovered in 1960 by G. Borrmann®, is the anomalous
transmission of x-radiation through perfect single crystals. This effect is predicted by the
dynamical theory of x-ray diffraction®, which assumes highly perfect single crystals. In the
so called two-beam Borrmann mode, the incident and diffracted waves inside the crystal are
considered to be one wavefield instead of two separate and distinct wavefields, and multiple
scattering is allowed between these two components of the wavefield”. As the waves
propagate through the crystal, certain eigenmodes of the radiation field have effectively a
zero electric field amplitude at each lattice site. This will lead to a near zero coupling of the
electric field to the atoms occupying these lattice sites. The result is suppressed

photoelectric absorption, allowing this mode of the radiation to travel through crystals that,
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from ordinary mass-attenuation considerations, would be deemed too thick.

There are two possible theories for calculating the intensity associated with any
diffraction process, depending on the relative thickness and perfection of the crystal being
used: the kinematical theory, for smaller thicknesses and less perfect crystals, and the
dynamical theory, for thicker and perfect single crystals. The differences between these two
theories can be readily observed by examining the intensity profiles of both the forward
diffracted (incident) and diffracted (reflected) beams for a Laue transmission experiment.

The Laue transmission consists of simple Bragg reflections where the incident
radiation enters one face of a crystal and exits from a different surface. In this so-called
Laue setting, the radiation scatters off of planes that are (usually) perpendicular to the
entrance surface. In contrast, in the Bragg setting, the incident beam enters and exits the
crystal from the same face, with the planes (usually) are parallel to the entrance surface. It
is possible to have the planes that are being used for the scattering at some other angle
relative to the crystal face, however, the type of reflection (either Laue or Bragg) is still
classified by the entrance and exit surfaces. In either type of reflection, the scattering is

governed by Bragg’s law, which states that

nA =2dsin0 2.1)

where n is an integer, A is the wavelength of the incident radiation, d is the lattice spacing,
and 0 is the angle the incident radiation makes with the scattering planes.
The well-known kinematical theory is used when dealing with crystals whose

thicknesses are small such that the normal absorption coefficient is on the order of unity

10
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ut=1 (where u is the mass attenuation coefficient and ¢ is the thickness of the sample). The
kinematical theory applies if the crystal has many imperfections within the lattice. This
theory treats each volume element of the crystal independently. As the incident wave travels
into the crystal, each “layer” reflects a small percentage of the incident wave. In addition,
each incident wave is allowed to scatter only once. The diffracted wave in this case is a
summation of the individual waves scattered by each plane. To illustrate, if a
monochromatic x-ray beam is incident upon a “kinematical” crystal, some of the intensity
from the forward diffracted beam is re-channeled into the diffracted beam as the Bragg
condition is satisfied, decreasing the intensity of the forward diffracted beam. (Fig. 2.1a)

If the crystal thickness is much larger (ut~10) and has a lattice that is highly perfect,
the dynamical theory of x-ray diffraction must be used, as the kinematical theory will not
properly predict the measured intensity. The dynamical theory allows for multiple scattering
within the crystal. Thus, the total wavefield inside the crystal must be considered since the
forward diffracted and diffracted waves are allowed to interact. As the diffracted beam
travels through the crystal, it will reflect multiple times back into the direction of the forward
diffracted beam. Rather than “stealing” intensity, the diffracted beams enhance the forward
diffracted beam. Using the illustration above, as the Bragg condition is satisfied for a
“dynamical” crystal, the wavefields inside the crystal undergo multiple reflections. As a

result, the intensity of the forward diffracted beam increases (Fig. 2.1b).

2.2 Simultaneous Diffraction

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



/\ Diffracted Intensity

a \\/Forward Diffracted Intensity

A Diffracted Intensity

Forward Diffracted Intensity

Intensity

Theta

Fig. 2.1 Intensity plot for the forward diffracted and diffracted beams for a) a kinematical

crystal, and b) a dynamical crystal.
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The possibility exists that the incident beam may simultaneously diffract from
multiple reciprocal lattice vectors, if the crystal has the proper symmetry. A helpful way to
visualize this is to use the construction developed by Ewald®. This construction considers
the intersection of a sphere, whose radius is defined by the wave vector of the radiation
inside the crystal, with a plane in reciprocal space (Fig 2.2). If two reciprocal lattice points
lie on the surface of the “sphere of reflection”, the incident radiation can be reflected from
one of the reciprocal lattice points to the other by means of the reciprocal lattice vector
connecting the two points. This is simply a geometrical construction of Bragg’s law. To
prove that this is Bragg’s law, an examination of the components making up the incident and

diffracted waves is required.
First, by adding the components that are along the direction of the reciprocal lattice

vector, an expression relating the wavevectors to the reciprocal lattice vector H is obtained.

k, sin0 +k,sin0=H (2.2)

However, the wavevectors k, and k, are equal to the radius of the sphere of reflection, k.

Therefore,

2ksin@=H (2.3)

By definition, k =2n/A and [H| = 27/d. Substituting these into Eq. 2.3, the familiar Bragg’s

law is obtained.
A=2dsin® (2.4)

13
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Fig. 2.2 Ewald’s Sphere of Reflection intersecting a plane in reciprocal space.

14
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If the sphere of reflection intersects more than two reciprocal lattice points, the radiation can
be scattered from one of the reciprocal lattice points to any or all of the other reciprocal
lattice points, provided that 1) the reciprocal lattice points lie on the sphere of reflection and
2) the reciprocal lattice vector that connects the two points corresponds to an allowed
reflection (Fig. 2.3).

After this initial scattering, it is possible for the waves to scatter from the new
reciprocal lattice point to a completely different reciprocal lattice point (not back to the
initial point). As these waves scatter from point to point, the wavefield inside the crystal

becomes a superposition of all of these possible allowed reflections, resulting in a multi-

beam diffraction. In order for this to occur for an external source, the incident radiation
direction and the crystal orientation must be in complete alignment to satisfy the Bragg
condition for multiple sets of planes within the crystal. For an internal source, this problem

is minimized, since the source radiates in approximately all possible directions.

2.3  Determining Reflection Conditions

Reflection conditions need to be calculated in order to determine whether a given set
of planes within a specific crystal will produce a Bragg peak. Ifa Bragg peak is produced,
the reflection is considered an “allowed” reflection. This is determined by calculating the
structure factor for the specific crystal being studied.

The structure factor describes the reflecting power for a unit cell in a crystal.

Calculation of the structure factor involves summing the contributions to the scattered

15
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Fig. 2.3 Ewald’s Sphere of Reflection showing simultaneous diffraction. Since the

sphere intersects with four reciprocal lattice points, there will be a four beam diffraction.
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radiation which come from all of the atoms in the unit cell. This summing takes into
account the phase shift associated with having a distribution of atoms over a volume instead
27

of having the atoms all concentrated at a single point*’. In equational form, the structure

factor is written as

N i
F=) fe™™" 2.5)
i=1

where £, is the atomic scattering factor of the i" atom, H = h® + k¢ + 12 is the reciprocal
lattice vector corresponding to the reflection being considered (h, k, 1 are the Miller indices),
and r, is the location of the i atom in the unit cell. If the crystal is comprised of more than
one type of atom, the atomic scattering factor for that atom is used in the summation. The
atomic scattering factor is allowed to have an imaginary component to allow for absorption,
thus giving the structure factor an additional imaginary contribution. These “corrections”
to the atomic scattering factor are known as the Honl corrections®.

As an example of the determination of the reflection conditions, natural Fe is
considered. Fe is a body-centered cubic (bcc) crystal, meaning the unit cell has an Fe atom
at each corner of a cube and an additional atom located at the center of the cube. Summation
over the total number of atoms actually inside the unit cell is two. The atoms on the corners
of the cube each contribute 1/8 of an atom to the sum, as this is the amount that is located
inside the cell. Since there are 8 corners in a cube, the sum yields one total atom for this
portion.

Choosing an origin at one of the corners of the cube, the location of the two atoms

17
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are r,=(0, 0, 0) and r,= ('%, %, 2). Using these values, the structure factor becomes
211:1'(—-+E +=) (2.6)

Examination of the structure factor shows non-zero values when h+k+1=2n, where n is an
integer. Ifthe sum of h+k+l is odd, the exponential factor will be -1 and the structure factor
will vanish, resulting in a zero reflected intensity. When h+k+l is even, the structure factor

would give F = 2f. This would be considered an allowed reflection.

24 The Two Beam Borrmann Mode

As stated earlier, one of the interesting consequences of the dynamical theory of x-
ray diffraction is the existence of the Borrmann effect. There are two theoretical approaches
for describing and showing the properties of the Borrmann effect that may be taken when
using the dynamical theory. The first is an elegant treatment originally developed by Laue®
which involves solving Maxwell’s equation in a periodic medium. The second, developed
by Darwin®, is a more straightforward approach from a diffraction standpoint, and will be
outlined here as decribed by Warren® in terms of a simple two-beam case. A complete
development of a simple two-beam case is given in Appendix A.

The Darwin approach begins by calculating the electric field of a wave that is
scattered from a single plane. The first consideration is the differential electric field

produced by scattering from some differential surface element in the plane. This is

integrated over the surface of the plane such that the path-length of the radiation (from its
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point of origin to a point in the plane and on to a point some distance from the plane) is no
greater than A/2. The use of this constraint defines the integration surface as a classical
Fresnel zone.

Next, the possibility for multiple scattering must be included. This involves
determining a recursion relationship for both the forward diffracted and diffracted waves.
The recursion relationship for a forward diffracted wave at a given position in the crystal can
be written mathematically as a superposition of 1) the forward diffracted wave from the
previous plane, plus 2) the component from the diffracted wave of the current plane, each
with the proper phase factors included. The recursion relationship for the diffracted wave
is written much the same way; a superposition of 1) the diffracted wave from the previous
plane, plus 2) the component of the forward diffracted wave of the current plane. Again,
each component has a phase factor which must be included.

Now that both recursion relationships are known, one can be substituted into the
other to derive an expression in terms of only the forward diffracted wave, or of only the
diffracted wave. The general power series solution is assumed for both equations. Upon
substitution, the solutions for the forward diffracted wave and the diffracted wave are
obtained.

When the Bragg condition is satisfied exactly, the equations for the forward

diffracted and diffracted wave reduce to:

T ___ﬂ)_e -ipr [e i(go*g)r_*_e i(go'g)"]

r

2.7)
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and

Y (o~
S _e "¢=?°e “i9r[e Go8)_ g e078) i (2.8)

respectively, where 7, is the forward diffracted wave after the ™ plane, S, , is the diffracted
wave after the r-1 plane, ¢ is the phase of the wave, g is the scattering power of the
reflection for the diffracted beam, g, is the scattering power of the reflection for the forward
diffracted beam, and r is the number of planes the radiation has traversed.

To allow for absorption, the scattering factors g and g, are complex quantities:
/i !l .1
g=g +ig 80=80 *180o (2.9)

These complex scattering factors are substituted into Eq. 2.7 and Eq. 2.8. If the possible
polarization states within the crystal are considered, there will be four wave fields present.
All but one will be attenuated out (absorbed after passing through many planes of atoms) for
large values of r. The surviving wavefield for the forward diffracted and diffracted waves
is the Borrmann mode. The equations for the Borrmann mode electric field amplitudes are

written as

T ) ol ol
Tr=?0e -x¢re i(gy-g)r (2 10)
and
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r-1

S = -—?—e -ibrg itgo~g> (2.11)

Notice that both wavefields do not decrease with increasing r. Therefore, these waves will
pass through very thick crystals with no attenuation.

The intensity of the Borrmann mode can finally be calculated by the taking absolute
value squared of the electric field component in each wave. Mathematically, this is written

as

|T,I” T,

, )= 2.12
2 | 2 (2.12)

|IT|=

where I; and § are the intensities of the forward diffracted and diffracted beams of the
Borrmann mode, respectively.

An unpolarized input x-ray beam can be expressed as a superposition of two
perpendicular linearly polarized waves of equal intensity. These polarization states are
commonly referred to as 6 and 7 polarizations. The o polarization is defined as the direction
perpendicular to the plane of reflection (defined by the incident and reflected wave vectors).
The w polarization is defined as the direction perpendicular to the wave vector yet lying in
the plane of reflection (See Fig. 2.4).

Therefore, for a given intensity, half is ¢ polarized and half is 7 polarized. For the
Borrmann mode, only the 0 component is present. This results in intensities in the two beam

Borrmann mode that will be one eighth the input intensity.
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I
=y s I (2.13)

where I, =1,/2.
2.5  The Two Beam Borrmann Effect: Wavefield Approach

The Darwin development treats the wavefields inside the crystal as being
independent of one another. In reality, these two wavefield are actually one single wave in
which each component is continually modifying the other. Assuming the waves can be
considered plane waves, and the amplitudes of the electric fields are equal for the incident

and diffracted waves, the superposition of these two (from Fig. 2.4) can be written as

E=(Ee O RN_g o By, (2.14)
where from Fig. 2.4
ky=k y+k 2 (2.15a)
and ’
k,=-k y+kz (2.15b)

Substituting in for k, and k;,, this reduces to

E=(2i)E e " i(k’z)sin(k)y)f (2.16)
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Fig 2.4 Construction of a Bragg reflection showing the orientation of the electric and

magnetic fields associated with each wavevector.
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and

E=E et e EI e &M _g i) 2 (2.17)

The value of kyy will be an integer multiple of 27 at any of the lattice sites, since the
scattered radiation originates from the atoms located at the lattice sites. It follows from the
above equation that there will be a zero electric field amplitude at the atomic sites which
is again a consequence of the Borrmann effect. Because the electric field is zero it will not
couple very strongly to produce photoelectric absorption. This allows the radiation to
traverse through a very thick crystal. In practice the electric field is not truly zero but near
zero. This is due to the fact that thermal motion of the atoms has not yet been considered
in this calculation. To be complete, it is possible to include such thermal vibrations if a
Debye-Waller factor ¢ is introduced into the equations. This factor describes the mean-
squared-displacement of the atoms as a function of temperature.

The magnetic field amplitude inside the crystal may be written in much the same way
the electric field was written. However, since the magnetic field is transverse to the electric

field, it will have components in the y and z directions.

= B ot kg F . ot Ik .
B=—2—°e iaty (cos0y-sinB2) +B e e g (-cosBy-sin02) (2.18)

Substituting in for k, and k, and simplifying,
B= Bye e ik’z[i sin (k y)cos8y - cos (ky)sin6z] (2.19)
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We may now calculate the time average of the Poynting vector.

S§=—ExH (2.20)

§=%EOBO sin’(k,y) cos0 £ +()E, B,sin(k V) cos(k,y)sinBy (2.21)

From the Poynting vector for the Borrmann mode, we see that there is a real net energy
flow only along the z direction. This corresponds to the radiation traveling along a path
directly through the crystal before it is “split” into the forward diffracted and diffracted
beams upon emerging from the crystal. The experiment to observe this direct beam is easily
performed by placing a film plate behind a crystal undergoing dynamical diffraction. The
film records three intensity spots. Two of the spots correspond to the diffracted and forward
diffracted beams. The third spot is a direct hard component of the beam. The thickness of
the crystal can then be calculated by measuring the distance from the direct beam and the
diffracted beam. This is an indication that the beam travels directly through the crystal and
splits into the two beams.

The component of the Poynting vector for the y direction is an imaginary quantity
interpreted as a standing wave in this direction. This standing wave is another property of
the Borrmann mode that may be exploited. In a standing electromagnetic wave, the electric
field is /2 out of phase with the magnetic field.>* Utilizing this detail, if the electric field

for a Borrmann mode is near zero at the atomic sites, the magnetic field is near a maximum
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at these sites ( Fig. 2.5).
In the case of an external x-ray source, if the incident wave produces an electric field

whose maximum occurs at a lattice site inside the crystal, this wave would excite an anti-

Borrmann mode and would be attenuated strongly by photoelectric absorption. By
reciprocity, if a radiator is placed at an atomic site and radiates by electric dipole (E1)
emission, a large electric field would be produced at each site. Again, the radiation would
not be able to propagate out of the crystal.

However, if an internal radiator at a lattice site radiated magnetically (i.e. M1
radiation), the magnetic field would be at a maximum at each lattice site and the electric field
would be at a minimum. Such a case would excite a Borrmann mode and hence would allow
the radiation to traverse through the crystal. For example, if excited *’Fe were doped into
a Ge single crystal, it might be possible to excite a Borrmann mode since the first excited
state in *’Fe is a magnetic dipole (M1) radiator.

Now consider the crystal as being comprised of a material which is nuclear resonant
with M1 radiation, and assume the source of the radiation originates from within the crystal.
In this situation, it might be possible for the radiation to escape due to a suppression of
photoelectric absorption. However, since the medium is now nuclear resonant, the radiation
has another competing absorbing factor and thus may not exit from the crystal. For example,
if the crystal were an *'Fe crystal containing excited *’Fe radiators, the radiation theoretically
would not be able to leave the crystal due to attenuation through nuclear absorption and
subsequent internal conversion. In spite of this, if the radiation were able to propagate

through the crystal, this would be the first observation of a nuclear Borrmann mode. This
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Fig. 2.5 The standing wave in the crystal produces an electric field that is near zero at the
atomic sites, and magnetic field that is large at the atomic sites. The vertical lines
represent the planes of atoms. If the radiation is resonant with the nuclei, the radiation

will couple strongly to the nuclei if the transition is magnetic dipole (M1).
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observation would also signify that an enhancement of the radiative channel is occurring

within the crystal.
2.6 Multibeam Borrmann Modes

A multibeam Borrmann mode can exist if 1) the crystal is set up for simultaneous
diffraction with the incident beam oriented in such a way as to excite two different
reflections and 2) the crystal is capable of supporting a Borrmann mode. Generally
speaking, the multibeam Borrmann mode can be considered a collection of two-beam modes
that are allowed to “mix”. As a rule, the intensity of a multibeam mode will be larger than
a two-beam mode by a scaling factor proportional to the number of beams. This is due to
the number of photons that are actually channeled into a Borrmann mode, which is in turn
governed by the angular width of the Bragg reflection. This angular width is called the
Darwin width of the reflection. Typically the Darwin width is on the order of a few
arcseconds. This width defines the acceptance of the radiation being channeled into this
mode. The larger the acceptance of the channel, (and the more channels), the larger the flux
of photons that will be available for use in the diffraction process.

The Darwin width of a Bragg reflection is calculated from the following:*

NA2|F|,1+|cos26|)

s212*( >
mc* Tsin n20 2

(2.22)

where /N is the number of atoms per volume, A is the wavelength of the radiation, |F] is the
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absolute value of the structure factor, and 6 is the Bragg angle of the reflection being
considered.

As an example, consider a Ge single crystal with a (111) orientation. The lattice
parameter in Ge is 5.658 A. The atomic scattering factor for Ge at 13.26 keV is
approximately 27. This gives a structure factor of =153. The number of atoms per cm’ is
4.4x10%. Inserting these values into Eq. 2.22 gives a Darwin width of approximately 7.8

arcsec. If there are 1000 photons per second incident on the crystal from an external source

with a divergence of 0.1°, the number that would actually be channeled into the Borrmann

mode would be approximately 10.

2.7 The Internal Source and Multibeam Borrmann Modes

If attention is turned again to the internal source problem, the situation arises where
the source is radiating into 47 steradians and therefore should excite all possible reflections
that lie on the Ewald sphere which, with the proper symmetry, should produce a multibeam
Borrmann mode. The complication to this process is that, practically, there must be enough
activity such that an appreciable amount of radiation has the possibility to be channeled into
one of these Bragg reflections. A one millicurie source placed inside a crystal will produce
3.7x107 photons (actually disintegrations) per second into 47 steradians. If the area of a
Bragg reflection is considered (Darwin width times vertical divergence), it is easily shown
that only a small amount of flux actually contributes to the diffracted intensity. This means

that a relatively large amount of activity must be introduced into the crystal, especially if
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there are any other loss factors present, such as photo-ionization or internal conversion, in

order to produce a reasonable counting rate at the detector.
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Chapter Three

The Search for the Nuclear Borrmann Effect

3.1 Introduction

The experimental work concerning the nuclear Borrmann effect involved the use of
two different isotopes, *’Fe and Ge. Most of the experiments were done using *Ge due
to the highly perfect single crystals for which germanium is known. In order to observe a
nuclear Borrmann effect, there were three criteria that had to be met. These were 1) highly
perfect single crystals (required from a dynamical diffraction aspect), 2) an isotope with a
Mossbauer effect at room temperature (to minimize complications with cooling the sample
that may have resulted in damage to the crystal lattice), and 3) a readily available radioactive
parent with a usable half-life. Some, if not all, of these conditions are present in both of the

isotopes selected.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.2  TIron Single Crystals

The experimental effort began with a study of natural Fe crystals doped with *'Co.
Even though natural Fe crystals are generally known to be of poor crystallographic quality,
this isotope has a very large Mossbauer effect at room temperature. Two Fe single crystals
that were cut from a (100) oriented boule of natural iron were purchased from Monocrystals
Corp. These crystals were 1 mm and 0.5 mm thick. Orientation of the crystals was
confirmed through Laue back scattering photographs taken at the National Synchrotron Light
Source (NSLS) at Brookhaven National Laboratory (BNL).

Both crystals were doped with 1 mCi of *’Co in a 1/8th inch spot on one side of the
crystal. This was done by Isotope Products Corp. The doping procedure involved drying
liquid CoCl onto the crystal surface. The crystals were then annealed in flowing hydrogen
at 800°C for one half hour. After cooling to room temperature, the active spot was coated
with a thin plastic film to prevent the activity from flaking off.

A pulse-height spectrum was collected for the radiation coming from the un-doped
side of the ’Co doped Fe single crystal. The results are shown in Fig. 3.1. The spectrum
clearly shows a peak corresponding to the 14.4 keV gamma-ray coming from the *’Fe decay.
This suspicious peak was found to be caused by contamination of the undoped side of the
crystal. To prove contamination existed, the undoped side of the crystal was etched four
separate times in a 5% nitric acid and 95% alcohol solution to remove any activity that may
have been on the surface. After each etching process, a pulse-height spectrum was collected.
The 14.4 keV peak diminished with each etching. This was a clear indication that a small

amount of activity was now inadvertently on the wrong side of the crystal. The etching
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Fig. 3.1 Pulse-height spectrum showing the transmitted *’Fe radiation. A pulse-height

spectrum from a standard *’Co source is superimposed on the graph to help show the

locations of the peaks.
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process was then continued until there was no significant change in the pulse-height
spectrum (i.e. the 14.4 keV peak had disappeared). After cleaning the undoped side of the
Fe single crystals, some preliminary scans to search for the Borrmann effect were performed.
These experiments produced inconclusive results.

Since the iron single crystals were purchased and doped through commercial
vendors, little preliminary testing was done to determine the crystals’ ability to support a
Borrmann effect. In addition, the equipment necessary to test the crystals was not readily
accessible in the laboratory at that time. Therefore, an attempt was made to test the crystals
using synchrotron radiation at the NSLS at BNL.

So-called “white” synchrotron radiation was used as the input signal to generate Laue
diffraction photographs. As the radiation traveled through the crystal, it diffracted according
to Bragg’s Law. In addition, a hard component (high energy) of the incident beam passed
straight through the crystal and produced an intensity maximum exposure point on the film
(Fig.3.2). The Laue diffraction spots were measured along the plane of the film relative to
this maximum exposure point. With the diffraction spot measurements and the known
crystal-to-film distance, it was possible to calculate the diffraction angle associated with the
Laue spots. This angle was then used with the accepted lattice spacing for Fe crystals to
calculate the energy of the photons that produced the Laue spots. Some of the diffracted
spots produced corresponded to some multiple of near 14.4 keV radiation. This was
interesting because, the nuclear Borrmann effect in *’Fe uses the 14.4 keV gamma ray from
the decay of the first excited state. However, in the Laue pictures there was no distinction

between actual 14.4 keV photons and higher harmonics of 14.4 keV photons. It was
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Fig 3.2 Laue transmission photograph. The crystal being used is one of the Co

doped Fe single crystals.
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impractical to determine the exact composition of the Laue diffracted beams because the
detectors capable of resolving these photo peaks are incapable of handling the high photon
flux present in the diffracted beams.

Even though specific photon energies could not be determined, some inferences may
be made regarding the source of the Laue spots. First, iron crystals are generally known to
be of poor quality®. If this supposition proved to be true, it would imply that higher
harmonics were responsible for producing the Laue spots. This implication is based on the
relationship between photon energy and photoelectric absorption. Higher energy photons
effectively make the material optically thinner and are therefore less likely to get absorbed.
Conversely, lower energy photons are more likely to be absorbed within the material because
the photoelectric cross section is higher. With higher energy photons, the crystal is still
capable of diffracting the radiation, however the crystal is treated in a kinematical sense
rather than a dynamical sense.

Secondly, x-ray film is more sensitive to lower energy photons. If the Laue spots had
been produced by 14.4 keV radiation, the exposure time should have been relatively short.
Instead, approximately 15 minutes was required to produce any exposure on the film. The
requisite long exposure time again suggests that the Laue spots were produced by higher
energy photons.

Some elementary x-ray topography was also performed on these crystals. This
technique passes x radiation through the crystal at a Bragg angle. The Laue spot then
recorded on a film plate is scrutinized as to size and content. If the Laue spot is studied

carefully under a microscope, dislocations in the lattice can be seen inside the spot (Fig. 3.3).

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Fig. 3.3 X-ray topography photograph. The “circular” objects in the photograph are

dislocations within the lattice structure of the crystal.
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Also, if the horizontal and vertical size of the incident beam is known, then the Laue spot
should preserve this size if the lattice is “perfect”. On the basis of the results of these
experimental tests, the Fe crystals were judged to be of poor quality and not worth further
study.

The first results obtained with these Fe single crystals (primarily dealing with “time-
filtering” studies addressed in the next section) produced some criticism about the lack of
knowledge concerning the exact condition of the samples before and after the doping
process. Therefore, it was deemed necessary to perform the doping and subsequent testing
of the samples in our laboratory, as opposed to having an outside source perform the doping
and testing. Since this research required the use of single crystals of high crystallographic
perfection (difficult to obtain in Fe), a switch to Ge seemed to be an obvious choice.
Additionally, Ge does have a small but observable Mossbauer effect at room temperature,

a radioactive parent with a useable half life, and was readily obtainable.

3.3 Ge Single Crystal: Sample Preparation

3.3.1 Origins of the Ge Single Crystals

The Ge single crystals were obtained from several different sources. Two were

purchased from Atomerge Inc., one with a (100) orientation (crystal #Gel) and the other

with a (111) orientation (unlabeled). Two others were obtained from National Institute of

Standards and Technology (crystals #Ge4 and #Ge5) courtesy of Dr. Richard Deslattes and
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Dr. Ernest Kessler. Both of these crystals were (111) orientation. The remainder (crystals
#Ge2 and #Ge3) were cut from a boule (100) supplied by Dr. Peter Siddons from the

National Synchrotron Light Source at Brookhaven National Laboratory (BNL).

3.3.2 The Cutting Process

Prior to cutting any crystal to a desired orientation, the exact orientation of the crystal
must first be known. This is usually done through electronic means instead of Laue back
scattering photographs, because the electronic measurements have the potential to be much
more accurate. To orient any crystal through electronic means requires performing a series
of rocking curves. A rocking curve is a measurement of diffracted intensity as a function of
incident angle. The crystal is usually mounted in a holder with the detector located at an
angle 20; (twice the Bragg angle), measured with respect to the incident beam direction.
The crystal is then rotated through the Bragg angle, about an axis perpendicular to the plane
defined by the detector and incident radiation (Fig. 3.4).

For orientation purposes, the crystal samples were mounted in a four-circle
goniometer consisting of an Eulerian cradle mounted on a two-circle stage. The entire
system was computer controlled through stepper motors, which allowed precision movement
and high reproducibility with respect to the angle measurements. The Eulerian cradle
allowed a two-axis movement about the axes % and ¢. The y axis is the rotation of the
crystal mount about the outside circle of the eulerian cradle. The ¢ axis is a rotation of the

crystal mount structure about itself within the cradle circle. The two-circle stage allowed
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Fig 3.4 Schematic representation of the procedure for measuring a rocking curve. The
detector is held fixed while the crystal is rotated about an axis perpendicular to the plane

defined by the incident beam and the diffracted beam.
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a rotation of the Eulerian cradle and provided an arm for which a detector could be mounted
and rotated independently of the cradle axis. (Fig. 3.5).

The Ge boule supplied by BNL was oriented and cut using a device known as a
barrel mount®. The barrel mount consists of a crystal mount which can pivot in two
directions perpendicular to each other, corresponding to a horizontal (y = 0°, 180°) and
vertical (y = 90°, 270°) adjustment. This allows for dynamic orientation of the crystal face
while in the path of the x-ray beam. The barrel holder was held in place in the x-ray
goniometer by means of a V-block (Fig. 3.6).

A rocking curve was taken for x = 0° and the center of the Bragg peak was
measured. The barrel holder was then rotated 180° and another rocking curve was taken to
find the Bragg peak for this position. The difference between these two Bragg peak
positions was calculated, and the crystal was placed at an angle centered between the two.
The horizontal adjustment on the barrel holder was then used to adjust the orientation of the
crystal such that it produced a Bragg peak at this centered, pre-determined angle. This first
step aligned the crystal with respect to the barrel axis in the horizontal plane. In order to
align the crystal in the vertical plane, the barrel holder was rotated 90° and the procedure
repeated at settings of 90° and 270°. When these two steps were completed, it was possible
to rotate the barrel holder about the barrel axis 360° without straying from the Bragg peak.
The final result of this procedure was the alignment of the crystallographic axis of the crystal
face with the barrel holder axis. With this alignment accomplished, the barrel holder could
be transplanted to a diamond saw.

To cut the crystal, an identical V-block was mounted on a diamond saw such that the
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Fig. 3.5 Block diagram defining the angles used on the goniometer. The 0 axis
corresponds to a rotation about the crystal mount. The ¥ axis is a rotation about the axis

of the crystal face, and 260 is the angle of the detector.
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Fig. 3.6 Barrel holder used to orient and cut the Ge single crystals. The barrel holder fits

into a V-block that helps keep it stationary during cutting and orientation.
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axis of the V-block was perpendicular to the saw blade. The barrel holder was then
transplanted from the goniometer V-block to the diamond saw V-block. The resulting cut
produced two wafers that were approximately 1 mm thick and oriented with a face axis of
(100) (crystals #Ge2 and #Ge3).

To rid the crystal faces of surface damage from the saw blade, 600 grit sandpaper was
used to even the affected surfaces. To further smooth the crystals, they were then rubbed
with a 1 um polishing board. The next step was to chemically etch the crystals with a
solution of 5% hydrofluoric acid in 95% nitric acid. This etching process was controlled by
placing the etching container in a water bath. Continuous agitation was required to minimize
any etch pits on the crystal surface. The etching process removed material at a rate of

approximately 1 pm per 10 minutes.

3.3.3 Alignment

The single crystals were aligned in the goniometer much the same way they were
aligned for cutting. Putty was used to hold the wafer was held in place on the goniometer
head. The advantage of using putty, over other mechanical means, was the absence of any
strain on the crystal lattice. For the horizontal alignment, Bragg reflections from the face
of the crystal were measured for  angles of 0° and 180°. The difference between the two
Bragg peaks was compensated for by adding or subtracting half of the difference angle in
the ¢ axis. Once this was completed, the crystal was aligned horizontally with respect to the

axis of the goniometer.
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To align the crystal axis with the goniometer axis in the vertical direction, ideally one
would wish to use the x angles 90° and 270°. However, this was not possible due to
interference of the goniometer structure with the detector. Therefore, rocking curves for
= -+/- 15° were measured to complete the vertical alignment. This alternative is acceptable
because any difference in the Bragg peak positions would be due to the vertical component
only, since the horizontal component had already been adjusted. The difference in the Bragg
peaks can be adjusted by rotating the “tip” angle adjustment on the goniometer head.

As a final test of alignment, the crystal was held at the proper Bragg angle and
rotated about the  axis. Once the Bragg peak was observed as the crystal was rotated, the

crystallographic axis could be considered aligned with the goniometer axis.

3.3.4 Testing for Borrmann Effect - External X-Ray Source

Once the crystal was aligned in the goniometer, it was possible to test the capability
of the crystal to support a Borrmann mode. The testing procedure began with the positioning
of the crystal and the detector at the proper O and 20 angle, respectively, for Laue
diffraction. The crystal was then rotated about the ) axis and the diffracted radiation
intensity measured as a function of angle (Fig. 3.7). If the crystal were perfect enough to
support a Borrmann mode, an increase in the intensity would occur when the diffraction
planes were rotated into proper alignment. For crystal #GeS5, using Mo K, x-rays at 17 keV
for a (220) reflection, the Bragg angle is 10.25°. Since this crystal had a three-fold

symmetry axis about the (111) axis, it should have produced six peaks as the crystal was
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Fig. 3.7 Scan about the ¥ angle to search for Borrmann transmissions. The crystal is
oriented in the Laue geometry and rotated about the face axis. As the planes become

aligned, the Bragg condition is satisfied, and an intensity peak is recorded in the detector.
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rotated 360° about the y axis. The experimental results are shown in Fig. 3.8. This crystal
was approximately 0.55 mm thick, which corresponds to an absorption coefficient of ut=15
(for 17 keV radiation). Therefore, calculating the decrease in intensity due to electronic

absorption,

—=e M=3x1077

little to no radiation should have been able to propagate through the crystal. However, as
the experimental results clearly show peaks in the  scan, the Borrmann mode was observed
in crystal #Ge5. Similar results were obtained with each of the other Ge crystals tested.

Thus, we can say that all of our samples were perfect enough to support the Borrmann effect.

3.4 AsDoped Ge Single Crystal Source Preparation

Prior to this work, ™As had not been electroplated onto a Ge crystal,
Experimentation was done to determine such a possibility. Nickel was first electroplated
onto Ge as a proof of principle experiment to show that elements could be electroplated onto
Ge surfaces. Next, natural As was used and was also successful. Since natural As could be
electroplated onto a Ge surface, there was high confidence that the radioactive As would
electroplate equally as well.

The optimal thickness for observation of the Borrmann mode in the Ge crystals for

the 13.26 keV gamma ray was calculated to be 0.5 mm. Since most of our crystals were on
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Fig. 3.8 Borrmann scan of the Ge (111) crystal showing the three-fold symmetry axis.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



o < D DG P

PVC

Copper Wire —>

Fig. 3.9 Schematic of the electroplating cell used to apply radioactive *As onto the Ge

single crystal.
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the order of 1 mm, thinning was required. This thinning was accomplished by etching the
crystal in 10% HF in 90% HNO, for 20 minutes intervals. After the etching was completed
such that the crystals were of the predetermined thickness, they were placed in an
electroplating cell constructed from Polyvinyl Chloride (PVC). The cell consisted of two
pieces of PVC round stock with a groove milled about the center of each piece to hold an O-
ring. The crystal was placed between the two O-rings and the two sides of the electroplating
cell were clamped together. The O-rings served two purposes: the first was to apply even
pressure on the crystal to minimize lattice strain during the electroplating process, and the
second was to consirain the As solution to a small area on the crystal. A copper elecirode
was passed through a hole in the bottom piece of the plating cell and placed in contact with
the Ge crystal. Another electrode made of platinum, was placed into the plating solution.
A schematic representation of the plating cell is displayed in Fig. 3.9.

The As was purchased from Los Alamos National Laboratory and came ina 0.1 M
HCl solution. Before plating, the pH of the As solution was adjusted to approximately 10
by adding stock NH,OH to the As. Once the solution was transferred to the plating cell, a
DC power supply was attached to the electrodes and the voltage adjusted until 1 A/cm? of
current was flowing (for our applications and a plating area of 1/8 inch, the current was 75
mA). The first attempt showed it was necessary to agitate the solution, since bubbles would
form between the electrode and the Ge surface and effectively break the current path. This
was done by removing the plating solution with a syringe, returning the solution to the stock
solution, and then refilling the plating cell with the stock solution. This procedure was

repeated until the desired activity was plated onto the Ge crystal. Another effective solution
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was to taper the opening of the hole in which the solution was placed, allowing the gas
bubbles to escape around the sides of the electrode rather than becoming trapped under the
electrode.

The next step was to anneal the As into the Ge crystal. Our first few doped crystals
were placed in stainless steel boats with a recess milled in it to accommodate the crystals and
leave the surfaces flush with the top of the boats. Next, a stainless steel cover was placed
over the Ge crystals masking all of the crystal area except for the As spot. The boats were
then placed in a tube furnace and annealed for 1 hour at 100° C in a flowing Hydrogen-
Argon atmosphere. The temperature was then slowly ramped up to 800°C at a rate of about
7°C/min. The crystals were held at this temperature for 48 héurs and then slowly cooled.

After the annealing process, the source spot on the crystal was covered with a
protective coating of an acrylic enamel to keep the activity from flaking off. The crystal was
also etched on the "undoped side" to remove any activity that may have found its way to that
side during the annealing process. One undesirable outcome of this particular annealing
procedure was that just as much activity evaporated off of the surface as was driven into the
crystal. A much better approach was to effectively seal the activity inside the crystal. This
was accomplished by depositing a thin film of natural Ge over the electroplated radioactive
spot and then annealing according to the procedures outlined above to relieve any strains that
may have formed in the lattice.

The Ge thin film was deposited on the doped side of the crystal via vapor deposition
in an evacuation chamber. The chamber consisted of a bell jar attached to a diffusion and

roughing pump system. The natural Ge powder was placed in a tungsten boat with the
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radioactively doped crystal suspended above the boat. Once a vacuum of less than 5x10°
torr had been achieved, the Ge powder was heated to the melting point by passing ~10 amp
through the tungsten boat. The deposition rate was not measured, as the goal was to simply
place a covering over the active spot as opposed to controlling the absolute thickness of the
covering. Once the activity on the Ge crystal was completely covered, the crystal was
removed from the vacuum deposition chamber, placed in the goniometer, and once again

tested for the Borrmann effect.

3.5 7Ge Decay

The As-Ge decay not only produces the photon necessary for a nuclear Borrmann
effect, but also produces other photons that could be instrumental in confirming the
alignment of the crystal with respect to the goniometer system. First, As decays to Ge by
electron capture. This leaves the Ge in the second excited state along with the release of a
germanium x-ray from an electron filling in the hole left by the electron capture. The second
excited state decays by emission of a 53 keV gamma ray to the first excited state. This state
subsequently decays through emission of a 13.26 keV gamma ray or by internal conversion.
Internal conversion occurs when the excited nucleus transfers its energy directly to a core
electron and ejects the electron from the atom. The result is an electron with some kinetic
energy plus an x-ray formed when the resulting hole is filled by an electron. While only the
13.26 keV gamma ray will lead to a nuclear Borrmann effect, the other photons, specifically

the 53 keV photon, verify alignment when detected. Since the 53 keV gamma ray is high
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enough in energy that the crystal can be approximated by kinematical diffraction, many of

the complications of the dynamical theory will not be present.

3.6 Observation of Nuclear Borrmann Effect

A proof of principle experiment was performed, attempting to observe the Laue
diffracted 53 keV gamma ray, in order to verify the alignment of the Ge single crystal. Since
this photon has a relatively high energy, a Bragg peak in Laue geometry would not
necessarily be considered a Borrmann mode. However, a positive result, such as a Bragg
peak, would indicate that the crystal was capable of producing a diffraction process with an
internal source. To test for this, a rocking curve was measured and the results are shown in
Fig. 3.10.

This procedure involved setting the crystal at a fixed angle and rotating the detector
about the crystal through an angular range of 0° to 45°. One would expect to see an increase
in transmitted intensity as the detector passed through the Bragg peak. No such increase in
intensity was observed.

One interesting result of the rocking curve was a decrease in intensity corresponding
to an increase in angle. The decrease in intensity corresponded to an increase in the amount
of material through which the radiation had to travel as the angle increased, causing a larger
absorption coefficient. This suggested that the radiation reaching the detector had to traverse
through the crystal. While a diffracted peak was not observed, the rocking curve results

implied that the majority of the activity on the Ge crystal was concentrated on one side; i.e.,
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Fig. 3.10 Laue scan of the transmitted 53 keV radiation for a Ge (111) crystal. A Bragg
peak is expected at 3.35°. No peak is present, however the shape suggests the radiation
had to traverse the crystal since at larger angles the radiation had more material to travel

through.
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no contamination on the undoped side. If the undoped side was contaminated, the radiation
would have produced a flat background.

Another possible photon to study was the 10 keV x-ray produced from the internal
conversion process in the Ge decay. These experiments were not expected to produce any
discernible results, because the internal conversion process is not the sole source of Ge x-
rays. As stated earlier, there are also x-rays produced from the electron capture and from
photo ionization. Subsequent rocking curves confirmed this suspicion.

The actual nuclear Borrmann effect in Ge comes from the only gamma ray present
in the decay capable of supporting the effect, the 13.26 keV gamma ray. Similar rocking
curves to the ones described above were performed in an effort to observe the 13.26 keV
emission. Due to the high internal conversion coefficient, the count rates were extremely
small, on the order of 0.1 counts per second. In order to obtain statistically significant data,
long observation times were required. The results of the summed rocking curves are shown
in Fig. 3.11.

There is no obvious peak in the scan shown. Some possible explanations are: 1) poor
signal to noise, 2) insufficient activity, and 3) insufficient diffusion of the activity into the
crystal. The poor signal to noise problem could be eliminated by discriminating on the
detected radiation through polarization. This was not done due to insufficient equipment to
perform these measurements.

As for the problem of insufficient activity, the typical count rates achieved during the
Borrmann scans were on the order of 1/10" of a count per second. This dismal rate could

be increased simply by putting more activity into the crystal. Most of the crystals prepared
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Fig. 3.11 Borrmann scan of the 13.26 keV gamma ray. A peak should occur at 13.52°.

No peak is present which may be due to the small signal to noise ratio.
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in our laboratory were plated with about 1 mCi. This was due to the limited quantities that
were accessible. If the activity were increased, the signal to noise ratio would increase.

To verify the diffusion of activity into the crystal, a standard Mossbauer experiment
was performed using the doped crystal with an enriched Ge absorber. After one month of
collecting data, no Mossbauer effect was observed. Normally, this would lead to the
conclusion that the activity had not sufficiently diffused into the crystal. However, the
Mossbauer effect in Ge is very difficult to observe. Extreme care must be taken to ensure
that the source and absorber are magnetically shielded and all external vibrations have been
eliminated. The size of the Mossbauer effect in Ge is approximately 4% using an enriched
absorber’®. Comparing Ge to *’Fe, Ge has a resonance cross-section approximately three
orders of magnitude smaller than Fe. Due to the long lifetime of the first excited state in
*Ge, a very narrow resonance line width is produced. The earth’s magnetic field is strong
enough to de-tune the source and absorber by one line width, thus magnetic shielding is
required. Additionally, with such a small resonance line-width, minute relative vibrations
can easily cause the source and absorber to shift off resonance.

Mu metal was used around the Mssbauer drive to attempt to negate the earth’s
magnetic field. The Mossbauer transducer was also mounted on a 6,000 Ib. granite slab to
eliminate vibrations. To calibrate the transducer and to test the stability at a very low
velocity, a Mossbauer spectrum was taken using a ¥Co in Pd source and an enriched® Fe
foil. Since the Méssbauer parameters are well known for this combination, the velocity of
the drive could be easily calibrated.

Next, a single-line *’Co in Rh source and an enriched *’Fe in Rh absorber was used.
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The drive velocity was held at the same setting (approximately ten millimeters per second)
and a Mossbauer spectrum recorded. From this measurement, the pertinent parameters for
the source and absorber were obtained; namely the isomer shift between the source and the
absorber, the width of the resonance line, and the thickness of the absorber.

Finally, the drive velocity was lowered until the width of the *’Fe in Rh line spanned
the entire velocity range. This width, having been determined through the experiments
described above, allowed a re-calibration of the drive at these lower velocities. With the
lower drive velocities established and proven to be relatively stable, it was possible to run
the transducer at the speeds necessary to observe the Mossbauer effect in *Ge. The smallest
velocity obtainable was approximately +100 um/sec. The absorber being used had a
resonance line width of approximately 15 pm/sec. On the scale being used on the velocity
transducer, this would correspond to a measured width of approximately 7 channels on the
multi-channel scaler.

The calibration procedure above shows that our system was just capable of
measuring the *Ge Mossbauer. However, the parameters used above were for a “best” case

scenario. In reality the Mossbauer resonance is some what more difficult to observe.

3.7  Concluding Remarks

The sought for nuclear Borrmann effect was not observed in >Ge. The effect may

still be observable, if a polarizing crystal is used to discriminate against the background

noise. Additionally, the activity introduced into the crystal must be increased by a factor of
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ten. The position of the activity must also be determined through standard Mossbauer
techniques. This would entail the use of a Mdssbauer spectroscopy system specifically
designed for the Ge resonance.

A more likely candidate for successful observation of the nuclear Borrmann effect
would be some type of Fe crystal. As stated earlier, Fe crystals are generally known to be
of poor quality. The move toward Ge crystals was meant to solve the quality issues with Fe
crystals. However, if 3% silicon is added to Fe, much of this problem is said to be
eliminated”’. Also, as the Mossbauer effect is an essential criteria for generating a

nuclear Borrmann mode, Fe is more attractive than Ge due to its large Méssbauer effect.
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Chapter Four

Time Filtering

4.1 Introduction

The time dependence of radiation traveling through a nuclear-resonant material was
first described analytically by Hamermesh®® in 1960. This theory of the so-called “time-
filtering effect” treats the absorber as a collection of damped oscillators with a natural
frequency of w,, and a decay constant of 1/t, where T is the mean lifetime of the excited
state. As the radiation travels through this medium, each Fourier component is phase-shifted
and attenuated differently. Upon emergence from the absorber, the radiation has undergone
a shift in frequency space. Heuristically, this can be thought of as a Lorentzian line-shape
incident upon an absorbing medium. As the radiation propagates through this medium, the
line-shape is preferentially absorbed at the center and not at the wings. After leaving the
medium, the line-shape is shorter and broader than the original shape. From the time energy
uncertainty principle, this broadening of the line width signifies a decrease in the lifetime.

Thus, a “speed-up” in the decay will be observed.
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4.2 Theoretical Considerations

The quantitative description of time-filtering, now referred to as time-domain
Mossbauer spectroscopy is a classical frequency response problem. The treatment considers
the source radiation in the frequency domain. A medium response function “operates” on
the input signal and produces an output signal in the frequency domain. The medium
response function is an exponential function that has both a real and complex exponent to
allow for modification of the phase and amplitude of each Fourier component of the input

signal®.

Ll ®) = F(0)a, () 4.1

where F(w) is the dispersive medium response function. The transmitted intensity as
function of time is obtained by taking absolute value squared of the Fourier transform of

aoulpul(w) N

4.3  Mathematical Description

Determining the transmitted intensity in time-domain Mossbauer spectroscopy is a
relatively straightforward calculation. The basic method is borrowed from classical
dispersion theory by Hamermesh et al.** and is outlined below. The incident radiation,
which in this case is from a radioactive source, is considered to be a damped oscillator with

a natural decay time of t. Mathematically, this radioactive source term can be written as
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oL
ay=e’ (4.2)

where o, is the natural frequency of the transition. This amplitude can be re-expressed as
the Fourier transform of an amplitude that is a function of frequency (Eq. 4.3). This is
important because, as stated above, it is the frequency components that are modified as the

radiation propagates through the medium.

eiw

l +o0 ¢ +oo '
a()= dw = [dwa(w)e ™"
® Znif i f (©) (4.3)
- W-Wym— =
T
The medium is given a dispersive nature by allowing the dielectric constant to be a

complex quantity. This can be written as

€(w)=1+ r

(W0 -w? +i2) (4.4)
T

where @' is the resonant frequency of the absorber (taking into account any possible isomer
or second-order Doppler shift), w is the frequency of the incoming radiation, and ris the
mean lifetime of the excited state.

The propagation vector in the medium can be written as k=(w/c)e!?. If the equation
for € from above is inserted in this expression for the propagation vector k, the following
expression for the wavevector is obtained

k=2[1+“r—]1/2.

c (wg_w2+i9_) (45)
T

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



For the case of gamma rays, the frequency is on the order of 10" Hz. This allows for
an expansion of the above equation. Performing a Taylor series expansion and keeping only
the first term, the wavevector can be substituted into the medium equation.

The exponential equation for the medium, including dispersion, can be written as

follows:

a'(w)=a(w)e™ (4.6)
Substituting for the wavevector k, this becomes
a/(w)=a(w)exp{-2ibo[wi-w?+i2] ) 4.7)
T
where b is the defined as

be Nfod

Here, b is related to the nuclear attenuation coefficient. In this equation, N is the number of
nuclei per volume, fis the recoilless fraction, A is the decay constant, g, is the nuclear
resonant cross section, and d is the thickness of the absorber.

To determine the time dependent amplitude of the transmitted radiation, the equation

for transmitted frequency dependent amplitude is Fourier transformed according to Eq. 4.1.

1 et 2ibw
a'(d)= dw ex
® 21rif i Pl s 2 .w] (4.8)
0y -, -i—
2T T
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This integration is performed most easily in the complex plane. The results include a
summation over Bessel functions that converge differently relative to the amount of detuning

between the source and the absorber. These results are given below.

a'(?)=explio't —]}:[ Ao )]"(bt)zJ (2b%t%) (4.9)
or
a'(t)=explio't- -] -expi—°— +(0,- (oo)t]z( )bt "N (26 (4.10)
2t ("’o_“’o) "0 6=

The transmitted time dependent intensity is found by computing the absolute value squared
of the amplitudes. To further simplify the expressions, it is convenient to write the detuning
factor, w,-w,=Aw, and the nuclear resonance thickness parameter, B=4b/A. The results for

the two amplitudes are given below.

la/(t)[2=e T|Z[z Awt]"[B 27 B*T%)? @.11)

I 220 Tl —ewni +B+m-ﬁn_ﬁ_T-n/2 i ¥ay (2
(@D~ | -expitA@tTs E 13 VTP @2)

For large values of the detuning factor Aw, Eq. 4.11 converges very slowly. In such

cases, the second equation should be used. Mathematically, the convergence criteria can
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be written as follows. If

%%Q(BT)’/’ <1 (4.13)

is true, then Eq. 4.11 should be used. If

%A—f’(BD"’ >1 (4.14)

is true, then Eq. 4.12 should be used.

4.4  Example Curves

A few examples for different values of the nuclear thickness parameter, 3, and the
detuning factor, Aw, are shown to illustrate some of the characteristics of the time dependent
intensity of the transmitted gamma radiation. For small values of B (approximately = 1), the
timing curve departs from the natural decay exponential. Such a case is shown in Fig. 4.1.
For large values of B (approximately = 10), the Bessel functions tend to dominate the
intensity and cause a “beating” effect in the spectrum. Mathematically, this is due to the
Bessel function actually going to zero at some time greater than t=0. Heuristically speaking,
as the lineshape propagates through a very thick crystal and gets absorbed at the center, the
lineshape can get “eaten out” in the center and form a pseudo-two peak line shape. These
two peaks are then coherently added and beat against one another in time. One such curve

is shown in Fig. 4.2.
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Fig. 4.1 Time-filtering curve for =1 and Aw=0. The solid line is the natural “’Fe decay.
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Fig. 4.2 Time-filtering curve for =10 and Aw=0. The solid line is the ’Fe natural

decay.
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Large values of the detuning factor cause the intensity to oscillate about the normal
exponential decay (Fig. 4.3). This is a surprising result showing that, at certain times, more
radiation exists after traveling through the absorber than would exist if the absorber were not
present. As the detuning factor is increased, the time dependent intensity oscillates with
shorter and shorter times, so that ultimately this behavior approaches the natural exponential

decay.
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Fig. 4.3 Time-filtering curve for =10 and Aw=7. The solid line is the *’Fe natural
decay. The time-filtering curve oscillates about the exponential curve. Notice that at
very early times, more radiation is present when a filter is in place that would be if the

filter were not present.
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Chapter Five

Experimental Time Filtering

5.1 Introduction

The effort to observe time-filtering of gamma radiation was concentrated on two
isotopes, namely Ge and Fe. The "Ge was used since this was the focus of the Borrmann
effect studies. A positive observation of time-filtering in our samples could be used to
distinguish between a Borrmann mode and background noise since any radiation traveling
through the thick crystal had to traverse nuclear resonant material, thus undergoing time-
filtering effects. The *’Fe was studied because of the large Mossbauer effect this isotope is
known to exhibit. By studying time filtering in *’Fe, some basic background knowledge
could be gained that could later be applied to the "*Ge case.

In both ®Ge and *'Fe, the parent nuclei can decay through a gamma-gamma cascade.
This 1s very conducive to timing experiments, since in both cases a precursor event allows
for the exact determination of the formation of the level of interest. For example, ’Co
decays to *'Fe through electron capture leaving *’Fe in the second excited state. This second

excited state can decay in one of two possible branches. The first possibility is a transition
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directly to the ground state through the emission of a 136 keV gamma ray. The isotope will
decay through this branch only 10% of the time. The other path of decay is the one of
interest. This branch of decay produces a 122 keV photon associated with a transition from
the second excited state to the first excited state. The first excited state will then decay to
the ground state. This last transition also has two possible modes of decay. The first is by
emission of a 14.4 keV gamma-ray. This is the well know ’Fe Mossbauer transition. The
second mode of decay is the process of internal conversion. When in the excited state, it is
possible for the nucleus to give all of its energy directly to a core electron. The result is an
ejected electron with a kinetic energy equal to the energy of the excited nuclear level minus
the binding energy of the electron. Additionally, an x-ray will be emitted due to the filling
of the hole, created by the internal conversion process, by an outer shell electron. A
schematic of the *’Co-""Fe decay is shown in Fig. 5.1.

For the As-Ge case, the situation is much the same. A schematic of the decay is
displayed in Fig. 5.2. "As decays to Ge by electron capture. This also leaves ”*Ge in the
second excited state. The photon emitted when the nucleus makes a transition to the first
excited state is 53 keV. Again, as with the *'Fe case, the first excited state has the same two
modes of decay: gamma-ray emission or internal conversion. The energy of the first excited
state is 13.26 keV. The most dramatic difference between the ’Fe and "Ge case is the value
of the internal conversion coefficient (c;) which is the ratio of internal conversion events to
gamma-ray emission events. For *’Fe every one out of nine transitions of the first excited
state is through gamma emission (@=8). For "Ge, the ratio is much worse, approximately

one out of every 1310 (¢=1309). Obviously, observing the gamma ray in the Ge is case
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Fig. 5.1 Schematic diagram of the *’Co-*"Fe decay.
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Fig. 5.2 Schematic diagram of the ?As-">Ge decay.
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more difficult, purely from a statistical standpoint. An illustration of this point is readily
observable in a pulse-height spectrum. Fig. 5.3 shows the K, and K; x ray photo peaks at
9.88 keV and 10.98 keV respectively. Only if this same pulse-height spectrum is drastically

enlarged (Fig. 5.4), can the 13.26 keV gamma-ray be observed.

5.2  Experimental Setup

In both the ?Ge and*’ Fe cases, the first gamma-ray in the cascade signifies the
formation of the first excited state. This photon strikes a detector and produces a pulse
which is then amplified using a standard spectroscopy amplifier. To discriminate in terms
of energy, a timing single channel analyzer (SCA) is used to set an energy window about the
desired photo-peak. The output of the SCA, which is a fast negative NIM spike, is used as
the start signal for a time-to-amplitude converter (TAC). The subsequent detection of the
photon emitted by the first excited state is processed in the same manner, and becomes the
stop signal in the TAC. The output of the TAC is a unipolar pulse whose height is
proportional to the time difference between the start and the stop pulses. This output is
subsequently recorded on a multichannel analyzer (MCA). A diagram of the experimental
set-up is shown in Fig. 5.5.

Originally, both detectors were Nal because of the reasonably fast (approximately
1 ns resolution time) timing characteristics associated with these types of detectors. It was
found that better energy resolution was required in order to discriminate the photo-peak from

the background noise. As a result, one of the detectors (the low-energy side) was replaced
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Fig. 5.3 Pulse-height spectrum of “Ge showing the K, and K, x-ray peaks.
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Fig. 5.4 Pulse-height spectrum showing the 13.26 keV "Ge gamma ray.
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Fig. 5.5 Schematic of the coincidence setup. For some cases, the low energy side of the

circuit used a Ge solid state detector instead of a Nal detector.
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by a Ge solid state detector. These detectors are known to be slower that Nal because of the
longer pulse collection time inherent with solid state detectors.

Adding the Ge solid state detector in one branch of the coincidence circuit would
make the timing resolution of the system worse, so special care was taken to reduce the
timing characteristics within other parts of the circuit. A series of natural *’Fe lifetime
curves were recorded while changing components within the coincidence apparatus. This
was done in order to find the slowest component within the circuit. No single component
was found to make a significant impact on the timing resolution. Experimentally it was
found that the most efficient way to improve the timing resolution and maintain acceptable
energy resolution was to simply reduce the shaping time of the amplifiers to their lowest
possible setting while using the Ge solid state detectors.

In some cases it was necessary to invert the inputs for the TAC. This is a much more
efficient way to run the system when the "normal" stop count rate is much smaller than the
start rate. If the input was connected in the normal manner during this situation, the
spectroscopy system would miss some coincidence counts. For example, a start may initiate
the TAC sweep with no valid stop to follow. In the Ge case, if a 53 keV photon starts the
TAC sweep, it may run to the end of the time scale before a 13.26 keV photon is detected,
as there are far fewer 13.26 keV photons being emitted from the source. During this sweep,
a true coincidence gamma-gamma pair may be emitted. Since the TAC was already started
by another event, however, the event will either be missed or (if the 13.26 keV photon is
collected and stops the system) an uncorrelated coincidence (accidental coincidence) will

be generated. This will either increase the dead time of the system (when a valid stop is not
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generated) or will simply add to the background of the spectrum (when an uncorrelated stop
is generated). To reduce this problem, the inputs are reversed*'. This ensures that the TAC
is started on a 13.26 keV photon, which will always be considered a “good” start.
Reversing the inputs in a delayed coincidence system is very simple process. First
the system must be run in the "normal" forward setting such that a timing curve can be
generated. This involves setting the delays in each branch of the coincidence circuit
properly such that the timing curve is correctly displayed on an MCA (i.e. the zero of the
timing curve is displayed on the MCA). This process is done to establish a reference point
from which to add an artificial delay into the coincidence circuit. Next, a delay must be
added into the normal "start" side of the coincidence circuit. The amount of delay
corresponds to the full time scale that is set on the TAC. Then reversing the inputs for the
TAC (start to stop and stop to start) will produce a spectrum that runs "backwards", such that
time t=0 is on the right instead of the left. During set-up, it is best to add a small amount of
delay into the start signal when running in the forward mode, or remove a little delay when
running in a reverse mode. This allows some of the accidental background to be recorded
for time less than t=0, relative to the coincidence event, so that the background count rate

parameter can be easily extracted for the fitting process.

5.3  Fitting and Analysis Procedure

The data were fit using a modified form of the Lynch, Holland and Hamermesh

treatment described in Chapter 4. In this theoretical treatment, all of the radiation is
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considered to be emitted and absorbed recoillessly. In reality there are some recoil
contributions that must also be included. The fitting equation used in the program was the
sum of two separate contributions. First, there is a contribution from the Lynch, Holland,
and Hamermesh time-filtering calculation corresponding to the recoilless events. This
portion is weighted by the recoilless fraction £ Second, there is a contribution from the
source that is emitted with recoil (/-f). By emitting with recoil, the photon energy is
diminished by the recoil energy and is therefore not on resonance with the absorber. This
component will travel through the absorber and be attenuated by ordinary electronic means.
The time characteristics of the radiation reaching the detector from this contribution will be

the normal natural decaying exponential. The function used to fit the data is givenin Eq. 5.1.

t

1=pe I3, s aa Ly G - aope s.)

n=0

Once these pieces are added together incoherently, the sum is convoluted with a
gaussian function which represents the resolving time of the system. The convolution is
performed by taking the Fourier transform of both functions; the time filtering contributions
and the gaussian function using the Fatlung theorem. Next the two Fourier transforms are
multiplied together, and the inverse Fourier transform of the result is computed. After the
convolution, a constant background is added along with a gaussian function that represents
any prompt events that have been recorded as a result of Compton scattering events. To give
some idea of how close these simulations are to the actual experimental data, a value of x>

is calculated. The FORTRAN source code of the fitting program is given in Appendix B.
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The fitted data are given in the following sections.

54  Gamma Ray Time Filtering for “Ge

The sources for the »Ge time-filtering experiments were made in our laboratory as
described in Chapter Three. In order to keep the accidental count rate small, the sources
were allowed to age through a few half-lives to decrease the relative activity in the crystal
sources. Additionally, the count rate in the stop leg of the coincidence circuit was adjusted
(through altering the source to detector distance) such that the count rate did not exceed the
inverse of the TAC full scale. If the stop rate were higher than this, statistically the TAC
would never be allowed to travel to the full scale before some event would produce a stop
pulse. This produces a nonlinear background in the timing spectrum that is difficult to
model during analysis. An experiment was performed to show this effect. A pulser was
used to start the TAC while a strong radioactive source was used to stop it. Having the two
source signal independent of each other ensured that all counts would be accidental and
would only produce a background shape. The results are given in Fig. 5.6.

The long life time of Ge required the use of a long time scale on the TAC.
Unfortunately, this made the coincidence count rates worse than would be expected because
the stop count rate had to be adjusted to a very small rate to avoid the clipping problem just
discussed.

The absorber used in these timing experiments was an enriched "Ge single crystal

of (111) orientation that was the same absorber used by Loren Pfeiffer in his pioneering
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Fig. 5.6 Background shape of coincidence measurements when the stop rate is larger than

the inverse of the full scale time range set on the TAC.
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Fig. 5.7 Time-filtering Curve using the 13.26 keV ”Ge gamma ray. The count rate is

exceedingly poor partially due to the high internal conversion coefficient.
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Fig. 5.8 A plot of the residuals from the time-filtering fit for the Ge 13.26 keV timing

curve.
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Fig. 5.8 A plot of the residuals from the time-filtering fit for the Ge 13.26 keV timing

curve.
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curve above background, Prompt is the amplitude of the prompt curve added to the fit, f'is
the recoilless fraction, and the isomer shift is the detuning of the emitted line centroid with

respect to the absorption line centroid measured in linewidths.

Table 5.1 Ge Gamma-Ray Fit Parameters

Parameters | Time Resolution T B | Amp. |Prompt | f | Isomer Shift
Fit Values 33 ns 4.26 12| 20 340 88 0.0
Calculated -- 426 |.59 -- - 88 0.0

The statistics of the 13.26 keV gamma ray time filtering spectrum are obviously poor, due
to the high internal conversion coefficient for Ge and the adjustments made to the stop rate.
The fit parameters given in Table 5.1 have very large errors because of the poor statistics.
With the gamma-ray giving such poor results, the inelastic conversion channel was then
explored to investigate the presence, if any, of a time filtering effect in this mode of decay.
This should at least provide a factor of 1000 improvement to the count rate. If some time
filtering information could be found in this inelastic process, this would provide a new
method for measuring solid state effects using time domain Mossbauer spectroscopy. Also,

Ge is a good candidate for this process due to its high internal conversion coefficient.

5.5 X-Ray Time Filtering for *Ge

The experimental set-up for this observation was identical to the gamma-ray

observation, except that the energy window for the low energy side of the coincidence circuit
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had to be moved such that it was centered about the 9.88 keV x-ray. The results of the time
filtering x-ray curve are displayed in Fig. 5.9 and the residuals from the fit are shown in Fig.
5.10. The data were fit using the same equation as with the gamma ray case. The
parameters from the fit are given in Table 5.2. These parameters have the same definitions

as the values in Table 5.1.

Table 5.2 Ge X-Ray Fit Parameters

Parameters | Time Resolution T B Amp. | Prompt | f | isomer shift
Fit Values 33 ns 426 | 0.18 | 1650 | 4410 88 0.0
Calculated - 4.26 | 0.59 - -- 88 0.0

The count rates did improve significantly (collection time is approximately 10 days) while
using the 9.88 keV x ray as the stop event, however, no time filtering information appeared
in the Ge x-ray lifetime curve. The small value for § could normally be interpreted as a time
filtering effect however, given the poor statistics of the data, this is result can not be trusted,
and is therefore inconclusive. This inconclusive result prompted questions about whether
the source and absorber were on resonance with respect to one another, or whether there was
no time filtering information in the inelastic channel. To investigate this later supposition,
*Fe time filtering experiments were performed, since Fe is known to have a large, and easily

observable Mossbauer effect.
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Fig. 5.9 Time-filtering curve using the 9.88 keV "Ge x-ray.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



200

150

Residuals

&
o
|

-100

-150

-200

10

Time (ns)

Fig. 5.10 Plot of the residuals from the Ge x-ray time-filtering fit.
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5.6  Iron Time Filtering: The Gamma Ray Case

As with the Ge case, the experiment was set up to measure the time-filtering effect
in Fe using the same delayed coincidence system. The first experimental run concentrated
efforts to observe time-filtering effects using the elastic or gamma-ray channel. This
allowed the determine some experimental parameters such as the nuclear resonant thickness,
the added delay in the system, and the timing resolution of the coincidence circuit. The high
and low energy windows were reset to 122 keV and 14.4 keV respectively. Additionally,
the time scale on the TAC was set to 500 ns (full scale) to coincide with the Fe natural
lifetime (141 ns).

The source used in these experiments was ’Co in Rhodium, purchased from Isotope
Products. When it was actually used in these experiments, the source strength was
approximately 0.008 mCi. Since the source was in a Rhodium matrix, the nuclear levels
should have had no hyperfine splitting, as there is no net magnetic field at the nuclear sites.
The absorber was 6 pm thick *'Fe in Rh foil. The foil was made of 30% Fe, of which 95%
was *'Fe. This foil was also purchased from Isotope Products.

Time filtering curves were collected using two detector setups. One setup used Nal
on both the start and the stop side of the TAC setup. In the second setup one of the Nal
detectors was replaced with a Ge solid state detector. The results for the two Nal detector
set-up are shown in Fig. 5.11 with the residuals from the fit shown in Fig. 5.12. The results
from the Ge detector set-up are shown in Fig. 5.13 with the residuals shown in Fig. 5.14.

The residuals show features that indicate the Hamermesh time-filtering theory may be
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Fig. 5.11 Plot of the *’Fe gamma-ray time-filtering curve using Nal on both branches of the

coincidence circuit.
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Fig 5.12 Plot of the residuals from the *’Fe time-filtering fit. These data are from the

spectrum taken with two Nal detectors in the coincidence circuit.
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Fig. 5.13 Time-filtering curve for *’Fe using a Ge solid state detector on one side of the

coincidence circuit. Special care was taken to reduce the resolution time of the circuit to

compensate for the slowness of the Ge detector.
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incomplete. The fit parameters for the *’Fe spectrum, found using the same fitting routine
as for Ge, are shown in Table 5.3. Again, the parameters in the table have the same

definitions as those in Table 5.1.

Table 5.3 *’Fe Gamma-Ray Fit Parameters

Parameters | Time Resolution | t(ns) | B Amp. |Prompt | f [ isomer shift

w/Ge det. 11 ns 141 24 | 3120 600 70 0.4

w/Nal det. 33 ns 141 24 | 22300 | 4800 60 0.4

The fit parameters extracted while using the time filtering program were in
reasonable agreement with results previously obtained for this source and absorber using
standard Doppler shifting Mossbauer absorption spectroscopy. Additionally the parameters

were in reasonable agreement when using the two different detector schemes.

3.7  Iron Time Filtering: The X Ray Case

With the parameters for the source and absorber known, and the coincidence system
calibrated, the time filtering x-ray measurements could be taken. A large prompt in the
timing curve appeared early in the experiment using the Nal detector setup. The amplitude
of the prompt was so large that it masked any time structure at times less than one lifetime.
In order to see the time structure at earlier times, this problem had to be eliminated (Fig.

5.15).

Elimination of this prompt required determining its origin. The first possibility was
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Fig. 5.15 Time-filtering curve using the 6.4 keV of *’Fe. This spectrum was collected with
Nal on both sides of the coincidence system. Some effort must be made to eliminate the

prompt that is present in the spectrum.
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a cross-talk between the detectors. Specifically, a 122 keV photon could Compton scatter
from one detector to the other. This seemed feasible because the source and absorber were
sandwiched between the two detectors. As a consequence, the detectors subtended a large
solid angle with respect to each other. Therefore, the Compton scattered radiation could
"slip" around the source and absorber. The first attempt to eliminate this possibility
involved embedding the source in a 1/4" thick piece of lead to provide collimation. Testing
on the embedded source still produced a prompt in the timing curve. Next, the Ge-detector
coincidence set-up was also tested in hopes of providing better energy discrimination against
the Compton scattered event. This still did not eliminate the prompt (Fig. 5.16).

An involved process of Compton scattering in the absorber combined with escape
peaks within the detectors was finally considered. Specifically, the 122 keV would enter the
Nal detector, ionizing an iodine atom. The x-ray from the iodine would then “escape” from
the Nal detector and Compton scatter in the absorber foil into the Ge detector. This photon
would then produce an escape peak in the Ge detector. These processes would produce
approximately a 90 keV photon in the Nal detector and a 14 keV photon in the Ge detector.
Since there is still one Nal detector in the system, and it has relatively poor energy
discrimination compared to the Ge detector, the 90 keV photon could still satisfy the energy
window in this leg of the coincidence circuit.

Experimental evidence was obtained by measuring a pulse-height spectrum with the
Ge detector during the collection of the time filtering spectrum. In the pulse-height spectrum
(Fig. 5.17), there clearly are photo peaks corresponding to the iodine ionization energies.

Considering there were no other sources of iodine in the system, detection of the iodine
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Fig. 5.16 Time-filtering curve for *’Fe using the 6.4 keV x-ray. The solid line is an attempt

at fitting by the Hamermesh theory.
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Fig. 5.17 Pulse-height spectrum showing the iodine x-rays that come from ionization of the

Nal detector.

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



peaks signify that the Nal scintillator was being ionized and that this radiation was able to
make its way to the Ge detector through the processes described above.

Another feature of the x-ray lifetime curves was a hint of some time-filtering
information. When looking at the pulse height spectrum of the radiation that must travel
through the absorber, it was clear that the 6.4 keV x-ray peak rides on a very large
background. To investigate the origin of this background and to gain some insight into the
Compton processes leading to the prompt peak, a timing curve was measured with the low
energy window set on the Compton background above the 6 keV Fe x-ray (centered about
8 keV). The surprising result is shown in Fig. 5.18. The strong time filtering characteristics
of this spectrum can be attributed to the 14 keV gamma rays Compton scattering in the
absorber into this lower energy window. Since this time filtering information is present in
the Compton background, it is obvious that this will also appear in the 6 keV x-ray timing
curve, as the background extends into the 6 keV photo peak. This contribution caused the
hint of the time filtering in the 6 keV spectrum.

The prompt was ultimately eliminated by reversing the Ge and Nal detectors. In this
new arrangement, the Ge detector was used to detect the high energy photon while the Nal
detector was used to detect the low energy side. With this set-up, it is not physically
possible to produce the prompt event by the procedure described above because the energy
discrimination on the high energy branch of the coincidence system is very good. Any
photon off by more than + 0.5 keV will not satisfy the energy requirements of the SCA
window.

With the prompt eliminated, the fitting of the x-ray spectrum was less complicated.
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Fig. 5.18 Time-filtering curve collected with the low energy windows set on the Compton

background.
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However, the spectrum was again complicated by the time-filtering spectrum contained in
the Compton background. A fit of the x-ray spectrum using the same theory as for the
gamma-ray is shown in Fig. 5.19. Superimposed on the curve is the natural lifetime of 141
ns. It is obvious that the curve does not follow the natural lifetime and that the classical
Hamermesh theory is not adequate for describing this process. This implies that a new or
modified theoretical approach must be developed.

In 1961 S. Harris® was able to show that the quantum mechanical representation of
time filtering produced the same Bessel type functions as the classical approach. An
advantage to the quantum mechanical theory is that it contains provisions for the inclusion
of the internal conversion or inelastic channel. Unfortunately, this part of the theory has not
been completed. Due to these experimental results, current work is being concentrated on
developing the remaining part of this theory*". At the time of this writing, the theory is still
not complete; however, preliminary results seem very promising.

The idea behind the quantum mechanical calculations is that the source would emit
a gamma-ray which is allowed to interact with the absorber to some degree. However, at
some point in the absorber, the gamma-ray is absorbed by a nucleus and internally
converted. The resulting released photon is no longer coherent with the incident radiation.
Provided this holds true, not only will this contribution be able to describe the inelastic
channel, but will also have a significant impact on the elastic, gamma-ray channel. Consider
the same process shown above, but rather than allowing the nucleus to internally convert,
the excited state emits a photon and the nucleus recoils. After recoil, the photon would no

longer resonant with the absorber. Additionally, the photon would no longer be coherent
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Fig. 5.19 Time-filtering curve using the 6.4 keV x-ray of *"Fe. The prompt has been

eliminated by switching the Ge solid state detector and the Nal detector.
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with the incident photon which is the essence of the classical optical calculation. In this
picture, the recoil gamma-ray time filtering spectrum should behave in the same manner as
the x-ray equivalent. This process is currently not included in any analysis involving time
filtering.

This modification to existing theory will have a large impact on the synchrotron
community currently using time-filtering with a synchrotron source. Most of the
synchrotron configurations consist of detectors with fast recoveries, and hence little or no
energy resolution. The recorded spectrum consists of any delayed photons that happen to
find their way into the detector. As has been shown in this research, there is a difference
between the elastic and inelastic timing channels which has not been taken into account in

the analysis of the synchrotron nuclear forward scattering experiments.
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Chapter Six

Summary, Conclusions and Future Directions

6.1 The Nuclear Borrmann Effect

In our experiments, the nuclear Borrmann effect was not observed in Ge. The
probable cause in this case was the sample preparation process, which did not allow for the
source nuclei to be placed in a “good” environment (i.e. no isomer shift due to a non-
identical chemical environment). Such an environment could be achieved by definitively
placing all of the radioactive nuclei inside the lattice of the crystal. This could be
accomplished by ion implantation and subsequent growth of the host crystal over the active
area. This would help in two ways: 1) the activity would be placed deep within the crystal,
and 2) the crystal growth over top of the implanted nuclei would effectively seal the nuclei
in the lattice of the crystal. Both improvements would ensure a minimum isomer shift
environment.

Another possible explaination for the unobserved nuclear Borrmann effect is that the

effect actually is occurring in our samples, and is simply masked by background radiation.
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If this is the case, polarization selection would help increase the signal to noise, since the
Borrmann mode is highly polarized. The polarization selection could be achieved through
the use of a silicon monochromator designed to reflect the 13.26 keV gamma rays at a 45°
Bragg angle. This monochromator could then be used on the radiation emitted from the
crystal to select a particular polarization.

Even though the nuclear Borrmann effect was not definitively observed, the criteria
and method for such an observation was established. Additionally, the sample preparation
and testing procedures were developed to aid in working with new and different samples in
the future.

In the future, focus should return to *Fe; specifically, some form of Fe-Si crystal.
These crystals are found to be of relatively high crystallographic quality which would
address the problem of the poor quality natural Fe single crystals. Also, *’Fe has the large,

well known, Mossbauer transition which is vital to a successful observation of this effect.

6.2  Time-Filtering Effect

The time-filtering effect does appear to be present in the inelastic conversion electron
channel. This surprising result could have a profound impact on nuclear forward scattering
using synchrotron radiation. Currently, most of the detection systems used in these types of
studies have little to no energy resolution. This implies that the detector cannot distinguish
between an Fe x-ray and a *’Fe gamma ray, both of which are present in nuclear forward

scattering. Preliminary theoretical work involving the conversion electron channel suggest,
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that these two modes of decay possess different time structures. If this is not accounted for
in time-domain Mossbauer spectroscopy, information obtained from the fitting of the timing

curves will be in error.

6.3 General Remarks

Gamma-ray optics is a field still in its infancy. The theoretical effort greatly
outweighs the experimental effort. If a gamma ray laser is to be developed, there are many
experiments to be performed. Specifically, many of the phenomena already observed in
atomic systems should be attempted with nuclear decaying systems, beginning with such
experiments as two photon excitation and level crossing experiments in order to
development a knowledge base of gamma-ray optical systems. These experiments would
provide some insight to potential problems and successes with other gamma-ray optical
studies. A drawback to these type of experiments is that they are not guaranteed successes.
However, the possible technological applications of a gamma-ray laser merit further

experimentation and study.
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Appendix A

The Two-Beam Borrmann Mode

Consider a wave incident on a plane of atoms as depicted in Fig A.1. As stated
above, a Fresnel zone will be constructed such that the path lengths of a wave traveling
along AOP will be A/2 longer than the path ABP. This condition will produce a Fresnel
zone that will be elliptical in shape. The differential electric field at the point P is then

given by

2 @Riet-Rey T
dE,=(—,—)20)e el A fdedn (A.1)

mc r‘_:n

In this equation, (e2/mc2) is the classical electron radius, f{20) is the angle dependent
atomic scattering factor for the atoms comprising the crystal, A is the wavelength of the
radiation, R, and r., are the source to scatterer and scatter to observation point radii
repsectively, and M is the number of atoms per area. This construction is generally used
when calculating the intensity from a perfect crystal that is oriented for a Bragg

reflection. Since we are interested in a Laue transmission experiment, we will use a
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Fig. A.1 The reflection of x rays from a plane can be described in terms of a Fresnel

zone. In this figure, the Fresnel zone in a horizontal plane.
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modified approach that was first described by Borie. Borie’s extension to Laue’s
treatment of the dynamical theory considers the Fresnel zone to be lying in the vertical
plane, perpendicular to the plane defined by the incident and diffracted plane, as opposed
to the horizontal plane. This is depicted in Fig A.2.

From Fig. A.2, the lengths of R, and r., can be expressed in terms of € and 1) by

the following equation

. . €2cos?0+n?
R€n=R"€ smﬂ+~—-ﬁ—n— (A2)
and
. . €2c0s?0+n?
Ten=T—€ s1n6+—Tn—. (A.3)
By adding R, and r,,, together and assuming R>>r we get,
) _ €?cos?0, +n’
R +r. =R+r-e(sin0, +sin6,) +—;— (A4)

In the vertical planes, the atoms are located at the positions €=nd and to nearly satisfy

Bragg’s law, the condition must exist such that

d(sin 6, +sin0,)=1 (A.5)

Using these relationships in the equation for the sun of R, and r,, the sum can be

€n
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Fig. A.2 Fresnel zone in the vertical planes. This was Borie’s extension to Laue’s

construction.
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substituted into the equation for the differential electric field. This is desirable because it
allow the differential to be expressed in terms of R and r and the integration variables €

and 7).

2 2 2
€ 0,+
@rilyfct-R +r-mh + e 271

2
dE =(—-—)f26)e " Mdedn (A.6)
mczren

Integrating this expression gives the value of the electric field, at a point P, scattered by

a single vertical Fresnel zone.

E =E,(ig)e 1] (A7)
where the g is given by
_, e? MA20)
g (mcz) - (A8)

The imaginary component comes from the integration over the contributions from the
different nuclei in the Fresnel zone. These contributions eifectively add up to give a total
phase shift in the electric field of /2 relative to an electric field generated by a scattering
at the point O.

It is now necessary to determine a recursion relationship for both the forward
diffracted and the diffracted waves so that the wavefields inside the crystal may be
summed. The phases of the forward diffracted and the diffracted waves may be written,

respectively, as
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2macosf, 2macosf,

1 _A.—_ > 2 Py (A'9)

The diffracted wave S, as depicted in Fig. A.3 can be written as a superposition of a
reflection beam T, and a transmission of S, provided the correct phase and scattering

factors are introduced. This is as follows

S =T (ig) +S._,(1+ig)e (A.10)
r °r r-1 0.

In a similar manner, the forward diffracted wave T,,; can be written as a superposition of

the forward diffracted wave T, and the diffracted wave S_,.

T,.=T(1+ig)e "+ _ (ige "% (A1)

Solving these equations for S,,, rewriting the indexing subscript r as r+1, and performing

these substitutions, we may obtain an expression that is just in terms of T,.

L TAvgge™ o 7,7 (leigge ™ A12)
r1 (lg)e 'i@l ‘"bz) r (lg)e 'i(¢1 *"bz) '
T, ,+Te "M g2+ (1+ig 1= T, (1+ig e "*'+e ™) (A13)
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N/ N/ N/
|
L Y e .

Fig. A.3 Schematic representation of the diffracted and forward diffracted wavefields
inside the crystal. This construction is useful for finding recursion relationships for the

forward diffracted and diffracted waves.
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Assuming the solution

T,=Tyx", (A.14)

this can be substituted into the equation for T. After substituting, the equation reduces to

a quadratic equation in x.

x?+[g?+ (1 +igyfle " =x (1+ig) (e rae ™ (A.15)

If we make the following abbreviations,

b=b+Ad, b=p-Ad, ¢, +d,=2¢ (A.16)

and

e g0z giog cosAd (A.17)

The quadratic equation can be simplified to

x?-xe " (1+ig)2cosAd +[g2 +(1 +ig,)*le =0 (A.18)

If we define the following relationship,

u=[g?+(1+ig,)’sin*Ap]'"” (A.19)
the equation can be solved for x by completing the square. This will give two solutions
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for x,

x, =e ®[(1 +ig)cos Ad +iu] (A.20)

x,=e (1 +ig,)cos A -iu] (A.21)

The most general solution for T, will be a sum of x, and x,. This summation is expressed

as follows:

T =T,(Cpx, +Cxy) (A.22)

Now it is necessary to use some initial condition in order to solve for the coefficients C,
and C,. Atr=0, T, = T(C,+C,) and there for C,+C,=1 . Also, since S,., =0 it follows T,=
Ty(1+ig0)e™. Substituting these into the above equation we get a second equational

relationship for the coefficients.

Cyx, +Cpx,=(1 +igy)e e (A.23)

Using these two constraints on C, and C,, we solve for C, and C, and substitute these into
the expression for T,. A general expression for T, in terms of the incident amplitude T, is

then obtained.

T,
,=?°([1 - sinAd(1+ig)ule, +[1 +sinAd(1 +ig,)ule,) (A24)

And likewise for an equational form for S_, in terms of x, and x,.
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S

r-1

. T
et (e —xy) (A.25)
2u

These two equations (Tr and Sr-1) give the amplitudes of the two wavefield components

inside the crystal for the most general case. Since we are interested in the case where the

Bragg condition is exactly satisfied, we can set A$p=0 and 0, =6,=0. The equations for T,
and S, then reduce to

Ifad

1 .
T =_?0e "4”[(1 +ig0 +ig) + (1 +ig0 -ig)] (A.26)

r

o Lo ibreer oL L
S _e "‘*’:?oe Tl +ig, +ig) - (1 +ig,-ig)"] (A.27)

which can be re-expressed in exponential form as

T =Z'2_Qe -i4>r[e ig,+8)r +ei(gu‘8)"] (A.28)

r

. T . N P
Sr_le—m:_ége—mr[el(go g)r_el(go g)r] . (A.29)

To allow for absorption we permit the scattering factors g and g, to be complex.
To a very good approximation, the imaginary part of the atomic scattering factor is angle

independent. Therefore, the imaginary part of the forward diffracted wave Af(0) is equal
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to the imaginary part of the diffracted wave Af(20).

g=g'+ig" g =g +igy (A.30)

The wave fields inside the crystal can be a superposition of two possible
configurations. This arises from considering the polarization of the each wave. The &
polarization is defined by an electric field vector which lies in the scattering plane where
the scattering plane is defined by the diffracted and forward diffracted wavevector. A
wave is considered o polarized when the electric fields are perpendicular to scattering
plane. By considering each case seperately, it is possible to determine a relationship
between the imaginary parts of the scattering amplitudes g and g,

For the m polarization case,

e? )Na).j(ze)cos29

g—(mc2 o (A31)
_, e  NaAf0)
& (ch) T (A32)
This implies that g,"=g"cos20.
For the o polarization case,
_, e NaAf(20)
g (mcz) 050 (A33)
g.=( e’ ) NaAf(0) A34
o " me? cos® (A.34)
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Which implies, for the o polarization case, g”’=g,”.
Substituting these relationships into the exponential expressions in the equations

for the wavefields, we get for the 7 polarization,

o @0 Or _ ile+gr  -gg/(1+cos20)r (A35)

. o ! 1/
oG _ igo=gr , g5 (1-cos20)r (A.36)

and for the o polarization case,

. L ! N,
oot er _ ey  gy2r (A37)

¢ @O _ i -gr , g (-Dr (A.38)

If we allow for the crystal to become very thick such that the radiation has to
traverse through many layers r, all of the exponential factors above vanish except the last
one. This is the Borrmann mode. Since each of these factors can be considered as a
different polarization, the surviving Borrmann mode is highly polarized in the o
polarization state. Substituting this surviving exponential factor into the equations for
the forward diffracted and diffracted electric field we get and expression for the forward

diffracted and diffracted wave field amplitudes.
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Appendix B

The FORTRAN Fitting Program SIMULATE

The FORTRAN fitting program SIMULATE, used to calculate the time dependent
intensity of the time filtering curves, took advantage of specialized subroutines in several
commercial packages. Specifically, Integrated Mathmatical and Statistic Library (IMSL)
was used for calculating the Bessel functions that are required when calculating the
Hamermesh theory. The equivalent subroutine in Numerical Recipes was also used as a test
of the IMSL routines. Both packages calculated the same results for the Bessel functions to
within 5%. To perform the convolution, another Numerical Recipes subroutine was used.
This subroutine calculated the convolution of two numerical arrays by taking the Fourier
transform of each data array (time-filtering contribution and a gaussian function),
multiplying the two Fourier transforms together, and then the inverse Fourier transform is
taken. After this, a prompt is added to the spectrum at a time equal to the added delay of the
coincidence system then followed by a back ground level. The results are written to a file.

SIMULATE is a generic FORTRAN program that will run on many platforms. The

majority of the runtime for this research was a IBM clone 486 machine.
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program simulate

real*8 tau,width,res(1024),e data(1024),back

real*8 ans1(1024),displace,d amp,xdata(1024),ydata(1024),f
real*8 chi,prom ampl,scale beta,dw,data2(1024),scale2
integer veclen,ndata

character*2 isotope

C i ssssss s ssssssrssnss

C  Call the initialization subroutine

G sramsassm s sssssssssssssssssssssssssssssssssssssssssssassnss

10 call init(tau,beta,width,back,displace,d amp,xdata,ydata,ndata,
1 prom ampl,f,dw,isotope)

G sammsnrssssssssssssssssossssssssossssissssosssossssssssssss
C  Call the gaussian subroutine

C”””””,",,’7,7’,’3"’777’”’”7!"7’7”7””,7”,7””””’

C  Call the timefiltering subroutine

................................................................

G mssssssismssssssssss i ssss s i s s ssssissssss
C  Call the decay function
Canasrsmmrssrssssssssssssssssssssssiosssssssossssssiosssssssss
call decay(data2,tau,displace,1.0,xdata)
G oranmmmrsmsmrsssssssssssssssssssossssssssosisssssssisssioss
C  Add and normalize these two functions
Cosmsmmnmrimssssisssssissssssssssssssssisssssssssssssosns

do 88 hh=1,512
e data(hh)=(f*e data(hh)/100.0)+((1.0-(f/100.0))*data2(hh))
88 continue

G osssmmmsmmmsssssrsmssssssrsmsssssmssssssossssis o s srsis oot
C Set data points beyond 513 to zero for FFT

C”””””),)”""’7’”3!""’,,",7"”’7”7’7’3””””,””’

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



do1=513,1024
e data(i)=0.
end do

scale=0.
do 13 ii=1,512
if(ans1(ii).gt.scale)scale=ans1(ii)
13 continue
C
do 14 jj=1,512
ans1(jj)=ans1(jj)*d amp/scale
14 continue

C  Add Background to the spectrum

s nsisssasrssssssssssossssssssssosssssosssssssssssssssssss
call backgrnd(ans1,back)

open(unit=21,file="sim4.out’,status='old")
chi=0

do I=1,512

write(21,*)xdata(l),ans1(1)
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end do
close(21)

do 60 nn=29,499
chi=chi+(ans1(nn)-ydata(nn))**2
60 continue
C
write(*,*)'CHI SQUARED =',chi
100 format(al)
stop
end
C
C**********************************************************************
C
subroutine gaussian(width,veclen,res,xdata)
real*8 width,res(1024),temp,pi,xdata(1024)
integer j,veclen,i,t
pi =3.2425927
t=1
=1

G mamsmsmmamsssrsmssssmssssssssssmssssssmsssssssnssssssissssosss

C  The gaussian function must be structured such

C  thatitis a periodic function. This is required

C by the FFT subroutine to prevent a “wrap around”
C  effect

C’”"""9,,,”,”"’)’3’,""!””7”’7”””’7””37),7””””””

10 arg=0.5*(xdata(t)/width)**2
if(arg.1t.10) then
res(j) = dexp(-arg)
j=jt1
else if{(arg.ge. 10).and.(xdata(t).gt.0)) then
goto 20
end if
t=t+ 1.
goto 10
20 jmax =j
do I =1,jmax-1
res(jmax+i) = res(jmax-i+1)
end do
veclen = 2*jmax-1
return
end
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C

C****************************************************************

C
subroutine decay(e data,tau,displace,ampl, xdata)

real*8 e data(1024),t,tau,displace,ampl,xdata(1024)

integer I

do 10i=1,512

t = xdata(i)

if{t.le.displace) then

e data (i)=0.

else

e data(i) = (dexp(-(t-displace)/tau))

end if
10 continue

return

end
C
C***************************************************************
C

subroutine prompt(p data,displace,amp p,p width,xdata)

real*8 p data(1024),displace,amp p,p width,t,xdata(1024)

doi=1,512

t = xdata(i)

p data(i)=p data(i)*+amp p*exp(-0.5*((t-displace)/p width)**2)

end do

close(23)

return

end
C
C***************************************************************
C

subroutine init(tau,beta,width,back,displace,ampl,xdata,ydata,

1 ndata,p ampl,f,dw,isotope)
C;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;§;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
C  Input parameters are read from a data file.
C .....................................................................

",)’7’,">","”’”’,”)’!”””””””’”””’7””””””)’””

real*8 tau,width,back,displace,ampl,p ampl,xdata(1024),ydata(1024)
real*8 beta,f,dw
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integer ndata
character*12 filename
character*2 isotope
open(unit=32 file="prompt4.dat',status='old")
read(32,*)width
read(32,*)tau
read(32,*)beta
read(32,*)ampl
read(32,*)displace
read(32,*)back
read(32,*)p ampl
read(32,%)f
read(32,*)ndata
read(32,100)filename
100 format(a12)
read(32,*)dw
read(32,101)isotope
101 format(a2)
open(unit=56, file=filename, status="old")
do 10 i=1,ndata
read(56,*) xdata(i),ydata(i)
10 continue
close(32)
close(56)
return
end
C
C**************************************************************
C
subroutine backgrnd(dat1,bkgrnd)
real*8 dat1(1024),bkgrnd
doi=1,512
dat1(i) = dat1(i)+bkgrnd
end do
return
end
C
C***************************************************************
C
subroutine timefilt(xdata,e data,beta,tau,disp,line isotope)
real*8 xdata(1024),e data(1024),tau,disp,beta,shift
real*8 line,dw,hbar,gamma,arg,power,part1,part4
real*8 bs(100),xnu
integer n
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complex*16 sum,z1,part2,part3
character*2 isotope,ge,fe
parameter (z1=(0,1))

G onmssmamssrrsssssssssssssssssssssssssssssosssssssssssssssssssasss
ge=ge
fe="fe'
if(isotope.eq.ge) dw= line*1.545e-10/6.582173¢e-10
if(isotope.eq.fe) dw = line*4.665e-9/6.582173e-7
n= 10000

C""””7"”’9’3"7,’7!’,,)”,7,"""!,J”1’””7”’7’7’3”””’)””””
C,"777,""’,77”),3!,7’,"’,7’,,’!",,,”””””9”"”’:’7”””’,’5”’,7

do 10 I=1,512

C””””)”)”””,’J’,7,”,’,’,,97’)’,)”7"””7”’37”’3”7”””7”””
sum = z1*0,

...........................................................................

C if'the time is less than the "added delay"” skip the calculation
C and set the intensity to zero else do the calculation

C7,7’””"’,’”,),)”’,!,,,,”’,’,!)3"9’”99,”””3”’,”9”7””,?”’1”

if(xdata(i).le.disp) then
e data(i)=0.0
else

C”"”7””’777”,!7”7’!”!”’,’7)"7’,""""7,’7!7”,”7’,77”,7,’7”,’

C determine whether there is a shift
S S RO RO HO ORI ORI
power = (xdata(i)-disp)/tau

part]l = dexp(-power)
arg = ((xdata(i)-disp)*beta/tau)**0.5

C"”",",””’3?”33’,’77”,,’,””,’”’!!’”””7’7’77”””,”’,””,”,
C first get bessel functions
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xnu = 0.0
call dbsjs(xnu,arg,75,bs)
shift = dabs(2*dw*arg*tau/beta)

C determine whether there is an isomer shift
O R
if(shift.eq.0.0) then
e data(i) = partl * (bs(1))**2
else
do341=1,74
part2 = (z1*4*dw*tau/beta)**(l-1)
part3 = (beta*(xdata(i)-disp)/(4*tau))**((1-1)/2)
sum = sum + part2*part3*bs(1)
34  continue
e data(i) = part] * cdabs(sum)**2
endif
endif
10 continue
return
end
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