











A GREEDY HYPERCUBE-LABELING ALGORITHM 127

N =2" nodes as input, procedure Hypercube correctly
produces a labeling of the nodes of H such that two
nodes are adjacent if and only if their labels differ in
one bit; furthermore, the running time of this procedure
is bounded by O(N log N).

Proof To argue for the correctness of our algorithm
we note that when line 1 of Label _Node is encoun-
tered, either:

® for all ‘new’ nodes w adjacent to v, with
level(w) > level(v), label(w)=00.. .0; or else

® for all ‘new’ nodes w adjacent to v, with
level(w) <level(v), label(w)#00 . . .0.

Otherwise, choose a counterexample v with level(v) as
small as possible. (We note that, in fact, level(v)=i
amounts to saying that v e N;(u).) We shall distinguish
between the following two cases.

Case 1 v has a neighbor v marked ‘old’ with
level(v') > level (v).

Let w be any neighbor of v marked ‘new’, with
level(w)>level(v). It is easy to confirm that level(w)=
level(v'). Note that (1.2) guarantees that v" and w have
a common neighbor z with level(z) > level(v') =level(w).

However, the recursive call Label_Node(v') during
which v" was marked ‘old’ (and also labeled) could not
end until z was also marked ‘old’. Consequently, lines
12-14 in the procedure guarantee that label(w) cannot
be 00...0

Case 2 no neighbor v' of v with level(v' > level(v)
is ‘old’.

Consequently, v is still ‘new’ and label(v)=00...0 Let
w be a neighbor of v marked ‘new’ with level(w) > level(v)
and such that label(w)#00 ...0 Now lines 12—14 in the
procedure guarantee the existence of a node z' marked
‘ol with w and <z adjacent and such that
level(z')>level(w). Let z be the node adjacent to z’ that
called Label Node with v’ as a parameter. Trivially,
level(w)=level(v).

Since w and z have a common neighbor (i.e. z') (1.2)
guarantees that they have a neighbor y with level(y)=
level(w)— 1 =level(v). Finally, note that v and y have a
common neighbor (namely w), they must also have a
common neighbor x with level(x)=level(v)— 1. But now,
x has two neighbors, v and y, both ‘new’ and such that
label(v)=00...0, and label(y)#00...0, contradicting
our choice of v.

Next, an easy inductive argument shows that for
every ‘old’ node v, the number of 0’s in mask(v) denotes
the number of ‘new’ nodes w adjacent to v, with
level(w) > level(v).

Furthermore, note that temp in line 4 and mask(v)
differ in exactly one bit and therefore, label(w) contains
precisely one more 1 bit than label(v). It follows easily
that label(w)=i+1 if and only if level(w)=i+ 1, and that
all nodes of the hypercube receive distinct labels. This
settles the correctness.

To argue for the complexity, note that every node of

the hypercube will eventually receive a permanent label:
this happens when the node is labeled ‘old’. Lines 4-6
in procedure Label _Node guarantee that computing the
permanent label of a node in the hypercube takes
O(log N) time and is done once only. Consequently, the
overall time needed to label all the nodes in the hyper-
cube is O(N log N).

Similarly, the time needed to perform the breadth-
first and depth-first searches (Aho et al., 1974) is also
O(N log N). The conclusion follows. O

4. CONCLUSION

The hypercube has emerged as one of the most versatile
topologies in use today; this is due, in part, to its regular
interconnections and to the fact that many other archi-
tectures can be embedded efficiently onto the hypercube.
A basic prerequisite to efficient hypercube algorithms is
a certain labeling of the vertices of the hypercube, such
that two vertices (processors) are adjacent if and only if
their binary representations differ in exactly one bit.

The motivation for the work presented in this paper
stems from the fact that the availability of powerful and
flexible computing devices (e.g. transputers) makes it
possible to incrementally construct new interconnection
networks from simple building blocks. In particular, the
problem of building hypercubes incrementally from
small transputers, for example, has received a good deal
of attention in the literature (Jane et al., 1992; Sur and
Srimani, 1992). Once such a construction is complete, it
is necessary to inform every processor of the newly
created hypercube about its identity within the hyper-
cube. Ideally, this initialization operation should be done
in parallel.

In this paper we have presented a solution to the
initialization problem mentioned above. Specifically,
given an n-dimensional hypercube with N =2" nodes
our algorithm returns a Gray-code labeling of the hyper-
cube, that is, a labeling of its nodes with binary strings
of length n such that two nodes are neighbors in the
hypercube if, and only if, their labels differ in exactly
one bit. Our algorithm is conceptually very simple and
runs in O(N log N) time being, therefore, optimal.

The problem of recognizing graphs that are hyper-
cubes turns out to be of considerable import. Bhat [4]
has proposed such an algorithm: with a graph G with
N =2" nodes as input his algorithm determines whether
the graph is a hypercube in O(N log N) time. With a
few modification our hypercube-labeling algorithm can
be used to recognize hypercubes as well. The details of
our recognition algorithm will be presented in an upcom-

ing paper.
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