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A Greedy Hypercube-Labeling Algorithm

D. BHAGAVATHI, C. E. GROSCH AND S. OLARIU
Department of Computer Science, Old Dominion University, Norfolk, VA 23529-0162, USA

Due to its attractive topological properties, the hypercube multiprocessor has emerged as one of the
architectures of choice when it comes to implementing a large number of computational problems. In
many such applications, Gray-code labelings of the hypercube are a crucial prerequisite for obtaining
efficient algorithms. We propose a greedy algorithm that, given an n-dimensional hypercube H with N=
27 nodes, returns a Gray-code labeling of H, that is, a labeling of the nodes with binary strings of length
n such that two nodes are neighbors in the hypercube if, and only if, their labels differ in exactly one bit.
Our algorithm is conceptually very simple and runs in O(/Vlog V) time being, therefore, optimal. As it
turns out, with a few modifications our labeling algorithm can be used to recognize hypercubes as well.

Received October 26, 1993; accepted December 6, 1993

1. INTRODUCTION

Advances in VLSI in the last decade have made it
possible to build massively parallel machines featuring
tens of thousands of processing elements. Com-
munication among processing elements in a multipro-
cessor machine is typically achieved by some message
passing protocol and the number of edges traversed is
often a reliable measure of the delay incurred. It has
been recognized (Hwang and Briggs, 1984; Bertsckas
and Tsitsiklis, 1989) that in a multiprocessor system the
time spent for interprocessor communications is often a
significant portion of the overall time needed to solve a
given computational problem.

Some of the key parameters of the interconnection
topology of the multiprocessor system that affect the
communication delay are the diameter, the degree, the
symmetry and the connectivity of the underlying struc-
ture. It soon became apparent that the above parameters
cannot be all optimized at the same time (Stone, 1971;
Sietz, 1984). Attempts to address one or the other of
these parameters have resulted in an array of different
topologies that have appeared in the literature (Seitz,
1984; Brown et al., 1985, Omondi and Brock, 1987;
Abram and Padmanabhan, 1989; Sur and Srimani,
1992). Each of these has a number of virtues and failings
and is, as a rule, suitable for a limited domain of practical
applications.

Among the commercially available multiprocessor
machines, the hypercube (also known as n-cube, Cosmic
cube, Boolean cube) stands out as one of the most
attractive and versatile, with a vast range of applications
(Preparata and Vuillemin, 1981; Quinn, 1984; Bertsekas
and Tsitsiklis, 1989). The hypercube has a highly regular
graph structure that results in very powerful interconnec-
tion features and in the capability to embed many of
the classical architectures (Saad and Schule, 1985;
Bertsekas and Tsitsiklis, 1989; Stone, 1990).

Not surprisingly, hypercubes and hypercube-like inter-
connection networks have received a lot of attention

over the past years because they offer a large bandwidth,
logarithmic diameter, and a high degree of fault tolerance
(Abrams and Padmanabhan, 1989; Bertsekas and
Tsitsiklis, 1989; Sur and Srimani, 1992).

Topological properties of hypercubes have been
extensively studied (Bhat, 1980; Quin, 1984; Bertsekas
and Tsitsiklis, 1989). Consider an n-dimensional hyper-
cube H with N=2" nodes. The following properties are
both well-known and easy to prove from scratch:

(hl) H is a connected bipartite graph;
(h2) H has precisely n2"~! edges;
(h3) its diameter is n.

In a hypercube the processors are located at the nodes
and the interconnections between processors are defined
by the edges. It is worth noting that, as a consequence,
the distance between any two processors is at the most
n. Moreover, both the diameter and the degree of nodes
in the hypercube increase very slowly with respect to
the number of nodes in the graph (i.e. logarithmically in
the number of nodes). In addition, the n-dimensional
hypercube has the remarkable property (h4) that we
state next:

(h4) its nodes can be labeled by integers in the range 0
to 2"—1 such that two nodes are adjacent in the
hypercube if, and only if, their labels differ in
exactly one bit.

The Hamming distance (Bertsekas and Tsitsiklis,
1989) between two processors in the hypercube is the
number of bits in which their labels differ. Therefore,
the hypercubes have the property that two processors
are connected by a direct link if and only if their
Hamming distance is 1. A Gray-code labeling of the
vertices of a given hypercube is a labeling for which the
Hamming distance between two vertices is 1 if and only
if the vertices are adjacent in the hypercube (see
Figure 1). Gray-code labelings are a crucial prerequisite
in many applications. For example, for the purpose of
embedding several architectures onto a hypercube it is
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FIGURE 1. A labeled four-dimensional hypercube.

necessary to obtain such a labeling of the nodes of a
hypercube (Stone, 1990).

Recently, the availability of powerful and flexible
computing devices (e.g. transputers) has made the incre-
mental construction of various interconnection topolog-
ies a reality. Not surprisingly, the problem of building
hypercubes incrementally from small building blocks
has received a good deal of attention in the literature
(Jane et al., 1992; Sur and Srimani, 1992). Gnce such a
construction is complete, it is necessary to inform every
processor of the newly created hypercube about its
identity within the hypercube. Since virtually all known
hypercube algorithms assume that every processor
knows its own coordinates in the machine, this initializ-
ation must be done at power-up time.

The purpose of this note is to report a very simple
greedy algorithm that returns a Gray-code labeling of
the nodes of a hypercube, thus solving the initialization
problems mentioned above. Specifically, our algorithm
uses depth-first search to guide the greedy choice of
labels based on local conditions only. What results is a
labeling algorithm that, with an n-dimensional hyper-
cube with N=2" nodes as input, runs in O(N log N)
time. In view of the property (h2) mentioned above, this
algorithm is optimal.

Along similar lines, the problem of recognizing graphs
that are hypercubes turns out to be of considerable
import. Bhat (1980) has proposed such an algorithm:
with a graph G with N=2" nodes as input his algor-
ithm determines whether the graph is a hypercube in
O(N log N) time. As it turns out, with a few modifica-
tions our hypercube-labeling algorithm can be used to
recognize hypercubes as well. The details of our recogni-
tion algorithms will be presented in an upcoming paper.

The remainder of this paper is organized as follows:
Section 2 presents basic technical results that are at the
heart of our algorithm; Section 3 discussed the details

of the proposed labeling algorithm; finally, Section 4
summarizes the results.

2. BASICS

We assume standard terminology compatible with [1].
The shortest distance dg(x, y) between vertices x and y
in a graph G represents the smallest number of edges
that have to be traversed to reach y from x. Consider
an n-dimensional hypercube H with N =2" nodes, and
let u be an arbitrary node of H.

Partition the nodes of H into sets N;(u) (O<i<n)
defined as follows:

Ni(w)={vldu(u, v)=1i}. (1)

An easy inductive argument confirms that any labeling
of the vertices of H that satisfies (h4) must be such that

N, (u)= {v[label (u) and label (v) differ in exactly i bits}.
(2)
As a consequence of (2), no vertices in N,;(u) are
adjacent. Furthermore, since N; (u)n N;(u) = & whenever
i#j, every node of the hypercube must belong to pre-
cisely one of the sets N;(u). For further reference, we
also take note of the following technical result.

LemMMA 1 Let v, w be distinct vertices in N; (u). The
following statements must be satisfied:
(1.1) v, w have at most one common neighbor in N, {(u);
(1.2) v, w have a common neighbor in N;,(u) if, and
only if, they have a common neighbor in N;_(u).

Proof To settle (1.1) let z be a common neighbor of
v and w in N;.,(u). Since v and z are adjacent, they
disagree in exactly one bit. Let this be the kth bit. Note
that since z € N, (u), z disagrees with u in all the bits
on which v and u disagree, plus the kth bit. As a
consequence, u and v agree on the kth bit.

Similarly, w and z being adjacent, they must disagree
in exactly one bit, say the Ith bit. Since ze N;,(u), z
and u disagree in all bits on which w and u disagree,
plus the Ith bit. Again, w and u must agree on the Ith
bit. It follows that v and w must agree on all bits, with
the exception of the kth and Ith bit.

Now assume that v and w have a common neighbor
Z' in N,;;, (u). Repeating the above argument, we find
distinct subscripts p and g such that v and w differ in
the pth and gth bit. Therefore, it must be the case that
p=k and g=1 or vice versa, and so z’ coincides with z.
This completes the proof of (1.1).

To prove (1.2), we first assume that v and w have a
common neighbor z in N;,;(u). The proof of (1.1)
guarantees that we can write

V=0a,a; A 10y 11 G- 1Ay gy
and
W=a1dy Qg 1 Gy 41 A - 1001417~y

such that u and v agree on a, and disagree on a; and
such that u and w disagree on g, and agree on 4.
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But now, the node
’ -
2 =010y 0y 1 Qg 1A 14y 147+ Ay,

is adjacent to both v and w (differing from both in one
bit); furthermore, z' disagrees with u in i—1 bits and so
z' belongs to N;_,(u).

Conversely, let v and w have a common neighbor z’
in N;_,(u). Write

2 =b,by b,

From z" we obtain both v and w by permuting bits b,
and b, (1<p#q<n), and so

v=biby--b,_ ll;pbpﬂ'”br lbqbq+1pbn
and
W=b1b2"'bp—lbpbp+1"'bq—ll;qbqﬂwb,,

Note that since v and w are in N;(u), it must be that
u and z’ agree on both b, and b,. But now, the node

2=byby by 1Bybyi by ibbysi b,

is adjacent to both v and w and differs from u in exactly
i+1 bits, confirming that z € N;,,(u). This completes
the proof of Lemma 1. O

3. THE ALGORITHM

We assume a hypercube H=(V, E) with N=2" nodes
specified by its adjacency lists. That is, for every node
in the hypercube we assume a linked list containing all
the nodes adjacent to it. As a preprocessing step, we
select a distinguished node u in H and perform a breadth-
first search (Aho et al, 1974) with u as anchor; when
this step is done, every node v in H knows its shortest
distance dy(u, v) from u. For every node v define

level (v)=iiff dy(u, v)=i.

(3)

Note that once this information is available, the
partition defined in (1) is also, implicitly, known. The
basic idea of our algorithm is to proceed from this
partition by assigning labels in a way consistent with (2).

We let the assignment of labels be performed greedily,
based on local information only. To guide the assignment
of labels we traverse the hypercube in a way reminiscent
of depth-first search (Aho et al., 1974). For each node
v of H we maintain the following variables: mask(v),
label(v), and level(v). Initially, all these variables are
initialized to 00...0, and the nodes are labeled ‘new’
(i.e. unprocessed). As the algorithm progresses, more
and more nodes become ‘old’ (i.e. processed). The details
are spelled out by procedure Hypercube that we pre-
sent next.

Procedure Hypercube(H);

{Input: an n-dimensional hypercube;

Output: a labeling of the nodes of H such that two nodes
are adjacent if and only if their labels differ in one bit;}
0. begin

1. choose an arbitrary node u in H;

2. perform a breadth-first search of H

starting at u and record for every node v, level(v) as
in (3);
for all nodes v of H do
mask(v)«label(v)«00...0;
mark v "‘new’’;
mark u “old"”;
Label_Node(u)
end; {Hypercube}

® oo

The following procedure invoked from within
Hypercube processes the nodes in depth-first fashion.
Initially, all nodes are marked ‘new’; during the execution
of the algorithm the nodes become ‘o0ld’ and they receive,
at that moment, their permanent label. To help with the
assignment of labels, every node v that has just been
marked ‘old’ scans its adjacency list, node by node,
performing the following:

® For every node w adjacent to v marked ‘new’ with
level(w) >level(v), the procedure Label_Node is
invoked recursively with w as a parameter, resulting
in a labeling of w;

® For every node z adjacent to v marked ‘new’ with
level(z) <level(v) and such that label(z)=00...0 v
writes its own label into label(z). This will be used
later to help assign z its permanent label. Specifically,
consider the moment when Label_Node is invoked
with z as a parameter. Assume that the closest
pending recursive call of Label _Node involved some
vertex x as a‘parameter (put differently, z is a
neighbor of x with z ‘new’ and level(z)>level(x)).
Note that in any labeling of the nodes compatible
with (h4), x and z differ in one bit; this bit can be
determined easily knowing the label of x and the
label of some neighbor of z, conveniently stored,
temporarily, in label(z). The details are spelled out
as follows.

Procedure Label_Node(v);
0. begin
1. for all mew’ neighbors w of v do
2 if level(w) >level(v) then
3 if label(w) #00 .. .0 then
4. temp «label(w);
5 label(w) «[temp AND mask(v)] OR label(v);
6 mask(w) «<mask(v)«[temp XOR label(v)]

OR mask(v);

7. mark w ‘old’;

8. else {now label(w)=00...0}

9. update mask(v) by toggling an arbitrary 0;
10. label(w) «mask(w) <mask(v);
11 Label _Node(w)
12. else {now level(w) <level(v)}
13. if label(w)=00...0 then
14. label(w) «label(v)

{record v’s label}
15. end; {Label_Node}

We are now in a position to state the following result
that proves the correctness of our algorithm and argue
for its running time.

THEOREM 1. With an n-dimensional hypercube H with
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N =2" nodes as input, procedure Hypercube correctly
produces a labeling of the nodes of H such that two
nodes are adjacent if and only if their labels differ in
one bit; furthermore, the running time of this procedure
is bounded by O(N log N).

Proof To argue for the correctness of our algorithm
we note that when line 1 of Label _Node is encoun-
tered, either:

® for all ‘new’ nodes w adjacent to v, with
level(w) > level(v), label(w)=00.. .0; or else

® for all ‘new’ nodes w adjacent to v, with
level(w) <level(v), label(w)#00 . . .0.

Otherwise, choose a counterexample v with level(v) as
small as possible. (We note that, in fact, level(v)=i
amounts to saying that v e N;(u).) We shall distinguish
between the following two cases.

Case 1 v has a neighbor v marked ‘old’ with
level(v') > level (v).

Let w be any neighbor of v marked ‘new’, with
level(w)>level(v). It is easy to confirm that level(w)=
level(v'). Note that (1.2) guarantees that v" and w have
a common neighbor z with level(z) > level(v') =level(w).

However, the recursive call Label_Node(v') during
which v" was marked ‘old’ (and also labeled) could not
end until z was also marked ‘old’. Consequently, lines
12-14 in the procedure guarantee that label(w) cannot
be 00...0

Case 2 no neighbor v' of v with level(v' > level(v)
is ‘old’.

Consequently, v is still ‘new’ and label(v)=00...0 Let
w be a neighbor of v marked ‘new’ with level(w) > level(v)
and such that label(w)#00 ...0 Now lines 12—14 in the
procedure guarantee the existence of a node z' marked
‘ol with w and <z adjacent and such that
level(z')>level(w). Let z be the node adjacent to z’ that
called Label Node with v’ as a parameter. Trivially,
level(w)=level(v).

Since w and z have a common neighbor (i.e. z') (1.2)
guarantees that they have a neighbor y with level(y)=
level(w)— 1 =level(v). Finally, note that v and y have a
common neighbor (namely w), they must also have a
common neighbor x with level(x)=level(v)— 1. But now,
x has two neighbors, v and y, both ‘new’ and such that
label(v)=00...0, and label(y)#00...0, contradicting
our choice of v.

Next, an easy inductive argument shows that for
every ‘old’ node v, the number of 0’s in mask(v) denotes
the number of ‘new’ nodes w adjacent to v, with
level(w) > level(v).

Furthermore, note that temp in line 4 and mask(v)
differ in exactly one bit and therefore, label(w) contains
precisely one more 1 bit than label(v). It follows easily
that label(w)=i+1 if and only if level(w)=i+ 1, and that
all nodes of the hypercube receive distinct labels. This
settles the correctness.

To argue for the complexity, note that every node of

the hypercube will eventually receive a permanent label:
this happens when the node is labeled ‘old’. Lines 4-6
in procedure Label _Node guarantee that computing the
permanent label of a node in the hypercube takes
O(log N) time and is done once only. Consequently, the
overall time needed to label all the nodes in the hyper-
cube is O(N log N).

Similarly, the time needed to perform the breadth-
first and depth-first searches (Aho et al., 1974) is also
O(N log N). The conclusion follows. O

4. CONCLUSION

The hypercube has emerged as one of the most versatile
topologies in use today; this is due, in part, to its regular
interconnections and to the fact that many other archi-
tectures can be embedded efficiently onto the hypercube.
A basic prerequisite to efficient hypercube algorithms is
a certain labeling of the vertices of the hypercube, such
that two vertices (processors) are adjacent if and only if
their binary representations differ in exactly one bit.

The motivation for the work presented in this paper
stems from the fact that the availability of powerful and
flexible computing devices (e.g. transputers) makes it
possible to incrementally construct new interconnection
networks from simple building blocks. In particular, the
problem of building hypercubes incrementally from
small transputers, for example, has received a good deal
of attention in the literature (Jane et al., 1992; Sur and
Srimani, 1992). Once such a construction is complete, it
is necessary to inform every processor of the newly
created hypercube about its identity within the hyper-
cube. Ideally, this initialization operation should be done
in parallel.

In this paper we have presented a solution to the
initialization problem mentioned above. Specifically,
given an n-dimensional hypercube with N =2" nodes
our algorithm returns a Gray-code labeling of the hyper-
cube, that is, a labeling of its nodes with binary strings
of length n such that two nodes are neighbors in the
hypercube if, and only if, their labels differ in exactly
one bit. Our algorithm is conceptually very simple and
runs in O(N log N) time being, therefore, optimal.

The problem of recognizing graphs that are hyper-
cubes turns out to be of considerable import. Bhat [4]
has proposed such an algorithm: with a graph G with
N =2" nodes as input his algorithm determines whether
the graph is a hypercube in O(N log N) time. With a
few modification our hypercube-labeling algorithm can
be used to recognize hypercubes as well. The details of
our recognition algorithm will be presented in an upcom-

ing paper.
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