Old Dominion University [ODU Digital Commons](https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fmathstat_fac_pubs%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages)

[Mathematics & Statistics Faculty Publications](https://digitalcommons.odu.edu/mathstat_fac_pubs?utm_source=digitalcommons.odu.edu%2Fmathstat_fac_pubs%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages) [Mathematics & Statistics](https://digitalcommons.odu.edu/mathstat?utm_source=digitalcommons.odu.edu%2Fmathstat_fac_pubs%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages)

1990

Construction of the Best Monotone Approximation on Lp [0, 1]

J. J. Swetits *Old Dominion University*

S. E. Weinstein *Old Dominion University*

Follow this and additional works at: [https://digitalcommons.odu.edu/mathstat_fac_pubs](https://digitalcommons.odu.edu/mathstat_fac_pubs?utm_source=digitalcommons.odu.edu%2Fmathstat_fac_pubs%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages) Part of the [Mathematics Commons](http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.odu.edu%2Fmathstat_fac_pubs%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages)

Repository Citation

Swetits, J. J. and Weinstein, S. E., "Construction of the Best Monotone Approximation on Lp [0, 1]" (1990). *Mathematics & Statistics Faculty Publications*. 112. [https://digitalcommons.odu.edu/mathstat_fac_pubs/112](https://digitalcommons.odu.edu/mathstat_fac_pubs/112?utm_source=digitalcommons.odu.edu%2Fmathstat_fac_pubs%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages)

Original Publication Citation

Swetits, J. J., & Weinstein, S. E. (1990). Construction of the best monotone-approximation on L*p* [0,1]. *Journal of Approximation Theory, 61*(1), 118-130. doi:10.1016/0021-9045(90)90028-o

This Article is brought to you for free and open access by the Mathematics & Statistics at ODU Digital Commons. It has been accepted for inclusion in Mathematics & Statistics Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact [digitalcommons@odu.edu.](mailto:digitalcommons@odu.edu)

Construction of the Best Monotone Approximation on $L_n[0, 1]$

J. J. SWETITS AND S. E. WEINSTEIN

Department of Mathematics and Statistics, Old Dominion University, Norfolk, Virginia 23508, U.S.A.

Communicated by R. Bojanic

Received October 27, 1987

1. INTRODUCTION

For $1 \leq p < \infty$, let L_p denote the Banach space of pth power Lebesgue integrable functions on [0, 1] with $|| f ||_p = (\int_0^1 |f|^p)^{1/p}$. Let M_p denote the set of nondecreasing functions in L_p . For $1 < p < \infty$, each $f \in L_p$ has a unique best approximation from M_p , while, for $p = 1$, existence of a best approximation from M_1 follows from Proposition 4 of [6].

Recently, there has been interest in characterizing best L_1 approximations from M_1 [1–4, 8]. The approach, in most instances, was measure theoretic. In [S], a duality approach was used to extend the results to all $L_n, 1 \leqslant p < \infty.$

In a recent paper [4] an explicit construction was given for a best L_1 approximation to f from M_1 . The purpose of this paper is to show that this construction extends to all the L_p -spaces, $1 < p < \infty$. The L_p case was investigated by Ubhaya [9, lo].

2. BEST MONOTONE APPROXIMATION IN $L_p[0, 1]$ for $1 < p < \infty$

Let $f \in L_p[0, 1]$ for $1 < p < \infty$. We wish to find g^* nondecreasing and in $L_p[0, 1]$ such that

$$
\int_0^1 |f - g^*|^p \leq \int_0^1 |f - g|^p \quad \text{for all such } g.
$$

From duality [5], g^* best approximates f in the above sense if and only if

$$
\int_0^1 (g^* - g)(f - g^*) |f - g^*|^{p-2} \ge 0
$$

for all nondecreasing g in $L_p[0, 1]$.

0021-9045/90 \$3.00 Copyright C 1990 by Academic Press, Inc. AlI rights of reproduction in any form rescrved. We now establish a constructive solution to this problem.

DEFIITION 1. For $f \in L_p[0, 1]$, $1 < p < \infty$, and any real c let

$$
\phi_c = (f - c)|f - c|^{p-2},\tag{1}
$$

$$
k_c(x) = \int_0^x \phi_c, \qquad 0 \le x \le 1.
$$
 (2)

$$
m_c = \min\{k_c(x): 0 \le x \le 1\},\tag{3}
$$

and

$$
x(c) = \max\{x: k_c(x) = m_c\}.
$$
 (4)

LEMMA 1. $x(c)$ is nondecreasing in c.

Proof. First we establish that $\phi_c(x) > \phi_d(x)$ for $c < d$. Let $e_c = f - c$. Then $e_c(x) > e_d(x)$ for $c < d$.

If $e_c(x) > e_d(x) \ge 0$, then

$$
\phi_c(x) = e_c^{p-1}(x) > e_d^{p-1}(x) = \phi_d(x).
$$

If $e_c(x) \ge 0 > e_d(x)$, then $\phi_c(x) \ge 0 > \phi_d(x)$.
If $0 > e_c(x) > e_d(x)$, then $|e_c(x)| < |e_d(x)|$ and

$$
-\phi_c(x) = -e_c(x)|e_c(x)|^{p-2}
$$

$$
= |e_c(x)|^{p-1}
$$

$$
< |e_d(x)|^{p-1}
$$

$$
= -e_d(x)|e_d(x)|^{p-2}
$$

$$
= -\phi_d(x).
$$

Next assume to the contrary that $x(c) > x(d)$ for some $c < d$. Then,

$$
k_c(x(c)) = \int_0^{x(c)} \phi_c
$$

= $\int_0^{x(d)} \phi_c + \int_{x(d)}^{x(c)} \phi_c$
= $k_c(x(d)) + \int_{x(d)}^{x(c)} \phi_c$
> $k_c(x(d)) + \int_{x(d)}^{x(c)} \phi_d$
= $k_c(x(d)) + k_d(x(c)) - k_d(x(d))$
> $k_c(x(d)),$

by the definition of $m_d = k_d(x(d))$. This contradicts the definition of $x(c)$.

In the following lemma, as usual $x(-\infty)$ and $x(+\infty)$ denote respectively $\lim_{t \to -\infty} x(t)$ and $\lim_{t \to -\infty} x(t)$.

LEMMA 2. (a) $x(-\infty) = 0$, (b) $x(+\infty) = 1$.

Proof. The proofs of (a) and (b) are similar. Thus we present only part (a).

Since $k_c(0) = 0$, it suffices to show that for any x satisfying $0 < x \le 1$, $\liminf_{\epsilon \to -\infty} k_{\epsilon}(x) > 0.$

For any $c < 0$ define the set $E_c = \{x \in [0, 1]: f(x) < c\},\$

and let E_c^c denote the complement of E_c in [0, 1]. Then,

$$
|c|^p \mu\{E_c\} \leqslant \int_{E_c} (-f)^p \leqslant \|f\|_p^p,
$$

where μ denotes Lebesgue measure. Thus,

$$
\mu\{E_c\} \leqslant ||f||_p^p/|c|^p.
$$

Next consider $E_c(x) \equiv E_c \cap [0, x]$:

$$
|f-c|^{p-1} \leq \gamma_p \{ |f|^{p-1} + |c|^{p-1} \},\
$$

where

$$
\gamma_p=\max\{1,2^{p-2}\}.
$$

Therefore,

$$
\left| \int_{E_c(x)} (f-c)|f-c|^{p-2} \right| \leq \int_{E_c(x)} |f-c|^{p-1}
$$

$$
\leq \gamma_p \left\{ \int_{E_c(x)} |f|^{p-1} + |c|^{p-1} \mu \{E_c\} \right\}
$$

$$
\leq \frac{1}{|c|} \gamma_p \left\{ \int_{E_c(x)} |f|^{p} + |c|^p \mu \{E_c\} \right\}
$$

$$
\leq \frac{2\gamma_p \|f\|_p^p}{|c|}.
$$

Thus,

$$
\lim_{c \to -\infty} \int_{E_c(x)} (f - c) |f - c|^{p-2} = 0.
$$

Finally, consider $E_c^c(x) = E_c^c \cap [0, x]$. Since $\lim_{x \to -\infty} \mu\{E_c^c(x)\} = x$, we can choose ζ so that $\mu\{E_{\zeta}^c(x)\} > x/2$. Then, for $c < \zeta$

$$
(f-c)|f-c|^{p-2} = ((f - g) + (g - c))|(f - g) + (g - c)|^{p-2}
$$

>
$$
(f - g)|f - g|^{p-2} \quad \text{on } E_g^c.
$$

Also, $E_c^c \subseteq E_c^c$ for $c < \underline{c}$, and therefore since $\mu\{E_c^c(x)\} > x/2 > 0$

$$
\int_{E_c^c(x)} (f-c)|f-c|^{p-2} \ge \int_{E_c^c(x)} (f-c)|f-c|^{p-2}
$$

$$
\ge \int_{E_c^c(x)} (f-c)|f-c|^{p-2} > 0.
$$

Therefore, for any x satisfying $0 < x \le 1$,

$$
\liminf_{c \to -\infty} \int_{E_c^c(x)} (f-c) |f-c|^{p-2} > 0,
$$

and thus since

$$
\int_0^x (f-c)|f-c|^{p-2} = \int_{E_c^c(x)} (f-c)|f-c|^{p-2} + \int_{E_c(x)} (f-c)|f-c|^{p-2}
$$

we can conclude that

$$
\lim_{c \to -\infty} \inf_{0} \int_{0}^{x} (f - c) |f - c|^{p-2} > 0.
$$

The following lemma shows that $x(c)$ is continuous from the right. As usual $x(c+)$ denotes $\lim_{t\to c+} x(t)$.

 $=m_c$.

LEMMA 3. $x(c+) = x(c)$. *Proof.* For $\delta > 0$ $k_{c+\delta}(x(c+\delta))\leq k_{c+\delta}(x(c))$ $\overline{\mathbf{X}}(\epsilon)$ $=\int_{0}$ $\phi_{c+\delta}$ $\epsilon x(c)$ $\leq \int_0$ ϕ_c $= k_c(x(c))$

Letting $\delta \rightarrow 0+$ we obtain

$$
k_c(x(c+)) = \int_0^{x(c+)} \phi_c \leq m_c.
$$

By the definition of m,, $k_c(x(c+)) \ge m_c$. Thus $k_c(x(c+)) = m_c$, and, therefore, $x(c+) \le x(c)$. Since $x(c)$ is nondecreasing, it follows that $x(c+) = x(c)$.

In general, $x(c)$ may be discontinuous. If

$$
x(c-) < x(c+) = x(c),
$$

where $x(c-)$ denotes $\lim_{x\to c-} x(t)$, then we say c is a jump for $x(\cdot)$.

Locating the jumps for $x(·)$ will enable us to define the following approximation g^* which we shall prove to be the best nondecreasing L_n approximation to $f \in L_p[0, 1]$.

DEFINITION 2. Since $x(\cdot)$ is nondecresing and right continuous, by Lemma 2 each $t \in (0, 1)$ is in some interval $[x(c-), x(c)]$. Thus, we define a function $g^*(t)$ on $(0, 1)$ by

if
$$
t = x(c)
$$
 for some real c, let

$$
g^*(t) = \inf\{u : x(u) = x(c)\},
$$
 (5)

if c is a jump point for $x(\cdot)$ and $x(c-) \le t < x(c)$,

$$
\det g^*(t) = c. \tag{6}
$$

LEMMA 4. $g^*(t)$ is nondecreasing on $(0, 1)$.

Proof. Let $\{c_i\}$ be the set of all jump points of $x(c)$, and let $t_1 < t_2$. If $t_1 = x(c)$ and $t_2 = x(u)$, then $c < u$ since $x(\cdot)$ is nondecreasing. By definition, $g^*(t_1) \leq g^*(t_2)$.

If $t_1 = x(c)$ and $x(c_i -) \le t_2 < x(c_i)$ for some i, then $c < c_i$. It follows that $g^*(t_1)\leq c < c_i = g^*(t_2).$

Suppose there exist i, j such that $x(c_{i-}) \leq t_1 < x(c_i)$ and $x(c_i-) \leq t_1$ $t_2 < x(c_i)$. If $i=j$, then $t_1 = c_j = g^*(t_1) = g^*(t_2)$. If $i \neq j$ and if $c_j > c_j$, then $x(c_i) \leq x(c_i-)$, which contradicts $t_1 < t_2$. Hence $c_i \leq c_i$, and $g^*(t_1) \leq g^*(t_2)$.

Finally, suppose that $x(c_i-) \leq t_1 < x(c_i)$ for some i and $t_2 = x(c)$. Then $c_i \leq c$, and $g^*(t_1) \leq g^*(t_2)$.

LEMMA 5. Let

$$
A_p = \left\{ x \in (0, 1) : \lim_{\varepsilon \to 0} \frac{1}{2\varepsilon} \int_{x-\varepsilon}^{x+\varepsilon} |f(t) - f(x)|^p = 0 \right\}.
$$

Then, $\mu\{A_p\} = 1$.

Proof. Let $T_{\varepsilon} f(x) = (1/2\varepsilon) \int_{x-\varepsilon}^{x+\varepsilon} |f(t) - f(x)|^p dt$ and let $Tf(x) =$ lim sup_{$\varepsilon \to 0+ T_{\varepsilon} f(x)$. Pick $g \in C[0, 1]$ such that $||f-g||_{p} < 1/n$. By the} continuity of g , $Tg = 0$.

Let $h = f-g$. Then, $h \in L_p[0, 1]$. Also, since $1 < p < \infty$

$$
T_{\varepsilon}h(x)\leqslant 2^{p-1}\bigg(\frac{1}{2\varepsilon}\int_{x-\varepsilon}^{x+\varepsilon}|h(t)|^p\,dt+|h(x)|^p\bigg).
$$

Therefore,

$$
Th(x) \leq 2^{p-1} \left(\limsup_{\varepsilon \to 0} \frac{1}{2\varepsilon} \int_{x-\varepsilon}^{x+\varepsilon} |h(t)|^p dt + |h(x)|^p \right)
$$

and thus on $[0, 1]$

$$
Th \leq 2^{p-1}(Mh^p + |h|),
$$

where M is the maximal function defined for all $F \in L_1[0, 1]$ by

$$
(MF)(x) = \sup_{0 < \varepsilon < x} \frac{1}{2\varepsilon} \int_{x-\varepsilon}^{x+\varepsilon} |F(t)| \, dt.
$$

NOW,

$$
T_{\varepsilon} f \leqslant 2^{p-1} (T_{\varepsilon} g + T_{\varepsilon} h).
$$

Therefore,

$$
Tf \leq 2^{p-1}(Tg+Th) = 2^{p-1}Th \leq 4^{p-1}(Mh^p + |h|^p).
$$

Thus, for any $y > 0$,

if
$$
Mh^p \leq 4^{1-p}y
$$
 and $|h|^p \leq 4^{1-p}y$, then $Tf \leq 2y$.

Therefore, $\{Tf>2y\} \subseteq \{Mh^p>4^{1-p}y\} \cup \{|h|^p>4^{1-p}y\}$, where each of the three sets in this relationship denotes the subset of $[0, 1]$ which satisfies the respective inequality. By Theorem 7.5 and inequality (5), p. 138. cf Rudin [7].

$$
\mu\{Mh^p > 4^{1-p}y\} \leq 3 \cdot 4^{p-1}y^{-1} \|h^p\|_1 \leq 3 \cdot 4^{p-1} y^{-1} \|h\|_p^p
$$

and

$$
\mu\{|h|^p > 4^{1-p}y\} \le 4^{p-1}y^{-1} \|h\|_p^p
$$

Therefore,

$$
\mu\{\mathit{Tf} > 2y\} \leqslant 4^p y^{-1}/n^p,
$$

and since n is arbitrary,

$$
\mu\left\{Tf > 2y\right\} = 0.
$$

Furthermore, since $y > 0$ is also arbitrary,

$$
\mu\{Tf>0\}=0
$$

Note. This proof parallels the cited results in Rudin [7].

LEMMA 6. If $x(c) \in A_p$ as defined in Lemma 5 then

- (a) $f(x(c)) = c$, and
- (b) $g^*(x(c)) = c$.

Proof. (a) Let $x(c) \in A_p$ and assume $f(x(c)) > c$. Then by the definition of A_p

$$
\lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \int_{x(c) - \varepsilon}^{x(c)} |f(y) - f(x(c))|^{p} dy = 0.
$$

For any $\delta > 0$, let

$$
B_{\delta} = \{ y \in [0, 1] : |f(y) - f(x(c))| < \delta \},
$$

and let B_{δ}^{c} be the complement of B_{δ} in [0, 1].

Also for any $\varepsilon > 0$, let $I_{\varepsilon} = [x(c) - \varepsilon, x(c)] \cap [0, 1]$. Since

$$
\int_{I_{\epsilon}} |f(y) - f(x(c))|^{p} dy \ge \int_{B_{\delta}^{c} \cap I_{\epsilon}} |f(y) - f(x(c))|^{p} dy
$$

\n
$$
\ge \delta \int_{B_{\delta}^{c} \cap I_{\epsilon}} |f(y) - f(x(c))|^{p-1} dy
$$

\n
$$
\ge \delta^{p} \mu \{B_{\delta}^{c} \cap I_{\epsilon}\},
$$

it follows that

$$
\lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_{B_\delta^c \cap I_\epsilon} |f(y) - f(x(c))|^{p-1} dy = 0,
$$

and

$$
\lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \mu \{ B_{\delta}^c \cap I_{\varepsilon} \} = 0.
$$

Thus, letting $\gamma_p = \max\{1, 2^{p-1}\},$

$$
\left| \int_{B_{\delta}^c \cap I_{\epsilon}} (f-c)|f-c|^{p-2} \right|
$$

\n
$$
\leq \int_{B_{\delta}^c \cap I_{\epsilon}} |f-c|^{p-1}
$$

\n
$$
\leq \gamma_{p-1} \int_{B_{\delta}^c \cap I_{\epsilon}} |f-f(x(c))|^{p-1} + \gamma_{p-1} \int_{B_{\delta}^c \cap I_{\epsilon}} |f(x(c)) - c|^{p-1}
$$

\n
$$
= \gamma_{p-1} \int_{B_{\delta}^c \cap I_{\epsilon}} |f-f(x(c))|^{p-1} + \gamma_{p-1} |f(x(c)) - c|^{p-1} \mu\{B_{\delta}^c \cap I_{\epsilon}\}\
$$

and therefore

$$
\lim_{\varepsilon \to 0} \left| \frac{1}{\varepsilon} \int_{B_\delta^{\varepsilon} \cap I_{\varepsilon}} (f - c)|f - c|^{p-2} \right|
$$
\n
$$
\leq \gamma_{p-1} \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \int_{B_\delta^{\varepsilon} \cap I_{\varepsilon}} |f - f(x(c))|^{p-1}
$$
\n
$$
+ \gamma_{p-1} |f(x(c)) - c|^{p-1} \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \mu\{B_\delta^{\varepsilon} \cap I_{\varepsilon}\}
$$
\n= 0.

Thus.,

$$
\lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_{B'_\delta \cap I_\epsilon} (f - c) |f - c|^{p-2} = 0.
$$
 (7)

Now fix $\delta > 0$ so that $f(x(c)) > c + \delta$. Then, for $y \in B_\delta$,

$$
0 < f(x(c)) - \delta - c < f(y) - c < f(x(c)) + \delta - c.
$$

Hence,

$$
\int_{B_{\delta} \cap I_{\epsilon}} (f-c)|f-c|^{p-2}
$$
\n
$$
\times \left\{\n\begin{aligned}\n&\int_{B_{\delta} \cap I_{\epsilon}} (f(x(c)) - \delta - c)| f(x(c)) + \delta - c|^{p-2}, 1 < p < 2 \\
&\int_{B_{\delta} \cap I_{\epsilon}} (f(x(c)) - \delta - c)| f(x(c)) - \delta - c|^{p-2}, 2 \leq p\n\end{aligned}\n\right\}
$$
\n
$$
\equiv Q\mu\{B_{\delta} \cap I_{\epsilon}\}, \quad \text{where} \quad Q > 0.
$$

Using (7), it follows that

$$
\liminf_{\varepsilon \to 0} \frac{1}{\varepsilon} \int_{I_{\varepsilon}} (f - c)|f - c|^{p-2}
$$
\n
$$
\geqslant Q \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \mu\{B_{\delta} \cap I_{\varepsilon}\} = Q > 0.
$$

Hence, for $\epsilon > 0$ and sufficiently small,

$$
\int_{x(c)-\varepsilon}^{x(c)} (f-c)|f-c|^{p-2} > 0.
$$

Thus $k_c(x(c) - \varepsilon) < k_c(x(c))$, contradicting the definition of $x(c)$.

In a similar way, we get a contradiction if we assume that $f(x(c)) < c$. Hence $f(x(c)) = c$.

(b) If $x(u) = x(c) \in A_{\rho}$, then (a) implies that $c = f(x(c)) = f(x(u)) = u$. Thus $\{u: x(u) = x(c)\} = \{c\}$. Therefore $g^*(x(c)) = c$.

LEMMA 7. If $x(c-) \leq t \leq x(c)$, then

- (a) $\int_{x(c-1)}^{t} \phi_c \ge 0$, and
- (b) $\int_{x(c-1)}^{x(c)} \phi_c = 0.$

Proof. If $x(c-) = x(c)$, then the lemma holds trivially. Thus we need only consider the case $x(c-) < x(c)$.

Assume that $\int_{x(c-1)}^{t} \phi_c < 0$ for some t satisfying $x(c-) < t \leq x(c)$. Then for $\delta > 0$ and sufficiently small, $\int_{\kappa(c - \delta)}^{\ell} \phi_{c - \delta} < 0$. Thus,

$$
k_{c-\delta}(t) = \int_0^t \phi_{c-\delta}
$$

$$
< \int_0^{x(c-\delta)} \phi_{c-\delta}
$$

$$
= k_{c-\delta}(x(c-\delta))
$$

$$
= m_{c-\delta},
$$

which is a contradiction. Thus (a) is verified.

From (a), $\int_{x(c-)}^{x(c)} \phi_c \ge 0$. If $\int_{x(c-)}^{x(c)} \phi_c > 0$, then

$$
k_c(x(c-)) = \int_0^{x(c-)} \phi_c
$$

$$
< \int_0^{x(c)} \phi_c
$$

$$
= k_c(x(c))
$$

$$
= m_c,
$$

which contradicts the definition of $x(c)$. Thus (b) is verified.

LEMMA 8. $g^* \in L_p[0, 1].$

Proof. Let $\{c_i\}$ be the discontinuities of $x(c)$. For $t \in [x(c_i-), x(c_i)]$, $g^*(t) = c_i$. By Lemma 5,

$$
\int_{x(c_i-)}^t \phi_{c_i} \ge 0 \quad \text{and} \quad \int_{x(c_i-)}^{x(c_i)} \phi_{c_i} = 0.
$$

Thus, by duality, $g^* \equiv c_i$ is the best constant approximation to f on $[x(c_i-), x(c_i)].$

Let A_p be the set defined in Lemma 5. For $t \in A_p$ either $t = x(c)$ for some c, in which case $f(x(c))=c=g^*(x(c))$, or $x(c_i-) \le t < x(c_i)$ for some i.

If $i \neq j$, then $(x(c_i-), x(c_i)) \cap (x(c_i-), x(c_i)) = \emptyset$. Hence,

$$
\int_0^1 |f - g^*|^p = \int_{\bigcup_i (x(c_i - 1, x(c_i))} |f - c_i|^p
$$

$$
\leq \int_{\bigcup_i (x(c_i - 1, x(c_i))} |f|^p \leq \|f\|_p^p.
$$

Thus $f-g^* \in L_p[0, 1]$, and, therefore, $g^* \in L_p[0, 1]$.

We can now show that g^* is the best nondecreasing L_p approximation to f from $L_p[0, 1]$.

THEOREM. If $f \in L_p[0, 1]$, then g^* , as given in Definition 2, is the unique best nondecreasing L_p approximation to f from $L_p[0, 1]$.

Proof. Let A_p be as in Lemma 5, and let $\{c_i\}$ be the discontinuities of $x(c)$. By Lemma 5, A_p has measure one. Let $A_p^1 = A_p \setminus \bigcup_i (x(c_i-), x(c_i)).$ Define $\phi_{g^*} = (f - g^*)|f - g^*|^{p-2}$. By Lemma 6, $\phi_{g^*} = 0$ on A_p^1 .

Now define $r(t) = \int_0^t \phi_{g^*}$. If $t = x(c)$, then

$$
r(t) = \int_{A_{\rho} \cap [0, t]} \phi_{g*}
$$

=
$$
\sum_{c_i \leq c} \int_{x(c_i -)}^{x(c_i)} \phi_{g*}
$$

=
$$
\sum_{c_i \leq c} \int_{x(c_i -)}^{x(c_i)} \phi_{c_i}
$$

= 0, by Lemma 7.

If $x(c_j) \le t < x(c_j)$, then

$$
r(t) = \int_{x(c_j - t)}^{t} \phi_{g*}
$$

=
$$
\int_{x(c_j - t)}^{t} \phi_{c_j}
$$

\ge 0, by Lemma 7.

We also have

$$
r(1) = \sum_{i} \int_{x(c_i-)}^{x(c_i)} \phi_{c_i} = 0.
$$

Thus $r(t)\geq 0$.

Next we note that

$$
\int_0^1 g^* \phi_{g^*} = \int_{A_p} g^* \phi_{g^*}
$$

$$
= \sum_i \int_{x(c_i-)}^{x(c_i)} c_i \phi_{c_i} = 0.
$$

Now let g be a nondecreasing function in $L_p[0, 1]$. Define

$$
g_n(x) = \begin{cases} g(x), & -n \le g(x) \le n \\ -n, & g(x) < -n \\ n, & n < g(x). \end{cases}
$$

Then, pointwise, $g_n \to g$, $g_n \phi_{g^*} \to g \phi_{g^*}$, and $|g_n \phi_{g^*}| \leq |g \phi_{g^*}|$. By the Lebesgue Dominated Convergence Theorem,

$$
\int_0^1 g_n \phi_{g^*} \to \int_0^1 g \phi_{g^*}
$$

and, using integration by parts,

$$
\int_0^1 g_n \phi_{g^*} = - \int_0^1 r(t) \, dg_n \leq 0,
$$

since $r(t) \ge 0$ and g_n is nondecreasing. Therefore

$$
\int_0^1 g \phi_{g^*} \leq 0 = \int_0^1 g^* \phi_{g^*}.
$$

Thus, g^* is the best L_p nondecreasing approximation to f.

Remarks. (a) If $f \in C[0, 1]$, then Lemma 6 implies that $x(c)$ is strictly increasing, and f is nondecreasing on

$$
\{x(c): 0 < x(c) < 1\}.
$$

Furthermore the definition of g^* simplifies to

$$
g^*(t) = \begin{cases} c_i, & x(c_i -) \leq t \leq x(c_i) \\ f(t), & \text{elsewhere.} \end{cases}
$$

where, as before, $\{c_i\}$ denotes the set of jumps of $x(c)$.

(b) The method used in the proof of the theorem can be used in the proof of Lemma 8 to show that $g^* \equiv c_i$ is the best nondecreasing approximation to f on $[x(c_i-), x(c_i)]$.

REFERENCES

- 1. R. B. DARST AND R. HUOTARI. Best L_1 -approximation of bounded approximately continuous functions on $[0, 1]$ by nondecreasing functions, *J. Approx. Theory* 43 (1985), 178-189.
- 2. R. HUOTARI AND D. LEGG, Best monotone approximation in $L_1[0, 1]$, preprint,
- 3. R. HUOTARI AND D. LEGG, Monotone approximation in several variables, $J.$ $Approx$. Theory 47 (1986), 219-227.
- 4. R. HUOTARI, D. LEGG, A. MEYEROWITZ, AND D. TOWNSEND, The natural best \tilde{L}_1 . approximation by nondecreasing functions. J. Approx. Theory 52 (1988), 132-140.
- 5. R. HOLMES, "A Course in Optimization and Best Approximation," Lecture Notes in Mathematics, Vol. 257, Springer-Verlag. New York. 1973.

130 SWETITS AND WEINSTEIN

- 6. D. LANDERS AND L. ROGGE, Natural choice of L_1 approximants, J. Approx. Theory 33 (1981) , 268-280.
- 7. W. RUDIN, "Real and Complex Analysis," 3rd ed., McGraw-Hill, New York, 1986.
- 8. P. W. SMITH AND J. J. SWETITS, Best approximation by monotone functions, J. Approx. Theory 49 (1987), 398-403.
- 9. V. A. UBHAYA, Isotone optimization, I, J. Approx. Theory 12 (1974), 146-159.
- 10. V. A. UBHAYA, Isotone optimization, II, J. Approx. Theory 12 (1974), 315-331.