
Old Dominion University
ODU Digital Commons

Mathematics & Statistics Faculty Publications Mathematics & Statistics

1990

Construction of the Best Monotone
Approximation on Lp [0, 1]
J. J. Swetits
Old Dominion University

S. E. Weinstein
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/mathstat_fac_pubs

Part of the Mathematics Commons

This Article is brought to you for free and open access by the Mathematics & Statistics at ODU Digital Commons. It has been accepted for inclusion in
Mathematics & Statistics Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

Repository Citation
Swetits, J. J. and Weinstein, S. E., "Construction of the Best Monotone Approximation on Lp [0, 1]" (1990). Mathematics & Statistics
Faculty Publications. 112.
https://digitalcommons.odu.edu/mathstat_fac_pubs/112

Original Publication Citation
Swetits, J. J., & Weinstein, S. E. (1990). Construction of the best monotone-approximation on Lp [0,1]. Journal of Approximation
Theory, 61(1), 118-130. doi:10.1016/0021-9045(90)90028-o

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fmathstat_fac_pubs%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mathstat_fac_pubs?utm_source=digitalcommons.odu.edu%2Fmathstat_fac_pubs%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mathstat?utm_source=digitalcommons.odu.edu%2Fmathstat_fac_pubs%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mathstat_fac_pubs?utm_source=digitalcommons.odu.edu%2Fmathstat_fac_pubs%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.odu.edu%2Fmathstat_fac_pubs%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mathstat_fac_pubs/112?utm_source=digitalcommons.odu.edu%2Fmathstat_fac_pubs%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu


JOURNAL OF APPROXIMATION THEORY 61, 118-130 (1990) 

Construction of the Best Monotone 
Approximation on L,[O, I] 

J. J. Swmrrs AND S. E. WEINSTEIN 

Department of Mathematics and Statistics, 
Old Dominion Unioersity, 

Norfolk, Virginia 23508, U.S.A. 

Communicated by R. Bojarzic 

Received October 27, 1987 

1. INTRODUCTION 

For 1 <p =C CG, let L, denote the Banach space of pth power Lebesgue 
integrable functions on [0, l] with )I f lip = (jh 1 f (p)‘l;o. Let Mp denote the 
set of nondecreasing functions in L,. For l<p<cc, each feL, has a 
unique best approximation from M,, while, for p = 1, existence of a best 
approximation from M, follows from Proposition 4 of [6]. 

Recently, there has been interest in characterizing best L, approxima- 
tions from M, [l-4, 81. The approach, in most instances, was measure 
theoretic. In [S], a duality approach was used to extend the results to all 
L,, ldp<oI. 

In a recent paper [4] an explicit construction was given for a best L, 
approximation toffrom M,. The purpose of this paper is to show that this 
construction extends to all the L,-spaces, 1 <p < m. The L, case was 
investigated by Ubhaya [9, lo]. 

2. BEST MONOTONE APPROXIMATION IN L,[O, 1 ] FOR 1 <p < OG 

Let f E L,[O, 1 ] for 1 < p < m. We wish to find g* nondecreasing and in 
L,[O, l] such that 

j-i If--Y*l’GJ; If-gl” for all such g. 

From duality [S], g* best approximates f’in the above sense if and only 
if 

s ’ tg* -gu--*)I f--g* lp-> 20 
0 

for all nondecreasing g in L,[O, 11. 
118 
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We now establish a constructive solution to this problem. 

DEFIITION 1. For ,f~ L,[O, 11, 1 <p < sr~, and any real c let 

(75, =(.f’-c)lf-cy-‘, 

and 
x(c) = mali{x: k,(x) = 1f7,j. i/-r, 

LEMMA 1. x(c) is nondecreasing in c. 

Proof: First we establish that 4,(x) > q5,(s) for c <LX’. Let e, =f‘- C. 
Then e,(x) > cd(x) for c < d. 

If e,(x) > cd(x) > 0, then 

f$,.(x) = ef- ‘(x) > e$- ‘(x) = qS,(s). 

If e,.(x) > 0 > e,(x), then q&(x) 3 0 > q5,(.u). 
If 0 > e,.(x) > e,(x), then (e,.(x)1 < 1 ed( and 

-q%,.(x) = -e,(.x)l ec(.r)Ip -’ 

= le,.(x)lpp’ 

< led(.r) 

= -ed(xjled(s)lp-’ 

= -$‘,(x). 

Next assume to the contrary that sjc)>.u(dj for some CC li Then, 

k,.(s(cj) = jy fj, 

= k,@(d) j + i“’ ) (p, 
V(dl 

= k,@(d)) + k&(c)) -k&(d)) 

> k, (44 )> 

by bhe definition of m ri= k,(.u(d)). This contradicts the defkitior. of .u(:). 
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In the following lemma, as usual x( - m) and .Y( + IX) denote respec- 
tively lim, _ _ r x(t) and lim,,-, x(t). 

LEMMA 2. (a) x(-CG)=O, (b) s(+cc)= 1. 

Proof The proofs of (a) and (b) are similar. Thus we present only 
part (a). 

Since k,(O) = 0, it suffices to show that for any x satisfying 0 <.Y< 1, 
lim inf, _ _ ~ k,(s) > 0. 

For any c < 0 define the set E, = (x E [0, l] :f(~) <c), 

and let Ez denote the complement of E, in [0, 11. Then, 

where p denotes Lebesgue measure. Thus, 

~c(E,}~Ilfll;llcl~. 

Next consider E,(x)=E,n [0,x]: 

If-cIp-l~~p(IfIp--l+IC/P-'}, 

where 

y,=max{l, 2PP”}. 

Therefore, 

Ii (f-c)lf-cIP-2 d 
4(x) I SL E”(x, If-c Iy- L 

d1’p 0 (f Ip-'+ Icl”-‘PE> E-,-) 
. r 

1 
yq 7P 1 f Ip+ W’,@c~ 

d 2Y, II f 11; 
ICI . 

Thus, 

lim 
s 

(f-c)1 f-cI”-2=0. 
c--x E,ixj 
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Finally, consider E:(x) = E: n [0, x]. Since iim,, _ Lr ,uCL(E~(.Y)] =x7 vx 
can choose _c so that p{Ef(.u) > > x/2. Then, for c <i: 

(f-c,~f’-c~“-‘=((.f-_c)+(_c-c))jI~-~r)~(~-c:’)~~-~ 

>(f-r)lJ-_cI”-’ on Ef. 

Also, Ei G Ef for c < _c, and therefore since p(E~(s) > > q'2 > 0 

Therefore, for any x satisfying 0 < x d 2, 

and thus since 

lim inf ” 
1 

(f-C)lf-Cipp2>0, 
c--x E;(rl 

i-y(f-cj~~f-clp-~= 1 i.f-r~l.f’-cl~-~ 
‘0 * E:(.Y) 

+j’ (f-c)lf-cl”-” 

* ECF, 

we can conclude that 
* I 

liminfj (f-c)lf-cl”-‘>O. 
(‘--Lx 0 

The following lemma shows that s(c) is continuous from the right. As 
usual x(c+ ) denotes limrdc+ x(t). 

LEMMA 3. X(C + ) = .qc j. 

Proof For 6 > 0 

k,+,(.K(c+6))dk,,,jx(c)) 

d,‘) 
= 

J o $r+6 

*xi c,) 
d 1 a, 

0 

= k,(x( cjj 

=rn,. 
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Letting 6 -+ 0+ we obtain 

k,.(x(c+)) =j;(‘+) ~r<?n,. 

By the definition of nf,, k,(x(c+)) am,.. Thus k,(x(c+)) =w,, and, 
therefore, x(c+ ) <x(c). Since x(c) is nondecreasing, it follows that 
x(c+)=x(c). 

In general, x(c) may be discontinuous. If 

x(c-)<x(c+)=x(c), 

where x(c- ) denotes lim,,,.- x(t), then we say c is a jump for x(. ). 
Locating the jumps for x( .) will enable us to define the following 

approximation g* which we shall prove to be the best nondecreasing L, 
approximation to fE LJO, 11. 

DEFINITION 2. Since x( . ) is nondecresing and right continuous, by 
Lemma 2 each t E (0, 1) is in some interval [x(c- ), x(c)]. Thus, we define 
a function g*(t) on (0, 1) by 

if t = x(c) for some real c, let 

g*(t)=inf{u:.v(u)=x(c)}, 
(5) 

if c is a jump point for x( .) and x(c- ) < t < x(c), 

let g*( f ) = c. 

LEMMA 4. g*(t) is nondecreasing on (0, 1). 

(6) 

ProoJ: Let (ci} be the set of all jump points of x(c), and let t, < t,. 
If t, = x(c j and t2 = x(u), then c < u since x( .) is nondecreasing. By 

definition, g*(tl) <g*(tz). 
If t, = s(c) and x(c,- ) d t, < x(c,) for some i, then c < ci. It follows that 

g*(t,)dc<c;=g*(rJ. 
Suppose there exist i, j such that x(c,-) d t, <x(cj) and x(ci-)< 

r2<x(ci). If i=j, then t,=~,=g*(t,)=g*(t~). If i#j and if c,>cj, then 
s(ci) <x(cj-)), which contradicts t, < t2. Hence c,<c,, and g*(tl) <g*(t2). 

Finally, suppose that x(c,- ) < t, < x(ci) for some i and tz =x(c). Then 
ci<c, and g*(tl)<g*(t2). 

LEMMA 5. Let 

Then, p(A,) = 1. 
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Proof: Let T,f(s) = (l/2&) SG’z ( f(t) -f(x)/” dt and let T’(r) = 
lim supE -“+ r,.f(.u). Pick g E C[O, l] such that /I j‘- g /jp < I/n. By tr?e 
continuity of g, Tg = 0. 

Let h =f- g. Then, h E L,[O, 11. Also. since 1 <p < yj 

Therefore, 

and thus on [O, l] 

where M is the maximal function defined for all FE L! [O, 13 by 

NOW, 

T,.f<2P-‘(.TEg+ T,h). 

Therefore, 

Tf<22"-'(Tg+ T/~)=2p~‘Til~4p~~‘(~~~zp+ ihIP). 

Therefore, (Tf>2y)~ (MIzP>~~~~~].v (/i~ip>41-p;~), where each of 

the three sets in this relationship denotes the subset of [0, I] which satisfies 
the respective inequality. By Theorem 7.5 and inequality (5), p. 138. cf 
Rudin [7]. 
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Therefore, 

II{ Tf > 2-v) 6 4py-‘/np, 

and since n is arbitrary, 

p{Tf>2y} =O. 

Furthermore, since y > 0 is also arbitrary, 

p(Tf>O}=O. 

Note. This proof parallels the cited results in Rudin [7]. 

LEMMA 6. If x(c) E A, as defined irz Lemma 5 then 

(a) f(x(c)) = c, and 

(b) g*(-x(c)) = c. 

ProoJ: (a) Let x(c) E A, and assumef(x(c)) > c. Then by the definition 
of A, 

;50i j;r,‘_. If(rll)-fC(,~(c))Ipd~I=O. 
i 

For any 6 > 0, let 

and let Bs be the complement of Bs in [0, 11. 
Also for any E >O, let I,= [x(c)-&, x(c)] n [0, 11. Since 

it follows that 

lim ‘j E-o E B~nl If(l.)-f(x(c))lP-‘dy=O, 
E 

and 
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Thus, letting yp=max [l, 2”-‘],, 

ad therefore 

lim 1 I / J 
c-0 E Bb,-,I. 

(iC)T~lJ 

Thus., 

liydj,l.;, (f‘-c)\“f-cl”-‘=o. 
0 I 

Now fix 6 > 0 so that ,f(x(c)) > c + 6. Then, for J’E B,, 

Hence. 

!- (f-C)lf-CI”-2 
B9.r iE 

: 

s B,j -> I, 
(.f(x(c))-s-c)l.f(~u(~))+s--L./'--~, 1 <p<'j 

> 

j' 
B, , (.f(~~cc))-s-c)lf(s(ci)-6-cl?-~,2~p i 
Ia ,- t 

=Qp’(BanK,:, where Q >O. 
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Using (7), it follows that 

Hence, for I > 0 and sufficiently small, 

-u(c) 
1 (f-C)If-cc(P-2>0. 
x(c)-& 

Thus k,(x(c) -F) < k,(x(c)), contradicting the definition of x(c). 
In a similar way, we get a contradiction if we assume that f(x(c)) < c. 

Hence j-(x(c)) = c. 
(b) If x(tl) =x(c) E A,, then (a) implies that c =f(x(c)) =f(x(u)) = u. 

Thus {u: x(u) = x(c)} = (c}. Therefore g*(x(c)) = c: 

LEMMA 7. If x(c- ) < t ,< x(c), then 

Proof: If x(c- ) = x(c), then the lemma holds trivially. Thus we need 
only consider the case x(c - ) < x(c). 

Assume that J:+) 4, < 0 for some t satisfying x(c- ) < t < x(c). Then for 
6 > 0 and sufficiently small, s,L,, ~ 6, I$- d < 0. Thus, 

which is a contradiction. Thus (a) is verified. 
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which contradicts the definition of x(c). Thus (0) is verified. 

LEMMA 8. g* EL,[O, 11. 

ProoJ: Let (ci3 be the discontinuities of s(c). For ;E [x(ci- j: sic,)], 
g*(r) = ci. By Lemma 5, 

Thus: by duality, g* E ci is the best constant approximation to .,f on 
b(c,- 1, -x(ci)l. 

Let A, be the set defined in Lemma 5. For ! E A, either f =x(c) for some 
c, in which casef(x(cj)=c=g*(x(c)), or s(c,--)Gf <x(c;J for some !. 

If i#.j, then (x(ci- ), x(c,)) n (x(c,;- j, x(c,)) = @. Hence, 

Thus .f- g* E L,[O, 11, and, therefore, g* E L,[07 I 1. 

We can now show that g* is the best nondecreasing L, approximation 
to f from L,[O, 13. 

THEOREM. If f E L,[O, 11, then g*, as given in Definition 2, is the unique 
best nondecreasing L, approximation to f,from L,[O. I]. 

ProoJ Let z4, be as in Lemma 5. and let {cj> be the discontinuities of 
x(c). By Lemma5, A, has measure one. Let At,=.4,‘,,,Uj(x(c,-j,.~(~:jj. 
Define ds* = (,f‘-g*)l -f-g* IpP2. By Lemma 6, bg* =0 on AS. 
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Now define t-(t) = j; qS,*. If t = x(c), then 

r(tj = s d g* 
Ap n co. rl 

If x(e,- ) d t < x(ci), then 

r(t)= j’ dg* x(c,- ) 
.t 

=! .qc,- 1 h 

3 0, by Lemma 7. 

We also have 

Thus r(t)>O. 
Next we note that 

Now let g be a nondecreasing function in L,[O, 11. Define 

i 

‘d.~), -ndg(x)drl 

g&j = -n, g(x) < --n 

6 17 < g(x). 
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Then, pointwise, g,, -+g, gnqSg* -igq5g*. and / g>,&,-* I 6 / gq5,* 1. By the 
Lebesgue Dominated Convergence Theorem, 

and, using integration by parts, 

since t-(t) > 0 and g,, is nondecreasing. Therefore 

Thus, g* is the best L, nondecreasing approximation to j: 

Remarks. (a) If fE C[O, 11, then Lemma 6 implies that xic) is strictly 
increasing, and f is nondecreasing on 

(x(c): 0 <x(c) < 1 I. 

Furthermore the definition of g* simplifies to 

g*(f) = 
1 
;iI,, 

-qc;- ) d t d X(Ci) 
elsewhere, 

where, as before , {cj)- denotes the set of jumps of X(C). 

jb) The method used in the proof of the theorem can be used in the 
proof of Lemma 8 to show that g* = ci is the best nondecreasing 
approximation to f on [x(ci- ), x(ci‘)], 
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