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Efficient Schemes to Evaluate Transaction Performance in

Distributed Database Systems

R. MUKKAMALA* aAND S. C. BRUELL**

* Computer Science Department, Old Dominion University, Norfolk, Virginia 23529, USA
** Department of Computer Science, University of lowa, lowa City, lowa 52242, USA

Database designers and researchers often need efficient schemes to evaluate transaction performance. In this paper,
we chose two important performance measures: the average number of nodes accessed and the average number of
data items accessed per node by a transaction in a distributed database system. We derive analytical expressions to
evalute these metrics. For general applicability, we consider partially replicated distributed database systems. Our first
set of analytic results are closed-form expressions for these two measures. These are based on some fairly restrictive
simplifying assumptions. When these assumptions are relaxed, no closed-form expressions exist for these averages.
Hence, we develop an efficient algorithm to compute these averages.

Received August 1988, revised July 1989

1. INTRODUCTION

A distributed database system is a collection of coop-
erating nodes that contains a set of data items at each
node. A user transaction can enter such a system at any
one of the nodes. The receiving node, also known as
the coordinating or initiating node, undertakes the task
of locating the nodes that contain the data items
required by the transaction. (In this paper, the basic
unit of access in a database is referred to as a data item.)
In a partially replicated database system, the set of
nodes in the execution of the transaction is called the
participating node set. During the execution of the trans-
action, messages are exchanged between the par-
ticipating nodes and the coordinating node.

The average transaction response time, the trans-
action reliability, and the system cost (e.g., com-
munication cost, storage cost, etc.) are the three most
important performance measures of interest to a dis-
tributed database system designer.

The transaction response time is generally defined to
be the time between when a user’s request is received
by the system and the time the user is informed of the
result. Response time depends on various factors such
as the system’s model of transaction execution, the
distribution of data, the degree of data replication, the
concurrency and commit protocols, and the charac-
teristics of the given transaction. When we consider an
environment where the cost (or delay) of a message is
approximately independent of the size of the message,
then the transaction response time (or the cost of trans-
action execution) may be expressed in terms of the
number of messages exchanged between the coor-
dinating and participating nodes and the number of data
items accessed at each of the participating nodes® 2.
When we consider high-speed networks, where local
processing costs dominate the communication costs,
estimating the average number of data items accessed
per node is beneficial for transaction cost estimations'?.

The transaction reliability defines the probability with
which a transaction may be executed successfully in an
error prone environment. This metric also depends on
the data distribution, data replication, the concurrency

and commit protocols, and the characteristics of the
given transaction?>,

The cost of a distributed database system includes
one time costs such as the hardware and software costs

as well as run time costs such as the transaction

execution costs. Among the transaction execution costs,
communication costs are predominant in a distributed
database system. This cost also depends on all the above
mentioned factors® 1218,

Even though it is possible to formulate equations
expressing transacfion response times, transaction
reliability, and system cost in terms of the above men-
tioned factors, the evaluation of these measures is
extremely cumbersome and requires unreasonably high
computation time. The evaluation of the exact values
for these measures generally involves both analysis and
simulation. Evaluation tools with such large execution
times are certainly not acceptable to a database designer
who needs to evaluate a number of such possible data-
base configurations before arriving at a final design. To
overcome these problems, designers and researchers
generally resort to approximation techniques*>-. These
techniques reduce the computation time by making
simplifying assumptions regarding data distribution,
data replication, and transaction execution.

Due to the importance of the size of the participating
node set, and the number of data items accessed at
each of these nodes, this paper develops evaluation
techniques for these two measures. Even though it is
possible to derive the exact distributions for these two
measures, the average values of these metrics are the
ones that are frequently used by designers either to
make early design decisions or to estimate other per-
formance measures using these two average values.
Hence, in this paper we only derive the average values
for these two metrics.

To help fix ideas, suppose we are given the speci-
fications of a database in terms of the number of nodes
n, the number of data items d, and the global data
distribution matrix GD. (Table 1 summarizes the
notation used in this paper.) Let us assume that we are
interested in the system’s performance (in terms of the
average number of participating nodes and the average
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Table 1. Notation

Symbol Description

Number of data items accessed at the j* node

2

c Number of copies of each data item

d Number of data items in the database

dGa Average number of data items accessed per node in the set A, corresponding to the given GA

d, Average number of data items accessed per node by a query of size s

g Number of data items in each group, g = d/n

8k Number of data items referenced by query from the k" group

h Number of data items at each node

i Data item index S

iy Number of data items in the k* group 5

j Node index 3

k Group index g

n Number of nodes in the database -

ny Average number of nodes accessed by a query of size s S

s Number of data items accessed by a transaction -

A Set of nodes accessed by a transaction ]

D Index set of data items in the database: D ={1,2, .. .,d} 5

Gy Set of data items in the k™ group Q

GA A group-access n-tuple with g, kK € N as elements 3

GD; Global data directory that indicates the presence (or absence) of the i data item at the j* node g

An n-tuple with a;, j € N as elements o

N Index set of nodes in the database; N={1,2,...,n} 5

(0] A particular query 8

Ok Set of nodes to which the k" group of data items is allocated %

S Index set of data items referred to by a transaction S
N
=
=}

number of data items accessed per node) for query
transactions of a given read-set size, say s. For simpli-
city, let us further assume that all data items are equally
likely to be accessed and that every node has the same
probability of being the coordinator for a transaction.
Under these assumptions the straightforward algorithm
to compute the required average values would involve

enumerating all possible ( ) query transactions and
s

evaluating the required metrics for each query trans-
action. For typical values of d and s, say d = 10000 and
s =5, the algorithm would require the generation and
evaluation of approximately 108 transactions. Clearly,
this algorithm is an impractical tool for either a database
designer or a database analyst.

The algorithms developed in this paper have a time
complexity that depends on »n and s and is independent
of d. The techniques developed in this paper should
aid database designers (and researchers) in their early
stages of design where quick and approximate solution
techniques are preferred to time consuming but exact
techniques. For example, prior to solving the data distri-
bution problem (also known as the file allocation
problem®), which is an NP-hard problem, a database
designer may like to determine (approximately) the
impact of the number of copies of data items on trans-
action performance. The techniques suggested in this
paper are extremely useful in answering these requests
at considerably low computational cost (and hence quick
response time). The designer may use these results to
specify constraints (or bounds) on the number of copies
for the data items in the database. Such constraints help
the data distribution algorithms by reducing the search
space.

The balance of this paper is outlined as follows.
Section 2 formally defines the problem under con-

sideration. Section 3 describes the underlying assump- 2
tions and the analytic solution method as applied to®
query transactions. Section 4 extends these results to %
accommodate update transactions. Section 5 further &
extends the analysis to a distributed database system &
that has a modified majority consensus algorithm® as =
the concurrency control policy. Section 6 then extends &
this technique to a generalized distributed database &3
system with no restrictions on the number of copies or§
the data distribution. Finally, Section 7 provides some o
concluding remarks.

2. PROBLEM STATEMENT

We are given the following parameters (and quantities
that are easily derivable from these parameters):

@ 1, the number of nodes in the database

@ N, the index set for the nodes in the database; N =
{1,2,...n}

@ d, the number of data items in the database

@ D, the index set for the nodes in the database; D =
{1,2,...,d}

® GD, the global data directory that contains the
location of each of the d data items; the GD matrix
contains d rows and n columns, each of which is
eitheraOora l,ie., GD;=0or 1, Vi€ D and
ViEN

@ s, the size of the read-set for a query transaction;
clearly, s = d.

8102 lequieoa( G0 UO Jasn AjisieAlun uoluiwoq pio

From these input parameters we are to determine (1)
the average cardinality of a set A (that represents the
set of nodes accessed by a transaction), and (2) the
average number of data items accessed from the nodes
in the set A. Note that A is not necessarily unique. For
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example, if a transaction requires access to data items
1, 4, and 5 each of which is located at nodes 2, 3, and
4, some of the 7 possible choices for A are A = {2}, A =
{3,4}, and A ={2, 3, 4}.

In order to enumerate all possible sets A, we employ
the following auxiliary quantities:

@ S, the index set of the data referred to by a trans-
action; in the previous example S = {1,4,5}. The
cardinality of S, | S|, must match our input parameter
s, i.e., |S| =s. In addition, S C D.

@ J, an n-component vector that represents the num-
ber of data items accessed by the transactions at
different nodes in the database; a;, the j* element of
J, represents the number of data items accessed
by the transaction at the j* node. In our previous
example, if the number of nodes in the database
were 5, then J =0, 3,0, 0, 0) corresponds to A =
{2}; either J =(0,0,2,1,0) or J =(0,0, 1, 2, 0) cor-
responds to A ={3,4}; and J=(0,1,1,1,0) cor-
responds to A = {2, 3, 4}.

Our problem effectively reduces to enumerating all
possible vectors J that satisfy the constraints of the
problem (see below) and of determining the set A that
corresponds to each vector J. By enumerating all vectors
J and assigning proper weights to each vector, we can
then compute the average cardinality of A as we will
see later. For now, let us return to the constraints that
each J vector (J =(ay, a,. . ., a,)) must satisfy. Since
the size of the read-set is s, the number of data items
accessed must be s, i.e., Z;cya; =s. In addition, the
number of data items accessed at the j* node must be
less than or equal to the number of data items present
at that node; i.e., given J={(a;a,,...,a,),
ZiesGD;=a;=0, VjEN. The set A is now easy to
specify; again given J ={(a,, a,, ...,a,), A={j|JEN
and a; > 0} with the stipulation that every data item
from the read-set, S, is present at at least one node from
the set of nodes to be accessed (A), i.e., Z;c ,GD; = 1,
Vies.

We now formally summarize the statement of the
problem under consideration: Given a matrix GD with
d rows and n columns, and a positive integer s (s < d),
determine the average cardinality of a set A that contains
a subset of the n columns such that the following con-
ditions are satisfied: (The average is over all possible
sets S where S is as defined in Equation (4)).

VJ=(a1,a2,...,a,,),Zaj=s, 1)
JEN
2 GD;=a;=0,YEN, ()
iES

GD,;=0or1,Yi€DandV;EN  (3)
ScD,|S|=s, (4)
A ={j|j € Nand a; >0}, (5)
2 GD;=1,Vi€S (6)

jEA

N={1,2,...,n}and D={1,2,...,d} (7

Two important problems are addressed in this paper.

The first is to find the average value of the cardinality -

of the set A, over all sets S, such that Equations (1)-

(7) are satisfied. The second is to determine the average
number of data items accessed from the nodes in set A.

2.1 An illustrative example

Consider a disiributed database with 6 nodes (n =6,
N={1,2,...,6}) and 12 data items (d=12, D=
{1,2,...,12}). The global distribution of data is given
by the matrix GD of Table 2. Given a query Q with four
data items in its read-set (s = 4), we are to determine the
average number of nodes accessed by the query.

12
As mentioned in the introduction there are <4>

different possible values for S. Suppose we consider a
query Q with a read-set S = {2, 5, 8, 9}. Then there are
several possible values for J that satisfy Equations (1)
and (2). Suppose we choose J =(2,0,1,1,0,0). From
Equations (1) and (5), we see that A = {1, 3, 4} (since
a,, as, and a4 > 0). Hence, the number of nodes acces-
sed, or the cardinality of A (|A|), is 3. The average
number of data items accessed from the nodes in this
set A is 4/3.

Since for a given read-set S and a given data distri-
bution matrix GD there are several possible values for
J, the above computed averages ( for the given S) would
not be correct unless they are averaged over all possible
values of J that satisfy the constraints of the problem.
Enumerating these vectors and assigning proper weights
to each vector, in order to compute the average number
of nodes and data items accessed, is the subject of the
next section.

The computation structure of the obvious approach
that enumerates all possible vectors of S to compute the
averages is shown in Figure 1. In this figure, each node
represents computational information: input, output, or
intermediate. The node with label (s, d) represents the
input of s,d to the computation process. The nodes
S1,8,, ..., 84 represent distinct choices of data item
sets (each of size s) to be accessed by a transaction of
size 5. Certainly, |S;| = s. Given a value of s, there are

d
(s) (indicated by d' in Figure 1) distinct ways of

choosing the S, sets. Given a set of data items, say Sy,
these items can be accessed in a number of ways from
the nodes in the distributed system. The exact number

Table 2. Global Data Distribution Matrix, GD

Node number

Data
items 1 2 3 4 5 6
1 1 1 1 0 0 0
2 1 1 1 0 0 0
3 0 1 1 1 0 0
4 0 1 1 1 0 0
5 0 0 1 1 1 0
6 0 0 1 1 1 0
7 0 0 0 1 1 1
8 0 0 0 1 1 1
9 1 0 0 0 1 1
10 1 0 0 0 1 1
11 1 1 0 0 0 1
12 1 1 0 0 0 1
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Averages

d= (%) Hiny A,

Ay

Figure 1. General computation structure

of such distinct ways is determined by the data set, the
data distribution, and the search strategy adopted to
locate the data items. For the data set S, we indicate
this number by m,. As before, we let J represent the
data access vector. Thus, J,, represents the /* data
access vector for the data item set S,. Given a data
access vector J,,, the number of nodes accessed, or
Ay, 1 uniquely determined by Equations (1) and (5).
Finally, the node labeled ‘Averages’ represents the final
output of the computations.

3. APROBABILISTIC APPROACH TO THE
PROBLEM

Before attempting to solve the given problem, a number
of key issues need to be considered.

It should be clear from the above description of the
general computation structure that for any specific value
of S, there are a number of values that can be assigned
to J (i.e., the mapping S, = J is one-to-many). Each
such assignment results in a specific value for A that
satisfies Equations (1)-(7). However, the average num-
ber of nodes accessed (as defined in Section 2) is only
defined over all possible values of S. This implies that
it assumes a unique value of J (and hence A) associated
with each of the possible values of S. To make the
mapping S, = J one-to-one, we need to specify a data
copy selection policy. This selection policy would
remove one level of enumeration in the computation
process (i.e., S, to multiple J, s in Figure 1).

Similarly, if different values of S (i.e. S;s), satisfying
Equation (4), occur with different probabilities, then
the average node computation should take these into
account by assigning proper weights to different values
of |A| that result from the different values of S.

As discussed above, we need to determine the value
of A for each possible value of S. But any algorithm

d
that enumerates all (s) possible values for S in order

to compute the average number of nodes to access, will
be prohibitively expensive.

In order to develop a computational algorithm that
is efficient and a close approximation to the exact value,

3.1.3 Data item selection assumption

we make the following assumptions about the data
distribution, the data copy selection policy, and the
query distribution. Section 6 shows how the more
restrictive of these assumptions can be relaxed.

3.1 Underlying assumptions
3.1.1 Data distribution assumptions

@ All nodes in the database have the same number of
data items, i.e.,

> GD; =h,Vj€ Nand h >0 (8%

i€D 3

o

@ All data items in the database have the same numbe%
of copies, i.e., 3

o

EGDU:c,ViEDandlscsn (9)3

JEN Z

@ The data items in the database are categorized intos:
n disjoint groups, each group G;, k € N, having theg
same number of data items g = d/n. The groups§
are allocated to the nodes in the following fashion:5
Group G is allocated to nodes in the set Q, where2

©

fk,(k+1,...,(k+c—1)}, §

Uk k+ 1. 12 (et k—n—1)), g
if kK + ¢ — 1 < n otherwise (10
=i

Hence, each group corresponds to a set of ¢ nodes%
(This follows from Equation (9) which assumes thatarJ
all data items have c copies.) This, our most stringents
assumption, will be relaxed in Section 6.

All these three conditions will be removed in Section 6.

9068E/6.L/LIEEMO

3.1.2 Data copy selection assumptions

@ Each node has a copy of the matrix GD. The coor-5
dinator node of a query transaction searches thisg,
matrix in a cyclic manner starting from its own2
column in GD, in order to locate data items needed S
by the query. For example, if a query is received at %

node 1, then: S
a; = |B|, where B = {i|GD, = 1and GD, S
=0,1=I</}LVjEN (g

where B represents the set of data items of the given =
query accessed from the j* node. This means that a
data item is always obtained from the node ‘closest’ S
(in cyclic order) to the coordinator node, if the data g
item was not found at the coordinator node.

2 Jaquiaoa(

@ All data items in the database are accessed with ©

equal probability by any query transaction, i.e.,®
Pr(i€ S)=1S|/d, Vi € D.

This is a commonly made assumption, and its impli-
cations are very well discussed by Chrisdoulakis®*.

3.1.4 Query distribution assumption

@ A given query Q is equally likely to be received at any
of the n nodes. Accordingly, the proposed analysis is
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carried out for query transactions received at node
1. The average statistics computed for this node are
equally applicable for any other node in the system.

3.2 The illustrative example revisited

Our illustrative example of Section 2.1 meets the under-
lying assumptions described above because:

@ Each node has the same number of data items, & =

6 (= d*c/n).
@ All data items have the same number of copies, ¢ =
3

@ Eachofthe n = 6 groupshasg = 12/6 = 2 dataitems.
For example, G, ={1,2}, G,=1{3,4}, G;={5, 6},
G,=1{7,8}, Gs=1{9, 10}, and G, = {11, 12}.

@ Each of the (d> or (12

s 4
read-set of Q are equally likely to occur.

) possible choices for the

Group Gy, k=1,2,...,6, is allocated to the nodes
in the set Q,, where O, =1{1,2,3}, 0, =1{2,3,4}, 03 =
{39 4’ 5}7 Q4 = {4a 5’ 6}5 QS = {57 6v 1}7 and Q6 ={6’ 17 2}

Suppose a query Q with a read-set S ={1, 3,7} is to
be executed at node 1. Then following the ‘cyclic’ search
order mentioned previously, we initiate the search from
column 1 of GD (since we assumed that the query was
received at node 1). Data item 1 is available at node 1,
but data items 3 and 7 are not. Continuing the search
for data items 3 and 7, we find that node 2 is the closest
node that has data item 3. Finally, data item 7 is found
atnode 4. Hence,J =(1,1,0,1,0,0),and A = {1, 2, 4}.

3.3 Computation of the averages for a query
transaction

In developing an efficient procedure to compute the
average performance (i.e., the number of nodes acces-
sed and data accessed per node) our aim is to reduce
the number of S values that need to be evaluated. This
is achieved by introducing the concept of group access
vectors. For ease of explanation, let us consider a query
O with a read-set size s that is received at node 1.

First, we introduce a new vector, the group access
vector, GA = (g, 8,,. . ., 8. Where g, represents the
number of data items references by query Q from group
G,. The determination of J from this vector GA is
straightforward and will be explained later.

Second, let Prg, represent the probability of occur-
rence of the n-tuple GA =(g,,&>,. .., g, due to the

query. There are (s) ways of choosing s data items out

of d data items. Since the n data groups (each with g

data items) are distinct, there are (g)(g) - <g>
81/ \82 En
ways of choosing s data items to form a given GA =

€1,82: - - -, 8- Thus, Prg, may be expressed as:

Prg,y = Pr(gviZ-»-wgn)

(e)e) ()
(5

T (8
()
_ k=1 \8k
(0
s
From Equation (10), when ¢ > 1, the data groups dis-
tributed to node 1 are: G|, G,_.12, Gy_ci3,--.,G,.

From here, the probability that node 1 is accessed by
query Q is derived as:

(12)

P, = Prob(node 1is accessedj

=Pr0b(gl >0\/gn—c+2 >O\/gn~c+3
>0V...\VvVg.,>0)

=1 _PrOb(gl =0/\gn—c+2

=0/\gn~c+3 =0AN.. /\gn =O)

<d - cg)
s
(5
s
Since the query Q is received at node 1, using the
searching rule in Equation (11), we can conclude that
node 2 is accessed by this transaction only when g, > 0

(from Equation (10), Group 2 is the only group that is
present in node 2 and not present in node 1). Thus,

=1- (13)

P, = Prob(node 2 is accessed)
= Prob(g, > 0)
=1- Prob(g, =0)

(,")

=1-— (14)
(5
Using similar arguments we can show that,
d-g
(")
3 =Py = =P, s =1- (15)

(5
s

Since the data items from the other groups (e.g., Groups
(n—c+2),(n—c+3),...,n) are already at node 1,

the corresponding nodes are never accessed by this
transaction. Thus,

=P,=0 (16)

From Equations (13)—(16), the expected number of
nodes to be accessed by Q may be computed as:

d—cg d—g
() )
d d
(5 (5
(17)
n, is the desired average participating node set size for
Q. From this equation, the expected number of data

items accessed from each node in the participating set
may be approximated as s/E,. Thus,

Pn—c+2 =Pn—c+3 =...

A,=2 P=|1- +(n-¢)1-
j=1

d, ~ (18)

r.;llh
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From Equations (13)-(16), we can also compute the
variance of these two estimated averages.

As mentioned above, even though we have per-
formed this analysis for an arbitrary transaction received
at node 1, the same average applies to every node, as
well as to the entire database. The analysis may be
carried out for all possible s values. By averaging these
values (when transactions of different read-set sizes
arrive into the system with different frequencies, then
this would be a weighted average), we can obtain the
average node set size for any transaction in the dis-
tributed database system.

4. COMPUTATIONS FOR UPDATE
TRANSACTIONS

The analysis described in Section 3 pertains to a query
transaction that requires accessing any copy of each of
the data items in the read-set. This section deals with
update transactions. (For simplicity, in this paper, we
assume that an update transaction only performs update
operations on the data items in its write-set.) Since the
query analysis assumes a read-any-one copy policy, we
assume write-all copies for update transactions.

The average node analysis for query transactions is
extended to accommodate update transactions as fol-
lows. Since GA ={(g,, &>, - - -, & represents the distri-
bution of write-set data items among the groups, we can
make use of this information for updates also. If a data
item, say i € S, belongs to a group Gy, k € M. then all
the nodes in the database that contain the data items in
G, are to be accessed by the update transaction.

Again let us consider the transactions received at
node 1. Let U be an update transaction that updates s
data items. Since we assume a read-one/write-all policy,
U has to access all ¢ copies of each data item that it has
to update. Under these conditions, a node has to be
accessed whenever it contains a data item that U
updates. Now, the expressions for the probability of
node 1 being accessed by U may be written as:

P} = Prob(node 1 is accessed by the update
transaction)
= Prob(g, >0\/gn-c+2 >0/ 8n-c+3
>0V...\Vg&:,>0)
=1—=Prob(g) =0/N\g,_cs2 =0/\gy (43
=0N...Ng,=0)
(%)
=1 2 19
= < d) (19)
s
Since each of the n nodes have the same number of data

items, and since each data item is equally likely to be
updated by a transaction,
(d - cg)
s

(f) (20)

Thus, the expected number of nodes accessed by U is

written as: (d _ cg)

_ s
Al =n|1 - ————= 1)

(5

5. COMPUTATIONS UNDER MAJORITY

CONSENSUS

The analysis described in Sections 3 and 4 pertains to
transaction executions under a read-one/write-all con-
currency control policy. There are other replicationy
control protocols, referred to as quorum consensus pro-3
tocols, that are used in distributed database systems tOm
improve the fault-tolerance of such systems'*"” . Underd
these protocols, each copy of a data item is a351gned a-h
positive integer indicating the number of votes a531gned3
to it. In order to obtain the value of a data item, a setg
of copies of the data item that form a quorum, have to2
be accessed. The most up-to-date value of the data item?
is determined after processing values from this set ofa
copies. Generally, a time-stamp or a version number i3
used to identify the most up-to-date value. We con51dero
a simple scheme, referred to as the Majority Consensusc
Algorithm, that assigns one vote to each copy of a datag
item. Hence, a quorum is formed by any set contammgo
a majority of the copies. For example, for a data item3
|
quorum. Similarly, updating the value of a data item
requires the updating of at least a majority of the copies

of that data item.

In this section, we extend our previous results tog;
handle database systems that employ a majority con-=
sensus concurrency control algorithm. Since read as well 2
as write operations on a data item require accessing a‘*J
majority of the copies, the analysis dealing with queryo
transactions is also applicable to update transactions. InO
the following discussion we shall simply refer to theseé
transactions as query transactions.

Since GA = (g, 82+ -+ g, represents the distri- U
bution of data items in the read-set among the groups, 3 =
we shall use this information in the following com-&
putations. If a data item, say i € §, belongs to a group
Gy, k EN, then a majority of the nodes in O, have to<
be accessed by the transaction to read the most up-to-;

(@}
=}
=3
[¢]
v
£
©
£
(=N
L)
Q
=
3
S

)

c
with ¢ copies, any set of [

L/EE 1oeusqe ajone/|ul

date value of i.
Again let us consider query transaction Q received at
c+1
node 1. Let m = [T] represent the majority of

copies that need to be accessed to read a data item. Let
m' =c—m. We now need to analyze two cases: (i)
3=c=n(ii) c=2

Let us consider case (i). Here m’' >0 and m <c.
Using the copy selection criteria in Equation (11), we
may classify the n nodes into three categories:

1. Nodes 1, 2, ..., m are accessed when any of the ¢
groups that they contain are referred to by Q;

2.Nodes n—m'+1, n—m’'+2,...,n are never
accessed by Q since a majority of copies cor-
responding to their data groups are already available
atnodes 1,2,....n—m’';

3.Nodesm +1,m+2,...,n— m' are accessed when
m of the c data groups that they contain are accessed.

z Jeqweoeq GO Uo Jasn Aysie
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We now compute the probability of access for nodes in
each of these three categories.

Let us consider category 1. Since query Q has to
access m copies of each of the s data items in its read-
set, and since the search of the data item copies starts
at node 1, nodes 1,2,...,m will be accessed by Q
whenever they contain a data item (or group) in this
read-set. For example, consider node 1. Since node 1
contans cg data items, the probability that it contains
one of the s data items in the read-set is given by:

(5

Since all nodes of category 1 are accessed with the same

probability,
(d - cg)
s

T d
(2
Now consider node n — m’ + 1 in category 2. It con-
tains the groups: G,_,'12-c» Guom +3-c» Gu—pr +1- FOI
all these groups, the majority of copies (m) are available
at nodes (1,2,...,n—m’'). Thus, node n — m’ + 1 is
never accessed. Other nodes in category 2 have the
same property. Thus,

Pi=0,n—-m+1=<j=n (24)

P =1- (22)

J1=j=m (23)

Now consider node m + 1 of category 3. It contains
¢ groups including group 1 (since m < c). Since it is the
m + 1* node in the searching sequence, this node will
never be accessed by query Q for data items in group
1. However, it should be accessed for any of the other
¢ — 1 data groups. From Equation (13), the probability
that node m + 1 is accessed by Q may be computed as:

d—(c—1)g
P, =1_<s—> (25)

(5
s
Similarly, we can argue that each node of category 3 is

accessed only when at least one of the ¢ — 1 groups are
accessed by Q. Thus,

! d
(5

In summary, when 3 = ¢ =n,

,m+1=j=n-m' (26)

(09
1-—= if1<j=
o
s
Pi=< (d—(c—l)g 27
1—#,“,"“5;5”-,"'
s
L O, otherwise

We now consider the case when ¢ = 2. Here, m = 2,
and m’ = 0. Thus all copies of a data item are to be
accessed whenever it is referred to by Q. Since each
node has the same number of groups (= c), the prob-
ability that a node is accessed is given by

d—cg
(.%)
d
(5
Using Equations (27)—(28) the expected number of
data items may be computed as:

d—cg
(ml————< ji )

(5)

(d—(c—l)g
A,={ +(m-o)l1- 2 ifc=3 (29)

A
nf1-—2| ifc=2
()

The average data items accessed per node may be
derived using Equations (18) and (29).

6. COMPUTATIONS FOR GENERAL
DATABASES

In Sections 3-5, we described analysis methods to deter-
mine the average number of nodes accessed by a trans-
action in a database under certain restrictive
assumptions (cf. Section 3.1). In fact, the implications
of the assumptions such as uniformity of attribute values
and uniformity of queries (in a centralized database
system) is very well summarized by Christodoulakis®.
In this section, we shall extend the previous analysis to
enable us to compute the average statistics for a data-
base system with no restrictions on the number of copies
of a data item, the distribution of data copies, or the
number of data items at each node.

In a partially replicated distributed database, the
number of copies of a given data item in the database
may be determined either by the application environ-
ment or by the user’s access pattern to the data item.
In essence, it is not necessary that all data items in the
database have the same number of copies. However, in
practical distributed database systems, the decision on
the number of copies of a data item may not really be
arbitrary. Similarly, in a practical database system the
data item copy distribution is not entirely a random
choice. The data distribution is generally determined
based on the applications running on the system and,
in fact, may follow some form of a group pattern. For
example, if data items i, j, and k belong to a certain
application, then they may be located together at the
required nodes'-'!1>-16. Sometimes de-clustering tech-
niques are applied to group the data items’. Hence, this
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distribution may neither be as systematic as the one in
our earlier analysis (cf. Section 3.1) nor be completely
random. We now extend the previous analysis for
databases with these characteristics.

Let us group the d data items in the distributed
database based on the number of copies and on the
allocation of these copies among the nodes. A data
group, say Gy, is characterized by the two parameters
x, and y,, where x, represents the number of replication
copies of each of the data items in the k" group, and y,
represents the number of data items in this group, i.e.,
y« = | G,|. Each group of data items, say G, is allocated
to a set of nodes, say Q(xx = | Q«|). The actual number
of data groups in a database, ng, depends on the number
of copies and the distribution of the copies among the
nodes in the database. The distribution discussed in
the previous sections is a special case of this general
distribution wherein all data items have the same num-
ber of copies (i.e., x; = c, for all k), and the size of each
group G, is the same (i.e., |G| = g, for all k).

The probability of occurrence of the ng-tuple GA =
(81,82 - - -» &ng) due to the read-set S is given by:

Prea = Prig, g, g0

G- ()

=— (30)
(5

Since we are considering an arbitrary grouping of
data items, and also an arbitrary distribution of groups,
it is not possible to derive closed-form expressions for
7, and d, as before. Instead, we use the computation
structure shown in Figure 2.

In the modified structure, given the data grouping
information (G, G, . . ., G,,), and the s value, we gen-
erate all possible values for GA = (g, 82, . . -, &ng) SO
that 0=g; <y, and X7 ,g, =s. These vectors are
referred to as GA, GA,, . . ., GA,. If ® represent the

GA,

Procedure Determine_JQ(GA:
Integer_Array);
var
j, k: integer;
begin
for j:=1to n do
J[j]: =05
for k: =1 to ng do
if G[k] > 0 then
begin
{Determine the minimum element of the set O}
j: = min_element(Qy);
Jjl: =Jlj]1+ GA[K]
end

Integer_Array, var J:

end;

Figure 3. Generation of Vector J from GA for Query Trans-
actions (General)

1Y Wouy peapeojumo(

set of all these vectors, then d’ = |®|. For each value?
of GA, the corresponding node access vector J is com-3
puted. (For example, the procedure Determine_JQ ins
Figure 3 may be used to compute J vector for queryg_
transactions.) Having computed the value of J, for a2
given GA,, we may use Equations (1) and (5) to derives
the value of A,. Now, |A,| represents the number o
nodes accessed by a given query that corresponds to thes:
given GAy; let ng,, represent this quantity. Similarlyé_
the average number of data items accessed per node in=
the set A, corresponding to the given GA,, is denoted=
by dga, (= S/"GAk)~ :
For a given vector GA, the probability of its occur<
rence is computed using Equation (30). Having com-%
puted ng, and dg, for this vector, the overall averages>

=Tl

n; and d; are computed as: &
_ 3
ng = > Prganga (GZ

GAE® %
_ o
d, = 2 Prgadca (32)g
GAED g

Figure 4 illustrates the overall structure of our algorithmcc—x)
and Figure 5 shows a Pascal procedure to generate all¥
possible values of GA. When the number of data items=.
in each group is greater than the read-set size of queryd
Q (or write-set size for an update transaction U), lLe.c

Jp Ay

Grouping Info.,s

Averages

8107 Jaquiadaq GO Uo Jasn Ajisian

GAy

d=|o|

Jar Agr

Figure 2. Modified computation structure
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Given s, n, ng, (x,, yl)i (2, ¥2)s -+ s (g Yng)

1

Generate a vector GA using Figure 5

Compute Prg,4 using Equation (30)
Generate vector J from GA (using Figure 3)
Determine the set A from Equation (5)

Determine ng, = |A| corresponding to GA vector

R
Compute dgy = —
. nga

Done?

Compute 7; from Equation (31)

Compute d, from Equation (32)

Figure 4. Algorithm to compute 7, and Js

Y« = s for all k, then the number of these vectors is given

by (n ;Fs ] 1). The derivation of this expression is
straightforward and not included here.

Since in a generalized database, it is not necessary
for all nodes to have the same number of data items,
the average statistics derived for transactions at one
node may not be valid at other nodes. Accordingly, we
may need to repeat this analysis for transactions at every
node in the database.

6.1 Another illustrative example

Consider a distributed database with 6 nodes (n = 6)
and 12 data items (d = 12). The global distribution of
data is given by the matrix GD of Table 3. Given a
query Q with s = 4 data items in its read-set, we are to
determine the average number of nodes accessed by the
query.

Suppose we consider a query Q with a read-set S =
{2, 5, 8,9}. Then there are several possible values for J

Procedure Generate_GA(s: integer);
var
k: integer;
begin
for k: = 1 to ng do
GA[k]: = 0;
GA[1]: =s;
{The first GA vector is available here}
while GA[ng] # s do

begin
k:=1;
while GA[k] =0 do
k:=k+1;

GA[k]: = GA[k] — 1;
GAlk +1]: = GA[k + 1] + 1
{The next GA vector is available here}
end;
{The last GA vector is available here}
end;

Figure 5. Generation of GAs (for y,, y,, . . ., Yng > S)

Table 3. GD - Global Data Distribution Matrix

Node number

Data
items 1 2 3 4 5 6
1 1 1 0 0 0 0
2 1 1 0 0 0 0
3 0 1 0 0 0 0
4 0 0 1 1 1 0
5 0 0 1 1 1 0
6 0 0 1 1 1 0
7 1 0 0 1 1 1
8 0 0 0 0 1 1
9 1 0 0 0 1 1
10 1 0 0 0 0 1
11 1 0 0 0 0 1
12 0 1 0 0 0 0

that satisfy Equations (1) and (2). Suppose we choose
J=(2,0,1,0,1,0) where data items 2 and 9 are read
from node 1, data item 5 from node 3, and the data
item 8 from node 5. From Equations (1) and (5), we
see that A ={1,3,5}. Hence, the number of nodes
accessed, or the cardinality of A (|A]), is 3.

One possible grouping of the 12 data items and the
corresponding node sets is shown in Table 4. The table
of generation and evaluation of the n-tuples GA for
query transactions is summarized in Table 5. This table
illustrates the generation and evaluation of GAs for
query transactions received at node 1. Using this table
and Equations (31) and (32), we can compute the aver-
age number of nodes accessed, 7, and the average
number of data items accessed per node, d,. Similar
results may be derived for queries received at other
nodes in the database by modifying the procedure for
determining the vector J from GA and computing simi-
lar statistics. Table 6 summarizes these statistics for
requests received at the six nodes in the database.

The computation of these average statistics for update
transactions as well as other concurrency control
schemes, such as the majority consensus scheme, is very
similar to the above procedure.

7. CONCLUSION

We have introduced a probabilistic method to compute
the average number of nodes and the average number
of data items accessed per node by a transaction in a
partially replicated distributed database system. With
constraints on data distribution and copy selection

Table 4. Grouping of Data Items for GD in Table 3

k Gk Qk

1 3, 12) 2)

2 1, 2) (1, 2)

3 (10, 11) (1, 6)

4 (8) (5, 6)

5 4,5, 6) @3, 4, 5)
6 (9) (1,5, 6)
7 (7 (1, 4, 5, 6)
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Table 5. Evaluation of GA for Query Transactions (General Model)

GA Pr(;A J A NGa d(;A
(2,2,0,0,0,0, 0) 0.0020 (2,0,2,0,0,0) {1, 3} 2 2.0
2,1,1,0,0,0,0) 0.0081 (2,0,2,0,0,0) {1, 3} 2 2.0
2,1,0,1,0,0,0) 0.0040 (1,0,2,0,5,0) {1, 3, 5} 3 1.33
2,1,0,0,1,0,0) 0.0121 (1,0,3,0,0,0) {1, 3} 2 2.0
(2,1,0,0,0, 1, 0) 0.0040 (2,0,2,0,0, 0) {1, 3} 2 2.0
2,1,0,0,0,0, 1) 0.0040 (2,0,2,0,0,0) {1, 3} 2 2.0
(2,0,2,0,0,0, 0) 0.0020 (2,0,2,0,0, 0) {1, 3} 2 2.0
2,0,1,1,0,0,0) 0.0040 (1,0,2,0,1,0) {1, 3, 5} 3 1.33
(2,0,1,0,1,0, 0 0.0121 (1,0, 3,0,0,0) {1, 3} 2 29
2,0,1,0,0,1, 0) 0.0040 2,0,2,0,0,0) {1, 3} 2 2.§
2,0,1,0,0,0,1) 0.0040 (2,0,2,0,0,0) {1, 3} 2 2.
2,0,0,1,1,0,0) 0.0061 0,0,3,0,1,0) {3, 5} 2 28
(2,0,0,1,0,1,0) 0.0020 (1,0,2,0,5,0) {1, 3, 5} 3 1.33
(2,0,0,1,0,0, 1) 0.0020 (1,0,2,0,1,0) {1, 3, 5} 3 1.33
(2,0,0,0,2,0, 0 0.0076 (4,0,0,0,0, 0 {3} 1 4.8
2,0,0,0,1,1,0) 0.0152 (1,0,3,0,0,0) {1, 3} 2 2@
(2,0,0,0,1,0, 1) 0.0076 (1,0,3,0,0,0) {1, 3} 2 2.6
2,0,0,0,0,1,1) 0.0025 (2,0,2,0,0,0) {1, 3} 2 2.§

. . . . . . ('gD

° o

. . . . . . 8
0,0,0,0,2,1, 1) 0.0455 (2,0,2,0,0,0) {1, 3} 2 2.8
==

8

3

policy, we have derived closed-form expressions to com-
pute these performance measures. When these con-

straints are relaxed and a general distribution is

assumed, we developed an efficient algorithm for com-

puting the desired measures. The general structure of

our algorithm is summarized in Figure 4, with the high-

level computational structure depicted in Figure 2.
Our results can be used to provide

@ an approximation to a transaction’s execution time,

@ an approximation to a transaction’s reliability,

@ the probability that a transaction will require data
items from the coordinating node, and

@ the average number of data items accessed (locally)
by the coordinating node.

These measures are extremely useful in the reliability
and performance studies of replicated distributed data-
base systems'*'>. The availability of the suggested
approximation tools should ease the task of system
designers and system analysts.
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Announcements

9-11 MAY 1990
NIVELLES, BELGIUM
Université Libre de Bruxelles

International Conference
Computer, Man and Organization II

The Section Informatique et Sciences Humai-

nes of the Université Libre de Bruxelles

(Faculty of Social, Political and Economic

Sciences) will be celebrating the tenth anni-

versary of its creation during the 1989-1990

academic year.

With this in view it has decided to organize

a conference devoted to the transformations

that the increasing use of information tech-

nology involves for people and organizations.

The conference aims at taking stock of
the situation and sketching out the evolution
prospect regarding the following questions:
how does man define himself with regard to
information technology? What are the main
problems involved in the man-machine face-
to-face encounter? What are the potential
and real impacts of information technology
on the organization and conversely? In what
respects and how does information tech-
nology affect man’s place in the organization?

Papers will focus on the following themes:

— man-machine communication;

- computer-assisted training;

- psycho-social representations of informa-
tion technology;

- implementation strategies in big, small and
medium-sized organizations;

- place of human sciences in the training of
data processing specialists;

- actual and potential contributions of micro-
processing, telematics and telecommuni-
cations in the field of management;

- problems arising from information tech-
nology for men and organizations;

- executives facing information technology;

- design, implementation and management
policies regarding applications;

- myths and realities of the expert systems;

- information technology and public services;

- information technology assessment
methods and practices;

- socio-economic analyses of information
technology.

Location

The conference will take place at the centre
cultural “Waux-Hall”, Nivelles — Belgium.
Nivelles is located some 25 km south of Brus-
sels and is easily accessible through the
motorway or by train. Access maps will be
sent to the participants.

A special free (permanent shuttle) coach
service will be available between Nivelles,
where the conference takes place, and the
centre of Brussels where it will serve the main
hotels and communication centres.

Languages

The official languages of the conference are
French and English.

Accommodation

Accommodation facilities will be communi-
cated in due time. Rooms at special reduced
rates will be booked in hotels located in the
centre of Brussels.

Registration fee

The registration fee, which covers all working
documents, coffees and refreshments, par-
ticipation in a reception as well as the shuttle
coach between Brussels and Nivelles, is
12,000 BEF.

We draw your attention to the fact that on
14, 15 and 16 May 1990, the 6th International
French Speaking Congress on the Psychology
of Work (6éme Congrés International de Psy-
chologie du Travail de Langue Frangaise) will
be held in Nivelles as well.

People who take part in both the Con-
ference and the Congress qualify for special
reduced fees (see registration and call for
papers form).

The amount of the registration fee for the
Conference and/or the Congress is to be paid
in Belgian currency into the account n° 001-
1537599-31 of the L.I.S.H./U.L.B.

Please do not forget to mention the par-
ticipant’s name and the purpose of the pay-
ment: ‘Conference’ and/or ‘Congress’.

It can also be paid by bank cheque. The
account charges are payable by the drawer.

All correspondence or inquiries regarding the
conference can be addressed to:

either

SISH-U.L.B., Colloque ‘I’Ordinateur,
I'Homme et I'Organisation II', Rue des
Canonniers, 2, B-1400 Nivelles. Tel:
+32.67.21.85.29 (from abroad) or (067)
21.85.29 (from Belgium)

or

Prof. L. Wilkin, Université Libre de
Bruxelles/CP 140, 50, Av. F. Roosevelt. B-
1050 Bruxelles. Tel: +32.2.642.41.24 (from
abroad) or (02) 642.41.24 (from Belgium).
Fax: +32.2.642.35.95 (from abroad) or (02)
642.35.95 (from Belgium).

23-25 MAY 1990
ESPOO (HELSINKI), FINLAND

Sixth International Conference and Exhi-
bition on Information Security

Computer Security and Information Integrity
in our Changing World

State of the art presentations of Information
Security and EDP Auditing. Exhibition of
Information Security software and hardware
products.

For information contact:

Conference Secretariat: Congrex (Finland),
Neitsytpolku 12 A, P.O. Box 151, SF-00141
Helsinki, Finland. Tel: +358-0-175355; Fax:
+358-0-170122; Telex: 12358 congx sf.

Registration fees:

Before 1 April 1990 4000 FIM/900 USD
After 1 April 1990 4500 FIM/1000 USD
Speakers and students 2200 FIM/500 USD

Hotel accommodation available.
Interesting guided tours and excursions.

4-7 JUNE 1990
BRIGHTON

International Conference, Computer Tech-
nology in Welding

The Welding Institute is announcing pre-
liminary details of a forthcoming Inter-
national Conference:

Third International Conference on Computer
Technology in Welding

Topics for discussions will include:

® Process and equipment control

® Production control and automation
e CAD, CAM and CIM software

® Sensors and instrumentation

® Modelling

® Information technology

® Artificial intelligence

A small exhibition is planned to run in par-
allel with the conference, and it will be staffed
by technical personnel. Delegates will be able
to see the latest developments in computing
equipment and software in the area of weld-
ing and fabrication technology.

The Welding Institute invites offers of
papers for the conference, and further infor-
mation is available from Tony Gray, Con-
ference Organiser, The Welding Institute,
Abington Hall, Abington, Cambridge CB1
6AL, U.K. Tel: 0223 891162. Telex: 81183.
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