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The problem considered in this paper is best L,, approximation with multiple 

constraints for 1 <p-c 0~. Characterizations of best L,, approximations from 

multiple n-convex splines and functions are established and the relationship 

between them is investigated. Applications to best monotone convex approximation 

are studied. J 1991 Acadcmlc Press. Inc 

1. INTRODUCTION 

In this paper, we consider best L,, approximation with multiple con- 
straints for I < p < EC. The classes of approximating functions are the class 
of multiple n-convex splines and the class of multiple n-convex functions, 
which are defined below. 

A real-valued function g is said to be n-conuex in (0, 1) if for any n + 1 
distinct points x0, x,, . . . . x, in (0, I), the nth order divided difference is 
nonnegative, i.e., 

[X”, x,, . ..) x,] g 2 0. 

The set of n-convex functions is a convex cone. Note that l-convex 
functions are nondecreasing and 2-convex functions are convex in the usual 
sense. 

It is known (e.g., [2]) that if g is an n-convex function on (0, 1) then 
R (n *) exists and is convex on (0, 1). Hence, gcn-*’ is absolutely continuous 
on any closed subinterval of (0, 1 ), the (n - 1 )st left-derivative g”’ ” exists 
and is left-continuous and nondecreasing in (0, l), the (n - 1 )st right- 
derivative g$’ - ‘) exists and is right-continuous and nondecreasing in (0, l), 
g fn 11 exists a.e. in (0, 1 ), and g’” -- ‘) = g’“- ” = g’f ‘) a.e. in (0, 1 ). If 
g E c”[O, 11, then g is n-convex if and only if gCn’ > 0. The set of n-convex 
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functions contains the subspace of polynomials of degree n - 1. Some addi- 
tional properties of n-convex functions can be found in [2, 1 I, 16, 193. 

Given 0 < m ,< n, g is said to be (m, n)-concex if ( - 1 )‘g is (m + i)-convex 
for i = 0, 1, . . . . n - m. Note that for n > m, (m, n)-convex functions are func- 
tions with multiple constraints. Let K,,,, denote the set of (m, n)-convex 
functions. Then clearly K,,,,, is the finite intersection of k-convexity cones. 
The finite intersections of generalized convexity cones with respect to an 
ECT-system were defined in [20, 213. Clearly, K,,,,, is a finite intersection 
of the convexity cone with respect to the ECT-system { 1, X, .Y*, . . . . x”.- ’ }. 

From the above delinition, (n, n)-convex functions are n-convex func- 
tions and (0, n)-convex functions are n-time monotone functions. For some 
applications of n-time monotone functions, see [IS] and other references 
therein. In addition, (0, cc)-convex functions are completely monotone 
functions (see [ 171). More generally, we deline (m, n),-convexity. Let 
a=(a,,a I,..., (T,, _ ,), where each (T, is I or - 1. A function g is said to be 
(m, n),-convex if ai( - 1)‘~ is (m + i)-convex, for i= 0, 1, . . . . n-m. In this 
paper, for the sake of simplicity we restrict ourselves to (m, n)-convex func- 
tions. All results we obtain here can be extended to the setting with 
arbitrary 0 without any difficulty. 

Let c,,, denote the intersection of K,,,, and L, = L,[O, 11. Then K,P,,, is 
a closed convex cone in L,. Given a partition A of [0, 11, with 
A:O=x,,<x, < ... <x/,, , = 1, let SE(A) denote the space of polynomial 
splines of degree n - I with k simple knots at s,, . . . . ?I~, i.e., 

St(A)=span{(l -x)’ ‘, i= 1, 2, . . . . n, (x-s)‘+.-‘,.j= I, 2, . . . . k). 

Define 

S~.,(A)=S~(A)nK,,,,,. (1.1) 

Since polynomials of degree n - 1 are contained in both S:(A) and K,,.., 
Sk.,(A) is a nonempty convex cone. In particular, sO,,,.(A) is the set of 
(m, n)-convex polynomials of degree n - 1. 

Given f l L,[O, I], s* E K& (resp., SfJA)) is called a best (m, n)- 
comex (resp., (m, n)-conoex spline) L, approximation to ,f if 

If -s*llp= inf{ Ilf --sII,: SE K~Jresp., $&(A))}. (1.2) 

The existence of a best n-convex L, approximation was proved in [7] 
and [ 163 independently, and uniqueness is proved under some additional 
restrictions in [22]. The characterizations of best l-convex (nondecreasing) 
L, approximations for 1 < p < co were established in [ 12, 133. A partial 
characterization of a best n-convex L, approximation was proved in [22]. 
The complete characterization of a best n-convex L, approximation, for 
1 <p < x, is considered in [ 14, 15, 191. Existence of a best n-convex 
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uniform approximation was proved in [3,24]. Burchard [4] and 
Brown [ 1 ] have characterized best uniform n-convex approximation. 
Some additional properties of best uniform n-convex approximation are 
considered in [23]. 

For 1 d p< x, the existence of a best approximation to j’~ L,[O, I] 
from Si,,,,(n ) follows from the fact that S:.,,(d) is a finite dimensional, 
closed subset of L,. For 1 < p < x, unicity follows from the fact that L, is 
strictly convex. For p = I, unicity was proved by Pence in [9]. In Sec- 
tion 2, the characterizations of best (WI, n)-convex spline L,, approximations 
for I d p < SC are established. As consequences, we also consider best L,, 
approximation by n-convex splines of degree n - 1. 

For 1 < p < ‘;c, the existence of a unique best L,, approximation from 
K,P,,,, follows from the facts that L;,, is closed and convex in the reflexive 
Banach space L, and that the L, norm is uniformly convex. In Section 3, 
WC prove the existence of a best L, approaximation of j’~ L,[O, I] from 
K’ ,,1,,1 and characterize best L, approximation to a function j’ in L,[O, I] 
from K;,,, for 1 < p < X. An interesting relationship between best L, 
approximations to ,f~ C[O. I] from si,,,(~I) and KR,, is investigated in 
Section 4. In Section 5, best monotone convex L,, approximations are 
studied and best convex L, approximation is characterized in terms of best 
monotone convex L, approximations. 

2. BEST L, APPROXIMATION FROM Sk.,,(d) 

By a corollary of the Hahn Banach Theorem (see [ 5,6]), if K,, is a 
convex cone in L, [0, I] for 1 6 p < x, then 

(i) for I < p < 30, .r,* E K, is a best L, approximation to ,/‘E L,[O, 1] 
from K, if and only if 

(2.1) 

and 

for all s E K,, (2.2) 

where 4,=sign(S-s,*) If‘-s,*Ip-‘; and 

(ii) for p= I, SF E K, is a best L, approximation tofu L,[O, l] from 
K, if and only if there exists a 4, E L, with !I#,l)=> = 1 and 
J:,h(.f-C)= ilf-.$II,9 satisfying (2.1) and (2.2) with p = 1. 

The above result shall be referred to as the duality theorem. 
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Let & be a signed measure of bounded variation on (0, 1). The dual 

cone to a cone K of functions is the set of signed measures dp such that 

With this definition, the above duality theorem can be restated as follows: 
For 1 < p < x. s,* E K,, is a best L, approximation to J‘E L, from K, if and 
only if 4, is orthogonal to .Y,* and -q5,,(~) d?c is in the dual cone to K,. For 
p = 1, we can similarly restate the duality theorem. The dual cone to a finite 
intersection of generalized convexity cones with respect to an ECT-system 
was characterized by Ziegler in [20, 211. 

By applying the duality theorem, we have the following characterization 
of best L, approximation to j’~ L, from Sz,,,,( A) for 1 < p < =c. Let 
N ,U.PI = 1 ‘m + 1, . . . . n} and N, = No ,,,. 

THEOREM 2.1 (Characterization). For 1 < p < x, lef f‘c L,[O, 1 ] and 
let .s,* E $&,(A). 

(a) For 1 <p< x, Ief ~,=sign(l‘-s,*)lf-stIP- ‘, unci 

H,,(-u)= { ll(i- I)!} j’ (P-l)’ ‘~,(f)Clf, XE [O. 11, iE N,. (2.3) 
0 

Then s,* is the best L, approximation to f from Sk,,,(A ) lj’ and only if 

(i) H,,,(l)=O, ie N,,,: 

(ii) (-l)“‘H,,,(l)<O, iEN,,,,; 

(iii) ( - 1 )“H,.,,(x,) do, Jo N,; 

(iv) if‘(-l)“H,,(l)<Oforsomei~N,,,,, Ihens,*” “(l)=O; 

(v) if (- l)“H,,,,(x,) <0 for some je N,, then s:‘” .. “(x- ) = 
.s*(“- “($ ). P 

(b) For p = 1, SF is u best L, approximation from S:,‘,,(A) to f if and 
onfy ifthere exists u 4, EL, with IIq51,-r, = 1 and jh#,(f-sF)= Ilf -s~II, 
saris[ving (i k(v) of part (a) with p = 1. We calf q5I an associuted functional 
of s:. 

Proof (a) This proof will depend on the above duality theorem. Since 
Sk.,(A) is a closed convex cone in L,[O, 11, by the duality, .sf is the best 
approximation to f from St,.,(A) if and only if 
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and 

I 

1 

$,a for all s E Si.,( A ). (2.5) 
0 

(Necessity)First,notethat(l-.u)’ ‘/(i-l)!, -(I-I)‘-‘/(i-l)!~ 
S!&(d) for i= I, 2, . . . . m. By substituting these functions into inequality 
(2.5), we find 

I ’ {(I -x)‘-‘A- l)!} 4,(x)dx=O, i = 1, 2, .,., m. 
0 

This proves (i). 
Next, since ( - I)“( I - x)’ ‘/(i - 1 )! E Sk,,(d), i = m + 1, . . . . n, by using 

(2.5) once again, we obtain (ii). Similarly, in (2.5), let s = 
( - 1 )“(x, - x)“’ ‘/(n - 1 )!, j= 1, 2, . . . . k, and we have 

I o~‘{(-l)“(~,-~)n-‘/(n--l)!)~p(.~)d.~,<O, j=l,2,...,k 

Now, by integrating by parts and by using (i), 

j-’ S;(X) tip(x) dx = i,’ ( - 1 )“Hps,(x) S;(~)(X) dx 
0 

=y (-l)‘H,,,+,(l)s,*“‘(l) 
,=??I 

+ i (- l)“HP,“[x,)[s,*‘“-“(X; )-.$Y-“(X, 113 
/= I 

where the last equality holds because s,* is a polynomial of degree n - 1 on 
each subinterval (x,, x, + ,). Combining the above equation with (2.4) gives 

y (-l)‘H,,i+,(l)s,*‘i’(l) 
,=??I 

+ i (- 1 Wp.,(x,Ns,*‘” I’(,,+)-s;(“-‘)(x;-)]=O. (2.6) 
J=’ 

Since Sp*EKWl? (-1)’ ms,*(“(l)>O and (-1)” m[,p*‘n-“(~I+)- 

SP 
*cn- ‘)(XJY )] 20. It f o 11 ows from (ii) and (iii) that each term in (2.6) is 

nonpositive. Hence, 

~-~~m~p,,,,~~~s,*“‘~~~=~, i=m, m+ l,..., n- 1, (2.7) 
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and 

( - l)“‘H/&,)[Sp*“’ i’(s,’ ) - .sp*“’ ‘I(.Y, ,] = 0, j= 1, 2, . . . . k. (2.8) 

Then (2.7) implies (iv) and (2.8) implies (v). 

(Sufficiency) If .sz E SfHJ A ) satisfying conditions (i )-(v), then by 
integation by parts, it is easy to verify that (2.4) and (2.5) hold. Therefore, 
.s,* is the best approximation to j’ from Si,,,,( A). 

(b) The proof is similar to (a). Thus. we omit the details. This proves 
Theorem 2.1. 

We remark that since H;,,(X)= HL,, ,(.Y), conditions (i) (v) of 
Theorem 2.1 can be restated in terms of H,,,,, and its derivatives. For exam- 
ple conditions (i) and (ii) arc equivalent to HE;,, ‘I( 1 ) = 0, i E N,,,, and 
( - 1 )” H;,, ‘I( 1 ) < 0, I’ E N ,,,,,,, respectively. 

In order to derive some structural properties of a best approximation, we 
introduce some additional notation. Let I d p < x and c$,, E (L,,)*, the dual 
space of L,. Define H ,,,, as in (2.3). 

Qd,)= {ie N,,,: (-W’H,,.,(WOj, (2.9) 

and 

J(q$,)= {Jo N,: (-l)“H&,)<O}. (2.10) 

We define a subspace of S:(A) by 

S;*(A,q&)= {s~s;(A):.s”‘(l)=O, i~l(#,,); 

s”’ “(X, )=.s (‘I-- ‘)(.Y/+ ), jEJ(&)}. 

It is easily proved that $*(A, 4,) has a basis 

(2.11) 

I( 1 -.Y)’ ‘,~EN,-1(~,,),(.~,--.Y)‘: ‘.j~N~-J(qh~)}. (2.12) 

The next theorem gives an alternate characterization of best L, 
approximation from Sk ,,(A), which indicates that best L, approximation 
from the convex set s::,,(A) is equivalent to best L, approximation from 
the subspace S,k*(A, 4,). 

THEOREM 2.2. Let 1 6 p < x and let f E L,[O, I]. 

(a) For 1 <p < x, .s,* E $,(A) is the best L, approximation toffronl 

Sk,,(A) if and on!,, if sf is the best L, approximation jk)rn S:*(A, d,,), 
H,here 

d,,=sign(,f‘-s,*) lJ‘-.sp*Ip-‘. 
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(b) For p= 1, sr~Sk.,(A) is a best L, upproximation to f from 
SE,.,(A) ly and only if there is a 4, E L ~ with 11#,I\ ~- = 1 and 

~~~;y,“;.~‘=““:l,, such that s y is u best L, approximation to f .from 

n 1 I 

Proof. Let 1 < p < ,x. By Theorem 2.1, .r,* is the best L, approximation 
to f from Sk,,(A) if and only if conditions (i)-(v) are satisfied. It follows 
from the definitions of I(#,) and J(d,,) that conditions (i)-(v) are equiv- 
alent to the conditions 

c I (1 -t)‘-‘$h,(t)dt=O, i E N,, - 4 4p ), (2.13) 
-0 

and 

I ’ (x,-t): ‘qs,(t)dt=0, jENk-J(4p). 0 
(2.14) 

This is equivalent to the statement that .r,* is the best L, approximation to 
f from S,k*(A, dP), since S,k*(A, 4,) is a finite dimensional subspace of 
S:(A) and S,k*(A, 4,) has the basis (2.12). 

The proof of (b) is similar to that of (a). This completes the proof. 

In the rest of this section we apply the general results that we just 
obtained to best L, approximations from St ,,(A), the set of n-convex 
splines of degree n - 1, for 1 < p < x. 

COROLLARY 2.1. For 1 <p < ‘x,, let f E L,[O, 1] and let s,* E Sk,,,(A). 

(a) For 1 -C p < CC, the following statements are equivalent: 

(1) s,* is the best L, approximation to f from S:.,(A); 

(2) .sp* satisfies three conditions 

(i) H,,(l)=O, i= 1,2 ,..., n, 

(ii) (-l)“H,,(.r,)<O,j=l,2 ,..., k, 

III) 
s*ln- I,(- (“1. 

if (- l)“H,Jx,) <0 .for some je N,, then s:(~- “(x,7)= 

P 5” 

(3) s,* is the best L, approximation to f from S,k**(A, 4,) defined 
by 

Sk**(A, #p)= (s~S~(d):s(” “(x, )=s(“-‘)(x,+), jEJ(b,,)}, n 

where J(4,) = { je N,: ( - 1 )“H,.,(xi) < 0). 
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(b) For p = 1, ST is u best L, approximation to f .fiom S:.,(A) if and 
only if there exists a 4, E L, with liq5Jx = 1 andj:,d,(f--ST)= IIf-s~Il,, 
satisfying the conditions (i)-(iii) of part (a) with p = 1, and if and only if 
there exists a 4, as above such thut ST is the best L, approximation to.f.from 
S,k**(A, 9,). 

3. BEST L, APPROXIMATION FROM K&, 

In this section, we consider best L, approximation to f‘~ L,, from K& 
for 1 <p<z. 

First of all, we study the existence of a best (m, n)-convex L, approxima- 
tion. It will be proved to be a consequence of an existence theorem in a 
recent paper [16] by Ubhaya. We first state a definition and a theorem 
that appear in [ 163. Let H be the set of all extended real-valued function 
on [0, 11. We say PC H is sequentially closed if it is closed under 
pointwise convergence of sequences of functions. We denote by P the 
smallest superset of P which is sequentially closed. 

THEOREM 3.1 [ 163. Let P he a nonempty set in H. Assume the following 
two conditions are satisfied: 

(1) PnL,=PnL,; 

(2) There exists a positive integer ; which depends oni-v upon P, and 
the following holds: I f  k E P, there exist an integer 1 < r < z and points 
{x,: i=O,l, . . . . r} with O=x,<x, < ... <x,= 1 so that k is monotone on 
each interval (x, , , x,). 

Then u best approximation to J‘ in L, from P n L, exists for 1 < p c (xc. 

The following theorem is a consequence of Theorem 3.1. 

THEOREM 3.2. Let f E L,[O, 11. Then there exists a best (m, n)-convex 
L, approximation to I: 

Proof: Let 

Then L = r)::; K,. Thus, 

,I - m 
K,,.,nL,= nL,= n {KnL,). 

t-0 
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By Proposition 3.4 of [ 163, we have K, n L, = K, n L,. Hence, 
,I - n, 

K,,,,, n L, = n (% n L 1 1 

=K,,,,nL, 

Therefore, condition (1) in Theorem 3.1 is satisfied. In addition, since an 
(m, n)-convex function is m-convex, by a property of m-convec functions 
(see [ 15, 161) condition (2) is also satisfied. It follows from Theorem 3.1 
that there exists a best L, approximation to .f from KA,, ,,. This completes 
the proof. 

Next we establish a characterization of best L, approximation by (m, n)- 
convex functions, for 1 < p < X. To do this, we first prove the following: 

LEMMA 3.1. Let g be (m, 11)~cuncex on [0, 11. Then g’“-“( I ) and 

g (nr + ” 1 - ) ( 1 i = 0, 1, . . . . n -m - 2, are finife. 

Proqf: Since g is (m, n)-convex and (-g) is (m + 1 )-convex. We then 
find that g (m’ is nonincreasing and g”“‘(x) 2 0 for all .Y E (0, 1). Hence, for 
an arbitrarily small E with 0 <I: < i, 

O<g’“‘(l -t:)<g’““($ 

However, g@‘) L ( 2) < +,s. It follows that gcnr’( 1 ) is finite. This proof can be 
completed by induction on i. 

We are now ready to state our main theorem in this section. 

THEOREM 3.3 (Characterization). For 1 G pc z, let .f~ L,[O, I] and 
let g: E KJ,, . 

(a) For 1 <p-ccc, let ~,=sign(.f-g,*)If‘-g,*IP-‘, anddefine H,,, 
as (2.3 ). Then gJ’ is the best L, upproximation to f from KL,, if and only ij 

(i) H,,,(l)=O, i= 1,2 ,..., WI; 
(ii) (-l)“‘H,,,(l)<O, i=m+ l,..., n; 

(iii) (-I)‘“H “,,, (.u)<O, XE[O, I]; 



BEST ,!., APPROXIMATION 99 

(iv) [f (-l)“H,,(l)<O for some iE{m+l,...,n}, then 
gl,*” -‘)(I )=O; 

(v) if (- 1 )“‘H,,(x) < 0 for some x E (0, 1 ), then g: is a pol.vnomiul 
of degree n - 1 in a neighborhood of x. 

(b) For p = 1, gr is a best L, approximation IO f from KL., if and on& 
lf rhere exists c$,EL, with Ijq5111X = 1 and jhq51(f-g:)= Il.f-gyll,, 
.safisfi,ing the conditions (i)-(v) of part (a) with p = 1. 

Proof: (a) This proof depends on the duality theorem, as the proof of 
Theorem 23.1. 

(Necessity) The proof for (i)-(iii) is similar to the proof for 
(i)-(iii) in Theorem 2.1. To prove (iv) and (v), we establish the following 
integration by parts: 

j; g,*f& = “C’ ( - 1 )‘H 
,-WI 

.,,,Og:l”(l-)+(-li”j: H,.J(g;‘” I’). (3.1) 

A similar reasoning as in the proof of Theorem 1 of [ 151 gives 

j; rr;4, = ( - 1 Y’ 16’ H,., g,?“, 

and H,,mgp*(m) E L,[O, 11. By Lemma 3.1, g,*‘“‘( 1 ) is finite, and thus, for 
an arbitrarily small E > 0, H,,, + , g,*t” + ” E L, [E, 11. Hence, integration by 
parts yields 

F 
I 

Hp.mgp*~m’=Hp.m+,(~)gp*~n”(l-)-Hp.~+,(~)gp*’m~(~) 
’ I: 

I 
- 

I 
H *tnr+ 1) p.mtIgp . 

I: 

If grcm’(O+) is finite, th en by letting E + 0 in (3.2), we obtain 

.I 

J 0 
~p.mgp*~m~=~p.m+,(~)gp*~m~(l .)-I’ Hp,,,+,g;““+‘), 

0 

(3.2) 

(3.3) 

and Hp,,,+,gp*(“‘+‘) 
+x. Since g,*‘“’ 

E L,[O, 11. Otherwise, we must have 1 g,+‘“‘(O+ )I = 
is nonincreasing, there exists a r E (0, 1) such that ]g,*(“‘] 

is nonincreasing on (0, f ). Whenever 0 < E < 1, 

IH,m+ ,(E) ~,*‘~‘(c)l G I$“’ (&)I d Ig;‘m’(c)l @-&I GJ; Ig;(m)Hp.ml. 



100 SWETITS, WEINSTEIN, AND XU 

Since H, nr gp*‘“‘) EL,[O, 11, we have lim, .O~;]g~(““Hp,ml =O. By the 
above inequality, 

!i; d(: lg,*““)(E) Hp.,,,+ ,([;I! = 0. 

Letting E + 0, we also come out with (3.3) and H,,,, , gb”” + “E L,[O, I]. 
This procedure can be repeated to obtain (3. I ). 

Combining the duality theorem and (3.1) yields 

“i (-l)‘H,,i~,(l) g,:“‘(l.-)+(-l)“j“ H,,,d(g,*‘” ‘J)=O. 
r--m 0 

The definition of an (m, n)-convex function together with (ii) and (iii) 
implies that 

( - 1 )‘Hp., + 1 (1) g,*“‘(l -)=O, i=m, . ..) n- 1, (3.4) 

and 

..I 
J HP,,,4 gp*“’ “) = 0. (3.5) 

0 

Equations (3.4) and (3.5) give (iv) and (v), respectively. 

(Sufficiency) Assume g: E K& and it satisfies conditions (ik(v). 
Then by (3.1 ), (2.1) holds. Also, (3.1) is true if we replace gp* by any 
ge K:.,. Hence, (2.2) holds by using conditions (i k( v). Consequently, g; 
is a best L, approximation to f from K,P,.“, since K$ is a convex cone. 

(b) Since the proof for p = 1 is similar, we omit the details. This 
completes the proof. 

This theorem can be extended to characterize a best L, approximation 
from (m, n),-convex functions. 

4. A RELATIONSHIP BETWEEN BEST APPROXIMATIONS 
FROM s;.,(d) AND K& 

We assume throughout this section that f~ C[O, 1] and 1 < p < m. To 
establish a relationship between best L, approximations to f from Sk.,,(d) 
and Ki.,, we need the following theorem. 

THEOREM 4. I. For 1 < p < 2, let j’~ C[O, I] and g: E KL., he given. 
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Assume that f # gp* a.e. in [0, I] and that f - g,J’ has a finite number qf‘sign 
changes in (0, 1). Let 

I l<p<cx: 
p=l 

and d@e H,,,(x) us (2.3). Then g,* is a best L, approximation to f from 
Kl,,, (fund on/.y if (i)-(iv) (of Theorem 3.3) hold with 1 < p < x, and 

(v)’ g: is a spline of degree n - 1 with simple knots r,, <?, . . . . <,, the 
distinct zeros of H,,, in (0, 1). 

Proof Let gz E KL,,, be a best (m, n)-convex L, approximation t0.f: By 
the hypothesis, f - gp* has a finite number of sign changes in (0, 1). Assume 
that the number of sign changes off- g: in (0, 1) is N. By the definition 
of q5,, for 1 < p < CG, q5,, has N sign changes in (0, I ). Since dP = HFj,, by 
Rolle’s Theorem, H,,, has at most N +n zeros in (0, 1), computing multi- 
plicities. Let 5, < sz < . . < t, be the distinct zeros of H,,, in (0, I ), where 
rdN+n. Let <,,=Oand tr+,= I. Note that (- 1 )“H,Jx) 6 0, XE [0, 11. 
Hence. 

( - 1 )“‘H,,L~1 < 0 for .xE(<,, <,+,), i=O, 1, . . . . r. 

Thus, by (v) of Theorem 3.3, gp* is a polynomial of degree n - 1 on each 
subinterval (<,, <,+ ,). Since gp* E C-*(0, l), g: is a spline of degree n - 1 
with simple knots [,, t2, . . . . r,. 

Conversely, let g: satisfy the assumptions and conditions (i)-(iv) and 
(v)‘. If 

( - 1 Y”H,.,(-d < 0 for some -yO E (0, 1 ), 

then x,${r,,<, ,..., <,}. Hence, x,E(~;,, t,,,) for some index 
jE (0, 1, . ..) r }. By (v)’ gp* is a polynomial of degree 6 n - 1 on (r,, 5, + , ), 
which is a neighborhood of .x0. Thus, by Theorem 3.3, gp* is a best 
L,-approximation to f from K;.,. This completes the proof. 

By Theorem 2.1, 3.3 and the above theorem, the following theorem is 
readily proved, which establishes a relationship between best approxima- 
tions tofE C[O, I ] from Sk,,(d’) and K;.,, where A’ = { (,}I= ,. 

THEOREM 4.2. For 1 Q p < cc, let g, * he a best L, approximation to 
f‘~ C[O, l] from KL, with all assumptions in Theorem 4.1 satisfied. Let 
A’= {t,}:-, he the d’istinct zeros of H,,, in (0, 1). Then 

(i) g,* is the best approximation to f from Sk.,,( A’); 
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(ii) g: is the best L, approximation toffiom the subspace 

S’***(A’,~,)= {sES~(A’):.s”‘(l)=O,iEI(~p)); ,I 

(iii) g: is the unique best L, approximation tof.fiom KL ,,,. 

Pro@ (i) It follows directly from Theorem 2.1, 3.3 and 4.1 that gJ’ is 
the best L, approximation toffrom S;.,,(d’). 

(ii) By (i) and Theorem 2.2, gr is the best L, approximation to f 
from S;*(d’, 4,). Note {<,I:=, are the distinct zeros of H,,n in (0, 1). J(#,) 
is an empty set. Hence, (ii) follows. 

(iii) The uniqueness follows from (i) and the fact that there is a 
unique best L, approximation to f‘~ C[O, I ] from SkJd’) (see [9]). 

THEOREM 4.3. For 1 < p < x, let s,* E Sk.,(A) be the best L, approxima- 
tion to f E L,[O, 1 ] jiom S:n n (A). Assume that each knot xj in A is a non- 
trivial knot of sb. Then .Y,* is’ a best L, approximation to ffrom K& lf and 
only tf 

(-I)mj'(X-t)n 14(t)dt60, .YE [x,,.Y,+~], j=O, I, . . . . n. (4.2) 
.til 

Prooj: Let .r,* be a best L, approximation to / from K; n. By 
Theorem 3.3, we have (- l)“H,,(x) <O for XE [0, I]. Since xj is a non- 
trivial knot of sp*, ( - 1 )“‘H,,,(x,) = 0 for Jo N,. Hence, 

(-1)” j’ (x- t)“-‘c,b(t) dt= (- l)mH,,,,,(x)- (- l)“‘H,,,(x,) 
vii 

and thus, (4.2) holds. 

= (- 1 )“‘H,.,,,(xh (4.3) 

Conversely, let (4.2) hold. By (4.3), we have ( - l)“H,,,(x) 6 0 for 
XE [0, 11. Conditions (i), (ii), (iv), and (v) of Theorem 2.1, and the above 
inequality imply conditions (ik(v) of Theorem 3.3. Hence, .r,* is a best L, 
approximation to f from K;.,. This completes the proof. 

As an application, let us establish an interesting relationship between 
best n-convex L, approximation and best L, approximation by n-convex 

splines of degree n - 1. Let K,, p denote the set of n-convex functions in 
L,CO, 11. 

COROLLARY 4.1. Let f E C[O, I]. For 1 < p < co, let g: E K,,+, such that 
f # gp* a.e. in [O, 1 ] andf - g$ has a finite number of sign changes in (0, I ). 
Define dp as (4. I ) and H,,. as before. If g,* is a best L, approximation to 
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f .Srom K,, ,,, then gp* is a best L, approximation to ./.fiom Si.,(A’), where 
A’ : 0 < 5, < . . < [, < 1, and the 5,‘s are the distinct zeros of HP., in (0, 1). 

5. BFST MONOTONE CONVEX L, APPROXIMATION 

As applications of the results in Section 3, we consider best L, 
approximation by monotone convex functions, and the relationship 
between best convex L, approximation and best monotone convex L,, 
approximation. 

For 1 d p< ~8, let M,(a, b) (resp., M,(a, b))c L,[a, b] be the set of 
nonincreasing (resp., nondecreasing) convex functions on (a, b). Thus, 
g(?c) E M,(a, b) if and only if G(x) = g( -.x) E M,( -6, -u). In addition, 
g*(,r) is a best L, approximation to f from M,(u, b) if and only if 
G*(x)- g*( -x) is a best L, approximation to F(X) = ,j( -x) from 
M,( -b, -a). 

Since a nondecreasing convex function is (1.2),-convex with (T = (1, - 1) 
and a nonincreasing function is ( 1, 2),-convex with (T = ( - 1, - 1 ), a similar 
reasoning to the proof of Theorem 3.3 gives the following two corollaries of 
Theorem 3.3: 

COROLLARY 5.1. (a) For 1 < p < x, g* E M,(a, b) (resp., M,(a, 6)) is 
the best nonincreasing (resp., nondecreasing) convex L, approximation to 
f c L,[a, b] ifund only ry 

(ii) si,(t-s)#,,(x)d,~<O (resp., j:(x-t)q5,Jx)d.~<O) for all 
t E c4 hl; 

(iii) if J t̂ x4,(x) d x>O (resp., JGxq+,(x)dx<O), then g,*‘(b )=0 
(resp., gT,‘- (a + ) = 0); 

(iv) if jz(t,,-x)dx<O (resp., ~~0(x-tO)q5p(x)dx<0) for some 
to E (a, h), then gz is a linear polynomial in a neighborhood oft,. 

(b) For p = 1, g: E M,(a, b) (resp., M,(u, b)) is a best nonincreasing 
(resp., nondecreasing) convex L, approximation to f E L, [a, h] if and only if 
there exists a #,~L,[u,b] with I14,111=lr ~~q4,(f-g~)=I.f-g~IlI 
satisfving conditions (i)-(iv) in (a) M’ith p= 1. 

The next three theorems establish some relationships between best 
convex L, approximation and bes monotone convex L, approximation. 

THEOREM. 5.1. Let gz be u best convex L, approximation to 
./‘E L,[O, 13, for 1 < p < co. Then, there exists a t E [0, !] such that g,* is 
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both a best nonincreasing convex L, approximation to f‘ on [0, t ] and a best 
nondecreasing convex L, approximation to . f  on [I, I 1. 

Prooj: If g,$ is nonincreasing (nondecreasing) on (0, 1 ), then let I = 1 
(t = 0). Assume that g,* is a nonmonotone convex function. Let 

m=inf{g,*(.u): XE [0, 11). 

Then the set A = (X E [0, I] : g,*(.u) = m} is a nonempty and closed interval 
contained in (0, I ). Define t = inf A. Then, g,* is nonincreasing on (0, t) and 
nondecreasing on (t, I ). By the definition of t, g: cannot be a linear poly- 
nomial in any neighborhood of t which contains t as an interior point. The 
characterization of best convex approximation implies jb (t - X) q+,,(x) dx = 0. 
Thus, g; is a best approximation to f on both [0, t] and [t, l] (see 
[ 15, 193). Since the set of nonincreasing convex functions in L,[O, f] 
is contained in the set of convex functions in L,[O, t], gp* is also a best 
nonincreasing convex approximation to f on [0, t]. Similarly, gp* is a best 
nondecreasing convex approximation to f on [ 1, 1 [. 

THEOREM 5.2. For 1 < p < xz let j’~ L,[O, I]. Assume t E (0, 1). Let 
g[,E M,(O, f) (resp., g, E M,(t, 1)) be the best nonincreasing (resp., non- 
decreasing ) convex L, approximation to f on [0, f] (resp., on [t, 11). Define 

4,.d-~) = signCf(.~) - ~dx)l IfLu) - ~,,(x)l~-', .for .x-E CO, [I, 

4d~) = sknCf(d~) - g,(x)1 I.fb) - g,Lr)lp-m ‘, for x l [f, 1 ]. 

and 

d-K) = 
{ 

gdxh XE [O, f] 

g,(x)3 XE(f, 11. 

Then, g is the best convex L, approximation to f on [O, 1 ] if and only i/ 

(i) gdt) = g,(f), 

Proof: Let 

4p(x) = { 
4p. D(X)9 x E co, rl 
d&), XE(f, I]. 

Assume g is the best convex L, approximation to f on [O. 11. Then g is 
continuous on (0, 1) and thus gi,(f) = g,(r). In addition, by the charac- 
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terization of best convex L, approximation, we have [A d,,=O, and 
5; x~,(x) d.x = 0. Hence, 

i 
’ (t-x)qS,(x)d.v=O for all f E (0, 1). 

0 

It follows from this equation that (ii) holds. 
Condition (i) with the facts that g, is nonincreasing convex on [0, r] 

and g, is nondecreasing convex on [r, I ] implies that g is convex on [0, 11. 
By the assumptions, we find 

and 

j’x&,(x)dx=/‘(l-x)&,D(x)dx+ [‘(f-x)&,,(x)dx=O. 
0 0 41 

For XE [0, 11, 

and for x E (1, 11, by condition (ii), 

s 
-‘(x-u)qSJu)du 

0 

zzz 
j’ (u-f)4p.,(u)du- j’ (x-f)dp.,(U)du 

):  ) :  

= 
I 

’ (u-x)dp.,(u)dudO. 
Y 

Assume that for some x0 E (0, I ), 12 (x0 - u) 4,(u) du < 0. If x0 E (0, f), then 
gb is a linear polynomial in a neighborhood of x0 and so is g. If -y. E (1, I), 
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then by the above reasoning, we have JL, (U - .Y~) 4,,,(u) du < 0. Thus, g, is 
a linear polynomial in a neighborhood of -q, and so is g. If .‘cg = t, in view 
of the continuity of j; (s - u) d,(u) du for .r E [0, I], 

I ., 
J (x-u)+$(u)du<O, .rE(t-~,,f],forsome6,>0. 
0 

By the characterization of best nonincreasing convex L, approximation, we 
!ind that g’- (I- ) = g;,- (t ) = 0 and g is a linear polynomial on (t - 6,) r]. 
In addition, since (ii) holds, j’: (X - f) 4,.,(x) dx ~0. Similarly, g’+ (r ) = 
g;, (t ’ ) = 0, and g is a linear polynomial on [t, I + 6,) for some 6, > 0. 
Hence, 

Thus g’(t) exists and vanishes. Therefore g is a constant on (t - (5,) t + ~5~). 
The conditions that we verify guarantee that g is the best convex L, 

approximation to f on [0, 1 1. 

For p = 1, we have the following similar result: 

THEOREM 5.3. Let f E L, [0, I] and f E (0, I). Assume g, E M,(O, I) 
(resp., g, E M,( f, 1)) is a best nonincreasing (resp., nondecreasing) convex L, 
approximation to f on [0, f] (resp., on [f, 1 ] ). Define 

g(x) = i ;;;‘x”,’ x E [O, f] 

XE ((9 1 I, 

Let @(g,) be the set of #E L,[O, f] with I/&l, = I and Jh#(f -gn)= 
Ilf -gIdl,, satisfying conditions (i)-(v) qf Corollary 5.1. Let @(g,) be the 
set qf 4~ L,[f, l] with 11411, = I and s: c&f-g,)= Ilf - gJ,, satisfying 
conditions (ik(v) of Corollary 5.1. Then, g is a best convex L, upproximu- 
(ion to f on [O, 1 ] zy and only if 

(i) gn(O = gA0, 
(ii) there exisf 4” E @(gD) and 4, E @(g,) such fhuf 

i)l’(f-x)&,(x)dx=j’(x-f)#,(x)dx. 
, 

Proof. Let 

b(x) = { ;:,I;;’ x E [O, f] 

XE(f, I]. 
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Then, 11911 L1: = 1 and 

The rest of this proof is similar to the proof of Theorem 5.2. This completes 
the proof of Theorem 5.3. 

Remark. All results in this paper could be generalized to Tchebycheffian 
splines and to functions generalized convex with respect to an ECT-system. 
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