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Best L, Approximation
with Multiple Constraints for 1 <p<x

J. J. SWETITS, S. E. WEINSTEIN, AND YUESHENG XU

Department of Mathematics and Statistics, Old Dominion University.
Norfolk, Virginia 23529, U.S.A.

Communicated by Frank Deutsch

Received August 8, 1989; revised June 29, 1990

The problem considered in this paper is best L, approximation with multiple
constraints for 1< p<oc. Characterizations of best L, approximations from
multiple n-convex splines and functions are established and the relationship
between them is investigated. Applications to best monotone convex approximation
are studied. ¢ 1991 Academic Press, Inc

1. INTRODUCTION

In this paper, we consider best L, approximation with multiple con-
straints for 1 < p < oc. The classes of approximating functions are the class
of multiple n-convex splines and the class of multiple n-convex functions,
which are defined below.

A real-valued function g is said to be n-convex in (0, 1) if for any n+ 1
distinct points x,, x|, ..., x, in (0, 1), the nth order divided difference is
nonnegative, i.e.,

[xos X1y o X ] g= 0.

The set of n-convex functions is a convex cone. Note that 1-convex
functions are nondecreasing and 2-convex functions are convex in the usual
sense.

It is known (e.g., [2]) that if g is an n-convex function on (0, 1) then
g ¥ exists and is convex on (0, 1). Hence, g ~? is absolutely continuous
on any closed subinterval of (0, 1), the (n— 1)st left-derivative g~ '’ exists
and is left-continuous and nondecreasing in (0, 1), the (n—1)st right-
derivative g'7 ~ ") exists and is right-continuous and nondecreasing in (0, 1),

g™ Y exists ae. in (0,1), and g" V=g V=g Y ge in (0,1). If
g€ C"[0, 1], then g is n-convex if and only if g") 2 0. The set of n-convex
90
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functions contains the subspace of polynomials of degree n — 1. Some addi-
tional properties of n-convex functions can be found in [2, 11, 16, 19].

Given 0 <m < n, g is said to be (m, n)-convex if (—1)'g is (m + i }-convex
for i=0, 1, .., n —m. Note that for n > m, (m, n)-convex functions are func-
tions with multiple constraints. Let K, , denote the set of (m, n)-convex
functions. Then clearly K, , is the finite intersection of k-convexity cones.
The finite intersections of generalized convexity cones with respect to an
ECT-system were defined in [20, 21]. Clearly, K, , is a finite intersection
of the convexity cone with respect to the ECT-system {1, x, x%, .., x" " '}.

From the above definition, (n, n)-convex functions are n-convex func-
tions and (0, n)-convex functions are n-time monotone functions. For some
applications of a-time monotone functions, see [18] and other references
therein. In addition, (0, oc)-convex functions are completely monotone
functions (see [17]). More generally, we define (m, n),-convexity. Let
6=(04,6,, .., 0,_,), where each ¢,1s | or —1. A function g is said to be
(m, n),-convex if a,(—1)'g is (m+i)-convex, for i=0, 1, ...,n—m. In this
paper, for the sake of simplicity we restrict ourselves to (m, n)-convex func-
tions. All results we obtain here can be extended to the setting with
arbitrary ¢ without any difficulty.

Let K7 , denote the intersection of K,, , and L, = L,[0, 1]. Then K/, , is
a closed convex cone in L, Given a partition 4 of [0, 1], with
A:0=x,<x,< -~ <X, =1, let $%(4) denote the space of polynomial
splines of degree n — 1 with k simple knots at x|, .., x,, ie.,

S¥(Ay=span{(1 —x)" Li=12 . 0 (x,—x) " j=1,2, .k}

Define
St (4)=SxA) K, ,. (1.1)

Since polynomials of degree n— 1 are contained in both S%(4) and X, ,,
Sk .(4) is a nonempty convex cone. In particular, S% ,(A4) is the set of
(m, n)-convex polynomials of degree n — 1.

Given feL,[0,1], s*e K7, (resp., Sk (4)) is called a best (m, n)-

convex (resp., (m, n)-convex spline) L, approximation to f if

|f—s*,=inf{ll f—sl,: se K. (resp., Sk (1))} (1.2)

mn

The existence of a best n-convex L, approximation was proved in [7]
and [16] independently, and uniqueness is proved under some additional
restrictions in [22]. The characterizations of best 1-convex (nondecreasing)
L, approximations for 1< p< oo were established in [12,13]. A partial
characterization of a best n-convex L, approximation was proved in [22].
The complete characterization of a best n-convex L, approximation, for
1< p<oc, is considered in [14,15,19]. Existence of a best n-convex
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uniform approximation was proved in [3,24]. Burchard [4] and
Brown [1] have characterized best uniform n-convex approximation.
Some additional properties of best uniform n-convex approximation are
considered in [23].

For 1< p<aoc, the existence of a best approximation to fe L,[0, 1]
from S%, ,(4) follows from the fact that S¥ (4) is a finite dimensional,
closed subset of L,. For I < p< o, unicity follows from the fact that L,is
strictly convex. For p=1, unicity was proved by Pence in [9]. In Sec-
tion 2, the characterizations of best (m, n)-convex spline L, approximations
for 1 < p<oc are established. As consequences, we also consider best L,
approximation by a-convex splines of degree n— 1.

For 1 < p<aoc, the existence of a unique best L, approximation from
K/ , follows from the facts that L is closed and convex in the reflexive
Banach space L, and that the L, norm is uniformly convex. In Section 3,
we prove the existence of a best L, approaximation of fe L,[0, 1] from
K, , and characterize best L, approximation to a function f in L,[0, 1]

m.n

from K for < p<oc. An interesting relationship between best L

mn P
approximations to fe C[0,1] from S% (4) and K/, is investigated in
Section 4. In Section 5, best monotone convex L, approximations are
studied and best convex L, approximation is characterized in terms of best

monotone convex L, approximations.

2. BEST L, APPROXIMATION FROM S% (4)
By a corollary of the Hahn-Banach Theorem (see [5,6]), if K, is a
convex cone in L,[0, 1] for 1< p< x, then

(i) for l<p<oo, s¥ekK,is a best L, approximation to fe L,[0, 1]
from K, if and only if

~

1
s*,=0, (2.1)

Y0

and
ol
JO 5¢,<0, forall sekK,, (2.2)
where ¢, =sign(f—s*)|f—s¥”~'; and
(i) for p=1, s¥eK, is a best L, approximation to fe L,[0, 1] from
K, if and only if there exists a ¢,eL,. with [é,].=1 and
fod(f—sE)=1if—skl,, satisfying (2.1) and (2.2) with p=1.

The above result shall be referred to as the duality theorem.
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Let du be a signed measure of bounded variation on (0, 1). The dual
cone to a cone K of functions is the set of signed measures du such that

1
[ glx)du(x)=0 forall gek.
Y0

With this definition, the above duality theorem can be restated as follows:
For 1 <p<x s¥eK, is a best L, approximation to f'€ L, from K, if and
only if ¢, is orthogonal to s and —¢,(x) dx is in the dual cone to K,,. For
p =1, we can similarly restate the duality theorem. The dual cone to a finite
intersection of generalized convexity cones with respect to an ECT-system
was characterized by Ziegler in [20, 21].

By applying the duality theorem, we have the following characterization
of best L, approximation to fel, from Sk (4) for 1< p<ac. Let
N,,={m+1, .,n}and N,=N,,,.

THEOREM 2.1 (Characterization). For 1< p<x, let feL,[0,1] and
let s* € Sk (4).

m.n

(a) Forl<p<ux,let ¢,=sign(f—s¥)f—s}’""', and

a2

H,,‘,(x)={l/(i—l)!}J (x—1)" 'g(0)d1,  xe[0,1],ieN,. (23)

o

Then s} is the best L, approximation to f from S (4) if and only if

(i) H,,(1)=0,ieN,:

(i) (-1)"H,(1)<0,ie N, ,;

(i) (—1)"H, (x,)<0,jeN,;

(iv) if (—1)™H, (1)<O0 for some i€ N, ,, then s} (1)=0;
(v) if (=1)"H,(x;)<0 for some jeN,, then s}" '(x )=

-1
s ()

(b) For p=1, s¥ is a best L, approximation from S&'(4) to f if and
only if there exists a ¢, € L with ||¢,| ., =1 and j'(',¢l(f—s;“)= ILf—s¥l,
satisfying (i}-(v) of part (a) with p=1. We call ¢, an associated functional

of st.

Proof. (a) This proof will depend on the above duality theorem. Since
an‘,,(A) is a closed convex cone in L,[0, 1], by the duality, s is the best
approximation to f from S* (4) if and only if

mn

JO s*¢,=0, (2.4)

640 65 1.7
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and

1
js¢p<0 forall seS% (4). (2.5)
0

(Necessity) First, note that (1 —x)' " '/(i— 1), = (1 —=x)""Y/(i—1)'e
an‘ A4) for i=1,2,.., m By substituting these functions into inequality
(2.5), we find

fl{(1—x)"—l/(i—l)!}qsp(x)dx:o, i=1,2,.,m.
0

This proves (i).

Next, since (—1)"(1 —x)" '/(i—1)te Sk (4), i=m+1,..,n, by using
(2.5) once again, we obtain (ii). Similarly, in (2.5), let s=
(—1)"(x;—x)"" Yin=1)" j=1,2,.,k and we have

[ =m0 =2 =1} (0 dx <0, j=1,2 ek

0

Now, by integrating by parts and by using (i),

jl $3x) By(x) dx = [ (= 1)"H, () 537(x) d
0 0
no1
= Y (= 1)H,,. (1) s9(1)

k
+ Y (=10 H, L) s Dx ) =53 Pix, ),

j=1

where the last equality holds because s is a polynomial of degree n— 1 on
each subinterval (x,, x;, ). Combining the above equation with (2.4) gives

n 1

Y (=1)H, . .(1)sr(1)

k
+ Y (= 1H,(0)[st" (a7 ) =527 x7)] =0, (26)
=1

o

Since s*eK,,,, (—1) "sP(1)20 and (—1)" "[sp" "(x")—
s¥"~Y(x7)]1=0. It follows from (i) and (iii) that each term in (2.6) is
nonpositive. Hence,

(=1)"H,,.,(1)s(1)=0, i=mm+1,.,n-1, (27
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and
(= 1)"H, () [sx V(x ) =5 Vx, )1=0, j=1,2 ..k (28)

Then (2.7) implies (iv) and (2.8) implies (v).
(Sufficiency) If .s';‘eS" (A1) satisfying conditions (1)-(v), then by

mon

integation by parts, it is easy to verify that (2.4) and (2.5) hold. Therefore,
s} is the best approximation to f from S%, (4).

(b) The proof is similar to (a). Thus, we omit the details. This proves
Theorem 2.1.

We remark that since H, . (x)=H,, (x), conditions (i) (v) of
Theorem 2.1 can be restated in terms of H, , and its derivatives. For exam-
ple, conditions (i) and (ii) arc equivalent to H!" "(1)=0, ie N, and
(=1)y" H. "(1)<0, ie N,, ., respectively.

In order to derive some structural properties of a best approximation, we

introduce some additional notation. Let 1 < p< x and ¢,€ (L,)*, the dual

space of L,. Define H,, as in (2.3),

I¢,)={ieN, . (—1)"H, (1) <0}, (29)
and

J(8,)={jeN,: (~1)"H, (x,) <O} (2.10)

We define a subspace of 5%(4) by
Si*(4,8,)={s€S,(4):5(1)=0,i€l(g,);
s U(x, ) =sUT ) jESB)) (211
It is easily proved that S¥*(4, #,) has a basis
(1 =x) LieN,—I($,), (x,—x), " jeN—J(4,)}.  (212)

The next theorem gives an aiternate characterization of best L,
approximation from S% ,(4), which indicates that best L, approximation
from the convex set S¥ (4) is equivalent to best L, approximation from

mn

the subspace Sk*(4, ¢,).

THrEOREM 2.2. Let 1 < p<oc and let fe L,[0,1].

(a) Forl<p<ox,s¥eSk (4)is the best L, approximation to f from
Sy.(4) if and only if s} is the best L, approximation from Si*(4, ¢,),
where

g, =sign(f—s3) | f—s¥*".



96 SWETITS, WEINSTEIN, AND XU

(b) For p=1, steS% (4) is a best L, approximation to f from
Sk (A) if and only if there is a ¢,eL, with |¢ll,=1 and

m.n

j‘(l) & (f—s¥)=If—s¥|\, such that s} is a best L, approximation to f from
S:‘:*(As ¢l )

Proof. Let 1< p<oc. By Theorem 2.1, s is the best L, approximation
to f from Sf‘,,_,,(A) if and only if conditions (i)}-(v) are satisfied. It follows
from the definitions of /(¢,) and J(¢,) that conditions (i)-(v) are equiv-
alent to the conditions

[ —1y-tg(ndi=0, ieN,—I4,) (2.13)
Y0
and

jl (x,— )", '¢,(1)dt=0, jeN,—J(,). (2.14)
4}

This is equivalent to the statement that s is the best L, approximation to
f from S%*(4, #,), since Sk*(4, #,) is a finite dimensional subspace of
Sk(4) and Sk*(4, ¢,) has the basis (2.12).

The proof of (b) is similar to that of (a). This completes the proof.

In the rest of this section we apply the general results that we just
obtained to best L, approximations from S% .(4), the set of n-convex
splines of degree n— 1, for 1 < p < .

COROLLARY 2.1. For 1< p< o, let fe L,[0,1] and let s} € S (4).

(a) For | < p< o, the following statements are equivalent:

(1) s¥ is the best L, approximation to f from S% (4);
(2) sy satisfies three conditions
() H,,(1)=0,i=1,2,.,n
(i) (=1)"H,,(x)<0,j=12,.,k,
(iii) if (—1)"H,,(x,)<0 for some je N, then s}¥"~(x )=
S;(n_ l)(xj+ )
(3) s} is the best L, approximation to f from Skx»(4, #,) defined
by

Sk*%(4, 4,) = {se S44):s" V(x, )=s""V(x7"), jeJ(4,)},

where J(¢,)={je N,: (—1)'H, (x;)<0}.
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(b) For p=1, s¥ is a best L, approximation to f from S% (4) if and
only if there exists a ¢, € L, with lig, . =1and [y ¢,(f—s¥)=|/—s¥l,
satisfying the conditions (i)-(iii) of part (a) with p=1, and if and only if
there exists a ¢, as above such that s¥ is the best L, approximation to f from

Sp**(4, ¢,).

3. BesT L, APPROXIMATION FROM K/,

mon

In this section, we consider best L, approximation to fe L, from K/
for 1< p<a.

First of all, we study the existence of a best (m, n)-convex L, approxima-
tion. It will be proved to be a consequence of an existence theorem in a
recent paper [16] by Ubhaya. We first state a definition and a theorem
that appear in [16]. Let H be the set of all extended real-valued function
on [0,1]. We say Pc H is sequentially closed if it is closed under
pointwise convergence of sequences of functions. We denote by P the
smallest superset of P which is sequentially closed.

THEOREM 3.1 [16]. Let P be a nonempty set in H. Assume the following
two conditions are satisfied.

(1) PnL,=PnL,;

(2) There exists a positive integer = which depends only upon P, and
the following holds: If ke P, there exist an integer | <r<z and points
{x;:i=0,1,..,r} with 0=xo<x,< -+ <x,=1 so that k is monotone on
each interval (x; |, x;).

Then a best approximation to fin L, from P L, exists for 1 < p<oc.

The following theorem is a consequence of Theorem 3.1.

THEOREM 3.2. Let fe L,[0,1]. Then there exists a best (m, n)-convex
L, approximation to f.

Proof. Let
K,={geH:(—1)gis (m+i)convex}.
Then X, ,,="_y" K,. Thus,

K,,,_,,nL1=( N K,)r\L,= N {K.nL,}.

i=0
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By Proposition 3.4 of [16], we have K,n L, = K, L,. Hence,

IPIJImL| = ﬂ (ZHL])

1=

K

ﬂ K)le

Therefore, condition (1) in Theorem 3.1 is satisfied. In addition, since an
(m, n)-convex function is m-convex, by a property of m-convec functions
(see [15, 16]), condition (2) is also satisfied. It follows from Theorem 3.1
that there exists a best L, approximation to f from K ,. This completes
the proof.

Next we establish a characterization of best L, approximation by (m, n)-
convex functions, for 1 € p < ac. To do this, we first prove the following:

LEMMA 3.1. Let g be (m,n)-convex on [0,1]. Then g"~'(1 ) and
g™t 0(17),i=0,1,..,n—m-2, are finite.

Proof. Since g is (m, n)-convex and (—g) is (m+ 1)-convex. We then
find that g™ is nonincreasing and g'"(x) >0 for all xe (0, 1). Hence, for
an arbitrarily small ¢ with 0 <¢ < i,

0<g™(1—¢)< g"™(3).
However, g")(}) < +c. It follows that g”(1 ) is finite. This proof can be
completed by induction on /.

We are now ready to state our main theorem in this section.
THEOREM 3.3 (Characterization). For 1< p<oc, let feL,[0,1] and
let g¥e Ky .
(a) For l<p<ux, let ¢,=sign(f—g*)|f— g ", and define H,,
as (2.3). Then g} is the best L, approximation to f from K} if and only if
(i) H,.(1)=0,i=1,2, .. m
(i) (=1)"H, (1)<0,i=m+1,..,n;
(iii) (—1y"H, (x)<0, xe[0,1];

p.n
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(iv) if (=D"H,.(1)<0 for some ie{m+1,.,n}, then
g1 )=0;

(v) if (=1)"H, ,(x}<0 for some x€ (0, 1), then g7 is a polynomial
of degree n— 1 in a neighborhood of x.

(b) Forp=1,g¥ is abest L, approximation to f from K}, if and only
if there exists ¢,€L, "ilh ¢l =1 and [o¢:(f—gt)=If~-gtl.
satisfying the conditions (1)—(v) of part (a) with p=1.

Proof. (a) This proof depends on the duality theorem, as the proof of
Theorem 23.1.

(Necessity) The proof for (i)-(iii) is similar to the proof for
(1)-(i11) in Theorem 2.1. To prove (iv) and (v), we establish the following
integration by parts:

ol n_1 ] 1
J, 8= T (CUH, g7+ (=17 | Hdigr V). ()

i=m

A similar reasoning as in the proof of Theorem 1 of [15] gives
1 al
J g:¢p=(_1)mJ Hpmg:(M)a
0 0

and H,,g*" e L,[0,1]. By Lemma 3.1, g*"™)(1 ) is finite, and thus, for
an arbitrarily small ¢>0, H,,,,,, g¥™* " e L,[¢ 1]. Hence, integration by
parts yields

1
[ H,mgr™ =H,, (1) g2 (1)~ H,, . () g*"&)

v

1
—f Hyomirgy™* . (3.2)

If g*(0*) is finite, then by letting £ >0 in (3.2), we obtain

~l a1

J, Hom & = Hpmar(D) g2 ™1 )= | Hypurg2™ ", (33)

and H,,,, g *"eL,[0,1]. Otherwise, we must have [g*"(0*) =
+2c. Since gy is nonincreasing, there exists a 1€ (0, 1) such that |g*"™|
is nonincreasing on (0, ). Whenever 0 <e <1,

Hpom s 1(6) 827(2)| < g2 (@) <183 @) | Hl <[ 182H, 0.
4] 0
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Since H,, gx"™eL,[0,1], we have lim, ., {5|g*""H,,|=0. By the
above inequality,

lim | 1g*™(e) H, . (£) =0,

£ 0V

Letting ¢ - 0, we also come out with (3.3)and H,,,,,, g*¥'"*"eL,[0,1].
This procedure can be repeated to obtain (3.1).
Combining the duality theorem and (3.1) yields

n 1 -

S (1) Hpn(1) g2 )+ (=17 |

i—m

1
H,,d(gx" ")=0.
0

The definition of an (m, n)-convex function together with (ii) and (iii)
implies that

(—UV'H, (1) g¥(1°)=0, i=m .,n—1, (3.4)
and

ot

| H,.digx™ M)=o0. (3.5)
0

Equations (3.4) and (3.5) give (iv) and (v), respectively.

(Sufficiency) Assume g*e K[ and it satisfies conditions (i)}-(v).
Then by (3.1), (2.1) holds. Also, (3.1) is true if we replace gy by any
ge K/ .. Hence, (2.2) holds by using conditions (i}-(v). Consequently, g

is a best L, approximation to f from K/ . since K/ is a convex cone.

(b) Since the proof for p=1 is similar, we omit the details. This
completes the proof.

This theorem can be extended to characterize a best L, approximation
from (m, n), -convex functions.

4. A RELATIONSHIP BETWEEN BEST APPROXIMATIONS
FROM S% (4) aND K/

We assume throughout this section that fe C[0,1] and 1< p<c. To
establish a relationship between best L, approximations to f from S% (4)
and K? ,, we need the following theorem.

m,n?’

THEOREM 4.1. For 1< p<oo, let feC[0,1] and g¥e K/ , be given.
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Assume that [ # g¥ ae. in [0, 1] and that f — g} has a finite number of sign
changes in (0, 1). Let
_ {Sign(f— gHlf—gxl” ' l<p<wx
»= \sign(f - g}}) p=1

and define H, (x) as (2.3). Then g is a best L, approximation to f from
K?”  if and only if (i)-(iv) (of Theorem 3.3) hold with 1 < p <, and

m.n

(v)' g¥ is a spline of degree n — 1 with simple knots &, &5, .., &, the
distinct zeros of H, , in (0, 1).

Proof. Let g*e K[, be a best (m, n)-convex L, approximation to / By
the hypothesis, f — g* has a finite number of sign changes in (0, 1). Assume
that the number of sign changes of f — g¥ in (0, 1) is N. By the definition
of ¢, for 1 < p< o, ¢, has N sign changes in (0, 1). Since ¢,= HL’,',':, by
Roile’s Theorem, H,, has at most N +n zeros in (0, 1), computing multi-
plicities. Let &, <&, < --- <¢, be the distinct zeros of H,, in (0, 1), where
r<N+n Let {,=0and ¢,,, = 1. Note that (—1)"H, (x)<0, xe [0,1].
Hence,
(-1D)"H, (x)<0 for xe(&,&,,). i=0,1,.,r

Thus, by (v) of Theorem 3.3, g is a polynomial of degree n—1 on each
subinterval (¢,, ¢,, ). Since g¥e C"~ %0, 1), g¥ is a spline of degree n— 1
with simple knots &, &,, ..., &,.

Conversely, let g* satisfy the assumptions and conditions (i)}-(iv) and
(vy. If

(—1)"H, (x¢)<0 for some x,€e(0, 1),

then xq¢{¢,,¢,,..,¢, ). Hence, x,€(¢,¢,,,) for some index
je{0,1, .., r}. By (v)' gf is a polynomial of degree <n—1 on ({;, &, ;1)
which is a neighborhood of x,. Thus, by Theorem 3.3, gF is a best
L ,-approximation to f from K/, ,. This completes the proof.

By Theorem 2.1, 3.3 and the above theorem, the following theorem is
readily proved, which establishes a relationship between best approxima-
tions to fe C[0, 1] from S/, ,(4’) and K/, ,, where 4" = {¢,}|_,.

THEOREM 4.2. For 1< p<oc, let gy be a best L, approximation to
feC[0,1] from K? ,_ with all assumptions in Theorem 4.1 satisfied. Let

m.n

A" ={¢&,},_, be the distinct zeros of H, , in (0, 1). Then

(1) gX is the best approximation to f from S, (A');

m.n
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(i) gy is the best L, approximation to f from the subspace
Sx*HA', 4,)={seS;(4'):s"(1)=0,iel(¢,)}:

(i11) gf¥ is the unique best L, approximation to f from K?*

mn*

Proof. (i) It follows directly from Theorem 2.1, 3.3 and 4.1 that g¥ is
the best L, approximation to f from S}, (4").

(i) By (i) and Theorem 2.2, g* is the best L, approximation to f
from §;*(4', ¢,). Note {¢,};_, are the distinct zeros of H, , in (0, 1). J(¢,)
is an empty set. Hence, (ii) follows.

(iii) The uniqueness follows from (i) and the fact that there is a

unique best L, approximation to f€ C[0, 1] from S, (4") (see [9]).

THEOREM 4.3. For | S p< x, let s¥ e Sk (4) be the best L, approxima-
tion to fe L,[0,1] from S% (4). Assume that each knot x; in 4 is a non-

trivial knot of s}. Then s} is a best L, approximation to f from K?!  if and
only if

X

(—l)'"J.(x—t)" B di <0,  xelx.x,.,), j=01, .on (42)

X,

Proof. Let sy be a best L, approximation to f from K7,k By
Theorem 3.3, we have (—1)"H, ,(x)<0 for xe [0, 1]. Since x; is a non-
trivial knot of s*, (—1)"H, (x;)=0 for je N,. Hence,

(=" [ o= 0" 9(0) de = (= 1)"Hp () = (= 1" H 1 (x,)

X,

=(=1)"H,, .(x), (4.3)

and thus, (4.2) holds.

Conversely, let (4.2) hold. By (4.3), we have (—1)"H, ,(x)<0 for
x € [0, 1]. Conditions (i), (ii), (iv), and (v) of Theorem 2.1, and the above
inequality imply conditions (i)-(v) of Theorem 3.3. Hence, s} is a best L,
approximation to f from K7 . This completes the proof.

mon

As an application, let us establish an interesting relationship between
best n-convex L, approximation and best L, approximation by n-convex
splines of degree n— 1. Let X, , denote the set of n-convex functions in
L,[0,1]

CoroLLARY 4.1. Let feC[0,1]. For 1< p<wo, let g¥e K, , such that
S#g) ae in[0,1] and f— g* has a finite number of sign changes in (0, 1).
Define ¢, as (4.1) and H, , as before. If g} is a best L, approximation to
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[ from K, ,, then g¥ is a best L, approximation to f from S, (4"), where

4:0<& < - <& <1, and the s are the distinct zeros of H, , in (0, 1).

5. BEST MONOTONE CONVEX L, APPROXIMATION

As applications of the results in Section3, we consider best L,
approximation by monotone convex functions, and the relationship
between best convex L, approximation and best monotone convex L,
approximation.

For 1 < p<aoo, let Mpla, b) (resp., My(a, b)) <= L,{a,b] be the set of
nonincreasing (resp., nondecreasing) convex functions on (a, b). Thus,
g(x)e Mp(a, b) if and only if G(x)= g(—x)e M,(—b, —a). In addition,
g*(x) is a best L, approximation to f from Mp(a, b) if and only if
G*(x)=g*(—x) is a best L, approximation to F(x)=f(—x) from
M (—=b, —a).

Since a nondecreasing convex function is (1.2),-convex with o = (1, —1)
and a nonincreasing function is (1, 2),-convex with ¢ = (—1, — 1), a similar
reasoning to the proof of Theorem 3.3 gives the following two corollaries of
Theorem 3.3:

COROLLARY 5.1. (a) For 1 <p<oxc, g*¥e Mpla, b) (resp., M(a, b)) is
the best nonincreasing (resp., nondecreasing) convex L, approximation to
feL,a b] if and only if

(i) {*¢,(x)dx=0;

(i) [L(—x)¢,(x)dx<0 (resp., [0(x—1)@,(x)dx<0) for all
tefa, bl

(iit) if |5 xg,(x)dx>0 (resp., [} x¢,(x)dx<0), then g*' (b )=0
(resp., g3 (a')=0);

(iv) if {2 (to—x)dx <0 (resp., |7 (x—1,) $,(x)dx <0) for some
to€(a, b), then g* is a linear polynomial in a neighborhood of t,.

(b) For p=1, gte Myl(a,b) (resp., M(a, b)) is a best nonincreasing

(resp., nondecreasing) convex L, approximation to f€ L,[a, b] if and only if

there exists a ¢ €L, .[a,b] with |l =1 [Lé.(f—gt)=If-gth
satisfyving conditions (i)-(iv) in (a) with p=1.

The next three theorems establish some relationships between best
convex L, approximation and bes monotone convex L, approximation.

THEOREM. 5.1. Let g¥ be a best convex L, approximation to
feL,[0,1], for 1 < p<oo. Then, there exists a te[0,1] such that g} is
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both a best nonincreasing convex L, approximation to f on [0, t] and a best
nondecreasing convex L, approximation to f on [1,1].

Proof. If g¥ is nonincreasing (nondecreasing) on (0, 1), then let r=1
(t=0). Assume that g7 is a nonmonotone convex function. Let

m=inf{g¥(x): xe[0,1]}.

Then the set 4 = {x€ [0, 1]: g¥(x)=m} is a nonempty and closed interval
contained in (0, 1). Define ¢ =inf A. Then, g* is nonincreasing on (0, #) and
nondecreasing on (1, 1). By the definition of ¢, g¥ cannot be a linear poly-
nomial in any neighborhood of ¢ which contains ¢ as an interior point. The
characterization of best convex approximation implies j{) (t—x)¢,(x)dx=0.
Thus, g7 is a best approximation to f on both [0,¢] and [, 1] (see
[15,19]). Since the set of nonincreasing convex functions in L,[0, 1]
is contained in the set of convex functions in L,[0, ], g¥ is also a best
nonincreasing convex approximation to f on [0, ¢]. Similarly, g is a best
nondecreasing convex approximation to f on [¢, 1[.

THEOREM 5.2. For 1<p<oc let feL,[0,1]. Assume te(0,1). Let
gneMp(0, 1) (resp., g€ M(t, 1)) be the best nonincreasing (resp., non-
decreasing ) convex L, approximation to f on [0, t] (resp., on [t, 1]). Define

#,.p(x)=sign[ f(x) — gn(x)]1f(x) = gn(x)| ! Jor xe[0,1],
¢,.1(x) =sign[ f(x) = g(x)]1f(x) = gi(x)I77 ", Jor xel[1 1],

and

golx),  xe[0,1]

“x)={g4xx xe( 1]

Then, g is the best convex L, approximation to f on [0, 1] if and only if
(i) golt)=g(1),
(i) [0 (t=x)Bpp(x)dx=["(x—1)4,(x)dx.
Proof. Let

¢p. D(x)v X€ [0, t]

¢Ax)={¢%dxh xe (s 1.

Assume g is the best convex L, approximation to f on [0, 1]. Then g is
continuous on (0, 1) and thus gy(¢) = g,(¢). In addition, by the charac-
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terization of best convex L, approximation, we have [;¢,=0, and
{6 x¢,(x) dx = 0. Hence,

f' (t—x) g (x)dx=0 forall re(0,1).
0

It follows from this equation that (ii) holds.

Condition (i) with the facts that g, is nonincreasing convex on [0, 7]
and g, is nondecreasing convex on [¢, 1] implies that g is convex on [0, 1].
By the assumptions, we find

r

[y de=]

Y0

1
¢p,D(x) d’(+J~ ¢,,.|(x) dx=0
and
! ' ol
J, 2o dx=[ (1=x),p(x)dx+ | (1-x)6,(x) dx =0

For xe [0, ¢],

X

Jx (x—u) @,(u) du=J (x—u) @, p(u) du<0,
0 0

and for xe (¢, 1], by condition (ii),
L (x —u) @ (u) du

= J: (x—u) ¢, plu) du+fr (x—u) @, 1(u)du

rl

(t—u) 8, (1) du+[ —t)¢,,'[(u)du+f‘.(t—u)¢p‘l(u)du

4]

1

[ =gt du={ =1 o) du+ | (x= 1) g,4(0) d

! !

sl 1
= | =0 @) du—| (x=1) 4, (u) du

RY RY

= jl (u—x)¢,(u) du<0.

Assume that for some xq,€ (0, 1), jgo (xo—u) @,(u) du<0. If xo€ (0, t), then
gp is a linear polynomial in a neighborhood of x4 and so is g. If x,e (¢, 1),
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then by the above reasoning, we have .[)'(U (4 —x¢) ¢,1(u) du <0. Thus, g, is
a linear polynomial in a neighborhood of x, and so is g. If x,=¢, in view
of the continuity of {3 (x —u) @,(u) du for xe [0, 1],

~x

J (x—u) @,(u)du<0, xe(t—9,,1],for some d, >0.
0

By the characterization of best nonincreasing convex L, approximation, we
find that g’_(¢r~)=g},_(¢r }=0 and g is a linear polynomial on (1 -4, ].
In addition, since (ii) holds, [} (x—1) @, (x)dx <0. Similarly, g',(r )=
g:;.(t7)=0, and g is a linear polynomial on ¢, ¢+ d,) for some §,> 0.
Hence,

0=g_(t7)<g'()sg' . (t')=0.

Thus g'(¢) exists and vanishes. Therefore g is a constant on (1 —§,, t + J,).
The conditions that we verify guarantee that g is the best convex L,
approximation to fon [0, 1].

For p=1, we have the following similar result:

THEOREM 5.3. Let feL,[0,1] and te(0,1). Assume gpe Mp(0,1)
(resp., g€ My(1, 1)) is a best nonincreasing (resp., nondecreasing) convex L,
approximation to f on [0, t] (resp., on [t, 1]). Define

(r)_{gl)(-") xe[0,1]
T e xe(s, 1],

Let ®(gp) be the set of e L (0,1] with ¢} =1 and [, ¢(f — gp)=
|f— golly, satisfying conditions (i)-(v) of Corollary 5.1. Let ®(g;) be the

set of pe L [t, 1] with |4ll.. =1 and [} §(f - g1)= Il — gil\, satisfying
conditions (i)-(v) of Corollary 5.1. Then, g is a best convex L, approxima-

tion to fon [0,1] if and only if
(i) go(1)=gilr),
(ii) there exist ¢ e DP(gy) and ¢, € D(g,) such that
at 1
J, (t=x)d0x)dx= | (x—0) gi(x) dx.
Proof. Let

(folx)  xel0.1]
""""{m(x) xe(t 1]



BEST L, APPROXIMATION 107

Then, ||¢]|. =1 and
[ or—81=] botr-go)+ ] #ilr=g0=1s=gl.

1
0 !

The rest of this proof is similar to the proof of Theorem 5.2. This completes
the proof of Theorem 5.3.

Remark. All results in this paper could be generalized to Tchebycheffian
splines and to functions generalized convex with respect to an ECT-system.
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