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A Mergeable Double-ended Priority Queue

S.OLARIU, C M. OVERSTREET anD Z. WEN

Department of Computer Science, Old Dominion University, Norfolk, VA 235290162, USA

An implementation of a double-ended priority queue is discussed. This data structure referred to as min-max—pair heap
can be built in linear time; the operations Delete-min, Delete-max and Insert take O(log uv) time, while Find-min and
Find-max run in O(1) time. In contrast to the min-max heaps, it is shown that two min-max—pair Reaps can be merged
in sublinear time. More precisely, two min—max—pair heaps of sizes n and k can be merged in time O(log (nfk) » log k).

Received November 1990, revised February 1991

1. INTRODUCTION

A priority queue is a data structure whose elements are
assigned a label representing their priority. In this
context, the natural order of the elements in such a
structure is dictated by their respective priority. Priority
queues are widely used in software engineering,’ simu-
lation,*? external sorting' and operating systems,® to
name a few (see Refs. 2 and 6 for relevant discussion).

More formally, a priority queue can be viewed as an
abstract data type maintaining a set of keys from a
totally ordered universe and supporting the following
atomic operations: Find-max: find the maximum ; Delete-
max : delete the maximum ; Insert(x): insert key x into the
structure. (Of course, instead of finding or deleting the
maximum we could just as well insist on maintaining the
structure such that the minimum is operated upon.)

Typically, heaps are used to implement priority queues
in computer systems. In essence, a heap is a binary tree
featuring the heap-shape property: all the leaves occur on
at most two adjacent levels in the structure, with the
leaves on the last level being confined to the leftmost
position; and a max-ordering: every element is no less
than the largest of its children. It is well known that in
the heap implementation of priority queues Find-max
takes constant time, while both Delete-max and Insert
take O(logn) time. Furthermore, an n-element heap can
be constructed in O(n) time, which is trivially seen to be
optimal (see Ref. 2 for details).

In fact, the idea of a priority queue can be naturally
extended 'to a double-ended priority queue where, in
addition to Find-max, Delete-max, the operations of
Find-min and Delete-min are also of interest. Motivated
by this concept, Atkinson et al.' have recently proposed
an interesting variation on the idea of a heap: they define
the min-max heap as a binary tree with the heap-shape
property, and also min-max ordered, that is, elements on
even levels are less than or equal to their descendant, and
elements on odd levels are greater than or equal to their
descendants.

Max-min heaps are defined completely analogously:
such a structure begins with the maximum element at the
root and then the heap condition alternates between
minima and maxima.

_ A nice feature of min-max heaps is that they can be
Implemented in situ, with no need for additional pointers.
As it turns out,! when the double-ended priority queue is
Impiemented as a min-max heap, Find-min and Find-
Mmax can be performed in constant time, while Delete-
min, Delete-max, and Insert take O(logn) time. In

addition, Atkinson er al.! have presented a linear time,
and thus optimal, algorithm to construct a min-max
heap.

An interesting problem arising in fault-tolerant-
distributed simulation® is the following: assume that
several (computationally active) sites in a distributed
system are simulating a process. It is sometimes desirable
to implement these event lists as double-ended priority
queues. Basic fault-tolerant requirements require that if
one of these sites, say S,, suddenly becomes computa-
tionally inactive, another one must continue the simu-
lation performed by S,. For this purpose we need to elect
a site S, (i #), which will then import the event list of S,
and will merge it with its own event list. Surprisingly, it
has recently been proved® that merging two min—-max
heaps of sizes n and k, respectively, cannot be done in less
than Q(n+ k) time. This negative result motivates us to
investigate a different data structure to implement
efficiently a double-ended priority queue. This data
structure, which was first proposed in a different form by
Williams!? is herewith referred to as the min—max—pair
heap (see Fig. 1). In essence, a min—max—pair heap is a
binary tree H featuring the heap-shape property, such
that every node in H has two fields, called the min field
and the max field, and such that H has a min-max
ordering . for every I (1 < i <n), the value stored in the
min field of H[i] is the smallest of all values in the subtree
of H rooted at H[i]; similarly, the value stored in the max
field of H[i] is the largest key stored in the subtree of H
rooted at H[i]. We show that min—-max—pair heaps can be
implemented in situ, with no need for additional pointers.
As it turns out, when the double-ended priority queue is
implemented as a MinMaxPairHeap, Find_Min and
Find_Max can be performed in constant time, while
Delete_Min, Delete_Max, and Insert take O(logn) time.

apXapiRapRaD

Figure 1. A min—max—pair heap.
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However, what really distinguishes min—max—pair heaps
from min-max heaps is the fact that min-max—pair
heaps can be merged efficiently in sublinear time. More
precisely, we show that two min—-max—pair heaps with n
and k nodes can be merged in time O(logn/k »logk).

Recently, Carlsson® proposed a new data structure
called the deap, which provides an efficient implemen-
tation of a double-ended priority queue. Formally, a
deap is a data structure featuring the heap-shape
property, with the left sub-tree of the non-existing root
organised as a min-heap, the right sub-tree of the non-
existing root a max-heap, and with each leaf in the min-
heap smaller than a corresponding leaf in the max-heap.
Specifically, a leaf at location ¢ in the min-heap is smaller
than the element at location ¢4 21941 in case ¢ 4 20841
< n+1 or the element at location [t+ 2?41 /2], other-
wise. It turns out that deaps can be implemented in situ
and can be constructed in linear time.* To the best of our
knowledge, however, it is an open question whether the
deaps can be merged in sublinear time.

2. OPERATIONS ON MIN-MAX-PAIR
HEAPS

Consider an array H[1..n] as input. For 1 <i < n, each

element H[i] of H has two fields H[{]. min and H[i] max.

(Therefore, the array H can be viewed as containing
2n—1 or 2n keys altogether; in the case where H
contains 2n—1 keys, the max field of H[n] contains a
special symbol, namely #.)

The construction algorithm for min—max—pair heap
resembles the construction of the standard heap struc-
ture.’ Let H[i] be an arbitrary node of the array to be
made into a min—max-pair heap. Assume, further, that for
all j (i <), the subtrees rooted at the children of H[J],
namely H[2j] and H[2j+1], prov1ded they exist, have
been made into mm—max—panr heaps. First, we ensure
that the key in H[{].min is no larger than the key stored
at H[{).max. Next, we restore the min—-max-pair heap
property along the min fields of the nodes in the subtree
rooted at H[ij, by trickling down larger keys. Similarly,
we restore the min~max—pair heap property along the
max fields by trickling down smaller keys. The purpose
of this is to ensure that the H[{].min and H[{].max
contain the smallest and largest keys in the subtree
rooted at H[i], respectively. The details are given
below.

Procedure Create (H[1..n));
begin
for i< n downto 1 do
Siftdown(H[i));
end {Create)
Procedure Siftdown(HIi));
{we assume that the subtrees rooted at H[2i) and H[2i+ 1]
are min-max-pair heaps}
begin
Trickledown-min-field(H[i));
Trickledown-max-field(H[i]);
end; {Siftdown}
Procedure Trickledown-min-field(H[i]);
begin
p< HIil;

if p.max < p.min then Swap(p.min, p.max);

if p is a leaf then return;
pl « child of p with smallest min field,

z if pl .min < p.min then begin

Swap(p\ . min,p.min); Trickledown-min-field(p1)
end; {Trickledown-min-field}

Procedure Trickledown-max-field is similar. The fol.
lowing result establishes the correctness and the time
complexity of our procedure.

Theorem 1. Procedure Create correctly induces a
min-max~pair heap structure over 2n-1 or 2n keys ino

O(n) time. g
Proof. To settle the correctness we proceed as follows: §
assume that for all values of i (2<i<n), whenS

Trickledown-min-field(H[i}) (resp Trzckledown -max- o
field(H[i])) terminates, H[i].min (resp H[i. max)j
contains the smallest (resp. largest) key in the subtree—c
rooted at H[i], while the subtrees rooted at H[2i] and\
H[21+ 1] (provided they exist) are min—max—pair heaps. g 8
It is easy to confirm that when Siftdown(H[1]) terminates, &
the whole structure is made into a min—max—paira-
heap. 'g

To address the complexity, consider what happens mo
procedure Trickledown-min-field when node H[i] is bemgg
processed. To ensure that H[i].min < H[i].max and toS
determine the child of HI[i] with the smallest min field=.
three comparisons are required. Consequently, the totals
number of comparisons to perform Siftdown is

2 3[llog n|—{log i]],
i=1 )
which is easily seen to be O(n).[]

Next, we show that performing the standard operatlons
Insert(x) and Delete-min as well as Delete-max can bew
done in O(logn) time. Baswally, the idea of inserting acn
new element x into a mm—max—palr heap is the same as &3 8
the insertion of a new element in a standard heap. Wecr
first place the new key at the bottom of the structure and - o
then perform the well-known bubble-up operation. Just >
as in the case of heaps, the time complexlty of thed

Y/S/yEAoRIISqe-3o1e)

. Insert(x) operation for the min—max—pair heap is=

dominated by the cost of the bubble-up, which i8S
easily seen to be O(logn) as shown in the followmgC
procedures.

Procedure Bubbleup(H[i]);
begin
p<Hli;
b «false;
if p.min > p.max then
swap(p . min,p . max);
if p is the root then return;
pl « the parent of p;
if pl.max < p.max then begin
swap(pl .max,p.max);
b« true;
. end;
if pl.min > p.min then begin
swap{(pl .min,p.min);
b« true;
end;
if b then
Bubble(pl);
end; {Bubbleup}

810z Jaquiaoa( GO Uo Jasn AjisiaAiu
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procedure Insert(x,H[1. .n]);
begin
if H{n].max = ‘#’ then
Hln).max « x;
else begin
nen+1;
H[n].min « x;
Hn).max «“#’,;
end;
Bubbleup(H[n));
end.

Similarly, the idea of Delete-min and Delete-max
resembiles the well-known delete operation on heaps. The
details are spelled out in the following procedures. It is
an easy matter to confirm that both these operations can
be executed in O(logn) time, while Find-min and Find-
max take O(1) time.

Procedure Delete-min(H[1. .n));
begin
if H[n).max = ‘#’ then begin
H[1]).min <« H[n).min; n«~n—1;
end
else begin
H[1).min « H[n).max;
H[n) .max «"‘#’
end;
Trickledown-min-field H[1]);
end;

3. MERGING MIN-MAX-PAIR HEAPS

Recently, Sack and Strothotte® have proposed an efficient
glgorithm to merge two heaps in sublinear time.
Specifically, merging two heaps of size n and k can be
done in O(log (n/k) » log k) time. The general case of the
heap-merging algorithm in Ref. 9 reduces, in stages, to
that of merging perfect heaps. (A heap H is perfect if the
leaves occur at the last level only.) The idea in Ref. 9 is
very elegant: first, to merge two perfect heaps H1 and H2
of equal size, make the rightmost leaf of H2 into the new
root, whose children become the old roots of H1 and H2.
After this, the new root is sifted down to restore the heap
property.

Next,.let H1 and H2 be two perfect heaps of sizes n and
k, respectively, with k < n. Start at the root of H1 and
compare it to the root of H2. If the root of H2 is smaller
than the root of H1, exchange the two roots and perform
a sift-down on H2. This operation is repeated along the
path (Walk-down) in H1 from the root down to the
leftmost leaf of H1 for logn-logk steps.

We propose to show that the heap-merging algorithm
in Ref. 9 can be easily adapted to merge two
min-max-—pair heaps in sublinear time. We shall therefore
focus on merging perfect min-max-pair heaps, that is,
min-max—pair heaps whose leaves occur at the last level
only. We refer the interested reader to Ref. 8, where the
tedious details are documented.

Just as in Ref. 9, to reduce the amount of data
movement during the execution of our merging al-
gorithm, we shall assume a pointer-based implemen-
tation. In this context, a min—-max-pair heap node v
Contains the following fields:
® v.min and v.max fields;

@ v.lchild contains a pointer to the left child of v in the
min—-max—pair heap;
@ v.rchild contains a pointer to the right child of v in the
min-max—pair heap.

It is convenient to assume that depth(H) returns the
depth of the min—-max—pair heap H in constant time. The
details of our merging algorithms are as follows.

Procedure Merge-perfect-equal(H1, H2);
{H1 and H2 are two min—-max—pair heaps of same size}

p < the last node in H2;

remove p from H2;

p.lchild<+ H1;

p.rchild< H2,

Siftdown(p);

Hl «p;

end;

Procedure Walk-down(Hn,Hk, from,to); {Hn is a
min—max—pair heap with n nodes; Hk is a min-max—pair
heap with k nodes; ‘from’ is the starting location of
current operation on the path from the root to Hn to the
leftmost leaf’; “to’ is the ending position of the operation}

if Hk.min <from.min then swap(Hk .min, from.min);
if Hk.max > from.max then
swap(Hk .max, from.max);
Siftdown(Hk);
if from = to then return
else begin
next <« next node on the walk-down after from;
Walk-down(Hn,Hk next,to)
emd
end; { Walk-down}
Procedure Merge-perfect(Hn,Hk);
begin
p < node on the path from the root to the leftmost leaf
in Hn, such that the subtree rooted at p has k nodes;
r<root of Hn;
Walk-down(Hn,Hk,r,p);
pl < parent of p;
merge-perfect-equal(p,Hk) ;
if p1 = nil then
pl.lchild<p
else Hn «p
end; {Merge-perfect}

(For a detailed example refer to Figure 3.) It is easy to
see that the complexity of our algorithm is exactly the
same as that of the heap-merging algorithm in Ref. 9.
Specifically, we can merge two min—max—pair heaps with
n and k nodes, respectively, in O(log (n/k) * log k) time.

2110

apRapiap¥aD

Figure 2. A min—min—pair heap.
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Figure 3. Merging two min—max—pair heaps. (a) Two min—max—pajr beaps to be merged ; (5) after one iteration (one level of recursion

of procedure ‘Walk-down’; (¢) the merge min—max—pair heap.

4. CONCLUSIONS AND FURTHER WORK

We have shown that the techniques in Ref. 9 can be
readily adapted to handle two merging min-max—pair
heaps. It is easy to see that the idea that led to the
min—max—pair heap can be further expanded. As an
example, we define a min—min-pair heap as a heap-
shaped binary tree with each node containing two fields
called minl and min2, respectively. The value of p.minl
is the smallest of all the value stored in the subtree rooted
at p; p.min2 contains the smallest of all the values stored
in the min2 fields of all the nodes in the subtree rooted at
p. Finally, for every node g in the subtree rooted at p,
p.min2= 2.minl (see Fig. 2).

One interesting feature of a min—min—pair heap is that
the minl field of the root contains the minimum value in
the whole structure, while min2 of the root contains the
median of the whole structure. As it turns out,® a
min-min-pair heap containing 2n-1 or 2n keys can be
constructed in O(n) time. Clearly, the operations Find-

Je/\!un‘u’om!woa PIO AQ GEBESS/EZH/S/YENoRASqE-8]o1Le/|UlWoo/W0o0 dNo"olWapeo.//:sdiy Wol) PapEojUMO]

min and Find-median can be performed in O(1) tinié.
Smnlarly, Insert(x), Delete-min and Delete-median can bc
done in O(logn) time.® Similarly, one can define a mat-
max-pair heap and a max- mm-palr heap.® Unfortunately
none of these variations of the min—max—pair structureds
mergeable in sublinear time. 5
Finally, an mterestmg open problem is whether or n8t
deaps are mergeable in sublinear time. In pamcular
would be interesting to see if the techniques in Ref. 9 c@
be extended to deaps.

OO
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Correspondence

Sir,

In many applications of computer engineer-
ing,! we are often in need of converting
decimal data into its equivalent data of other
base(r) system such as binary, octal, hex etc.
One of the usual techniques of such conversion
is known as ‘dibble-double’ technique.!"* But
the ‘dibble-double’ technique has two major
limitations as listed below.

(1) The technique uses two different algo-
rithms™™ for conversion of real data. One
algorithm is used for conversion of the integer
part of the data and another algorithm is used
for conversion of the fractional part of the
data.

(2) The order of the bits of integer part of
the data is the reverse to that of the fractional
part of the data on conversion. Such nature of
order of bits of two parts of data becomes a
common source of error particularly for paper
and pencil work.?

The other usual technique of data con-
version is known as ‘ table-look-up’.? But the
‘table-look-up’ technique is efficient only for
conversion of any decimal data to its equiva-
lent binary data (D-B). The technique is not
efficient for the cases of conversion of D-O
(decimal to octal) and of D-H (decimal to
hex) etc. This is because the tables used in the
table-look-up are very difficult to design in
these cases. The size of the table increases in
term of columns with increase of base in which
data is to be converted. For example, the
required number of columns of the table in
case of D-B conversion of data up to the
maximum decimal integer of eight is two;
while the same for the case of D-O conversion
goes up to eight. While using this technique in
conversion of data, the required searching
time? of the table for conversion increases
with the increase of the size of this table.
Hence the technique is a slow one, particularly
for the cases of conversion of D-O and of
D-H etc. Moreover, the table increases its size
towards row as the data under conversion
Increases.

The above-stated limitations of existing
techniques of conversion of data may be
removed, if the new algorithm given below is
used for the same purpose.

The new algorithm is based on the fact that
any decimal integer, I in any other base
$ystem, r can be expressed as:

a Y ta, Y+ +ag),

where g, for imn, n—1,...,0 are the bits
representing I in base, r.
But

@y +a "+t ) 2ayt. (1)

Thus the subtraction of r* from I for a,
number of times must meet the inequality (1).
At the next such subtraction the inequality (1)
must not be satisfied as:

@y +a,_,y" ' +...+a,¥)
<@ +D)y.... @

Thus counting the number of times for which
r* is subtracted from /7 in satisfying the
inequality (1) will provide the value of a,.
Similarly any other bit, a, can be evaluated.

For the fractional part (F) of any decimal
data the related inequalities are:

(@, ¥y +a vy . ta_ y ™z ay?
and

@y +ay 4. +a_ v ™)
<(a_,+DyL

In case of the conversion of fractional part
of data, in some cases the number of required
bits on conversion may be very high. In such
situations a limit in the number of bits may be
included. This introduces the so called con-
version error.!

The above-stated idea forms a basis of new
algorithm for conversion of data.

A numerical example to convert decimal
data 5.8 in binary is given below to show the
difference between the ‘dibble-double’ algor-
ithm and the new algorithm.

Under dibble-double algorithm

Integer part:

21512 2|2[1 2|10 (indicates end
4 2 0 of operation)
1(LSB-Least 0 1 (MSB-Most

gﬁ-‘;ﬂﬁmﬂt significant bit)

Fractional part up to 4th bit:

0.8x2=1.6->1(MSB),
06x2=12-1,
02x2=04-0,

0.4x2 = 0.8 0 (LSB).

Observation

(1) Two separate algorithm for conversion
of integer and that of fractional part are used.

(2) Orderin which MSB to LSB is evaluated
in reverse to each other in two cases.

Under new algorithm

Integer part:
5—2*=1>0-1(MSB),
1-2' =—-1<0-0,
1-2°=0=0-1(LSB).

(Indicates end of operation).

Fractional part
08—-2"'=03>0-~1(MSB),
03-2"*=0.05>0~1,

0.05-2"*=—-0.075 <00,
0.05—27* = —0.0125 < 0+ 0 (LSB).

Observations

(1) Single algorithm is used for both the
cases of conversion of integer and fractional
part of data.

(2) Order in which MSB to LSB is obtained
is same in both the cases of the integer and the
fractional part of data.

C. T. BHUNIA

Department of Computer Science, North
Bengal University (and NERIST), Dist. Dar-
jeeling, Pin 734 430, West Bengal, India
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