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ABSTRACT

INFERENCE AND ESTIMATION IN CHANGE POINT MODELS FOR
CENSORED DATA

Kristine Gierz
Old Dominion University, 2020
Director: Dr. Kayoung Park

In general, the change point problem considers inference of a change in distribution for

a set of time-ordered observations. This has applications in a large variety of fields, and

can also apply to survival data. With improvements to medical diagnoses and treatments,

incidences and mortality rates have changed. However, the most commonly used analysis

methods do not account for such distributional changes. In survival analysis, change point

problems can concern a shift in a distribution for a set of time-ordered observations, poten-

tially under censoring or truncation.

In this dissertation, we first propose a sequential testing approach for detecting multiple

change points in the Weibull accelerated failure time model, since this is sufficiently flexible

to accommodate increasing, decreasing, or constant hazard rates and is also the only con-

tinuous distribution for which the accelerated failure time model can be reparametrized as

a proportional hazards model. Our sequential testing procedure does not require the num-

ber of change points to be known; this information is instead inferred from the data. We

conduct a simulation study to show that the method accurately detects change points and

estimates the model. The numerical results along with a real data application demonstrate

that our proposed method can detect change points in the hazard rate.

In survival analysis, most existing methods compare two treatment groups for the en-

tirety of the study period. Some treatments may take a length of time to show effects

in subjects. This has been called the time-lag effect in the literature, and in cases where

time-lag effect is considerable, such methods may not be appropriate to detect significant

differences between two groups. In the second part of this dissertation, we propose a novel

non-parametric approach for estimating the point of treatment time-lag effect by using an

empirical divergence measure. Theoretical properties of the estimator are studied. The

results from the simulated data and real data example support our proposed method.
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CHAPTER 1

INTRODUCTION AND MOTIVATION

Change point detection seeks to identify times when the probability distribution of a stochas-

tic process or time series changes. Generally speaking, the change point problem can concern

both whether or not a change (or multiple changes) has occurred, and identifying the time

point of any changes. There is vast literature on differing change point analysis methods,

with applications in a wide variety of fields, including financial modeling (Talih and Hen-

gartner, 2005; Zeileis et al., 2010), bioinformatics (Erdman and Emerson, 2008; Muggeo

and Adelfio, 2011), signal processing (Kim et al., 2009), climatology (Reeves et al., 2007),

oceanography (Killick et al., 2010), and medical imaging (Nam et al., 2012). These specific

applications may be concerned with changes in the mean, variance, correlation, or other

measure.

One major area of research used in many of these application is statistical process control,

or statistical quality control. Statistical process control aims to employ statistical methods

to monitor and control a process. This ensures that the process runs efficiently and allows

for adjustments in the process to be made, with potentially life-saving effects. Statistical

process control was introduced by Walter A Shewhart in the early 1920s in the form of

Shewhart charts. These charts have upper control limits and lower control limits that

indicate a threshold at which process output is considered unusual. An alternative for

Shewhart charts called cumulative sum (or CUSUM) charts was proposed by Page (1954),

which is more efficient in detecting small shifts in the process. This was followed by the

exponentially weighted moving average (EWMA) chart proposed by Roberts (1959). The

EWMA chart is sensitive to small shifts, but does not match Shewhart charts in detecting

larger changes. These charts have more recently been adapted to monitor censored data

(see, for example, Sego et al. (2009)).

There has been an increasing need for methods involving change point methods when

dealing with censored data, especially when considering changes in distribution of survival

probabilities or hazard rates (Jemal et al., 2017). Common methods of analysis for censored

data can be non-parametric (the Kaplan-Meier estimator and log-rank type tests), semi-

parametric (proportional hazards models), or parametric (parametric proportional hazards

models and accelerated failure time models). Many of these existing standard models and
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methods of analysis have certain assumptions that would be violated if a change point

exists. The proportional hazards model proposed by Cox (1972), for example, assumes

that covariates are multiplicatively related to the hazard. As noted by He et al. (2013),

the inferences and conclusions made from the proportional hazards model may be invalid

and misleading if there is a change point. Due to the prominence of the proportional

hazards model in survival analysis, a number of approaches have been suggested that involve

change points, including those proposed by Chen and Baron (2014), He et al. (2013), Liu

et al. (2008), Lee et al. (2020), and Park and Qiu (2018). Another common distributional

assumption in survival analysis is that of a constant hazard rate, leading to work on constant

piecewise hazard models proposed first by Matthews and Farewell (1982) and expanded

much later by Goodman et al. (2011). Many other methods have put forward, including non-

parametric methods such as the weighted log-rank statistic approach of Zucker and Lakatos

(1990) and Dinse et al. (1993), and the stump regression of Brazzale et al. (2019). The

simplest of these methods involve a single change point in survival data without covariates,

while the most complex is adaptable to multiple change points in survival data that includes

explanatory covariates.

Asymptotic theory of maximum likelihood estimates under a change point is far from

trivial, and in some cases intractable. Matthews and Farewell (1982) first noted problems

with boundedness, but mentioned that the distribution of a likelihood ratio test to determine

the existence of a change point is very close to a Chi-squared distribution with two degrees

of freedom. Yao (1986) provided some constraints and asymptotic theory for a maximum

likelihood estimator of a single change point in a hazard rate, which Goodman et al. (2011)

then used in order to construct a Wald-type test statistic, thereby avoiding distributional

issues with a likelihood ratio test. Most other methods use Monte Carlo methods in order

to find the empirical distribution of the test statistic and overcome difficulties in asymptotic

theory. Some methods involve the necessity to assume the number of change points present

in the model in order to carry out estimation and hypothesis testing. A newer trend in

literature is sequential hypothesis testing using increasingly conservative significance levels

in order to fit the most parsimonious model (He et al., 2013; Liu et al., 2007; Lee et al.,

2020).

Since the assumptions of the proportional hazards model of Cox (1972) are often violated

in real data applications, the accelerated failure time (AFT) model has been used as an

alternative. Where the proportional hazards model assumes that the effect of a covariate is

to multiply the hazard by some constant, the AFT model instead has the assumption that
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the effect of a covariate is to accelerate (or decelerate) the life course of a disease by some

constant. However, the AFT model is typically fully parametric and therefore requires the

stricter distributional assumptions. A semi-parametric alternative to the AFT model was

created by Buckley and James (1979), but was argued by Wei (1992) to lack theoretical

justification. The log-logistic distribution provides the most commonly used AFT model, as

it can have a non-monotonic hazard function which increases at early times and decreases

at later times. It is somewhat similar in shape to the log-normal distribution with the

exception that it has heavier tails. The Weibull distribution is another commonly used

distribution, because it includes the exponential distribution as a special case, and can be

re-parameterized as a proportional hazards model. It is the only family of distributions to

have this property, which gives it more flexibility. However, the applicability of this model

could be limited by the fact that the hazard function is monotonic.

A popular theory in estimation is U-statistics, where the “U” stands for “unbiased.”

These statistics arise naturally from minimum-variance unbiased estimators (MVUEs). In

non-parametric statistics, the theory of U-statistics can be used for to find estimators and

construct hypothesis tests. The term originally comes from Hoeffding (1948), and it is par-

ticularly helpful in the context of independent and identically-distributed random variables.

There has also been work into U-statistics for random variables that are not independent

and identically-distributed (for example, see Denker and Keller (1983)). U-statistics have

also been used for change point analysis. Székely et al. (2005) proposed a multivariate

divergence measure that is an extension of Ward’s minimum variance method, which is a

method from cluster analysis. Matteson and James (2014) adapted this to an empirical

divergence measure based on U-statistics to find change points in multivariate time series.

These methods can be computationally expensive, especially when considering confidence

intervals or hypothesis testing (which can be carried out via Monte Carlo methods such as

bootstrapping or permutation tests).

In this dissertation, we propose and develop two different methods of change point

estimation and inference for censored data. In Chapter 2 we introduce the background

information necessary to construct these estimates. Specifically, we first review the literature

and theory required to use sequential testing and maximum likelihood estimation in order

to create an AFT model with multiple change points based on the Weibull distribution.

Next, we give an overview on the theory of U-statistics and non-parametric multivariate

time series methodology that we will adapt to be used for survival data.

In Chapter 3, we discuss the detection of multiple change points in an accelerated failure
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time model using sequential testing. We use maximum likelihood estimation, as He et al.

(2013) used for similar methodology concerning the Cox proportional hazards model. Due

to known issues with the distribution of a likelihood ratio test statistic in order to determine

the existence of a change point or change points, we use a model-based bootstrap procedure

to find the empirical distribution of the test statistic. We use an alpha-spending function

proposed by Goodman et al. (2011) to ensure increasingly conservative significance levels to

test for each consecutive change point. Simulations studies are performed to evaluate the

accuracy of estimation as well as the power and Type I error of the sequential hypothesis

testing procedure. Finally, the method is applied to a prostate cancer data set from the

Surveillance, Epidemiology, and End Results Program as well as a bladder tumor recur-

rence data from the Veteran’s Administration in order to show the flexibility of the model

compared to other models.

In Chapter 4, we propose a non-parametric method of finding the point of treatment

time-lag effect based on the previous method of Matteson and James (2014) for multivariate

time series. In this method, we compare a “treatment group” to a “control group.” Specif-

ically, the two groups are quite similar up until a certain time point, and then differ after

the treatment takes effect. We give some theoretical properties of the empirical divergence

measure based on the Kaplan-Meier survival estimates, including strong consistency of the

estimator. In order to show the advantage of the estimation technique in this chapter, we

provide simulation results for accuracy, empirical coverage probability of bootstrap confi-

dence intervals, and reliability of a permutation test to test the null hypothesis of no change

point. The method is then applied to a Veteran’s Administration Lung Cancer Trial data

set and a German breast cancer data set.

In Chapter 5 we give a summary and conclusion of the methods and discuss avenues

for future research. Some R code for reproducibility, more detailed proofs, and additional

simulations can be found in the Appendix.
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CHAPTER 2

BACKGROUND

2.1 REGRESSION MODELS FOR SURVIVAL ANALYSIS

The analysis of time-to-event data is most commonly called survival analysis. It may

be referred to as reliability theory within engineering, duration analysis within economics,

and event history analysis within sociology. If we consider a nonnegative random variable

representing the failure time of an individual, the probability distribution can be described

in many ways.

The standard estimator for the survival function of censored data was first proposed by

Kaplan and Meier (1958), and is often called the product-limit estimator. As proposed by

Kaplan and Meier (1958) and Greenwood (1926):

Definition 1. Suppose that events occur at T distinct times t1 < t2 < · · · < tT , and that

there are di events with yi individuals at risk at time ti. Then, the product-limit estimator

is defined as:

Ŝ(t) =

1 if t < t1∏
ti≤t

[
1− di

yi

]
if t1 ≤ t.

with variance given by Greenwood’s formula:

V̂
[
Ŝ(t)

]
= Ŝ(t)2

∑
ti≤t

di
yi(yi − di)

.

It is clear that Ŝ(t) is a step function that jumps at the observed event times. The size

of jumps depends on both the number of events observed at time ti and on the pattern of

censored observations before ti.

The product-limit estimator suggested by Kaplan and Meier (1958) is an efficient way

to empirically estimate the survival function for right-censored data. It can also be used to

estimate the cumulative hazard function as Λ̂(t) = − log
[
Ŝ(t)

]
. A popularly-used alterna-

tive to estimating the cumulative hazard function is known as the Nelson-Aalen estimate.

It was first proposed by Nelson (1972) in the context of reliability. It was later rediscovered

by Aalen (1978) using counting process techniques.
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Definition 2. The cumulative hazard estimator defined by Nelson (1972) and Aalen (1978)

is

Λ̃(t) =

0 if t ≤ t1∑
ti≤t

di
yi

if t1 ≤ t.

Then an alternative estimator of the survival function is S̃(t) = exp
[
−Λ̃(t)

]
. One of the

primary uses of the Nelson-Aalen estimator is in selecting between parametric models.

2.1.1 ACCELERATED FAILURE TIME MODEL

One model that has been proposed to analyze censored data (potentially with explana-

tory covariates) is the accelerated failure time model.

Definition 3. The accelerated failure time (AFT) model is defined by the relationship

S(t; ζ) = S0 [exp(tθ′ζ)] , ∀t (2.1)

where ζ is a vector of explanatory covariates and θ = (θ1, . . . , θp)
′ is a corresponding p-

dimensional vector of regression coefficients. The factor exp(θ′ζ) is called the acceleration

factor. An implication of the model is that the hazard rate is related to the baseline hazard

rate h0(t) by

h(t; ζ) = exp(θ′ζ)h0(exp(tθ′ζ)), ∀t. (2.2)

The AFT model is parametric, with the log-logistic and Weibull distributions being two

underlying distributions that are commonly used. The log-logistic distribution has a hazard

rate that is hump-shaped, and is the only distribution for which the AFT model also has a

representation as a proportional odds model. The Weibull distribution, on the other hand,

is very flexible because it has a hazard rate that can be either increasing, decreasing, or

constant. It is the only family of distributions for which the AFT model also gives rise to a

proportional hazards model as described by Cox (1972). In this dissertation, we will focus

on an AFT model based on the Weibull distribution due to these desirable properties.

There are several different parameterizations which can be used for the two-parameter

Weibull distribution. For the rest of the dissertation, we will use the one as outlined here.

Definition 4. Assume the shape parameter ν > 0 and the scale parameter λ > 0. The

survival function is given by

S(t) = exp(−λtν),
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and the hazard rate is therefore

h(t) = λνtν−1.

If we take the transform V = log(T ), then the survival function is SV (v) = exp(−λeνv). This

also leads to a proportional hazards model for T with a Weibull baseline hazard h(t; ζ) =

(νλtν−1) exp(β′ζ). Letting λ = exp(−µ/σ), σ = 1/ν, and β = γ/σ, V follows a log-linear

model with

V = log(T ) = µ+ γ ′ζ + σW (2.3)

where W follows the extreme value distribution.

Then we know that W has the probability function

fW (w) = exp(w − ew)

and survival function

SW (w) = exp(−ew)

for −∞ < w <∞. For the AFT representation, it is true that

h(t; ζ) = exp(θ′ζ)h0 [t exp(θ′ζ)] .

Comparing the hazard rates for the proportional hazards representation versus the acceler-

ated failure times model, we can see that θ = β/ν, or θ = −γ. It is important to note that

when ν = 1 (or, equivalently, σ = 1) the hazard rate is constant, and the Weibull distri-

bution reduces to the exponential distribution. When ν > 1, the hazard rate is increasing,

and when ν < 1, the hazard rate is decreasing.

The likelihood function for right-censored data is given by

L =
n∏
i=1

[fV (vi)]
δi [SV (vi)]

1−δi

=
n∏
i=1

[
1

σ
fW

(
yi − µ− γ ′ζ

σ

)]δi [
SW

(
yi − µ− γ ′ζ

σ

)]1−δi
,

where δi is a censoring indicator taking value 1 if the time point is not censored, and value

0 if it is censored.

From this, estimates of µ, σ, and γ can be found numerically by maximizing the likeli-

hood function. As for the proportional hazards model suggested by Cox (1972), commonly

used statistical software includes routines to carry out this maximization. The variance-

covariance matrix of the log-linear parameters is also available in such routines. Let σ̂ and
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µ̂ be the maximum likelihood estimators (MLEs) of σ and µ, respectively. Then, by the

invariance property of the maximum likelihood, the MLEs of λ and µ are given by

λ̂ = exp(−µ̂/σ̂), ν̂ = 1/σ̂, and θ̂ = −γ̂.

Definition 5. Applying the delta method (or method of statistical differences) as seen in

Elandt-Johnson and Johnson (1980, pp 69-72), for j, k = 1, . . . , p

Var(λ̂) = exp

(
−2µ̂

σ̂

)[
Var(µ̂)

σ̂2
− 2

µ̂Cov(µ̂, σ̂)

σ̂3
+
µ̂2Var(σ̂)

σ̂4

]
Var(ν̂) =

Var(σ̂)

σ̂4

Cov(λ̂, ν̂) = exp

(
−µ̂
σ̂

)[
Cov(µ̂, σ̂)

σ̂3
− µ̂Var(σ̂)

σ̂4

]
Cov(β̂j, β̂k) =

Cov(γ̂j, γ̂k)

σ̂2
− γ̂jCov(γ̂j, σ̂)

σ̂3
− γ̂kCov(γ̂k, σ̂)

σ̂3

Cov(λ̂, β̂j) = exp

(
− µ̂
σ̂

)[
Cov(γ̂j), µ̂)

σ̂2
− γ̂jCov(γ̂j, σ̂)

σ̂3
− µ̂Cov(µ̂, σ̂)

σ̂3
+
γ̂jµ̂Var(σ̂)

σ̂4

]
Cov(ν̂, β̂j) =

Cov(γ̂j, σ̂)

σ̂3
− γ̂jVar(σ̂)

σ̂4
.

Proof. The delta method is based upon a Taylor series expansion of a continuous function

g(·) of the maximum likelihood estimators of a vector of parameters. Let ψ1 and ψ2 be

the parameters of interest with ψ̂1 and ψ̂2 being the maximum likelihood estimates. Let

θ1 = g1(ψ1, ψ2) and θ2 = g2(ψ1, ψ2). By the invariance principle of the maximum likelihood,

the MLEs of θ1 and θ2 are gk(ψ̂1, ψ̂2) for k = 1, 2.

In order to apply the delta method, we expand gk(ψ̂1, ψ̂2) in a first-order Taylor series

about the true values of ψ1 and ψ2. So,

gk(ψ̂1, ψ̂2)− gk(ψ1, ψ2) = (ψ̂1 − ψ1)
∂gk(ψ̂1, ψ̂2)

∂ψ̂1

+ (ψ̂2 − ψ2)
∂gk(ψ̂1, ψ̂2)

∂ψ̂2

Then for large samples, if we let ghk = ∂gk(ψ̂1,ψ̂2)

∂ψ̂h
with h = 1, 2, we have for k,m = 1, 2

Cov
[
gk(ψ̂1, ψ̂2), gm(ψ̂1, ψ̂2)

]
= E

{
g1kg

1
m(ψ̂1 − ψ1)

2 +
(
g1kg

2
m + g2kg

1
m

) (
ψ̂1 − ψ1

)(
ψ̂2 − ψ2

)
+ g2kg

2
m(ψ̂2 − ψ2)

2
}

or, for computational purposes

Cov
[
gk(ψ̂1, ψ̂2), gm(ψ̂1, ψ̂2)

]
= g1kg

1
mVar(ψ̂1) + (g1kg

2
m + g2kg

1
m)Cov(ψ̂1, ψ̂2) + g2kg

2
mVar(ψ̂2).

This can be expanded beyond two variables in order to get the results for the AFT model.
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The results above are known for the accelerated failure time model with no change points.

In Chapter 3 we will consider a model that involves change points in the scale parameter.

2.2 EMPIRICAL DIVERGENCE BASED ON U-STATISTICS

The term “U-statistic” comes from Hoeffding (1948). It stands for unbiased statistic,

and is especially important in estimation theory. In elementary statistics, U-statistics arise

naturally from minimum-variance unbiased estimators. They are defined as follows.

Definition 6. Let f : Rr −→ R be a real-valued or complex-valued function of r variables.

For each n ≥ r the associated U-statistic fn : Rn −→ R is equal to the average over ordered

samples ϕ(1), . . . , ϕ(r) of size r of the sample values f(xϕ). In other words, fn(x1, . . . , xn) =

ave f(xϕ(1), . . . , xϕ(r)), the average being taken over distinct ordered samples of size r taken

from {1, . . . , n}. Each U-statistic fn(x1, . . . , xn) is necessarily a symmetric function.

Within the realm of non-parametric statistics, the theory of U-statistics is used to es-

tablish statistical procedures such as estimators or tests. The theory has also been used

to study more general statistics, as well as stochastic processes. As in the initial work

of Hoeffding (1948), much work relating to U-statistics is in the context of independent

and identically-distributed variables (for early examples, Fisher (1929) and Tukey (1950)).

Later, Hoeffding (1961) proved some asymptotic results of U-statistics using the Strong Law

of Large Numbers.

While most work with U-statistics is for independent and identically-distributed vari-

ables, there has been some research into U-statistics for variables that do not fit these cri-

teria, such as the work of Denker and Keller (1983) into U-statistics for weakly dependent

processes and Dehling (2006) on limit theorems for dependent U-statistics.

In Chapter 4 we will be introducing a method to estimate the point of treatment time-

lag effect by using an empirical divergence measure based on U-statistics. The treatment

time-lag effect has been referred to in the literature as the time that it takes a treatment

to take effect. This means that the survival of a control group would have distribution

F1 throughout the study, while a treatment group has distribution F1 until the change

point τ , and a different distribution F2 afterwards (Dinse et al., 1993; Park and Qiu, 2018;

Zucker and Lakatos, 1990). Let Z1, . . . , ZT ∈ R be an independent sequence of time-ordered

observations. Specifically, let Zl, l = 1, . . . , T be the difference of the survival probabilities of

a treatment group and a control group at event time tl. In a naive approach to a univariate

case, the well-known Kolmogorov-Smirnoff test could be used to test for homogeneity of
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distribution.

For two random variables X, Y ∈ R, let φx and φy denote the characteristic functions of

X and Y , respectively. A divergence measure between distributions may be defined as∫
R
|φx(t)− φy(t)|2w(t)dt (2.4)

where w(t) denotes an arbitrary positive weight function for which the integral exists. Some

weight functions have been proposed by Székely et al. (2005) in order to create a divergence

measure that is based on the Euclidean distances. We will adapt this clustering approach

and apply it to censored data in order to find an estimate for the point of treatment time-lag

effect as described previously.

As this approach is non-parametric, it avoids the difficulties of the distributional assump-

tions for the parametric accelerated failure time model described in the previous section.

However, we only find one change point with this method, while the AFT method uses

sequential testing for multiple change points and can be more flexible in that aspect.
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CHAPTER 3

DETECTION OF MULTIPLE CHANGE POINTS IN AN

ACCELERATED FAILURE TIME MODEL USING

SEQUENTIAL TESTING

3.1 INTRODUCTION

There has been a wide variety of research into change-point analysis, which can be

broadly interpreted as the point at which distribution changes. Some different applica-

tions include financial modelling (Talih and Hengartner, 2005), bioinformatics (Muggeo and

Adelfio, 2011), signal processing (Kim et al., 2009), and control charts (Sego et al., 2009).

Within the scope of survival analysis, the change-point problem can concern a shift in dis-

tribution for a set of time-ordered observations. One of the most widely adopted methods

of survival analysis utilizes the semi-parametric proportional hazards model (Cox, 1972).

The model, although often used, requires the key assumption that the hazard ratio function

is constant over time. This is frequently violated in survival data as there is likely to be a

lag period before an experimental treatment takes effect. A parametric alternative to this

is the accelerated failure time (AFT) model, which requires distributional assumptions and

instead of assuming that a covariate has a multiplicative effect on the hazard, assumes that

a covariate accelerates the hazard by a constant. A semi-parametric version of the AFT

model that does not have the restrictive distributional assumption has been proposed by

Buckley and James (1979) but was argued by Wei (1992) to lack theoretical justification.

Prostate cancer is the most commonly diagnosed non-skin cancer and the second leading

cause of cancer death in men, behind only lung cancer (Brawley, 2012). Prostate cancer

demographics have changed dramatically in the past 30 years. According to the National

Cancer Institute, there have been reductions in mortality rates of cancer over time, which has

been attributed to successful treatments, improved methods of diagnosis, and other public

health programs (Jemal et al., 2017). This has created an interest to better understand

the impacts of scientific breakthroughs (along with increasingly effective treatments) on the

survival for a population. Although many methods include a single change point, it is more
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probable that a model with two or more change points may be appropriate, which motivates

further research into the area.

In existing work, the focus has largely been on one change point. Several approaches

estimate a change in the hazard rate when there is one group that receives standard of

care and another that receives experimental treatment. In this case, the change points are

restricted to only occur in the experimental treatment group. Park and Qiu (2018) is a

semi-parametric model, while the earlier method by Dinse et al. (1993) uses a test statistic

based on a difference on survival probabilities between groups, and Zucker and Lakatos

(1990) investigate the log-rank test statistic. He et al. (2013) consider a MLE approach to a

multiple change point model with sequential testing based on the proportional hazards model

that has change points in the hazard ratio function. In the case of one group, Matthews

and Farewell (1982) first suggested a likelihood ratio test for a constant hazard against a

single change-point alternative, with Yao (1986) proving asymptotic distribution with some

restrictions, and Goodman et al. (2011) extending to multiple change points in the model

with sequential testing utilizing a Wald-type test statistic.

In this chapter, we will propose a MLE approach for finding multiple change points,

since the likelihood function of survival distributions is relatively easily found. The AFT

model with a Weibull distribution is more flexible than some previously suggested models,

as it is the only family of distributions for which it is true that it can (as a special case) be

the exponential distribution and is the only continuous distribution that gives rise to both a

proportional hazard and an accelerated failure time (AFT) model (Klein and Moeschberger,

2003). This model allows for increasing or decreasing hazard rate, or can be simplified to the

piecewise constant hazard model of Goodman et al. (2011), and can be re-parameterized to

the proportional hazards change point model similar to the one proposed by He et al. (2013).

Contrary to He et al. (2013), although we will consider covariates, we do not consider the

case where a change point occurs only in one group of a binary covariate.

Since there are known complexities on the asymptotic distributions of the likelihood

ratio statistics in the change point setting (see, for example, Henderson (1990) and Liu

et al. (2008)), Goodman et al. (2011) used a Wald-type test statistic based on the restricted

MLE that assumes change points are larger than the first non-censored survival time and

smaller than the second to last non-censored time, which has asymptotic properties proven

by Yao (1986). Although this circumvents problems with the distribution of the likelihood

ratio test statistic, it creates the necessity to derive the variance of the estimates, which is

sometimes not possible and requires numerical approximations of the hessian matrix (Gill
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and King, 2003). This is often not trivial, and we did not find this method to be effective

for our model. He et al. (2013) and Lee et al. (2020) (among others) deal with the issue by

using Monte Carlo methods to determine the distributions of the Wald or likelihood ratio

test statistics, which is computationally expensive. We will describe a sequential testing

approach using Monte Carlo methods based on the likelihood ratio test statistic, using a

decreasing alpha spending function first suggested by Goodman et al. (2011). This does not

require for the number of change points to be known ahead of time, and uses increasingly

conservative confidence levels in order to find a parsimonious model.

The rest of this chapter is structured as follows. We will define the Weibull AFT model

and its reparameterization to a proportional hazards model in Section 3.2, and then define

the change point scale parameter function in Section 3.3. In Section 3.4, we describe the

sequential testing and model selection method. Sections 3.5 and 3.6 include the simulation

study and real data application, which show that Type I error, power, and estimation of

parameters are robust for our method. We conclude with some discussion in Section 3.7.

3.2 WEIBULL ACCELERATED FAILURE TIME MODEL

We can begin by considering the likelihood function for a right-censored, continuous time-

to-event variable. Here, let Ui represent the iid survival time for patient i for i = 1, . . . , N .

The data are observed in pairs (ti, δi) where

ti = min(Ui, Ci) and δi =

1 if Ui ≤ Ci

0 if Ui > Ci.

Here, C1, . . . , CN are the random censoring times which are assumed to be independent of the

survival times, and given information from covariates we assume that the Ci’s are stochasti-

cally independent of each other. The survival function for the underlying uncensored failure

time variable Ui is P (Ui > u) = S(u;θ, ζi) with corresponding density f(u;θ, ζi), where θ is

a vector of parameters for the failure time model and ζi is a vector of covariates associated

with the ith individual. Note that the random censorship model includes the special case of

type I censoring, where the censoring time of each individual is fixed in advance, as well as

the case where individuals enter the study at random over time and the analysis is carried

out at a prespecified time.

The accelerated failure time (AFT) model is based on the assumption that the survival

of patient i, with observed data (ti, δi, ζi) is the same as the baseline survival function with

the time scale changed by a factor known as the acceleration factor. Depending on the sign
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of the acceleration factor, the time is either accelerated by a constant or degraded by a

constant (Kalbfleisch and Prentice, 2011).

For the Weibull distribution, we will use the following parameterization:

f0(ti) = λνtν−1i exp (−λtνi ) , S0(ti) = exp (−λtνi ) , h0(ti) = νλtν−1i (3.1)

where f0(ti) is the baseline density, S0(ti) is the baseline survival function, h0(ti) is the

baseline hazard function, ν > 0 is a shape parameter and λ > 0 is a scale parameter.

The Weibull distribution is flexible enough to accommodate increasing (ν > 1), decreasing

(ν < 1), or constant hazard rates (ν = 1). The Weibull distribution is also the only

continuous distribution that yields both a proportional hazards and an accelerated failure

time model. A proportional hazards model with a Weibull baseline hazard rate can be

written as

h(ti; ζi) = (νλtν−1i ) exp(β′ζi) (3.2)

which is equivalent to the AFT model we will describe. If we redefine the parameters as

λ = exp(−µ/σ), σ = 1/ν, and β = −γ/σ then the log transform of time Vi = log(Ti) gives

the log linear model

Vi = µ+ γ ′ζi + σWi

where Wi has the extreme value distribution with probability density function fW (wi) =

exp(wi − ewi) and survival function SW (wi) = exp(−ewi),−∞ < wi < ∞. The underlying

probability density and survival functions, respectively, for Vi are

fV (Vi; ζi) =
1

σ
exp

[
Vi − µ− γ′ζi

σ
− exp

(
Vi − µ− γ′ζi

σ

)]
and

SV (Vi; ζi) = exp

[
− exp

(
Vi − µ− γ′ζi

σ

)]
where σ is a scale parameter and µ is a shape parameter.

In order to see why this is an accelerated failure time model, let S0(ti) denote the baseline

survival function of Ti = exp(Vi) when ζi is zero (i.e. without the presence of explanatory

covariates). In other words, S0(ti) is the baseline survival function of exp(µ+ σWi). Then,

it follows that
S(ti; ζi) = P (Ti > ti|ζi) = P (Vi > log(ti)|ζi)

= P (µ+ σWi > log(ti)− γ′ζi|ζi)

= P (eµ+σWi > ti exp(−γ′ζi)|ζi)

= S0(ti exp(−γζi)).
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Note that the effect of the covariates in the original time scale is to change the time scale by

the acceleration factor exp(−γζi). Also notice that the hazard rate of an individual with a

covariate ζi for this class of models is related to the baseline hazard rate in (3.1) by

h(ti; ζi) = h0 [ti exp(−γ′ζi)] exp(−γ′ζi)

= νλ(ti exp(−γ′ζi))
ν−1 exp(−γ′ζi)

= (νλtν−1i ) exp(σβ′ζi)
1/σ

= (νλtν−1i ) exp(β′ζi)

which is equivalent to the proportional hazards model described in (3.2).

3.3 MAXIMUM LIKELIHOOD ESTIMATION FOR CHANGE

POINT MODEL

In the change point model we propose for the Weibull AFT, ν and β will remain un-

changed, although we could also detect changes in the shape parameter ν, or even in covariate

effects β. Using the accelerated failure time model for a Weibull distribution as described

in Section 3.2, we suggest a model that has a change point in the scale parameter. For a

log-transform of time (as used in most statistical software), changes in the scale parameter

λ would correspond to changes in µ since ν (and therefore σ) are held constant.

We propose the change point model:

λ(ti) =



λ1 if 0 < ti ≤ τ1

λ2 if τ1 < ti ≤ τ2
...

λk+1 if ti > τk

where λ(ti) is the scale parameter function for the model, 0 = τ0 < τ1 < · · · < τk <

τk+1 = ∞ are the change points, k is the number of change points in the model, and

λj with j = 1, . . . , k is the value of the scale parameter between time points τj−1 and τj.

As in Kalbfleisch and Prentice (2011), if ti is the observed (possibly censored) failure

time, for noninformative random censorship (meaning the censoring density function does

not depend on the covariates) we have the well-known likelihood function on the data

(ti, δi, ζi). Conditional on the parameter vector θ = {β, ν, λ1, . . . , λk+1, τ1, . . . , τk}, the like-

lihood function is given by

L(θ) ∝
N∏
i=1

f(ti; ζi)
δiS(ti; ζi)

1−δi .
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This likelihood is of the form L(θ) =
∏
Li(θ), where Li(θ) is f(ti; ζi) for a failure time

and S(ti; ζi) for a censored time. The hazard function for the change point model can

be written using an indicator function, I(·), so that h(ti; ζi) = νλjt
ν−1
i exp(β′ζi)I(τj−1 <

ti ≤ τj). Then, the cumulative hazard function is H(ti; ζi) =
∫ ti
0
h(u; ζi)du. We find that

the cumulative hazard function (see derivation in Appendix B.1.1) can be described by

H(ti; ζi) =
∑k+1

j=1 λj exp(β′ζi) [(ti ∧ τj)ν − (ti ∧ τj−1)ν ] since for j > 1, if ti < τj−1 then

(ti ∧ τj)ν − (ti ∧ τj−1)ν = 0. Here, (ti ∧ τj) = min(ti, τj).

Now, the log likelihood function l(θ) = log(L(θ)) is

N∑
i =1

k+1∑
j =1

{
[X(τj)−X(τj−1)] log

[
νλjt

ν−1
i exp(β′ζi)

]
− λj exp(β′ζi) [(ti ∧ τj)ν − (ti ∧ τj−1)ν ]

}
where X(t) = δiI(ti ≤ t), and

∑N
i=1X(t) can be interpreted as the number of deaths up

until time t. If we fix τj, j = 1, . . . , k, the estimate λ̂j for λj, j = 1, . . . , k + 1 maximizes

l(θ; τj, . . . , τk):

N∑
i=1

{
[X(τj)−X(τj−1)] log

[
νλjt

ν−1
i exp(β′ζi)

]
− λj exp(β′ζi)

[
(ti ∧ τj)ν − τ νj−1

]
I(ti > τj−1)

}
.

Some work (details in Appendix B.2) shows that the ML estimate is

λ̂j =

∑N
i=1 [X(τj)−X(τj−1)]∑N

i=1 exp(β′ζi)
[
(ti ∧ τj)ν − τ νj−1

]
I(ti > τj−1)

.

If we substitute this in to l(θ) we can find the profile likelihood of ν and τj:

(3.3)

l(θ) =
∑
i

∑
j

[X(τj)−X(τj−1)]

{
log(νtν−1i exp(β′ζi))

+ log

[ ∑
i [X(τj)−X(τj−1)]∑

i exp(β′ζi)
[
(ti ∧ τj)ν − τ νj−1

]
I(ti > τj−1)

]}
.

The maximum likelihood estimates of ν and τj(j = 1, ..., k) are found numerically using

optimization routines, such as the Nelder-Mead simplex algorithm present in the opm func-

tion found in R (Nash, 2014; R Core Team, 2019). Then, these can be substituted back to

find the ML estimates for λj(j = 1, ..., k + 1). As noted by Goodman et al. (2011), the

Nelder-Mead simplex requires user-supplied starting values, which they found needed to be

reasonable, but not exact. Specifically, we will use the survreg function in the survival

package in R to find initial values for ν̂ and β̂, and then use a grid search in order to find

initial values for τ̂j (Therneau, 2015).
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We will first use the likelihood function corresponding to one change point, and then

use a greedy algorithm that searches before and after that change point for a second change

point, and so on. In optimization for the second change point, we fix the change point value

of τ̂1 found in the first step, and then maximize the likelihood function corresponding to

two change points. It is also possible to maximize by estimating both change points at the

same time.

3.4 HYPOTHESIS TESTING

3.4.1 TESTING PROCEDURES

There are several well-known tests for the parameter vector θ based on the likelihood.

These include (but are not limited to) the Wald test and the likelihood ratio test. Each

has proven asymptotic results - they are asymptotically chi-squared with test statistics of

different forms. The Wald test for H0 : θ = θ0 has the statistic

χ2
W = (θ̂ − θ0)I(θ̂)(θ̂ − θ0)′

where I(θ) is the Fisher information matrix. We use the observed Fisher information

matrix I(θ̂), which is simply the information matrix evaluated at the maximum likelihood

estimator. From the optimization routine, the observed Fisher information matrix can be

approximated by the inverse of the Hessian matrix. For large samples, θ̂ has a multivariate

normal distribution with mean θ and covariance matrix I−1(θ).

The likelihood ratio test for the same null hypothesis has a test statistic of the form

χ2
LR = −2

[
l(θ0)− l(θ̂)

]
where l(θ) is the log-likelihood of the change point model as described in (3.3). Both of

these tests can be used to test composite hypotheses. If the parameter vector θ of length p,

it is divided into two vectors ψ and φ of lengths p1 and p2, respectively. If we would like to

test the hypothesis H0 : ψ = ψ0, we treat φ as a nuisance parameter. We let φ̂(ψ0) be the

maximum likelihood estimates of φ obtained by maximizing the likelihood with respect to

φ, with ψ fixed at ψ0. We also partition the information matrix such that

I =

(
Iψψ Iψφ

Iφψ Iφφ

)
where Iψψ has dimension p1 × p1, Iφφ has dimension p2 × p2, Iψφ has dimension p1 × p2,
and I ′φψ = Iψφ. Note that a partitioned information matrix has in inverse which is also a
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partitioned matrix. The statistics for testing H0 : ψ = ψ0 are then given by

χ2
W = (ψ̂ −ψ0)

[
Iψψ(ψ̂, φ̂)

]−1
(ψ̂ −ψ0)

′

and

χ2
LR = −2

{
l
[
ψ0, φ̂(ψ0)

]
− l(θ̂)

}
.

As previously discussed, there are known issues with the distribution of the likelihood

ratio test statistic when considering tests for change points. A naive approach to the dis-

tribution would be to assume a χ2
2 distribution. Although Matthews and Farewell (1982)

acknowledged the potential issues, the authors noted that the quantiles fit relatively well

with a χ2 distribution with two degrees of freedom. However, several authors (including

Henderson (1990)) noted issues with the boundedness and distribution of the likelihood ra-

tio test statistic. While the Wald test could circumvent these difficulties, there are times

when finding the variance terms for the parameters is not trivial. Some details are given in

Appendix B.3.

When comparing the proposed method (which can be interpreted as a Cox model, and

can incorporate constant, increasing, or decreasing hazard rates), one area of interest might

be whether the hazard rate is, indeed, constant. If the hazard rate is constant, the ν

value could be set as 1 for optimization, resulting in a parameter reduction. This would be

equivalent to reducing our method to that proposed by Goodman et al. (2011), with the

exception that our method allows for covariate information to be included. Testing for a

piecewise constant hazard is equivalent in our change point model for testing for ν = 1. In

that case, ψ = ν and φ = (β, λ1, . . . , λk+1, τ1, . . . , τk). In simulation studies, the power and

Type I error for testing the null hypothesis H0 : ν = 1 are reasonable for a Wald-type test

statistic.

3.4.2 SEQUENTIAL TESTING APPROACH

Goodman et al. (2011) used results of independence and asymptotic distribution of a

constrained maximum likelihood as proved by Yao (1986) in the case of a piecewise constant

hazard. In this case, the value of τj are assumed to be independent of the λj, and a Wald-

type statistic has the form

χ2
W =

(λ̂k−1 − λ̂k)2

Var(λ̂k−1 − λ̂k)
to test the null hypothesis H0 : λk−1−λk = 0 versus the alternative H1 : λk−1−λk 6= 0. They

approximate the Hessian matrix numerically and use only the section of the matrix needed
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in order to estimate the variances in the denominator of the test statistic. The independence

assumptions may not apply in our case (which has the additional shape parameter ν), and

in simulation studies, we did not find that the power and Type I error of this Wald-type

test were reasonable for our method.

Instead, we follow a similar method to that of He et al. (2013) and Lee et al. (2020)

and propose using a likelihood ratio test statistic to develop a hypothesis test based on

the number of change points. More specifically, in step m (m = 0, 1, 2, . . . ) of the testing

procedure, we consider the following hypotheses:

H0,m : k = m versus H1,m : k = m+ 1.

Let θ0,m be the vector of unknown parameters in the null model in step m of sequential

testing and θ1,m be the vector of unknown parameters in the alternative model. Then, the

likelihood ratio test statistic at step m is of the form:

LRm = −2 [sup l(θ0,m)− sup l(θ1,m)] .

At step m = 0 of the procedure, we start by testing for the existence of change points in the

model using the null hypothesis H0,0 : k = 0 compared with the alternative H1,0 : k = 1.

For this step, θ0,0 = (β, ν, λ) and θ1,0 = (β, ν, λ1, λ2, τ1). We use the decreasing alpha

spending function suggested by Goodman et al. (2011) so that each additional test has a

more conservative confidence level. For the overall significance level α, we want α∗(m) =

α/2m, where α∗(m) is the significance level in step m = 0, 1, 2, . . . of the hypothesis testing.

Therefore, α∗(1) > α∗(2) > · · · > α∗(K). In this manner, it is not necessary to specify

K, the maximum number of change points, before model selection begins, which promotes

flexibility during model selection. When using the decreasing alpha spending function, we

make each sequential test more conservative. To find a parsimonious model, there should

be stronger evidence for choosing a more complex model with more change points over a

simpler model with fewer change points.

Because of the known complexities in the likelihood ratio statistics in the change point

setting, we apply the following bootstrap scheme to approximate the distribution of the test

statistic LRm under the null hypothesis H0,m:

1. For an observed dataset of size N , calculate the cumulative hazard estimate Ĥ(ti),

as described in Section 3.3, using the maximum likelihood estimates θ̂0,m (found by

maximizing the likelihood function under the null hypothesis) and the Kaplan–Meier



20

0 2 4 6 8 10

0
1

2
3

4

Time

C
um

ul
at

iv
e 

H
az

ar
d

3.5

Constant Hazard
Proposed Method

0 2 4 6 8 10

0.
0

1.
0

2.
0

3.
0

Time

C
um

ul
at

iv
e 

H
az

ar
d

3.5

Group = 1
Group = 0

Figure 1: Estimation from one simulation with settings for 40% censoring and sample size

500 as in Table 2. The solid lines are the Nelson-Aalen estimate of cumulative hazard, and

the vertical dash-dotted line shows the value of the change point.
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Figure 2: Estimation from one simulation with settings for 0% censoring and sample size

500 as in Table 3. The solid lines are the Nelson-Aalen estimate of cumulative hazard, and

the vertical dash-dotted lines show the values of the change points.
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estimate Ŝc(ti) for Sc(ti) (the survival function of the censoring variable Ci). The es-

timated survival function for the observed time is given by ŜH0,m(ti) = exp
{
−Ĥ(ti)

}
.

If covariates are included in the model, we hold them constant during the bootstrap

procedure.

2. Generate B simulated datasets (e.g., B = 1000) based on ŜH0,m corresponding to a

true model of m change points and the censoring distribution Ŝc(ti). Calculate the

likelihood ratio statistic LRb
m, b = 1, · · · , B for each resampled data.

3. Reject the null hypothesis if LRm, the likelihood ratio statistic calculated from the

data, is larger than the (1− α∗(m))× 100th percentile of
{
LRb

m, b = 1, · · · , B
}

.

If we fail to reject the null hypothesis of no change points, then we conclude that the model

has no change points. If the initial null hypothesis of no change points is rejected, we test

the second null hypothesis that there is one change point in the model compared with the

alternative hypothesis that there are two change points. This sequential testing procedure

continues in this manner until the null hypothesis cannot be rejected.

3.5 SIMULATION STUDY

We examine the effectiveness of the method proposed in Section 3.2 using an extensive

simulation study. First, we examine the results for models with a single change point, both

with and without covariates and with varying values for the shape parameter, ν, including

the cases of increasing (ν > 1), decreasing (ν < 1), and constant hazard rates (ν = 1).

Then, we present the results for the models with two change points, as this is the simplest

multiple change point case, and finally provide results showing the power of our proposed

test as well as the overall Type I error rate.

In the simulation, the survival times for the Weibull AFT model with change points

are generated by inverting the cumulative distribution function and using the probability

integral transformation (Austin, 2012). The censoring times are generated from a uniform

distribution in the interval (0, c), where c is adjusted to reach a pre-specified censoring rate.

Three censoring rates are considered: no censoring, 20% censoring, and 40% censoring.

We consider the two sample sizes of 500 and 1000. For comparison purposes, besides the

proposed method, the piecewise constant hazard model of Goodman et al. (2011) is also

considered here (see Section 3.1 for a description).

The initial values for the optimization were found as described in Section 3.3. For all the

parameters except the change point, the initial values come from the survreg function in the
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Table 1: Averaged point estimates (MEAN) and MSE values of the estimated parame-

ters of the proposed model and piecewise constant hazard model based on 1000 replicated

simulations for (3.4).

Sample Censoring
Parameters

Parameter Constant Hazard Model Proposed Model

size rate values MEAN MSE MEAN MSE

500

0%

ν 0.80 – – 0.801 0.002

λ1 0.15 0.112 0.002 0.150 < 0.001

λ2 0.55 0.280 0.075 0.561 0.009

τ 6.00 7.089 19.059 6.010 0.007

20%

ν 1.60 – – 1.615 0.005

λ1 0.75 0.552 0.078 0.752 0.002

λ2 0.35 1.355 1.440 0.331 0.013

τ 2.00 1.313 2.318 2.020 0.036

40%

ν 1.00 – – 0.999 0.006

λ1 0.35 0.347 0.001 0.351 0.001

λ2 0.55 0.591 0.022 0.601 0.018

τ 2.50 2.532 0.408 2.549 0.269

1000

0%

ν 0.80 – – 0.799 0.001

λ1 0.15 0.112 0.002 0.150 < 0.001

λ2 0.55 0.276 0.077 0.559 0.005

τ 6.00 7.089 23.696 6.004 0.001

20%

ν 1.60 – – 1.611 0.003

λ1 0.75 0.570 0.072 0.748 0.001

λ2 0.35 1.362 1.312 0.338 0.003

τ 2.00 1.439 2.448 2.014 0.013

40%

ν 1.00 – – 0.997 0.002

λ1 0.35 0.349 < 0.001 0.348 < 0.001

λ2 0.55 0.565 0.004 0.576 0.005

τ 2.50 2.510 0.130 2.550 0.081

survival package of R (R Core Team, 2019; Therneau, 2015). A grid search was performed

to find a reasonable initial value for the change point estimate. Then, the likelihood function

described in Section 3.3 was maximized using the opm function from the optimx package

(Nash, 2014). Since Goodman et al. (2011) similarly note that reasonable starting values
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are required to find accurate results when using the Nelder–Mead simplex algorithm, we

also used a grid search for their method to find the initial values.

We begin with the simplest model, namely, that with one change point and without any

covariates:

h(ti; ζi) = νλ1t
ν−1
i I(0 < ti ≤ τ1) + νλ2t

ν−1
i I(ti > τ1). (3.4)

We evaluate the accuracy of the parameter estimates. Based on 1000 replicated simula-

tions, Table 1 summarizes the averaged point estimates along with the mean square error

(MSE) values of the estimated parameters. Because the piecewise constant hazard model

of Goodman et al. (2011) does not have a shape parameter, it cannot be estimated. The

table shows that the proposed method estimates the values of the change point, scale, and

shape parameters well, even under increased censoring. In general, the proposed method

provides more reliable results for the scale parameters than the piecewise constant hazard

model, even when ν = 1. Although the bias of the piecewise constant hazard estimates can

be smaller in these cases, the MSE is usually larger. In simulation settings in which ν 6= 1

(e.g., an increasing or decreasing hazard rate), the flexibility of the proposed method leads

to an accurate estimation. While the piecewise constant hazard method sometimes provides

reasonable estimates, it is clear that the bias and MSE are greater.

For a visual representation of the method, Figure 1 shows the cumulative hazard es-

timates for both the proposed method and the piecewise constant hazard method for a

particular replication with a 20% censoring rate as in Table 2 with sample size 500. The

solid lines represent the Nelson-Aalen estimate of cumulative hazard. The top figure shows

the comparison of the constant hazard method with the proposed method when covariates

are not considered. The bottom figure shows the estimation of the proposed method when

the group covariate is included. We see that the fit is almost exact for the proposed method

in both figures, and is closer to the Nelson-Aalen estimate in the top figure.

Figure 2 shows the fit for a particular replication with a 0% censoring rate as in Table

4, also with sample size 500. The top compares the null model with no change points to

the model fit with two change points. We can see that the model with two change points is

a better fit for the data than that with no change points. In the bottom, we compare the

constant hazard method with our proposed method, each with two change points. We see

that, especially in the second half of the graph, our proposed method has a better fit to the

data.

Next, we consider the case in which the model includes a binary covariate:

h(ti; ζi) = νλ1 exp(βζi)t
ν−1
i I(0 < ti ≤ τ1) + νλ2 exp(βζi)t

ν−1
i I(ti > τ1), (3.5)
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Table 2: Averaged point estimates (MEAN) and MSE values of the estimated parame-

ters of the proposed model and piecewise constant hazard model based on 1000 replicated

simulations for (3.5).

Sample Censoring
Parameters

Parameter Constant Hazard Model Proposed Model

size rate values MEAN MSE MEAN MSE

500

0%

ν 1.00 – – 1.006 0.003

β 0.50 – – 0.501 0.010

λ1 0.15 0.195 0.002 0.150 <0.001

λ2 0.55 0.647 0.014 0.556 0.009

τ 5.00 5.036 0.298 5.015 0.004

20%

ν 1.25 – – 1.259 0.003

β 1.20 – – 1.192 0.011

λ1 0.75 1.245 0.249 0.762 0.004

λ2 0.25 0.417 0.046 0.238 0.006

τ 2.00 1.941 0.069 1.975 0.041

40%

ν 0.60 – – 0.594 0.001

β -0.75 – – -0.765 0.014

λ1 0.70 0.819 0.094 0.699 0.003

λ2 1.20 0.238 0.926 1.327 0.090

τ 3.50 0.673 8.806 3.346 0.430

1000

0%

ν 1.00 – – 1.006 0.002

β 0.50 – – 0.504 0.005

λ1 0.15 0.194 0.002 0.149 <0.001

λ2 0.55 0.644 0.012 0.548 0.005

τ 5.00 5.032 0.410 5.006 0.001

20%

ν 1.25 – – 1.256 0.001

β 1.20 – – 1.200 0.006

λ1 0.75 1.238 0.240 0.754 0.002

λ2 0.25 0.418 0.037 0.245 0.003

τ 2.00 1.980 0.037 1.985 0.013

40%

ν 0.60 – – 0.598 0.001

β -0.75 – – -0.755 0.007

λ1 0.70 0.865 0.080 0.698 0.001

λ2 1.20 0.251 0.901 1.261 0.038

τ 3.50 0.439 9.616 3.443 0.153
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where ζi is generated from a Bernoulli distribution. In this way, the data are randomly

assigned to a group covariate with an equal probability. The results in Table 2 show that

the accuracy of the proposed method is not affected by the inclusion of a covariate. As

expected, since the piecewise constant hazard method does not include information from

the covariates, even when ν = 1, the estimates have a larger bias and MSE than when the

true dataset did not contain any covariates.

For two change-points, we first consider the simpler model that does not involve esti-

mating any covariates:

h(ti; ζi) =νλ1t
ν−1
i I(0 < ti ≤ τ1) + νλ2t

ν−1
i I(τ1 < ti ≤ τ2) (3.6)

+ νλ3t
ν−1
i I(ti > τ2).

Here, we find convergence issues for the method of Goodman et al. (2011). The † in Table 3

denotes such issues, and the simulated trials that had this were removed from calculations.

Table 3: Averaged point estimates (MEAN) and MSE values of the estimated parame-

ters of the proposed model and piecewise constant hazard model based on 1000 replicated

simulations for (3.6).

Sample Censoring
Parameters

Parameter Constant Hazard Model Proposed Model

size rate values MEAN MSE MEAN MSE

500

0%

ν 1.55 – – 1.574 0.011

λ1 0.35 0.302† 0.016† 0.348 0.001

λ2 0.75 1.134† 0.424† 0.748 0.011

λ3 0.15 0.963† 1.752† 0.147 0.003

τ1 1.50 1.021† 0.512† 1.516 0.008

τ2 3.00 3.13† 3.226† 3.016 0.025

20%

ν 1.00 – – 1.013 0.004

λ1 0.75 0.763 0.003 0.758 0.003

λ2 0.55 0.542 0.021 0.553 0.060

λ3 0.15 0.153 0.006 0.140 0.004

τ1 2.00 1.868 0.488 1.899 0.341

τ2 4.00 3.895 0.243 3.892 0.156

40%

ν 0.75 – – 0.776 0.012

λ1 0.25 0.298 0.014 0.254 0.001

λ2 0.45 0.288 0.039 0.454 0.013
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Continued from previous page.

Sample Censoring
Parameters

Parameter Constant Hazard Model Proposed Model

size rate values MEAN MSE MEAN MSE

500 40%

λ3 0.65 0.398 1.084 0.708 0.105

τ1 1.00 1.745 2.066 1.376 0.832

τ2 4.00 4.474 1.664 4.174 0.929

1000

0%

ν 1.55 – – 1.567 0.006

λ1 0.35 0.315† 0.014† 0.350 0.001

λ2 0.75 1.174† 0.455† 0.742 0.006

λ3 0.15 1.076† 4.549† 0.148 0.001

τ1 1.50 1.066† 0.481† 1.502 0.005

τ2 3.00 3.493† 4.691† 3.006 0.005

20%

ν 1.00 – – 1.004 0.001

λ1 0.75 0.756 0.001 0.751 0.001

λ2 0.55 0.524 0.010 0.520 0.014

λ3 0.15 0.152 0.003 0.147 0.003

τ1 2.00 2.005 0.308 2.084 0.247

τ2 4.00 3.972 0.182 3.995 0.092

40%

ν 0.75 – – 0.759 0.004

λ1 0.25 0.328 0.064 0.251 < 0.001

λ2 0.45 0.282 0.033 0.451 0.004

λ3 0.65 0.341 0.110 0.689 0.029

τ1 1.00 1.601 2.017 1.116 0.211

τ2 4.00 4.489 1.600 4.141 0.536

Instead of removing the simulated trials with the convergence issues for comparison of

the mean and mean squared error for the piecewise constant hazard method, we can include

the trials and instead compare the median and mean absolute deviance of the two methods.

From the results in Table 4, it is clear that the proposed method performs better even

when considering the median and mean absolute deviance instead of the mean and mean

squared error. This is the same parameterization as the no censoring cases for Table 3,

excepting that in Table 3 for sample size 500 (1000), four (two) cases were removed that

had the convergence issue. These values show an alternative way to compare the two

methods when considering cases in which the piecewise constant hazard method has some
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convergence issues. Overall, the bias of the median is lower for the proposed method than

is it for the method of Goodman et al. (2011). Additionally, even when the bias is quite

similar, the MAD indicates that the proposed method performs more accurately.

Table 4: Median of point estimates (MEDIAN) and mean absolute deviation (MAD) values

of the estimated parameters of the proposed method and piecewise constant hazard method

based on 1000 replicated simulations for (3.6).

Sample
Parameters

Parameter Constant Hazard Model Proposed Model

size values MEDIAN MAD MEDIAN MAD

500

ν 1.55 – – 1.557 0.097

λ1 0.35 0.368 0.076 0.348 0.026

λ2 0.75 1.384 0.470 0.753 0.100

λ3 0.15 0.641 0.523 0.144 0.046

τ1 1.50 1.380 0.199 1.502 0.019

τ2 3.00 2.954 2.157 2.989 0.048

1000

ν 1.55 – – 1.549 0.067

λ1 0.35 0.385 0.046 0.349 0.017

λ2 0.75 1.453 0.335 0.754 0.071

λ3 0.15 0.686 0.491 0.148 0.031

τ1 1.50 1.460 0.066 1.501 0.010

τ2 3.00 2.990 2.216 2.995 0.025

We also consider the following more general model with two change points containing

continuous covariates:

h(ti; ζi) =νλ1 exp(β′ζi)t
ν−1
i I(0 < ti ≤ τ1) + νλ2 exp(β′ζi)t

ν−1
i I(τ1 < ti ≤ τ2) (3.7)

+ νλ3 exp(β′ζi)t
ν−1
i I(ti > τ2),

where ζi is generated from a standard normal distribution. The estimate of the first change

point, τ̂1, is found as described for the single change point simulation study. For the second

change point, we hold τ̂1 constant and perform a grid search for the second change point be-

fore and after τ̂1. Then, we maximize the likelihood function to find the parameter estimates

for the two-change point model. It is also possible to maximize τ1 and τ2 simultaneously.

Again, similarly to the single change point results, we also perform grid searches for the

piecewise constant hazard model.
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Table 5 presents the results of the point estimates of the parameters based on 1000

replicated simulations. Similar conclusions to those in Table 2 can be drawn. The pro-

posed AFT model performs well for the two change points. By comparison, the piecewise

constant hazard method, which does not include information from the covariates, tends to

largely overestimate the second change point. The † for the 0% censoring results indicates

convergence issues with the piecewise constant hazard model. To enable comparability, the

simulated trials with convergence issues were removed for that method. For a sample size of

500 (1000), three (two) cases were removed on this basis. During our simulations, we found

that these issues occurred in settings where the hazard rate was not constant, covariates

were not able to be included, or both. This illuminates the strict limitations of the method of

Goodman et al. (2011). Altogether, the maximum likelihood for the proposed AFT change

point model accurately estimates the shape, scale, and change point parameters in a wide

range of simulation settings, showing the advantage of a more flexible model.

We performed a simulation study to examine how well the sequential hypothesis testing

correctly identifies the true model. We generated 1000 trials with no change points, one

change point, and two change points at two censoring rates (0% and 20%) and using two

sample sizes (500 and 1000). For no censoring, the null model had ν = 1.55 and λ = 0.35;

the single change point model had ν = 1.55, λ1 = 0.35, λ2 = 0.75, and τ = 1.5; and the

two-change point model had ν = 1.55, λ1 = 0.35, λ2 = 0.75, λ3 = 0.15, τ1 = 1.5, τ2 = 3.

For 20% censoring, the null model had ν = 1 and λ = 0.15; the single change point

model had ν = 1, λ1 = 0.15, λ2 = 0.55, and τ = 1; and the two-change point model had

ν = 1, λ1 = 0.15, λ2 = 0.55, λ3 = 0.95, τ1 = 1, τ2 = 4.

Table 5: Averaged point estimates (MEAN) and MSE values of the estimated parame-

ters of the proposed model and piecewise constant hazard model based on 1000 replicated

simulations for (3.7).

Sample Censoring
Parameters

Parameter Constant Hazard Model Proposed Model

size rate values MEAN MSE MEAN MSE

500 0%

ν 1.000 – – 1.021 0.008

β1 -0.10 – – -0.100 0.002

β2 0.20 – – 0.202 0.002

λ1 0.15 0.152† < 0.001† 0.148 < 0.001

λ2 0.55 0.477† 0.008† 0.548 0.011

λ3 0.35 0.350† 0.319† 0.335 0.008
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Continued from previous page.

Sample Censoring
Parameters

Parameter Constant Hazard Model Proposed Model

size rate values MEAN MSE MEAN MSE

500

0%
τ1 2.00 1.998† 0.001† 2.006 0.002

τ2 4.00 10.242† 62.442† 4.072 0.370

20%

ν 0.75 – – 0.788 0.017

β1 0.50 – – 0.509 0.004

β2 1.15 – – 1.162 0.005

λ1 0.05 0.071 0.001 0.049 < 0.001

λ2 0.35 0.164 0.035 0.338 0.009

λ3 0.55 0.052 0.248 0.536 0.048

τ1 2.50 2.496 0.007 2.520 0.002

τ2 6.00 12.129 48.489 6.001 0.616

40%

ν 1.40 – – 1.429 0.016

β1 0.10 – – 0.100 0.004

β2 0.10 – – 0.102 0.004

λ1 0.75 0.276 0.249 0.781 0.014

λ2 0.35 0.539 0.043 0.340 0.003

λ3 0.15 0.329 0.640 0.132 0.004

τ1 0.50 0.255 0.213 0.538 0.039

τ2 2.00 2.200 0.263 2.069 0.068

1000

0%

ν 1.000 – – 1.009 0.003

β1 -0.10 – – -0.100 0.001

β2 0.20 – – 0.200 0.001

λ1 0.15 0.152† < 0.001† 0.149 < 0.001

λ2 0.55 0.478† 0.008† 0.549 0.005

λ3 0.35 0.349† 0.893† 0.343 0.004

τ1 2.00 1.997† < 0.001† 1.999 < 0.001

τ2 4.00 10.836† 77.866† 4.019 0.082

20%

ν 0.75 – – 0.771 0.008

β1 0.50 – – 0.505 0.002

β2 1.15 – – 1.156 0.003

λ1 0.05 0.071 < 0.001 0.049 < 0.001
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Continued from previous page.

Sample Censoring
Parameters

Parameter Constant Hazard Model Proposed Model

size rate values MEAN MSE MEAN MSE

1000

20%

λ2 0.35 0.163 0.035 0.341 0.004

λ3 0.55 0.055 0.245 0.535 0.021

τ1 2.50 2.504 0.037 2.509 0.001

τ2 6.00 11.831 40.469 6.144 0.380

40%

ν 1.40 – – 1.408 0.007

β1 0.10 – – 0.096 0.002

β2 0.10 – – 0.097 0.002

λ1 0.75 0.241 0.272 0.760 0.005

λ2 0.35 0.543 0.039 0.346 0.001

λ3 0.15 0.289 0.033 0.144 0.001

τ1 0.50 0.143 0.180 0.509 0.010

τ2 2.00 2.138 0.133 2.025 0.026

Table 6 displays the power and Type I error results for the sequential hypothesis testing.

Power measures the accuracy of the proposed sequential testing approach for identifying the

true model and the Type I error is the number of times our approach chooses the wrong

model. In the case of the sequential testing, the Type I error is specifically the rejection

of a null hypothesis that has more change points than the number of change points truly

present. The Type I error rate of 0.05 was typically successfully controlled for our method.

As the sample size increased, the power of the test increased and the Type I error decreased.

However, while the Type I error was still controlled for increased censoring, the power of

the test began to decrease. Goodman et al. (2011) find that for their Wald-type test, power

was the most affected by the sample size, with a difference between λk−1 and λk as well as

between τk−1 and τk. We tended to find the same to be true for our proposed method. Some

additional simulation results for smaller sample size are given in Appendix B.4.

3.6 REAL DATA APPLICATIONS

We will apply the proposed method to two different data sets. The first is a data

set on the recurrence of bladder tumours first collected by Byar (1980) in a study from

the Veteran’s Administration. This data set has been previously analyzed in a regression
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Table 6: Power and Type I error results for the sequential hypothesis testing.

Sample size Censoring rate True Model
Detected Model

0 changes 1 change 2 changes 3 changes

500

0%

0 changes 0.945 0.045 0.010 0.000

1 change 0.005 0.948 0.047 0.000

2 changes 0.000 0.004 0.933 0.063

20%

0 changes 0.920 0.080 0.000 0.000

1 change 0.006 0.909 0.086 0.000

2 changes 0.000 0.150 0.810 0.040

1000

0%

0 changes 0.964 0.034 0.002 0.000

1 change 0.000 0.956 0.043 0.001

2 changes 0.000 0.000 0.943 0.057

20%

0 changes 0.934 0.066 0.000 0.000

1 change 0.000 0.912 0.082 0.006

2 changes 0.000 0.082 0.864 0.055

context by Wei et al. (1989), and was published in its entirety in Andrews and Herzberg

(2012). The second data application is the Surveillance, Epidemiology, and End Results

(SEER) database. Specifically, we use the data collected on prostate cancer cases diagnosed

between 1973 - 2015. The SEER database is widely used to analyze cancer incidences and

is implemented by the American Cancer Society to report results to the public.

3.6.1 BLADDER TUMOR RECURRENCE

The bladder tumor data first collected and reported by Byar (1980) includes 118 subjects,

with a maximum number 9 tumor recurrences. We use the subset of this data of the 85

subjects who had nonzero follow-up times. The follow-up for the patients was five years, or

sixty months. In this case, we consider the censoring indicator to be 1 for recurrence and

0 for everything else. Three-fourths of patients who are diagnosed with high-risk bladder

cancer will recur, progress, or die within ten years of their diagnosis (Chamie et al., 2013).

It is of interest to us to determine if a change point (or change points) exist in the hazard

rate for tumor recurrence, and where these might occur.

Of the covariates available, we choose to include the treatment indicator based on model
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Figure 3: Vertical lines represent change point estimates from the proposed method. Left:

Represents estimation without the consideration of any covariates. Right: Represents the

estimation when considering the treatment covariate.

selection criteria as proposed by Akaike (1974). The placebo group contained 47 subjects

while the treatment group was made of the remaining 38 subjects. There is approximately

67% censoring in this data set. The treatment group received thiotepa, which was histor-

ically used as an intravesical chemotherapy for several cancers, including Stage I bladder

cancer (Fallah et al., 2012). The final model selected is

h(ti; ζi) = νλ1 exp(βζi)t
ν−1
i I(0 < ti ≤ τ1) + νλ2 exp(βζi)t

ν−1
i I(ti > τ1),

where ζi denotes the binary covariate indicating whether the patient received treatment or

placebo. It should be noted that when no covariates are included in the analysis, only one

significant change point with LR1 = 17.8246 is found at τ̂1 = 6 months. A second change

point at τ̂2 = 29 months is not significant with LR2 = 4.7942. Without covariates, we

find ν̂ = 1.3306, λ̂1 = 0.0387, and λ̂2 = 0.0047. The method of Goodman et al. (2011),

which assumes ν = 1, estimates λ̂1 = 0.0670 and λ̂2 = 0.0192 with a change point at τ̂1 = 5
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Figure 4: Vertical lines represent change point estimates from the proposed method. Left:

Represents estimation without the consideration of any covariates. Right: Represents the

estimation when considering the treatment covariate.

months. Both methods estimate a decrease in hazard for tumor recurrence after 5-6 months.

We see that (as in the simulation study), when ν is different from 1, the method of

Goodman et al. (2011) gives a slightly different estimate for change point, and also gives a

more pronounced difference in the estimates for the λ̂j.

When the treatment covariate is included, we find two significant change points using the

proposed method. We have ν̂ = 1.7742 with 95% confidence interval from regression (1.3577,

2.1907), indicating that the hazard rate is not constant. Also, the method estimates λ̂1 =

0.0105, λ̂2 = 0.0012, and λ̂3 = 0.0002 each with standard errors from regression < 0.0001.

The estimate for the covariate effect is β̂ = −0.4511 with 95% confidence interval (-0.8383,

-0.0638). The two change points are estimated at τ̂1 = 3 with confidence interval (2.9822,

3.0178) and finally τ̂2 = 30 with corresponding confidence interval (29.5699, 30.4301). The

first change point is found significant with LR1 = 18.7696 and the second change point

is found significant with LR2 = 20.1944. We see that there are two decreases in hazard



35

after 3 months and 30 months, respectively. The significance of a second change point when

covariates are included shows the importance of our method’s ability to include covariate

information.

In Figure 3, the left graph represents the estimation without covariates with the solid

line indicating the Nelson-Aalen estimate of cumulative hazard, the black dashed line the

estimate from our method, and the grey dashed line the estimate from the piecewise constant

hazard method. The graph on the right represents estimation including the treatment

covariate. The solid black line is the Nelson-Aalen estimate for standard-of-care and the

solid grey line indicates the Nelson-Aalen estimate for the treatment group. The dashed

lines then represent the estimates of cumulative hazard using our proposed method. Figure 4

shows a different approach of visually examining the methods, with the solid lines indicating

the Kaplan-Meier estimates of survival, and the dashed lines representing the estimates from

the proposed method and the piecewise constant hazard method. We can see from the left

plot in Figure 3 that the proposed method and the piecewise constant method have a similar

fit to the Nelson-Aalen cumulative hazard estimate. The proposed method tends to have a

better estimation until the end of the curve, at which point the two methods have a very

similar estimation. When looking at the Nelson-Aalen cumulative hazard estimates in the

right plot, we see that the proposed method has a good fit. The placebo group has a higher

hazard than the treatment group, which is expected.

3.6.2 SEER PROSTATE CANCER

To examine prostate cancer mortality, we use the Surveillance, Epidemiology, and End

Results (SEER) Program (www.seer.cancer.gov) database. The data includes cases diag-

nosed from 1973 - 2015 and follow up continues through to December 31, 2015. We are

interested in finding in finding if change points exist, as well as their location. It is also

of interest to include information from covariates, where appropriate. While some cancer

follow-ups focus on a five year time period after diagnosis, there is interest in long-term

survival and quality of life (Shrestha et al., 2019). It has been found that as diagnostic tests

and treatments become more advanced, the prognosis for prostate cancer has improved

(Brawley, 2012; Tewari et al., 2006).
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Figure 5: Nelson-Aalen cumulative hazard estimates of distant and localized/regional stages

for SEER prostate cancer incidence data.

The covariates that we include are age, race, and stage of disease. All of these covariates

have been of interest in past studies (Jemal et al., 2017). The SEER database codes the

race covariate as “Black,” “Other (American Indian/AK Native, Asian/Pacific Islander),”

and “White.” Stage of disease in prostate cancer has historically been described as localized,

regional, or distant, where localized prostate cancer has not left the prostate gland, regional

has spread outside the prostate gland to nearby structures or lymph nodes, and distant

prostate cancer has spread to parts of the body farther away from the prostate. Localized

and regional prostate cancers are generally grouped because they have such similar survival
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expectancies (Jemal et al., 2017).

We restrict the data to cases diagnosed between 1995 - 2010 to allow for at least five years

of follow-up. We begin with cases diagnosed in 1995 because this is the first year for which

the covariate for stage is available in the selected database. The average age at diagnosis is

67.128 years. Out of 275,302 cases, 36,834 (13.379%) were “Black,” 16,292 (5.918%) were

“Other,” and 222,176 (80.703%) were “White.” The full data set has 58.7% censoring.

We can see in Figure 5 that the cases of prostate cancer that are localized have a

much different hazard than cases that are distant. Due to this, we analyze the two stages

separately. For the distant cases, men had an average age at diagnosis of 72.454 years. Out

of the initial 275,302 cases, 13,091 were distant, and among these men 2,246 (17.157%) were

“Black,” 1,082 (8.265%) were “Other,” and 9,763 (74.578%) were “White.” The distant cases

have 8.53% censoring. Using the model selection procedure discussed by Akaike (1974) the

selected final model is

h(ti; ζi) =νλ1t
ν−1
i exp(β′ζi)I(0 < ti ≤ τ1) + νλ2 exp(β′ζi)t

ν−1
i I(τ1 < ti ≤ τ2) (3.8)

+ νλ3 exp(β′ζi)t
ν−1
i I(ti > τ2),

where ζi includes age as a continuous covariate and race as a categorical covariate.

Table 7: Point estimates and 95% confidence intervals in parentheses for SEER prostate

cancer data considering only distant cases by the proposed model and the constant hazard

model by Goodman et al. (2011).

Parameters Constant Hazard Model Proposed Model

ν – 1.0271 (1.0086, 1.0456)

Age – 0.0295 (0.0276, 0.0313)

Race (Other) – -0.3522 (-0.4296, -0.2748)

Race (White) – -0.0945 (-0.1430, -0.0460)

λ1 0.0268 (0.0264, 0.0272) 0.0032 (0.0030, 0.0034)

λ2 0.0176 (0.0168, 0.0184) 0.0022 (0.0020, 0.0024)

λ3 0.0128 (0.0120, 0.0136) 0.0016 (0.0014, 0.0018)

τ1 45 (44.8312, 45.1688) 44 (43.8431, 44.1569)

τ2 87 (86.4483, 87.5517) 87 (86.4051, 87.5950)

Table 7 shows that our method estimates that the hazard rate is very close to constant.

As in the simulation studies, when the hazard rate is constant the change point estimates
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Figure 6: The vertical dotted lines represent the location of the change point estimates for

the proposed method. Left: The figure represents estimation with no covariates included.

Right: The figure represents estimation with the race covariate included.

can be very similar to each other. Because our proposed approach includes information

from covariates and the piecewise constant method does not, the estimates for the scale

parameters function are different from one another, which is also consistent with the simu-

lation study. In both cases, the hazard decreases after about 3.7 years and again after 7.3

years. For the proposed method, we found that LR0 = 1463.986. This was much larger

than the 95th percentile of the empirical distribution found using the bootstrap. We found

LR1 = 54.059, which was larger than the 97.5th percentile, indicating that the two change

points at 44 and 87 are significant. A third change point at 210 was found to be insignificant

with LR2 = 6.073.

If we do not consider the age and race covariates, our method gives the estimates ν̂ =

0.990, λ̂1 = 0.028, λ̂2 = 0.020, λ̂3 = 0.015, τ̂1 = 42, and τ̂2 = 63. Figure 6 shows that when

covariates are not included, our method performs in a very similar manner to the piecewise

constant method. This is to be expected, as our method would reduce to that of Goodman
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Figure 7: The vertical dotted lines represent the location of the change point estimates for

the proposed method. Left: The figure represents estimation with no covariates included.

Right: The figure represents estimation with the race covariate included.

et al. (2011) when the true value of ν is, indeed, 1. The simulation study shows a good

level of accuracy in estimating the value of ν, so the closeness of estimation between the two

methods in this case reasonable. In order to calculate the hazard estimates shown in the

second plot of Figure 6, we take age to be the mean age at diagnosis and then calculate the

cumulative hazard estimate for each race. We see that the “Black” hazard is highest, and

“Other” is lowest. This is consistent with the findings analyzed by Brawley (2012). In the

left-hand figure, the Nelson-Aalen estimate of the cumulative hazard of the data without

covariates is represented by the solid black line. The dark grey dashed line represents the

cumulative hazard estimated by our method and the light grey dotted line represents the

estimate of the piecewise constant method. The Nelson-Aalen estimates by race are the

solid lines, while the proposed method are the dashed lines. The black represents “White,”

dark grey represent “Other,” and light grey represents “Black.” Figure 7 shows a different

visual representation of fit, but with the solid lines indicating the Kaplan-Meier estimates of
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survival and the dashed lines representing the estimates of survival using the proposed and

piecewise constant hazard methods. In the left graph, the dashed black line is the survival

estimate using our method and the dashed grey line is the estimate using the piecewise

constant hazard method. We can see that the survival estimate does not visually show as

much difference between the methods in this case as the cumulative hazard. We expect this,

since the hazard rate is extremely close to being constant. In the right-hand graph, we see

results by race. The black dashed line shows survival estimate of our method for “White,”

the dark grey is “Other,” and the light grey is “Black.”

We give an analysis of the localized/regional cases in Appendix B.5.

3.7 CONCLUSION AND FURTHER RESEARCH

The inference of change-points in survival models has been discussed previously in liter-

ature (for example - Lee et al. (2020); Liu et al. (2008); Goodman et al. (2011); Yao (1986)).

We use a likelihood ratio-type test statistic in order to sequentially test for change points

using an alpha spending function and select a parsimonious model rather than an over-fitted

one. Our methodology makes use of the Nelder-Mead simplex optimization algorithm, which

requires the user to provide initial values for parameter estimates. As stated by Goodman

et al. (2011), we found that these values should be reasonable, but need not be precise.

There are other optimization methods readily available in software packages with differing

advantages and disadvantages (Nash, 2014).

Our method uses the AFT model with a Weibull distribution, and is more flexible than

other models. The method is parametric, and requires the assumption of distribution. It

is reasonable to say that if the assumptions are not met, the results may be incorrect or

unreliable. Non-parametric modifications to the AFT model have been suggested, but have

not been widely used. If the shape parameter is set to 1, the method reduces to that of

Goodman et al. (2011), and the Weibull distribution is also the only distribution that yields

both an accelerated failure time model and a proportional hazards model. The simulation

study shows that our approach is effective in choosing the correct number of change points

and accurate in estimating the values of parameters.

While it is known that the likelihood ratio test statistic in the presence of a change

point does not directly follow a Chi-squared distribution (see Henderson (1990); Matthews

and Farewell (1982)), we avoid this issue by finding the empirical distribution of the test

statistic through model-based bootstrap methods. We have found that, while the empirical

distribution does not directly follow a Chi-squared distribution, the quantiles are relatively
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similar.

We implemented the method on bladder tumor recurrence data and prostate cancer

incidence data, but it could be of interest to other applications. The change-point hazard

function allows for a more realistic and adaptable estimation of survival, which can be

important in health care policy decisions. With a better understanding of mortality rates,

we can seek to improve quality and longevity of life.
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CHAPTER 4

A NON-PARAMETRIC APPROACH TO EVALUATION THE

POINT OF TREATMENT TIME-LAG EFFECT

4.1 INTRODUCTION

In essence, the problem faced in this chapter is a change point analysis problem - we

are trying to estimate the time of treatment time-lag effect, which in our case can be in-

terpreted as the time point at which the survival curves of two groups change distribution.

There has been a large variety of research into the change point analysis problem for dif-

ferent applications. In the scope of survival analysis, the problem can concern a change

in distribution for a set of time-ordered observations. There are both parametric and non-

parametric methods of analysis, with parametric analysis having the necessity to assume

underlying distributions.

Survival analysis is a method for analyzing time-to-event data, where survival probabil-

ities and times are sometimes presented in tables or graphs in a time-ordered fashion with

indications as to which observations are censored or truncated. A major area of survival

analysis includes testing for differences between groups by comparing hazard rate functions

or, equivalently, survival probability functions (Klein and Moeschberger, 2003). Many pro-

cedures have been developed that non-parametrically test for differences between treatment

groups. These procedures are applications of the Wilcoxon rank sum test, the most notable

of which is the log-rank test first proposed by Mantel (1966). There have been adjustments

proposed that are appropriate in a variety of situations, including different weighting func-

tions that can give weight to earlier or later observations. These include, but are not limited

to, Breslow (1970), Harrington and Fleming (1982), Gehan (1965), Peto and Peto (1972),

and Tarone and Ware (1977). There have also been a number of methods proposed to deal

with cases that have multiple or crossing hazard functions (for example, see Cheng et al.

(2009); Chen et al. (2016, 2017); Liu et al. (2007); Qiu and Sheng (2008)). Additionally,

there have been a few proposals to deal with cases that specifically have survival proba-

bilities, that are initially quite similar between groups, and then differ (Dinse et al., 1993;

Park and Qiu, 2018; Zucker and Lakatos, 1990). There have also been non-parametric and
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semi-parametric approaches to estimating a change in the hazard rate when considering one

group (Brazzale et al., 2019; Chen and Baron, 2014).

While there has been much research into testing whether survival is significantly different

between groups for censored and truncated data, less work has been done to test for differ-

ences when the two groups are similar up to some point (say, t = τ) and differ afterwards,

specifically in terms of estimating the time point at which the two groups begin to differ. In

literature, this time has been referred to as the treatment time-lag point (Dinse et al., 1993;

Park and Qiu, 2018; Zucker and Lakatos, 1990). This type of analysis can be important in

many areas - parts reliability, treatment effect, etc. - since it can be crucial to not only know

if two groups differ but also at what point in time some treatment begins to take effect. In

methods such as the non-parametric estimation proposed by Brazzale et al. (2019), and the

semi-parametric approach suggested by Chen and Baron (2014) that find the change point

in distribution of one survival curve, the lag effect could be found by finding the estimate for

each group separately. However, it may be preferential in the case of a treatment time-lag

effect when a treatment group is begin compared to a control group (for example) to use

information from both groups to see when the treatment group changes in distribution from

the control group.

Zucker and Lakatos (1990) proposed weighted log-rank statistics for comparing two sur-

vival curves when there is a time lag. Dinse et al. (1993) proposed an estimate of the

time-lag point based on Kaplan-Meier estimates of survival. Park and Qiu (2018) suggested

a semi-parametric model to estimate the time-lag point by using maximization of log partial

likelihood. There is also research into this area using the terminology “change-point anal-

ysis.” Chen and Baron (2014) reviewed some MLE methods as well as introducing some

least-square estimation of the Cox proportional hazard model. More recently, Brazzale et al.

(2019) proposed a non-parametric method to estimate the time point of change in a single

survival curve, based on fitting a stump regression to p-values for testing hazards rates over

small time intervals.

We will propose a way to estimate the time-lag point non-parametrically by adapting

an approach for change point analysis initially implemented for multivariate time series

data as initially proposed by Székely et al. (2005) and later expanded by Matteson and

James (2014). We will focus not on multivariate data, but instead adapt the method for a

univariate approach to compare the curves of two groups from survival data. Specifically,

we want a point estimate τ̂ for τ , where τ is the time point of change between two survival

curves that have different distributions. In our case, we would like the survival curves to be
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quite similar up until t = τ , and differ after that time point. Since this is a non-parametric

approach, we only say that the two survival curves have different distributions but can not

assume specifically what those distributions are (i.e. F1 6= F2 where F1 and F2 are some

unknown distributions). The chapter will be structured as follows. In Section 4.2, we give

an overview of the method and some theoretical properties. In Section 4.3, we describe the

overall data simulation methods, and give simulation study results. In Section 4.4, we give

a real data example to show an application of the method. Finally, Section 4.5 gives some

concluding remarks and suggestions for further research. The proofs for some theoretical

results are found in Appendix C.

4.2 PROPOSED EMPIRICAL DIVERGENCE METHOD

4.2.1 BACKGROUND INFORMATION AND NOTATION

For our method, we consider N independent subjects. If we let Ui be the event time

(or, equivalently, survival time) for subject i and Ci be the censoring time, then we have

ti = min (Ui, Ci) as the observed event times. This means that if the data is subject to right-

censoring, ti is observed instead of Ui. Assume we have t1 < t2 < · · · < tT as the distinct

event times in the pooled sample of k = 1, 2 independent groups. At time ti, we observe

dik events in the kth sample out of yik individuals at risk, i = 1, . . . , T , where T ≤ N is the

number of unique time point within the N subjects. We also have a censoring indicator δi

such that

δi =

1 if Ui ≤ Ci,

0 if Ui > Ci.

One of the most commonly used estimates for the survival function was proposed by Kaplan

and Meier (1958). They proposed a survival estimate such that

Ŝk(t) =
∏
i:ti<t

(
1− dik

yik

)δi
, (4.1)

which is a step function with jumps at observations ti for which δi = 1. This estimate

is non-parametric and can be applied in the presence of censoring. No assumptions are

required for the probability distribution other than the independence between the survival

and censoring variables.

Since we will be comparing our method to a previous non-parametric method for finding

the point of time-lag effect that was proposed by Dinse et al. (1993), it is important to note
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Figure 8: Kaplan-Meier curves with the black dotted line showing the control group and

the grey dotted line showing the treatment group. Data was simulated from a Weibull

distribution with N = 100, β = 1, λ = 0.5, ν = 1.5, and τ = 1.
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that the method uses the statistic

D(t) =
Ŝ1(t)− Ŝ2(t)√
V̂1(t) + V̂2(t)

,

where, for k = 1, 2, V̂k(t) = Ŝk(t)
2
∑

ti≤t
dik

yik(yik−dik)
is the variance of Ŝk(t) estimated by

Greenwood’s formula. Then, the proposed estimate of τ is sup{t : t ≤ tT , D(t) ≤ z1−α}
where z1−α is the (1− α)th quantile of the standard normal distribution. Moving forward,

we will refer to this method as the Dinse et al. method. The method proposed by Park

and Qiu (2018) uses a semi-parametric method to estimate τ which utilizes a model that is

a generalization of the conventional Cox proportional hazards model and maximum partial

likelihood estimation.

4.2.2 PROPOSED ESTIMATOR

In our method, we will be using a divergence measure based on the Euclidean distance

between the two distributions to calculate the estimate τ̂ (Székely et al., 2005; Matteson

and James, 2014). In order to be most accurate, we should trim the data set so that we are

only including time points until one of the groups reaches a survival probability estimate of

0 (i.e one of the groups has a number of subjects at risk of 0). If this does not occur before

the final event time recorded, we will include all time points.

For random variables X, Y ∈ R, let a primed variable X ′ be an independent copy of

X and primed variable Y ′ be an independent copy of Y . Then, let φx and φy denote the

characteristic functions of X and Y , respectively. Now, suppose X,X ′
iid∼ F1 and Y, Y ′

iid∼ F2

and that X,X ′, Y and Y ′ are mutually independent. If E|X|α, E|Y |α< ∞ for some fixed

constant α ∈ (0, 2), a divergence measure between the distributions may defined by

D(X, Y ;α) =

∫
R
|φx(t)− φy(t)|2w(t)dt

where the weight function w(t) is proposed by Székely et al. (2005):

w(t;α) =

(
2π1/2Γ(1− α/2)

α2αΓ((1 + a)/2)
|t|1+a

)−1
.

An alternate divergence measure based on Euclidean distances was then suggested by Székely

et al. (2005) as

E(X, Y ;α) = 2E|X − Y |α−E|X −X ′|α−E|Y − Y ′|α.
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For our proposed method, let Zl = S1(tl) − S2(tl) and Ẑl = Ŝ1(tl) − Ŝ2(tl) for l = 1, . . . , T

where Ŝ1(tl) and Ŝ2(tl) are the Kaplan-Meier estimators as in (4.1) of survival functions at

time point tl of groups 1 and 2, respectively. Note that the divergence measure is therefore

based on the differences between the survival probabilities of two independent groups. Also,

we define sets Xr =
{
Ẑi : i = 1, . . . , r

}
of size r and Yr =

{
Ẑj : j = r + 1, . . . , T

}
of size

T − r where r is defined so that tr ≤ τ < tr+1. Then, our empirical divergence measure

based on U -statistics is obtained by:

Ê(Xr,Yr;α) =
2

r(T − r)

r∑
i=1

T∑
j=r+1

|Xi − Yj|α−
(
r

2

)−1 ∑
1≤i<k≤r

|Xi −Xk|α

−
(
T − r

2

)−1 ∑
(r+1)≤j<k≤T

|Yj − Yk|α,

and the scaled sample measure of divergence is as follows:

Q̂(Xr,Yr;α) =
r(T − r)

T
Ê(Xr,Yr;α).

Then, we can estimate the time point of treatment time-lag effect by

τ̂ = tr̂ where r̂ = argmax
r

Q̂(Xr,Yr;α).

Note that by Lévy’s Continuity Theorem and the Strong Law of Large Number for U-

statistics, (Hoeffding, 1961) and properties of stochastic integrals for censored data, (Gill,

1980) Ê(Xr,Yr;α)
a.s.→ E(X, Y ;α) as T → ∞. Our statistic gives a consistent approach for

estimating the treatment time-lag point by adapting clustering change point methods for

multivariate time series. In simulations, the results are quite similar for values of α ∈ (0, 2),

so for all calculations and simulations in this chapter, we will set α = 1 for simplicity.

4.2.3 THEORETICAL PROPERTIES

We now give the assumptions and theorems showing the strong consistency of the esti-

mator proposed in the previous section. For full proofs, please see the Appendix C.

Assumption 1. Begin by assuming that we have a heterogeneous sequence of indepen-

dent observations from two different distributions. Then, let η ∈ (0, 1) signify the frac-

tion of observations belonging to one of the distributions such that Z1, . . . , ZbηT c ∼ F1 and

ZbηT c+1, . . . , ZT ∼ F2 for every sample of size T . Let r = bηT c and s = T − r. Let η be

bounded away from 0 and 1 such that r, s → ∞ as T → ∞. Also, let µα1 = E|X − X ′|α,
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µα2 = E|Y −Y ′|α, and µα12 = E|X −Y |α. Here, X,X ′
iid∼ F1 and Y, Y ′

iid∼ F2 and X,X ′, Y, Y ′

are all mutually independent. Further, suppose that E(|X|α+|Y |α) <∞ for some α ∈ (0, 2).

Therefore, µα1 , µ
α
2 , µ

α
12, E(X, Y ;α) <∞. Finally, let {κT} be a sequence of positive numbers

such that κT → 0 and TκT →∞ as T →∞.

Lemma 1. If Assumption 1 holds:

sup
η∈[κT ,1−κT ]

∣∣∣∣∣
(
T

2

)−1∑
i<j

|Zi − Zj|α−[η2µα1 + (1− η)2µα2 + 2η(1− η)µα12]

∣∣∣∣∣ a.s.→ 0,

as T →∞.

The proof follows from the Strong Law of Large Numbers for U -statistics as shown by

Hoeffding (1961) and Matteson and James (2014) as well as the triangle inequality and

properties of stochastic integrals for censored data proven by Gill (1980).

Theorem 1. Suppose Assumption 1 holds. Let τ̂ found at time point tr̂ be the point estimate

of treatment time-lag effect for a pooled sample with T distinct survival times, where r̂ =

argmax
r

Q̂(Xr,Yr;α). Then, if T is large enough so that η ∈ [κT , 1− κT ] , we have:

r̂/T
a.s.→ η as T →∞.

This implies that τ̂ → τ as T → ∞ and proves the almost sure convergence and strong

consistency of the estimator. If we wish to consider specific rates of convergence, there must

be additional information available about the distribution of the estimators. This, in turn,

depends on the unknown distribution of the data (Matteson and James, 2014).

4.2.4 PERMUTATION TEST FOR SIGNIFICANCE

While it is of interest to estimate the location of the time point of treatment lag-effect, it

can also be important to test for significance. In that case, the hypothesis we are interested

in is H0 : F1 = F2 verses H1 : F1 6= F2. In the simplest case of continuous univariate

distributions with no censoring, the familiar non-parametric Kolmogorov-Smirnov test can

be applied, as suggested initially by Kolmogorov (1933) and Smirnov (1948). When the data

is right-censored, there are a variety of options that have been proposed as an alternative to

the Kolmogorov-Smirnov test. The most widely-used of these may be the test of Fleming

et al. (1980), known popularly as the Fleming-Harrington test.

We suggest a test statistic corresponding to the point estimate, which can be denoted

as

q̂ = Q̂(Xr̂,Yr̂;α). (4.2)
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Large values of the test statistic indicate a significant change in distribution. However,

finding a critical value with an acceptable level of precision would require knowledge of

the underlying distributions, which are generally unknown. For this reason, we will use a

permutation test. Under the null hypothesis of no change point, we will conduct a test

with the following scheme. The observations before τ̂ are permuted separately from those

following τ̂ , creating a new data set of the same length. As in common in permutation tests

for censored data, during permutation we keep the censoring and group indicators fixed

(Sun and Sherman, 1996). We will apply the same estimation procedure as described in the

previous section to each permuted data set, and after the permutation we record the value

of the test statistic q̂(b), for b = 1, . . . , B. There have been several forms of permutation

tests that have been suggested for censored data (see, for example, Dallas and Rao (2000);

Heller and Venkatraman (1996); Sun and Sherman (1996)).

Permutation tests will result in an exact p-value if all possible permutations are consid-

ered. In most cases this is computationally intractable, so we instead consider B random

permutations, with a larger number of permutations reducing the error in the approximate

p-value. We can estimate the p-value by #
{
b : q̂(b) ≤ q̂

}
/(B+1). In our simulations, we use

B = 1000 permutations for all the testing. In practice, determining a suitably large number

of permutations to obtain an acceptable approximation of the p-value depends primarily on

sample size, as well as the number of Zl = S1(tl) − S2(tl) for l = 1, . . . , T (as described in

the previous section) before and after τ .

In our extensive simulation study, we found that both point estimates (and corresponding

confidence intervals) as well as the permutation tests are more accurate not only at a larger

sample size but also when there are more time points both before and after the point of

treatment time lag-effect, τ . Another factor that impacts the accuracy of the estimation

method is the effect of treatment - with an increase in treatment effect, estimation is more

exact. We should note that the proposed estimate is, by definition, limited to observed time

points. As such, it will be more accurate to true values when intervals between time points

are smaller. In the next section, we will present some results from our simulation study that

indicate the efficacy of the proposed method.

4.3 SIMULATION STUDY

All computing for the methods presented was completed in R (R Core Team, 2019).

We begin by simulating survival times from a Weibull distribution without time-invariant
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Table 8: Mean point estimate (PE), variance, and mean square error (MSE) of the estimate

for τ in model (4.3). In the table, CR denotes the censoring rate.

β Sample size Method
20% CR 40% CR

PE Variance MSE PE Variance MSE

1.0

100

Proposed 1.109 0.044 0.055 1.124 0.046 0.062

Park and Qiu (2018) 0.887 0.116 0.129 0.841 0.136 0.161

Dinse et al. 1.668 0.428 0.874 1.672 0.424 0.875

500

Proposed 1.077 0.006 0.012 1.111 0.007 0.019

Park and Qiu (2018) 0.868 0.011 0.028 0.852 0.020 0.042

Dinse et al. 1.134 0.257 0.275 1.102 0.192 0.202

1.5

100

Proposed 1.064 0.012 0.016 1.073 0.011 0.016

Park and Qiu (2018) 0.822 0.041 0.073 0.792 0.050 0.093

Dinse et al. 1.150 0.102 0.124 1.131 0.089 0.107

500

Proposed 1.047 0.003 0.005 1.066 0.003 0.007

Park and Qiu (2018) 0.886 0.002 0.015 0.873 0.005 0.021

Dinse et al. 0.988 0.007 0.008 0.972 0.013 0.014

covariates using a model similar to the one used in Park and Qiu (2018):

h(t|g) = h0(t) exp{βI(t > τ)g}, (4.3)

where h0(t) = λνtν−1 is the baseline hazard rate for the Weibull distribution with λ as the

scale parameter and ν as the shape parameter, I(·) is an indicator function, g is the group

indicator (1 if the ith subject is in the treatment group, and 0 otherwise), τ is the time-lag

point, and β is a regression coefficient vector. In (4.3), we assume λ = 0.5, ν = 1.5, τ = 1,

β = 1 and β = 1.5, and also two sample sizes N1 = N2 = 50 and N1 = N2 = 250 (i.e the

number of subjects in each group is equal). In this chapter, we simulate survival times by

using results for simulating data with time-varying covariates from Austin (2012). We also

discretize the survival times in order to make results more realistic in the sense that there

will be more than one event per time point. Additionally, in practice most survival times are

not measured on a continuous scale (Tutz and Schmid, 2016). In the following simulations,

we have rounded to one decimal place. In order to simulate data that is subject to random

right-censoring, we simulate survival times one at a time and also simulate a corresponding

random censoring time from Uniform(a, b) where a is the minimum observed time and b

is the maximum observed time. Once a desired number of censored observations has been



51

created, we simulate only uncensored survival times until the sample size has been reached.

We consider two different censoring rates of 20% and 40% in the simulation.

The results for this simulation with 1000 replications are shown in Table 8 at different

sample sizes for the non-parametric Dinse et al. method, the semi-parametric Park and Qiu

(2018) method, and the proposed non-parametric method. The mean point estimate along

with variance and mean square error values of the estimated time-lag point are summarized

in Table 8. From the table, we can see that overall, the proposed method has a lower MSE

than the other methods, even in cases where the bias is slightly larger. The proposed esti-

mator also consistently performs better with larger samples sizes and with lower censoring

rates, while this is not always true for the Dinse et al. estimator. In general, we find that

the estimate for τ is over-estimated using the Dinse et al. method, and is slightly under-

estimated using the Park and Qiu (2018) method. As expected, it is true that results are

better for larger values of β (i.e when the two distributions are more different from each

other after τ). It is also of note that sometimes the Dinse et al. method does not give an

estimate, in which case there was no possible solution in that replication. In order to find

an estimate for τ , we remove these values and calculate the estimate from the remaining

values found.

In the case when the sample size of 500 and the censoring rate of 20% in model (4.3),

the density curves of the estimated time-lag points by the proposed, Park and Qiu (2018),

and Dinse et al. methods are shown in Figure 9. From the plots in the figure, it can be

clearly seen that the results by Dinse et al. are generally more spread out with values that

are further above the true value of τ , while the results from both proposed and Park and

Qiu (2018) are typically much closer to each other and the true value of τ . The Dinse et

al. results also show a cluster of time points that are quite over-estimated, which indicates

bi-modality instead of the normal distribution originally assumed by the authors (Dinse

et al., 1993).

In order to stay true to real data applications, we also simulate data including time-

invariant covariates from the following more general model with an exponential distribution:

h(t|g) = h0(t) exp{βI(t > τ)g + γ1v1 + γ2v2}. (4.4)

For example, we simulate covariate v1 (gender) from a Binomial(n = 1, p = 0.5) distribution

and v2 (age) from a Uniform(a = 1, b = 25) distribution rounded down to the year. We

will show with these simulations that the addition of covariates does not largely change the

results of the simulations. Further, we assume that we have h0(t) = 0.1, β = 0.75 and 1.25,
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Figure 9: Density curves of the estimated time-lag points for 1000 replications, with the

sample size of 500 and the censoring rate of 20% in model (4.3) with β = 1. The black

dotted line represents the true value for τ = 1.
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Table 9: Mean point estimate (PE), variance, and mean square error (MSE) of the estimate

for τ in model (4.4). In the table, CR denotes the censoring rate.

β Sample size Method
20% CR 40% CR

PE Variance MSE PE Variance MSE

0.75

200

Proposed 3.303 1.642 1.732 3.384 1.610 1.755

Park and Qiu (2018) 3.434 3.555 3.740 3.281 3.247 3.323

Dinse et al. 8.176 1.433 28.226 8.009 1.748 26.838

500

Proposed 3.590 0.948 1.295 3.639 0.958 1.366

Park and Qiu (2018) 3.045 1.834 1.834 2.958 1.873 1.873

Dinse et al. 8.894 1.600 36.340 8.589 2.505 33.741

1.25

200

Proposed 3.209 0.495 0.538 3.269 0.487 0.559

Park and Qiu (2018) 2.777 0.693 0.742 2.655 0.685 0.803

Dinse et al. 6.610 4.195 17.224 6.370 4.576 15.927

500

Proposed 3.303 0.101 0.192 3.332 0.092 0.202

Park and Qiu (2018) 2.793 0.102 0.145 2.758 0.186 0.245

Dinse et al. 6.693 7.403 21.033 5.922 7.877 16.407

γ1 = 0.25, γ2 = 0.1, τ = 3, and maximum allowed time of 10. The sample sizes are set to

be N1 = N2 = 100 and N1 = N2 = 250 and the censoring rates are 20% or 40%. Table 9

presents the results about the mean point estimate, variance, and mean square error of the

estimate for τ in model (4.4).

We can see in Table 9 that the results still seem reasonable, and overall are consistent

with the previous simulation results with no time-invariant covariates. The proposed method

is comparable to the Park and Qiu (2018) method. In the case where β = 0.75 (i.e. the two

groups are more similar to each other) the proposed method performs best. The MSE and

variance of the method consistently decrease with lower censoring and larger sample size. We

have found through additional larger sample sizes (not shown) that the proposed estimator

converges slower with covariates and with lower values for β. Although the method of Park

and Qiu (2018) performs somewhat better at the larger value of β and larger sample sizes

with the added information from covariates, this intuitively seems correct since the method

is semi-parametric, and the proposed method does not use any of the information from the

covariates in calculating the estimate. Also, the model used to simulate the data is the

model used in the methods of Park and Qiu (2018), so these results are both reasonable and
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Figure 10: Density curves of the estimated time-lag points for 1000 replications, with the

sample size of 500 and the censoring rate of 20% in model (4.4) with β = 1.25. The black

dotted line represents the true value for τ = 3.
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expected. Despite this, there are still cases where the proposed method is more accurate.

The Dinse et al. method still generally over-estimates, with the bias and MSE now being

much larger than the previous simulation results. It should also be noted that the Dinse et

al. method also sometimes has better results in these simulations with increased censoring,

indicating that the method of Park and Qiu (2018) and the method proposed in this chapter

are more reliable.

The density curves in Figure 10 show that the results for the data including covariates

looks similar to the results that does not include covariates, but we can now much more

obviously see the bi-modality of the Dinse et al. estimator. We see that this parameterization

gives results that are approximately as accurate as previous simulations. This indicates that

the addition of covariates does not have a very large effect on the results of the method in

estimating the point of treatment time-lag effect with the proposed method. It is also

important to note that the method of Park and Qiu (2018) assumes that the models in (4.3)

and (4.4) are known, while this is not true of the current proposed method since we do

not use any model information. In cases where the assumed model is incorrect, the results

obtained using the method of Park and Qiu (2018) could be misleading but the method

proposed here would still be valid.

Finally, we perform simulations in order to assess the performance of bootstrap confi-

dence intervals. Because the method of data simulation discussed in this section can be

computationally expensive, performing bootstrap confidence intervals would be intractable.

Instead of using a uniform censoring distribution to create an exact number of censored ob-

servations, we simply use a maximum cut-off time. In order to increase (decrease) censoring,

we decrease (increase) the maximum cut-off time. In these simulations, we found that the

results for the point estimates have a similar accuracy to the results reported in Table 8 and

Table 9. Under change point conditions, the classical bootstrap initially suggested by Efron

and Tibshirani (1993) has been found to be inconsistent in the construction of bootstrap

confidence intervals (Xu et al., 2014; Canty and Ripley, 2017). In our simulation studies, we

found this to be true as well. Therefore, we will use the non-parametric bias-corrected and

accelerated (BCa) bootstrap confidence intervals of Efron and Narasimhan (2020) using the

bcaboot package (Efron and Narasimhan, 2018). The BCa confidence intervals are second-

order accurate, and correct for both bias and skewness in the distribution of bootstrap

replicates by incorporating a bias-correction factor and an acceleration factor.

As in the point estimate simulations, we give results for two different censoring rates

(20% and 40%) and for several different samples sizes in order to investigate the effects of
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Table 10: Percent coverage and average length of 95% BCa confidence intervals for Weibull

distribution simulations following (4.3). CR denotes the censoring rate.

Parameter Values Sample Size CR Empirical Coverage Average Length

τ = 3, ν = 1.25, λ = 0.1, β = 1.3

200
20 0.943 1.701

40 0.890 1.722

500
20 0.945 0.986

40 0.891 1.628

τ = 2, ν = 1, λ = 0.25, β = 1

100
20 0.923 2.216

40 0.904 2.705

500
20 0.947 0.967

40 0.938 1.015

increased sample sizes and censoring on the interval length and coverage percentage. We

use B = 1000 bootstrap replicates to calculate each interval, with the acceleration factor

estimated using the jackknife method. This newer method of Efron and Narasimhan (2020)

is advantageous to similar prior methodology due to the fact that the proposed method can

be time-consuming with an increase in sample size - in the newer method the B bootstrap

replications can be carried out separately on a distributed basis.

For 1000 replications, the results in Table 10 show the empirical coverage and average

interval length for some different simulation settings for a Weibull distribution without

covariates (as in (4.3)). It should be noted that the second setting has a Weibull distribution

with the shape parameter ν = 1, which simplifies it to an Exponential distribution. In

bootstrapping with covariates, the covariates themselves are held constant and we found

that the results for models including covariates are quite similar in accuracy to those shown

in Table 10. We see that for a lower censoring rate of 20%, the empirical coverage of the

BCa confidence intervals are quite close to the expected 95%, and the coverage increases

with an increase in sample size. The average interval length also decreases with an increased

sample size. For the increased censoring of 40%, the coverage is not as precise as for the

lower censoring cases but still increases for a larger sample size. Also, the average interval

lengths are somewhat longer. In general, we see that the results for the bootstrap confidence

intervals are quite reasonable.

Finally, we present a selection of results for the permutation test described in Section

4.2.4. We can see that for the smaller sample sizes and higher censoring rates, the number
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of rejected null hypotheses is lower than what would be expected. Also, we can see that

with a decrease in β the results are not as reliable. In general, this should be expected since

the distributions are more similar to one another with smaller values for β. However, with

an increase in sample size the results become much more acceptable. In Table 11, on the

left, data was simulated as in (4.3) and parameter values as in Table 8. On the right, data

was simulated as in (4.4) and parameter values as in Table 9.

Most importantly, as was noted by Matteson and James (2014), the number of observa-

tion before and after the change point have more impact on accuracy of results than sample

size alone. Although the estimation will still be quite reasonable for data where there are

fewer observations than ideal either before (or after) the change point, the result from the

permutation test may begin to become more unreliable.

4.4 REAL DATA APPLICATIONS

In order to show an application of the proposed method, we will apply the method to

two data sets. First, we analyze lung cancer data from the Veteran’s Administration Lung

Cancer Trial. Second, we will use a German breast cancer data set first used by Schumacher

et al. (1994) and then Sauerbrei and Royston (1999).

4.4.1 VA LUNG CANCER DATA

First, we will use a data set from the Veteran’s Administration Lung Cancer Trial on

patients with advanced, inoperable lung cancer who were treated with chemotherapy. The

data is taken from Kalbfleisch and Prentice (2011). The variables available in the full data

Table 11: Number of significant test statistics out of 1000 simulations with B = 1000

permutations for each at α = 0.05 level of significance. CR denotes censoring rate.

95% Confidence

β Sample Size 20% CR 40% CR

1
100 0.784 0.786

500 0.968 0.953

1.5
100 0.918 0.909

500 0.978 0.974

95% Confidence

β Sample Size 20% CR 40% CR

0.75
200 0.756 0.714

500 0.877 0.806

1.25
200 0.957 0.920

500 0.996 0.972
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Figure 11: Kaplan-Meier curves for the distribution of event time in lung cancer according

to two groups; the black dotted line denotes the standard treatment group and the grey

dotted line denotes the test treatment group.
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set are treatment (standard or test), cell type (squamous, small cell, adeno, large), survival

(in days), status (dead or censored), a Karnofsky score as a measure of general performance,

months from diagnosis, age in years, and a prior therapy indicator.

If we split the data set into two groups depending on whether the patient received

standard or test treatment, we can implement the methods shown in the prior section to

estimate the time point of change between the two groups. It may be of specific interest to

see when patients who have had prior treatment begin to see a treatment lag-effect between

the standard treatment and the test treatment. We can subset this data set and view

only subjects in the study who have had previous treatment. In this case, we would have

40 patients in the study with an approximately 8% censoring rate. Then, the number of

subjects in the standard treatment group is 21 and 19 in the test group.

Figure 11 shows the Kaplan-Meier curves for the distribution of time to event for lung

cancer according to two groups; the black dotted line denotes the standard treatment group

and the grey dotted line denotes the test treatment group. There seems to be treatment

lag-effect between the two groups. It is clear that no distinction can be made between two

groups until around time point 100, and they show different patterns right after the time

point. Estimated time-lag points by our proposed method (solid line), the Park and Qiu

(2018) method (grey two-dashed line), and the Dinse et al. method (dashed line) are also

presented in the figure. From the proposed method, we find an estimate for τ of 118. From

the Park and Qiu (2018) method, we find an estimate of 84, and finally from the Dinse

et al. method, we find an estimate of 340. The results of these estimates initially seem

consistent with the results from the simulation study. The Park and Qiu (2018) estimator

is at a slightly earlier time point while the proposed estimator is at a slightly larger time

point, and the Dinse et al. estimator is in this case quite far from the seeming time point

of treatment lag-effect. This is consistent with the trends in over- and under-estimation

found in the simulation study. The estimates of treatment lag-effect at 7 years for the

method of Park and Qiu (2018) and approximately 9.8 years for the proposed method when

considering the standard treatment versus test treatment are reasonably consistent when

compared long-term survival rates (Boyer et al., 2017).

In order to find a confidence interval for the estimator, we use the non-parametric BCa

bootstrap method as initially suggested by Efron and Narasimhan (2020). Because survival

data is more complex in structure, and the size of the application data set is quite small this

may be a case where the standard bootstrap fails and the percentile bootstrap confidence

interval may not be appropriate to use (Efron and Tibshirani, 1993; Rizzo, 2008). We sample
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Figure 12: Kaplan-Meier curves for the distribution of time to death for breast cancer;

the black dotted line denotes the standard treatment group without hormone replacement

therapy and the grey dotted line denotes the hormone therapy group.
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the observed data with replacement using the package bcaboot (Efron and Narasimhan,

2018).

From 1000 replications, the 95% percentile bootstrap confidence interval for the estimate

for τ is (51, 201). When looking at the plot of the survival curves, this makes sense since

the sample size is very small, many of the events take place early on in the study and there

are several early time points that early on that could be seen as the “true” value of τ .

4.4.2 GERMAN BREAST CANCER DATA

Next, we will apply our method to a German breast cancer data set collected and an-

alyzed by Schumacher et al. (1994). The data was publicly published by Hosmer Jr et al.

(2011). The data set has 686 observations and 16 variables considered, including age, a

menopause indicator, size of tumor, grade of tumor, and number of progesterone and estro-

gen receptors that were positive. In our application, we consider the two groups as those

patients who received hormone treatment versus those patients who did not. Overall, the

data has a 75% censoring rate.

It is of interest here to see when the patients receiving hormone replacement therapy

begin to see a treatment lag-effect compared to those who are not receiving the hormone

replacement therapy. In the study, there are 440 patients who did not receive hormone

therapy and 246 who did. We can see the Kaplan-Meier estimates of the survival curves along

with the estimates of the time point of treatment lag-effect using the method proposed in this

chapter, the method of Park and Qiu (2018), and the method of Dinse et al. in Figure 12.

As in the simulation studies, the proposed method and the method of Park and Qiu (2018)

are both reasonable estimates, following the trends of the Park and Qiu (2018) method

being smaller and the proposed method being larger. The method of Dinse et al. clearly

largely overestimates the value, with the estimate being the final uncensored time point.

The method of Park and Qiu (2018) estimates the treatment lag-effect at 52.57 months, the

proposed method at 76.29 months, and the Dinse et al. method at 350 months. We see

that in the study, the method of Park and Qiu (2018) and the proposed method estimate

the treatment lag-effect at approximately 4 years and 6 years, respectively. As noted by the

American Cancer Society, hormone replacement therapy is typically administered for 5 to

10 years to help reduce the risk of breast cancer relapse. The treatment lag-effect estimators

are in line with this observation.

We again find a confidence interval for the estimator using the BCa bootstrap method.

From 1000 replications, the 95% percentile bootstrap confidence interval for the estimate
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for τ is (60.85, 85.86). We can see that this interval is narrower than the interval from the

Veteran’s Administration Lung Cancer Trial data, which is consistent with the simulation

study. With an increase in the sample size, we expect that there is a decrease in the length

of the confidence interval.

4.5 CONCLUSIONS AND FURTHER RESEARCH

While there has been much research into change point analysis, there has been little

research on time-lag effects. Some authors have used change point methods to find the

time point of change in one group (Brazzale et al., 2019; Chen and Baron, 2014; Park and

Qiu, 2018), but there have been few non-parametric methods considering two groups. It

should also be noted that non-parametric and semi-parametric methods that have already

been proposed for survival analysis applications do not seem to be readily extendable to

either identifying the time point of change between two groups, or to identify the time point

of change non-parametrically. Throughout this chapter, we have presented a novel non-

parametric method for estimating the time point of treatment lag-effect using change point

methods adapted from previous work meant for implementation on multivariate time series

proposed by Matteson and James (2014). Some theoretical properties of strong consistency

of the proposed estimator are shown.

From the simulation study, we found that our method using the change point tends to

give more accurate results than the previously proposed Dinse et al. estimator in several

different cases and simulation settings, and gives results that are generally comparable to

the method suggested by Park and Qiu (2018). We see that the distribution of the estimator

seems to be empirically satisfactory, especially when compared to previously suggested non-

parametric methods (primarily the Dinse et al. method). When compared to the methods of

Park and Qiu (2018), we see that the proposed estimator performs better in terms of bias and

MSE when there are no covariates included, and gives reasonable results in the case where the

information from covariates is included. This makes sense since the previous method of Park

and Qiu (2018) is semi-parametric and includes covariate information. Additionally, we see

that the confidence intervals found using the non-parametric bias-corrected and accelerated

method of Efron and Narasimhan (2020) provide a reasonably accurate empirical coverage

and average interval length. Finally, we show some results for the suggested permutation test

that show that with an increase in observations before and after the time point of treatment

lag-effect and an increase in overall sample size, the permutation test gives accurate results.

Using real data sets for Veteran’s Administration Lung Cancer Trial taken from Kalbfleisch
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and Prentice (2011) and the German Breast Cancer data of Schumacher et al. (1994), we see

that the estimator proposed here performs well when compared to the estimator proposed

by Dinse et al., and gives results that are consistent with the simulation study in terms of

the estimation bias. The 95% percentile confidence interval using BCa bootstrap methods

seem to agree with the graphs visually. We see that (as in the simulation studies), the Park

and Qiu (2018) method may slightly underestimate the treatment time-lag effect while the

method of Dinse et al. clearly overestimates.

Overall, the method we present in this chapter gives results that are accurate both in a

simulation setting and with real data application. The empirical results suggest that this

non-parametric estimator found from an empirical divergence measure is applicable and

appropriate for use to analyze survival data. For future research, it would be of interest

to extend the method to multiple change points where the first point of change could be

considered the treatment time-lag effect and the second could be the effect of long-term

survivors (for example). It could also be possible to adapt the proposed method to be either

semi-parametric or parametric by using applicable survival estimates.
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CHAPTER 5

SUMMARY AND FUTURE RESEARCH

In this final chapter, we will briefly summarize the research presented in this dissertation

and discuss some future research directions.

5.1 SUMMARY

Change point analysis tries to identify times when the probability distribution of a

stochastic process or time series changes. In general the problem concerns both detecting

whether or not a change has occurred, or whether several changes might have occurred, and

identifying the times of any such changes. Data including information on time can be found

across many areas of statistics. Censored or truncated data where it may be true that not

all information is known for a data point is most commonly found in survival analysis. This

type of analysis usually finds the most use in medical or clinical research studies. There has

been a variety of research into change point analysis for time-to-event data.

In this dissertation, we have discussed two different methods for change point analysis

in censored data. The first method we presented was an accelerated failure time (AFT)

model with an underlying Weibull distribution incorporating a scale function that allows

for change points in the hazard rate of the event of interest. We use a maximum likelihood

estimation technique in order to find point estimates for the change points, the shape pa-

rameter of the Weibull, the scale parameters, and any potential covariate effects. We use

a sequential testing procedure with a likelihood ratio test and an alpha spending function

to test for each subsequent change point. Because of known issues with the distribution

of the likelihood ratio test statistic under change point conditions, we use a model-based

bootstrapping method in order to find the empirical distribution of the test statistic.

The second method we discuss is a non-parametric method to finding the time point

of treatment lag effect. In literature, this has been referred to as the time that it takes

any particular treatment to take effect. In this manner, a placebo (or standard of care)

treatment group and an experimental treatment group might have the same distribution

up until the change point, and then have a differing distribution afterwards. We use an

empirical divergence measure based on U-statistics based on the difference in the Kaplan-

Meier estimate of survival probability at each event time between the two groups in order
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to calculate the empirical divergence. We discuss some asymptotic properties along with

the construction of bootstrap confidence intervals and a permutation test.

5.2 FUTURE RESEARCH

There are many opportunities for ongoing research in this area, and there is a need for

more flexible and accurate models in medical studies as treatments become more sophisti-

cated.

5.2.1 EXTENSIONS FOR ACCELERATED FAILURE TIME MODEL

For the accelerated failure time (AFT) model, there are several areas in which more

research could take place. Most simply, we could use a different underlying distribution (such

as the log-logistic distribution, which also has desirable properties), or consider changes in a

parameter other than the scale parameter. However, a more in-depth extension might be to

use a least squares estimation instead of a maximum likelihood estimation. This is a semi-

parametric regression approach for censored data that could be applied to this model for

estimation in place of the fully parametric model which requires distributional assumptions.

There are also non-parametric maximum likelihood estimation (NPMLE) methods and non-

parametric AFT methods that have been proposed.

When considering the testing technique, as was discussed in Appendix B.3, there might

be some research available in order to find the theoretical variances of all parameters in order

to construct a Wald-type test statistic which has well-researched asymptotic properties and

known distribution. Alternatively, there might be some more effective numerical methods

to estimate the variance-covariance matrix and find the distribution empirically.

5.2.2 EXTENSIONS FOR NON-PARAMETRIC EMPIRICAL DIVERGENCE

MEASURE

There are also many possible extensions to the research into the non-parametric method

introduced in this dissertation. The first - and maybe most natural - would be to consider

more than one change point, perhaps with a hierarchical testing scheme. A similar method

was discussed for multivariate time series by Matteson and James (2014). There are data

examples that have been suggested for a proportional hazards method using more than

one change point in such a manner (such as in He et al. (2013)). In contrast to the fully

parametric AFT model for which it is of interest to avoid assumptions, it might be of interest
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to include a more comprehensive estimation to this treatment time-lag effect. Instead of

using the non-parametric product limit estimator of survival probability suggested jointly

by Kaplan and Meier (1958), we can instead use survival probabilities found from a semi-

parametric proportional hazards model as suggested by Cox (1972) or even a fully parametric

AFT model.
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Székely, G. J., M. L. Rizzo, et al. (2005). Hierarchical clustering via joint between-within

distances: Extending ward’s minimum variance method. Journal of classification 22 (2),

151–184.

Talih, M. and N. Hengartner (2005). Structural learning with time-varying components:

tracking the cross-section of financial time series. Journal of the Royal Statistical Society:

Series B (Statistical Methodology) 67 (3), 321–341.

Tarone, R. E. and J. Ware (1977). On distribution-free tests for equality of survival distri-

butions. Biometrika 64 (1), 156–160.

Tewari, A., J. D. Raman, P. Chang, S. Rao, G. Divine, and M. Menon (2006). Long-

term survival probability in men with clinically localized prostate cancer treated either

conservatively or with definitive treatment (radiotherapy or radical prostatectomy). Urol-

ogy 68 (6), 1268–1274.

Therneau, T. M. (2015). A Package for Survival Analysis in S. version 2.38.

Tukey, J. W. (1950). Some sampling simplified. Journal of the American Statistical Asso-

ciation 45 (252), 501–519.

Tutz, G. and M. Schmid (2016). Modeling Discrete Time-to-Event Data. Springer Interna-

tional Publishing.

van Valkenhoef, G. and T. Tervonen (2018). hitandrun: ”Hit and Run” and ”Shake and

Bake” for Sampling Uniformly from Convex Shapes. R package version 0.5-4.

Wang, J., F. Cheng, and L. Yang (2013). Smooth simultaneous confidence bands for cumu-

lative distribution functions. Journal of Nonparametric Statistics 25 (2), 395 – 407.



76

Wei, L.-J. (1992). The accelerated failure time model: a useful alternative to the cox

regression model in survival analysis. Statistics in medicine 11 (14-15), 1871–1879.

Wei, L.-J., D. Y. Lin, and L. Weissfeld (1989). Regression analysis of multivariate incomplete

failure time data by modeling marginal distributions. Journal of the American statistical

association 84 (408), 1065–1073.

Wellner, J. A. and V. Koltchinskii (2003). A note on the asymptotic distribution of Berk-

Jones type statistics under the null hypothesis. High Dimensional Probability III , 321–332.

Wilks, S. S. (1962). Mathematical Statistics. Wiley Series in Probability and Mathematical

Statistics. Wiley.

Xu, G., B. Sen, and Z. Ying (2014). Bootstrapping a change-point cox model for survival

data. Electronic journal of statistics 8 (1), 1345.

Xu, X., X. Ding, and S. Zhao (2009a, September). A New Confidence Band for Continu-

ous Cumulative Distribution Functions. Australian and New Zealand Journal of Statis-

tics 51 (3), 305–318.

Xu, X., X. Ding, and S. Zhao (2009b). The reduction of the average width of confidence

bands for an unknown continuous distribution function. Journal of Statistical Computa-

tion and Simulation 79 (4), 335–347.

Yang, S. and R. Prentice (2010, March). Improved Logrank-Type Tests for Survival Data

Using Adaptive Weights. Biometrics 66 (1), 30–38.

Yao, Y.-C. (1986). Maximum likelihood estimation in hazard rate models with a change-

point. Communications in Statistics-Theory and Methods 15 (8), 2455–2466.

Zeileis, A., A. Shah, and I. Patnaik (2010). Testing, monitoring, and dating structural

changes in exchange rate regimes. Computational Statistics & Data Analysis 54 (6), 1696–

1706.

Zhang, W. (2014). Detection of Multiple Change-Points in Hazard Models. Ph. D. thesis,

Florida Atlantic University.

Zucker, D. M. and E. Lakatos (1990). Weighted log rank type statistics for comparing

survival curves when there is a time lag in the effectiveness of treatment. Biometrika 77 (4),

853–864.



77

APPENDIX A

SELECTED R CODES

All computations in this dissertation are written in R (R Core Team, 2019). We include a

selection of R codes used in order to ensure reproducibility. The following code is for the

method described in Chapter 3.

1 library(survival)

2 library(optimx)

3

4 ind <- function(cond) {ifelse(cond , 1L, 0L)}

5

6 x.of <- function(t, time , delta){

7 delta*ind(time <= t)

8 }

9

10 aft.profile.tau.alpha <- function(theta , time , delta , Z, p.tau = NULL){

11 beta <- tail(theta , 2)

12 temp.theta <- head(theta , -2)

13 alpha <- temp.theta [1]

14 tau.temp <- sort(c(temp.theta[2], p.tau))

15 tau <- c(0, tau.temp , max(time)+1)

16 llik <- c()

17 for(i in 1:( length(tau) -1)){

18 llik[i] <- sum((x.of(tau[i+1], time , delta) - x.of(tau[i], time , delta

))*(log(alpha *(time^(alpha -1))*exp(Z%*% beta)) +

19 log(sum(x.of(tau[i+1], time , delta) - x.of(tau[i], time ,

delta))/sum(exp(Z%*% beta)

20 *(pmin(time , tau[i+1])^alpha - tau[i]^ alpha)*ind(time > tau[

i])))))

21 }

22 -sum(llik)

23 }

24

25 lambda.est <- function(theta , time , delta , Z, beta){

26 alpha <- theta [1]

27 if(theta [2] == 0){

28 tau <- c(0, max(time)+1)
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29 } else {

30 tau <- c(0,theta[-1],max(time)+1)

31 }

32 lambda <- c()

33 for(i in 1:( length(tau) -1)){

34 lambda[i] <- sum(x.of(tau[i+1], time , delta) - x.of(tau[i], time ,

delta))/

35 sum(exp(Z%*% beta)*(pmin(time , tau[i+1])^alpha - tau[i]^ alpha)*ind(

time > tau[i]))

36 }

37 lambda}

38

39 twocp.simulations <- function(theta , n){

40

41 null.model <- survreg(Surv(time , delta)~z1 + z2 , data = dat)

42 alpha.hat <- 1/null.model$scale

43 lambda.hat <- as.numeric(exp(-null.model$coef [1] / null.model$scale))

44 beta.hat <- -null.model$coef [-1]

45

46 profiletime <- unique(time)[order(unique(time))]

47 result <- c()

48 for(j in profiletime){

49 out <- aft.profile.tau.alpha(theta = c(alpha.hat ,j, beta.hat),

time = time , delta = delta , Z = Z, p.tau = NULL)

50 result <- rbind(result , c(j, out))

51 }

52 colnames(result) <- c("tau.hat", "loglik ")

53 result <- as.data.frame(result)

54 tau.hat <- result[which.min(result$loglik) ,1]

55

56 meth0 <- c("Nelder -Mead")

57 aft.opt <- opm(par = c(alpha.hat , tau.hat , beta.hat), fn = aft.profile.

tau.alpha ,

58 time = time , delta = delta , Z = Z, hessian = T, method =

meth0 , control = list(dowarn = F))

59 aft.mle <- as.numeric(aft.opt [ ,1:4])

60

61 result2 <- c()

62 for(i in profiletime[profiletime < (aft.mle[2] - 1) | profiletime > (aft

.mle[2] + 1)]){
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63 out2 <- aft.profile.tau.alpha(theta = c(aft.mle[1], i, aft.mle [3:4]) ,

time = time , delta = delta , Z = Z, p.tau = aft.mle [2])

64 result2 <- rbind(result2 , c(i,out2))

65 colnames(result2) <- c("tau2.hat", "loglik ")

66 result2 <- as.data.frame(result2)

67 }

68

69 aft.opt2 <- opm(par = c(aft.mle[1], tau2.hat , aft.mle [3:4]) , fn = aft.

profile.tau.alpha , time = time , delta = delta , hessian = T,

70 Z = Z, method = meth0 , p.tau = aft.mle [2])

71

72 aft.mle2 <- as.numeric(aft.opt2 [ ,1:4])

73 aft.mle2 <- c(as.numeric(aft.opt2 [,1]), sort(c(as.numeric(aft.opt2 [,2]),

aft.mle [2])), as.numeric(aft.opt2 [ ,3:4]))

74 aft.lambda2 <- lambda.est(aft.mle2 [ -(4:5)], time , delta , Z, aft.mle2

[4:5]) #calculate lambda values

75

76 output <- c(perc.cens , aft.mle2[c(1,4,5)],aft.lambda2 ,aft.mle2[c(2:3)])

77 output

78

79 }

Next, we include some code for the method described in Chapter 4.

1 library(survival)

2 library(tidyverse)

3

4 survdat <- survdat[order(survdat$time) ,]

5 survdat <- cbind (1: length(survdat$time), survdat)

6

7 df <- spread(survdat , group , status) %>% dplyr:: rename(Group0 = "0",

Group1 = "1")

8 kmtable <- df[,2:4] %>% mutate(n.c0 = if_else(is.na(Group0) == TRUE |

Group0 == 1, 0, 1),

9 n.c1 = if_else(is.na(Group1) == TRUE |

Group1 == 1, 0, 1),

10 d0 = if_else(is.na(Group0) == TRUE |

Group0 == 0, 0, 1),

11 d1 = if_else(is.na(Group1) == TRUE |

Group1 == 0, 0, 1)) %>%

12 dplyr:: select(1, 4:7) %>%

13 ddply("time", numcolwise(sum)) %>%
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14 mutate(d = d0 + d1 ,

15 y0 = n - cumsum(lag(n.c0 , 1, default = 0) + lag(d0 ,1,default =

0)),

16 y1 = n - cumsum(lag(n.c1 , 1, default = 0) + lag(d1 ,1,default =

0)),

17 y = y0 + y1,

18 surv0 = if_else(is.na(cumprod (1 - d0/y0)) == T, 0, cumprod (1 -

d0/y0)),

19 surv1 = ifelse(is.na(cumprod (1 - d1/y1)) == T, 0, cumprod (1 -

d1/y1))) %>%

20 filter(d >= 1) %>%

21 dplyr:: select(1, 4:11)

22

23 new <- subset(kmtable , kmtable$surv0 > 0 & kmtable$surv1 > 0)

24 Z <- new$surv0 - new$surv1

25 difference <- outer(Z, Z, function(x,y) abs(x - y))

26

27 parts <- list()

28 for(i in 1:( ncol(difference) -1)){

29 parts[[i]] <- difference [1:i, (i+1):ncol(difference)]

30 }

31 first <- unlist(lapply(parts , sum))

32

33 parts2 <- list()

34 for(i in 1:( ncol(difference) -1)){

35 parts2 [[i]] <- difference [1:(i-1), 2:i]

36 parts2 [[i]][ lower.tri(parts2 [[i]])] <- 0

37 parts2 [[1]] <- 0

38 }

39 second <- unlist(lapply(parts2 , sum))

40

41 parts3 <- list()

42 for(i in 1:( ncol(difference) -2)){

43 parts3 [[i]] <- difference [(i+1):(ncol(difference) -1) ,(i+2):ncol(

difference)]

44 parts3 [[i]][ lower.tri(parts3 [[i]])] <- 0

45 parts3 [[( ncol(difference) -1)]] <- 0

46 }

47 third <- unlist(lapply(parts3 , sum))

48

49 N <- 1:( length(Z) - 1)
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50 M <- (length(Z) - 1):1

51

52 e.hat <- ((2/(N*M))*first) - (choose(N,2)^(-1) * second) - (choose(M,2)

^(-1) * third)

53 q.hat <- ((M*N) / (M+N))*e.hat

54 tau.hat <- kmtable$time[which.max(q.hat)]
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APPENDIX B

ACCELERATED FAILURE TIME DERIVATIONS

B.1 AFT CUMULATIVE HAZARD

B.1.1 DERIVATION OF CUMULATIVE HAZARD

We can derive the cumulative hazard function of a Weibull AFT model with multiple

change points in the scale parameter. For the change point model, we have the hazard

function

h(ti; ζi) =



νλ1t
ν−1
i exp(β′ζi) if 0 < ti ≤ τ1

νλ2t
ν−1
i exp(β′ζi) if τ1 < ti ≤ τ2
...

νλk+1t
ν−1
i exp(β′ζi) if ti > τk

This can be simplified using indicator functions, I(·), such that

h(ti; ζi) = νλjt
ν−1
i exp(β′ζi)I(τj−1 < ti ≤ τj) =

[
νλjt

ν−1
i exp(β′ζi)

]
[I(ti ≤ τj)− I(ti ≤ τj−1)] .

To see why this is true, define the set Y = {ti}. Then, define subset A = {ti|ti ≤ τj} and

subset B = {ti|ti > τj−1}. Note that I(τj−1 < ti ≤ τj) = I(A ∩ B). So, we can write the

indicator function as

I(τj−1 < ti ≤ τj−1) = I(A ∩B) = min {I(A), I(B)} = I(A)I(B)

= I(A)
[
1− I(BC)

]
= I(A)− I(A)I(BC)

= I(A)−min
{
I(A), I(BC)

}
= I(A)− I(A ∩BC)

= I(ti ≤ τj)− I(ti ≤ τj−1).
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For ti ≤ τ1 the cumulative hazard rate can be found as follows:

H(ti; ζi) =

∫ ti

0

h(u; ζi)du

= λ1 exp(β′ζi)

∫ ti

0

νuν−1du

= λ1 exp(β′ζi)t
ν
i

Then, for τ1 < ti ≤ τ2:

H(ti; ζi) =

∫ ti

0

h(u; ζi)du

=

∫ τ1

0

exp(β′ζi)λ1νu
ν−1du+

∫ ti

τ1

exp(β′ζi)λ2νu
ν−1du

= λ1 exp(β′ζi)τ
ν
1 + λ2 exp(β′ζi)(t

ν
i − τ ν1 )

and so on until ti > τk :

H(ti; ζi) =

∫ ti

0

h(u; ζi)du

=

∫ τ1

0

exp(β′ζi)λ1νu
ν−1du+ · · ·+

∫ ti

τk

exp(β′ζi)λk+1νu
ν−1

= λ1 exp(β′ζi)τ
ν
1 + · · ·+ λk+1 exp(β′ζi)(t

ν
i − τ νk ).

More generally, we can express the cumulative hazard function as

H(ti; ζi) =



λ1 exp(β′ζi)t
ν
i ti ≤ τ1

λ1 exp(β′ζi)τ
ν
1 + λ2 exp(β′ζi)(t

ν
i − τ ν1 ) τ1 < ti ≤ τ2

...

λ1 exp(β′ζi)τ
ν
1 + · · ·+ λk+1 exp(β′ζi)(t

ν
i − τ νk ) ti > τk

which can be rewritten

H(ti; ζi) =



λ1 exp(β′ζi) [(ti ∧ τ1)ν − (ti ∧ τ0)ν ] ti ≤ τ1∑2
j=1 λj exp(β′ζi) [(ti ∧ τj)ν − (ti ∧ τj−1)ν ] τ1 < ti ≤ τ2

...∑k+1
j=1 λj exp(β′ζi) [(ti ∧ τj)ν − (ti ∧ τj−1)ν ] ti > τk

This can more simply be expressed as H(ti; ζi) =
∑k+1

j=1 λj exp(β′ζi) [(ti ∧ τj)ν − (ti ∧ τj−1)ν ]
since for j > 1, if ti < τj−1 then (ti ∧ τj)ν − (ti ∧ τj−1)ν = 0. Here, (ti ∧ τj) = min(ti, τj).

From here, it is easy to find the survival function since S(ti, ζi) = exp [−H(ti; ζi)].
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B.1.2 INVERSE TRANSFORM FOR SIMULATION

We generate from a Uniform(0,1) distribution and then use the inverse cumulative hazard

in order to simulate the time points using the inverse transform method. We will follow

the general simulation method suggested by Austin (2012). To simplify, we can work out

the inverse cumulative hazard rate for the case with one change point, but this can be

generalized to k change points.

In the case of one change point, the cumulative hazard rate can be expressed as

H(ti; ζi) =

λ1 exp(β′ζi)t
ν
i if ti ≤ τ1

(λ1 − λ2) exp(β′ζi)τ
ν
1 + λ2 exp(β′ζi)t

ν
i if ti > τ1.

We can partition the domain (and corresponding range) into two intervals, and so find the

inverse of the hazard within each of these. In the case of multiple change points, we would

partition the domain (and range) into k+1 intervals and find the inverse cumulative hazard

rate for each interval. The inverse of the cumulative hazard function when H(ti; ζi) ≤
λ1 exp(β′ζi)τ

ν
1 is given by

H−1(ti; ζi) =

(
ti

λ1 exp(β′ζi)

)1/ν

if ti ≤ λ1 exp(β′ζi)τ
ν
1 .

Similarly, we can find the inverse when H(ti; ζi) > λ1 exp(β′ζi)τ
ν
1 :

H−1(ti; ζi) =

(
ti − (λ1 − λ2) exp(β′ζi)τ

ν
1

λ2 exp(β′ζi)

)1/ν

if ti > λ1 exp(β′ζi)τ
ν
1 .

Therefore, we can simulate survival time as

Ti =


(

− log(ui)

λ1 exp(β
′ζi)

)1/ν

− log(ui) ≤ λ1 exp(β′ζi)τ
ν
1(

− log(ui)−(λ1−λ2) exp(β
′ζi)τν1

λ2 exp(β
′ζi)

)1/ν

− log(ui) > λ1 exp(β′ζi)τ
ν
1

where ui ∼ Uniform(0, 1) as described in the introduction of the method. The extension of

this work to multiple change points follows easily.

B.2 MAXIMUM LIKELIHOOD ESTIMATION DETAILS

Because h(ti; ζi) = f(ti; ζi)/S(ti; ζi), we can find the likelihood function of the Weibull
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AFT change point model with θ = (β, ν, λ1, . . . , λk+1, τ1, . . . , τk):

L(θ) =
N∏
i=1

[f(ti; ζi)]
δi [S(ti; ζi)]

1−δi

=
N∏
i=1

[h(ti; ζi)S(ti; ζi)]
δi [S(ti; ζi)]

1−δi

=
N∏
i=1

[h(ti; ζi)]
δi S(ti; ζi).

The log-likelihood function l(θ) = log(L(θ)) is

l(θ) =
N∑
i=1

δi log [h(ti; ζi)] +
N∑
i=1

log [S(ti; ζi)]

=
N∑
i=1

k+1∑
j=1

{
[X(τj)−X(τj−1)] log

[
νλjt

ν−1
i exp(β′ζi)

]
−λj exp(β′ζi) [(ti ∧ τj)ν − (ti ∧ τj−1)ν ]}

where X(t) = δiI(ti ≤ t), and
∑N

i=1X(t) can be interpreted as the number of deaths up

until time t. If we fix τj, j = 1, . . . , k, the estimate λ̂j for λj, j = 1, . . . , k + 1 maximizes

l(θ; τj, . . . , τk):

N∑
i=1

{
[X(τj)−X(τj−1)] log

[
νλjt

ν−1
i exp(β′ζi)

]
− λj exp(β′ζi)

[
(ti ∧ τj)ν − τ νj−1

]
I(ti > τj−1)

}
.

The score functions for λj are found by

∂l

∂λj
=

N∑
i=1

{
[X(τj)−X(τj−1)]

1

λj
− exp(β′ζi)

[
(ti ∧ τj)ν − τ νj−1

]
I(ti > τj−1)

}
.

Setting the score function equal to zero, we find λ̂j:

N∑
i=1

{
[X(τj)−X(τj−1)]

1

λ̂j
− exp(β′ζi)

[
(ti ∧ τj)ν − τ νj−1

]
I(ti > τj−1)

}
= 0

=⇒
N∑
i=1

[X(τj)−X(τj−1)]
1

λ̂j
=

N∑
i=1

exp(β′ζi)
[
(ti ∧ τj)ν − τ νj−1

]
I(ti > τj−1)

=⇒ 1

λ̂j
=

∑N
i=1 exp(β′ζi)

[
(ti ∧ τj)ν − τ νj−1

]
I(ti > τj−1)∑N

i=1 [X(τj)−X(τj−1)]

=⇒ λ̂j =

∑N
i=1 [X(τj)−X(τj−1)]∑N

i=1 exp(β′ζi)
[
(ti ∧ τj)ν − τ νj−1

]
I(ti > τj−1)

.
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If we substitute this in to l(θ) we can find the profile likelihood of ν and τj:

l(θ) =
∑
i

∑
j

{
[X(τj)−X(τj−1)]

[
log(νtν−1i exp(β′ζi)) + log

(
λ̂j

)]
− λ̂j exp(β′ζi) [(ti ∧ τj)ν − (ti ∧ τj−1)ν ]

}
=
∑
i

∑
j

[X(τj)−X(τj−1)]
[
log(νtν−1i exp(β′ζi)) + log

(
λ̂j

)]
−
∑
i

∑
j

λ̂j exp(β′ζi) [(ti ∧ τj)ν − (ti ∧ τj−1)ν ] .

If we consider the second term, we see that

∑
i

∑
j

( ∑
i [X(τj)−X(τj−1)]∑

i exp(β′ζi)
[
(ti ∧ τj)ν − τ νj−1

]
I(ti > τj−1)

)
exp(β′ζi) [(ti ∧ τj)ν − (ti ∧ τj−1)ν ]

=⇒
∑
j

( ∑
i exp(β′ζi) [(ti ∧ τj)ν − (ti ∧ τj−1)ν ]∑

i exp(β′ζi)
[
(ti ∧ τj)ν − τ νj−1

]
I(ti > τj−1)

)∑
i

[X(τj)−X(τj−1)]

=⇒
∑
j

(∑
i exp(β′ζi)

[
(ti ∧ τj)ν − τ νj−1

]
I(ti > τj−1)∑

i exp(β′ζi)
[
(ti ∧ τj)ν − τ νj−1

]
I(ti > τj−1)

)∑
i

[X(τj)−X(τj−1)]

=⇒
∑
j

∑
i

[X(τj)−X(τj−1)] =
∑
i

[X(τk+1)−X(τ0)] ∵ this is a telescoping sum.

It is clear that
∑

iX(τ0) = 0, and
∑

iX(τk+1) is the total number of deaths. Then, finally

∑
i

∑
j

( ∑
i [X(τj)−X(τj−1)]∑

i exp(β′ζi)
[
(ti ∧ τj)ν − τ νj−1

]
I(ti > τj−1)

)
exp(β′ζi) [(ti ∧ τj)ν − (ti ∧ τj−1)ν ]

=
∑
i

X(τk+1).

Since we are trying to maximize and
∑

iX(τk+1) is a constant, we do not need to include

this term. The location of the maximums τj, j = 1, . . . , k will be the same - the values of

the likelihood function will simply be shifted by
∑

iX(τk+1). The final profile likelihood for

τj and ν is

l(θ) =
∑
i

∑
j

[X(τj)−X(τj−1)]

{
log(νtν−1i exp(β′ζi))

+ log

[ ∑
i [X(τj)−X(τj−1)]∑

i exp(β′ζi)
[
(ti ∧ τj)ν − τ νj−1

]
I(ti > τj−1)

]}
.
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B.3 WALD TEST VARIANCE

We use the single change point model without covariates for simplicity. Then, the

estimates for λj, j = 1, 2 are

λ̂j =

∑N
i=1 [X(τ̂j)−X(τ̂j−1)]∑N

i=1

[
(ti ∧ τ̂j)ν̂ − τ̂ ν̂j−1

]
I(ti > τ̂j−1)

.

Let ψ1 = ν and ψ2 = τ be the parameters of interest, and g(·) be a continuous function.

Then, let ψ̂1 and ψ̂2 be the maximum likelihood estimates. For large samples with some

regularity conditions met (including some constraints leaving out the largest two observa-

tions as in Yao (1986)), then (ψ̂1, ψ̂2) has a bivariate normal distribution with mean (ψ1, ψ2)

and variance-covariance matrix estimated by the observed Fisher information. Let θ1 = λ1

and θ2 = λ2. We can see that θ1 = g1(ψ1, ψ2) and θ2 = g2(ψ1, ψ2). For h, l = 1, 2, let

glh = ∂gh(ψ̂1,ψ̂2)

∂ψ̂l
. Then, we have the partial derivatives

g11 =
∂g1(ψ̂1, ψ̂2)

∂ψ̂1

g12 =
∂g2(ψ̂1, ψ̂2)

∂ψ̂1

g21 =
∂g1(ψ̂1, ψ̂2)

∂ψ̂2

g22 =
∂g2(ψ̂1, ψ̂2)

∂ψ̂2

Let ∆(x− a) = 1
2π

∫∞
−∞ e

ip(x−a)dp be the Dirac delta function and then

g11 =
−
{∑N

i=1X(τ̂)
}{∑N

i=1(ti ∧ τ̂)ν̂ log(ti ∧ τ̂)
}

{∑N
i=1(ti ∧ τ̂)ν̂

}2

g21 =

{∑N
i=1 δi∆(τ̂ − ti)

}{∑N
i=1(ti ∧ τ̂)ν̂

}
−
{∑N

i=1X(τ̂)
}{∑N

i=1 I(ti > τ̂)
}

{∑N
i=1(ti ∧ τ̂)ν̂

}2

g12 =
−
{∑N

i=1 [δi −X(τ̂)]
}{∑N

i=1

[
tν̂i log(ti)− τ̂ ν̂ log(τ̂)

]
I(ti > τ̂)

}
{∑N

i=1

[
tν̂i − τ̂ ν̂

]
I(ti > τ̂)

}2

g22 =
−
{∑N

i=1 δi∆(τ̂ − ti)
}{∑N

i=1

[
tν̂i − τ̂ ν̂

]
I(ti > τ̂)

}
{∑N

i=1

[
tν̂i − τ̂ ν̂

]
I(ti > τ̂)

}2

+

{∑N
i=1 [δi −X(τ̂)]

}{∑N
i=1

[
δi
(
tν̂i − τ̂ ν̂

)
∆(τ̂ − ti) + ν̂τ̂ ν̂−1I(ti > τ̂)

]}
{∑N

i=1

[
tν̂i − τ̂ ν̂

]
I(ti > τ̂)

}2
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For large samples, Cov
[
gl(ψ̂1, ψ̂2), gm(ψ̂1, ψ̂2)

]
= g1l g

1
mV ar(ψ̂1)+(g1l g

2
m+g2l g

1
m)Cov(ψ̂1, ψ̂2)+

g2l g
2
mV ar(ψ̂2), l,m = 1, 2. If l = m = 1, this is clearly the variance of λ̂1 and similarly if

l = m = 2 for λ̂2. If l 6= m, it is the covariance term.

We see that even if all assumptions and regularity conditions are met, finding the distri-

bution of the scale parameters based on the Delta method still has some difficulties. This

is potential for ongoing future research.

B.4 ADDITIONAL SIMULATION RESULTS

In this section, we show some results from a simulation study of a smaller sample size

with some settings that are more similar to the data from the bladder recurrence example.

We simulate the data from a model with two change points and one binary covariate. The

model is then:

h(ti; ζi) = νλ1 exp(βζi)t
ν−1
i I(0 < ti ≤ τ1) + νλ2 exp(βζi)t

ν−1
i I(τ1 < ti ≤ τ2)

+ νλ3 exp(βζi)t
ν−1
i I(t > τ2).

(B.1)

The results from Table 12 show point estimates from 1000 replicated samples, each of

size 100. We see that compared to the results with a larger sample size shown in Section

3.5, the point estimate results are still quite accurate. As expected, the bias tends to be a

bit increased than at the larger sample sizes but overall the estimates are still acceptable.

Additionally, we see that the MSE is also increased compared to the larger sample sizes,

which is also to as is expected. However, the increases in MSE are not so large that the

results would be considered unreliable. There were convergence issues for the piecewise

constant hazard method at all censoring rates reported, and the simulated trials that had

this issue were removed from the calculations for comparison purposes.

Overall, throughout our extensive simulation study for this method we found that the

smaller sample sizes tend to follow this trend and be less accurate with higher MSE. If the

sample size becomes too small (for example a sample size of 50), the results could be quite

unreliable and the proposed method would not be preferred for a data set of this size.

B.5 SEER LOCALIZED/REGIONAL PROSTATE CANCER CASE

ANALYSIS

Here, we analyze the localized/regional cases. There were 262,211 men with 61.22%

censoring. The average age at diagnosis was 66.862 years and there were 34,588 (13.191%)

“Black,” 212,413 (81.008%) “White,” and 15,210 (5.801%) were “Other.” Using the same
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selection procedure of Akaike (1974), we find the model to be the same as shown in (3.8). We

find two significant change points at 11 and 160 with LR0 = 70096.37 and LR1 = 1190.307.

Table 12: Averaged point estimates (MEAN) and MSE values of the estimated parame-

ters of the proposed model and piecewise constant hazard model based on 1000 replicated

simulations for B.1.

Censoring Rate Parameter Parameter Value
Constant Hazard Model Proposed Model

MEAN MSE MEAN MSE

0%

ν 1.7500 – – 1.8584 0.0518

β -0.5000 – – -0.5061 0.0029

λ1 0.2500 0.1462 0.0150 0.2396 0.0088

λ2 0.1000 0.5121 0.1824 0.0983 0.0381

λ3 0.0500 0.6229 6.6981 0.0690 0.2112

τ1 3.0000 1.0242 4.2488 2.9631 1.5683

τ2 6.0000 5.8975 6.8057 5.5675 0.0450

20%

ν 1.7500 – – 1.831 0.0518

β -0.5000 – – -0.5083 0.0522

λ1 0.1000 0.0878 0.0016 0.0952 0.0009

λ2 0.0500 0.3273 0.0840 0.0739 0.0159

λ3 0.0100 0.2072 0.1103 0.0400 0.0282

τ1 6.0000 1.7474 18.6374 5.7002 1.0190

τ2 10.0000 7.5617 15.3814 8.9669 3.4490

40%

ν 1.7500 – – 1.9536 0.2916

β -0.4500 – – -0.4594 0.0001

λ1 0.0100 0.0234 0.0003 0.0098 0.0009

λ2 0.0050 0.0722 0.0059 0.0119 < 0.0001

λ3 0.0001 0.0030 < 0.0001 0.0006 4.3884

τ1 5.0000 10.6196 54.362 4.9948 1.5242

τ2 20.0000 19.7148 4.5108 19.3403 1.0840

The estimation results for this analysis including covariates can be found in Table 13.

In this case, we see that ν̂ indicates that the hazard is not constant, and so the difference in

estimating the location of change points corresponds to the results of the simulation study.

We see that the piecewise constant method estimates an increase in hazard after 2.5 years

and another increase after 7.5 years. Our proposed method, on the other hand, estimates

an increase in hazard after about a year, and a subsequent decrease after 13.3 years.
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Table 13: Point estimates and 95% confidence intervals in parentheses for SEER prostate

cancer data considering only localized/regional cases by the proposed model and the constant

hazard model by Goodman et al. (2011).

Parameters Constant Hazard Model Proposed Model

ν – 1.5758 (1.5707, 1.5809)

Age – 0.1020 (0.1016, 0.1024)

Race (Other) – -0.4572 (-0.4727, -0.4417)

Race (White) – -0.3664 (-0.3756, -0.3572)

λ1 0.0019 (0.0018, 0.0020) 0.0000041 (< 0.0001)

λ2 0.0030 (0.0029, 0.0031) 0.0000219 (< 0.0001)

λ3 0.0048 (0.0047, 0.0049) 0.0000032 (< 0.0001)

τ1 30 (29.9807, 30.0193) 11 (10.9936, 11.0064)

τ2 90 (89.9409, 90.0591) 160 (159.4212, 160.5788)

If we do not consider covariates, our method estimates ν̂ = 1.2876, λ̂1 = 0.0007, λ̂2 =

0.0009, λ̂3 = 0.0011, τ̂1 = 118 and τ̂2 = 162. Figure 13 shows that, when the hazard is

not piecewise constant, the flexibility of the proposed model allows for a more reasonable

fit. We can also see that our estimation method again matches with previous analyses that

show the highest hazard for “Black,” and the lowest for “Other.” We can also see that

the estimation is quite reasonable, despite a higher level of censoring. Additional figures

showing the Kaplan-Meier survival curves and the estimates of survival using the proposed

method are not visually as explanatory as the cumulative hazard estimates for this data.

For the localized and regional prostate cancer cases, while race is a significant explanatory

covariate, the survival curves look visually to be quite close to one another.

In Figure 13, on the left the Nelson-Aalen estimate of the cumulative hazard of the

data is represented by the solid grey line. The black dashed line represents the cumulative

hazard estimated by our method and the light grey dashed line represent the estimate of the

piecewise constant method. On the right, the Nelson-Aalen estimates by race is the solid

lines, while the proposed method is the dashed lines. The black represents “White,” dark

grey represent “Other,” and light grey represents “Black.” In both plots, the vertical dotted

lines represent the location of the change point estimates for the proposed method.
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Figure 13: Left: Estimation without covariates. Right: This figure includes estimation with

race and averaged age covariates.
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APPENDIX C

DETAILED PROOFS FOR CONVERGENCE AND

CONSISTENCY OF EMPIRICAL DIVERGENCE MEASURE

Lemma 1. If Assumption 1 holds,

sup
η∈[κT ,1−κT ]

∣∣∣∣∣
(
T

2

)−1∑
i<j

|Zi − Zj|α−[η2µα1 + (1− η)2µα2 + 2η(1− η)µα12]

∣∣∣∣∣ a.s.→ 0, as T →∞.

Proof. Let ε∗ > 0. Pick ε > 0 so that ε3 + ε2(2 + 3µα1 ) + ε < ε∗. Define sets A1 = {(i, j)|i <
j;Zi, Zj ∼ F1}, A2 = {(i, j)|Zi ∼ F1, Zj ∼ F2}, and A3 = {(i, j)|i < j;Zi, Zj ∼ F2}. Then,

let M1,M2, and M3 be the number of elements in A1, A2, and A3, respectively. Note that

these sets are disjoint.

By the Strong Law of Large Numbers for U -Statistics proposed by Hoeffding, there exists

an N1 ∈ N such that whenever M1 > N1∣∣∣∣∣
(
M1

2

)−1∑
A1

|Zi − Zj|α−µα1

∣∣∣∣∣ < ε.

We can similarly define N2, N3 ∈ N. Then, there also exists an N4 ∈ N such that, for

T > N4,
1

T−1 < ε/2 (Hoeffding, 1961).

Let N = max{N1, N2, N3, N4}. Then, ∀ TκT > N and ∀ η ∈ [κT , 1− κT ] it is true that

M1 = bηT c > N1, M2 = bηT c(T − bηT c) > N2,M3 = (T − bηT c) > N3, and also that each

of | r
T
− η|, | r−1

T−1 |, |
s
T
− (1− η)|, and finally | s−1

T−1 − (1− η)| are less than ε.

It is then true that(
T

2

)−1∑
A1

|Zi − Zj|α =
2

T (T − 1)

∑
A1

|Zi − Zj|α

=
2

r(r − 1)

( r
T

)( r − 1

T − 1

)∑
A1

|Zi − Zj|α

=

(
r

2

)−1 ( r
T

)( r − 1

T − 1

)∑
A1

|Zi − Zj|α.
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Also, ∣∣∣ r
T
− η
∣∣∣ ∣∣∣∣ r − 1

T − 1
− η
∣∣∣∣ < ε2

=⇒
∣∣∣∣( rT )

(
r − 1

T − 1

)
− η

(
r

T
− r − 1

T − 1

)
+ η2

∣∣∣∣ < ε2

=⇒
∣∣∣∣( rT )

(
r − 1

T − 1

)
+ η2

∣∣∣∣ < ε2 + η

(
r

T
− r − 1

T − 1

)
< ε2 + 2ηε ∵ ε > 0 is arbitrary

=⇒
∣∣∣∣( rT )

(
r − 1

T − 1

)
− η2

∣∣∣∣ < ∣∣∣∣( rT )
(
r − 1

T − 1

)
+ η2

∣∣∣∣ < ε2 + 2ηε ∵ r, T ≥ 1

Then, we can rearrange the inequalities so that∣∣∣∣( rT )
(
r − 1

T − 1

)
− η2

∣∣∣∣
∣∣∣∣∣
(
r

2

)−1∑
A1

|Zi − Zj|α−µα1

∣∣∣∣∣ < ε3 + 2ηε2

=⇒

∣∣∣∣∣
(
r

2

)−1 ( r
T

)( r − 1

T − 1

)∑
A1

|Zi − Zj|α−
( r
T

)( r − 1

T − 1

)
µα1

−η2
(
r

2

)−1∑
A1

|Zi − Zj|α+η2µα1

∣∣∣∣∣ < ε3 + 2ηε2

=⇒

∣∣∣∣∣
(
r

2

)−1 ( r
T

)( r − 1

T − 1

)∑
A1

|Zi − Zj|α+η2µα1

∣∣∣∣∣ < ε3 + 2ηε2 +
( r
T

)( r − 1

T − 1

)
µα1

+ η2
(
r

2

)−1∑
A1

|Zi − Zj|α

< ε3 + 2ηε2 + ε2µα1 + η2ε < ε3 + 2ηε2 + µα1 ε
2(1 + 2η) + η2ε

=⇒

∣∣∣∣∣
(
r

2

)−1 ( r
T

)( r − 1

T − 1

)∑
A1

|Zi − Zj|α−η2µα1

∣∣∣∣∣
<

∣∣∣∣∣
(
r

2

)−1 ( r
T

)( r − 1

T − 1

)∑
A1

|Zi − Zj|α+η2µα1

∣∣∣∣∣
< ε3 + ε2(2η + (1 + 2η)µα1 ) + η2ε

< ε3 + ε2(2 + 3µα1 ) + ε.

So, T > N implies that

P

(∣∣∣∣∣
(
r

2

)−1 ( r
T

)( r − 1

T − 1

)∑
A1

|Zi − Zj|α−η2µα1

∣∣∣∣∣ < ε∗

)
= 1 for ε∗ > 0.

We can apply similar reasoning to the sets defined by A2 and A3. Then, using the triangle

inequality, we complete the proof since ε∗ > 0 is arbitrary, and we have uniform convergence.
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Theorem 1. Suppose Assumption 1 holds. Let τ̂ found at time point tr̂ be the point estimate

of treatment time-lag effect for a pooled sample with T distinct survival times, where r̂ =

argmax
r

Q̂(Xr,Yr;α). Then, if T is large enough so that η ∈ [κT , 1− κT ] , we have for all

ε > 0

P

(
lim
T→∞

∣∣∣∣η − r̂

T

∣∣∣∣ < ε

)
= 1.

Proof. Let T be such that η ∈ [κT , 1− κT ]. Then, for any η̃ ∈ [κT , 1− κT ], let r̃ = bη̃T c
and s̃ = T − r̃. Then, Xr̃ = {Z1, . . . , Zr̃} and Yr̃ = {Zr̃+1, . . . , ZT} for all T . Then

Ê(Xr̃,Yr̃;α)
a.s.→
(
η

η̃
I(η̃ ≥ η) +

1− η
1− η̃

I(η̃ < η)

)2

E(X, Y ;α)

= h(η̃; η)E(X, Y ;α),

as T → ∞, uniformly in η̃. The maximum of h(η̃; η) is attained when η̃ = η. We also see

that
1

T
Q̂(Xr̃,Yr̃;α)

a.s.→ η̃(1− η̃)h(η̃; η)E(X, Y ;α),

as T → ∞, uniformly in η̃. Additionally, the maximum of η̃(1 − η̃)h(η̃; η) is also attained

when η̃ = η. Now, define

r̂ = argmax
r∈{dTκT e,...,bT (1−κT )c}

Q̂(Xr,Yr;α),

and the interval

Γ̂ = argmax
η̃∈[κT ,1−κT ]

Q̂(Xr̃,Yr̃;α).

Then, we can see that r̂
T
∈ Γ̂. Since

1

T
Q̂
(
Xr̂/T ,Yr̂/T ;α

)
>

1

T
Q̂ (Xη,Yη;α)− o(1),

we have that

1

T
Q̂
(
Xr̂/T ,Yr̂/T ;α

)
≥ η(1− η)h(η; η)E(X, Y ;α)− o(1),

by the almost sure uniform convergence shown previously. Letting η̂ = r̂
T
, it follows that

0 ≤ η(1− η)h(η; η)E(X, Y ;α)− η̂(1− η̂)h(η̂; η)E(X, Y ;α)

≤ 1

T
Q̂(Xη̂,Yη̂;α)− η̂(1− η̂)h(η̂; η)E(X, Y ;α) + o(1).

This tends to 0 as T →∞. For every ε > 0, there exists an ε∗ such that

η̃(1− η̃)h(η̃; η)E(X, Y ;α) < η(1− η)h(η; η)E(X, Y ;α)− ε∗
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for all η̃ with |η̃ − η|≥ ε. Therefore,

P
(
lim
T→∞

|η̂ − η| ≥ ε
)
≤ P

(
lim
T→∞

η̂(1− η̂)h(η̂; η)E(X, Y ;α) < η(1− η)h(η; η)E(X, Y ;α)− ε∗
)

= 0.

This proves the claim of uniform convergence and strong consistency of the estimator. To

specifically consider the rates of convergence, we need additional information about the

distribution of estimators which, in turn, depends on the distribution of the data (which is

considered to be unknown or arbitrary).
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