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JOURNAL OF MATHEhIATICAL ANALYSIS AND APPLICATIONS 62, 445-452 (1978) 

On Complementary Extremum Principles 

J. SWETITS 

Department of Mathematics, Old Dominion University, Norfolk, Virginia 23508 

C. ROGERS 

Department of Mathematics, University of Western Ontario, London, Canada 

Submitted by W. F. Ames 

Important complementary extremum principles are generated without 
recourse to general variational theory. The results are illustrated by an applica- 
tion to a class of boundary value problems in Magnetohydrodynamics. 

The early work on complementary variational principles is due to Noble [l]. 
The method is concerned with the construction of upper and lower bounds for 
the solution of variational problems. The technique has been subsequently 
developed, in an abstract form, by Rall [2] and especially Arthurs ([3-71, for 
example). The latter author has given many interesting physical applications. 
In [3], genera1 dual extremum principles are established for linear boundary 
value problems by use of the general canonical theory of variational calculus. 
Here, the results are established in a new direct manner. As an illustration, 
application is made to magnetohydrodynamic channel flow. 

It is noted that a valuable account of dual extremum principles and their 
diversity of application is given by Noble and Sewell [8]. 

THE EXTREMUM PRINCIPLES 

Consider the linear boundary value problem defined by 

4 =f in K (1) 

uT(#--&J =0 on aV, (4 

A = T*T+Q, (3) 
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where T: H4 + H, and its adjoint T*: H, -+ Hd, are, in turn, linear operators 
on the real Hilbert spaces Hd and H, with inner products ( > and ( ), respectively, 
and are such that 

(u, 3) = (T*u, 4) i- h, +-~11, Q+ED~, UED~~. (4) 

Here, ur: Hb -+ H, , while [u, (I&] denotes boundary terms. Further, 
Q: H+ --f H$ is a symmetric positive operator on D,; that is, 

($1, QAJ = (Qh 3 A>, 41 ,&~DDo, (5) 

<A Q$> b 0, +EDo- (6) 

Finally, f E Hd is specified while $s is a prescribed function on the boundary aV 
of the region V. DA is dense in Hd . 

The complementary extremum principles state that 

W”Y) < I(+> < JP), (7) 

where + is the exact solution of the boundary value problem defined by (l)-(3) 
and the functionals G( TY), I($), J(Q) are given, in turn, by 

G(TY) = - &(TY, TY) - .t<QY, , Ylu,> + [Tys ~rbl, 
Q + 0 (Qyl =f- T*Ty, ye&), (8) 

= - HTK W + [TY: wbl, 
Q=O (Y~{YrT*TY=~inV~), l 

I($> = - i(f, d> + Q[T$, ‘dB1, (9) 

J(@) = W@, T@l + S@‘, Q@> - (f, @‘> - [T@, ur(@ - AJI 
([T(@ - $), a&b - t&J] < 0, @ E DA). (lo) 

Proof. (a) I($) & I(@). It is given that @ E DA and 

VP - 41, UT-(@ - hdl < 0. (11) 
Now, 

0 < KU@ - $1, TP - $11 
= CT@, T@) - 2(3”+, T@) + (V, T$) 
= CT@, T@) - XT*T+, @> - W95,44 + G”*T4,$> + [V, wbl 

@Sk (2) and (4)) 
= CT@, W - 2<f, @> + XQA W + (f, 4) - <SC, 4) - W, wbl 

+ TV> whJ - l2% uA1) (using (1) and (3)) 

= {CT@, T@> + (0, Q@> - Xf, @> - U’@> UT(@ - AdI 
+ <f, (6) - CT4, v$~l~ + XQd, @> - <@, Q@> - (PA 4) 
+ 2{[T@, eT(@ - &Jl + W, ~BI- L’Y, +W. (12) 
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But, from (5) and (6) it is seen that 

VQ$, @‘j - <@, Q@> - C&d, 4) = -(Q(@ - $1, @ - C> d 0. (13) 

Further, 

Use of (13) and (14) in (12) shows that 

In view of (11) and (13), relation (15) implies the complementary variational 
principle I($) < J(Q). 

(b) G(TY) d 44). 

(i) Q =# 0. Now, 

0 G (T(u' - 41, w - +>> 
= (TY, TY) - WY’, T4> + (T4, T4) 
= (TY, Ty) - 2W*TY d> + [T’J’, &,I: + <T*Th C> + [T$, W+BI 

(using (2) and (4)). (16) 

But, 

Q?Pl =f- T*TY, YE&, 

so that, from (16), (I), and (3), 

0 < (W TV - (ft 4) -I- P”+, wbl - <Qd, 9) + XQY1, $: - ‘WY 4~1 
= WC TY’) + <Qyl, ylv,> - WY wbl - ‘f, d> + P’$, 4~1: 

- <Sty, - $1, YI - $9 wing (5)) 
3; {(TY Ty) + <Qyl> y,> - WY w&I - if, C> + [T+, wbtl~. 

Hence, G( TY) <I($), Q # 0. 

(ii) Q =: 0. Relation (16) is derived as above. But now, 

T*TY= f in b‘ 

so that 

and the result G(TY) < I($), Q = 0, follows. 
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MAGNETOHYDRODYNAMIC CHANNEL FLOW 

Extremum principles for magnetohydrodynamic channel flow problems have 
been discussed by Wenger [9], Smith [IO, 111 and Sloan [12]. Here the use of 
the above formulation is illustrated in the context of such a problem. 

The steady flow of a viscous, incompressible electrically conducting fluid 
in an insulated cylindrical pipe with cross-sectional area A and boundary &I 
is considered. The X, Y-plane is normal to the axis of the channel. There is a 
uniform pressure gradient K in the Z-direction and an applied magnetic field H, 
in the X-direction. The governing equations are [13] 

PW+Mg=-1, (17) 

VeB+Mg=O, (18) 

W=B=O on aA, (19 

where dimensionless variables and parameters have been introduced according to 

W = vpW,/[a2K], B = H,(vp/u)““/[a”K], 
(X, Y) = 4%Y), 

M = pHoa(a/vp)l’2, 
(20) 

where W, is the fluid velocity, H, is the induced axial magnetic field, cy is a 
representative length in the cross section of the pipe, and M is the Hartmann 
number. Further, p is the density, v is the kinematic viscosity, p is the magnetic 
permeability, and 0 is the electrical conductivity of the fluid. 

Equations (17), (18) may be written in the operator form 

where 

[T*T+Q]+ =f in A, (21) 

T= [“b”” ;], T* = [-,“” ;] , (22), (23) 

(24), (25) 

(26) 

while the boundary conditions become 

4 = 0 on t3A. (27) 
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Here, + is treated as an element of the real vector Hilbert space HV with inner 
product defined by 

<A’y> =j (F*Y)dA (28) A 

where @ denotes the transpose of 4. It is seen that 

T:HpH,+ x Ii,, T*:H$ x H?-fH?, 

Q:Hh-+H+. 
(29) 

The inner product of two elements 9, ‘y E H, x H+ is defined by 

where 

Thus, if 

(311, (32) 

then 

u= Ul - [I3 112 

(3, T+) = (11, rt “1) = IA u1 grad w dA, (33) 

(30) 

(34) 

whence, by Green’s theorem in the plane, 

(u_, W) = (T*u, 4) + [u_, 41, 
where the conjoint of u and 4 is given by - 

(35) 

[y, adI = $a, 4---~12dx + ~ll@~, (36) 

where 
Ull q= . 

[ I u12 

The domain D, is taken as the collection of elements in H+ which satisfy 
(18), possess the required derivatives in A u M, and satisfy B = 0 on &4. It is 
assumed throughout that A and 8A are of such a type as to permit the use of 
Green’s theorem in the plane. 

If 

+i = [;I] ED,, i = 1,2, 
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then 

= sl A 
-Mwl+$ + MB, 2 + B,V2B2 

+Mw,$- MB, 2 - B,V2B, dA; 
I 

that is, from (18), 

= 
SL A 

-Mw, $j$ + Mw, 21 dA 

= s, [-M y$ (B,w,) + MB, $$ + M & (B,w,) - MB, 21 dA 

=M 
k! aA P1w2 - B24 4 + s, [-BzV2B, + &V%l dA] 

=M 
Ii [( 

B,w, - B,w, - B, 
aA 

z+Blf$]dy 

aB2 
+ [Ba++$~]/ 

= 0, 

since B, = B, = 0 on i3A. Thus, Q is a symmetric operator on D, . Further, in 
view of (IS), 

(4984) =s, I- Mwg+MBg+BV2BjdA 

= 
sl 

-Mw s/ dA 

-41,,MBwdy-11~(B~)+~(B~) 

- ($-r - (+)‘r dA 

= 
Lf rl 

-MBw - B 
aA 

g/ dy + B $- dx] + s, (VB)O dA 

= s (VB)2 dA > 0, 
A 

since B=O on aA, FEDS. Hence, Q is a positive operator on D, . 
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Result (7) may now be used to give 

4.51 

[I’, PI - (VW - (VW,>~I d/f + 2 f,, [WI 2 dy - w, 2 dx] 1 
(37) 

-G I w dA < [(VB2)2 + U, - U, + U, * U,] dA, 
A s A 

where 

~=[;jtH$xN,, [pb i= 1,2, 

and B, , U, are related according to 

M aB2 __ = -{I j div U,}. 
3X 

The sharpest upper bound is obtained by taking U, = 0. Thus, upper and lower 
bounds have been generated for the efflux of the conducting fluid through the 
insulated channel. 
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