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ABSTRACT

DOWN-REGULATION OF NATURAL KILLER CELL ACTIVATION IN RESPONSE 
TO INFLUENZA VIRUS IN OLDER ADULTS

Yu Jing
Eastern Virginia Medical School and Old Dominion University, 2007 

Director: Dr. Yuping Deng 
Co-director: Dr. Stefan Gravenstein

Immune senescence contributes to influenza-associated high mortality and morbidity 

and reduced vaccine efficacy in elderly people. Type IT  cell (Thl)-mediated immunity 

plays a significant role in Immune responses to influenza infection and vaccination. 

Natural killer (NK) cells secrete significant amount o f IFN-7 , a hallmark Thl cytokine, in 

response to influenza infection. How aging influences human NK cell IFN -7  production 

in response to influenza virus has not been well documented. In this study we employed 

human peripheral blood mononuclear cells (PBMC) and performed intracellular cytokine 

staining and flow cytometry primarily to investigate how aging influences NK cell 

activation with respect to IFN-7  production in response to influenza virus. We have 

found that NK cell IFN-7  production, mediated by both soluble factors and cell-cell 

contact factors is down-regulated in elderly subjects compared to young subjects in 

response to influenza virus. As for soluble factors, IFN-o: and IFN-7  are proven to be 

important in inducing NK cell to produce IFN-7 . The frequencies o f IFN-a-producing 

plasmacytoid dendritic cells (pDC) and IFN-7 -producing T cells in PBMC are lower in 

the elderly subjects than in the young subjects. Further more, pDC from the young 

subjects produce more IFN-o: on a per-cell basis and mediate NK cells to produce more
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IFN-y than pDC from the elderly subjects. As for cell-cell contact factors, the 

expressions o f NKp44 and NKp46, two natural cytotoxicity receptors on NK cell surface 

specifically recognizing influenza hemagglutinin (HA) expressed on antigen presenting 

cells, are up-regulated upon influenza infection o f PBMC, but display higher expression 

levels in older subjects than young subjects. Our data have demonstrated that aging- 

related numerical and/or functional impairment in pDC and T cells results in lower 

production of IFN-o; and IFN-y, and consequently contributes to the down-regulation of 

IFN-y production in NK cells in response to influenza virus in older adults. How aging 

affects NK cell IFN-y production through influencing cell-cell contact regulation between 

NK cells and antigen presenting cells remains to be elusive. It’s our strong belief that our 

study and the related findings will help enrich our knowledge about how aging affects 

innate as well as adaptive immune system in response to influenza virus, and help build 

the fundamentals for developing more effective prophylactic and therapeutic approaches 

to fulfill the long-term goal o f reducing influenza morbidity and mortality and improving 

the quality o f life for the elderly.
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I. INTRODUCTION

Influenza virus is highly contagious and among those pathogens with greatest potential to 

cause life-threatening epidemic and pandemic outbreaks (1). Influenza-related morbidity 

and mortality increase with age, particularly in people over 65 years old, making 

influenza and its most common complication, pneumonia among the top 5 leading causes 

of death for this age group (2, 3). Vaccination can effectively prevent the occurrence and 

severity o f the disease (2, 4, 5). However, the vaccine efficacy is significantly lower in 

old people than in their young counterparts (3, 4, 6-12). The cause for the age-related 

increase in mortality and morbidity and reduction in vaccine efficacy is related to 

immune senescence (3, 4, 13). Investigations on how the immune responses to influenza 

virus are impaired in older adults will provide the fundamental for developing more 

effective prophylactic and therapeutic approaches for older people. Natural killer (NK) 

cells are the major lymphocytes in innate immune system and play a significant role in 

influenza-induced host defense by eliciting cytotoxicity and secreting IFN-y (14). How 

aging influences NK cell activation, particularly with respect to their function o f IFN-y 

production in response to influenza virus has not been well documented. The overall 

objective o f this study is to investigate the age-related changes and their potential causal 

factors in NK cell activation determined as the frequency o f IFN-y producing NK cells in 

response to influenza virus in older subjects.

1.1 Overview o f Influenza Virus

Influenza viruses are members o f the family o f orthomyxoviridae with single stranded, 

negative sensed segmented RNA genome. Based on antigenic differences in viral nuclear 

protein (NP), influenza viruses are classified into A, B and C three types (15). Influenza 

A and B are the two types known to be associated with diseases in human and animal 

(15).

The journal model for this dissertation is Journal o f  Immunology.
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• Epidemiology o f  influenza in humans

Influenza is a serious public health problem. According to Center for Disease Control, 

each year in the United States, 5% to 20% of the population gets influenza, over 200,000 

people are hospitalized, and about 36,000 people die from influenza (16-19). Influenza is 

associated with high morbidity (over 50%) and mortality in people 65 years and older 

(over 70%). The high morbidity rate is also found in children less than one year old (as 

high as 70%) (1, 20). Majority o f influenza occurs between late fall and early spring, 

indicating influenza is a seasonal disease (2 1 ).

Influenza viruses continuously undergo antigenic variation by two means: antigenic drift 

and shift (1). Antigenic drift involves minor changes in the envelope glycoproteins 

hemagglutinin (HA) and neuraminidase (NA) due to mutation, deletion or other changes 

in genes encoding these proteins during viral replication. Antigenic shift involves major 

changes in these molecules resulted from reassortment o f viral genomic segments when 

more than one strain o f influenza virus co-infect a host cell (1, 22). According to the 

antigenic diversity o f HA and NA, there have been identified 16 HA subtypes and 9 NA 

subtypes o f influenza A viruses (23). Changes in antigenecity o f HA and NA allow 

influenza viruses to evade from host immunity and significantly increases the chance for 

infection (1).

Influenza virus is associated pandemic outbreak (24). Important influenza pandemic 

outbreaks in human history documented since 1889 include those in 1889 (H2N?), 1899 

(H3N8), 1918 (H1N1), 1957 (H2N2), 1968 (H3N2) and 1977 (H1N1) (25). Three 

explanations have been addressed for the formation o f a pandemic strain (1). Antigenic 

shift could facilitate generation o f a new high-virulence strain. Direct transfer o f a high- 

virulence avian strain to human could occur or a human strain that caused an epidemic 

many years ago could re-emerge (1, 26). Direct transfer of a high-virulence strain from 

avian animals to human has been confirmed by the influenza epidemics that took place in 

Hong Kong during 1997-1998 (27). Influenza transmission is through the aerosol route. 

Avian and domestic animals are the important hosts and reservoirs o f influenza viruses

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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(1). Close contact with these animals may increase the chance for co-infection as well as 

direct transmission (1, 28).

• Replication o f  influenza virus

Influenza A genome contains 8 negative sensed RNA segments encoding for 10 proteins: 

polymerase B2 (PB2), PB1, polymerase A (PA), hemaglutinin (HA), NP, neuraminidase 

(NA), matrix proteins 1 and 2 (M l and M2), and non-structural proteins 1 and 2 (NS1 

and NS2) (15). The HA residing on the viral envelope mediates attachment o f the virus 

to target cell via binding to sialic acid residues on glycoproteins o f host cell membrane 

(29). After binding, influenza virion enters the cell by endocytosis and arrives in acidic 

endosome, where HA is cleaved and M2 ion channel is activated. Establishment of 

acidic environment in the virion induces alteration in M l/RNP and M l/H A  interactions 

and conformational change in the HA, consequently activating fusion o f viral envelope 

and endosomal membrane (15, 30). The nucleocapsid is released to the cytosol and 

transferred to the nuclear, in which viral replication takes place. Making use o f m7G cap 

from cellular mRNA, the three RNA polymerases PB2, PB1 and PA function in concord 

to transcribe the viral genome into positive sense mRNA and cRNA, the former used for 

protein translation and the latter used as the template for generating new viral genome. 

Newly generated NP protein migrates to nuclear and associates with newly synthesized 

vRNA to form nucleocapsid. The accumulation o f nucleocapsid in cytosol initiates the 

assembly (31, 32). Being facilitated by NA protein, the assembled virions are released 

from the cell via budding process and spread to other cells (31, 33).

• Influenza viral-host interaction

Like many other viruses, influenza virus encodes proteins that interact with cellular 

components and counteract the host anti-viral activity in favor o f its own replication. 

Influenza NS1 protein can modulate viral RNA transcription and replication, and inhibit 

nuclear export o f the host polyadenylated mRNA (34), mRNA splicing (35-37), and 

apoptosis (38). Further more, it is a potent inhibitor for IFN-a production and IFN-a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Figure 1. Replication o f influenza virus and therapeutic approaches. (Modified, original 

figure from Microbiology @ Leicester: Virology: Orthomyxoviruses or http://www- 

micro.msb.le.ac.uk/3035/Orthomyxoviruses.html)

effector function (39). Particularly, NS1 has been known to be able to bind to dsRNA 

and inhibit dsRNA-induced IFN-o: gene transcription (40, 41). It is also able to interfere 

with 2-5(A) synthetase/RNaseL as well as PKR activation pathways (42-45) to inhibit 

antiviral activity o f IFN-o:. A recent study has shown genes affected by N S1 are not 

restricted to IFN-o:. Those coding for human macrophage inflammatory protein lb  

(MIPlb), interleukin-12 p35 (IL-12 p35), IL-23 p l9 , RANTES, IL-8 , and CCR7 are 

down-regulated by NS1, underlying NS1 may “specifically suppress DC maturation, 

migration, and NK and T-cell stimulatory activity” (46). In addition to NS1, influenza 

HA has been newly revealed to selectively suppress interleukin 12 p35 transcription in 

murine bone marrow-derived dendritic cells (47). IL-12 production is under the 

detectable level in human PBMC stimulated with influenza virus alone (48, 49). Whether 

NS1 and/or HA protein significantly contribute to the cessation o f IL-12 production in 

human PBMC remains unknown.
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• Pathogenesis o f  influenza virus

Influenza virus infects and exclusively replicates in epithelial cells o f the respiratory tract 

and causes most significant pathology in the lower respiratory tract (1). Release o f viral 

particles from the apical surface o f the cells restricts systemic spread o f the virus but 

facilitates accumulation o f virus in the lumen of the respiratory tract for transmission 

through air ways (1). Local inflammation and edema are associated with infected tissues. 

Ciliated epithelial cells can be vacuolated, lose their cilia and become desquamated. Viral 

antigen can be detected in epithelial cells and mononuclear leukocytes. In the case o f 

severe primary viral pneumonia, mononuclear leukocyte infiltration, capillary dilation 

and thrombosis are predominant and viral antigens can be detected in type 1 and type 2  

alveolar cells and macrophages (50). Influenza A and B can cause the same spectrum of 

diseases. Primary viral pneumonia, combined viral-bacterial pneumonia and bacterial 

pneumonia following an influenza infection are three severe conditions associated with 

influenza. Complications are most often in the elderly (1)

• Treatment o f  influenza

Influenza can be treated or prevented by chemical drugs specifically targeting M2 ion 

channel (amantadine and rimantadine), NA protein (Zanamivir and Oseltamivir) or viral 

RNA replication (ribavirin,(51, 52). Distinct from chemical drugs, influenza vaccination 

has been proved to be the most cost-effective method in reduction o f influenza-related 

mortality and morbidity (53, 54). Because o f the antigentic drift, the strains used for 

generating the vaccine have to be determined every year. The vaccine contains three 

influenza strains, one A (H3N2) strain, one A (H1N1) strain, and one B strain, each 

representing one o f the three groups o f viruses circulating among people in a given year 

(1, 55).

There are two types o f licensed vaccines. The first is the inactivated or split trivalent 

influenza vaccine (TIV). It contains killed virus and are effective for both young and 

elderly subjects. The TIV is highly recommended to people at high risk o f influenza, 

including children 6-59 months, people 50 years and older, pregnant women and people

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6

with chronic medical conditions (16, 56). Though effective, the TIV efficacy is 

significantly lower in elderly subjects than that in the young, making the elderly people 

less effectively protected by the vaccination (3,12). Immune senescence is believed to 

contribute to the low vaccine efficacy in the older adults (13). The second type of 

influenza vaccine is a live attenuated influenza vaccine (LAIV) or FluMist. FluMist is 

recommended to healthy people between 5-49 years old and has been shown more 

effective to stimulate immune responses in healthy young adults or even high-risk 

subjects, such as children diagnosed with asthma than TIV (16, 57, 58).

1.2 Significance of Influenza Virus in Aging

Influenza/pneumonia is the fifth leading cause o f death for people 65 years and older (59) 

As recorded for the United States in year 2000, influenza/pneumonia claimed 60,261 

lives aged 65 years and older, which constituted 0.173% of the total population and 3.3% 

o f elderly o f the same age range in the country (59). Influenza infection is associated 

with high mortality and morbidity rates in the elderly. However, the vaccine efficacy is 

significantly lower in older people than that in the young. The lower vaccine efficacy is 

manifested by age-associated decline in intact humoral response to influenza vaccination 

and low protective rate o f the vaccines. In particular, seroconversion, measured as fold 

o f increments in sera antibody titer upon vaccination, and seroprotection, measured as 

certain dilution factor o f the sera antibody, rates are significantly lower in older subjects 

than those in the young (8 , 60). More over, in contrast to 70-90% protective rate in 

young adults, there is only 30-40% of influenza infection that can be prevented by 

vaccination in the elderly (3, 8-11). With the unprecedented enlargement o f the body of 

aged population, it is believed influenza will have a significant impact on the quality of 

life for the elderly.

1.3 Overview o f Aging

Aging is defined as “a process that converts healthy adults into frail ones with diminished 

reserves in most physiologic systems and an exponentially increasing vulnerability to
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most diseases and to death” (59). Aging has been viewed as a distinct variable from 

diseases. Richard Miller has proposed that slowing-down of aging alone will produce 

longer life expectation than curing any individual or combinations o f the diseases that are 

leading causes o f death for the elderly (Figure 2) (59, 61). According to R. Miller, a 

question yet to be answered is “which age-related changes can be considered a part of 

normal aging”. A study to examine aging effect on a particular event by comparing 

healthy young and “healthy” elderly subjects most time has to be in compliance with the 

fact that elderly are rarely completely “disease-free” and any disease could be a potential 

“confounding” factor for normal aging (59). On the other hand, if  the elderly subjects 

whose health status is strictly comparable to that o f their younger counterparts are used in 

a study, how much these extremely healthy subjects would represent the typical elderly 

population will be questionable.

just Like Today— average 50-year-old woman lives to 81

Cure Cancer Today 

Cure Heart Disease Today

Cure Cancer and H eart Disease Today

Cure Cancer, Heart Disease, Stroke, and Diabetes Today 

Slow Down Aging

40 50 60  70
Years of Life Left at Age 50

80

Figure 2. Life expectancy at age o f 50 by disease categories. (Source: R.A. Miller/ 

University o f Michigan)
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• Epidemiology o f  aging

Aging o f human population has formed a global trend. The growing elderly population is 

not only caused by “general increase in the overall population size” but also more 

influenced by increased longevity o f older people accompanied by declining birth rate 

following the birth boom in 1940’s and 1950’s (59). According to US Census Bureau, 

actual or projected total US population are 76.1 million in 1900, 152.3 million in 1950,

276.1 million in 2000 and 403.7 million in 2050, with 4.1%, 8.2%, 12.6% and 20.3% in 

each of these years accordingly being people 65 years and older. In 1900, only 39% male 

and 43% female could live till 65 years with average life expectancy o f 32-49 years. By 

1997, the percentages have been increased to 77% for male and 86  % for female with 

average life expectancy o f 67-80 years (59).

Aging is associated with greater mortality and morbidity. A wide range o f diseases such 

as cancer, cardiovascular and neurodegenerative disorders have a significant age- 

dependent onset (62). In 2000, heart diseases and cancer has claimed nearly one million 

older lives in the United States, which accounts for over 50% o f total death in older 

people in the year. For over two decades, heart diseases, sequentially followed by cancer, 

stroke, chronic obstructive pulmonary diseases (COPD), pneumonia/influenza, diabetes 

mellitus and Alzheimer’s diseases have been the leading causes o f death for people over 

65 years o f age (59). With the rapid increase in the aging population, it is important for 

us to gain better understanding about the aging mechanisms. This provides the 

fundamentals for developing more effective prophylactic and therapeutic approaches for 

diseases associated with advanced aging.

• Biology o f  aging

Aging, although not a disease, like many diseases is a genetically controlled, 

environmentally influenced process. Studies on caloric restriction (CR) or a single gene 

mutation that help produce long-lived animals in yeasts, nematodes, fruit flies and 

rodents have evidenced close relationships between activation o f dafl 6 gene, lower level
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of insulin and insulin-like growth factor 1 (IGF-1), increased DNA repairing ability and 

postponement o f aging (59, 63, 64). Caloric restricted mice and Ames dwarf (AD) mice, 

the latter carrying a mutation at Propl gene on chromosome 11 leading to their growth 

retardation live 30-50% longer and share lower body temperature and lower level o f IGF- 

1 than the control mice (59, 63). Single gene mutation in certain d a f  or age genes that 

has produced longevity in fruit fly Drosophila melanogaster and soil nematode 

Caenorhabditis elegans is found to be associated with activation o f dafl 6 gene whose 

regulatory factor da£2 is homologous to insulin and IGF-1 receptors in mammals (65, 6 6 ). 

Long-lived yeasts and worms have shown stronger resistance to cellular damage caused 

by ultraviolet, oxidizing agents and overheating and IGF-1 has been reported to play a 

significant role in mediating DNA repair (59, 67). These evidences suggest the aging 

process may be fundamentally related to cellular repair system.

1.4 Immunology o f Aging

Aging o f the immune system or immune senescence, leads to immune dysfunction. 

Immune senescence has been proposed by Walford to account for three major causes o f 

disease in old age: increased autoimmunity, higher occurrence o f cancer and increased 

susceptibility to infectious diseases (6 , 6 8 ). Changes in both innate and adaptive 

immune systems are found with aging.

• Innate immune system in aging

In the innate immune system, TLRs are a family o f pattern recognition receptors binding 

to pathogen-associated molecular patterns (PAMPs) and serve as a sentinel to induce 

cytokine production (69, 70). TLRs are widely and differentially expressed in antigen 

presenting cells as well as lymphocytes in human PBMC. Human and mouse studies 

have indicated myeloid DC (mDC) and monocytes express TLR 1, 2, 4, 5, 6  and 10 either 

at mRNA level or at protein level and mainly respond to bacterial stimuli by producing 

TNF-alpha, IL-6  and IL-12. Plasmacytoid DC (pDC) preferentially express TLR7 and 9 

proteins, which confers their ability to respond to viruses and CpG by producing large
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amount o f type I IFNs (71, 72). TNF-a, IL-12 and IFN-a are able to stimulate Thl cell- 

mediated immune response while IL-6  is able to stimulate B cell development and 

differentiation into plasma cells to produce antibody (73, 74). Characteristics of 

mammalian TLRs are summarized in Table I. Renshaw and colleagues reported the 

expression o f TLR 1-9 in APC of aged mice is down-regulated compared with young 

mice. Consistently, declined TLR expressions contribute to less production o f cytokines 

TNF-alpha and IL-6  in macrophages stimulated by TLR ligands (75), suggesting TLR 

pathway is affected by aging process. Among cytokines and their producing cells, type I 

IFNs and pDC have been drawn special attention and being investigated prosperously in 

recent years (76-78). However, studies on their age-related changes are far from 

sufficient even after pDC was identified as the most potent type IIF N  producing cells 

(79-81).

In the innate immune system, NK cells are the major type o f cells derived from lymphoid 

lineage and represent 5-15% of total human PBMC (82-84). Two distinct subtypes of 

NK cells can be identified based on their differential expressions o f cell surface antigen 

CD56, and CD 16. CD56brightCD16dim NK cells preferentially secrete high levels o f IFN-y 

and CD56bnghtCD16dim NK cells primarily execute cytotoxicity and secrete relatively 

lower levels o f IFN-y upon activation (84, 85). It is known in human peripheral blood 

NK cell frequency increases and their per-cell-based cytotoxic activity declines with age 

(86-90). Details o f phenotypic and functional properties o f NK cells will be discussed in 

session 1.6 .

• Antigen presentation in aging

Dendritic cells, monocytes are the professional antigen presenting cells (APC) that link 

the innate and adaptive immune systems. Dendritic cells, existing in peripheral blood at a 

frequency of less than 1%, include two major subsets, myeloid dendritic cells (mDC) and 

plasmacytoid dendritic cells (pDC) (94). Resting human mDC expresses high level o f 

CD 11c, an unconventional MHC class I-like molecule and low level o f CD 123, IL-3 

receptor alpha chain. On the opposite, resting human pDC expresses high level o f
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Table I. Characteristics o f mammalian Toll-like receptors (69, 72, 91-93)

TLRs Dimerization Location Ligands Human-
restriction

Expressing cell

1 heterodimer 
with TLR2

cell
surface

triacyl lipoprotein no macrophage,
monocytes,

mDC
2 heterodimer 

with TLR1 or 
6

cell
surface

bacterial 
lipoprotein, 

peptidoglycan; viral 
glycoprotein;fungi

no
macrophage, 
monocytes, 

mDC, T

3 homodimer cytoplasm dsRNA no NK, T
4 homodimer cell

surface
lipopolysaccharide

(LPS)
no macrophage,

monocyte,
mDC

5 homodimer cell
surface

falgellin no macrophage, 
monocytes, 

mDC, epithelial 
cell, T

6 heterodimer 
with TLR2

cell
surface

diacyl lipoprotein no macrophage, 
monocytes, 

mDC, T
7 homodimer cytoplasm ssRNA no pDC, NK
8 homodimer cytoplasm ssRNA no NK, TREG
9 homodimer cytoplasm non-methylated

CpG
no pDC, B, T

10 unknown unknown unknown no macrophage, 
epithelial cell

11 unknown unknown uropathogenic 
bacteria, profilin- 

like protein in 
protozoa

yes mDC

CD123 but no CD1 lc  (95, 96). Monocytes comprise about 5-10% o f total human PBMC 

and express cell surface marker CD 14, a co-receptor along with Toll-like receptor (TLR) 

4 for bacterial lipopolysacchrides (97). Antigen presentation involves formation of 

complex o f endogenous or exogenous antigens to be presented with MHC class I or class 

II molecules. The majority o f protein-derived antigens are short (8-11 amino acids) 

peptides (98). Some of these peptides are derived from newly generated proteins, 

forming complexes with MHC class I molecules and presented to CD8+ T cells. Others
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are derived from exogenous proteins, forming complexes with MHC class II molecules 

and presented to CD4+ T cells or forming complexes with MHC class I molecules and 

cross primed to CD8+ T cells (98-101). In addition to peptides, new forms o f protein- 

originated antigens have been recently identified. These include the intact proteins and 

the complexes formed by peptides and heat shock proteins, both being found to be 

involved in MHC class II-restricted presentation and/or MHC class I-related cross­

priming (99,102-105). Evidence has been shown that aged mice alveolar macrophages 

are less efficient in antigen presentation than young cells, indicating antigen presentation 

is potentially affected by aging (106,107).

• Adaptive immune system in aging

Beyond the innate immune system, the adaptive immune system, in which T and B 

lymphocytes are major cell types, is characterized with specificity, memory and tolerance 

in eliciting immune responses. Although age-associated changes in the number o f total 

peripheral T lymphocytes have not been convinced, numerous functional impairments in 

T cells have been displayed with advanced aging. First, loss o f CD28 in aged T cells 

significantly reduce T cell proliferative ability though expression of the early activation 

signals, such as CD69, is well preserved (108-111). Second, aged T cells are known to be 

deficient o f calcium (112). Calcium is critical for many cellular events. Calcium 

deficiency can lead to failure o f activation of important enzymes, such as MAPK and 

MEK involved in signal transduction pathways and consequently affect cytokine 

production, cell proliferation, and cytotoxicity (113-116). Third, aging influences T cell 

transcriptional factors directly. NF-kB and AP-1 have been found to be inactivated in 

aged T cells (117). IL-2 is critical for T cell proliferation and able to stimulate NK cell 

differentiation and activation (81, 118). Down-regulation of IL-2 expression is largely 

accounted for by the impairment o f transcriptional factors in aged T cells (119).

T cells are highly heterogeneous and aging influences the frequency and function of 

different T cell subtypes. Type 1 (Thl) and type 2 (Th2) T helper cells are the two major 

subtypes o f CD4+ T cells, the former stimulating cell-mediated immunity and producing
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IFN-7 , IL-2 , and the latter stimulating humoral immunity and producing IL-4, IL-5 and 

IL-10 (98). Productions o f Thl cytokines and Th2 cytokines often counteract each other 

(98). There appears to be a shift in predominance o f helper T cell responses from type 1 

to type 2 with advanced aging (81, 120, 121). Diversity in clonal expansion is a critical 

feature o f T cell activation. However, restricted TCR repertoire has been found to be 

associated with CD8+ T cells (122-124). T cells can also be classified into naive versus 

memory T cells. It is known the frequencies o f both CD4+ and CD8+ naive T cells in 

human peripheral blood decrease with age (125). Diminishing o f the naive cells is due to 

thymic involution (125), which contribute to increased susceptibility to new pathogens in 

older subjects. Accumulated memory T cells may impair the long term T cell activation 

(79,126, 127). Naive/memory T cell ratio declines with age with CD8+ more rapidly 

than CD4+ T cells (128-130). Interestingly, the frequencies o f different subtypes o f T 

cells do not change with age consistently at least for CD8+ T cells. Gupta and Hong have 

reported in human peripheral blood the frequencies o f naive (CD45RA+CCR7+) and/or 

central memory T (TCM, CD45RO+CCR7+) CD8+ cells are decreased with age, 

whereas those o f effector memory cells (TEM, CD45RO+CCR7-) and effector (TEMRA, 

CD45RA+CCR7-) CD8+ T cells are increased with age (128, 131). Besides 

conventional T cells, T regulatory (TREG) cells are also influenced by aging. TREGs 

express Foxp3 transcriptional repressor and play an immuno-suppressive role in 

maintaining immunological tolerance and homeostasis (132). It has been found TREG 

number in human peripheral blood increases with age, which may lead to the imbalance 

o f TREG homeostasis and predispose the aged individuals to higher risk o f autoimmune 

diseases (133-135).

In humoral immune system, age-associated changes are indicated to be associated with B 

cells in multiple aspects. With respect to proliferative responsiveness to signals, reduced 

RNA synthesis and DNA replication upon stimulation with immunoglobulin (slg), 

polyclonal activator staphylococcus aureus Cowan I (SAC), CD20 or CD40 have been 

detected in aged human B cells (136). With respect to B cell genesis, studies have shown 

increased longevity is associated with decreased number of de novo B cells (137, 138) 

but no change has been observed in the number o f peripheral blood B cells in mouse and
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human (120,139). Further more, Studies in human and mice also show aged mature B 

cells exhibit altered B cell receptor (BCR) repertoire, particularly in V region (140). 

Antibody production in majority o f B cells requires the assistance o f CD4+ T cells. T 

cells interact with B cells and induce hypermutation in immunoglobulin genes in B cells. 

The age-related dysfunction o f T cells in conjunction with the intrinsic impairment o f B 

cells significantly affects the production o f antibodies in the elderly(141, 142). This is 

reflected by more restricted antibody repertoire in the elderly than that in young people. 

The malfunction o f humoral immune system results in the impaired primary and 

secondary humoral responses to vaccination in older people (143, 144). For instance, the 

peak titer o f antibody in older subjects tends to be lower and occurs later than in younger 

subjects (1 2 0 ).

1.5 Overview o f Immune Responses to Influenza Virus

Influenza virus induces humoral as well as cell-mediated immune responses. Humoral 

immunity plays a crucial role by providing protective antibodies to neutralize infectious 

virion. Specific antibodies to HA, NA, NP, M l and M2 have been detected in human or 

mouse in response to influenza infection but only HA and NA antibodies (IgM, IgG and 

IgA) have been proven to possess primary protective function (1,145). Influenza- 

induced antibody can not provide life long protection against the disease. Possible 

reasons include a diminution o f protective antibody with time and the rapid emergence of 

new viruses with unprecedented antigenic epitopes in HA (1, 146). CD4+ type 2 T (Th2) 

cells mediate antibody production via physical contact with B cells and cytokine 

secretion to stimulate B cell development and influence Ig subclass switching. IL-4, IL- 

5, IL-6  and IL-10 are Th2 cytokines detected in response to influenza stimulation (147, 

148). IL-4 has been found to stimulate the production o f IgGl and IgE in mice (149).

Cell mediated immune responses (CMI) to influenza virus involve cytotoxicity and Thl 

cytokine production (150). Cytotoxicity is elicited by T cells and NK cells. MHC class 

I-restricted CD8+ cytotoxic T cells have been found to recognize influenza HA, M, NP 

and PB2-derived antigens (151, 152). Recent data indicate that T cell cytotoxicity is not 

restricted to CD8+ T cells but extends to CD4+ T cells. MHC class Il-restricted porferin-
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mediated cytotoxicity by CD4+ T cells have been identified towards influenza vims and 

other vimses (153, 154). NK cell-mediated cytotoxicity involves a variety o f NK cell 

surface receptors and will be discussed in session 1.7. Type IT  helper (Thl) cells play an 

important role in mediating the responses to influenza infection and vaccination through 

secreting cytokines such as IL-2 and IFN-y (7,150). In addition to T cells, NK cells 

secrete large amount o f IFN-y in response to influenza stimulation (155, 156). Thl cell 

and NK cell functions have been shown to be significantly modulated by antigen 

presenting cells and/or their secreted cytokines (157-160), which will be addressed in 

detail in session 1.6. Upstream to cytokine production, TLRs have been proven to 

significantly contribute to immune activation in response to influenza vims. Toll-like 

receptors (TLR) serve as the important sentinels for pathogen in the innate system and 

largely mediate Thl immunity (161). Influenza vims contains a single stranded RNA 

genome and produces dsRNA intermediate during its replication, thus is able to activate 

TLR3, 7 and 8 constitutively expressed or induced in NK cells, pDC and/or monocytes 

(162-164). Some activation may require an additional factor, such as IFN-y to facilitate

(165).

1.6 Significance o f Thl Immunity Induced by Influenza Stimulation in Aging

Influenza infection and vaccination induce humoral and cell-mediated immune responses 

(CMI). CMI is believed to play an important role in conjunction with antibody response 

for complete clearance o f influenza infection and largely determines the vaccine efficacy

(166). Age-associated impairment in CMI has been suggested to account for the 

increased susceptibility to influenza in the elderly (150). Immune modulation via Thl 

and pro-Thl cytokines is one important aspect o f influenza vims-induced CMI because 

these cytokines function to stimulate T cell proliferation, display effector anti-viral 

activity, modulate other cell function and influence antibody subclass profile (167). IL-2 

and IFN-y are two well defined Thl cytokines. IL-2 is secreted by activated T cells and 

has been shown to be indispensable in stimulating both Thl and cytotoxic T cell 

proliferation, differentiation, and activating NK cells (168, 169). In addition, IL-2 

enhances B-T cell interaction so as to contribute to antibody generation (170). IL-2
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production has been shown to be down-regulated or remain at a comparable level in older 

subjects compared to young control in response to influenza infection and vaccination, 

depending on specific experimental conditions, indicating influenza-related down- 

regulation o f Thl immunity with aging is not solely attributed to the age-related changes 

in IL-2 production (171-175). IFN-7 is a hallmark Thl cytokine and secreted by 

activated T cells and NK cells upon influenza stimulation. Besides an effector cytokine 

delivering direct anti-viral effect to viral infected cells, IFN-y is a critical immune 

modulator and influences other immune cell function and antibody subclass profiling 

(176). For instance, IFN-y has been known as the primary macrophage-activating factor 

that up-regulates MHC class I and II molecules to stimulate antigen presentation and 

influence expression of other cytokines, chemokines to favor cellular antiviral 

activities(176-178). In addition, it is able to up-regulate TLRs in macrophage and 

epithelial cells (179). As a Thl cytokine, IFN-y stimulates Ig class switching in favor o f 

IgG2a and IgG3 in mouse (180,181) and IgGl in human (182,183) in vitro and/or in 

vivo (184). In human, systemic levels o f IgGl and IgG3 are important for complement 

fixation and Ab-dependent cellular cytotoxicity (185). IgG is the dominant Ig subclass 

stimulated by trivalent influenza vaccine and IgGl is the most prominent IgG isotype 

(182, 186). IFN-y production has been shown to be down-regulated in older subjects in 

response to influenza infection and vaccination (173, 187). Our recent data has indicated 

that Thl response determined as the frequency o f IFN-y secreting CD4+ Thl and 

cytotoxic influenza-specific memory T cells (ISMT) declines with age and correlates 

with antibody response to influenza vaccination(174, 188). Consistent with our finding, a 

new observation has indicated Thl but not antibody response correlated with the outcome 

o f influenza vaccination (189). These evidences have suggested CMI, particularly Thl 

immunity, contributes to reducing the morbidity and mortality o f influenza in the elderly 

and capable o f influencing vaccine effectiveness.

The production o f IFN-y can he modulated by pro-Thl cytokines secreted by antigen 

presenting cells. For instance, IFN-o/jS alone or synergistically with IL-18 is able to 

induce type IT  cell and NK cell activations (190). One prominent role o f IL-18 is to act 

together with IFN-o//3, IL-12 and/or IL-23 to activate Thl and NK cells to induce IFN-y
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production and NK cytotoxicity (157,191-193). Although IL-12 and IL-23 are not 

induced in human PBMC stimulated with influenza virus, IFN-O! /j3 is abundantly 

produced by pDC and monocytes in response to influenza infection (48, 49, 194, 195). In 

general, pDC is the predominant cell type in production o f type I IFNs responsive to viral 

infection or CpG via TLR-7 or TLR9 pathway (196, 197). However, the accurate 

comparison in the amount o f type IIF N  production responsive to influenza infection 

between pDC and monocytes has not been documented. In addition to direct antiviral 

effect and induction of IFN-y in T cells and NK cells, type I IFN and pDC has been 

recently shown to mediate antibody production (198, 199). Although Type I IFNs and 

pDC are demonstrated to play a significant role in antiviral immunity, how important 

they are in influenza-induced immunity and how relevant they are to age-associated 

decline in IFN-y production in response to influenza stimulation in human remains to be 

investigated.

1.7 Significance o f NK Cell Activation Induced by Influenza Stimulation

As we described earlier in session 1.6, Thl immunity is important in response to influenza 

stimulation and Thl response determined as the frequency of IFN-y secreting CD4+ T 

cells is declined in elderly subjects. NK cells secrete IFN-y in response to influenza 

stimulation therefore participate in influenza-induced Thl immunity. However, how 

IFN-y production in NK cells is maintained in older people in response to influenza 

infection remains unknown. Our study will be focused on investigating the activation, 

specifically the IFN-y production in human peripheral NK cells in response to influenza 

virus and attempts to unravel the important regulatory factors that contribute to the age- 

associated changes in NK cell activation in response to influenza virus.

• Overview o f  NK cells

NK cells are the major lymphocytes in the innate immune system. Capable o f eliciting 

cytotoxicity to virus-infected or tumor cells via MHC class I molecule-dependent or 

independent mechanisms, NK cells play a crucial role in controlling viral load at early
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stages o f infection and performing immune surveillance on tumorigenesis (82, 200). NK 

cell function is mediated by a spectrum of cell surface receptors (201, 202). NK surface 

receptors can be classified into two categories, activating receptors and inhibitory 

receptors. Activating receptors include natural cytotoxicity receptors (NCRs, NKp30, 

NKp44 and NKp46), NKG2 family o f receptors (NKG2 A/B, C, D, E and F), CD 16, 

CD244, CD161, and CD226 (DNAM-1) and CD96. NCRs recognize viral or tumor 

molecules and trigger lysis in abnormal cells (200). NKG2 receptors form homodimers 

or heterodimers with CD94 and generate either activating (NKG2C or D) or inhibitory 

(NKG2A) effect through binding to MHC I chain-related proteins (203, 204). CD16 

mediates direct and/or antibody-dependent cell-mediated cytotoxicity (ADCC) (205). 

CD244 displays MHC class I-independent activating or inhibitory effects depending upon 

stimuli (206). CD161 recognizes non-peptide antigens and is found to be co-expressed 

with T cell receptors (TCR) on natural killer T (NKT) cells (207). CD226 and CD96 

have been shown to recognize poliovirus receptor (PVR) and suggested to mediate 

cytotoxicity and cell adhesion (208). NK cytotoxicity can be prevented by NK 

inhibitory receptors Ly49, KIR and NKG2A/CD94 in a MHC-I-dependent manner (209, 

210). NK cells express TLR 3 which enable them to recognize dsRNA and TLR7/8, 

which enable them to recognize ssRNA (211,212). Activated NK cells produce IFN-y, 

display cytotoxicity and mediate immune regulation. In addition to IFN-y, NK cells 

secrete GM-CSF, which is known to be capable to induce monocyte differentiation into 

mDC or macrophages in the presence or absence o f IL-4, respectively in vitro (213, 214).

• N K  cell activation in response to influenza virus

NK cell activation involves cytotoxicity, IFN-y production and cell proliferation and is 

regulated by cell-cell contact factors and soluble cytokines, the latter through STAT- 

participated signal transduction pathways with ST ATI mediating cytotoxicity and 

STAT4 inducing IFN-y production (215, 216).

NK receptors mediate cytotoxicity via MHC class I-dependent or independent 

mechanism. In an MHC class I-independent manner, intact influenza viral protein HA
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cross-presented or attached to the surface o f infected cells, has been found to be 

recognized by natural cytotoxicity receptors NKp44 and NKp46 via HA binding to the 

sialic acid residue attached to galactose on the NCR receptors, supporting a significant 

role of receptor-mediated cell-cell contact regulation in the NK cell activity specifically 

in response to influenza stimulation (217-219).

NK cells comprise 2 major differentiation subsets differed by surface expressions o f 

CD56 and CD16 (84). CD56dimCD16bnght NK cells preferentially execute cytotoxicity 

and CD56dimCD16bnsht NK cells secrete IFN-y (84). In spite o f functional polarity 

displayed by subsets o f NK cells, IFN-y production has been shown to correlate with the 

lytic function in human peripheral NK cells (220), suggesting concordance in activity 

between the two NK subsets. As we described earlier, NK cell IFN-y production can be 

modulated by type I interferons via STAT4 signal transduction pathways (216). In fact, 

NK cells not only produce IFN-y but are influenced by IFN-y for their activation. Human 

peripheral NK cells exist in mature or immature status with mature cells being the 

majority and able to produce IFN-y. IL13+ immature NK cells have been shown to be 

able to differentiate into IL-13- cells in the presence o f IL-2 and further mature into IFN- 

y producing cells by IFN-y (221). He and colleagues has postulated “T-cell dependent 

production o f IFN-y by NK cells in response to influenza A virus” in a IL-2 dependent 

manner, supporting the role o f IFN-y in NK cell differentiation and activation (222).

Thus, both type I interferons and IFN-y are playing a significant role in activating NK 

cells in response to influenza infection. Unfortunately, the importance o f these soluble 

factors in influenza-related immunity in an aging context remains unclear.

NK cell response to influenza stimulation is not restricted to infection but extends to 

vaccination. Skoner and Mysliwska and colleagues have reported NK cytotoxicity can be 

augmented during the acute phase and convalescent phase post vaccination with either 

inactivated or live vaccine (155, 156). In addition, higher NK activity post vaccination 

have been shown to correlate with higher HA antibody titer and better protection against 

clinical infection (155, 156, 223). These evidences indicate NK cells may not only be
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important in defending against acute infection but also participate in preventing influenza 

post vaccination.

NK cell frequency in peripheral blood increases with age but cytotoxic activity decreases 

in the elderly in response to influenza infection and vaccination (87-90). IFN-y 

production is one o f the most important activities o f NK cells. How aging influences NK 

cell activation, particularly IFN-y production has far less been documented. In this study, 

we have compared the frequency o f IFN-y producing NK cells in PBMC in response to 

influenza infection between young and older subjects and investigated how aging 

influences the regulatory components o f NK activation and consequently contribute to 

the reduced IFN-y production in NK cells in response to influenza virus in the elderly.

1.8 Hypothesis and Specific Aims

As described earlier NK cell activation manifested by IFN-y production *n response to 

influenza virus is regulated via soluble factors and cell-cell contact mechanism. 

Specifically, pro-Thl/Thl cytokines IFN-O! and IFN-y along with NK cytotoxic receptors 

(NCRs) and/or viral protein HA involved in cell-cell recognition between NK cells and 

antigen presenting cells may play an important role in regulating NK cell activation.

How aging influences the regulatory factors for NK activity and leads to altered IFN-y 

production in NK cells in the elderly in response to influenza virus have been the focus of 

this study. Components potentially contributing to NK cell IFN-y production in response 

to influenza virus involved in current study are depicted in Figure 3.

• Hypothesis

We hypothesize the impairment in soluble factors, such as the pro-Thl/Thl cytokines 

secreted from pDC and T cells, and/or the defect in expression of cell surface proteins 

involved in cell-cell contact between NK cells and monocytes contributes to the down- 

regulated NK cell activation in response to influenza virus in older subjects.
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Figure 3. NK cell IFN- 7 production and cytotoxicity in response to influenza virus is 

regulated by proThl/Thl cytokines as well as cell-cell contact

Influenza virus infects human PBMC and triggers IFN- a  production in monocytes and 
dendritic cells (pDC and mDC). IFN-a in conjunction with other cytokines, such as IL- 
18, induces NK cell to generate IFN-7 . At the same time, NK cytotoxicity and IFN-7  
production can be induced by physical contact o f NK cells with viral infected 
monocytes via NK receptor-MHC I or viral HA protein recognition. Further more, 
IFN- 7  secreted from T cells may activate monocytes and indirectly augment NK cell 
activities. Grey circles represent IFN-a or IFN-7  and white circles represent other 
soluble factors.

• Specific aims

To test this hypothesis, the following two specific aims have been addressed:

1. To examine to what extent the impairment in soluble factors, particularly the pro-Thl 

cytokines secreted by pDC and T cells play a role in the reduced IFN- 7  production in NK 

cells in response to influenza virus in older subjects.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



22

2. To examine to what extent the reduced IFN-y secretion by NK cells in older subjects is 

due to changes in the expression o f cell surface receptors/proteins involved in cell-cell 

contact regulation in NK cell activation in response to influenza virus.
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II. MATERIALS AND METHODS

II. 1 Experimental Design

The following schematic graph (Figure 4) describes the experimental design o f this study. 

The study was focused on investigating the factors regulating and contributing to the 

down-regulation o f NK cell activation, specifically IFN -7  production in NK cells in older 

subjects compared to young subjects in response to influenza virus. To achieve Specific 

A im l, we propose to confirm the roles o f IFN-a and IFN-y in regulating NK cell 

activation in response to influenza virus followed by investigating how aging influences 

cytokine-producing cells pDC and T cells and consequently influences NK cell IFN-g 

production. To achieve Specific Aim 2, we propose to confirm the roles o f cell-cell 

contact between NK cells and antigen presenting cells in regulating NK cell activation in 

response to influenza virus followed by examining how aging influences components 

involved in the cell-cell contact regulation.

II.2 Human Subjects and Cells

• Human subjects and peripheral blood mononuclear cells (PBMC)

Healthy young (21-45 years old) and healthy older (60 years and older) volunteers were 

recruited to this study upon proper consenting. All documents related to recruiting 

human subjects for this study were approved by Institutional Board Review (IRB) at 

Eastern Virginia Medical School. PBMC were processed at room temperature (RT) from 

heparinized whole blood. Briefly, the whole blood was centrifuged at 320 g for 10 min. 

Buffy coat (PBMC) were aspirated and laid onto a Ficoll reagent, histopaque 1077 

(Sigma-Aldrich, St. Louis, MO) followed by centrifugation at 650 g for 30 min. After 

Ficolling, PBMC were washed twice with RPMI media (Invitrogen, Carlsbad. CA) by 

centrifugation at 500 g and 320 g sequentially for 10 min each time, counted by 

automatic counter machine (Coulter Ac • T, Beckman Coulter, Miami, FL) and re­

suspended in CTL media (RPMI1640 media containing 10% FBS, 2 mM of L-Glutamine,
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100 U o f penicillin, 100 /tg/ml o f streptomycin and 55 nM of 2-mercaptoethanol) at a 

concentration o f 1 million PBMC per ml for downstream experiments.

HYPOTHESIS:

Defects in soluble factors and/or cell-cell contact regulation contribute to NK cell activation down- 
regulation in response to influenza viurs in older people

SPECIFIC AIM 1:

Role of soluble factors, particularly pro- 
Thl/Thl cytokines IFN-a and IFN-g

SPECIFIC A IM 2:

Role of molecules involved in cell-cell contact regulation, 
particularly NKp44, NKp46 and influenza HA

OBSERVATION:

One aspect of NK cell activation (IFN-g secretion) in response to influenza virus is down-regulated in
older subjects.

EXPERIMENTS:

1) Examine the correlations between NK cell 
activation, amount of IFN-a in PBMC and T cell 
activation in response to influenza virus.

2) Examine the effects o f IFN-a and IFN-g on 
NK cell activation in response to influenza virus.

3) Examine the effects o f pDC and T cells on 
NK cell activation in response to influenza virus.

4) Examine the frequency of and functional 
changes inpDC and/or T cells andpDC- 
mediated NK cell activation in response to 
influenza vims in older people as compared to 
young adults.

EXPERIMENTS:

1) Examine to how NK cell activation in response to 
influenza vims relies on soluble factors versus cell-cell 
contact regulation.

2) Compare the expression of NK cell receptors 
NKp44 and NKp46 between young and older subjects.

3) Compare the expression of influenza HA on 
influenza-stimulated monocytes between young and 
older subjects.

4) Examine the frequency of monocytes in PBMC and 
monocyte-mediated NK cell activation in response to 
in fluenza v im s in older people as compared to young 
adults.

Figure 4. Experimental design o f the current study

II. 3 Influenza Virus

• Propagation o f  influenza virus

The influenza virus used in this study was A/Sydney/05/97 (H3N2, Bio-safety level II, 

seed virus from Center for Disease Control, Atlanta, GA). The A(H3N2) subtype 

emerged in 1968 and is present in influenza trivalent vaccine (TIV) (16, 224). The virus
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was propagated in embryonic chicken eggs by our lab staff. Briefly, fertilized chicken 

eggs (CBT Farms, Chester Town, MA) were incubated at 37°C for 10 days. The viability 

o f the embryos was checked with candle in dark. At room temperature, 0.1 ml o f 1:1000- 

diluted seed virus in diluent buffer ( lx  PBS, pH 7.2 containing lOOU/ml penicillin, 

1 0 0 jag/ml streptomysin and 50/xg/ml gentamycin) was injected to the egg from ethanol 

(70%)-sprayed top o f the egg with 1-ml tuberculin syringe attached to a 2 2  gauge-one- 

inch needle under sterile conditions. Injection site was sealed with glue and the eggs 

were incubated at 37°C for 48 more hours before being harvested. For harvesting 

allantoid fluid, ethanol-sprayed top o f eggs was broken and allantoid fluid was collected 

with a sterile pipette. Allantoic fluid containing A/Sydney virus was filtered via 0.4 um- 

pore size nitrocellulose membrane and was aliquoted into working size and stored at the - 

80°C until use. The aliquots were used only once to minimize freeze-thaw cycle. All 

procedures were conducted under the Guidelines for Bio-safety as detailed in the 

Biosafety in Microbiological and Biomedical Laboratories (BMBL) published by the 

CDC and by the Office o f Safety at the Eastern Virginia Medical School.

• Titration o f  influenza virus

The viral stock contained 107 tissue culture infectious dose 50 (TCID50)/ml o f live viruses 

as tested in Madin-Darby canine kidney (MDCK) cells and 1024 hemagglutinin unit 

(HAU)/50ul as tested with chicken red blood cells. For procedures to determine TCID50, 

please refer to Karber’s method described in the reference(225). To determine HAU, 

fifty microliter o f 1:20 diluted viral stock in PBS (pH 7.4, GIBCO/Invitrogen, Carlsbad, 

CA) was placed in the first column of V-bottom 96-well plate (in duplicates and serially 

diluted at 1 :2 ratio for the remaining columns with each well in the columns containing 

50 /xl o f the diluted virus. Fifty microliter o f 0.5% chicken red blood cells (CRBCs) was 

added to each well and the plate was incubated at room temperature for 45 min. 

Agglutination was evaluated and using the criteria described earlier(l 1). HAU was 

calculated according to the formula HAU/50 jil =10x2", where n is the highest column 

number in the plate where agglutination occurs.
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II.4 Assays and Specific Methods

• Live cell staining, intracellular cytokine staining and flow  cytometry

For cell surface antigen only staining, 1 million or less live cells were co-stained with 

fluorescent-conjugated antibodies against cell surface antigens in 1% BSA-PBS at a 

volume o f 26 fil per well in 96-well U-bottom tissue culture (TC) plate at RT for 20 min 

followed by 2 times o f washing with 1%BSA-PBS. The cells were then re-suspended in 

200 pd o f 1%BSA-PBS, placed on ice and ready for flow cytometry analysis 

(FACSCalibur, BD Biosciences, San Diego, CA). For analysis, forward scanner (FSC) 

and side scanner (SSC) were used to gate PBMC or specific cell types together with 

specific antigens. A total 20,000 to 200,000 events per sample, depending on the relative 

proportion o f cells o f interest were saved for analysis (CellQuest 3.3 software, BD 

Biosciences, San Diego, CA). For intracellular cytokine staining, cells were fixed with 

1% paraformaldehyde-PBS, permeablized with permeablization buffer (Becton 

Dickinson, San Diego, CA) followed by one time washing with 150 ju.1 o f 1%BSA-PBS. 

Then the cells were treated the same way as for live cell staining.

• Detection o f  cell activation by Fastlmmune (FI) assay

Fasthnmune assay consists o f 2 consecutive procedures, culture set-up followed by 

intracellular cytokine staining and flow cytometry. To set up cultures, one million 

PBMC, pDC-, T cell- or NK cell-deducted PBMC, or different amount (see 

corresponding figure description in result session) o f selectively isolated cells were 

stimulated with or without 1 pd (104 TCID50) o f influenza virus A/Sydney in 150 pd of 

cytotoxic T lymphocytes (CTL) media in 96-well U-bottom TC plate at 37°C overnight. 

Brefeldin A, a reagent that interferes with protein trafficking so that newly generated 

cytokines can be trapped inside the cell for intracellular cytokine staining (BFA, Sigma- 

Aldrich, St. Louis, MO) was added to each well at 5pig/ml with total culturing volume 

brought up to 180 ul (226, 227). The culture was incubated at 37°C for 3 more hours 

after addition o f BFA and supernatants were removed from the cells or saved when
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needed, before the cells were fixed and analyzed by intracellular cytokine staining and 

flow cytometry. The total culture incubation time was 20-24 hours in this assay. To 

detect NK and T cell activation, anti-CD3 (FITC), CD56/16 (PE), CD69 (PerCP), and 

IFN-y (APC) antibodies were used in intracellular cytokine staining. To detect pDC 

activation, anti-IFN-o2 (PE, Chromaprobe, Maryland Heights, MO), CD69 (PerCP) and 

CD 123 (APC) antibodies (BD Biosciences, San Diego, CA) were used in the staining. 

Flow cytometry was used to determine the frequency of cytokine secreting cells as well 

as the per-cell-based geometric mean intensity o f fluorescent. In some experiments to 

detect early production o f cytokines, BFA was added 4 hours posterior to stimulation o f 

cells with A/Sydney and the culture was continued at 37°C overnight followed by 

intracellular cytokine staining and flow cytometry analysis. When needed, IFN-a 

neutralizing antibody (polyclonal, Biosource, Miami, FL), IFN-a//3 receptor neutralizing 

antibody (monoclonal, Cellsciences, Inc, Vanton, MA), IFN-y neutralizing antibody 

(monoclonal, R&D Systems, Minneapolis, MN), rIFN-02 (PBL Biomedical Laboratories, 

Piscatawaym NJ), rIFN-y (Invitrogen, Carlsbad, CA) or CpG (ODN2216 at a final 

concentration o f 6 pig/ml, MWG-Biotech, high Point, NC), rIL-12 (p70, PharMingen, San 

Diego, CA) was added to the culture to examine their effects on A/Sydney-induced NK 

or T cell activation.

• Measurement ofpDC, monocyte, and T cell frequencies in PBMC

Live cell staining and flow cytometry were used to examine frequencies o f various cell 

types in PBMC. For measuring pDC frequency, 1 million PBMC were co-stained with 

human lineage markers (including anti-CD3, CD14, CD16, CD19, CD 20 and CD56, 

fluorescein isothocyanate, or FITC-labeled antibodies), CD123 (phycoerythrin, or PE- 

labeled), HLA-DR (peridinin chlorophyll protein, or PerCP-labeled) and CD1 lc  

(allophycocyanin, or APC-labeled) antibodies (BD Biosciences, San Diego, CA) 

followed by 2 washes. For measuring monocyte and T cell frequencies, 1 million PBMC 

were co-stained with anti-human CD14 (FITC), CD3 (PE), CD8 (PerCP), and CD4 (APC) 

followed by 2 washes. Following staining, flow cytometry was used to determine the 

frequency of each cell type.
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• Isolation o f  pDC

Plasmacytoid DC were isolated by using BDCA4 cell isolation kit (Miltenyi Biotec, 

Auburn, CA). Briefly, every up to 108 PBMC were incubated with 300 ji\ o f MACS 

buffer (0.5%BSA and 2mM EDTA in PBS, pH7.2), 100 /d o f FcR blocking reagent and 

100 /d o f anti-BDCA4 magnetic micro-beads at 4°C for 15min followed by one time 

wash with 7.5 ml o f MACS buffer. The cells were then separated by running through MS 

column placed in a magnetic field. BDCA4+ cells (pDC) retained in the column were 

eluted after magnetic field was removed. Isolated pDC and pDC(-) PBMC were re­

suspended in CTL media and counted by automatic counter machine (Coulter Ac * T, 

Beckman Coulter, Miami, FL). A portion o f isolated cells were stained with anti-lineage 

marker (FITC), CD123 (PE), HLA-DR (PerCP) and CD1 lc (APC) antibodies (BD 

Biosciences, San Diego, CA) followed by flow cytometry to examine the purity. The 

purity ranged from 70% to over 95% depending on the amount o f starting PBMC and 

donor. More PBMC was associated with higher purity. Because pDC exist in PBMC at a 

low frequency (0.1-0.5%) and the amount o f PBMC obtained from each individual was 

limited, in some experiments when relatively larger amount o f pDC was needed, PBMC 

from 2  to 8 subjects, depending on the availability o f subjects, in young or old group 

were pooled for pDC isolation. The pooled PBMC comprises equivalent amount of 

PBMC from each subject o f the same age group.

• Isolation o f  monocytes

Monocytes were isolated by using anti-CD 14 micro-beads (Miltenyi Biotec, Auburn, CA). 

Briefly, up to 107 PBMC were incubated with 80 /xl o f MACS buffer and 20 /d o f anti- 

CD14 micro-beads at 4°C for 15min followed by one time wash with 1.5 ml o f MACS 

buffer. The cells were then separated by running through MS column (Miltenyi Biotec, 

Auburn, CA) placed in magnetic field. CD 14+ cells (monocytes) retained in the column 

were eluted after magnetic field was removed. Isolated cells were re-suspended in CTL 

media and counted by automatic counter machine (Coulter Ac * T, Beckman Coulter, 

Miami, FL). A portion o f cells were stained with anti-CD14 (FITC, BD Biosciences, San

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



29

Diego, CA) and CD56 (APC, Miltenyi Biotec, Auburn, CA) antibodies followed by flow 

cytometry to examine the purity

• Isolation N K  cells and T cells

NK cells were isolated by using anti-CD56 magnetic micro-beads or NK cell isolation kit 

II (Miltenyi Biotec, Auburn, CA). By using anti-CD56 micro-beads, up to 107 PBMC 

were incubated with 20 pd o f anti-CD56 micro-beads and 80 pd o f MACS buffer at 4°C 

for 15min followed by one time o f wash with 1.5 ml o f MACS. The cells were then 

separated by running through MS column placed in magnetic field. CD56+ cells (NK) 

retained in the column were eluted after magnetic field was removed. CD56+ NK cells 

and CD56(-) PBMC were re-suspended in CTL media and counted by automatic counter 

machine (Coulter Ac * T, Beckman Coulter, Miami, FL). A portion o f isolated cells were 

stained with anti-CD 14 (FITC, BD Biosciences, San Diego, CA) and CD56 (APC, 

Miltenyi Biotec, Auburn, CA) antibodies followed by flow cytometry to examine the 

purity. By using NK cell isolation kit, up to 107 PBMC were incubated with 10 pd of 

biotin-conjpigated antibodies against CD3, CD4, CD 14, CD 15, CD 19, CD 123 and 

glycophorin and 40 pd of MACS buffer (0.5%BSA and 2mM EDTA in PBS, pH7.2) at 

4°C for 10 min followed by incubation with 20 pd o f anti-biotin micro-beads and 30 pd o f 

MACS buffer at 4°C for 15min. The cells were then washed once with 7.5 ml o f MACS 

buffer and applied to LS column for separation. Positively labeled un-related cells were 

retained in the column and untouched NK cells were enriched in the eluted buffer. 

Isolated cells were re-suspended in CTL media and counted by automatic counter 

machine. A portion of isolated cells were stained with anti-CD3 (FITC), CD56/16 (PE), 

and CD 14 (APC) antibodies (BD Biosciences, San Diego, CA) followed by flow 

cytometry to examine the purity. T cell isolation procedure was similar to that o f NK 

isolation by using anti-CD56 micro-beads except that anti-CD3 instead o f CD56 micro­

beads was used. Anti-CD3 (FITC), CD56/16 (PE), and CD14 (APC) antibodies were 

used for staining to examine the purity.
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• Quantification o f  IFN-a by ELISA

Supernatant from Fastlmmune PBMC or influenza virus-stimulated pDC were examined 

for IFN-a levels using human IFN-a ELISA kit (Biosource, Camarillo, CA). Briefly, 

supernatant at 1:25 dilution and standards were incubated in 96-well plate wells coated 

with capturing antibodies recognizing multi-subspecies o f IFN-a including subtypes A, D, 

K, G, C, J but not B2, F and H. Then detecting antibody (secondary antibody), anti­

secondary antibody conjugated to horseradish peroxidase (HRP) and substrate 

tetramethyl-benzidine (TMB) were used sequentially for the rest o f the assay following 

manufacturer’s instruction. The plates were read at 450 nm by PowerReportsx ELISA 

reader and analyzed with KC4 (version 3.0) software (Bio-Tek Instruments, Inc., 

Winooski, VT).

• Stimulation ofpD C  o f  young and older subjects

To compare IFN-a level secreted by pDC between young and older people, 0.05 million 

pDC isolated from pooled PBMC from 2-6 young subjects or 4-8 older subjects were 

stimulated with 1 /d o f influenza virus in 96-well U-bottom plate at 37°C in the absence 

o f BFA. Supernatants were collected the next day and examined for IFN-a level by 

ELISA.

• Examination o f  effect o f  supernatant on N K  cells

One million PBMC were stimulated with or without 1 /d o f influenza virus under regular 

Fastlmmune (FI) assay culture set-up conditions except for in the absence o f BFA. 

Supernatants from cultured wells were collected the next day and utilized to stimulate 

autologous NK cells isolated from PBMC. Each well containing 0.2 million isolated NK 

cells in 20 /d o f CTL media in conjunction with 130 /d o f cultured supernatant was 

incubated at 37°C overnight before BFA was added to the culture. All other conditions 

were same as in regular FI assay.
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• Transwell experiment

Three million CD56 (-) PBMC were placed in regular 24-well plate and stimulated with 

or without 20 pi o f influenza virus in 700 /d o f CTL media. CD56+ NK cells were 

placed in transwell (Fisher Scientific, Pittsburgh, PA) at 0.2 million per well in 50 pi of 

CTL media. As a control, equal amount o f NK cells were mixed with CD56 (-) PBMC in 

a regular well. The plate was incubated at 37°C overnight followed by regular FI 

procedures for intracellular cytokine staining and flow cytometry to detect IFN-y 

secretion by CD56+ NK cells. Anti-IFN-y (FITC, BD Biosciences, San Diego, CA), 

CD69 (PE, BD Biosciences, San Diego, CA) and CD56 (APC, Miltenyi Biotec, Auburn, 

CA) antibodies were used in the staining.

• Examination o f  NKp44 and NKp46 expressions on NK cells in PBMC

One million resting PBMC or PBMC stimulated with or without 2 pi o f influenza virus in 

regular FI procedure but in the absence o f BFA were examined for NKp44 and NKp46 

expressions by live cell, indirect staining. Briefly, PBMC were stained with mouse-anti- 

human NKp44 antibody (R&D Systems, Minneapolis, MN) followed by secondary 

antibody, goat-anti-mouse IgG (FITC, Jackson Immuno Research, West Grove, PA), 

staining. After blocking with normal mouse serum, the cells were co-stained with anti­

human NKp46 (PE, R&D Systems, Minneapolis, MN), CD3 (PerCP) and CD 19 (APC) 

antibodies (BD Biosciences, San Diego, CA) followed by two washes. Flow cytometry 

was used to determine the intensity o f fluorescent level o f NKp44 and NKp46 on NK 

cells identified by excluding CD3+, CD 19+ lymphocytes and morphologically different 

monocytes from PBMC.

• Examination o f  influenza HA expression on monocytes in PBMC

One million resting PBMC or PBMC stimulated with or without 1 pi o f influenza virus as 

in regular FI procedure but in the absence o f BFA were examined for HA expression on 

monocytes by live cell, indirect staining. Briefly, PBMC were stained with mouse anti-
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HA (for H3 subtype o f influenza A virus only, Chemicon International, Inc, Temecula, 

CA) followed by secondary antibody staining with goat-anti-mouse IgG (FITC, Jackson 

Immuno Research, West Grove, PA). After blocking with normal mouse serum, the cells 

were co-stained with anti- CD69 (PerCP) and CD 14 (APC) antibodies (BD Biosciences, 

San Diego, CA) followed by two times of wash. Flowcyotmetry was used to determine 

the intensity o f fluorescent level o f HA and CD69 on CD 14+ monocytes.

• Experiment o f  differential effect ofyoung or aged pD C on N K  cell activation

Plasmacytoid DC of young and older subjects, namely pDC(Y) and pDC(O) respectively, 

were isolated from pooled PBMC from 2-3 donors. One million PBMC of each young or 

older subject or 1 million pDC(-) pooled PBMC were stimulated with 1 pi o f influenza 

virus with or without addition o f 0.01 million pDC(Y) or pDC(O). That equal amount of 

pDC(Y) and pDC(O) was added to the culture was verified by measuring the frequency 

of pDC by live cell staining and flow cytometry with pDC identification antibodies 

described earlier. Other conditions for culture set-up and detection o f NK cell activation 

were same with those in regular FI procedures. Three independent experiments involving 

a total o f 8 young and 8 older subjects were performed.

• Crossover experiment o f  monocytes between young and older subjects

CD 14+ monocytes o f young and older subjects, namely Mono(Y) and Mono(O), 

respectively, were generated by pooling equal amount o f PBMC from 2-3 individual.

One million CD14(-) PBMC of each young or older subject were stimulated with 1 pi of 

influenza virus with or without addition of 0.1 million CD14+ Mono(Y) or pDC(O). 

Equal amount o f Mono(Y) and Mono(O) added to the culture was verified by measuring 

the frequency o f added CD 14+ monocytes using live cell staining and flow cytometry 

with anti-CD 14 antibody. Other conditions for culture set-up and detection o f NK cell 

IFN-y production were as same as in regular FI procedures. Four independent 

experiments involving a total o f 10  young and 10  older subjects were performed.
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II. 5 Statistical Analysis

All statistical analysis was done by using SPSS software. Two-tailed non-parametric 

Mann-Whitney test or Sign test was used to compare differences between groups when 

variables were not suggested to follow normal distribution by normality test or sample 

size was relatively small. Two-tailed t test or ANOVA was used when sample size was 

relatively big and normality test suggested normal distribution.
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III. RESULTS

III. 1 Down-regulation o f NK Cell Activation in PBMC in Response to Influenza Vims in 

Older People

• N K  cell activation determined as IFN-y production in response to influenza virus 

was down-regulated in older subjects

Knowing NK cells secrete a significant amount o f IFN-y in response to influenza vims, 

we first wanted to know whether there was a difference in IFN-7  production NK cells in 

influenza vims-stimulated PBMC between young and older people. We used an 

activation priming marker CD69 in conjunction with IFN-y to monitor NK cell activation. 

By comparing IFN-y secretion between 18 healthy young and 25 healthy older subjects 

by Fastlmmune (FI) assay, we found upon influenza viral stimulation o f PBMC, both the 

frequency o f CD69+IFN-Yt‘ NK cells and the per-cell-based intensity o f IFN-y were 

significantly less in older subjects than those in the young subjects (p<0.001, Figure 5A,

B and C). The frequency o f CD69+IFN-Y+ NK cells and per cell-based IFN-y intensity 

among total NK cells was 14.9+2.2% (mean+s.e.m.) and 320+156 (mean+s.d.), 

respectively in the young subjects and 2.8+1.8% (mean+s.e.m.) 232+101 (mean+s.d.), 

respectively in the older subjects (Figure 5B left). Significant lower frequency o f 

activated NK cells was also found in older subjects when total lymphocytes instead o f 

NK cells were used as the denominator (0.85+0.17% in the young and 0.24+0.13% in the 

old, mean+s.e.m., p=0.002, Figure 5B right), indicating the aging-related up-regulation of 

overall NK cell frequency in lymphocytes (6.4+3.2% in the young and 12.0+3.2% in the 

old, mean+s.d., p=0.001) was not adequate to compensate the reduction in number o f NK 

cells secreting IFN-y m response to influenza vims in older people (S. Figure 1). We 

could not find significant difference in CD69 intensity in either CD69+IFN-7+ or 

CD69+EFN-Y- NK cells (S. Figure 2A) or in CD69+IFN-Y- NK cell frequency (S. Figure 

2A) in total NK cells between young and older subjects, indicating early signal 

transduction event in NK cell activation in influenza-vims stimulated PBMC is relatively 

well preserved with aging.
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Figure 5. Down-regulation of IFN- 7  production in NK cells in PBMC in response to 

influenza virus in older subjects

One million PBMC from each of 15 healthy young and 25 healthy older subjects were 
stimulated with 1 /il of influenza virus in 96-well plate overnight. Fastlmmune assay and flow 
cytometry was used to determine the frequency of CD69+IFN-/y+ NK cells. A, CD56+orl6+ 
NK cells were gated out of lymphocytes and analyzed for CD69 and IFN-y expression by flow 
cytometry. An example of expression of CD69 and IFN-y in NK cells in a young and an older 
subject was presented. B, comparison of CD69+IFN-y+ NK cell frequency in total NK cells 
(left graph in panel B) and lymphocytes (right graph in panel B) between young and older 
subjects. Horizontal bars represent the mean. C, Average intensity of IFN-y in CD69+IFN-y+ 
NK cells in young and older subjects. Error bars represent standard deviation.
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• Down-regulated NK cell IFN-y production in response to influenza virus in older 

subjects was associated with reduced T  cell activation and IFN-a secretion in 

PBMC

We next wanted to examine whether down-regulated NK cell activation in older subjects 

in response to influenza stimulation was associated with changes in other factors in 

PBMC. We examined a subset o f the same samples studied in Figure 4 for supernatant 

level o f IFN-O! by ELISA and T cell (CD3+) activation by flow cytometry and found both 

IFN-a levels in supernatant and the frequency of CD69+IFN-yf T cells were significantly 

reduced in older subjects compared to the young subjects (Figure 6 , p=0.002 and p<0.001 for 

IFN-a level and activated T cell frequency, respectively). The supernatant IFN-a levels 

and the frequency of CD69+IFN-yf T cells among total T cells were 12.3+4.8 ng/ml 

(mean+s.d.) and 1.42+0.36% (mean+s.e.m.), respectively, in the young subjects, 

compared to 7.5+4.5 ng/ml (mean+s.d.) and 0.30+0.26% (mean+s.e.m.), respectively, in 

the older people. Then we calculated the correlation coefficients, which measure the 

linear relationship between frequency of activated NK cells, supernatant IFN-a level and 

frequency of activated T cells. We found the frequency of CD69+IFN-'y+ NK cells in total 

NK cells moderately correlated with IFN-a level in supernatant (r=0.56) and highly correlated 

with the frequency o f CD69+IFN-y+- T cells in total T cells (r=0.86) (Table II), indicating 

down-regulated NK cell IFN-y production in response to influenza virus in older subjects 

was associated, though not necessarily in a causal/effect relationship, with reduced T cell 

activation and IFN-a secretion in PBMC. The fact that poor correlation between 

supernatant IFN-a level and frequency of IFN-Y+ T cells (rO .35) indicates the 

relationship between these two variables is at least not linear in our experimental system 

(Table II).
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Figure 6 . Reduced level of IFN-a and lower frequency of IFN-7 -producing T cells in 

PBMC in response to influenza virus in older subjects

A subset of the same samples studied in Figure 4 (One million PBMC from 12 healthy 
young and 18 healthy older subjects stimulated with 1 /xl of influenza virus) was analyzed 
for T cell IFN-y production and IFN-a secretion. Supernatants saved from the same wells 
that were examined for NK and T cell activation were analyzed for IFN-a by ELISA. A, 
supernatant IFN-a level in young and older subjects. B, frequency of CD69+IFN-y+ T 
cells in total T cells in young and older subjects. T cells were identified by CD3+ 
antibody. Horizontal bars represent the mean.
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Table II. Correlation between frequency of activated NK cells*, supernatant IFN-a level, 

and frequency o f activated T cells* in young and older subjects

Age groups Young and old Young only Old only

and variables 

to analyze

IFN -a Frequency of 

level activated T cells

IFN -a Frequency o f 

level activated T cells

IFN-a

level

Frequency of 

activated T cells

Frequency of 

activated NK 

cells
0.56 0.86 0.49 0.77 0.32 0.95

IFN-a level 0.35 0.09 0.27

* Frequencies o f activated NK cells or T cells are expressed as the percent o f total NK or 

T cells that are CD69+IFN-yF.

III.2 IFN-a and IFN- 7  Regulated NK Cell IFN-y Production in Response to Influenza 

Virus

• Neutralizing antibodies against IFN-a or IFN-a receptor down-regulated N K  cell 

activation in response to influenza virus

To find whether down-regulation o f IFN-7  production in NK cells was a potential 

outcome o f down-regulation o f IFN-a secretion in PBMC upon influenza viral 

stimulation, we first asked how important IFN-a was in regulating NK cell IFN-7  

production in response to influenza virus. By performing FI assay with adding anti-IFN- 

a  or anti-IFN-ojS receptor neutralizing antibodies to PBMC from healthy young subjects, 

we observed NK cell activation determined as the frequency o f CD69+IFN-y+- NK cells 

in total NK cells were down-regulated in a dose-dependent manner with the increased 

dose o f either antibody (Figure 7). There was no significant difference in NK cell 

activation between the treatments without antibody and with the control antibody 

containing equivalent amount o f IgG to that in the well bearing highest neutralizing unit 

o f antibody. Our data clearly indicates the importance o f IFN-a in mediating NK cell 

IFN-7  production specifically in response to influenza virus, supporting that age-related
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changes in IFN-a production, if  any, bears the potential to contribute to the age-related 

impairment in NK cell IFN-y production in response to influenza virus.

A.

2?
CD 25

20
^  +
8 p 5  
X. l l  
2  + 1 0  O 
O  CO"  Q cg o 5

S. 0

p<0.01

p<0.01

A
♦
X

■

-F

JL

$
♦

r r
*

_x_

JL

&
X

JL
0 1000 2000 4000 shlgG

NU of anti-IFN-a per reaction volume

2>
CD

•Hp*
CO

J Z

V)
"a5o V
2  + 
4— CD 
O  CO

c
CDC£
CD

CL

Qo

p<0.01

pO .O l

25 n
A

20 -
X

15 - •

10 - - T -
m

5 -

0 - *

p<0.05

A

♦

JL

*
x

J L

ft

X

+
A

*
0 0.5 1 2 mlgG

ug of anti-IFN-a/b receptor per 150 ul

Figure 7. Neutralizing antibodies against IFN-o: or IFN-cF/3 receptor down-regulated NK 

cell activation in response to influenza virus in PBMC

One million PBMC from 9 healthy young subjects were stimulated with 1 /zl of influenza 
virus in the presence of different doses of IFN-o: or IFN-o: receptor netralizing antibodies. 
Fastlmmune assay and flow cytometry was used to determine the frequency of 
CD69+IFN-'y+ NK cells. A, with anti-IFN-G! antibody. B, with anti-rFN-o: receptor 
antibodv. Horizontal bars represent the median.
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• CpG up-regulated N K  cell activation in response to influenza virus

To further confirm the role o f IFN-a in up-regulating NK cell IFN-Yprodution in 

response to influenza virus, we used CpG ODN2216, a TLR-9 agonist that induces IFN-a 

production in pDC to examine whether up-regulation o f IFN-a would enable NK cells in 

PBMC to produce more IFN-y in response to influenza virus. By performing regular FI 

assay with or without addition o f CpG to influenza viral stimulated PBMC from healthy 

young subjects, we found in the presence o f CpG both the frequency of IFN-a+ cells and 

per-cell-based IFN-a intensity in CD123hi (a manifest o f pDC) but not CD1231ow 

(related to monocytes and mDC) cells were significantly increased (p<0.05, Figure 8A). 

At the same time the frequency o f activated NK cells was up-regulated (p<0.05, Figure 

8B). This result, consistent with that in Figure 7, confirms the significant role o f IFN-a 

in mediating NK cell IFN-y production in PBMC in response to influenza virus.

• Effects o f  anti-IFN-y neutralizing antibody on NK cell IFN-y production in PBMC  

in response to influenza virus

In addition to IFN-a, we also wanted to examine the role o f IFN-y in NK cell activation 

to influenza stimulation. Similarly, we performed regular FI assay, in which different 

doses o f anti-IFN-Y neutralizing antibody were added to influenza viral stimulated PBMC 

from healthy young subjects, and monitored frequency o f IFN-y producing NK cells. At 

concentrations o f 0, 0.25, and 0.5 pg o f antibody per 150 p\ o f reaction volume, there was 

a trend o f the dose-dependent reduction in the frequency of activated NK cells, but it 

didn’t reach the significant level o f o=0.05 (Figure 9). It should be noted that an 

antibody dose-dependent down-regulation o f NK cell activation occurred in all three 

subjects with higher (3.3-7.1%) baseline (in the absence of antibody) levels but not in 

subjects with relatively low (0.1 -0.7%) baseline levels o f NK cell activation. This 

seemed to suggest that baseline level o f IFN-y lower than certain limit may not respond 

effectively to the neutralizing antibody. Increasing sample size and dividing subjects 

based on their baseline responsive level to influenza virus may help clarify the results. In 

conclusion, the importance o f the role o f IFN-y in regulating NK cell IFN-y production

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



41

A.

S>(0
re.c
O
CO +  
Q _  CD

c
CDO

0.1 

jo  0 . 0 8  -
"q>
o 0.06

CD

CL

0.04

0.02

0

p<0.05

J L
x

CpG(-) CpG(+)

CD123high

CpG(-) CpG(+) 

CD123low

B.

u
CD
CL
c
CD

COc
CD<c

p<0.05
2000 n

1500 -

1000 - ♦

500
“T

4 -ft

CpG(-) CpG(+) 

CD123high

♦

4 0  n£
CD

I  *  
i  + 30
CD O )O 7  
*  £  20
^  +OJ CD-  Q  10
i  °  
£
CD 
CL

CpG(-) CpG(+) 

CD123low

p<0.05

CpG(-) CpG(+)

Figure 8. Effects of CpG on production of IFN-a and NK IFN-y in PBMC

One million PBMC from 6  (A) or 3 (B, the 3 subjects in B were also participating in A) healthy 
young subjects were stimulated with 1 /xl of influenza virus in the presence of 6  ng/ml of CpG 
ODN2216. CpG was added 4 hours after initiation of influenza infection. Fastlmmune assay and 
flow cytometry was used to determine the intensity of IFN-a, frequency of IFN-ofrCD123hi or 
low cells and CD69+IFN-y+ NK cells. A, IFN-a+ cell frequency and IFN-a intensity in CD123hi 
or low cells in the presence or absence of CpG. B, activated NK cell frequency in the presence or 
absence of CpG. Horizontal bars represent the median.
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Figure 9. Effects of neutralizing antibody against IFN-y on NK cell IFN-y production in 

response to influenza virus in PBMC

One million PBMC from 6  healthy young subjects were stimulated with 1 /d of influenza virus 
in the presence of different doses of IFN-y neutralizing antibody. Fastlmmune assay and flow 
cytometry was used to determine the frequency of CD69+IFN-y+ NK cells. Horizontal bars 
represent the median.

could not be verified by the usage o f anti-IFN-y neutralizing antibody.

• IFN-y facilitated monocytes to activate N K  cells in response to influenza virus

To clarify the role o f IFN-y in NK cell activation regulation, we decided to use isolated 

cells to avoid actions taken at one time by too many regulatory factors in PBMC in 

response to influenza stimulation. Because rIFN-y alone or in conjunction with influenza 

virus could not activate NK cells to produce IFN-y while monocytes are able to be 

activated by IFN-y and capable to produce NK-activating cytokines, such as IFN-a, IL-18, 

and IL-15, a cytokine that shares similarity with IL-2 in stimulating NK activation, we 

isolated monocytes and NK cells from resting PBMC from healthy young subjects by 

using CD14+ micro-beads and untouched CD56/16 NK cell isolation kit, respectively 

and examined the effect o f rIFN-y on NK cell activation to influenza viral stimulation in 

the presence or absence o f monocytes. In the presence o f monocytes, influenza virus in 

conjunction with rIFN-y effectively activated NK cells and induced NK cell IFN-y 

production in a rIFN-y dose-dependent manner (Figure 10A and B). These results 

confirmed the important role o f IFN-y in regulating NK cell IFN-y production in response
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to influenza virus and provided the possibility that the age-related down-regulation in NK 

IFN-y production might be due to age-related reduction, if  any, in IFN-y production prior 

to activation o f NK cells in PBMC.
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Figure 10. Recombinant IFN-y positively regulated NK cell activation in the presence of 

monocytes in response to influenza virus

One fifth million isolated monocytes ( by CD 14 beads) and 0.2 million autologous NK cells 
(including both CD56+ or CD 16+ NK but untouched) from 2 or 3 healthy young subjects 
were stimulated with 1 gl of influenza virus in the presence or absence of different doses of 
rlFN-Y- FI assay and flow cytometry was used to determine the frequency of CD69+IFN-yr 
NK cells. A. NK cell activation in the presence or absence of influenza virus or 100 ng/ml 
of rlFN-Y B, NK cell activation to influenza virus in the presence of different doses of 
rlFN-Y

III. 3 Plasmacytoid DC and T cell Regulated NK Cell Activation in Response to 

Influenza Virus

We have shown previously that both IFN-a and IFN-y play an important role in influenza 

virus stimulated NK cell IFN-y production. Next we wanted to explore the role o f major 

cell types producing these cytokines. Plasmacytoid DC secrete significant amount of 

IFN-a in response to influenza stimulation (228). We decided to remove pDC from 

resting PBMC from healthy young subjects by using BDCA4 micro-beads and examine 

how reduction o f pDC influence NK cell activation in response to influenza virus by 

performing FI assay. BDCA4 is a cell adhesion molecule and known to be exclusively 

expressed on pDC in resting PBMC. We found removal o f pDC from PBMC
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significantly down-regulated NK cell activation determined as the frequency of 

CD69+IFN-yf NK cells over total NK cells and adding removed pDC back to the pDC- 

reduced PBMC tended to restore NK cell activation though the restoration did not reach 

the significant level at o=0.05 (Figure 11 A, left). In fact, pDC dose-dependent increment 

o f NK cell activation was observed, though the number o f subjects tested was limited 

(Figure 11 A, right), supporting that pDC could be important in NK cell activation 

regulation.

In addition to pDC we wanted to know how T cells influence NK cell activation for T 

cell is the only cell type, in addition to NK cells to secrete significant amount o f IFN-y 

upon activation. We decided to remove T cells from resting PBMC from healthy young 

subjects by using CD3 micro-beads and examine how reduction o f T cells influence NK 

cell activation in response to influenza virus by performing FI assay. We could not find 

significant difference in NK cell activation by influenza virus between PBMC and T cell- 

reduced PBMC. This could be due to some non-specific of the isolation procedure effect 

on NK cells or other cells regulating NK activity. Instead of this, when the removed T 

cells were added back to the T cell-reduced PBMC, there was a T cell dose-dependent 

increment in NK cell activation (Figure 1 IB), indicating T cells were playing a 

significant role in mediating NK cell activation in response to influenza virus.

III.4 Aging Affected pDC and T Cell Frequencies and Cytokine Productions as well as 

pDC-mediated NK Cell IFN-y Production

• Plasmacytoid DC frequency in PBMC and ability to secrete IFN-a were down- 

regulated in older subjects

In previous experiments we confirmed IFN-a was a critical mediator for NK cell 

activation in response to influenza virus (Figures 7 and 8) and IFN-a levels were 

significantly reduced in PBMC in response to influenza stimulation in older subjects 

(Figure 6 A). IFN-a in PBMC in response to influenza virus was significantly contributed 

by pDC therefore it was o f importance to know how aging influence pDC with respect to
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Figure 11. Effects of pDC or T cells on NK cell IFN- 7  production in response to influenza 

virus in PBMC

A. Effect of pDC. One million PBMC or pDC-removed PBMC from 12 healthy young 
subjects were stimulated with 1 /xl of influenza virus with or without addition of isolated pDC. 
Fastlmmune assay and flow cytometry was used to determine the frequency of CD6 9 +IFN-7+ 
NK cells. Left, effect of reducing pDC or adding pDC back to pDC-removed PBMC. Right, 
pDC dose-dependent effect. One part of pDC dose was comparable to pDC amount isolated 
from 1 million PBMC. B. Effect of T cells. Half million T-cell reduced PBMC from 4 
healthy young subjects were stimulated with 1 jul of influenza virus with or without addition of 
isolated T cells. Fastlmmune assay and flow cytometry was used to determine the frequency 
of CD6 9 +IFN-7 + NK cells. One part of T cell dose was comparable to T cell amount isolated 
from 1 million PBMC. Horizontal bars represent the median.
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its availability and function. To examine whether there was a difference in pDC 

frequency in PBMC between young and older people, we performed live cell staining on 

PBMC from 52 healthy young and 75 healthy older subjects. It was observed that the 

frequency o f pDC in PBMC in older subjects was significantly lower than that in the 

young subjects (p<0.05, Figure 12). The median o f pDC frequency in the young subjects 

was 0.14%, which was in contrast to the median, 0.10%, in older people. The absolute 

median value o f pDC frequency was 0.04% different between young and older subjects, 

which reflected a 29% numerical deduction in the older subjects relative to the young. 

Further, we wanted to examine whether there was an intrinsic functional defect in pDC 

from older adults. We isolated pDC from pooled PBMC from young or older subjects, 

stimulated them with influenza virus and monitored IFN-a secretion in supernatant by 

ELISA. Significantly lower level o f IFN-a secretion was found in older subjects (2.9- 

15.6, median=7.6 ng/ml, 37.6+13.4% of reduction, mean+SD) than that in the young 

control (5.7-19.2, median=10.9 ng/ml, p<0.05, Figure 13). These results suggests that 

down-regulation o f both the frequency and intrinsic function o f pDC leads to reduced 

production o f IFN-a and contributes to NK cell activation down-regulation in response to 

influenza virus in older people.

P < 0 . 0 5

Young Old

Figure 12. Comparison of frequency of pDC in PBMC between young and older people

Plasmacytoid DC frequency in PBMC between 52 healthy young and 75 healthy older adults 
was compared. PBMC were co-stained with anti-lineage marker (FITC), CD123(PE), HLA- 
DR(PerCP) and CD1 lc(APC) antibodies and identified as cells characterized as 
CD123+HLA-DR+ and lineage marker-CDl lc- by flow cytometry.
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Figure 13. Plasmacytoid DC isolated from older subjects secreted less IFN-a upon influenza 

infection

Plasmacytoid DC were isolated by using BDCA-4 magnetic beads from pooled PBMC of young 
(2-6 donors per pool) or older (4-8 donors per pool) volunteers. Isolated pDC were infected with 
1 /d of influenza virus in 96-well plate. Supernatant was collected the next day and examined for 
IFN-a by ELISA. Data from 5 independent experiments involving 22 young and 30 older subjects 
are shown. Elongated bars represent the median.

• T  cell frequency and function decrease with age

The age-related changes in T cell function have been one o f the major focuses in the field 

o f immunology and aging. Data from our early research showed T cell, particularly 

CD4+ and CD8+ memory T cell responses to influenza infection and vaccination 

declined in elderly people (174). This is consistent with our current data that NK cell 

activation correlated with T cell activation and both were down-regulated with in older 

people (Figure 1 and 2B, and II). Here we simply compared the quantities o f PBMC, T 

cells and monocytes in human peripheral blood between 12 healthy young and 23 healthy 

older subjects and observed PBMC yield, pan T cell, CD4+ T cell and CD8+ T cell 

quantities in blood were significantly lower in older subjects than those in the young 

people (Table III). On the other hand, significant differences in numbers o f CD14+ 

monocytes between the two age groups was not detected (Table III).
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Table III. Comparison o f PBMC, T cell and monocyte numbers* in human peripheral 

blood between young and older subjects

T cells Monocytes

PBMC
(million/ml)

CD3+
(million/ml)

CD4+CD3+
(million/ml)

CD8+CD3+
(million/ml)

CD14+
(million/ml)

Young
(n=12)

1.25 + 0.43 0.84+0.30 0.57+0.21 0.23+0.076 0.059+0.047

Old
(n=23) 0.85 + 0.30 0.49+0.23 0.36+0.17 0.13+0.099 0.044+0.029

P value 
(2-tail t- test) 0.003 0.0006 0.0038 0.0031 0.2693

P value (2-tail 
Mann-Whitney 

test) <0.001

* PBMC number was calculated by dividing total amount of PBMC obtained after blood 
processing by total volume of blood from which PBMC were isolated. CD3, CD4, CD8 positive 
T cells or CD 14 positive monocyte numbers were caluculated by multiplying PBMC number by 
frequency of each cell type in PBMC. The frequency of each cell type in PBMC was determined 
by live cell staining of resting PBMC and flow cytometry.

• Plasmacytoid DC from  young subjects better facilitated N K  cell activation than 

pD C from  older subjects in response to influenza virus

Previous experiments in this study suggested that pDC were important in activating NK 

cells in response to influenza stimulation. We asked whether pDC from young or older 

people differentially mediate NK cell activation by influenza virus. We performed FI 

assay, in which equal amounts o f pDC isolated from PBMC pool from either young or 

older subjects were added to individual PBMC followed by stimulation with influenza 

virus. We found pDC isolated from young adults better functioned significantly than 

pDC isolated from older subjects in stimulating NK cell activation in both young and 

older subjects (p<0.05, Figure 12). The percent o f NK cells that were activated in the 

presence o f young or aged pDC in the young subjects ranged from 0.4-5.2% with 

median=2.1% and 0.4-4.9% with median=1.3%, respectively. Percent o f NK cells that 

were activated in the presence of young or aged pDC in the older subjects ranged from
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0.1-6.2% with m edian=l.l%  and 0.03-2.8% with median=0.6%, respectively. We didn’t 

observe an up-regulation o f NK cell activation when additional pDC, whether young or 

aged were added to PBMC as compared to that without additional pDC. There was a 

trend, though not having reached the significant level that NK cell activation was lower 

in older subjects than that in the young when PBMC from young and older subjects were 

treated the same way (Figure 14). It was surprising that the difference in NK cell 

activation in influenza stimulated PBMC between young and older subjects was not as 

significant as we observed before (Figure 5B). Beside differences due to donor variation 

and experimental error, this could be a consequence o f smaller sample size and/or smaller 

age difference between young and older subjects in current study than that in the previous 

(43 subjects with age range o f 23-40 years, mean=29 years for the young and 65-81 years, 

mean=74 years for the older in previous study compared with 17 subjects with age range 

o f 21-44, mean=33 year for the young and 60-84 years, mean=69 years for the older 

subjects in current study). In general, these results are consistent with what we have 

observed in the earlier part o f this study, together indicating down-regulated pDC 

function contributes to down-regulated NK cell activation in response to influenza virus 

in older subjects.

III. 5 Soluble Factors vs. Cell-cell Contact in Regulating NK Cell IFN-y Production

• NK cells were activated by soluble factors in the absence o f  contact with other 

cells

To investigate to what extent soluble factors vs. cell-cell contact participates in mediating 

NK cell IFN-y production in response to influenza stimulation we first asked whether NK 

cells were activated by soluble factors alone. To exclude the influence o f cellular contact, 

we used supernatants generated from influenza virus -stimulated PBMC to stimulate 

autologous NK cells isolated from PBMC by using CD56 micro-beads. As shown in 

Figure 15, both CD69 intensity in NK cells and the frequency o f IFN-y producing NK 

cells in the presence o f influenza virus-stimulated supernatant (9.3 to 16.6, median =11.7 

for CD69 intensity, and 0.14-20%, median=4.5% for IFN-yf NK frequency) were
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significantly higher (p<0.05) than those in the presence o f non-stimulated supernatant 

(6.0 to 8.0, median=7.1 for CD69 intensity, and 0-0.7%, median=0.08% for IFN-yf NK 

frequency) or media control (5.7 to 7.7, median=6 .8  for CD69 intensity, and 0.07-1.7%, 

median=0.17% for IFN-7+ NK frequency, Figure 15A and B). This clearly indicated NK 

cells were able to be activated by soluble factors only without cell-cell contact between 

NK and other cells, particularly antigen presenting cells in PBMC in response to 

influenza virus.
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Figure 14. Differential effects of pDC from young or older subjects on NK cell activation in 

response to influenza virus

Plasmacytoid DC were isolated by using BDCA-4 magnetic beads from pooled PBMC from either 
young (2-3 donors per pool) or older (2-3 donors per pool) volunteers. ). One a hundredth million 
isolated pDC were co-cultured with 1 million individual PBMC in the presence of 1 /xl of influenza 
virus in 96-well plate. FI assay and flow cytometry was used to determine the frequency of 
activated NK cells. The graph represents data from 4 independent experiments involving 9 young 
and 8 older subjects. Horizontal bars represent the median.

• Cell-cell contact contributes to N K cell activation in response to influenza viral 

stimulation

Results from Figure 13 suggested that NK cells are activated in the absence o f contact
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Figure 15. NK cell activation by supernatant generated from influenza virus-stimulated PBMC

One million PBMC were stimulated with 1 /xl of influenza virus as did in regular FI assay except 
for no addition of BFA. Supernatant was collected the next day and used to stimulate NK cells 
isolated by CD56 micro-beads without addition of influenza virus. Supernatant and NK cells 
were donor-matched. A regular FI assay and flow cytometry was used to detect NK cell 
activation manifested by IFN-y secretion in CD69+ cells. A, frequency of CD69+IFN-y+ NK 
cells. B, CD69 intensity in NK cells. Six healthy young subjects were recruited to this study. 
Horizontal bars represent the median.

with other cells. On the other hand, in the environment o f PBMC, contact with other, 

particularly antigen presenting cells may provide NK cell a better opportunity to be
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activated to a higher level than that by soluble factors alone. To examine whether 

cellular contact plays a significant role in NK cell activation, we performed a transwell 

experiment, in which isolated CD56+ NK cells were placed in transwells and prevented 

from contact with CD56-removed PBMC placed in the regular well and stimulated with 

influenza virus. Soluble factors can freely transport between the transwells and regular 

wells through semi-permeable membranes. It was observed when cell-cell contact was 

prevented, NK cell activation was significantly down-regulated, reflected by a reduction 

in both the percentage o f CD69+IFN-y+ NK cells and CD69 intensity in overall NK cells 

compared to the contact control (Figure 14). In contrast to 2-3.9% of NK cells activated 

by contact with CD56(-) PBMC, only 0.05-0.3% o f NK cells were activated without 

contact (p<0.05). The intensity o f CD69 was 5.3-11.6 with contact and 4.8-9.2 without 

contact (p<0.05). These results clearly indicated that cell-cell contact regulation is 

playing a vital role in activating NK cells in response to influenza stimulation.

III. 6 Influences o f aging on expression o f receptor or ligand involved in cell-cell 

recognition between NK cells and antigen presenting cells

• Differential expressions ofNKp44 and NKp46 receptors on N K  cells in PBMC  

between young and older subjects

NK cells recognize and elicit cytotoxicity towards viral infected antigen presenting cells, 

particularly monocytes via conventional and unconventional ways. The conventional 

way involves interaction between NK inhibitory receptors and MHC I molecule on 

monocytes and an unconventional way involves recognizing viral proteins, HA protein 

for influenza virus, expressed on infected APC by NK activating receptors NKp44 and 

NKp46. Since cell-cell contact significantly influences IFN-y production in NK cells in 

PBMC in response to influenza virus (Figure 16), it is o f interest to examine how aging 

influences the expression o f the activating receptors specifically recognizing influenza 

HA protein. The expression pattern o f NKp44 and NKp46 was different in NK cells. 

The former didn’t show distinct NKp44 positive or negative cell populations, therefore 

was analyzed only the overall intensity on NK cells. The latter exhibited distinct NKp46
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Figure 16. Down-regulation of NK cell activation in response to influenza virus without cellular 

contact

One million CD56-reduced PBMC were stimulated with 20 /xl of influenza virus. 0.2 million 
CD56+ NK cells isolated from PBMC was placed in transwell or mixed with CD56-reduced PBMC 
in regular well as the control. FI assay and flow cytometry was used to detect NK cell activation 
manifested by IFN-y secretion in CD69+ cells. A, frequency of CD69+IFN-y+- NK cells. B, CD69 
intensity in overall NK cells. Elongated bars represent the median.

positive or negative cell populations, therefore we analyzed both the intensity o f NKp46+ 

NK cells and the frequency o f NKp46+ cells in total NK cell populations. We observed 

that both the NKp44 and NKp46 expression were significantly increased by influenza 

viral stimulation, reflected by the increased intensity o f NKp44 and NKp46 in both age 

groups (p<0.05, 0.01 or 0.001, Figure 17A) but not the frequency o f NKp46+ NK cells, 

although the frequency of NKp46+ NK cells increased in both mock-stimulated and 

influenza virus-stimulated PBMC as compared to resting PBMC (Figure 17B). The 

values o f the measurements are listed in Table IV. Opposite to that lower frequency of 

IFN-y producing NK cell frequency was detected in the elderly than young subjects, 

higher intensity o f NKp44 on resting NK, media (mock)-stimulated NK and influenza- 

stimulated NK cells (Figure 17A, upper plot) and higher frequency NKp46+ NK cells 

after influenza stimulation (Figure 17B, lower plot) were found in the older subjects than 

the young subjects. Considering older people possessed higher frequency o f total NK 

cells in lymphocytes than young subjects (S. Figure 1), it was not surprising that the
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frequency of NKp46+ NK cells in lymphocytes, whether under resting, mock-stimulated 

or influenza-stimulated conditions, was higher in the older subjects than that in the young 

(Figure 17B). These results indicated that NKp44 and NKp46 might not be the 

contributing factors for down-regulated NK cell activation with respect to IFN-7  

production in older people, but a valid conclusion can not be drawn unless functional 

studies show that aging does not affect the functions o f these receptors.

• Differential expression o f  influenza HA protein on monocytes in influenza virus 

infected PBMC between young and older subjects

NKp44 and NKp46 recognize influenza HA protein expressed on monocytes. We 

wonder whether there is differential expression o f HA on monocytes between young and 

older subjects upon influenza viral infection. As expected, HA expression on CD 14 

monocytes was significantly elevated in response to influenza infection as compared to 

the mock (media) infection in both young and older subjects (Figure 18A, left) with HA 

intensity ranging from 43-55 (median=49) and 50-104 (median=69) for mock-stimulation 

and influenza-stimulation, respectively, in the young subjects and 36-65 (median=52) and 

54-114 (median=6 6 ) for mock- and influenza-stimulation, respectively, in the older 

subjects. Consistently, CD69 expression on the monocytes was increased from 13.1-26.8 

(median=18.8) to 19.4-48.6 (median=25.7) after influenza viral stimulation in the young 

subjects and from 13.9-26.5(median=18.4) to 22.2-50.6 (median=36.5) after influenza 

viral stimulation in the older subjects, confirming monocytes were activated by influenza 

virus. However, we could not detect differences in either the absolute values o f HA 

intensity, CD69 expression on monocytes (Figure 18 A) or the fold increase in them in 

response to influenza viral infection (Figure 18B) between young and older subjects.
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Figure 17. Comparison of NKp44 and NKp46 expression between young and older subjects

Resting, media (mock)-activated or influenza-activated PBMC from 12 healthy young and 24 healthy 
older subjects were measured by live cell staining and flow cytometry for NKp44 and NKp46 
expression. The stimulation procedure followed regular FI culture set-up procedures except for using 
2/d of influenza virus and adding no BFA. The cells were cultured for 18—20 hours before being 
stained. A, intensity of NKp44 (top) or NKp46 (bottom). B, Frequency of NKp46+ NK cells in 
overall NK cells (top) or in overall lymphocytes (bottom). Horizontal bars represent the mean.
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Figure 17 (cont.)- Comparison of NKp44 and NKp46 expression between young and older subjects

Resting, media (mock)-activated or influenza-activated PBMC from 12 healthy young and 24 healthy 
older subjects were measured by live cell staining and flow cytometry for NKp44 and NKp46 
expression. The stimulation procedure followed regular FI culture set-up procedures except for using 
2/d of influenza virus and adding no BFA. The cells were cultured for 18—20 hours before being 
stained. A, intensity of NKp44 (top) or NKp46 (bottom). B, Frequency of NKp46+ NK cells in 
overall NK cells (top) or in overall lymphocytes (bottom). Horizontal bars represent the mean.
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Table IV. Expressions o f NKp44 and NKp46 on NK cells in PBMC *

Intensitv of NKd44 Intensitv of NKd46
NKp46+ NK% in 

NK
NKp46+ NK% in 
inlvmohocvtes

Activation
Status young old young old young old young old
resting
PBMC
media-

8.1(1.6) 10.6(3.1) 99(26) 100(34) 70(13) 71(13) 10(5.6) 14(6.7)

stimualted
influenza

8.5(1.5) 11.6(3.1) 124(24) 127(32) 74(12) 71(15) 14(7.9) 20(7.8)

virus-
stimulated

16.6(4.4) 21.0(7.3) 130(29) 144(34) 66(14) 70(13) 13(8.3) 19(7.4)

* Values are expressed in the format o f mean (s.d.).

III. 7 Examination on Monocyte-mediated NK Cell Activation in Response to Influenza 

Virus

• Comparison in frequency o f  monocytes between young and older subjects

Monocytes play an important role in cell-cell contact regulation of NK cell 

activation(229). We wanted to know whether the frequency o f monocytes in PBMC was 

different between young and older subjects. As indicated in Table III, there was no 

significant difference in the frequency o f CD 14+ monocytes between the two age groups, 

indicating the aging effect on monocyte-mediated NK cell activation, if  any, was not a 

result from age-related numerical deduction o f monocyte.

• Examination o f  monocyte-mediated N K  cell activation in young and older adults

Monocytes regulate NK cell activation via secreting cytokines and cell-cell contact 

mechanism in response to influenza virus; therefore this interaction can be a potential 

contributor for NK cell activation down-regulation in older people. It is o f interest to 

know how monoyctes isolated from young or older people differentially mediate NK cell 

activation in response to influenza virus. We performed FI assays, in which equal 

amounts o f CD 14+ monocytes generated by pooling equal amount o f monocytes isolated 

from individual donors in young or older subjects were added to moncyte-depleted,
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Figure 18. Comparison of influenza HA and CD69 expression on monocytes between young and 

older subjects

Media (mock)- or influenza-activated PBMC from 12 healthy young and 24 healthy older subjects 
were measured by live cell staining and flow cytometry for HA and CD69 expression on Cdl4+ 
monocytes. Regular FI culture set-up procedures were followed except for not having BFA added into 
the culture. One ju.1 of influenza virus was used for infection. The cells were cultured for 14-16 hours 
before staining was initiated. A, intensity of HA (left) or CD69 (right). B, fold of increase in HA and 
CD69 intensity upon influenza stimulation. Horizontal bars represent the median.

namely Mono(-) PBMC and infected by influenza virus. We could not detect a 

significant difference in NK cell activation in Mono(-) PBMC from either young or old 

subjects between addition o f non-aged (young) monocytes and aged (older) monocytes 

(Figure 19), although there was a trend of lower NK cell activation in older subjects
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between addition o f two kinds o f monocytes (p=0.08, Figure 19). The percent o f NK 

cells that were activated in the presence o f young and aged monocytes in the young 

subjects ranged from 0.8-18.2% with median=10.1% and 0.6-24.3% with median=4.2%, 

respectively. Percent o f NK cells that were activated in the presence o f young or aged 

monocytes in the older subjects ranged from 0.5-11.7% with median=2.6% and 0.2-6.7% 

with median=l .2%. We didn’t observed an up-regulation of NK cell activation when 

additional monocytes, whether young or aged were added to Mono(-) PBMC as 

compared to that without additional monocytes. There was a trend, though not having 

reached the significant level that NK cell activation was lower in older subjects than that 

in the young when Mono(-) PBMC from young and older subjects were treated the same 

way (Figure 19). There seemed to be an influenza-unrelated activation due to monocyte 

isolation procedure in influenza virus-stimulated Mono(-) PBMC for NK cell activation 

was significantly elevated in Mono(-) PBMC, regardless the age groups, compared to that 

in the untouched PBMC (Figure 17). From these data, we could not draw a conclusion 

on how monocytes from young and older subjects differentially mediated NK cell 

activation while it seemed the difference between young and aged monocyte in activating 

NK cells with lower activation by aged monocytes was more obvious in older Mono(-), 

PBMC than that in young Mono(-) PBMC. Whether this is a valid conclusion remains to 

be further investigated.

III. 8 Summary o f Results

• Specific Aim 1

1. NK cell activation measured as the frequency o f CD69+IFN-y+ NK cells as well as the 

intensity o f IFN-y in CD69+IFN-y+ NK cells in response to influenza viral stimulation in 

PBMC is reduced in older subjects as compared to the young subjects.

2. Down-regulated NK cell activation correlated with down-regulated IFN-o: level and T 

cell activation in response to influenza viral stimulation in PBMC in older subjects as 

compared to the young subjects.
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Figure 19. Effect of monocytes from young or older subjects on NK cell activation in response 

to influenza virus

Monocytes were isolated by using CD 14 magnetic beads from individual PBMC and pooled for 
either young (2-3 donors per pool) or aged (2-3 donors per pool) monocytes for study. One a 
hundredth million isolated pDC were co-cultured with 1 million individual PBMC in the 
presence of 1 fil of influenza virus in 96-well plate. Fastlmmune assay and flow cytometry was 
used to determine the frequency of activated NK cells. The graph represents data from 4 
independent experiments involving 9 young and 8 older subjects. Elongated bars represent 
the median.

3. Both IFN-a! and IFN-y play positive roles in stimulating NK cells to produce IFN-y in 

response to influenza virus as demonstrated by effects o f neutralizing antibodies against 

IFN-c^IFN-a/jS receptor or effects o f rlFN-Y

4. Plasmacytoid DC and T cells play a positive role in stimulating NK IFN-y production 

as demonstrated by pDC-depletion assays.

5. Lower frequencies o f pDC and CD3+ T cells in PBMC were observed in older subjects. 

Lower levels o f IFN-a secreted by purified pDC and lower frequency o f IFN-Y-producing
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CD3+ T cells in PBMC in response to influenza vims were detected in older subjects 

than young subjects.

6 . Plasmacytoid DC isolated from young subjects better facilitated NK cell activation 

than pDC isolated from older subjects in response to influenza viral stimulation in 

PBMC.

• Specific Aim 2

1. Supernatants generated from influenza vims-activated PBMC in the absence o f cell­

cell contact stimulated NK cells to produce IFN-y. Preventing NK cell contact with other 

cells by transwell significantly down-regulates NK cell to produce IFN-y

2. Expression of NK cell activating receptors NKp44 and NKp46 on NK cells in PBMC 

were elevated in response to influenza stimulation in both young and older subjects. 

Surprisingly, expression levels o f both receptors were higher in older subjects than that in 

the young whether PBMC were at resting, mock-stimulated or influenza-stimulated status.

3. No significant difference in expression levels o f influenza HA on monocytes upon 

influenza infection was observed between young and older subjects.

4. No significant difference in frequency o f monocytes in PBMC was observed between 

young and older subjects. Monocytes isolated from young subjects tended to better 

facilitate NK cell activation than monocytes isolated from older subjects in response to 

influenza vims in older subjects.
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IV. DISCUSSION AND CONCLUSIONS

IV. 1 Down-regulated Natural Killer (NK) Cell Activation in Response to Influenza Virus 

in Older Subjects

Influenza is a disease associated with high mortality and morbidity in elderly population 

(2-4). Natural killer (NK) cells play a critical role in controlling viral load at early stages 

o f immune defense by eliciting cytotoxicity and secreting cytokines, particularly IFN- y 

(82). NK cells respond to influenza infection and vaccination (85, 155, 156). Our study 

demonstrates a significant aging-related down-regulation of IFN-7  production by NK 

cells in response to influenza virus (Figure 5).

The aging-related impairment in NK cell EFN-7  production is manifested by a lower 

frequency o f CD69+IFN-y+- NK cells (Figure 3B) in influenza virus-infected PBMC from 

the elderly subjects than that from the young subjects. The frequencies o f CD69+IFN-y+ 

NK cells were calculated in both total NK cells and total lymphocytes. The frequencies 

calculated using these two different denominators were highly correlated with the 

correlation coefficients o f 0.90, 0.74 and 0.85 in the young, elderly and combined groups, 

respectively. We deem the necessity o f calculating CD69+IFN-yf NK frequencies in 

both total NK cells and total lymphocytes lies in two aspects. First, NK cells are 

phenotypically and functionally heterogeneous with CD56dimCD16bnght subset primarily 

executing cytotoxicity and secreting small amount o f IFN-7 , and CD56bnghtCD16dim 

subset being the primary IFN-y-secreting cells (82, 84). Using total NK cell number as 

the denominator can not guarantee the age-related decline in the frequency of 

CD69+IFN-7+ NK cells is due to the decline o f the IFN-y-producing NK cell number but 

not the increase o f the non-IFN-y-producing NK cell number. In fact, an age-related 

increase in peripheral NK cell number has been found in both CD56dimCD16bngbt and 

CD56bnghtCD16dlmNK subsets with higher increased number o f CD16bnght cells than 

CD56bnght cells (8 6 , 230, 231). Unfortunately, we were not able to differentiate these two 

subsets in our experiment due to the same fluorescent shared by CD 16 and CD56 

antibodies. Second, ignoring NK subsets, the age-related increase in the number o f total
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NK cells bears the potential to balance the age-related decrease in the frequency of IFN-y 

+ NK cells calculated in total NK cells. Calculating the frequencies o f IFN-y -producing 

NK cells in total lymphocytes becomes necessary in determining whether lower 

proportion o f IFN-y+- NK cells in total NK cells can be a fair reflection o f less IFN-y - 

producing NK cells in peripheral blood in elderly subjects than young subjects. As 

shown in Figure 5B, whether total NK cell number or total lymphocyte number was used 

as the denominator, the frequency o f CD69+IFN-y+ NK cells in response to influenza 

stimulation is lower in the elderly subjects than that in the young subjects, suggesting the 

lower frequency o f CD69+IFN-y+ NK cells results from the reduction in the number o f 

NK subsets that are capable o f producing IFN-y.

In addition to numerical decline, the aging-related impairment o f NK cell IFN- y 

production in response to influenza virus was reflected by the significantly lower IFN- y 

intensity in NK cells in the elderly subjects than that in the young subjects (Figure 5C). 

The lower IFN-y intensity indicates NK cells, as a heterogeneous entity in PBMC, are 

functionally impaired in IFN-y production in response to influenza virus in the elderly 

subjects compared to the young. It should be noted that this lower IFN-y intensity can be 

a consequence o f the reduced IFN-y production in NK cells in a per-cell basis and/or the 

relative increase in the proportion of CD16hlgh over CD56hlgh cells in the total IFN-y+

NK cells with no change in the per-cell based IFN-y production in a single NK cell.

Thus, no conclusion regarding truly functional impairment in per-cell based IFN-y 

production in NK cells in the elderly subjects compared to the young can be drawn 

without differentiating CD56hlgh versus CD16h,gh NK cell subsets, though NK cell as a 

whole does display aging-related functional defect in IFN-y production. The aging- 

related down-regulation o f IFN-y production by NK cells in response to influenza virus is 

not related to the impairment in signal transduction during the early stage o f NK 

activation for no significant difference in the frequency or intensity o f CD69+ NK cells 

has been detected between young and elderly subjects. This suggests early signal 

transduction during NK cell activation in PBMC in response to influenza infection is 

likely well preserved with advanced aging.
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In summary, our data demonstrates the significantly down-regulated human NK cell IFN- 

y production in PBMC from elderly subjects compared to young subjects in response to 

influenza infection. This aging-related down-regulation o f IFN-y production in NK cells 

is manifested by the reduction in the frequencies o f CD69+IFN-y + NK cells in total NK 

cells as well as in total lymphocytes, and in the amount o f IFN-y produced by total NK 

cells, but not in the early signal transduction reflected by CD69 expression. NK cell 

activation involves three activities: proliferation, cytotoxicity, cytokine, particularly IFN- 

y production (230). Evidence has shown that purified NK cells from the elderly subjects 

proliferate to the less extent responsive to IL-2 than NK cells from the young subjects 

while the IL-2 levels in response to influenza virus have been shown to be lowered with 

advanced aging under many, if  not all experimental conditions (171, 172, 175, 230). NK 

cytotoxicity is also known to be affected by aging. Thus, age-related changes have been 

detected in all three facets o f NK activation in response to influenza virus, suggesting NK 

cells could be one o f the major targets o f the aging process that contributes to the age- 

related impairment in immune defense against influenza.

IV.2 IFN-o, pDC and Down-regulated NK Cell IFN-y Production in Response to 

Influenza Virus in Older Subjects

IFN -ais a family of cytokines comprising 13 different functional subtypes (232, 233). 

IFN- a  have been recognized as a pro-Thl cytokine that stimulates NK and T cell 

cytotoxicity and IFN-y production synergistically with IL-18 (216, 234). In addition, 

type I interferons including IFN-a and IFN-/3, have been considered important in 

enhancing humoral immunity, particularly by providing the help for plasma cell 

differentiation (199, 235, 236). NK cell IFN-y production in response to influenza virus 

has been shown down-regulated in the elderly subjects compared to the young subjects in 

earlier session of our study (Figure 5). How important IFN-a is involved in influenza- 

induced NK cell IFN-y production in the aging context has not been addressed previously. 

Our data have suggested IFN-q: is a significant contributor participating in the aging- 

related down-regulation o f NK cell IFN-y production in response to influenza virus by 

providing the following evidences.
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First, in the presence o f IFN-a or IFN-a//3 receptor neutralizing antibodies, the frequency 

of IFN-7  producing NK cells considerably decreased compared to the control, indicating 

IFN-a is a significant mediator for NK cell IFN-7  production in influenza virus- 

stimulated PBMC (Figure 7). The importance o f IFN-a in this scenario is further verified 

by the use o f CpG ODN2216, and the depletion of pDC, one o f the major sources o f IFN- 

a  in PBMC (237). The CpG is known to specifically induce IFN-a production in pDC 

though activating TLR-9 (238). Our data has verified that CpG ODN2216 specifically 

induces IFN-a production in CD123high (pDC) cells but not CD1231ow (monocytes) 

cells (Figure 8 A). The frequency of IFN-7 -producing NK cells in influenza-stimulated 

PBMC increases in parallel with the elevated IFN-a production in the presence o f the 

CpG ODN2116 while decreases by pDC depletion (Figure 8B and 11 A), confirming the 

regulatory role o f IFN-a in stimulating NK IFN-7  production in response to influenza 

virus. We have realized that the inhibitory effect o f pDC depletion on NK IFN-7  

production is not as strong as the neutralization o f IFN-a or its receptors, and replacing 

the depleted pDC back to the culture only created a trend but not the significant level of 

restoration o f the frequency o f IFN-7 -producing NK cells (Figure 7 and 8 A). This is 

likely due to the effect o f IFN-a produced by the remaining monocytes and possibly pDC 

in PBMC after pDC depletion. We have also tried to examine the effect o f rIFN-a on NK 

IFN -7  production in a dose dependent manner but have not detected any effect. This is 

unlikely due to the mismatched IFN-a subtype used in our experiment because IFN-02, 

the subtype we used is known to be a functioning subtype in PBMC in response to 

influenza virus and was detected by IFN-a2 specific antibody in our assays (ref, Figure 

8A). Possible reasons could be that endogenous IFN-a level had been saturated before 

rEFN-a was added and/or there needs another soluble factor working in conjunction with 

IFN-a2 to optimize the effect.

Second, we have found IFN-a level in the supernatant o f activated PBMC is significantly 

reduced in the elderly subjects compared to the young subjects in response to influenza 

viral stimulation, which coincides with the lower frequency o f IFN-7 -producing NK cells 

described earlier (Figure 6A and 5). The correlation between IFN-a level and the
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frequency of IFN-7 -producing NK cells from these samples is moderate (r=0.56) but 

statistically significant (p<0.05, Table II). Moreover, we have found about 30% 

reduction in the average frequency o f pDC in PBMC and 38+13.4% (mean+SD) 

reduction in the amount o f IFN-a produced by purified pDC stimulated with influenza 

virus in the elderly subjects compared to the young subjects, suggesting that both 

numerical and functional impairments are present in pDC in response to influenza 

infection in the elderly. Figure 14 further suggests the existence o f intrinsic defects in 

pDC in older subjects by showing higher frequency of IFN-y+ NK cells in the presence 

o f pDC isolated from the young subjects than those isolated from the older subjects in 

response to the influenza virus infection. That pDC secrete higher amount o f IFN-a than 

monocyte in a per-cell basis while IFN-a+ cell number are comparable between CD123hi 

(manifest o f pDC) and CD1231ow (majority monocytes) cells (data not shown) suggests 

that pDC is more productive in IFN-a generation than monocytes in response to influenza 

infection. Considering the significant role o f IFN-a in activating NK cells, it is not 

surprising that the aging-associated impairments in pDC will significantly contribute to 

the down-regulation o f NK IFN-7  production in response to influenza virus in the elderly 

subjects.

IV.3 IFN-y, T cells and Down-regulated NK Cell Activation in Response to Influenza 

Virus in Older Subjects

In addition to its role as an effector cytokine, IFN-y plays a regulatory role in mediating 

Thl immune response, promoting NK cell differentiation and influencing antibody 

production (176, 184). IFN-y is secreted by CD4+ type I helper T cells, CD8+ cytotoxic 

T cells and NK cells in response to influenza infection (174, 239). Our preliminary 

kinetic study on CD69 expression in PBMC suggests that T cell activation precedes NK 

cell activation in response to influenza virus, generating the possibility that IFN-y 

produced by T cells influences NK cell IFN-y production in response to influenza virus 

(S. Figure 3).
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The role o f IFN-y in regulating NK IFN-7  production specifically in response to influenza 

virus is verified in our study. First, our data indicates a trend that the frequency o f IFN-y 

-producing NK cells declines in the presence of neutralizing antibodies against IFN-y, 

though the decline does not reach significant level (Figure 9). In fact, the trend o f the 

decline is obvious in the subjects with higher baseline levels o f IFN-y+ NK cell 

frequency than those with relatively lower baseline levels (Figure 9), indicating the 

responsiveness to the neutralizing antibody may require certain baseline limit. Second 

and more importantly, in response to influenza virus purified (CD56+ and/or CD 16+) NK 

cells can not be activated to produce IFN-y in the presence of monocytes unless rIFN-y is 

added, indicating the importance o f pre-existing IFN-y in inducing NK cell IFN-y 

production (Figure 10). Moreover, purified NK cells can not be activated to produce 

IFN-y in the presence o f combination o f influenza virus and rIFN-y (data not shown), 

indicating IFN-y mediates NK cell activation via acting on monocytes. He and 

Romagnani have reported previously that the production of IFN-y in CD56bright NK 

cells is mediated by CD3+ or CD4+ T cells in an IL-2-dependent manner (159, 222). 

Monocytes are not known to be a source o f IL-2 but IL-15, a cytokine that share 

similarity with IL-2 and capable to activate NK cells via a NK-monocyte contact- 

dependent mechanism (240, 241). It will be o f interest to see whether IFN-y is able to 

induce IL-15 secretion in monocytes and further mediate NK IFN-y production in 

response to influenza virus. Last, we have tried to deplete CD3+ T cells from PBMC but 

have not found the difference in NK cell IFN-y production between CD3+ T cell-depleted 

and non-depleted PBMC. Interestingly, when isolated T cells were added back to the 

CD3(-) PBMC, there exhibits a T cell amount-dependent increase in NK IFN-y 

production in response to influenza stimulation (Figure 11B), supporting the role o f T 

cells in positively influencing NK IFN-y production. We think the unresponsiveness o f 

NK IFN-y production to CD3+ T cell depletion might be due to the non-specific 

activation in T(-) PBMC caused by the isolation procedure.

Taken together, our data suggest a positive role o f existing IFN-y on NK cell EFN-y 

production prior to NK activation. The source o f the earlier generated IFN-y is likely the 

activated memory T cells. Importantly, down-regulation of IFN-y production in CD4+
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Thl and CD8+ cytotoxic T cells in response to influenza infection and vaccination with 

advanced aging has been documented (81, 174, 188, 242). Consistent with the literature, 

our data shows that IFN-y production determined as the frequency o f IFN-y + CD3+ T 

cells in PBMC stimulated with influenza virus is reduced and correlates with the 

decreased frequency o f IFN-y-producing NK cells in the elderly subjects compared to the 

young subjects (Figure 5B, 6B and II). Along with the decreased IFN-yf T cell 

frequency, a lower frequency of total peripheral T cells is found in the elderly subjects 

than in the young subjects (Table III), indicating both numerical and functional 

impairment o f IFN-y producing T cells is associated with aging in response to influenza 

virus. Considering the significant role o f IFN-y in mediating NK cell IFN-y production, 

we believe the age-associated down-regulation of T cell IFN-y production contribute to 

down-regulated NK cell IFN-y production in older people in response to influenza virus.

IV.4 Cell-cell Contact Regulation in NK Cell Activation in Response to Influenza Virus 

in an Aging Context

Cell-cell contact between NK cells and antigen presenting cells, particularly dendritic 

cells and monocytes has been suggested a required condition for different aspects o f NK 

cell activation (229). For instance, in human ex vivo experiments, preventing the contact 

between monocytes or monocyte-derived mDC can reduce NK cell IFN-y secretion, 

cytotoxicity and CD69 expression and preventing the contact between pDC and NK cells 

can lower CD69 expression on NK cells without affecting NK IFN-y secretion and 

cytotoxicity in response to influenza virus (194, 239). Consistent with these findings, our 

data shows a significant reduction in both the frequency of IFN-y+ NK cells and the 

CD69 intensity in NK cells in response to influenza virus when cell-cell contact between 

NK cells and NK(-) PBMC is prevented compared to when the contact remains available 

(Figure 16). On the other hand, our data shows purified CD56high NK cells can be 

activated by supernatant generated from influenza-stimulated PBMC without the 

presence o f contacting with other cell types, suggesting cellular contact between NK cells 

and antigen presenting cells (APC) may not be an essential condition, but possibly 

required for the optimal level o f NK cell activation (Figure 15 and 16).
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The mechanism of cellular contact between NK cells and APC to mediate NK activation 

could lie in the reciprocal interactions between NK cells and APC, that is, cellular contact 

is required for full activation o f APC and conversely fully activated APC secrete optimal 

levels o f cytokines to promote NK activation (194). NK receptors or other molecular 

elements that participate in this cell-cell contact regulation are not clear yet. But 

evidence has shown that NK natural cytotoxic receptors (NCR) NKp44 and NKp46 

specifically recognize influenza HA and sendai virus hemaglutinin-neuraminidase (HN), 

both viruses inducing cytokine as well as NK- monocyte-derived macrophages contact- 

dependent NK cell activations (229). NKp44 and NKp46 are known to be exclusively 

expressed on NK cells and mediate NK cytotoxicity (202, 217). Our data shows that 

influenza virus enhances the expressions o f these two receptors on NK cells (Figure 17A 

and B). Without knowing the role o f these receptors in mediating NK cell IFN-7  

secretion, we started with examining how aging influences the expressions o f the 

receptors by comparing their expression levels on NK cells before and after influenza 

stimulation between the young and the older subjects. Our data shows whether at resting, 

mock- or influenza-stimulated status, NKp44 intensity is higher in the older subjects than 

that in the young (Figure 17A). NKp46 intensity level is comparable between the young 

and the old subjects independent o f the treatments while the frequency o f NKp46+ NK 

cells in lymphocytes is significantly higher in the older subjects than that in the young, 

leading to a numerical increase in NKp46+ NK cells with advanced aging (Figure 17A 

and B). The higher frequency or expression level o f NKp44 and NKp46 on NK cells 

from the elderly subjects than the young subjects can hardly explain the aging-related 

impairment in NK cell IFN-y production in response to the influenza virus. But there are 

a few possibilities that might help understand this contradiction. First, a frequency 

change does not always positively correlates with a functional change. We did not 

perform functional analysis on the NCR receptors, therefore that the receptor-positive NK 

cell frequency increases as a compensatory mechanism in response to the declined 

function o f the receptors remains possible. Second, the time when the measurements (12- 

14 hours post viral stimulation) were done may not be the optimal time point to detect the 

difference in the receptor expression between the two age groups. It is reported that
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influenza vims infects and the viral replication continues for 4-6 hours before being 

halted in human peripheral monocytes (243). It is possible that the lower receptor 

intensity in the NK cells from the young subjects than those from the older subjects at the 

time of the detection results from the kinetic difference in the receptor expression 

between the young and the elderly subjects, or more specifically is caused by the earlier 

declining o f the elevated receptor expression on the surface o f NK cells in response to 

influenza vims in the young subjects than in the older subjects. Future studies addressing 

these possibilities may help clarify the observation.

To examine whether monocytes from young or older people function differentially in 

stimulating NK cell to produce IFN-y in response to influenza, we have examined NK 

cells in monocyte-depleted PBMC with restoration o f monocytes isolated from either the 

young or the elderly subjects. Unfortunately, we could not detect the significant 

differences in NK cell IFN-y production between young and old monocyte-mediated 

conditions in either the young or the elderly group (Figure 19). In spite o f this, there was 

a trend that the young monocytes facilitate a better NK cell activation than the aged 

monocytes, particularly for the older subjects (Figure 19). Increasing sample size in 

future studies might help generate more significant data and better delineate the role of 

monocytes in regulating NK cell activation in an aging context.

It is interesting that in the transwell experiment when CD56+ NK cell was in transwell 

and CD56(-) PBMC were in the regular well, not only the IFN-y production o f NK cells 

in the transwell was down-regulated but also that o f the T cells in the regular well (data 

not shown). This is consistent with our previous observation that NK cell activation 

highly correlates with T cell activation in PBMC in response to influenza stimulation 

(Figure 4 and Table II). A simple explanation would be that preventing cell-cell contact 

down regulate NK cell IFN-y production, which in turn affect monocyte activation and 

consequently lead to down-regulated T cell activation. If  this was true, a reciprocal 

regulation between NK cell and T cell activations by IFN-y autocrine/paracrine 

asecretions could be established through the link o f monocytes.
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In summary, cell-cell contact regulation between NK cells and APC, particularly 

moncytes, monocyte-derived mDC and macrophages have been suggested as an 

important part o f the requirements for optimal NK cell activation. Our data has 

confirmed that both cell-cell contact between NK cells and APC and soluble factors play 

a significant role in inducing NK cell IFN-7  production. How cell-cell contact functions 

alone and cooperates with soluble factors to activate NK cells remains to be elusive.

IV. 5 Potential Roles o f Other Soluble Factors in Aging-related Down-regulation o f NK 

Cell IFN-y Production in Elderly Subjects in Response to Influenza Virus

Our study has suggested that aging-related reduction in pDC IFN-o; and T cell IFN-y 

productions contribute to the impairment in NK cell IFN-y production in PBMC in 

response to influenza virus for the elderly adults. The fact that no significant NK cell 

IFN-y production was detected when isolated CD56+NK cells were stimulated with IFN- 

a  alone, IFN-y alone, influenza alone or any combination of the three stimuli (data not 

shown) indicates other factors are required for inducing the NK cell activity in response 

to influenza. Correlation analysis in the combined young and elderly subjects reveals 

moderate correlations between the supernatant IFN-a level and the frequency o f IFN-y - 

producing NK cells (r=0.56), and weak correlation between the IFN-a level and the 

frequency of IFN-y-producing T cells (r=0.35), further supporting that multiple factors 

are involved in NK and T cell activation in PBMC and weaken the linear relationship 

between the supernatant IFN-a level and the frequencies of IFN-yF NK or T cells (Table 

II).

Besides IFN-a and IFN-y, other soluble factors that potentially display the age-related 

changes and able to influence NK IFN-y production in an aging context include, but are 

not restricted to IFN-/3, IL-18, TNF-a and IL-2 (74, 234). IFN-/3 is one of the major type 

I IFNs that shares the similarities with IFN-a in antiviral effect and inducing NK cells 

and T cells to produce IFN-y (232). IL-18 is known to be able to induce NK and T cell 

cytotoxicity and IFN-y production synergistically with IFN-a//3, IL-12 and/or TNF-a, 

among which, IL-12 is not known to be significantly produced in human PBMC in
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response to influenza vims (48,157,193, 244,245). Our previous data has shown 

PBMC from elderly subjects secrete lower level o f TNF-a in supernatant than young 

subjects at 3 hours but not 18 hours post influenza A stimulation, indicating a potential 

role o f TNF-a at early stage o f immune reactions in contributing to the age-related NK 

activation down-regulation (174). Surprisingly, in the same study no significant 

difference in IL-2 level between young and old subjects were detected, indicating IL-2 

level may not be necessarily an essential factor for the age-related impairment o f NK 

IFN-y production in our experimental system, although IL-2 levels have been shown to 

be down-regulated with advanced aging in response to influenza stimulation under many 

other conditions (118,119, 172, 175, 225, 246). Information about the age-related 

changes in the productions o f IFN-b and IL-18 are very limited up to date, therefore their 

contribution to NK activation including IFN-y production in the aging context remains 

unclear.

In addition to external factors, internal defects o f NK cells with aging should be taken 

into consideration when comparisons in NK activation are made between different age 

groups. Literatures have shown that purified peripheral NK cells from elderly subjects 

display lower CD69 expression and proliferation ability in response to IL-2 than those 

from young subjects, indicating intrinsic impairment in NK cells do exist with advanced 

aging (230). On the other hand, studies on the expressions o f cytokine receptors on NK 

cells have not suggested a difference in IL-2 receptor expression whether on resting or 

IL-2-stimulated NK cells between young and elderly subjects(247). Moreover, Plett and 

others even reports that higher level o f IFN-oZ/3 receptors with comparable IFN- 

oh/receptor binding activity is found on NK cells from aged mice than young mice. But 

this elevated IFN-aZ/S receptor expression in the aged mice may be associated with 

enhanced apoptosis o f NK cells induced by IFN-a. Apparently more studies are needed 

for obtaining a clear picture o f how NK cell functions are influenced by aging. Future 

investigations on both the intrinsic and extrinsic factors related to NK activation will 

provide more valuable insights into the aging-related changes on NK cell activation in 

responses to influenza virus.
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IV. 6 Conclusions

In this study we have compared IFN- 7  production in NK cells in influenza virus- 

stimulated PBMC between young and elderly subjects and investigated soluble factors, 

particularly IFN-a and IFN-y, and cell-cell contact between NK cells and other cells in 

PBMC in mediating the NK cell IFN-y production in 311 aging context. Based on our data, 

we conclude:

1. Interferon-alpha (IFN-a) and IFN-y are important regulatory cytokines in stimulating 

NK cells to produce IFN-y in PBMC in response to influenza virus. Aging-related 

numerical and functional impairments in pDC and T cells lead to the reduced production 

o f IFN-a and IFN-y, which contribute to the down-regulated NK cell IFN-y production in 

the elderly subjects compared to the young subjects.

2. Cell-cell contact regulation between NK cells and APC in PBMC may be important in 

activating NK cells to the full extent in conjunction with soluble factors in response to 

influenza virus. How cell-cell contact regulates NK cell activation and what age-related 

differences in components involved in the cell-cell contact regulation contribute to the 

impaired NK cell activation in older people remain to be elucidated.

IV.7 Significance o f the Study

Immune senescence leads to increased mortality and morbidity and decreased vaccine 

efficacy associated with influenza with advanced aging. As a critical component o f the 

innate immune system, NK cells play an important role in defending viral infection by 

eliciting cytotoxicity and secreting IFN-7 . Our study has focused on delineating the 

aging-related changes in NK cell IFN-y production in response to influenza virus and 

revealing potential causal factors for these changes. We have concluded that IFN-a and 

IFN-y are important mediators for influenza-induced NK cell IFN-y production, and 

aging-related impairments in IFN-a production by pDC and IFN-y production by T cells 

contribute to the down-regulated NK cell IFN-y production in the elderly subjects
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compared to the young subjects. We have also suggested that the cell-cell contact 

between NK cells and monocytes is important in activating NK cells to produce IFN-y to 

the full extent. To our knowledge, this is the first systemic investigation about the aging 

effect on NK cell IFN-y production in response to influenza virus. Our data supports that 

NK activity can be one o f the major targets o f the aging process that leads to the immune 

dysfunction in the elderly people in response to influenza virus.

The significance of NK cells in influenza-induced immune response extends from the 

innate immunity to the adaptive immunity via the production o f IFN-y, the manifest 

cytokine o f Thl lymphocytes by NK cells. Previous studies have suggested Thl but not 

Th2 lymphocytes prevent lethal dose o f influenza virus or promote the recovery in 

normal or aging-accelerated mice, and Thl but not antibody response correlates with the 

outcome of influenza vaccination in human (174, 189, 248,249). These evidences 

suggest that Thl immunity is an important part o f anti-influenza immune responses. Our 

earlier work has shown an age-related impairment in IFN-y production in influenza- 

specific CD4+ Thl cells and cytotoxic T cells in older adults. Since T cells and NK cells 

are the predominant source o f IFN-y, our current study completes the picture that the 

deficiency o f IFN-y production in elderly adults in response to influenza virus is 

attributed not only to the T cells but also to the NK cells. Moreover, our study has 

confirmed the importance o f IFN-a and IFN-y in mediating NK IFN-y production 

specifically to influenza virus and pointed out that the aging-related impairments in the 

productions o f these interferons by pDC and CD3+ T cells contribute to the aging-related 

down-regulations in NK cell IFN-y production. Therefore, our study has provided 

valuable information on how Thl immune response is impaired in the elderly people in 

response to influenza virus.

NK cell activities, particularly cytotoxicity have been documented to be responsive to 

influenza vaccination with live-attenuated, inactivated trivalent split vaccines or 

inactivated viral particles in human, indicating NK cells are significantly involved in 

vaccination-induced defending mechanism against influenza (155, 156, 223). However, 

information about NK cell IFN-y production in response to influenza vaccine is very
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limited if  not completely missing. We deem monitoring NK cell IFN-7  production 

should be as equivalently important as monitoring NK cytotoxcicity for a vaccination 

study. Although not directly related to a vaccine study our finding is valuable to be used 

as a reference at the starting point for a comparative influenza vaccine study between 

young and elderly subjects.

Our study utilizes human blood as the experimental material, therefore bypasses the 

possible discrepancies in information translation o f the findings from animals to human. 

It’s our strong belief that our findings will bring valuable insights on how aging 

influences innate immune system and Thl immunity and help establish the fundamentals 

for developing more effective prophylactic and therapeutic approaches for elderly people.

IV. 8 Restrictions o f the Study

Similar to many other studies, our study is restricted in certain ways. First, influenza is a 

localized but not systemic infection (1). Using influenza-stimulated PBMC is a mimic of 

a systemic infection. However, this restriction is hard to be avoided due to the limited 

tissue types to be obtained from human subjects. Second, we did not consider the 

survival factors for the elderly subjects in our study. Aging is commonly associated with 

a survival issue. If the selection pressure for the survival is unrelated to the variable to be 

investigated, survival factor will not be important. Otherwise, it will be affecting the 

validity o f the age-related change because the “change” could be a simply “unchanged” 

fact that is survived from other age-related mortality. Unfortunately, in most occasions it 

is hardly to know whether the selection pressure for the survival is related to the variable 

to be investigated or not. Longitudinal study, which is more cost-inefficient, would be a 

solution to avoid the influence o f the survival factor. Third, it is common in human 

studies that sample availability restricts sample size, duplication possibility, repeating 

possibility. These restrictions may increase the chance o f getting data with bigger 

variations and un-conclusive results.
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IV.9 Future Directions

We would like to continue to investigate soluble factors in influenza-induced Thl 

immunity in an aging context. We would differentiate subgroups o f NK cells, 

particularly differing CD56high versus CD561ow cells so that the aging-related absolute 

and relative increase o f the frequencies o f IFN-7-producing NK subsets and decrease in 

the per-cell-based IFN-y intensity will be clarified. Further more, questions as what is the 

mechanism by which cell-cell contact regulates NK cell activation; how relatively 

important pDC versus monocytes are in producing IFN-a; which subtypes o f IFN-a are 

important; whether IFN-b participates in aging-related changes in immune regulation; 

how IFN-a contributes to the impaired T cell activation in the elderly; how IFN-y 

influences monocytes and consequently influences NK cell activation; and how NK cells 

influence T cell function in response to influenza virus would be of great interest to be 

investigated.

We would also like to investigate the relationship between Thl response and antibody 

response in influenza-induced immunity. Generating protective antibody is one o f the 

primary goals o f the vaccination. Knowing how cytokines influence antibody production 

in young and elderly subjects in response to influenza infection and vaccination will be o f 

great value for providing the fundamentals for developing more effective prophylactic 

and therapeutic approaches for human.

Lastly, we would like to evaluate the potential o f IL-12 family o f cytokines in enhancing 

influenza-induced human Thl immunity in the elderly subjects. Interleukin 12 (IL-12) 

and IL-23 are not produced in human PBMC stimulated with influenza while exogenous 

IL-12 significantly enhances IFN-y production in human PBMC either alone or 

synergistically with influenza virus (48, 49, and data not shown). Whether IL-12 family 

o f cytokines can be developed into an adjuvant for influenza vaccines in the elderly 

people is o f interest to be evaluated.
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VI. APPENDICES

VI. 1 Supplemented Figures (S. Figures)

P=0.001
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S. Figure 1. Frequencies o f total NK cells in total lymphocytes in young and elderly 

subjects.

One million PBMC from each of 15 healthy young and 25 healthy older subjects were stained for 
CD56+orl6+CD3- NK cells and NK cell frequencies were determined by flow cytometry. 
Columns represent the mean and error bars represent the standard deviation.
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S. Figure 2. Expression o f CD69 on NK cells in PBMC from young and elderly subjects.

One million PBMC from each of 15 healthy young and 25 healthy older subjects were stimulated 
with 1 jtil of influenza virus in 96-well plate overnight. Fastlmmune assay and flow cytometry 
was used to determine the expression of CD69 and IFN-y in NK cells. A, CD56+orl6+ NK cells 
were gated out of lymphocytes and analyzed for CD69 intensity on CD69+IFN-y+ or CD69+DFN- 
y- NK cells by flow cytometry. Columns represent the mean and error bars represent the standard 
deviation. B, comparison of CD69+IFN-y- NK cell frequency in total NK cells between young 
and older subjects. Columns represent the mean and error bars represent the standard deviation.
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S. Figure 3. Sequential activation o f monocytes, T cells and NK cells in PBMC in 

response to influenza infection

One million PBMC from each of 3 healthy young subjects were stimulated with 1 /d of influenza 
virus in 96-well plate overnight followed by staining with anti-human CD3(FITC), 
CD56/16(PE), CD69 (PerCP) and CD14 (APC) antibodies. Frequencies o f CD69- 
expressing cells in each cell type were determined by flow cytometry. The percent o f 
completion o f activation determined as the ratio o f frequency o f CD69+ cells at each time 
point over the frequency o f CD69+ cells at 21-hour time point are shown.
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