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ABSTRACT
Parallelism in High Speed N etworking
Frank Charles Paterra
Department of Computer Science
Old Dominion University
Norfolk, VA 23529-0162

Advisors: C. Michael Overstreet and Kurt J. Maly

This work investigates possible methods by which existing potentially available commu-
nication bandwidth can be used by communication intensive applications. Presently fiber
optic media are available that can provide multiple gigabits of throughput. Unfortunately.
because of the computation overhead required to insure that data are reliably transmitted.
this capacity has not be tapped.

A survey of work toward enabling the use of the potential bandwidth is presented.
The parallel paradigm is identified as a strong candidate for providing significant increases
in system usable bandwidth. Performing communication processing in parallel. however.
presents the developer with several implementation options. These options are considered
and categorized. This categorization represents a framework that is used in later analysis
to compare different approaches and architectures.

Because the number of options available represents a combinatorial explosion in the
number of software and hardware architectures that could be implemented, a sensitivity
analysis is performed to exclude obvious failures, as well as to identify those components
that need further study and close consideration. Some components are identified as limiters
to total throughput obtainable: these components warrant special attention when imple-
menting a parallel communication system.

Building on results obtained through the sensitivity analvsis. a testbed was then buil

| Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and used to obtain performance data for one promising architecture and approach. The
results for two and three channels implementations show near linear speedups. These results
were then used to verify a model of the system used to calculate throughput values for
systems with higher numbers of channels.

In order to more fully examine other promising architectures, a simulation program was
developed and exercised. The simulation examined the impact of traditional communication
parameters, such as window size and timer length, on performance in a parallel svstem.
Further, the simulation confirmed some of the results of the sensitivity analvsis and provided
insight to the viability of two algorithms to implement flow control in a parallel environment.
Additionally, scheduling algorithms to allocate processors to the communication tasks are

examined and performance results are presented.

——em e
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Chapter 1

Introduction and Problem

Statement

The field of computer science called data communication encompasses several research areas.
This chapter introduces some problems faced in this field and identifies the specific areas of

study addressed in this work.

1.1 What is High Speed Networking

Computer to computer communication at rates of kilobi_t to low megabit per second speeds
are commonly available in network computer systems today. This communication speed,
however, is inadequate for many distributed applications, as well as the remote use of some
high performance computing resources. Research directed toward increasing the speed
of communication has. until recently. focused mainly on the physical media used to link
computers together and on the access methods needed to utilize that media. Work in thesc
areas has been successful; one can currently purchase fiber optic media capable of carrving

multiple gigabits of data. and media access controllers that can provide 100 megabits of



throughput. One popular media access control method is Fiber Distributed Data Interface.
or FDDI, a fiber optic based network designed to provide 100 megabits of data transfer
per second. As a network for connecting several computers with relatively low network
demands, FDDI represents at least 2 10 fold increase in the communication bandwidth
currently available with popular local area networks such as Token Ring and Ethernet.
Allowing a single node on a network to use a significant fraction of this bandwidth. however.
requires nontrivial computation power to insure that the data are reliably delivered. Some
applications. such as remote visualization. can require multiple hundreds of megabits or
even gigabits of bandwidth. making even FDDI too slow.

The media are only one of the problems to providing high speed reliable data commu-
nication. The computational power required to perform protocol processing is significant.
The amount of time spent waiting for packets to traverse the network and be acknowledged
before communication can progress is another problem. Performing high speed communi-

cation requires that new approaches be developed to address these and other problems.

1.2 Problems in High _Speed Communication

The areas of research called data communication include:

Physical media used to transmit data among computers,

Methods for accessing the media to insure that fair and timely communication can

take place,

Methods for determining computer addresses and the routes data take when traversing

a network,

Problems of transferring data among networks.

Methods for controlling and limiting congestion in a network.

" ‘Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



o Insuring that data arrive at the destination in a timely manner, complete and uncor-

rupted. and,
¢ Protocols used to specify how data are to be used and how they are to be displayed.

Fiber optic media for data communication can be used to provide bandwidths in the
multi-gigabit range. Sending data rates of one gigabit or even hundreds of megabits. how-
ever, introduces new problems to the communication process. As communication rates
approach gigabit speeds, the time available to place data on, and read or remove them
from. the media becomes exceedingly small. In fact at one gigabit per second transmission
rate, each bit must be physically placed on the media in no more than one nanosecond
(1 %1079 seconds). Hardware can be built to place and read data at that speed. but the
speed at which data can be accessed from the sender’s memory in order to place it on the
network presents a new bottleneck. For example. fast static memory, normally only used as
cache because of its high cost, has access times of five to ten nanoseconds per byte. barely
fast enough to keep up at one gigabit. The speed of memory can be effectively increased
by using multiple independent banks of memory. each feeding the network in turn. but as
network speeds increase the number of banks required becomes large and present a problen.

Placing data on the network is only part of the problem. Once data have reached the
receiver, they need to be examined to identify the intended recipient and then. if they are
for the local host. they must be copied from the network to a buffer for protocol processing.
As with the transmitter. at gigabit speeds the receiver only has one nanosecond to read and
act on each bit of the data. The time required to identify the recipient becomes critical.
and. because buffering data at gigabit speeds for any length of time requires significant
memory. once the data have been read thev must be processed quickly. Because more than
one action is performed on arriving data. less than one nanosecond of time can be aliocated
to each bit. This means that the instruction time for the receiving processor can be at most

sub-nanosecond. Again. this speed is achievable. but tiie costs may be prohibitive.
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Direction | Transport | Network
sending | 191 61
receiving | 186 57

Table 1.1: Estimated Instruction Counts

Once data have been read from the network. additional processing is required to insure
that the data are received by the intended process, have been received as sent. and are
in the original order. Two protocol layers, called network and transport. are responsible
for these tasks. Table 1.1 gives the values that Clark et al. in [7] estimated to be the
minimum number of instructions required to perform TCP/IP. or transport and network
layer processing. If the standard transport layer packet size of 2048 bytes is used, gigabit
communication requires more than 15 million instructions per second to send data and
9.5 million instructions per second to receive them. These numbers do not include the
additional processing required to processes packet acknowledgments. estimated to be one
third of the total processing time. Additionally, Clark’s optimized instruction count assume
a CISC computer and should be increased for RISC computers. For realistic computations
a factor of two for RISC computer instruction counts over those of a CISC can be assumed.
indicating that a 40 MIP RISC computer would be needed to perform just the transmitting
functions of the transport layer protocol processing.

At the network and transport layer, not all bits received need to be directly accessed.
Even so, Jain et al. in [19], estimated that memory access times of less than 10 ns would
still be required for TCP/IP receiver operations at gigabit speeds. Finally, to support a
40 MIP processor and the required memory cycle time, a sub-nanosecond svstem clock and
support circuitry would also be required.

If data are corrupted during transmission. the transmitting station needs to resend
them. Often. the mechanism within a protocol to notify the sender of lost or corrupted

data is for the receiver to simply not acknowledge the receipt of data. Because the sender
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maintains a timer for each packet it sends. it assumes an error in the data occurred if
no acknowledgment is received before the timer expires. This solution. while acceptable
for lower speed networks, is very expensive for high speed networks because of the loss of
potential to transmit data while waiting for a timer to expire. As an example, in a long
distance terrestrial network of 5000 km. the round trip time for a packet is 30 ns. The
round trip time is the shortest time in which a packet can be received at the destination,
and an acknowledgment can be received at the sender. If this number is used for the timer
length, a lost packet will cause the sender to wait at least 30 ns after the packet was lost
before resending it. During this time the sender continues to send data. but after the timer
expires the sender must resend the lost packet and then either wait for the packet to be
acknowledged, or resend all of data after the lost packet. In either case this represents 30
megabits in lost transmission capability. Netravali, et al., [27] suggests that with a more
reasonable timer length would be two times round trip time, making the loss 60 megabits.
At slower transmission speeds the loss would have been much less, making the waiting time
less of an issue. As is discussed in Chapter 2, this is a problem that needs to be faced in

protocols designed to operate at gigabit rates.

1.3 Why High Speed, Reliable, Data Communication is Im-

portant

The computing needs of applications in the fields of medicine. chemistry. aerospace. and
remote sensing are immense. The end product of much of these computations is often
visual images that are best viewed as a continuous animated movie [8]. Supercomputers are
capable of computing the data required for these images in real time. but these computers
are expensive and not available evervwhere. The user of a supercomputer must either find

a way to purchase a machine of their own. or must travel to a supercomputer facility.
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Because of cost, the first option is not viable for many users. For time critical applications,
such as medical imaging and remote sensing, travel may not be feasible. Another possible
solution is to use a supercomputer remotely by supplying it with raw data. and viewing
the results over a network. The amount of data involved, however, make this approach
unrealistic without faster networks. To give an example of the amount of data that must be
transferred, current scientific images typically used for visualization are 1024 by 1024 pixels
in size, with each pixel represented by 8, 16, or 24 bits to enable the viewing of different
colors. In order for images to be viewed as continuous animation. a new image needs to be
delivered to the viewer approximately every 30 ms. For visualization to occur in real time.
as is often required for medical and satellite sensed data [13]. these specifications represent
bandwidth requirements of between 250 and 750 megabits of application data per second.
These numbers are likely to increase as higher resolution displays become available.
Remote visualization is not the only application that would benefit from high speed
reliable data communication. In the area of high performance computing data often must
be shared among processors in order to compute a single result. Physically distributed
simulations, where the components%ontributing to a simulation are not resident on a single
computer, is such an application and would be enhanced by access to high speed networking.
An example simulation would be that of a tank battle field where humans are in the loop
competing against simulated opponents. Often these simulations are performed with tank
drivers operating simulated or actual tanks in one location, while the opponent tanks are
being simulated elsewhere. The speed at which data can be collected by the simulating
computer(s) about each of the tank groups determines the level of realism that can be
achieved, both as training for the tank drivers and in the computed outcome of the battle.
Other high data rate applications are becoming evident as our society moves to a more
global information based one. For example. stock market operations typically occur during

local business hours. However. as more companies become international. and local gover-
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mental and commercial actions have global implications, the questions of whose business
hours becomes an issue. The idea of truly international stock markets, where transactions
no longer occur within national borders alone. is currently being discussed. This sort of
market will require that information be made available nearly instantaneously, rather than
Jjust when the newspaper comes out the next morning. This need implies high bandwidths
and reliability.

Another new user of high data rate networks is the application called virtual reality.
This application involves the presentation of sound and video images to a user. to simulate
a particular environment or area of the universe. The displays have to appear as three
dimensional and, as the user moves with in the simulated environment. must change to
represent current simulated views. As with remote visualization, the bandwidth required

for high resolution, real time, color displays will be immense.

1.4 Focus of This Research

The raw bandwidth for each of these applications can be provided with a single fiber optic
cable. Unfortunately. fiber optic cables are only the first step to providing higher band-
widths. This work addresses the problems of providing reliable communication at gigabit
speed. The focus will be in the transport layer of the ISO communication stack. and will
review proposed and existing monolithic protocols and extend parallel methods for solving
these problems. Current workstation class RISC computers. such as Sun SparcStations,
provide an application with the ability to transmit approximately six megabits of reliable
data per second. This work discusses hardware and software architectures that can be used

improve that number.
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Chapter 2

Survey

As discussed in the previous chapter, several subareas in the domain of data communica-
tion need to be rethought in the light of high speed networking. This chapter presents
approaches that have been suggested and investigated and gives an outline 1o the specific

work performed in this thesis.

2.1 Solutions to Communication Problems

Traditionally the communication problem has been represented by a layered concept called
the OSI communication stack. The layers in this stack are shown in Table 2.1: the lower

four are examined in the following sections of this chapter.

Layer Description
Application Application to application. such as sendmail
Presentation | Syntax and semantic compatibility

Session Simple program interfaces. such as FTP
Transport Provide reliable end to end communication
Network Provide address resolution and routing
Media Access | Provide access to the physical media
Physical The media and its physical and electrical specification |

Table 2.1: The OST Communication Stack

lReproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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2.1.1 Media

An area that has been successful in providing high bandwidths is media. Fiber optic media
have the ability to provide bandwidths in the multiple gigabit range. Local area networks
(LANS). and metropolitan area networks (MANs). have been developed with fiber optics as
the connecting media. Long distance networks, such as inter-continental phone links. have
been successfully implemented via the use of undersea fiber optic cables. For data networks.
however, the bandwidth capacity of fiber optics has barely been tapped. As discussed later.
this is mainly due to other problems in the data communication domain.

For short distances, 25 meters or less, twisted pair copper wire is also a viable medium.
In fact, as is discussed below, twisted pair has been used as a base for one high speed
media access control protocol called High Performance Parallel Interface or HiPPl. and
modifications to one fiber optic based media access control protocol. FDDI. have been

proposed to allow it be to implemented with twisted pair as well.

2.1.2 Media Access Control Protocols

In order for any media to be of use. a protocol is needed to access it. Common desirable
attributes of a media access control protocol. called a MAC. often include: fairness. low
latency, the ability to handle synchronous as well as asynchronous data. and phvsical fault
tolerance. This section discusses three relatively new MAC protocols. Modifications to one

to provide higher throughput are also discussed.

FDDI

As discussed previously, FDDI is a fiber optics based protocol capable of delivering 100
megabits of data per second. Formed from work performed to develop the IEEE 802.5 LAN
[29]. FDDI is a token ring network that employs two counter rotating fiber optic rings.

Because fiber connections are really point to point. with a receiving and sending pair in

“Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



each station enabling a ring, and the FDDI specification allows only 1000 ring connections.
up to 500 staticns can be attached. The maximum length for an FDDI network is 200km.
There are no minimum station count or network length requirements [29].

When a station has data to transmit, it waits for and acquires a token before sending
them. Internal to each station are timers that are used to determine the target token
rotation time. and control how long a station can hold the token once it had received it.
These two timers provide fairness and the ability to handle synchronous traffic. The tokeu.
holding time determines how long a station can transmit once it has the token. and the
target token rotation time, the time that a token takes before completely traversing the
ring, makes the token arrival rates deterministic.

Of the two fiber optic rings forming a FDDI network. only one is normally in use for
data transmission, with the second only being used in case of a primary ring failure. If a
ring breaks, a new ring is formed by each of the two stations on either side of the break
forming a loop internally, using the second fiber. This newly formed ring is approximately
twice as long as the original. Figure 2.1 shows two FDDI networks. The first is the normal
configuration. and the second shows a healed ring after the line between two stations failed.
If a station had failed, the ring would be healed by the two stations on either side of the
failed station. FDDI represents a significant increase in bandwidth over existing LANSs, but
falls short of the needs outlined for remote visualization and distributed computing.

Game in [14) proposed modifications to the basic FDDI network to enable gigabit opera-
tions. His work centered on modifications to the timer values. removal of data from the ring
by the receiver, use of both fibers concurrently. and reuse of slots on the network. ¢roated
by the removal of data at the receiving station. Game showed that these modifications
allow transmission at rates of 400 to 500 megabits. and could make FDDI viable at gigabit

speeds.

10
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Figure 2.1: Before and After FDDI Ring Failure

CSMA /RN

Carrier Sensed Multiple Access/Ring Network, or CSMA/RN[12], is also a fiber optic based
network. However, unlike FDDI, CSMA/RN is a carrier sensed, multiple access network.
rather than token based, allowing it to exploit the fact that multiple transmission packets.
with different source and destination addresses. can be physically resident on the fiber ring
concurrently. CSMA/RN was designed to operate at a nominal speed of one gigabit. but
because it employs destination removal of transmitted data. an average throughput of two
gigabits is actually possible.

Because data are removed from the ring when they are received. and must not be
removed before they arrive at their destination. the destination address of the data must be
determined before they passes a station. As discussed previously. buffering data in computer
memory when communicating at gigabit speeds is not reasonable. In order to determination
of destination of data before they pass a node. CSMA/RN employs delay loops at each
station. These delay loops. easily realized as coils of fiber cable. have connections to the

controller at each end of the coil. As data enter the loop. they are read by the controller.

11
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If they are addressed to the local host, they will be read and removed from the network
upon exiting from the loop. These loops aliow CSMA/RN to enjoy zero loss of data due to
collision on the media. Normally, in a CSMA network, stations sense to see if the network
is free before they begin transmitting, and then they attempt to transmit a complete frame.
If two stations sample the network at the same time, both will transmit concurrently and
the result will be a collision of data and loss of bandwidth. By presampling the network at
the beginning of the delay loop, the transmitting station can be sure that enough free space
exists on the fiber for it to transmit at least a packet header and an abort flag. If. after
beginning a transmission, data are sensed to be entering the delay loop. the transmitting
station can transmit an abort flag and stop transmitting until more free space is detected
on the network. Of course, if data entering the delay loop are for the transmitting station,
the station can continue to transmit and simply remove incoming data as theyv enter the
receiving portion of the station.

Additionally, CSMA/RN provides svnchronous data transmission through the use of a
circulating reservation packet (CRP) [11] . When a station requires synchronous trans-
mission service, it accesses a CRP currently on the ring. adds information about its needs
to that packets and places it back on the network. When the CRP passes a station, it
is examined to determine when unallocated space on the ring for asynchronous traffic will
exist.

CSMA/RN enforces no limits as to network lengths or number of stations. and represents

a viable MAC for gigabit networks.

HiPPI

HiPPI is a media access protocol that was originallv designed to connect a host computer
to peripherals such as disks or printers. It was later expanded. however. to allow multiple

hosts to be connected to each other or to share peripherals. Working as a point-to-point
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network. HiPPI can be used to provide single or multiple 800 and 1,600 megabit simplex
channels. For most applications. duplex operations are desirable so separate interfaces are
provided for input and output. As can be seen in Figure 2.2, the interface consists of several
control lines and a set of parallel data lines. The control lines are used to setup a connection,
indicate that a host is ready receive data, provide a synchronizing clock. and test the circuit.
Two additional control lines are used to indicate the end of a burst of words. and the end of
a packet of bursts. These are labeled Burst End and Packet End in the figure respectively.

Because of its original design goals. to connect one host to its peripherals. the length of
a HiPPI network is only 25 meters. This, and the fact that it operates as a point to point
network. requiring processor attention for each data transfer that passes through. makes it
impractical for traditional LANs and MANs.

What the HiPPI interface does provide. and indeed was its design goal. is a standard
interface that can be used to link processors to peripherals. The peripheral of interest for
this work would be a high speed network interface. The HiPPI interface would make the

addition of new types of hardware to an existing network a simpler task.

2.1.3 Transport and Network Protocols

The processing required to perform reliable communication has been identified as a bottle-
neck for high speed data communication networks {21, 7]. Reduction of this bottleneck has
been the focus of much research interest and efforts fall into two broad categories. mono-
lithic and parallel. In both of these categories multiple approaches have been proposed.
Independent work by several researchers has resulted in performance gains in both cate-
gories. The next two sections of this chapter discuss some of the approaches taken in each

category.
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Figure 2.2: The HiPPI Interface

Monolithic Approaches

Monolithic approaches attempt to either optimize existing protocols, or developing new
protocols that reduce the amount of processing required to insure reliability.

Working towards optimization. Clark et al. [7] gives a thorough analysis of the process-
ing required at the transport and network layers of the OSI stack, and then goes on in [6] to
identify other bottlenecks in communication layers and supporting hardware. One solution
suggested by Clark was to move some of the processing. currently being performed by the
transport and network layer, to the application. This has the advantage allowing the ap-
plication program to decide which functions it requires and to use the available processing
power accordingly. The obvious disadvantage is that the clean interface between layers of
the OSI stack become blurred. As discussed earlier. a highly optimized version of TCP/IP
has been estimated by Clark et al. to potentially produce as much as 800 megabvtes of
throughput using a modern RISC processor. Clark’'s work. however. did not address hard-

ware bottlenecks other than processor speed. Van Jacobson [18] implemented a somewhat
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optimized version of TCP/IP and was able to verify that throughput as high as § megabits
could be achieved with a Motorola 68020 and existing hardware.

Silicon Graphics® optimizing approach. XTP. resulted in a new protocol that places
much of the transport layer processing into VLSI hardware [4). This dedicated hardware's
performance is not limited by the speed of a host CPU. and the CPU is not burdened
with transport layer processing. The result is an increase in throughput independent of
CPU speed and load, and only limited by the speed of the protocol VLSI hardware. PSi
is another protocol that is being developed for implementation in VLSI [1]. Krishnakumar
et al. [20] describe work toward the automatic translation of a protocol specification into
VLSI design.

Delta-t [33] and NETBLT [5] are optimized transport layer protocols which speed the
communication process by reducing the amount of processing required. In the case of NET-
BLT, this reduction has been achieved by providing two unidirectional paths, separating
the data and control information flow. This allows the most efficient implementation for
each, rather than a compromise for both. Additionally, NETBLT supports a selective ac-
knowledgment strategy which allows individual packets to be resent as soon as their loss is
detected. rather than the go-back-N algorithm found in TCP.

La Porta and Schwartz in [28] suggest that bunching packets into larger blocks and
setting only one timer for each block would result in faster communication. They jus-
tify this approach by saying that new networks, especially fiber optic based networks. are
significantly quieter than previously achievable so less loss will be observed.

In most new protocols. the fact that waiting for notification of lost packets represents a
significant loss in bandwidth has played a significant part in their development.

One additional monolithic approach that has been examined is the use of a superconi-
puter, such as a Cray. to perform transport processing. This approach. while very expensive

to implement. was shown by Borman in {3] to produce throughputs as high as 750 megabit:
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per second.

Parallel Approaches

In the arena of parallel protocol processing. Jain et al. in (19] and my work in [22] has exam-
ined the potential of providing multiple processors at the transport layer, each performing
a complete transport processing task.

Jain et al. classify several schemes by type of memory, granularity of parallelism. and
scheduling policies used. In their selected proposed implementation they use a pool of spe-
cialized protocol processors to transmit and receive data fromi a single high speed source.
Each of the protocol processors operates independently on individual packets but main-
tain context records in a global memory so that acknowledgments, retransmissions. and
resequencing can be handled properly by a centralized processor. In their implementation.
special attention must be given to insure that the two common buses, the common memory.
and the centralized queue processor do not become a bottleneck for communication because
all packets must pass through each of these at least once. Existing memory speeds. as
discussed in Chapter 1, will limit the throughput in their proposed architecture because of
the need for context records in a global memory.

Maly, Wiencko et al. in [21]} initially proposed a general solution that provides parallelism
at the transport, media access, and physical layers of the communication stack. They kept
the functionalities of the traditional protocol stack and introduced parallelism at some points
where performance bottlenecks could develop. Independent of network layers. all protocol
functions are viewed as processes to which multiple general purpose processors and channels
are allocated to maximize throughput. The key concept is to structure the processes so that
full advantage can be taken of parallelism at all levels. This provides additional benefits of
increased reliability and graceful degradation in the case of a processor failure. Additionally.

this approach allows the use of existing protocol standards and hardware technologies, This
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method is extended in Chapter 3 to include the network and application layers.

In [16), Haas describes an approach to parallel communication that uses multiple proces-
sors to work on each transport layer packet. In this protocol. called Horizontally Oriented
Protocol or HOPs, the traditional OSI stack is recast into three lavers. The first three
layers of the OSI stack, media, media access control, and network. becomes the first layer of
HOPS, called the network access layer. The transport, session, and presentation lavers of
OSI are combined into the new seco_nd layer, called communication interface, or CI. Finally
the application layer of OSI becomes the third new layer. The most important laver for
performance improvements is the CI. To obtain this improvement. parallelism is used by
assigning separate processors to each of the tasks that must be performed for each incoming
or outgoing packet. For example, one processor could be dedicated to packetization. while
another is dedicated to performing flow control functions. A similar approach was briefly
discussed by Jain in [19], and it was noted that, with packet structures such as is found in
OSI TP4 (TCP), little parallelism can be achieved. Haas has found success by developing
his protocol based on functions rather than a layered concept. Because functions can be
performed independently, little communication is required among processors, so parallelism
on the packet level can be achieved. This approach has an implicit limitation on the degrec
of parallelism that can be achieved because there are only so many tasks to be performed
for each packet. If each of the tasks functions are replicated for multiple packets. higher
parallelism can be achieved but only if parallel data ;treams of data are present.

Netravali et al. in [27] discuss a hybrid approach, first optimizing the protocol and then
implementing it on a parallel computer platform. The optimization presented by Netravali
et al. was based on the observation that the sooner an error is detected. the less bandwidth is
lost waiting. To take advantage of this they exchange state information from the sender and
receiver with every packet sent. This information transfer requires little bandwidth when

included with normal data packet transmissions and results in near immediate notification
17
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of lost packets. The protocol was also simplified because the need for active timer processing
was eliminated.

Each of the above parallel communication methods are software proposals. Little has
been done to measure their true performance, to examine the hardware implications of their
implementations. nor to classify their approaches so they can be compared and extended.
In the remainder of this work I classify the options available to parallel communication
systems and identifv the components that are of particular concern when performing high

speed communication.
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Chapter 3

Options in Parallel

Communication

The previous chapter introduced some of the approaches taken to perform protocol process-
ing in parallel. In order to evaluate these methods. a categorization scheme is needed to
assist in analyzing and discussing them. This chapter identifies and examines the options
available in parallel communication to form a basis for that comparison. Because so many
options exist, and their potentials and limitations are not always immediately evident. it
is important to carefully select candidates for detailed analysis. A model was built which
allows a quick first look at possible option combinations to aid in identifving those that
seem promising. A sensitivity analysis is performed with this model to quickly identify

promising approaches for further study.

3.1 Introduction

Comparing methods used in parallel communication protocol processing is difficult because

researchers use different terminology to describe the functions being performed. and use
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different grouping of subfunctions and approaches. Classification of the methods and the
results observed by each approach would be beneficial.

The objective of this chapter is to identify the different options, approaches. algorithms
available when implementing parallelism at single and multiple levels of the communication
process. Section two of this chapter evaluates classifications of parallelism in other appli-
cations and specifically defines the terms used in parallel computation and how they relate
to parallel communication. Section three examines options opportunities for parallelism of
different stages of the communication process. Section four uses these opportunities and
options in a sensitivity analysis to identify promising approaches and to indicate which

components need further study.

3.2 Taxonomies in Parallelism

Parallelism to increase performance and fault tolerance in computation has been studied
for more than 20 years [10, 30, 9]. Early work by Flynn resulted in four major categories

for describing parallel computing architectures. These are:

SISD - Single Instruction, Single Data

SIMD - Single Instruction, Multiple Data

MISD - Multiple Instruction, Single Data

MIMD - Multiple Instruction, Multiple Data

Working at any single level in the traditional OSI communication stack. Flynn's catego-
rization can be applied as shown in Table 3.1. This classification describes the relationship
of CPUs to packets. but is incomplete in that the granularity of computation as it relates

to the number of data streams and in the allocation of CPUs to data streams as well as the
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Flynn Communication

SISD | Single CPU performing all protocol processing

SIMD | Multiple CPUs working on multiple packets in lockstep
MISD | Multiple CPUs working on a single packet at a single layer
MIMD | Multiple CPUs working on multiple packets, independently,
at one or more layers

Table 3.1: Application of Flynn’s Classifications to Communication

interface between multiple communication levels. Additionally. this classification is incom-
plete for parallel communication as it does not address the interaction among processors
within each layer.

In [19]. Jain discusses three categories of granularity for processors to data streams.
The finest level of granularity provides for multiple CPUs operating on a single packet
within a stream. This relates to my use of Flynn’s MISD, as well as work by Haas in [16]
and Netravali et al. in [27]. The medium level granularity Jain et al. discuss has the
individual packets being processed on individual processors as a single stream of data. In
this method, processors are given packets as they arrive from the input stream and. once
they have been processed, the data and control information is passed to a separate processor
for resequencing and maintenance of data stream information prior to deliver of data to
application layer. This level of granularity is most closely related to my use of Flynn's
MIMD category. The most course level of granularity discussed by Jain assigns individual
processors to specific data streams. This method reduces the need for a separate processor
to maintain data stream control information, and reduces the amount of interprocessor
communication required to properly handle packet timeouts and acknowledgments. This
level of granularity also falls into my use of the MIMD category. Jain's work however. was
only at the transport layer. so the issues of communication. control. and scheduling between

lavers still have not been addressed.
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Classification Description

DRDA Distributed Retransmissions, Distributed Acknowledgments
CRCA Centralized Retransmissions, Centralized Acknowledgments
DRCA Distributed Retransmissions, Centralized Acknowledgments
CRDA Centralized Retransmissions, Distributed Acknowledgments

Table 3.2: Retransmission and Acknowledgments

Acknowledgement

2] Cr Central Sender Controller
e e Cs Central Receiver Controller
e RJ Receiver PP

Sl' Sending PP
P Packet

A

R

Retransmission

ocal
Acknowledgement
Central

ocal
Retransmission
Centra!l

Figure 3.1: Acknowledgement and Retransmissions

CRDA

Working with Maly et. al in [22], I addressed some of the issues of interlevel communica-
tion. Specifically, the placement of scheduling mechanism, the type of scheduling available,
and the supporting hardware that may be required for each. In this paper I also described
four categories of methods to generate acknowledgments and retransmissions. enabling re-
liable communication when multiple processors are being used at the transport layer. The
four categories are show in Figure 3.1. and are defined in Table 3.2.

DRDA requires that a separate data stream is present between a sender S and a
receiver R;, and as such can be considered to fall into Jain’s course grain ciassification. In
this solution, sender Si maintains timers and performs any required retransmissions for the

packets that it sends. while receiver R; is responsible for generating acknowledgments for
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the packets it receives. My work in [22], falls into this category.

CRCA employs separate processors to perform retransmission and acknowledgment gen-
eration. In this solution, timers for packets sent by sender S can be maintained either by
Sk, or the centralized processor C,. In the former case, when a timer has expired. sender
Sk notifies C, and C, forces a retransmission if an acknowledgment was not received by any
other S;. The retransmission can be performed by any S;. In the later case. once sender ;.
has sent a packet, it discards the packet information and begins sending its next packet. If
the timer for a packet expires, C, forces the packet to be retransmitted by some 5;. Because
with CRCA the Sk does not receive the acknowledgment, its window size must be very large
or it will be stuck waiting for window movement. In the later case all of the timer process-
ing is off loaded to a single processor. because timer processing is a significant part of the
transport processing overhead, it would be advantageous if this task can be parallelized.
This classification fits the medium granularity model that Jain et. al concentrated on in
[19].

DRCA requires that the sending processor perform their own timing task, but the ac-
knowledgments are generated by a single processor on the receiving side. In this scheme.
sender S; sends a packet to any receiver R;. When a packet is received by some R;. the
centralized acknowledgment processor C, is notified and it sends an acknowledgment to any
Si. When the acknowledgment is received, it is forwarded to the particular S; that sent the
packet and the packet’s timer is stopped. Sender S will resend any packets for which its
timers have expired.

The final classification, CRDA provides a centralized processor to perform retransmis-
sion of lost packets. but the receiving processor Ry generates the acknowledgments for any
packets it receives. The problems outlined for the sending side of CRCA need to be ad-
dressed for this solution as well. The problem of resequencing received packets has not been

addressed in CRDA nor DRDA.
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This work only relates to the transport layer where acknowledgments are needed.

As can be seen, there are several issues in paralle]l communications and existing classifi-
cation schemes for parallel processing and none are complete. It is tempting to simply use
all of the classification schemes available, as a collection, to describe each system. However
this may result in ambiguous classifications. and incomplete descriptions. For example. two
ways to define a system with processors on the sending and receiving side maintaining mul-
tiple transport layer connections were presented. Jain et al. call this a course grain system
and my work calls it DRDA. Further a majority of the work in parallel communication
has been at the transport and media layers, and little has been done at the network and
application layers, so existing classification schemes may not adequately address the other
layers. Finally, none of the above systems can be used to completely describe the work done
by Haas [16] and Netravali [27], where the protocol has been defined based on functionality

rather than on the layers of the OSI stack.

3.3 Opportunities and Problems in Parallelism

A majority of work in the published literature has been in the area of parallelizing the
transport layer. Some work was done earlier to enable parallel media access, but little has
been done at other layers of the ISO stack. In this section the layers of the ISO stack from
the application to the media are evaluated and the opportunities for parallelism at each
level are described.

Performance gains should be achievable from the application and network layers. In [15]
Gitlin shows that when using a Sun Sparcstation. 20 MIP machine. if a single FDDI interface
is provided(100 Mbits/second), the throughput of the network layer (IP) is a little more
than 20 Mbits/second, the throughput of the transport laver is only about 15 Mbits/second.
and the throughput of the application layer with the application being file transfer (FTP) is

only about 1.3 Mbits/second. The higher lavers are actually a greater bottleneck than the

.‘)»1
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transport layer, so if an increase can be seen there, total system throughput will benefit.

3.3.1 Application Layer

At the application layer. consider applications running on a single CPTU and those running
on parallel machines. First, for those running on a single CPU. when block transfers of
data. such as file transfer applications are running, other CPUs resident in the machine can
be used to perform the application’s data communication functions. In previous work [23].
I observed near linear speedups of throughput by simply replicating the communication
processors. 'This means that a pool of processors could be used to speed this type of
application.

In the case of a parallel processor machine with a single application running on multiple
CPUs, spare processors or cycles on application processors can be used 1o send data in par-
allel as was described for the single CPU application. With parallel applications. however,
additional opportunities for parallelism exist. To exploit these opportunities the following

questions need to be answered.

¢ Do data generated by one application CPU need to be delivered to a specific CPU on

the receiving end, or will any CPU suffice?

¢ Can received data produced by cne CPU be consumed before data produced by an-

other CPU have been received?

¢ How does the parallelism available at the transport layer affect the use of parallelism

at the application layer, both for the application and its communication?

While the answers to these questions are primarily driven by the application being
considered, some are also partially application independent. For example. regardless of the

application. some form of scheduling of application processor data to transport protoco!
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processors will need to be provided. This will have an impact in so far as computing

resources may be needed for this control and scheduling.

3.3.2 Alternative Architectures to Parallelism at the Transport Layer

The transport layer has been the focus of significant research recently. As discussed in
the first and second sections of this chapter, numerous ways to exploit parallelism at the
transport layer exist. The transport layer, identified as a significant bottleneck for high
speed communication, also represents one of the most interesting processes to parallelize.
Because the transport layer is responsible for providing reliable communication. all data
must be delivered to the receiver correctly, and data must be delivered from the receiver's
transport layer to its application layer in the same order as sent. These two attributes
would initially seem to require that either the sending processors maintain some sort of
global information or maintain separate data streams in order to insure that all data are
accounted for. On the sending side, because data are being sent on more than one path

the transport layer must have a large buffer so that data can be resequenced before it is

delivered to the application. Specifically. if each sending processor is maintaining a separate

transmission window, the receiving transport layer needs to have n * (window size) * (packet
size) bytes of storage, where n is the number of transmitting transport laver processors. As

is discussed below, this is not the only way to perform these tasks.

Scheduling Issues

As introduced above when discussing the application layer. the resources of the transport
layer must be scheduled to fit the needs of the application layer. This problem is multi-
faceted. and several solutions for each dimension can be examined. Table 3.3 gives some
of the issues to be considered and some broad option categories for each. The iocation of

the scheduler has an impact on the supporting hardware used. the amount of processing
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that needs to be performed at each level in addition to communication, and the amount
of interprocessor communication required. As shown in Figure 3.2. the scheduler can be
in any of three locations. The location chosen has an impact on the utilization of proces-
sors, buses, and memory. Additionally, the location determines if the scheduling process
Is a single processor or a distributed process, and it can indicate the sophistication of the
scheduling mechanism.

The scheduling algorithm has an impact on the system’s performance. In 22]. I showed
that when data channels are evenly loaded, FCFS and Round Robin performed nearly
equally. However, if the transport processor loads are very different. neither of these so-
lutions could exclude a slow processor from being assigned the final segment. This could
result in higher system latency and slower throughput if a nearly complete transmission
had to wait a significantly long time for its final segment to be completely sent. A more
intelligent algorithm could exclude slower processors from participating in the transmission
of the final segments, thereby increasing throughput. The slower processors could be used
them early in the transmission. This has the potential to exact higher throughput by using

each of the processors when they can make a contribution to the communication task.

Data Sizes

The data blocks generated by the application should be sized to meet the processing speed
and memory storage capacity of the transport processors. If block sizes are too small, more
communication between the layers is required and if block sizes are too large. the application
layer may be forced to wait until data is sent from the transport processors before it can
begin producing more data. Adaptive block sizes could change with application tvpes and
needs, as well as anticipated network capacity. As with adaptive algorithms discussed
earlier, the availability and cost of additional information needs to be considered.

The size of a segment of data from a block that is given to the transport laver processors
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Figure 3.2: Scheduler Placement Options

must also be determined. If segments consist of only one packet of data, the use of each
transport processor can be finely adjusted with its load to insure that the complete trans-
mission is not waiting for a slow processor. Unfortunately, this fine tuning comes at the cost
of additional interprocessor communication, and possibly wasted wait time. If segments are
too large, little fine tuning can be done, and in fact, some processors may be excluded from
the transport processing because all data has been allocated to just a few of the available
processors. If timely information about processor load and previous performance can be
obtained, the size of the segment given to a particular processor can be tailored so that all
the processors complete their segments at nearly the same time, resulting in a higher degree

of parallelism.

Timer Maintenance and Packet Retransmission

In addition to scheduling processors at the transport layer and determining the correct
data sizes to generate and assign, issues of timer maintenance and retransmission need

to be addressed. Both of these problems can be solved in several ways. The specific
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Attribute Options Implementation
Location of Scheduler Application | Centralized/Distributed
Transport Distributed
In Between | Centralized

Type of Scheduler Simple FCFS/Round Robin
Intelligent | Adaptive

Block Size (data size Fixed

used by application) Variable Remainder/Adaptive

Segment Size (size of Fixed

data used at transport laver) | Variable Adaptive |

Table 3.3: Sending Scheduler for Transport to Application Mapping

problems and categories of solutions are given in Table 3.4. Because the transport laver
must insure reliable transmission. timers or some other way of insuring that lost packets
are eventually resent must be incorporated. Maintenance of timers normally require some
processing to update and react when a packet has been lost. The task of maintaining this
information can be performed in a central location, or distributed among the processors
performing the transport processing. This task in particular is a large part of the overhead
of transport processing and distributing is potentially beneficial. To determine the desired
solution for this problem one must also decide where the incoming acknowledgments will
be received and what processors will be responsible for acting on them. If the timers are
located centrally, any transport processor can receive the acknowledgments and forward
them to a dedicated acknowledgment processor. Alternatively a dedicated acknowledgment
processor can receive all the acknowledgments directly and then stop the timers. If the
timers are located in the sending processors. the acknowledgment for a packet either has
to be received directly by the sending processor, or received by any processor and then
forwarded to the sending processor. Alternatively if the sending processor keeps timers in a
global memory and acknowledgments are received by any processor. the processor receiving
the acknowledgment can stop the timer directly and the sending processor will simply check

the global memory when a window movement is needed.

'.Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Task Options

Timer Execution Centralized /Distributed
Receipt of Acknowledgment Sender Sk, Any S;, Dedicated
Location of Window Individual Windows for each S;. Single Window

Generation of Retransmission Original Sender, Any S;

Table 3.4: Timers and Retransmission Options

Placement and size of the sending processor window is also an issue that needs to be
addressed. In the last example, it was implicitly assumed that each sending processor
maintained a separate window. An alternative implementation. however, could have a
single, large global window that is used by all processors. The solution selected for this

problem also has an impact on the other issues in Table 3.4

Acknowledgment Generation

The receiving end of the transport processing is responsible for generating acknowledgments
for received packets, and for reordering the data received before passing them to the appli-
cation layer. The categories of solutions to these problems in a parallel implementation are
given in Table 3.5. As packets ara received by a processor, the single processor may not be
able to determine if a packet should be acknowledged. For example. if a single stream of
data is received by several processors, before any one packet can be acknowledged all the
packets sent prior to the packet must have been received. Without the use of some global
memory, the individual processor may not know if all the packets prior to its packet have
been received, so an acknowledgment cannot be sent. If on the other hand each processor
receives a separate stream of data. it knows what packets it has and has not received for
that stream and can act accordingly without communicating with the other receiving pro-
cessors. A third alternative would be to provide a separate processor responsible for the
generation of acknowledgments. and have each of the receiving transport processors report

to it when they receive a packet. This solution simplifies the acknowledgment problem. but
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Attribute Options
Acknowledgment Generation | Receiving R; / Central Processor C,
Number of Streams Single shared, Multiple to be Merged
Reordering Storage Global, Local to one Processor

Table 3.5: Reordering and Acknowledgment Generation

could require that a significant global memory is available to store all of the packets as they
are received. Because all protocol processors must in some way access the global memory.

memory access may be a performance bottleneck.

Reordering of Data

Once data have been received, they need to be ordered correctly before they can be passed
to the application layer. This can be accomplished by using a single queue processor as
suggested by Jain et al. in [19], or by having a single processor poll the receiving processors
for complete segments and selecting the lowest available one to pass to the application layer.
These solutions, while not the only ones. demonstrate the dependence of the issues at the
transport layer. The first solution selected by Jain assumes that all the receiving processors
are working on a single stream of data and that they do not build complete segments
themselves. The second solution assume that each processor is working on a separate data
stream and can store a complete segment locally before passing it to the application layer.
Additionally, both of these solutions require completely different supporting hardware. In
the former case a large global memory is prescribed, in the later, a significant local memory
must be available at each of the protocol processors and a separate processor must be
available to poll for the next segment to be passed. The later solution could also implement

this polling function as a distributed process among the transport processors.
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3.3.3 Network Layer

In addition to breaking data blocks into data segments and scheduling these segments to
transport processors, packets generated by the transport layer need to be scheduled to
network layer processors. As with the transport and application layers, the number of
processors assigned to network layer processing may be different than the number assigned
to other layers. As discussed earlier, Gitlin [15] showed that the network layer represents
a factor of five reduction in available bandwidth from that offered at the media level, so
extracting speedups from it would be beneficial.

Parallel network layer processing introduces new problems and issues over those in seria)
communication systems. Some of these problems, shown in Table 3.6, are similar to those of
the transport layer. As with the scheduling between the application and transport layer, the
scheduler between the transport and network layer can reside either in the transport layer,
the network layer, or in a processor between the two layers. Additionally, media access
processors must be scheduled to network processors. As with the scheduling mechanism
discussed for the transport layer, the algorithms can be simple FCFS or Round Robin, or
they can incorporate information about system and component performance to attempt to
increase throughput. Unlike the transport layer, reliability is not guaranteed for the network
layer, so the issues of acknowledgments and retransmission do not need to be addressed.
Also, data can be delivered to the transport layer in the order it was received by the network
layer, so there is no need to buffer incoming data for resequencing. However, if transport
layer packets are fragmented at the network layer and multiple paths are used to send a
single transport packet, it is important that the complete transport packet is delivered to
one transport processor on the receiving end. If this is not done. many packets could be
successfully sent, but thought to be lost because several transport processors are holding
a small part of each packet. This implies that the fragments must be reassembled at the

receiving network layer. This can be done by requiring that all network packets from
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Task Options
Scheduling Simple, Adaptive
Fragmentation | Yes or No
Recombination | Single Network Layer Processors, Distributed
Addressing Single Address, Multiple Addresses

Table 3.6: Parallel Network Layer Problems

single transport packet be sent to the same network processor on the receiving side, or
that the fragments forming a single transport packet be address to a particular receiving
transport processor. In the later case, some mechanism to resequence the single transport
packet must also be provided.

If the transport layer cannot accept data from a network layer processor, the data can
simply be discarded. This means that the problems of timer and acknowledgment main-
tenance, and buffer memory are not imposed at this layer. Interprocessor communication
may still be needed however, because the incoming data packets need to be scheduled to
the available network layer processors, and the network layer processor may want to com-

municate to determine the best route to transmit a particular packet.

3.3.4 Media Access Layer

Multiple media access processors or controllers can be used to provide high throughput by
aggregating the throughput of each. Parallelism at this layer is significantly easier than at
the network and above layers because not only is there no concern for proper delivery and
reordering of data, any fragmentation that occurs at this layer is handled at the receiving
end by the receiving media access controller. In many computer systems multiple media
access controllers are already in used, but no real parallelism can occur because normaily
only one is processor performing the communication protocol processing. and it can only
use one media access controller at a time. As the throughput of the higher lavers increase.

the data are more quickly available to the network laver and. hence. to the media access
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controllers. Multiple media access controllers can then be driven by the parallel network
layer. This is not meant to imply that the efficient use of multiple media access controllers
is a trivial problem. Mukkamala et al. in [26), however, showed improvement in throughput

when multiple FDDI channels were provided.

3.3.5 Physical Media

Parallelism at the physical media, that is the use of multiple paths concurrently to deliver
more data. is not a new idea. The telephone system has used this to perform congestion
control and as well as to provide the needed bandwidth through major cities [17].

Parallelism at the media level also has been used to add fault tolerance and bandwidth.
In addition to the telephone network efforts mentioned above, the FDDI network/protocol
contains two counter rotating rings that are used to improve fault tolerance. The use of the
second ring for parallel traffic is a possibility, but has not yet been added to the standard. In
1987 an Ethernet compatible network using counter-rotating fiber optic rings was developed.
This technology is currently in use for fault tolerance, but, as with FDDI, could be used to
provide parallel communication };aths (34, 35].

An additional view of parallelism at the media level is to use multiple slower media

channels driven by several faster media access controllers and a multiplexor to match the

output of the media access controllers to the speed of the aggregation of slower media.

3.3.6 Parallelism in the Complete Communication System

The opportunities for parallelism in both protocol layers and schedulers are shown in Figure
3.3. A parallel communication system may implement fewer parallel lavers and schedulers
depending on available components. cost considerations. and performance needs. The blocks
outlined with solid lines are actual layers in communication systems. The dashed line boxes

represent the scheduling functions that must interface the various layers. As discussed
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above, these are not actual layers, but rather logical layers whose functions can be placed

in any of three places.
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Many of the opportunities and problems with parallelism at each of the lower 5 levels
of a traditional ISO communication system have been discussed. Note that, while paral-
lelism is conceptually possible at all levels, it may not be needed or useful at some levels.
Additionally, the degree of parallelism provided at each level need not be the same. That
is if transport processing takes twice the time of network processing, it might be sufficient
to provide X processors at the transport layer, but only X/2 processors at the network
layer. The various schedulers discussed above can be used to match the different degrees of

parallelism at each level.

3.4 Sensitivity Analysis

The options presented in the previous section could be used to build a large number of dif-
ferent implementations of parallel communication systems. Some approaches would provide
increases in performance, depending on the underlying hardware configuration. and some
would not. As a quick first look to determine which seem more promising, a sensitivity

analysis is being performed.

3.5 Description of System Components

The system being considered, shown in Figure 3.4, is based on the Sun MP architecture,
where multiple Sparc processors, each equipped with their own cache, are connected to a
common high speed bus. The only memory on the system is global and is also attached
to the common bus. In this system, one Mbus module is dedicated to performing applica-
tion processing. The remaining processors are all performing transport and network layer
processing. As is discussed below. all scheduling of data to processors is assumed to occur

within the protocol processors.



.Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Component Performance Rating | Confidence
Processor Speed (PS) 20 MIPs 80%
Cache access time (CAT) 10 ns 40%
ITU Bus speed (IBS) 100 Mbytes/sec 80%
Mbus to Sbus speed (MSI) 80 Mbytes/sec 70%
IU to Mbus speed (IMI) 100 Mbytes/sec 80%
Sbus speed (SBS) 80 Mbytes/sec 90%
Mbus speed (MBS) 320 Mbytes/sec 90%
Mbus Arbiter (MA) 50 ns/request 5%
System memory access time (SMAT) | 70 ns 80%
Mbus to Sbus speed (MSS) 80 Mbytes/sec 90%
FDDI speed (FS) 100 Mbytes/sec 100%

Table 3.7: Expected Component Performance

3.7 Analysis Definitions

¢ Application Processor

— IU - Must execute IPBO instructions for each byte in the image. The time for
this equals total instructions executed divided by the speed of the processor.

This number is then divided by the time available to compute each image to

obtain percentage of utilization.

one performing application processing, and three FDDI controllers.

The values for component utilization are computed as follows -

(IPBO % 15)/(PS % 10°)

(FOI/1000) + 100

— IU bus - Must carry each of the input for each byte output as well as the output

bytes of each image. The instructions that are required to compute each byte

40

as operating system actions. making the availability and load of each component difficult

to assess. In this table, I assume 5 processors, 4 performing communication functions and




Component Performance Rating | Confidence
Processor Speed (PS) 20 MIPs 80%
Cache access time (CAT) 10 ns 40%
IU Bus speed (IBS) 100 Mbytes/sec 80%
Mbus to Sbus speed (MSI) 80 Mbytes/sec 70%
IU to Mbus speed (IMI) 100 Mbytes/sec 80%
Sbus speed (SBS) 80 Mbytes/sec 90%
Mbus speed (MBS) 320 Mbytes/sec 90%
Mbus Arbiter (MA) 50 ns/request 75%
System memory access time (SMAT) | 70 ns 80%
Mbus to Sbus speed (MSS) 80 Mbytes/sec 90%
FDDI speed (FS) 100 Mbytes/sec 100%

Table 3.7: Expected Component Performance

as operating system actions, making the availability and load of each component difficult
to assess. In this table. I assume 5 processors, 4 performing communication functions and

one performing application processing. and three FDDI controllers.

3.7 Analysis Definitions

The values for component utilization are computed as follows -
o Application Processor

— IU ~ Must execute IPBO instructions for each byte in the image. The time for
this equals total instructions executed divided by the speed of the processor.
This number is then divided by the time available to compute each image to

obtain percentage of utilization.

(IPBO % I5)/(PS * 10°)
(FOI/10001 =100

— IU bus — Must carry each of the input for each byte output as well as the output

bvtes of each image. The instructions that are required to compute cach byte

10
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Processing Component Processing | Confidence
Type Requirement
Application
Bytes In per byte out (BIPO) 5 60Y
Instr. per byte out (IPBO) 10 60%
Image Size (IS) 1 Mbyte 90%
Frequency of images (FOI) 100 ms 60%
Segment Size (SS) 10 K bytes 60%
Protocol operations
Num. of instructions (NOI) 2048 60%
( for both scheduling + TCP/IP)
Cache hit rate (CHR) 80% 40%
Bytes for FDDI check (FC) 4 60%
Packet Size (PKS) 2 K bytes 80%
Data accesses/packet (DAPP) 3 Bytes 60%
Packet header size (PHS) 24 Byvtes 90%

Table 3.8: Expected Resource Demands

Component Item Utilization
Appli. Processor
10 525%
IU bus 210%
IU to Mbus interface | 30%
Cache Memory 160%
Trans. Processor
U 1%
IU bus 10%
IU to Mbus interface | 5%
Cache Memory 5%
System Level
Mbus 20%
Mbus Arbiter 15%
System Memory 300%
Mbus to Sbus inter. | 15%
| | FDDI | 300 |

Table 3.9: Component Utilization - Baseline Assumptions
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are either in cache, or system memory. If they reside in cache. they just traverse
the IU bus once. If they reside in the system memory. they are first placed in
the cache, and then sent to the IU. The total of these bytes for each image is
then divided by the throughput of the IU bus and normalized to the allowable

time for each image.

(BIPO 41+ 1PBO + 2+ IPBO +(1— CHR)= IS
FOI x 108/(FOT/1000) + 100

IU to Mbus Interface — For the application processor. the complete image must
traverse this connection, as well as the instructions that do not reside in cache.
The total number of bytes that must traverse the IU to Mbus interface is then

divided by the specd of the interface and the number is normalized as before.

(IS+ (1~ CHR)+IPBO  I§)/IMI * 10°
FOI % 108/(FO1/1000) * 100

Cache Memory - All instructions executed for each byte of the image must come
from the cache memory. The instructions that are not in cache. i.c. a cache miss.
must also first be placed in cache and then accessed from cache and sent to the
application IU. As with the instructions, each of the input bytes are first looked
for in cache and then, if not found there, gotten from the system memory and
placed in the cache. The sum of the accesses to cache for each image is then
multiplied by the speed of the cache memory and the number is normalized to

the image time.

(IPBO IS+ BIPO + IS+ (1 = CHR)* 2 I5)% C'AT « 10-*
FOI «105/(FOT/1000) * 100

o Protocol Processor

42
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The work of the protocol processors is divided equally among all processors, so to

make the formula below easier to read, the following new variables are defined.

— NOP - Number of processors

— NOS - Number of segments in an image for which each processor will be indi-
vidually responsible.

NOS=(IS/NOP)/SS
— POS - Number of packets per segment
POS =S5S/PKS
— SIP - The data each image for which a processor is responsible
SIP =IS/NOP
— POI - Packets per images for which each processor is individually responsible

POI = NOS*POS
— TPD - The total packet data sent by each processor. of each image sent
TPD =(PKS+ PHS)+ POI
— NOF - The number of FDDI controllers available

With these definitions. we can define the processing responsibilities of a protocol

processor"s components.

— IU - For each of the packets that a protocol IU is responsible for. it must execute
NOI instructions. This instruction count is divided by the speed of the proces-
sor and then normalized to the time available for each image to find a usage

percentage.
(POT = NOI/PS+ 17t
FOI+10%/(FO1/1000)* 100
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— IU bus -~ The IU bus in each communication processor carries that processor’s
share of the image being transmitted to the processor for checksum calculation.
the completed packets sent by the module, the acknowledgments for the packets
sent, the instructions needed to process each packet. and bytes needed to select
an FDDI channel for transmission. The acknowledgment is assumed to only be
the size of a packet header. As before. the instructions that are not found in
cache must first be placed there from the svstem memory, so they must traverse
the bus twice. The total bus traffic is divided by the speed of the bus and then

normalized to the time allowed for each image.

SIP+TPD+ POI(PHS + FC)+ (14 2% (1~ CHR))* NOI « POl + DAPF « PO
FOI +108/(FOI/1000) 100

— IU to Mbus interface ~ Each processor’s share of the image must travel through
this interface to be assembled into packets. After the packets have been built they
must travel through on their way to the FDDI controllers. The acknowledgments
must also traverse this interface as must the instructions that are needed to
built the packets. Finallv. the FDDI check bytes (FC) must also traverse the
connection. All of these data are summed and divided by the speed of the bus.

As before this number is then normalized to the time allowed for each image.

(SIP+TPD + POI+(PHS + FC)+ NOI+(1-=CHR)+ POI)JIMI + 10°
FOI »10%/(FO1/1000) 100

— Cache memory ~ The cache memory on the communication processor is accessed
for each instruction executed for each packet. The instructions that are not
currently located in the cache memory require two accesses, once to place them
in the cache and once to retrieve them for the IU. The total number of accesses is
multiplied by the access time for the cache to determine the total time required

for cache processing. This number is then normalized as before.

(CHR* NOI+i{l ~CHRY+2% NOI)~ POI » C AT = 10—¢
FOI «10v/(FOI/10000= 100

4

“Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



¢ System Components

These components are used by both the application and the protocol processors.
As with the definitions of the protocol processor component’s utilization. the new

variables defined above will be used.

— Mbus - This bus must carry all of the traffic that passes through the UI to Mbus
interfaces for both the application processor and the protocol processors. This
includes the passing of the image from the application processor to system mem-
ory. the passing of image segments to the protocol processors. and the passing of
packets to the FDDI controllers. Additionally all of the instructions not found in
the caches of processors comes from system memory so they must traverse this
bus as well. Lastly the FDDI check bytes (FC) and responses. and the packet

acknowledgments must also traverse the bus.

This gives the total utilization of the Mbus for data to be

pATA = (2* IS+ (PKS+2+PHS +2+ FC)* POI + NOP)/MBS % 10°
‘ B FOI «108/(FOI/1000) * 100

and the total utilization for instructions as

INSTR = (NOI+POI+ NOP + IPBO +IS) (1 —~ CHR))/MBS + 10°
‘ B FOT + 105/(FOI/1000) » 100

Making the total Mbus utilization equal to

DATA+ INSTR

= Mbus Arbiter — Every time a request is made to send data across the Mbus. the
Mbus arbiter must grant access privilege to the requester. This occurs once for
every image. once for every instruction iniss of either the application processor or
protocol processor. once for every segment. every packet. every packet acknowl-

edgment. and every I'DDI check. The total number of requests for each image
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are totaled and multiplied by the time to service each request. This number is
the normalized to the time available. It is noted that this formula assume that
once access to the bus has been granted, the requester owns the bus until it
releases the bus. If this is not the case, the formula would have to be changed to

reflect the maximum amount of data that could be transferred for each request.

(1+15/S5+4+ NOP+ POI +(POI+ NOP +IS)% (1~ CHR))+ MA »10-°
FOT « 108/(FO1/1000) * 100

— System Memory - The system memory is used to store the images being produced
as well as the instructions required to produce them and to transmit them. The
total number of access to the system memory is multiplied by the access time of
the memory to determine the total time needed for the memory accesses of each

image. Again, normalization is performed.

(2+ 185+ POI* NOP 3+ (NOI+ POI + IPBO +IS)+ (1 — CHR))* SMAT +10-°
FOI + 105/(FO1/1000) « 100

— Mbus to Sbus Interface — The packetized data as well the acknowledgments and
the FDDI checks must pass through this interface. The total amount of data

that passes through is divided by the available bandwidth and normalized.

(PES+2+FC+2xPHS)+ POI x NOP/MSI + 10
FOT « 108/(FOI/1000) * 100

— FDDI - As with the protocol processors, the FDDI interfaces share the load of
transmitting the complete images. The only data that must pass through an
interface is it’s share of the image packets and the corresponding acknowledg-
ments. Because in this study all controllers are given even loads. simply dividing
the total load generated by the svstem by the number of controllers. and using
the bandwidth of the controlier and the time allow for each image, gives the
percentage utilization for each of the controllers. Unlike the other formula. in

this case we need to convert from the byte representation used for other svstem
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bandwidth values to the bit representation used to describe FDDI’s capacity.

POI x NOP+8+(PKS 1024 + 2 + PHS)/NOF/FS % 10
FOT + 105/(FOI/1000) + 100

3.8 The Analysis

Because the loads and performance characteristics are educated guess rather than hard
numbers, the exact performance of the system is not accurately know from the above cal-
culations. For this reason, in all of the following tables the values have been rounded up or
down to the nearest 5%.

As shown in Table 3.9, the demands on some the system components are beyond their
capabilities even with 100% of their capacity dedicated to the application and communica-
tion processes of this study. An obvious problem occurs in the application processor which
has a utilization factor of over 500%. This problem, however, is not of concern for the
communication processes, and can be ignored. What is of concern is the utilization of the
system memory. Even with base performance assumptions and the removal of the applica-
tion processor’s use, the load would still be approximately 151%. As discussed in an earlier
chapter, multiple independent banks of memory might be used to address this problem, but
that is a limited solution. Providing faster memory is a possible solution. but this must be
weighed against its cost.

The values shown in Table 3.9 assume that 100% of the capacity of each of the com-
ponents are available for the communication task. The values given for the bus speeds.
however, are peak speeds rather than sustained. If the speeds of the Mbus, Sbus, and IU
bus are lowered to their sustained speeds, one fourth of peak, the results shown in Ta-
ble 3.10. These results show that the application processor module will not keep up, but
the communication and system components. other than memory speed. are still capable of
delivering the data.

Because transport layer processing is the known bottlencck in reliabie communication

A7
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Component Item Utilization
Appli. Processor
10 525%
IU bus 840%
IU to Mbus interface | 125%
Cache Memory 160%
Trans. Processor
IU 1%
IU bus 35%
IU to Mbus interface | 25%
Cache Memory 5%
System Level
Mbus 70%
Mbus Arbiter 15%
System Memory 295%
Mbus to Sbus inter. | 55%
FDDI 30%

Table 3.10: Component Utilization — Sustained Bus Speeds

processing, it might be useful to increase the number of instructions required for each
packet in order to emulate a high processing demand. On a 12 MIP SparcStation, the peak
throughput achieved was 6 megabits. If the 2K byte packet size it assumed, we can compute
an estimate of the number of instructions executed per packet.

12 MIPs/6*10° bits = 2 instructions/bit

2*2048*8 = 32768 instructions/packet

Of course these numbers do not take into account that a significant amount of time
is spent waiting for acknowledgments and window movement. The number of instructions
used in the calculation. however, simply represent the time taken to process the data,
whether the IU is processing, or being forced to wait. It is tempting to round the number
of instructions up because the processors also spend time scheduling segments and FDDI
interfaces, however, as Table 3.11 shows even without this rounding the IU bus in the
protocol processing module is already over subscribed. Additional problems are also now

apparent with the speed of the Mbus as it's utilization is now over 1005. The problems with
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Component Item Utilization
Appli. Processor
IV 525%
IU bus 840%
IU to Mbus interface | 125%
Cachie Memory 160%
Trans. Processor
U 1%
IU bus 255%
IU to Mbus interface | 55%
Cache Memory 50%
Svstem Level
Mbus 110%
Mbus Arbiter 15%
System Memory 350%
Mbus to Sbus inter. | 55%
FDDI 30%

Table 3.11: Component Utilization ~ Realistic Instruction Counts

the system memory are even worse. It is apparent that for any meaning full detailed results
to be obtained. a more indepth analysis of TCP/IP processing will need to be done. For
this sensitivity analysis. however, the above assumptions will suffice. This table maintains
the assumption that only one fourth of the specified bus speed will be usable.

Finally, the cache hit rate should be examined. The initial hit rate was 80%. This
number is very optimistic, and probably should be reduced. If reduced to 25%. a more
reasonable assumption, the problem of the IU bus on the protocol processor gets worse. and
a new problem is seen for the UI to Mbus interface. The problems of system system Mbus
and memory are worse as well. The results are shown in Table 3.12. As before. the previous
assumptions about bus utilization and instruction counts are maintained in this table.

These numbers make the prospect of a feasible parallel communication system with
this architecture look dim. but by adding local memory or cascading caches to each of the
processor modules. the utilization numbers are made much better. The values in Table 3.13

assume a 100%. cache hit rate. This make the amount of traffic across the IU and M buse:
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Component Item Utilization
Appli. Processor
1U 525%
IU bus 1300%
IU to Mbus interface | 355%
Cache Memory 175%
Trans. Processor
1U 1%
IU bus 440%
IU to Mbus interface | 150%
Cache Memory 75%
Svstem Level
Mbus 295%
Mbus Arbiter 45%
System Memory 920%
Mbus to Sbus inter. | 55%
FDDI 30%

Table 3.12: Component Utilization - Realistic Cache Hit Rate

reduce significantly. Unfortunately, the utilization of the IU bus on the protocol processor
modules is still too high. The previous assumptions where still in effect when computing
this table.

Consider this utilization in the light of the number of protocol processors available. If
the number of processors increases. the amount of data processed by each will decrease.
meaning the amount of data and number of instructions that traverse the 1T bus will
also be reduced. Table 3.14 shows the values obtained when the number of processors
Is increased to eight. The IU bus utilization is reduced to less than 100%. meaning the
protocol processors can keep up. The number of processors was doubled and the Joad on
the IU bus was halved, indicating a linear speedup. This is explainable for the IU bus
because no interaction between the local IU bus of one processing module and any other
system component occurs. The same linear speedup probably would not be seen for the
entire system. rather just for the protocol processing modules. As before. the previous

assumptions as to bus use. instruction count. etc.. are still used when computing this table.
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Component Item Utilization
Appli. Processor
10 525%
IU bus 670%
IU to Mbus interface | 40%
Cache Memory 155%
Trans. Processor
IU 1%
IU bus 190%
IU to Mbus interface | 20%
Cache Memory 40%
Svstem Level
Mbus 40%
Mbus Arbiter 5%
System Memory 145%
Mbus to Sbus inter. | 55%
FDDI 30%

Table 3.13: Component Utilization - With Local Memory

Component Item Utilization
Appli. Processor
1T 525%
IU bus 670%
IU to Mbus interface | 40%
Cache Memory 160%
Trans. Processor
10 1%
IU bus 95%
IU to Mbus interface | 10%
Cache Memory 20%
System Level
Mbus 40%
Mbus Arbiter 5%
System Memory 145%
Mbus to Sbus inter. | 35%
I'DDI 30%

Table 3.14: Component Utilization - With Eight Processors
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Component Item Utilization
Appli. Processor
U 525%
IU bus 670%
IU to Mbus interface | 40%
Cache Memory 160%
Trans. Processor
IU 1%
IU bus 95%
IU to Mbus interface | 10%
Cache Memory 20%
System Level
Mbus 409
Mbus Arbiter 5% |
System Memory 85%
Mbus to Sbus inter. | 55%
FDDI 30%

Table 3.15: Component Utilization ~ With Fast Memory

While increasing the number of communication processors to eight lowered the load on
the IU buses and made it possible for the processors to keep up. there is still a problem with
the global memory. In the previous table, each communication processor was equipped with
local memory that could be used for instruction storage. All the application data. however.
must still pass through the global memory, so its performance is critical. In table 3.15, the
access time of the global memory was reduced to 40ns. This results in a working system
from a communication point of view, but the use of 40ns memory is expensive and may not
be available on most computing platforms. Again. none of the previous assumptions where

excluded when computing the values for this table.

3.9 Discussion

The purpose of this analysis was to provide pointers to architectures and issues that warrant

further analysis. The results indicate that parallel communication is feasible. but special
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attention needs to be given to actual component performance. In the baseline performance
table, is appeared that, other than the speed of memory, the system was workable with no
local memory. As the analysis was refined with more realistic assumptions about compo-
nent loads and utilization, it became evident that a large global memory would not allow
communication to occur anywhere near the desired speed of 80 Mbits/second. This problem
was solved by including a local memory at each of the communication processors that could
be used for instruction storage.

Even though. as shown by Clark, four communication processors was more than enough
computing power for gigabit communication. the connecting buses and cache memory hard-
ware proved to limit the throughput to less than the target 80 Mbits/second this application
needed.

Memory speed was shown to have a dominate impact on the speed of communication
possible. The assumptions used in this analysis are valid for commonly available memory.
Because the memory speeds are unlikely to be reduced by orders of magnitude, as will be
needed for gigabit communication, memory access and placement will be important issues

in parallel communication.
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Chapter 4

Experimental Results

The previous chapter gave initial insight into some of the problem areas and more promising
approaches to paralle] communication. The analysis presented, however, made many as-
sumptions about workloads, and could only give top level insight into the problems that may
be encountered when implementing a parallel communication svstem This chapter describes
a testbed environment developed to gain that insight and used to collect experimental per-
formance data from one approach to parallel protocol processing. Specifically this testbed
is used to collect performance results from a system that employs multiple processors to
perform the transport and network protocol layers. One goal of this study is to determine
the communication speedups attainable with existing hardware and software standards. To
achieve this goal, existing hardware was reconfigured and software was replicated to realize

a parallel environment.

4.1 Scope and Objective

The objective of this study is to collect data to show possible performance gains and over-
head costs incurred when performing protocol processing in parallel. This information

allows one to predict if a given hardware architecture will be able to provide the required

-l
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service, to more easily predict the amount of hardware needed to perform a particular com-
munications task, and to know when adding more hardware will no longer be beneficial.
Different application classes have different communication needs, including the need for
resequencing. the frequency and size of transmissions, and acceptable level of latency and
reliability. Each of these needs to be considered when developing a parallel communication
system.

Remote visualization was selected as the target application for the testbed environment.
As discussed previously this application requires large blocks of data to be sent in regular
intervals and data latency is an issue. The testbed takes advantage of the suggestion
by Clark in [6] discussed earlier and removes the requirement for data reordering {rom
the transport layer. This task could be placed in the application itself. but for remote
visualization the function is not required. Windows are still employed in the transport
layer, so lost data will cause the system to wait and time out. Because the “wait and time
out” process has been identified as a major bandwidth cost its inclusion in this study is
appropriate.

In order to maintain the goal of identifving performance gains possible with existing
hardware, and to develop a testbed to measure performance and overhead results quickly.
the testbed was implemented with commonly available processors, networks, and software
wherever possible. Custom software was needed to provide parallel communication. and to
measure the performance gains achieved. An important consideration in developing this
testbed was to insure that the components selected did not introduce any new bottlenecks
by reducing any capability previously provided.

The selected processors for the testbed were Sun SparcStations. These machines were
attractive because of the ease in setting up. reconfiguring. and tearing down the testbed.
Additionally, the transport layer source code was easily accessible to help in analvsis the

results. and several machines were available for me to use. The communication processors
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selected were Ethernet interface cards. These cards are readily available and more than
one can be added to a SparcStation. Additionally, the TCP/IP software provided with Sun
workstations in SunOS 4.0 has been optimized for Ethernet networks, making it ideal. The
transport processing performance for TCP/IP in the selected processors is able to produce
approximately 6 Mbits/second under ideal circumstances on a single channel. Because there
were only two machines on each network, the Ethernets could theoretically be driven at 10
Mbits, so they did not pose a new performance limitation. A software interface. called
Parallel TCP/IP, was developed and placed between the application and the individual
TCP connections. This software enabled the emulation of a parallel communication system
in which individual physical processors communicate through a common bus. each having
a significant amount of local cache, and sharing a common memory. It is noted. however.
that the purpose of this study is not to show that Ethernet was better than token ring in a
parallel environment, nor that paralle] Ethernet is superior FDDI. but rather to determine
what the costs are for using parallel TCP/IP. Ethernet is simply the least expensive easily
obtainable interface available. FDDI would have been a more interesting choice. but at the

time the testbed was being developed, it was not available.

4.2 Design of the Case Study

4.2.1 Testbed Description

Figure 4.1 shows the components required to perform parallel communication using the
testbed from a process point of view. While bottlenecks can occur at several points. the
one addressed here is transport layer processing. In order to provide parallelism. multiple
processors working on the communication process concurrently are needed. Since these
processors are used to provide service to a single data stream. some scheduling of data to the

processors is required. The use of a single processor to perform the scheduling operations
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in a centralized manner, or a distributed scheduling mechanism, allowing the transport
processors to schedule themselves are both viable. Finally, the protocol processors need a
way to place data on the final medium for transmission. This can take the form of one very
high speed media interface placing data on a single high speed medium, or several slower
interfaces placing data on separate lower speed media.

Figure 1.2 shows the testbed with processes allocated to physical processors. The
scheduling process is handled by the node marked Master. The processors marked Slave
perform transport layer processing. Each slave processor is connected to its master by a sep-
arate network interface and does not need to communicate with other processors. However.
because The master and slave processors were connected via Ethernet. and communication
could not begin before all data were transmitted from the master to slaves. it is impossible
for the master to send the actual data to each of the slaves without introducing an artificial
bottleneck into the testbed. This means that for parallel transmission of data to occur. all
data to be transmitted had to be pregenerated and prepositioned on the local disks at the
sending slaves. During each run of the testbed, the master processor sent the scheduling
control messages to the slave processors, indicating which data to transmit. With this ap-
proach, the delay required of a control message to travel from master to slave processors
more closely approximates the delay that would be seen on an operational implementation
which uses a high speed, common bus connecting the processors and a global memory. A
symmetric bottleneck occurs at the receiving end of the testbed, so data were also prepo-
sitioned at the receiving master. During all experiments, data were actually transmitted
from the sending to the receiving slaves: however. they were discarded when received. Fig-
ure 4.2 shows the logical control and data lines that would be needed for an operational
implementation. The lines marked “Control Path™ have been implemented in the testbed.
but, as described above, the lines marked “Data Path” have not. Section 4.4 describes

an architecture using multiprocessor workstations with true parallel end-to-end delivery of
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data.

The testbed was configured optionallv with two or three channels. requiring six and
eight machines respectively. All of the slave machines required two Ethernet cards. and
the master machines both required one Ethernet card for each channel in the testbed. By
using multiple Ethernet cards each machine to machine connection was a separate physical
network, so the operation of one slave processor could not affect the amount of bandwidth
available to another. Additionally, no other computers were attached to any of the physical
networks (except as noted in the ‘background load’ section below). This was done to insure

that no uncontrolled factors influenced measured results.
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Packet Processing in the Testbed

When the master process receives a transmission request from the application, it divides
the identified data buffer into multiple segments, based on slave segment size, and issues a
send command to each slave, giving a buffer segment number and a buffer segment offset.
The segment given to slaves for transmission are normally much larger than the underlying
transport layer protocol packet size so that a slave process can generate several packets
before going back to the master for more data. After the send command is issued to the
slaves, control is returned to the application. The slave processes, running in parallel on
separate physical processors, transmit all of their data and then report back to the master
for more when finished.

When data are received from the transmitting slaves. the data are discarded and a
received segment number is sent to the receive master. When the master determines that
an image has been complete received, either by an end-of-image signal or a transmission-
abort signal, it makes its local copy of the data available to the receiving application.

The transmitting master is responsible for managing the connection of new slaves. assign-
ing segments to slaves when they are ready, and providing graceful degradation if channels
fail. The services provided can be thought of as operating system communications functions
that can be used by more than one user process concurrently. The software to perform the
sending and receiving, master and slave tasks required approximately 1100 lines of code. A

detailed explanation of the software operations is given in appendix A.

4.2.2 The Experiment — Parameters and Environment

To measure the performance and costs associated with parallel TCP/IP. throughput was
measured and plotted as a function of the number of physical channels (which equals the
number of transport processors). The theoretical limit of a linear speedup is plotted as well.

for comparison. Clearly. throughput and costs observed depend on several parameters and
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network conditions.

e TCP/IP Parameters

In the testbed, each of the transmitting and receiving slave processors maintain trans-
port connections in pairs. The standard TCP/IP as delivered by Sun is tuned for the
local area network used in the testbed so none of its default parameters. relating

packet size, timer length, or window size were changed.

Size of Data Segment Given to Slave Processors

Because the overhead of communication between a slave processor and master pro-
cessor introduces a possible bottleneck, or at the very least a delay in transport pro-
cessing, a critical parameter is the size of the data given to the slave processors each
time. When all processors and channels are evenly loaded, the obvious solution is to
equally divide the data into as many segments as there are protocol processors, giving
each processor only one segment. In unevenly loaded conditions, however, this may
result in high latency in data transmission on those channels with heavy background

traffic from other sources.

Background Load

In a serial network, when background traffic increases on the channel, the total band-
width is reduced by at least that amount. In a parall-el network a similar result occurs,
but tﬁe routing of data may reduce the amount of degradation seen by the application.
Because the testbed employed Ethernet, a completely fair network, adding significant
traffic to one channel in a controlled fashion was difficult to achieve because of the
limited number of processors available. However. because each transport processor
has a dedicated channel, the same result can be achieved by slowing a transport pro-
cessor. In this study. after sending a packet of data. the transport processor was put

to sleep for a period of time to simulate delay in accessing a heavily loaded channel.

61

F'zeproduced with permission of the copyright owner. Further reproduction prohibited without permission.



e Data Latency

Because equal segment sizes are being used. it is possible for overall data latency
to increase significantly if one channel is slower than others. Another reason for
differential latency can be if the physical channels are routes of different lengths. In
some applications, such as remote visualization, this is less of an issue because the
data do not need to be reordered before being passed to an application. In other
applications, if one slow channel holds some packets of data and reordering must
be performed by the receiver. total throughput could be significantly reduced. To
obtain data on channels with very different latencies. the same approach as used in

background traffic is employed.

4.3 Performance

The parameters discussed above have an impact on the network performance. In this study,
results concerning the total throughput of the parallel network, the overhead incurred under
different loading conditions, channel latencies. the effect of segment size. and an indicator
of when adding more channels results in minimal performance gains were of interest.

Ideally if no additional overhead is seen and the system is evenly loaded with uniform
latency on all channels, a linear increase in speed versus the number of channels should
be observed. However, because new work is added to the total processing in order to
achieve parallelism this is not the case and. after a point, adding more channels or transport
processors will add little to the total throughput.

Data points for Figure 4.3 were obtained with the two and three channel testbed. and
are calculated for higher numbers of channels. For details of the calculations. see appendix
B. As a baseline. the graph in Figure 1.3 shows the total throughput that could be achieved
with the testbed when the optimal segment size is used. no other traffic is on the network.

and channels have equal latency. The diagonal line siows the theoretical limit if no overhead
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Figure 4.3: Baseline Performance for Testbed

exists. With the testbed, the amount of increase in performance drops off significantly at
30 processors. This should not be interpreted to mean that 30 channels is the iimit for
parallelism in communication, rather, for the configuration selected to form this testbed,
30 is the limit. Other configurations will have different limits.

Another baseline is shown in Figure 4.4. These data assume a hardware architecture sim-
ilar to that shown in Figure 4.7, a single bus with sustained throughput of 80 Mbytes,second,
and multiple 12 MIP processors each equipped with a local memory and dedicated network
interfaces. As before. after a point in the performance curve, adding additional processors
has little benefit. For this architecture it occurs at 10 processors. This can be attributed to
a new bottleneck occurring at the common bus serving the protocol processors. If more than
15 processor are added, the total throughput actually decreases. This can be attributed
to the fact that all of the processor are vying for a common memory. so adding processors
beyond what can be served by that memory’s speed will result in high contention and lower

overall throughput. This architecture is discussed in more detail in section 4.1. The pro-
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cessor limit for the testbed is significantly higher than the architecture in Figure 4.7. This
is because the testbed more closely approximates an architecture with direct, independent
connections from each protocol processor to common memory, where as the architecture in
Figure 4.7 uses a single bus to connect all processors and common memory.

The segment size selected will greatly effect overhead and total throughput. This study
used two and three channel testbed configurations with no background traffic and similar
channel latencies with different segment sizes. As expected the highest throughput occurs
when the segment size given to each protocol processor is equal to the message size divided
by the number of available protocol processors. If the processing speeds of the protocol
processors or their channel loads were different. but static, the best segment size to assign
to each processor would be equal to the fraction of the total work that that processor could
achieve times the message size. For example, in a 2 processor system. if 1 processor was
half as fast as the second. it would be able to perform 1/3 of the total work so it would

be assigned 1/3 of the message size. If the channel or processor characteristics can change
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over time, providing an optimal segment size is the same load balancing problem as in other
multiprocessor systems.

The next parameter considered is the effect of background traffic. To determine this, a
single channel of the prototype was loaded with bursty background traffic at a rate of 2k
of data every 2ms for a 10% background load. Figure 4.5 shows the results obtained for a
single channe] and multiple channel testbed configurations. No allowances where made in
the data segment scheduling to account for the loaded channel. However. since the segments
are assigned on a first-come-first-serve basis, if a channel falls very far behind. one of the
remaining channels would eventually be assigned the loaded channel’s data. This figure
shows that, because the second channel was unaffected, there was almost a 100% increase
in throughput. The minimal ability of the default scheduler to handle the difference in
channel loads was able to make up for the additional overhead incurred by parallelism. If
a more intelligent scheduling mechanism had be in place, that could vary segment size.
greater total throughput likely would have been observed.

The next environmental characteristic considered was tiie effect of differing channel
latencies. The throughput observed was significantly effected by the scgment scheduler's

ability to use information about channel latency when assigning segments. The scheduler
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was not changed during any of the testbed experiments. but segment sizes were varied.
When smaller segment sizes were used, as can be seen in Figure 4.6, the first-come-first-
serve scheduling mechanism was able to better control the channels in use. This is because
when the slower channels were stuck, they were not holding much data and the faster
channels could progress. In generating this figure, some channels were operated at full
speed, some were reduced to only 20% of their capacity, and some were reduced to only 2
% of their capacity. The different channel capacities used are labeled in the graph as Fast.
Medium, and Slow respectively. All the segment sizes used were static and equal across all
channels. If a scheduler could have changed the sizes dynamically. or assign different sizes
to different processors, it is likely that the total throughput would have increased. It is
interesting to note that fastest channel drives the throughput. The graph lines for two fast
and one medium. and for two fast and one slow channels lie almost on top of each other.
The same is true for the lines representing one fast and two medium, and one fast and
two slow channels. This can attributed to the first-come-first-serve scheduling mechanism.
Specifically. while the slower channel(s) are busy with their first small segments. the faster
channel can carry the bulk of the traffic.

To show that graceful degradation could be handled by parallel TCP one channel was
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literally disconnected during transmission. All the data were still transmitted, albeit at a
reduced rate. Throughput was comparable to a system with one less channel with the only
an additional cost due to retransmission of the segment in progress on the disconnected

channel.

4.4 System Implementation

The system described in this section, and emulated via the testbed, can be implemented
with existing off-the-shelf hardware. The architecture described here assumes a Sun M-bus
based system with several Sparc-based processors, each equipped with a local cache large
enough to hold a segment of data as well as the transport code and some control information.
Additionally a common memory is attached to the single bus to store the image data to be
sent. Both a feasible hardware configuration and a possible software architecture for such a
system are described. The system uses distributed first-come-first-serve scheduling of fixed
segments to protocol processors.

Figure 4.7 shows the architecture proposed. The table attached to the shared memory
is a global data structure used by protocol processors to determine which data have not
been sent and which data need to be retransmitted.

Before transmission of data can occur, each protocol processor must open a transport
connection to a corresponding receiving transport processor. This can be performed when
the application processor requests a transport connection, and can be driven by configura-
tion tables stored at the transmitting and receiving ends.

When data are available to send. they are placed in the common memory. and the data
structure, with a separate entry for each segment to be sent. is initialized. Each record in
the data structure contains a segment identification number. a status field. and an offset of
the segment’s data in common memory. Initially the status field contains a value of zero.

Each of the protocol processors caches the global data structure so changes to that memory
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are propagated to each processor as described below. Once the data have been placed and
the data structure initialized, the application processor notifies each protocol processor to
begin transmitting the data.

Each processor in turn gains ownership of the data structure and scans it for the lowest
outstanding segment, indicated by a zero in the status field. After a data segment has been
selected, the protocol processor changes the value in the status file to the current time,
releases ownership of the data structure. transfers the data to its local cache. and begins
transmitting this data. Once the data have been transmitted the responsible protocol
processor gains control of the data structure again, changes the value in the sfatus for
that segment to indicate that it was successfully sent, and then scans the data structure
for the next pending segment. If, while scanning. the protocol processor finds a record
with a status field containing a time value that is too old, indicating a timeout, it selects
that segment for transmission. and updates the status field to the current time. This data
structure/scheduling mechanism insures that all segments will be sent.

On the receiving end, as data are received, each protocol processor collects packets. using
standard TCP for packet sequencing. until a complete segment has been received. Because
each segment contains a offset or local address, a complete segment can be forwarded directly
to the receiving application for consumption. No corresponding data structure or global
memory requirement is use at the receiver.

Each protocol processor has a dedicated network interface card, and based on the un-
derlying network, either separate physical networks or a shared high speed network could

be used.

4.5 Discussion

The testbed showed a relationship between performance and four parameters: granularity

of data sent to the transport layer. nature of background traffic (burstiness). number of
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channels, and variation in latency on different channels. Since different parameter values
significantly effect performance it is useful to dynamically allocate resources (processors
and bandwidth) to incoming traffic at all levels in the communication stack and not just
between application and transport layers. This extension was discussed in a previous chap-
ter. Providing a mechanism to direct packetized data to network adapters that show the
lowest latency will reduce frequency of need to change segment sizes to protocol processors.
If latency is very different on each of the channels performance of a parallel network system
can be significantly degraded though reducing segment size provides a partial solution. This
solution, however, comes with the added expense of increasing overhead between transport
and application levels. The ability to dynamically alter segment size and the time and fre-
quency of scheduling segments on channels depending on traffic characteristics would also
increase throughput. These enhancements are not possible with the version of the testbed
described here. but a more general approach such as that described in the previous chapter
allows use of such algorithms.

The specific results of the testbed study can be summarized as follows. At a minor
cost, the feasibility of using parallelism in communication has been demonstrated. For &
parallel system that provides individual. non-interacting, transport processors, performance
gains close to the theoretical limit for two and three channels have been observed. These
results have been extrapolated to develop predictions of system performance that can be
expected by adding system components and to determine when adding components will no
longer increase performance. The testbed network is able to delivered over 14Mbits/s to a
single application where no other traffic is present. If latency on all channels is comparable.
the relationship between segment size. that is. the size of the data blocks delivered to the
transport processors. and total throughput is a parabola with a maximum roughly at 1/k of
the message size where k is the number of channels available. Also. if segment size is small.

simple schedulers can do a good job of balancing the load of the communication processors.
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but more intelligent schedulers are needed if larger segment sizes are used.

The testbed system, sending only control messages to the protocol processors actually
delivers up to 1.96 and 2.7 times as a single channel on the two and three channel testbed
configurations respectively. These figures are likely indicative of speeds achievable if data
were transferred from the master to slave over a common bus. It has been shown that the
key parameters of segment size, background traffic. and latency have a significant impact
on throughput: monitoring and acting on their values needs to be weighed against the
increase in overhead that may be introduced. Further, graceful degradation is possible. and
demonstrated by literally disconnecting one channel and continuing to deliver on the other
channel(s); all data were delivered after the channel was disconnected, albeit at a slower
rate.

Because the use of larger segment sizes requires less interprocessor communication. the
processing costs and viability of intelligent scheduling algorithms should be evaluated. The
testbed presented here was implemented by approximately 1,100 lines of custom code. and
allow the evaluation of a single set of options. It also gave insight into the actual work that
is required to perform communication in parallel, was well as the implementation issues

that need further study.
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Chapter 5

Simulation Results

5.1 Introduction

Building on the experimental results obtained via the testbed, a simulation was developed
to analyze other implementations of a parallel communication system This chapter discusses

that simulation and the results obtained from it.

5.2 Simulation Environment and Goals

The following terms and environmental context are used throughout this chapter, as with
the testbed the target application is remove visualization.

The system being considered consists of high performance image generators and displays.
called high performance producer/consumer pairs (HPPC). The consumer can be logically
thought of as the frame buffer. while the producer can be thought of as a high performance
computer producing 10 Mbits of data every 200ms. 100ms (or 30ms for 5, 10.and 33 im-
ages/sec.). The scope of this studyv encompasses HPP (s which reside in a metropolitan or
local area network. equipped with multiple FDDI and/or Ethernet media. The goal of the

simulated architectures is to provide the bandwidth required by the simultaneous use of
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multiple paths within the network. Figure 5.1 shows a sample network with multiple paths
between the high performance sender and receiver, with all of the channels being shared by
other computers. As will be discussed later, this is the networking environment assumed

for this study. -

5.3 Approach

In order to provide the bandwidth required for interactive remote visualization two general
approaches are considered in the simulation. The first connects HPPCs in a point-to-point
network with dedicated lines of sufficient bandwidth and switches to handle connections, as
suggested in [32]. The second approach uses the traditional multiple access networks with
arbitrarily complex topologies.

The former approach guarantees that sufficient raw bandwidth can be provided at the
media level. This is a practical solution for short distances, however. it would be pro-

hibitively expensive for longer distances because a dedicated network must be provided.
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From a network point of view, as more HPPC pairs need to be connected, the number
of interconnections grows exponentially, making larger networks infeasible. Finally, in this
approach the possibility of a single point of failure exists.

With the later approach, the total bandwidth is achieved through the aggregation of
several channels. If this could be done with no additional overhead costs, the solution
would be obviously preferred. Unfortunately, effectively using each of the smaller bandwidth
channels requires that the cost of scheduling transmitting requirements to network capacity
be incurred [25, 24]. Additionally, the costs of media access time is incurred for each channel
used in parallel, rather than just once for a single high speed link. Finally, the system’s
performance can be more variable due to the different loading and latencies of the channels
being used in parallel.

In both of these approaches several bottlenecks are possible. The producer or the con-
sumer could be too slow to generate or display the images fast enough for visually effective
animation. This problem is not network related. A network related bottleneck is the
processing required to provide reliable communication between the producer and consumer.
Finally, the physical medium could be too slow. For older networks, this could be a problem,
and multiple channels would have to be used. Newer network technologies such as FDDI,

however, provide increased speed and should be able to provide these kinds of services.

5.4 Software Design Issues - The Transport Layer

Conceptually, the simulation parallel processing at the transport layer can be visualized as
a set of processors executing the transport protocol in parallel. This is illustrated in Figure
5.2. In this figure, there are three basic components, an application processor, n protocol
processors, and m network interface units (NIUs). The application processor is running
the image generation application. building images for transmission to a remote site. The

protocol processors are performing the transport and network laver processing. Finally the

74

F.zeproduced with permission of the copyright owner. Further reproduction prohibited without permission.



network interface units are performing the media access task. The NIUs can be though of
as Ethernet or FDDI controllers.

As discussed previously, to allocate data from the application to the transport processors
a scheduler is required. In Figure 5.2 this scheduling task has been placed in the application
processor and labeled it as the ATS (or Application/transport scheduler). The ATS can
schedule using several different algorithms, but its basic job is to provide the transport
processors with data segments, one or more packets, from the application processor. As
shown in the figure, the input to ATS consists of the application’s estimate of required
bandwidth, the frequency and size of data chunks from the application, the idle and active
times of the application process, the current load on the protocol processors, and other
chanrel information such as the error rates, idle periods, and current load on channels.
Based on this information, ATS dynamically determines the segment size to be assigned to
a processor and the processor to which it is to be assigned.

The transport processors, in addition to performing the transport and network layer
processing, must schedule packets from the data segments to the available NIUs. As with
the ATS, the scheduling algorithm used can vary, but the basic task is to supply the NIUs
with packets for transmission. This scheduler is labeled TNS in figure 5.2. The TNS could
also be placed on the NIUs in a distributed manner if intelligent NIUs were used. Like ATS,
TNS dynamically determines schedules packets to NIUs. As shown in the figure, the input
to TNS consists of routing tables, channel error rates, channel Joads and latencies, and the
size of data remaining with the application. Based on this information, TNS determines

the size of the packet and the NIU to which the packet is to be assigned.

5.4.1 Application-Transport Layer Interface

The application, generating data frames. requires the communication svstem to deliver the

frames to a remote site. Here, it is assumed that the application to be residing in the Ap-
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plication Processor, AP, and is interfaced with n protocol processors (PP, PP,,.... PP,)
in the transport layer. The AP generates data in the form of data frames consisting of
data segments, where each data segment is associated with a specific location in the frame.
With respect to the communication system, the data segments within a data frame are
assumed to be independent of each other (i.e., no resequencing of segments is necessary at
the receiver end).

The simulation implements the transport layer as a set of general purpose processors,
referred to as Protocol Processors, PP and assumes the availability of n such processors. The
data from the application are split among the parallel PPs in the transport layer. The task
of splitting the data into smaller distinguishable units, or segments is assigned to the ATS.
The physical location of ATS is a design decision. For example, if the ATS resides in the
application processor, then the application alone controls the allocation of data segments to
the transport processes in the protocol processors. As discussed previously, this is referred
to as a central scheduling policy. A second possibility is to implement ATS in a distributed
manner where agents of ATS are placed on the protocol processors. The responsibility of
coordinating the allocation of data gegments to individual protocol processors then would
lie with ATS agents located at the same processors.

A centralized implementation is examined first. Here, at least two methods of segment
allocation to the transport processes (TP) can be considered. Under the First-Come-First-
Served or FCFS policy, ATS allocates a data segment to a TP as soon as transmission
of its previous segment has been successfully completed. This assumes a close interaction
between the TPs and ATS. Under the Round-Robin or RR method, ATS allocates data
segments to TPs in a cyclical fashion. Reduced interaction between the scheduler and TPs
is required in this case. The reduced interaction may result in reduced control (hence,
reduced communication between AP and PP) as well as reduced performance (due to a lack

of feedback from TPs). Given a scheduling policy. a scheduler can control the performance
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of protocol processing by adapting itself to the environment. For example, when a scheduler
detects that a particular TP is slow to respond, it could allocate smaller data segments to
that TP. The simulation specifically addressed the results obtained from FCFS and RR.
Under both of these scheduling schemes, the size of the segment passed from the AP to the
TPs needs to be addressed. If all TPs and channels are loaded exactly the same, the optimal
solution is to assign segments of size I/M, where I is the size of the image to be sent and M
is the number of TPs. If processor and channel loads vary, other segment sizes should be
considered. For example, if the load on each of the TPs s highly erratic. if a TP receives
its segment and then becomes significantly slower than the other TPs, total system latency
will increase and total throughput will decrease. Alternatively, assigning small segments to
TPs means more work for ATS, and more interaction between the TPs and the AP. This
could also result in lower throughput. In addition to fixed segment sizes. variable segment
sizes can be considered. With variable segment sizes, the segment size given to each TP
can change as that TPs ability to process data changes.

In the case of a distributed implementation of the ATS, the ATS agents on different
PPs need to coordinate the allocation of data segments. The actual details of such an
implementation depend on the interconnection architecture connecting the PPs. Once again

FCFS, RR and adaptive policies can be considered as candidates.

5.4.2 Segment Processing at the Transport Layer

Once a segment is allocated to a sender TP, it is the TPs’ responsibility to deliver it to the
transport layer at the receiver end. It achieves this objective by breaking the segment into
data packets and sending them to the transport layer at the receiver. The responsibility of
rebuilding segments is left to the receiver.

At the sender end of the transport layer, the management of packet acknowledgments

and retransmissions are the two major design issues. Even though their implementation is
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well understood in a single TP case, their extension to parallel TPs is not obvious.

When an acknowledgment for a packet arrives at the transport layer, it can be processed
either by the sender TP or by a central server. In case it is processed by the sender TP, the
network/transport layer interface should be responsible for directing the acknowledgment to
the TP. In the case of a central server, all acknowledgments are directed to it. The central
server may be located on a separate processor or its functionality may be shared among a
set of PPs.

In the absence of an acknowledgment within a specified time period, the transport layer
at the sender should retransmit the packets. The retransmission function is closely related
to the acknowledgment processing function at the sender. In other words, if we assign the
responsibility of processing acknowledgments to the sender TP, then the same TP should
also be responsible for retransmissions. Similar arguments hold in the case of central server
policy.

The receiving transport layer receives packets and assembles them into segments to be
delivered to the application. In addition, it sends packet acknowledgments. The simulation
assumes that all data packets from a single segment are handled by a single TP at the
receiver. In addition, we let this TP be responsible for sending the acknowledgments.
Alternate policies possible include a central server to receive and distribute packets to TPs,

and a distributed policy where decisions are made by each individual TPs.

5.4.3 Transport-Network Layer Interface

A sender TP divides a segment and builds transport packets these packets for transmission,
and delivers them to the network layer. Whether the network layer should be implemented
on a single processor or a set of processors is a design decision. The simulation considers
a system where the network layer is implemented as a set of network processes, or IPs. A

single IP is associated with a single TP and resides on the same processor as the TP. thus
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the two processes can share memory, information, etc.

5.5 Software Design Issues - The Network Layer

While TP hands-out data packets to the network layer (IP). it forms network data units,
and sends them to the media access control layer or MAC. Since the simulation assumes a
one-to-one relationship between a TP and an IP, both residing on the same processor, the
design issues in IP are the same as a traditional network layer, especially with respect to its
interaction with a TP. However, its interface with the media access layer may be different
in the context of parallel processors at MAC level. The processor that handles the MAC
and data layer functions is referred to as a network interface unit, or NIU. The simulation
assumes the existence of m parallel network interface units interfacing the IPs with parallel
physical channels. It is also assumed that a one-to-one correspondence between a TP packet
and an IP data unit exists, and the IP data unit contains a complete transport packet.

Each network layer has to select an NIU to transmit the data packets. The responsibility
of selecting an NIU for the transmission of a daté packets from a TP/IP pair to an NIU
is assigned to a Transport Network Scheduler, or TNS. The design decisions for TNS are
similar to the the ones in ATS design: location and scheduling. If TNS is located in a PP,
it can distribute the data packets using either FCFS or RR policy to the network interface
units. In the case of FCFS policy, we assume that the NIUs request for data packets from
the IPs. In the case of the round-robin policy, the TNS distributes data packets to NIUs in
a round-robin fashion. In addition, other intelligent scheduling policies are possible, such
as an intelligent RR policy that allocates a data packet to an NIU only when the NIU’s
current queue is less than a threshold. The simulation, however, only considers FCFS and
RR policies.

If the TNS is distributed and located at each of the NIUs. then it can select a PP using

either the FCFS or RR policy to obtain data packets. In the case of FCFS. the network
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layer in a PP seeks to transmit a packet, and the TNS gives permissions in a First-Come-
First-Serve fashion, with possible queuing of data units. In the case of RR, the TNS obtains
the data units in a round-robin fashion from the network layers. Several other policies are
also possible.

At the receiver end, the NIUs receive packets and acknowledgments from the parallel
physical channels. These need to be delivered to the network layers in PPs. The allocation
of data packets to PPs depends on the packet processing policies. In this study it is assumed
that a single PP completely processes a single segment.

Figure 5.2 shows the logical connection of components for the architecture of this study.
In this architecture all protocol processors are operating as independently as possible while
still contributing to the task of transmitting a block of data in parallel. In this architecture
it is assumed that timers and acknowledgments are performed at the protocol processors.
This is not the only way to handle timers and acknowledgments and four basic ways to
perform this processing, with varying protocol processor independence, were identified in

chapter 3 and illustrated in Figure 3.1.

5.6 Architectural Design Considerations

The earlier sections of this chapter have primarily discussed the software components of
communication system design for visualization applications. This section considers the
hardware aspects of the proposed system.

Bandwidth and costs are two important criteria to be considered in choosing the hard-
ware architectures. The hardware configuration wili also impact the software and control
options that can be used. For example, if the mechanism for scheduling segments to proto-
col processor is to be distributed, the data to be transmitted must be placed in a memory
that is accessible to all of the protocol processors. This dictates that a global memory is be

included in the hardware architecture. Conversely. if eachi processor is directly connected
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to a single network interface unit, there is no need for transport to network interface unit
scheduling. Three bus based hardware architectures which represent three classes of cost are
considered in this section. Many other configurations, utilizing other processor connection
configurations, multiple buses, mesh, hypercube, differing number and types of processors,
and providing separate processors for ATS, TCP, TNS, and IP processing can be conceived.
The configurations selected are by no means comprehensive, but are representative of the
current architectures proposed for parallel communication systems. For example, we are
explicitly excluding separate processors for the TCP and IP functions in the design, whereas
it was discussed in chapter 3 that this exclusion is not necessary. Additionally, it should
be noted that some of the options will require very high performance components. For
example, if ATS is distributed among the TPs, a significant amount of local memory has
to be available on each of the TPs, or the global memory and connecting bus will have to
be very fast to insure that it does not introduce a bottleneck.

A low cost option is presented in Figure 5.3. Because of the popularity of Ethernet
and the proliferation of relatively low speed LANSs, a configuration that may be found in
places could be several Ethernet LANs acting as subnetworks for a department or division.
The aggregate capacity these LANs could be easily tapped to provide a single higher speed
connection between two hosts. By simply equipping the high performance producer and
consumer machines with extra network interface cards for each subnetwork being utilized,
paralle] hardware is realized. The figure shows one high performance workstation that
could be acting as either a producer or a consumer. As an example, if this architecture
is configured with five Ethernet channels, 10Mbits/sec each, the total throughput of the
system could theoretically be as high as 50Mbits. Because of the operating characteristics
of Ethernet, it will be significantly lower, though a nearly a five fold increase in nominal
Ethernet performance could be observed. As with all architectures discussed here, it is

assumed that the networks utilized are being used concurrently by other users. so available
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Figure 5.3: Architecture A: Low Cost

network capacity among parallel networks may not be identical. From a remote visualization
point of view, the example of five Ethernets could conceivably deliver 10Mbits of data. one
frame, every 200ms. The assumption in this example is that the connecting bus could be
driven at a sustained rate of greater than 50 Mbits/second. If not, the bottleneck has simply
been moved from the protocol processing task to the connecting bus. This represents limited
animation that could be used for applications such as viewing weather data obtained from
satellites. It should also be noted that in any environment other than a two node network,
Ethernet can not be expected to deliver 10 megabits of traffic. This has been taken into
consideration in the design of the simulation.

The architecture in Figure 5.3 has obvious expansion and performance limitations. As
needs increase. a high performance. and higher cost. media should be considered. Figure
5.4 show the next architecture considered. FDDI is becoming increasingly available. but.

because of the processing requirements of transport layer processing. no single client can
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Figure 5.4: Architecture B: Medium Cost

use the 100 Mbits of capacity it offers. The architecture shown in Figure 5.4 is designed
to address that problem. A single FIBDI LAN is used, but multiple protocol processors are
employed to process the data at 100 Mbits speeds. If the full 100 Mbits of capacity could
be utilized, a new screen image could be delivered to the viewer every 100ms. Closer to true
animation, but not the 1 image every 30ms for seamless animation, this capacity could be
used for medical imaging applications, as well as orbital surveillance systems such as that
used to track ships in an ocean. To utilize the full capacity of the FDDI channel sufficient
processing power would be needed in the form of TCP and IP processors. As with the first
architecture, the simulation assumes that the connecting buses are able to keep up with the
protocol processors. Additionally, there is a need to insure that the processor performing
the ATS task is able to feed the TPs fast enough to not be a new bottleneck.

In order to obtain true animation. a new image needs to be delivered to the viewer

every 30ms. To obtain this, multiple FDDI channels could be used. The architecture showi,
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Figure 5.5: Architecture C: High Cost

in Figure 5.5 could provide the needed raw bandwidth. The processing power required to
use supply data at that rate would be significant. Multiple RISC machines, such as Sun
Sparc processors, could be used for the transport processing. In this architecture we are
using the protocol processors for both TCP and IP processing. An alternative configuration
could, however, separate these two tasks and place then on separate processors, allowing
the transport processor to be completely devoted to TCP processing. It should be noted
that, as before, the connecting bus and ATS processor are a source of concern. Additionally,
the access time for the memory unit will have to be very fast. This issue was discussed in

chapter 1.
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5.6.1 Performance Evaluation

Performance data for the three system architectures discussed above was obtained. As
outlined before, several software and hardware configuration issues will effect the perfor-
mance of a system. Many are discussed in chapter 3, but others include network length,
error rates, and window size. In addition to these software configuration options, many
of the hardware components selected can also induce bottlenecks and limit communication
throughput. Specifically, the speed of the processor performing transport processing, of any
global memory, of the connecting buses, and of the transmission medium will all effect the
throughput that can be achieved. The time to fully examine all of the options available for
each of the design categories would be prohibitive. For this study the main interest is in
the performance of differing hardware architectures, segment sizes, and window sizes. With
this in mind the other options have been fixed as to reduce their impact on the total system

performance.

Number of Protoco! Processors

For the results presented in Figures 5.6 through 5.10, the simulation was used to examine
the three hardware architectures in Figures 5.3, 5.4, and 5.5. In each of these the application
processor to protocol processor bus was fixed at 1 Gbit/second. The global memory used
has an access time of 20ns. The protocol processors used were assumed to be capable of
12.5 MIPs, and the transport and network layer processing for each packet was fixed at 500
instructions/sec. In architectures B and C, the protocol processor to media adapter bus was
fixed at 400 megabits/second. Each of these values were selected to insure that sufficient
throughput was available to drive the media adapters at their full capacity. Initially, the
application to protocol processor bus was fixed at 400 megabit/seconds. As shown in
Figure 5.7, this had no effect on architecture B. but architecture C was not able to provide

significantly more throughput than architecture B. even though it was equipped with three
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FDDI channels. After examining the results and the options performed, it was realized
that the application to protocol processor bus must transfer all of the data at least twice,
in addition to being used for interprocessor communication. This meant that although the
bus was rated at 400 megabits/second, the best we could achieve would be less than 200
megabits/second throughput, regardless of the amount of processing power at the protocol
processing level or bandwidth at the media level.

The graphs shown in Figures 5.6 and 5.8 show the effect of increasing the number of
protocol processors for each of the architectures. In architecture A, because each protocol
processor had a dedicated network interface, the increase in throughput observed is almost
linear with respect to the number of processors available, until the aggregate throughput
available at the media level exceeds that of the bus connecting processors and global memory.
For Ethernet and the hardware speeds that selected, this occured at approximately 120
Processors.

Because architecture B used a single FDDI channel, the maximum throughput that
could have been observed would be 100 megabits/second. In Figure 5.8 it was shown that
this limit is almost achieved when 15 protocol processors are provided. Until that point,
an almost linear increase in performance is seen as the number of protocol processors are
added. Beyond that point, the total throughput increases, but at a significantly reduced
rate.

Architecture C’s results show the same trends as thaose of architecture B, but the total
throughput achieved is greater. Beyond 30 protocol processors, little increase in throughput
is observed. The maximum throughput is 160 megabits. As with the application to protocol
processor bus, the global memory must be accessed at least twice for each bit of data.
This means that the highest throughput that could have observed would be less than 200

megabits, even though there was capacity for 300 megabits at the media access level.
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Segment Size

With the data obtained above, 30 protocol processors was used as a baseline in the simu-
lation runs involving differing segment sizes. The results obtained are shown in Figure 5.9.
The x axis of these graphs is logarithmic. For each of these, the traffic load on the network
was low and varied little, and the load on each of the processors was also low and relatively
stable. Because of this, the optimal segment size was always equal to (image size)/{(number
of processors).

The results for all three architecture are shown in Figure 5.9. In architecture A, relatively
small segment sizes had little impact on total system throughput. This can be attributed
to the fact that the Ethernet adapters used made the total system throughput always
low compared to the speed of the application to protocol processor bus and of the global
memory. This meant that the contention for these devices was low and each of the protocol
processors could be serviced frequently and rapidly. When the segment size exceeded the

optimal segment size. some protocol processors were not given any data to transmit because
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the other processors were already working on it. This meant that not all of the protocol
processors could contribute to the throughput and hence total svstem throughput was
reduced.

For architectures B and C, smaller segment sizes had a significant impact on the through-
put that could be achieved. These architectures were equipped with one and three buffered
FDDI channels respectively. This meant that little time was spent by the protocol proces-
sor waiting for transmission to occur. so the speed of the application to protocol processor
bus and global memory became more important. When the optimal segment size was used,
each protocol processor needed to compete for the application processor and global memory
only once for each image sent. so the demand was reduced. As with architecture A. when
the segment size was increased bevond the optimal size, some processor were excluded from

participation and total system throughput was reduced.
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Window Sizes

After determining the number of protocol processors and optimal segment sizes to be used.
the impact of window size on total system throughput for each of the architectures is
considered. The graph shown in Figure 5.10 contains 1 line for each of the architectures.

The results for architecture A show small improvement from a window size of 1 to a
window size of seven. Beyond seven. no real benefit is observed. This relates again to the
fact that architecture A is using Ethernets and the transmission time is relatively long.
In this case the acknowledgment is returned long before the remaining six packets of the
window are sent, so normally no time is spent waiting for acknowledgments of packets. If
the network environment is extremely noisy, or the network length is extremely long. then
the window size would have been more of an issue. Simulation runs for this architecture,
with error rates as high as 10~ were made. and the window size still made little difference.

For architectures B and C a window size of one is an extreme impediment. Window
size of seven, however. showed great improvement. Beyond seven though. no real increasc
in speed is observed. As with architecture A, the network error rate for these architectures
is very low, 10™°. Given this error rate. the 100 Mbits/second transmission speed of FDDI
channels, and the network length of 20 km with 20 stations, the queuing delay of a packet
to be approximately 3.65 % 10—, (For details of the queuing formula see [2].)

The processing time for a single packet. using the values given above. is 4.0 * 10~*. This
means that on the average a new packet would be ready to transmit about the same time
that the last one is received. Since the time for an acknowledgment to be built and to be
sent is about the same as for sending a packet. a few packets may be outstanding at any

time. Hence, a window size of seven is sufficient.
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Chapter 6

Conclusions

While the world is getting politically and industrially smaller, people will remain physically
separated. This means that the need for even faster communication will continue.

.Parallel communication processing has the potential of providing bandwidths in the gi-
gabit and multi-gigabit speed to a single user. Because this bandwidth can be delivered via
single high speed fiber optic cable, or by the use of multiple slower speed media. interoper-
ability with existing network is achievable. Because protocol processing is being performed
in parallel, with processors working semi-autonomously, the degree of fault tolerance is in-
creased over that of a single channel system. Additionally, because parallelism is applied
separately to individual layers in the communication stack, the degree of parallelism used
can be matched to the performance needs of an application. If the processors are general
purpose, when they are not performing the communication task. they can be devoted to
other tasks such as user application or operating system processing. Finally because sepa-
rate physical channels can be used. the control and avoidance of congested network channels
Is easier, and when congestion cannot be avoided. its impact on total system throughput is
reduced.

In this work I have presented options and issues important to parallel communication

and related them to other areas areas of computer science and specific approaches to paralle}
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communication. In order to deliver the required bandwidth, regardless of the method used,
how different hardware and software components that comprise the communication system
interact must be understood. This task of obtaining this understanding was addressed
in three ways in this work. First, because the number of possible approaches is large, a
sensitivity analysis was performed. This allowed a quick look at system options and provided
insight in to which approaches are viable and what components need to be further studied.
Because of the speed of memory currently available, the use of local memory was shown to
be required. Additionally the local bus, connecting a processor to its local memory. needs to
provide high bandwidth to handle the instruction and data transfers required for protocol
processing.

The second approach used was to prototype a system approach through the use of
a testbed. This is a more costly approach, but allows the collection of more accurate
performance data for a particular approach. The testbed in this work provided two and
three parallel channels and showed speedups of 1.9 and 2.7 over that of a single channel.
The testbed also showed that by changing the size of the data blocks given to the protocol
processors, the degradation in throughput due to a single busy line could be reduced.
This type of fine tuning does not come for free, and the cost to coliect the additional
information required to realize dynamic segment sizes must be considered. Simple schedulers
were also able to balance the load on channels with differing throughputs, but only by
using small segment sizes, thus incurring the higher cost of more frequent interprocessor
interactions. In addition to collecting actual performance data, the testbed gave more
insight into how components of the system interact and the amount of work required to
perform communication in parallel. The testbed is limited. however. because changes to
the approach taken can require that the testbed be radically changed. so the approaches to
be studied must be chosen carefully.

Because the testbed is limited in the ways it can be expanded without building a com-
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plete operational implementation, the next tool used to examine approaches and options
is simulation. I built a simulation that allowed the comparison of systems with different
scheduling mechanism and acknowledgment processing. The simulation showed that, for the
approaches being compared, there was little difference in selecting FCFS or RR scheduling
between the application processor and the protocol processors. It also showed that the speed
of memory and system bus are driving constraints. The speed of memory was the biggest
issue for the software and hardware architectures studied. The selected segment sizes be-
came more important as the raw throughput at the MAC layer increased. For Ethernet. the
media is slow enough to allow new segments to be retrieved by the communication processor
before previous segments have been completely transmitted. For FDDI based architectures
this was not the case. and large segment sizes where needed to reduce the time spent by the
communication processor retrieving a large number of small segments. Window sizes were
also considered during the study. and I showed that a window size of seven was sufficient
for all architectures.

This work is a starting point for research in the area of parallel communication. The
ability to compare differing methods. and to classify methods based on implementation
details such as the type and place of layer scheduling and the method used to process
timers and acknowledgments, allows new research to build upon existing work.

In my work, I actually began with the testbed study, and then built the simulation,
followed by the model used in the sensitivity analysis. This is because before the simulation
or sensitivity analysis models could be built, I needed a better understanding of the problems
that needed to be addressed. The sensitivity analysis represents the most general model
of the parallel communication process. and can be used as a guide to the areas the need
further examination.

My work concentrated mainly on DRDA systems with simple schedulers. There may be a

potential for higher throughput and better control of parallel resources. with more intelligent
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schedulers. This, however, will require a study to identify the possible sources of feedback,
or information, that the scheduler can use and the cost of obtaining the information required
for intelligent scheduling. Additionally, the scheduling information must be provided to the
scheduler quickly so that the scheduler can react to current situations.

In all architectures considered in the framework in Chapter 3 implicitly assumed that
data to be transmitted were placed in a central location, before the communication pro-
cessors received them. This represents a bottleneck through which all data must pass. and

eliminating this bottleneck is something that needs to be studied.
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Appendix A

Testbed Software Operations

This appendix gives a detailed description of the software operations used to realize the
testbed discussed in chapter4. The discussion below assumes that two channels have been
implemented. An additional channel was added, but the software operations are the same

for any number of channels. Each additional channel requires two more computers.

A.1 Transmission Protocol

A minimum of six machines are needed for this implementation of parallel TCP. Three
are required for the transmitter and three for the receiver. The transmitter consists of a
master and at least 2 slave computers to achieve parallelism. In order to allow true parallel
communication, all machines reside on physically different Ethernets. This section gives
function descriptions for both the master and slave programs. followed by a description of

their functions and interactions.

A.1.1 Master and Slave Program Functionality

The master program. run on one machine only. is used to interface with the user’s prograni.

The program must perform the following functions:

101

g .
o

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



w

* Recognize the existence and identities of slave processors
* Manage slave processors transmission loads and terminations

Provide for the retransmission of slave commands for unacknowledged data packets

Provide an interface to the user program for data and destination address identification

Provide a mechanism for aborting the transmission of a message

The slave program is run any number of processors. This program performs the actual

sending of data to the receiving slave processors. This program’s functions are:

¢ Identify themselves to the running master program
e Interpret the command packets sent from the master and perform the functions.

¢ Interface to the receiving slave processors

As will be discussed in the next section, the slave processors are not concerned with the
number of channels that are being used or the packet order and distribution. Additionally,
the underlying transport layer protocol performs all of the retransmission required within

the slave processors.

A.1.2 DMaster and Slave Interactions

This section discusses the functions and interactions among each of the programs’ compo-
nents for both the master and slave programs.

The master program is started first. Ports for sending and receiving are opened. only
two ports are used. The communications handler is then instalied as an interrupt driven
process. Finally the program waits for the user program to call the send routines.

After the master program has started and its address are printed. the slave programs
are started. Command line arguments for Lhé slave program are used to specify the master
and receiving hosts and ports. The slave program first opens sending and receiving ports.

and sends an ADD command packet to the master program to identify itself as a partici-
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pating slave. The program then is blocked until the master program has acknowledged the
command packet.

The master program’s interrupt driven communications handler is started by the mes-
sage from the slave. The communication handler processes new slave commands. data sent
commands, and slave removal commands. When a new slave command is received, the
command packet is parsed for the slave’s host and port number. This information is kept
in a circularly linked list. After the new slave has been added to the list it is assigned
a unique identification number and the new slave command is acknowledged. While the
communications handler is executing communications interrupts are ignored.

After all the slaves have been registered the data transmission can begin. The user
program calls the master program program to request transmission of a data file. This is
currently done by a ‘C’ language call to para_send( File name). After the specified file has
been opened and its length determined, the first n data transmission command packets are
constructed. After all n have been constructed they are sent and timers are started on each.
The packets are preconstructed so that interrupt processing of the SENT command packets
sent by the slaves does not interfere with the calculation of packet numbers and file offsets.
After the first packets are sent, control is passed back to the application program.

When a slave processor receives a SEND command packet, it parses the packet for the
file name, packet number, and offset. Using this information it constructs a data packet
containing the file name, offset, packet number and data from the file beginning at the offset.
This data packet is sent to the receiving host. After the data packet has been successfully
sent, a SENT packet is sent back to the master program to acknowledge that the data has
been sent. The slave program then is blocked until the next command packet is received.

When the master program receives a SENT command packet. it first stops the timer
for the target data packet, then determines the next data to send and builds a SEND

packet for this data. This command packet is then sent to the slave that originated the
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SENT command packet and a new timer is started. If the target file has been completely
sent, a FILE.COMPLETE command packet is constructed and sent to the slave. The
FILE_.COMPLETE packet is sent to notify the receiver that the file has been completely
transmitted.

I a timer expires before a SENT packet is received, the responsible slave is removed
from the list of active slaves and the lost packet is sent to the next free slave.

When the master program terminates, by the user issuing a quit command. a TERM
command packet is sent to all slaves and the test is complete. Figure A.l contains the

pseudocode for the master and slave transmitting programs.

A.2 Receiving Protocol

In some ways the receiving component of the parallel TCP can be seen as the reverse process
of the transmitter. As with the transmitter, at least 3 machines are needed for the master
and slave programs. The programs’ functions, outline below. are similar to that of the

transmitter. but the program interactions are not.

A.2.1 Master and Slave Program Functionality

As with the transmitting code, the master program is used to provide an interface to the

user’s program. The master performs the following functions:

¢ Recognize the existence and identities of slave processors

¢ Manage slave processors terminations
However. it must also

¢ Provide an interface to the user program for data delivery
* Recognize aborted messages and deliver them as such

e Block the user program from execution while a message has not been deiivered.
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As before, the slave program can be run any number of processors. This program
receives data from the transmitting slaves and passes it’s description to the receive master

for ordering and delivery. This program’s functions are:

¢ Identify themselves to the running master program
e Interpret the command packets sent from the master and perform the functions.

¢ Save the received data in the correct file at the correct location

Notify the master when packets are received, and when transmission of a message is

complete or aborted.

Interface to the transmitting slave processors

As will be discussed in the next section. the slave processors are not concerned with the
number of channels that are being used or the packet order and distribution. so there is no
need for them to be concerned with data retransmission. Additionally, because the data
link between the transmitting and receiving slaves are all TCP links, data transmission is

handled automatically between the corresponding slave programs.

A.2.2 Master and Slave Interactions

As with the transmitting code, the master is started first. Its interrupt driven communi-
cation handler code is installed and initialized, then its address is printed so that the slave
programs can identify themselves.

The slaves programs are started next, given the address of the master and transmitting
slave programs, the communication sockets are opened. As with the transmitting slaves. the
receiving slaves send an ADD command packet to the master program to identifv themseives
as participating slaves. After signup is complete, the slaves wait for an incoming message
from the transmitting slaves, or a status request from the receiving master. The status

request is only used for debugging.

105

-lReproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Ca

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.

When a packet is received by a receiving slave, it is parsed for data, file name. buffer
length, offset, and packet identification information. The buffer is then written to the
specified file at the specified offset from the beginning. Once the data has been saved. the
file name and packet number are sent to the receive master for ordering. If a negative packet
number is received, this indicates that the transmission is complete or has been aborted.
Aborted messages are identified because the data offset of the received termination message
is also negative. This information is also passed to the receive master. Because the slaves are
not concerned with packet ordering or message completeness, they simply go through the
process of receiving messages, processing them, and returning to a blocked, reading state.
If it senses a termination of communication with the transmitting slave, the receiving slave
also terminates. Because the receiving master is managing the slaves. a final termination
message is sent to the receive master prior to the slave’s termination.

When the receiving application requests a message, it is blocked until a complete or
abort message has been received. As packets are received and their information sent to the
receive master, they are read from disk and returned to the requesting receive application.

Pseudocode for the receive master and slave program can be found in Figure A.2
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Master Program

1. Call to initialize the communication routines
2. While termination signal has not been received do

(2) Wait for command packet or transmission call
(b) If transmission call then

i. Divide the message into sections
ii. Send the first set of sections to the slaves
ili. Return control to the calling program

(c) If ADD command

i. Add the new slave to the list

ii. Acknowledge the ADD command to the slave
(d) If SENT command

i. If all other packets have been sent and acknowledged, send end of file message
ii. If more data needs to be sent, send it via this slave

3. end do
4. call to close communications

Slave Programs

1. Initialize communication
. Signup with the Master
3. While a TERM message has not been received do

[ ]

(a) Wait for a command message
(b) If SEND command

i. If the current transmission is not complete, send an abort message to the
receiver
ii. Read the data and send it along with the file name and new offset

(c) If TERM command, close communication and stop
4. end do

Figure A.1: Transmitter Pseudocode

107

”‘Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Master Program

1. Call to initialize the communication routines
2. While termination signal has not been received do

(a) Wait for command packet or read request
(b) If read request then

i. If a message has been received and processed, return the data
ii. else block the calling program
(c) If ADD command

i. Add the new slave to the list
ii. Acknowledge the ADD command to the slave

(d) If RECV command

i. If this is a end of file message then save the data in a raster format for the
receive application

ii. If abort message then
A. Fill in the blank spots on the image
B. Save the data in raster format for the receiver

3. end do
. terminate all slaves
5. call to close communications

>

Slave Programs

1. Initialize communication
. Signup with the Master
3. While a TERM message has not been received do

[\

(a) Wait for a command message
(b) If data packet

i. Save the data in the correct file at the specified offset
ii. Send the packet information to the master receiver

(c) If TERM command. close communication and stop
4. end do

Figure A.2: Receiver Pseudocode
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Appendix B

Testbed Analytical Model

B.1 Model Definition

For purposes of analysis, this analysis treats the application and its interface with the
transport layer as a single process, called the master process. Similarly, the transport layer,
the media access control, and the data layer are treated as a single process, called the slave
process. The master process splits the application data into segments and sends them, or
makes them available, to the slave processes. Since there is a one-to-one relationship (in
terms of a physical connection) between the sender slave and the receiving slave, they are
refer to as a slave pair. Thus the system has N slave pairs. In addition, the following

assumptions are made.
¢ The number of segments transmitted through slave pair 7 is denoted by S;.

e Each of the S; segments could be of different lengths. where d; ; is the size of segment
j-

e Since the data in segment j may be transmitted by the media access layer in several
packets (depending on the packet size and the segment size). the number of packets
in a segment is denoted by P ;.
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This model is concerned with determining the end-to-end performance characteristics
of the testbed system. To this end the rate of throughput at the application level is the
target calculation. Accordingly, given the size of data that needs to be transmitted from
sender application to the receiver application D,, and given the total physical bandwidth
available to the application I,, the total delay from delivery of data to the master process
to the time the data are completely received by the receiver application is also of interest.

The delays encountered in delivering the message from application to application are as

follows:

Delay at the Sender Slave. This consists of wait time for a slave to receive a segment
from the master, preparing the packets for transmission, and the delay in accessing the
channel. In addition, depending the acknowledge and sliding-window protocols. a slave
may need to wait to receive acknowledgments from its counterpart on the receiving side

before continuing the packet transmissions. These terms are further explained below.

¢ tsi; - The time slave i must wait before it receives segment j from the master. This is
the time between when slave i completes a transmission of segment j—1 and when it is
assigned segment j. This time is influenced by the communication mechanism between
the master and the slave. If they communicate through a bus, the bus contention and
bus transmission delay needs to be considered. Similarly, the delay also depends on
whether the master sends the entire segment or Jjust a control message indicating the
position of the segment in a shared memory. In such a case, the time is influenced
by the memory access speed, memory-slave transfer speeds, and any other memory

contention.

* to;; - Total overhead of packetizing segment j at slave 7. This overhead is a protocol
overhead which packetizes the received segment and adds overhead bits (actually

added by several lavers of the communication protocol between the slaves) prior to
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transmitting on the physical channel. Since, the overhead is generally constant for
a packet, the total overhead is a product of per packet overhead and the number of

packets in segment j, P; ;.

tak;; - Total delay incurred due to the absence of acknowledgments at slave 7 in
transmitting fragment j. This delay depends on the communication protocol between
the slave pair ¢. For example, in a TCP like protocol, where the transmissions are
controlled by a moving window protocol, it is sometimes possible to transmit a message
even before receiving the corresponding acknowledgment for the previous packet. In
a stop-wait like protocol, however, this delay is incurred before the transmission of
each packet. Obviously, this delay depends on the window size, loss of packets, loss

of acknowledgments, TCP timer value, etc.

tsc; ; - Total waiting time at sending slave 7 to access the channel. This term represents

channel contention for all the packets in segment j and depend on the load on the

network and the channel allocation protocol. Once again, knowing the average waiting

time per packet, the delay may-be obtained by the product of total number of packets

and the per packet delay.

Transmission and Propagation Delay. The transmission and propagation between slave
pairs is denoted by ?; ; represents the total time required for transmission and propagation
of segment j from slave i. For each packet transmitted between slave pair ¢, a transmission
delay (which depends on the channel bandwidth and the packet size) and a propagation

delay (which depends on propagation speed and the distance between slaves) are involved.

Effect of retransmissions. Due to loss of messages, transmission errors, etc.. it may
be necessary to retransmit messages between the slave pairs. This is represent by nry;

denoting the average number of packet retransmissions at slave i during the transmission
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of segment j.

Delay at the Receiver Slave. The delay at the receiver is attributed to the overhead
in processing the packets, delivering them to the master, and acknowledging the received

packets. This delay is denoted by the following terms.

e 70;,; - Total overhead at receiving slave i needed for processing packets corresponding
to segment j. This term includes the time to read a message from the channel, perform

the transport protocol processing, and to reassemble the packets in to segment j.

e 7sci; - Total waiting time at (receiving) slave i to access the channel. This is the
waiting time that receiving slave 7 waits for the channel when trying to acknowledge
each packet. Indirectly, this term s accounted in the tak;; and is influenced by the

traffic on the channel and the protocol.

¢ 7t;,; - Total transmission and propagation deiay to acknowledge segment j. This is the
total time that the receiving slave ¢ spends sending acknowledgments for the packets
in segment j. Since the acknowledgment messages are generally small in size, the

transmission delay may be insignificant.

The total elapsed time between a sending application initiating the transfer of a message
to the time it is completely received by the receiving application, denoted by T'D, is now

expressed as

S,
T, = ZIS;J' +to;; + tsc; ; + t;;+ 70 ; + TSCi; + Tt ; (B.1)
7=0
TD = max(Th,T»,...,Tn) (B.2)
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From here, the offered throughput to the application, NTh, may be expressed as

_ TN, D
NTh = =TI (B.4)
S,
D; = Zdi!j (B.5)
rd

B.2 Values Used in the Model

To the terms defined above, the following values were assigned.

¢ ts;; - In the testbed, after each segment is sent, the slave must send a message to

the master to indicate that i has sent segment j — 1. The master then determines if
more data are to be sent, and then sends a message to the slave giving the segment
number and offset of its segment j. Code was written to measure this this parameter,
and the average observed, when two slaves were contending for the master, was 3400

useconds.

t0;,; - The underlying protocol for the testbed is TCP. According to Clark et al. [7], the
number of instructions needed to send a create a TCP packet is 235, and the number
of instructions required by IP is 61. These values do not include the instructions
required for device drivers and other operating system overhead, but they should give
us a magnitude representation of the processing required. The testbed is running on
Sun SparcStation 1 computers that have a processing speed of 12.5 MIPs. With this
the calculated the overhead of one packet is 24 pseconds and the overhead for each
segment is 24 * the number of packets in a segment ( F; ;). For the experiment segment
sizes this give values of 24, 600, 3.000, 6,144, 73.728. 153.600, 245.560. and 307.200

useconds.

tsci,; - Because Ethernet is being used for machine connections, it is convienent to use

the formulas found in [31] and find an average waiting time for accessing a channel as
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0.014 pseconds for the clear channel and 0.015 useconds loaded channels.

i;,; - The sustained throughput measured on the Ethernet channels is 5 Mbits. Based
on the segment sizes begin used the segment transmission times is computed to be

819*10-F,, 0.0204, 0.1024, 2.516, 5.242. 8.388, and 10.485 seconds respectively.

70;,; - As discussed earlier, Clark et al. [7] provides the number of instructions for TCP
and IP processing of incoming data packets to be 186 and 57 instructions respectively
in a highly optimized implementation. As with the value for to; ;, these instruction
counts are used to give an order of magnitude estimate. No additional headers are used
by the testbed when creating the packets. so no additional processing is required at
the receiving end. With this information. the time computed on a Sun SparcStation
is 19 pseconds per packet and 19, 475. 2.375, 4,864, 58,368, 121.600. 194.560. and

243.200 useconds per segment respectively.

7sc;,; - This is the time spent waiting for the channel when sending the acknowledg-
ment. This time should be the same as was needed to wait when transmitting 1 TCP
packet or 0.014 useconds for the clear channel and 0.015 useconds for the channel

with background traffic per acknowledgment.

7t;; - The transmission and propagation time for the acknowledgment is easily com-
puted based on the sustained Ethernet throughput, the number of packets sent P; ;.
and the size of the TCP acknowledgment packet (4096 bits). This gives us the seg-
ment values of 125*107°, 3124*10-%, 15625*10-6, 32000%10-6. 0.384. 0.8. 1.28. and

1.6 seconds.
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