
Old Dominion University
ODU Digital Commons

Computer Science Faculty Publications Computer Science

1993

Optimal Greedy Algorithms for Indifference
Graphs
Peter J. Looges
Old Dominion University

Stephan Olariu
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_fac_pubs

Part of the Applied Mathematics Commons, and the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science at ODU Digital Commons. It has been accepted for inclusion in
Computer Science Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

Repository Citation
Looges, Peter J. and Olariu, Stephan, "Optimal Greedy Algorithms for Indifference Graphs" (1993). Computer Science Faculty
Publications. 117.
https://digitalcommons.odu.edu/computerscience_fac_pubs/117

Original Publication Citation
Looges, P. J., & Olariu, S. (1993). Optimal greedy algorithms for indifference graphs. Computers & Mathematics with Applications,
25(7), 15-25. doi:10.1016/0898-1221(93)90308-i

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_fac_pubs?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_fac_pubs?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_fac_pubs/117?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

Complgfer# Mark. Appli¢. Vol. 25, No. T, pp. 15-25, 1993 0097-4943/93 116.00 + 0.00
Printed in Great Britain. All rlght, reserved Copv~ightO 1993 Pergamon Press Ltd

O P T I M A L G R E E D Y A L G O R I T H M S
F O R I N D I F F E R E N C E G R A P H S

PETER J . LOOGES AND STEPHAN OLARIU t

Department of Computer Science, Old Dominion University

Nm-folk, VA 23529-0162, U~.A.

(Received in re~/aed form October 199t)

A l m t r a c t - - A fundamental problem in social sciences and management is understanding and pre-
dicting decdsiom made by individuals, various groups, ~ the society as a whole. In this context, cme
important concept is the notion of indiMrence. We characteriR the class of ~ e graphs, that
is, graphs which arise in the process of quantifying indifference relatlcmm. In particular, we show that
these graphs &re characterized by the existence of & special ordering of their vertices. As it turns out,
this ordering leads naturally to optimal greedy algorRhnm fro" a number ¢~ computational problems,
includin~ coloring, ~d in~ a shortest path between two vertices, computing & maximum matching,
the center, and a Hamiltonian path.

1. INTRODUCTION

In trying to understand and predict social phenomena, one is confronted with the problem of
quantifying entities which are not as easy to measure as well-known physical variables, such as
distance or density occuring in everyday life. It has been recognized that the process of analyzing
decisions made by various individuals, groups, or by the society as a whole requires the ability
to reason about such things as preference, agreement, and indi~erence [1]. In the process of
decision making, for example, administrators have to take into account opinions and viewpoints
expressed by different social groups or organizations. Similarly, in marketing, one is interested in
understanding behavior patterns of potential consumers, as expressed by indifference attitudes
towards comparable products on the market.

In this work, we propose to investigate the class of indifference graphs that models the no-
tion of indifference relation arising in social sciences and management. Specifically, a graph
G = (V, E) is an indi~erence graph [2] if there exists a positive number 6 (measuring "closeness"
or "indifference") and an assignment of numbers f(u) to the elements of V such that for all
u,v E V, uv is an edge in G whenever If(u) - f(v)[_< 6. (To be consistent with [1], we ignore
loops in indifference graphs, that is, edges of the form uu with u E V.) As it turns out [1], the
indifference graphs are a subclass of the well-known class of interval graphs that we discuss next.

Interval graphs are invaluable tools when it comes to modeling real-life situations, especially
those involving dependencies that are linear in nature. They find applications to archaeology,
biology, psychology, sociology, management, genetics, and many others. The reader is referred
to [1] and [3], where many of the above applications are summarized.

More formally, a graph G = (V, E) is termed an interval graph if there exists a family {Is}
(1 < i < n) of intervals on the real line such that distinct vertices u, v are adjacent if, and only
if, the corresponding intervals overlap. Such a family {Is} (1 < i < n) of intervals is comn~nly
referred to as the interval representation of G.

The interval graphs have been studied intensely from both the theoretical and algorithmic
point of view. Early characterizations, in terms of forbidden configurations, appear in [4,5].

tTlds author was supported, in part, by the NSF Grant CCR-Sg09996.
The authors would like to thank Professor Rodin and an anenymous referee for a v~y thorough review that
m ~ M in & bett¢~ l~esen~sfion.

Type~ by A~-~_X

15

16 P . J . LOOGES, S. OLARIU

Later, Booth and Lueker [6,7] used PQ-trees to investigate the algorithmic properties of interval
graphs: they obtain linear-time recognition and isomorphism algorithms.

The purpose of this work is to investigate algorithmic properties of indifference graphs. We
first present a new characterization of indifference graphs in terms of a linear order on their sets
of vertices and show that this new linear order affords us optimal greedy algorithms to solve
problems such as coloring, finding a shortest path between two vertices, a maximum matching,
and a Hamiltonian path. The paper is organized as follows. Section 2 presents the basic tools
for algorithm development in the form of a number of theoretical results; Section 3 proposes
a greedy recognition algorithm for indifference graphs; finally, Section 4 develops a number of
greedy algorithms for the computational problems mentioned above. All our greedy algorithms
are extremely simple and run in optimal time.

2. BASICS

All the graphs in this work are finite, with no loops nor multiple edges. In addition to standard
graph-theoretical terminology compatible with [3], we use some new terms that we are about to
define. For a vertex x of a graph G, we let d(x) stand for the number of vertices adjacent to z
(adjacency is assumed to be irrefiexive, no vertex being adjacent to itself). A graph with vertices
a, b, c, d and edges ab, ac, ad is referred to as the claw (see Figure 1).

a

A
b c d

Figure 1. The claw.

Let G - (V, E) be an interval graph and let (Iv - lay, by]) he an interval representation of G;
here, av and by (av < by) are referred to as the left and right endpoint of the interval Iv. G
is called a unit interval graph if all the intervals in the representation have unit length. The
family {Iv}Pep is the interval representation of a proper interval graph ff no interval is properly
contained in another. Clearly, unit interval graphs are proper interval graphs. Roberts [1] has
proved the following fundamental result that shows that unit interval graphs, proper interval
graphs, and indifference graphs are synonyms.

PROPOSITION 1. See [1]. For a graph G, the following statements are equivalent:

(i) G is a unit interval graph;
(ii) G is a proper interval graph;

(iii) G is an interval graph with no induced claw;
(iv) G is an indifference graph. II

We shall rely on the following fundamental results concerning interval graphs.

PROPOSITION 2. See [5]. A graph G is an/nterval graph if, and only if,, the maximal cliques
of G can be linearly ordered in such a way that for every vertex v of G, the max/ma/cliques
containing v occur consecutively. II

PROPOSITION 3. See [3]. In any interval graph, the sum of the sizes of al /mar/real cliques is
linear in the size of the graph. II

Assume that the maximal cliques of an interval graph G have been enumerated as C1,
C2, . . . , Cm as in Proposition 2. If, for every vertex v of G, we let Iv stand for the set {Ci [v E Ci},
then, by Proposition 2, Iv is an interval. Hence, {Iv}PeP is an interval representation for G. We
shall refer to this interval representation as maz-cliqee.

The following result shows that interval graphs are characterized by a special ordering of their
vertices. This result will he used again and again in the remainder of this work.

Optimal greedy algorithnm 17

PROPOSITION 4. See [8]. A graph G = (V, E) / s an interva/graph i t and only if, there exists
a linear order < . on Y such that for every choice o f vertices u , v , w with u ~ . v ~ . w , uw E E
implies uv E E. |

For an interval graph G the ordering

(1)

of its vertices with the property specified in Proposition 4 will be referred to as canonical.
Our first result is a characterization of indifference graphs in the spirit of the result in [8]. More

precisely, we show that just like the interval graphs, the indifference graphs are also characterized
by an ordering of their vertices. This linear order not only satisfies (1), but, in fact, satisfies a
stronger property which lays the basis for all our optimal greedy algorithms.

THEOREM 1. A graph G = (V, E) is an indifference graph if, and only if, there exists a linear
order 4 on V such that for every choice of vertices u, v, w,

u 4 v 4 w, and uw E E implies uv, vw E E. (2)

PROOF. First, let 4 be a linear order on V" with the properties specified in (2). In particular, 4
satisfies the condition specified in Proposition 4, and so G is an interval graph.

By Proposition 1, to prove that G is an indifference graph, we need show that G contains no
induced claw. For the sake of the argument, suppose that G contains an induced claw with vertices
a, b, c, d and edges ab, ac, ad. We propose to show that this assumption leads to a contradiction.

To begin, note that vertex a cannot precede b, c, d in 4: otherwise, (2) would imply that b, c, d
are pairwise adjacent, a contradiction.

Similarly, vertex a cannot follow b, c, d in the linear order: otherwise, let z stand for the vertex
among b, c, d that comes first in the order 4. Since za E E, it follows that z is adjacent to the
remaining two, contradicting that {a, b, c, d} induces a claw.

Now the symmetry of the claw allows us to assume, without loss of generality, that b precedes
a, c, d and that d follows a, b, c in 4. But now, the ordering b 4 c 4 a implies bc E E; similarly,
the ordering a 4 c 4 d implies that cd E E. Either case leads to a contradiction.

Conversely, let G be an indifference graph. In particular, G is an interval graph. For every
vertex z of G we let Ix - [a=, b=] stand for the corresponding interval. Define a linear order 4
on V by setting

u 4 v whenever (au < av) or [(au = av) and (bu _~ b~)]. (3)

Let u , v , w he arbitrary vertices in G satisfying u 4 v 4 w and assume that uw E E: that is,
the intervals Iu and Ito overlap. Now the assumption that u 4 v 4 w, together with (3), implies
that

a . < < aw.

In case au -- at0, the conclusion is immediate; we shall therefore assume that

au ¢ a w .

Since lu and lw overlap, it must be the case that

aw < b~.

But now, av _~ aw guarantees that av _~ bu, and so uv E E.
Next, since Iu cannot properly contain I~, au _~ a~ guarantees that bu _~ b~. It follows that

aw ~ by, implying that vw E E. This completes the proof of Theorem 1. |

Theorem 1 implies the following results.

COROLLARY 1.1. Let G -- (1/, E) be an indifference graph and let 4 be a linear order on the
vertex-set of G satisfying (2). For every choice o f subscripts i , j with (1 _~ i < j _~ n) and
v~vj E E, the vertices vi, ~ + 1 , . . . , vj are pairwise adjacent.

18 P . J . L o o o g s , S. OLARIU

PROOF. To see this, let vp and vq be arbitrary vertices with i _< p < q _< j . Now the fact that vi
and vj are adjacent, together with (2), imply that vp and vj are adjacent, and so, by (2) again,
vp and vf must be adjacent, as claimed. II

COROLLARY 1.2. An interval graph is an indifference graph i f and only f f a canonical ordering
<* of the vertices of G sat/sties (2).

PROOF. First, if a canonical ordering < . of G satisfies (2), then by Theorem I G is an indifference
graph. Conversely, if G is an indifference graph, then by Theorem 1 we find an ordering ~ of its
vertices satisfying (2). But now, <~ also satisfies (1) and the conclusion follows. |

Let G be an indifference graph; just as in the case of interval graphs, an ordering ~ of the
vertices of G satisfying (2) is referred to as canonical.

To obtain a characterization of indifference graphs leading to a fast recognition algorithm,
consider an interval graph G with a canonical ordering < . . For every i (1 _< i <_ n) define
First[i] = min(i ,k} such that vsvk E E; similarly, Last[i] = max{/,k} such that vsvh E E.

We are now in a position to prove a result that is central to our recognition algorithm for
indifference graphs.

THEOREM 2. Let G be an interva/graph with a canonical ordering < . . G is an indifference
graph if, and only if,, for every v, (1 < i < n), d(vs) = Last[t~ - First[i].

PROOF. To begin, let G be an indifference graph. We proceed by induction on the number
of vertices in G. If G is d~sconnected, then the conclusion follows by the induction hypothesis
applied to every component of G separately.

We may, therefore, assume that G is connected. By Corollary 1.2, we may assume with-
out loss of generality that < . satisfies (2); it follows, in particular, that every vertex vs with
(2 < i < n - 1) is adjacent to all the vertices t)First[i] , t)F i rs t [S]+l , . . . , tlS--1, V)S.I.1,... , VLsst[S], and so
d(vs) = Last[,~ - First[/].

Further, if i = 1, then First[vs] = 1 and vs is adjacent to VS+l,...,vLut[S], confirming that
d(vs) = Last[:] - First[/]. Finally, if i = n, then Lastly,] = n, and vs is adjacent to VFi~,t[,1,
t~ir . t[/]+l, . . . , vs-1, and so d(vs) = Last[/] - First[,~.

Conversely, assume that G contains an induced claw with vertices a, b, c, d and edges ab, ac, ad.
Symmetry allows us to assume that b < . c < . d. But now, in case c < . a, d(b) < Last[b] - First[b]
since b is not adjacent to c and c < . Last[b]; in case a < . c, d(b) < Last[b] - First[b] since in this
case d is not adjacent to c and First[d 1 <* c. This completes the proof of Theorem 2. II

The following result identifies a property of chordless paths joining vertices of an indifference
graph G.

THEOREM 3. Let G be an indifference graph with a canonical ordering ~., and let z, y (z ~ y)
be distinct vertices of G. I f z = Ul, u2,. .. , Up = y is an arbitrary chordless path joining z and y,
then t'or all i (1 _< i <_ p - 1), u~ ~ us + 1.

PROOF. First, note that
uj < y for all j - 1, 2 , . . . , p - 1. (4)

[Suppose not; let t be the first subscript for which y ~ ut. But now, (2) guarantees that u t - i
and y are adjacent, contradicting that the path is chordless.]

Next, if the statement is false, then we find a subscript j (j < p) such that

Uj+ 1 ~ Uj .

Now (4) implies that uj+1 ~ uj ~ y. Observe that

uj ~ up- l ,

for otherwise condition (2) guarantees that uj and up are adjacent, a contradiction.
Let k be the first subscript larger than j + I for which

uj ~ uk.

OptimAl greedy a]goritbnm 19

Since uj+l ~ uj, it must be the case that k >_ j + 2. By our choice of k, u t - 1 ~ uj < ut .
However, now (2) implies that uj and uk are adjacent, a contradiction. This completes the proof
of Theorem 3. |

COROLLARY 3.1. Let G be a connected indifference graph with a canonical ordering ~.. For all
subscripts i (2 < i < n - 1), First[/] < i < Last[,].

PROOF. Let i be an arbitrary subscript with (2 < i < n - 1). Since G is connected, there exists
a path in G joining el and vi. Let

V 1 -~ Z I , X 2 , . . . , X t - ~ t) i

be such a path. By taking t as small as possible, we ensure that the path is chordleas. By
Theorem 3, it follows that, in particular, vt-1 • vt = vl, and so First[;] < i.

The proof that i < Last[;~ follows by a mirror argument which is omitted. II

3. G R E E D Y A L G O R I T H M S I: R E C O G N I Z I N G I N D I F F E R E N C E G R A P H S

Let G = (It', E) with IV[= n and [E[= m be an arbitrary graph. The following greedy
algorithm determines whether or not G is an indifference graph.

ALGORITHM. Recognize(G);

STEP 1. Invoke the interval graph recognition algorithm of Booth and Lueker [6], running
in O(n + m) time. In case G is an interval graph, the algorithm also returns an ordering
C1,C2,... ,Cm of the maximal cliques of G as in Proposition 2.

STEP 2. Using the adjacency information of G, together with the ordering C1, C2,. . . , Cm con-
struct a max-clique interval representation for G. At this stage, we use two arrays B[1 . . . m] and
H[1 . . . n], initialized to 0: for every vertex u of G, H(u) contAin A the largest i for which u E Ci;
B is used as a set of buckets: specifically, B[j] contains (in a linked list) all the vertices u of G for
which j = min{k [u E Ct }. The details of this step are spelled out by the following procedure.

PROCEDURE. Compute_Ordering(G);
(Input: an interval graph G - (V,E) and an ordering CI,C~,.. . ,Cm of its maximal cliques;

Output: an ordering of the vertices of G as in Proposition 4.}
O. begin
I. f o r j *-- 1 to m do
2. f o r all u in Cj do begin
3. i f H(u) = 0 then
4. add u to bucket B[j]; (think of BL/] as a linked list}
5. H(u) . - j;
6. end; (for}
7. sort each bucket B[j] in ascending order of H(v);
8. return(B)
9. end; (Compute_Ordering}

It is easy to confirm (see [8], for example) that the ordering of the vertices of G returned
in line 8 of Compute_Order is a canonical ordering < . for the interval graph G. Furthermore,
Proposition 3 guarantees that the overall running time of Step 2 is bounded by O(m + n).

STEP 3. Scanning the adjacency list of every vertex vi of G once, we compute First[s~ and Last[s I
for every i (1 < i < n).

STEP 4. Finally, for every i (1 < i < n) we check whether d(v~) - Last[~-First[s~. By Theorem 2,
G is an indifference graph if, and only if, this equality holds for i (1 < i < n). The details are
expressed as follows.

20 P.J. Looo~s, S. OLAmU

PROCEDURE. Test_Indifference(G);
{Input: a graph G along with an ordering <, of the vertices as in (4);
Output: "yes" or "no" depending on whether or not G is an indifference graph} 0. begin

1. f o r i ~ 1 t o n do
2. compute Last[/] and First[s~;
3. f o r i *--- 1 t o n do
4. i f Las t [i] - First[s~ ~ d(vi) 1:hen
5. return("no");
6. return("yes")
7. end; {Test_Indifference}

The following result summarizes our findings in this section.

THEOREM 4. With a graph G with n vertices and m edges as input, Test_Indifference correctly
decides in O(n + m) whether G is an indifference graph.

PROOF. The correctness follows immediately from Theorem 2. To address the time complexity,
it is helpful to imagine that after the ordering < . computed in Step 2 is available, the adjacency
structure of G is updated in O(n-F m) time to inform every vertex of its position in the canonical
ordering. Now computing Last[/] and First[s1 is easy: for every i, scan the adjacency list of vi
once retaining the largest and smallest subscript. Clearly, this takes O(d(v~)). Consequently, the
overall complexity is bounded by O(n + m), as claimed. 1

It is important to note that should G turn out to be an indifference graph, the ordering (1)
satisfies condition (2) as well.

4. G R E E D Y A L G O R I T H M S II: V A R I O U S C O M P U T A T I O N A L P R O B L E M S

Let G = (V, E) be an arbitrary indifference graph with an ordering vl < v2 < . . . < vn
satisfying (2). We are now in a position to show how this linear order can be exploited for the
purpose of designing very simple, optimal, greedy algorithms to solve a number of computational
problems.

First, we present a coloring algorithm for indifference graphs. The only data structure used is a
stack; initially, this stack contains the colors 1 , 2 , . . . , n in reverse order, that is with 1 at the top
of the stack. The idea of the algorithm is straightforward: assign vertex Vl color 1 (equivalently,
vl is colored by popping the stack).

After vi-1 (i >_ 2) has been colored, we proceed to color vi as follows. Consider the set of colors
assigned to the vertices

VFirst[i- 1], t~Firstli- 1]+ 1 , ' • •, t~First[i]- 1.
Note that by Corollary 1.1, all these colors must be distinct. Furthermore, none of these vertices
are adjacent to vi, and so we can reuse any of their colors on vi. With this observation in mind,
we first release these colors by pushing them onto the stack and then proceed to color vi by
simply popping the stack (i.e., assigning vi the color at the top of the stack). The details are
spelled out by the following procedure.

PROCEDURE. Color(G);
{Input: an indifference graph G, along with a canonical ordering <;
Output: an optimum coloring of G;}

0. begin
I. color(vl) ~ pop(stack);
2. :for i ~-- 2 I;o n do b e g i n
3. f o r j ~ F i r s t [/ - I] t o First[s I do
4. push(color(v j)) ;
5. color(vi) *- pop(stack)
6. and {for}
7. end; {Color}

O p t i m a l g reedy a l g o r i t h m s 21

THEOREM 5. With an indifference graph G = (V, E) with n vertices and m edges as input,
procedure Color correctly returns an opthna/coloring of G in O(n) time.

PROOF. To justify the correctness, we need to show that procedure Color returns a proper
coloring of G and that this coloring uses as few colors as possible. First, we claim that

no vertex vj (i _< j) is adjacent to one of the vertices (5)
vk such that F i r s t [i - 1] </~ < First[/] - 1.

[To see that this is the case, note that if some vertex vj with i _< j is adjacent to a vertex vk with
F i r s t [i - 1] </~ < First[/] - 1, then by (2) it must be that vi and vk are adjacent, contradicting
tha t /c < First[q.]

Now (5) implies that when a color assignment takes place in line 5, vertex vi and the vertices
that have received the same color prior to vi are not adjacent. Thus, procedure Color produces
a proper coloring.

To argue about the optimality of this coloring, we only need show that if procedure Color uses
a total of/c colors, then G contains/c pairwise adjacent vertices (i.e., no fewer than/c colors can
possibly be used to properly color G). Consider the first vertex, say v~, that received color/~.
Observe that the way we initialized the stack, along with line 5, guarantees that all the first]c- 1
colors 1 ,2 , . . . ,k - 1 were in use when vl was about to be colored. Now (5) implies that these
colors must have been used on the vertices vk with First[/] </c < i - 1. But now, Corollary 1.1
guarantees that G contains a set of k pairwise adjacent vertices, namely ~Fimt[i] , VFirs t [i]÷l , • • • , Vi.

This shows that the coloring produced is optimal.
To address the complexity, we note that by (5), the loop in lines 3-4 takes at most O(n) time.

Consequently, the running time of the procedure is bounded by O(n), as claimed. |

Next, we propose a simple greedy algorithm that computes a shortest path between two given
(but otherwise arbitrary) vertices of a connected indifference graph.

PROCEDURE. Shortest_Path(x, y);
{Input: a connected indifference graph G with a canonical ordering <E and two vertices z <E y;

Output: a shortest path z = Z l ,Z2 , . . . ,zt = y joining z and y}
0. beg in
1. t ~ l ;
2. z: ~-- z;
3. whi le zt and y are not adjacent do beg in
4. t ~ t + l ;
5. Z t + " 1~Lut [z ,_ l l ;
6. end; {while}
7. t4---tq-1;
8. x t *" y;

9. return(zl , z 2 , . . . , zt)
10. end; {Shortest_Path}

THEOREM 6. Let G be a connected indifference graph with n vertices and m edges, and let z
and y, z < y be two vertices of G. Procedure Shortest_Path correctly constructs in O(n) time a
shortest path between z and y.

PROOF. The complexity being obvious, we only need address the correctness of this procedure.
Let z -- Zl, z2, . . . , zt - y be the path returned by Shortest_Path(z, y). Suppose that there exists
a path z - Zl ,Z2, . . . ,z¢ - y joining z and y such that q < t.

This, however, implies that for a suitable choice of subscripts i , j (2 < i < t - 1; 2 < i <_ q - 1)

z ~ z j < ~ z j - i - l ~ z i + l .

Note that (2) in Theorem 1 guarantees that zj and zi+l are adjacent. But now we contradict
the choice of Zj+l in line 5 of the procedure. With this, the proof of Theorem 6 is complete. |

CN41~ 2S:7-C

22 P . J . L o o o E s , S. OLARIU

It is interesting to observe that the greedy procedure above fails to work for interval graphs
which are not indifference graphs. Consider the graph H featured in Figure 2. The ordering < ,
of the vertices of H specified in Proposition 4 is a < , b < , c < , d < , e < , f . Now with vertices
a and f as input parameters. Shortest_Path will return a, c, e, d, f which is not the shortest path
between a and f .

a c e

b d f

Figure 2. A n in terva l g r a p h w i t h a canonica l o rder ing a g * b ~* c ~ * d ~* e ~* jr.

The notion of a center in a graph is motivated by a large class of problems collectively referred
to as facility-location problems. Here, one is interested in identifying a subset of the vertices of
the graph at which certain facilities (such as police stations, shopping centers, hospitals, schools,
etc.) are to be located in such a way that for every vertex in the graph, the distance to the
nearest facility is minimized.

More formally, given a connected graph G = (V, E), the distance d(u, v) between vertices u
and v is the smallest number of edges in a path joining u and v. The diameter and the radius of
G are defined as

diam(G) = max d(u,v)
u , ~ E V

r(G) = min max d(u, v).
uEV vEV

Finally, the center of G is defined as

C(G) = {u E V [maxd(u,v) = r(G)).
vEV

It is both well-known and easy to see that the center of an arbitrary graph G - (V, E) with n
vertices and m edges can be computed by the following brute-force approach: perform a breadth-
first search of G starting, in turn, at every vertex of G. Clearly, this procedure t&kes O(mn)
time.

Theorems 2 and 5 seem to imply that in a connected indifference graph, the diameter is realized
by vertices Vl and vn. This is indeed the case as shown by the following result.

COROLLARY 6.1. /n a connected indifference graph G with a canonical order/ng ~, diam(G) -

PROOF. To settle this claim, we prove that

for all vertices z ,y with z ~ y, d(z,y) _< d(vl,vn).

Let vl - UJl,lO2,...,Uyr " Vn be the shortest path between vx and vn. Choose the largest i
such that z ~ wi; similarly, find the smallest j such that toj ~ y.

Note that by (2),
Z , t /) i ÷ l , t /) i . l . 2 , . . . , t 0 j _ I , y

is a path in G joining z and y. Since this path contains exactly j - i edges, it follows that

d(z, y) ~ j - i ~ r - 1 = d(vx, vn).

This completes the proof of Corollary 6.1. |

Optlm~ ~ y ~lsorith,-- 23

Let G be an indifference graph and let

v , = wo, wx,...,w, = v , (8)

be the path returned by procedure Shortest.Path invoked with parameters vl and vn. For the
purpose of computing the center of G, we use an array D [I . . . n] that stores, for all i (I < i < n)
the shortest distance from vl to vi. This is accomplished by the following simple procedure.

PROCEDURE. Find_Distance(G);
{Input: an indifference graph G = (V, E) with iv i = , and IEI = m, and a path as in (6);
Output: an array D[1. . . n] such that for all i, D[i] = d(vl, vi)}

0. begin
1. f o r i ~ 2 to n do
2. = wy (0 _ j < r) then
3. o[,1 .-- j
4. e l s e begin
5. find the largest subscript j for which wj ,~ vi;
S. D[q . - j + 1
7. end
8. return(D)
9. end; {Find_Distance}

THEOREM 7. When procedure Find_Distance terminates, for every i (1 < i < n), Dis 1 - - d(vl, V i) .

Furthermore, the running time is bounded by O(n).

PROOF. The correctness follows easily by a trivial inductive argument. To argue for the com-
plexity, we note that by scanning the vertices left to right, we maintain the largest j for which
t0j is the last vertex on the path (P) encountered thus far. It follows that the overall complexity
is O(n), as claimed, m

Once the array D is available, we only need repeat the above procedure starting from v,:
specifically, we invoke the procedure Shortest_Path with parameters vn and vx and compute a
shortest path

t)n - " g O , g l , . . . , g r - - V l .

Next, using an array 1711... n], record, by invoking the procedure Find_Distance, the distance
from every vertex to va. Finally, the center C of G contains exactly those vertices vi for which
[D[i] - D'[sl[<_ 1. Hence, we have the following result.

THEOREM 8. The center of an indifference graph can be computed in O(n) time once a canonical
ordering ~. of the vertices of G is available, m

A Hamiltonian path in a graph G is a path which containA every vertex of the graph once and
only once. The structure of indifference graphs makes it possible to devise an extremely simple
greedy algorithm to compute a Hamiltonian path. For this purpose we assume that a connected
indifference graph G is given along with a canonical ordering ,~ of its vertices. The details are
spelled out by our next procedure.

PROCEDURE. Hsrniltonian.Path(G);
{Input: a connected indifference graph G with a canonical ordering 4;
Output: a Hsmiltonian path P of G}

0. begin
1. P +-- G;
2. f o r i ,-.-- 1 to n - 1 do
3. add the edge vi~i+x to P;
4. return(P)
5. end; {Hsmiltonian.Path}

24 P.J. LoooEs, S. OLARIU

THEOREM 9. Let G be a connected n-vertex indifference graph with a canonical ordering ,~,.
Procedure Hamiltonian_Path correctly returns a Harr~ltonian path P in O(n) t/me.

PROOF. To address the correctness, note that by Corollary 3.1, vi and vi+l are adjacent, for all
i = 1, 2 , . . . , n - 1. Consequently, the set P of edges returned by the procedure is a path in G.
To see that P is a Hamiltonian path, note that P contains every vertex once.

The complexity is clearly O(n) once the ordering ~ is known. II

It is interesting to note that the above procedure fails to return a Hamiltonian path in an
interval graph which is not an indifference graph. Put differently, with an ordering < . satisfying
(1) (but not (2)), procedure Hamiltonian_Path is not guaranteed to work. To see this, consider
again the graph in Figure 2 with the ordering a <* b <* c < . d < . e <*f. The procedure returns
ab, bc, cd, de, e f which is obviously incorrect since e and f are not even adjacent. (A correct
Hamiltonian path on this graph is ba, ac, ce, ed, dr.)

A matching in a graph is a set of edges with the property that no two of them share s common
endpoint. A matching is mazimum if it is as large as possible. The matching problem is to find
s maximum matching of a given graph G. The literature on matching is extensive. Matching
problems are related to flow problems, covering problems, and scheduling, to name just a few
(the interested reader is referred to [10] where many other applications are summarized).

As it turns out, the canonical ordering of an indifference graph can be used to obtain a very
simple algorithm to compute a maximum matching. The details are as follows.

PROCEDURE. Maximum_Matching(G);
{Input: an indifference graph G with a canonical ordering 4;
Output: a maximum matching M of G}

0. begin
1. M *-- Z;
2. f o r i ~-- 1 to n - 1 etep 2 do
3. i f vi and vi+l are adjacent then
4. add the edge viVi+l to M;
5. return(M)
6. end; {Hamiltonian_Path}

THEOREM 10. Let G be a connected n-vertex indifference graph with a canonical ordering ~..
Procedure Maximum_Matching correctly returns a maximum matching in G in O(n) t/me.

PROOF. To address the correctness, consider a connected component H of G and let

be the restriction of ~ to H. Note that by Corollary 1.1, vj and vj+l are adjacent to all values
of j = i, i + 1 , . . . , t - 1. Therefore, the set MH of edges returned by the procedure is a matching
in H. To see that MH is maximal, note that at most one vertex in H is exposed (i.e., not incident
to an edge in MH). Now the conclusion follows from the observation that a maximum matching
in G is the union of maximum matching in every component of G.

The complexity is clearly O(n), and the proof of Theorem 10 is complete. II

We note that procedure Maximum_Matching fails to return a maximum matching in an interval
graph which is not an indifference graph. To see this, consider the graph in Figure 2 with the
ordering a < . b < . c < . d < . e < . f . Note that this ordering does not satisfy (2). The procedure
returns ab, cd which is clearly not a maximum matching. (A maximum matching is ab, ce, dr.)

REFERENCES

1. F.S. Roberts, G~pA Theorl and I~ Applications to ProMem, o] Society, SIAM Press, Philadelphia, PA,
O~:S).

2. F.S. Roberts, Indifference and serlatlon, An. . N. Y. At6& Sci. 328, 173--182 (1979).
3. M.C. Golumblc, AlgoritAmi¢ Graph Theory asd Perfect Gr~pA*, Academic Press, New York, (1980).

Optimal greedy algorithms 25

4. C.G. I~ld~rkerker and J.C. Boland, Representaticm of s finite graph by s set of intervals on the line, Fz~d.
M . ~ . 51, 4S-64 (1962).

5. P.C. Gilmore and A.J. Hoffman, A characterization of comparability graphs and interval graphs, Chad. 3.
ol M.th. xe, s39-s4s (1964).

6. K~. Booth and G.S. Lueker, Testing for the consecutive ones property, interval graphs, and plansrity testing
using PQ-tree algorlthma, J. Complt. Systems Sei. 13, 335--379 (1976).

7. G.S. Lu*k~ and K.S. Booth, A linear time algorithm for deciding interval graph isomorphism, Journal of
the AGM 26, 183-195 (1979).

8. S. Olarin, An optima] greedy heuristic to color interval graphs, Information Proceuinf Letterl $7, 21-25
(1991).

9. M.M. Syslo, N. Deo and J.S. Kowslik, Discrete Optimization AlloritAm,, Prentice-Hall, (1983).
10. D.R. Luce, Semiorders and the theory of utility discrimin~ticm, Econometrica 24, 178-191 (1956).

	Old Dominion University
	ODU Digital Commons
	1993

	Optimal Greedy Algorithms for Indifference Graphs
	Peter J. Looges
	Stephan Olariu
	Repository Citation
	Original Publication Citation

	PII: 0898-1221(93)90308-I

