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O P T I M A L  G R E E D Y  A L G O R I T H M S  
F O R  I N D I F F E R E N C E  G R A P H S  

PETER J .  LOOGES AND STEPHAN OLARIU t 

Department of Computer Science, Old Dominion University 

Nm-folk, VA 23529-0162, U~.A. 

(Received in re~/aed form October 199t) 

A l m t r a c t - - A  fundamental problem in social sciences and management is understanding and pre- 
dicting decdsiom made by individuals, various groups, ~ the society as a whole. In this context, cme 
important concept is the notion of indiMrence. We characteriR the class of ~ e  graphs, that 
is, graphs which arise in the process of quantifying indifference relatlcmm. In particular, we show that 
these graphs &re characterized by the existence of & special ordering of their vertices. As it turns out, 
this ordering leads naturally to optimal greedy algorRhnm fro" a number ¢~ computational problems, 
includin~ coloring, ~d in~  a shortest path between two vertices, computing & maximum matching, 
the center, and a Hamiltonian path. 

1. INTRODUCTION 

In trying to understand and predict social phenomena, one is confronted with the problem of 
quantifying entities which are not as easy to measure as well-known physical variables, such as 
distance or density occuring in everyday life. It has been recognized that the process of analyzing 
decisions made by various individuals, groups, or by the society as a whole requires the ability 
to reason about such things as preference, agreement, and indi~erence [1]. In the process of 
decision making, for example, administrators have to take into account opinions and viewpoints 
expressed by different social groups or organizations. Similarly, in marketing, one is interested in 
understanding behavior patterns of potential consumers, as expressed by indifference attitudes 
towards comparable products on the market. 

In this work, we propose to investigate the class of indifference graphs that models the no- 
tion of indifference relation arising in social sciences and management. Specifically, a graph 
G = (V, E) is an indi~erence graph [2] if there exists a positive number 6 (measuring "closeness" 
or "indifference") and an assignment of numbers f(u) to the elements of V such that for all 
u,v E V, uv is an edge in G whenever If(u) - f(v)[ _< 6. (To be consistent with [1], we ignore 
loops in indifference graphs, that is, edges of the form uu with u E V.) As it turns out [1], the 
indifference graphs are a subclass of the well-known class of interval graphs that we discuss next. 

Interval graphs are invaluable tools when it comes to modeling real-life situations, especially 
those involving dependencies that are linear in nature. They find applications to archaeology, 
biology, psychology, sociology, management, genetics, and many others. The reader is referred 
to [1] and [3], where many of the above applications are summarized. 

More formally, a graph G = (V, E) is termed an interval graph if there exists a family {Is} 
(1 < i < n) of intervals on the real line such that distinct vertices u, v are adjacent if, and only 
if, the corresponding intervals overlap. Such a family {Is} (1 < i < n) of intervals is comn~nly 
referred to as the interval representation of G. 

The interval graphs have been studied intensely from both the theoretical and algorithmic 
point of view. Early characterizations, in terms of forbidden configurations, appear in [4,5]. 

tTlds author was supported, in part, by the NSF Grant CCR-Sg09996. 
The authors would like to thank Professor Rodin and an anenymous referee for a v~y  thorough review that 
m ~ M  in & bett¢~ l~esen~sfion. 
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16 P . J .  LOOGES, S. OLARIU 

Later, Booth and Lueker [6,7] used PQ-trees to investigate the algorithmic properties of interval 
graphs: they obtain linear-time recognition and isomorphism algorithms. 

The purpose of this work is to investigate algorithmic properties of indifference graphs. We 
first present a new characterization of indifference graphs in terms of a linear order on their sets 
of vertices and show that this new linear order affords us optimal greedy algorithms to solve 
problems such as coloring, finding a shortest path between two vertices, a maximum matching, 
and a Hamiltonian path. The paper is organized as follows. Section 2 presents the basic tools 
for algorithm development in the form of a number of theoretical results; Section 3 proposes 
a greedy recognition algorithm for indifference graphs; finally, Section 4 develops a number of 
greedy algorithms for the computational problems mentioned above. All our greedy algorithms 
are extremely simple and run in optimal time. 

2. BASICS 

All the graphs in this work are finite, with no loops nor multiple edges. In addition to standard 
graph-theoretical terminology compatible with [3], we use some new terms that we are about to 
define. For a vertex x of a graph G, we let d(x) stand for the number of vertices adjacent to z 
(adjacency is assumed to be irrefiexive, no vertex being adjacent to itself). A graph with vertices 
a, b, c, d and edges ab, ac, ad is referred to as the claw (see Figure 1). 

a 

A 
b c d 

Figure 1. The claw. 

Let G - (V, E) be an interval graph and let (Iv - lay, by]) he an interval representation of G; 
here, av and by (av < by) are referred to as the left and right endpoint of the interval Iv. G 
is called a unit interval graph if all the intervals in the representation have unit length. The 
family {Iv}Pep is the interval representation of a proper interval graph ff no interval is properly 
contained in another. Clearly, unit interval graphs are proper interval graphs. Roberts [1] has 
proved the following fundamental result that shows that unit interval graphs, proper interval 
graphs, and indifference graphs are synonyms. 

PROPOSITION 1. See [1]. For a graph G, the following statements are equivalent: 

(i) G is a unit interval graph; 
(ii) G is a proper interval graph; 

(iii) G is an interval graph with no induced claw; 
(iv) G is an indifference graph. II 

We shall rely on the following fundamental results concerning interval graphs. 

PROPOSITION 2. See [5]. A graph G is an/nterval graph if, and only if,, the maximal cliques 
of  G can be linearly ordered in such a way that for every vertex v of  G, the max/ma/cliques 
containing v occur consecutively. II 

PROPOSITION 3. See [3]. In any interval graph, the sum of the sizes of al /mar/real  cliques is 
linear in the size of  the graph. II 

Assume that the maximal cliques of an interval graph G have been enumerated as C1, 
C2, . . . ,  Cm as in Proposition 2. If, for every vertex v of G, we let Iv stand for the set {Ci [ v E Ci}, 
then, by Proposition 2, Iv is an interval. Hence, {Iv}PeP is an interval representation for G. We 
shall refer to this interval representation as maz-cliqee. 

The following result shows that interval graphs are characterized by a special ordering of their 
vertices. This result will he used again and again in the remainder of this work. 
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PROPOSITION 4. See [8]. A graph G = (V, E ) / s  an interva/graph i t  and only if, there exists 
a linear order < .  on Y such that for every choice o f  vertices u , v , w  with u ~ . v  ~ . w ,  uw E E 
implies uv E E.  | 

For an interval graph G the ordering 

(1) 

of its vertices with the property specified in Proposition 4 will be referred to as canonical. 
Our first result is a characterization of indifference graphs in the spirit of the result in [8]. More 

precisely, we show that  just  like the interval graphs, the indifference graphs are also characterized 
by an ordering of their vertices. This linear order not only satisfies (1), but, in fact, satisfies a 
stronger property which lays the basis for all our optimal greedy algorithms. 

THEOREM 1. A graph G = (V, E)  is an indifference graph if, and only if, there exists a linear 
order 4 on V such that for every choice of  vertices u, v, w, 

u 4 v 4 w, and uw E E implies uv, vw E E.  (2) 

PROOF. First, let 4 be a linear order on V" with the properties specified in (2). In particular, 4 
satisfies the condition specified in Proposition 4, and so G is an interval graph. 

By Proposition 1, to prove that  G is an indifference graph, we need show that  G contains no 
induced claw. For the sake of the argument, suppose that  G contains an induced claw with vertices 
a, b, c, d and edges ab, ac, ad. We propose to show that  this assumption leads to a contradiction. 

To begin, note that  vertex a cannot precede b, c, d in 4:  otherwise, (2) would imply that  b, c, d 
are pairwise adjacent, a contradiction. 

Similarly, vertex a cannot follow b, c, d in the linear order: otherwise, let z stand for the vertex 
among b, c, d that  comes first in the order 4.  Since za E E,  it follows that  z is adjacent to the 
remaining two, contradicting that  {a, b, c, d} induces a claw. 

Now the symmetry of the claw allows us to assume, without loss of generality, that  b precedes 
a, c, d and that  d follows a, b, c in 4.  But now, the ordering b 4 c 4 a implies bc E E; similarly, 
the ordering a 4 c 4 d implies that  cd E E. Either case leads to a contradiction. 

Conversely, let G be an indifference graph. In particular, G is an interval graph. For every 
vertex z of G we let Ix - [a=, b=] stand for the corresponding interval. Define a linear order 4 
on V by setting 

u 4 v whenever (au < av) or [(au = av) and (bu _~ b~)]. (3) 

Let u , v , w  he arbitrary vertices in G satisfying u 4 v 4 w and assume that  uw E E: that  is, 
the intervals Iu and Ito overlap. Now the assumption that  u 4 v 4 w, together with (3), implies 
that  

a .  < < aw. 

In case au -- at0, the conclusion is immediate; we shall therefore assume that  

au ¢ a w .  

Since lu and lw overlap, it must be the case that 

aw < b~. 

But now, av _~ aw guarantees that  av _~ bu, and so uv E E. 
Next, since Iu cannot properly contain I~, au _~ a~ guarantees that  bu _~ b~. It follows that  

aw ~ by, implying that  vw E E.  This completes the proof of Theorem 1. | 

Theorem 1 implies the following results. 

COROLLARY 1.1. Let G -- (1/, E)  be an indifference graph and let 4 be a linear order on the 
vertex-set of  G satisfying (2). For every choice o f  subscripts i , j  with (1 _~ i < j _~ n) and 
v~vj E E,  the vertices vi, ~ + 1 , . . . ,  vj are pairwise adjacent. 
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PROOF. To see this, let vp and vq be arbitrary vertices with i _< p < q _< j .  Now the fact that  vi 
and vj are adjacent, together with (2), imply that  vp and vj are adjacent, and so, by (2) again, 
vp and vf must be adjacent, as claimed. II 

COROLLARY 1.2. An interval graph is an indifference graph i f  and only f f  a canonical ordering 
<* of  the vertices of  G sat/sties (2). 

PROOF. First, if a canonical ordering < .  of G satisfies (2), then by Theorem I G is an indifference 
graph. Conversely, if G is an indifference graph, then by Theorem 1 we find an ordering ~ of its 
vertices satisfying (2). But now, <~ also satisfies (1) and the conclusion follows. | 

Let G be an indifference graph; just  as in the case of interval graphs, an ordering ~ of the 
vertices of G satisfying (2) is referred to as canonical. 

To obtain a characterization of indifference graphs leading to a fast recognition algorithm, 
consider an interval graph G with a canonical ordering < . .  For every i (1 _< i <_ n) define 
First[i] = min( i ,k} such that  vsvk E E; similarly, Last[i] = max{/,k} such that  vsvh E E. 

We are now in a position to prove a result that  is central to our recognition algorithm for 
indifference graphs. 

THEOREM 2. Let G be an interva/graph with a canonical ordering < . .  G is an indifference 
graph if, and only if,, for every v, (1 < i < n), d(vs) = Last[t~ - First[i]. 

PROOF. To begin, let G be an indifference graph. We proceed by induction on the number 
of vertices in G. If G is d~sconnected, then the conclusion follows by the induction hypothesis 
applied to every component of G separately. 

We may, therefore, assume that  G is connected. By Corollary 1.2, we may assume with- 
out loss of generality that  < .  satisfies (2); it follows, in particular, that  every vertex vs with 
(2 < i < n -  1) is adjacent to all the vertices t)First[i] , t )F i rs t [S]+l , . . .  , tlS--1, V)S.I.1,... , VLsst[S], and so 
d(vs) = Last[,~ - First[/]. 

Further, if i = 1, then First[vs] = 1 and vs is adjacent to VS+l,...,vLut[S], confirming that  
d(vs) = Last[:] - First[/]. Finally, if i = n, then Lastly,] = n, and vs is adjacent to VFi~,t[,1, 
t~ir . t[ /]+l, . . . ,  vs-1, and so d(vs) = Last[/] - First[,~. 

Conversely, assume that  G contains an induced claw with vertices a, b, c, d and edges ab, ac, ad. 
Symmetry allows us to assume that  b < .  c < .  d. But now, in case c < .  a, d(b) < Last[b] - First[b] 
since b is not adjacent to c and c < .  Last[b]; in case a < .  c, d(b) < Last[b] - First[b] since in this 
case d is not adjacent to c and First[d 1 <* c. This completes the proof of Theorem 2. II 

The following result identifies a property of chordless paths joining vertices of an indifference 
graph G. 

THEOREM 3. Let G be an indifference graph with a canonical ordering ~., and let z, y (z ~ y) 
be distinct vertices of  G. I f  z = Ul, u2,. .. , Up = y is an arbitrary chordless path joining z and y, 
then t'or all i (1 _< i <_ p - 1), u~ ~ us + 1. 

PROOF. First, note that  
uj < y for all j - 1, 2 , . . . , p  - 1. (4) 

[Suppose not; let t be the first subscript for which y ~ ut. But now, (2) guarantees that  u t - i  
and y are adjacent, contradicting that  the path is chordless.] 

Next, if the statement is false, then we find a subscript j ( j  < p) such that  

Uj+ 1 ~ Uj .  

Now (4) implies that  uj+1 ~ uj ~ y. Observe that  

uj ~ up- l ,  

for otherwise condition (2) guarantees that  uj and up are adjacent, a contradiction. 
Let k be the first subscript larger than j + I for which 

uj ~ uk. 
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Since uj+l ~ uj, it must be the case that k >_ j + 2. By our choice of k, u t - 1  ~ uj < ut .  
However, now (2) implies that uj and uk are adjacent, a contradiction. This completes the proof 
of Theorem 3. | 

COROLLARY 3.1. Let G be a connected indifference graph with a canonical ordering ~.. For all 
subscripts i (2 < i < n - 1), First[/] < i < Last[,]. 

PROOF. Let i be an arbitrary subscript with (2 < i < n - 1). Since G is connected, there exists 
a path in G joining el and vi. Let 

V 1 -~ Z I , X 2 , . . . , X  t - ~  t) i 

be such a path. By taking t as small as possible, we ensure that the path is chordleas. By 
Theorem 3, it follows that, in particular, vt-1 • vt = vl, and so First[;] < i. 

The proof that i < Last[;~ follows by a mirror argument which is omitted. II 

3. G R E E D Y  A L G O R I T H M S  I: R E C O G N I Z I N G  I N D I F F E R E N C E  G R A P H S  

Let G = (It', E) with IV[ = n and [E[ = m be an arbitrary graph. The following greedy 
algorithm determines whether or not G is an indifference graph. 

ALGORITHM. Recognize(G); 

STEP 1. Invoke the interval graph recognition algorithm of Booth and Lueker [6], running 
in O(n + m) time. In case G is an interval graph, the algorithm also returns an ordering 
C1,C2,... ,Cm of the maximal cliques of G as in Proposition 2. 

STEP 2. Using the adjacency information of G, together with the ordering C1, C2,. . . ,  Cm con- 
struct a max-clique interval representation for G. At this stage, we use two arrays B[1 . . .  m] and 
H[1 . . .  n], initialized to 0: for every vertex u of G, H(u) contAin A the largest i for which u E Ci; 
B is used as a set of buckets: specifically, B[j] contains (in a linked list) all the vertices u of G for 
which j = min{k [ u E Ct }. The details of this step are spelled out by the following procedure. 

PROCEDURE. Compute_Ordering(G); 
(Input: an interval graph G - (V,E) and an ordering CI,C~,.. .  ,Cm of its maximal cliques; 

Output: an ordering of the vertices of G as in Proposition 4.} 
O. begin  
I. f o r  j *-- 1 to  m do 
2. f o r  all u in Cj do begin  
3. i f  H(u) = 0 then 
4. add u to bucket B[j]; (think of BL/] as a linked list} 
5. H(u)  . -  j; 
6. end; (for} 
7. sort each bucket B[j] in ascending order of H(v); 
8. return(B) 
9. end; (Compute_Ordering} 

It is easy to confirm (see [8], for example) that the ordering of the vertices of G returned 
in line 8 of Compute_Order is a canonical ordering < .  for the interval graph G. Furthermore, 
Proposition 3 guarantees that the overall running time of Step 2 is bounded by O(m + n). 

STEP 3. Scanning the adjacency list of every vertex vi of G once, we compute First[s~ and Last[s I 
for every i (1 < i < n). 

STEP 4. Finally, for every i (1 < i < n) we check whether d(v~) - Last[~-First[s~. By Theorem 2, 
G is an indifference graph if, and only if, this equality holds for i (1 < i < n). The details are 
expressed as follows. 
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PROCEDURE. Test_Indifference(G); 
{Input: a graph G along with an ordering <, of the vertices as in (4); 
Output: "yes" or "no" depending on whether or not G is an indifference graph} 0. begin 

1. f o r  i ~ 1 t o  n do 
2. compute Last[/] and First[s~; 
3. f o r  i *--- 1 t o  n do 
4. i f  Las t [ i ] -  First[s~ ~ d(vi) 1:hen 
5. return( "no"); 
6. return( "yes" ) 
7. end; {Test_Indifference} 

The following result summarizes our findings in this section. 

THEOREM 4. With a graph G with n vertices and m edges as input, Test_Indifference correctly 
decides in O(n + m) whether G is an indifference graph. 

PROOF. The correctness follows immediately from Theorem 2. To address the time complexity, 
it is helpful to imagine that  after the ordering < .  computed in Step 2 is available, the adjacency 
structure of G is updated in O(n-F m) time to inform every vertex of its position in the canonical 
ordering. Now computing Last[/] and First[s1 is easy: for every i, scan the adjacency list of vi 
once retaining the largest and smallest subscript. Clearly, this takes O(d(v~)). Consequently, the 
overall complexity is bounded by O(n + m), as claimed. 1 

It is important to note that  should G turn out to be an indifference graph, the ordering (1) 
satisfies condition (2) as well. 

4. G R E E D Y  A L G O R I T H M S  II: V A R I O U S  C O M P U T A T I O N A L  P R O B L E M S  

Let G = (V, E) be an arbitrary indifference graph with an ordering vl < v2 < . . .  < vn 
satisfying (2). We are now in a position to show how this linear order can be exploited for the 
purpose of designing very simple, optimal, greedy algorithms to solve a number of computational 
problems. 

First, we present a coloring algorithm for indifference graphs. The only data  structure used is a 
stack; initially, this stack contains the colors 1 , 2 , . . . ,  n in reverse order, that is with 1 at the top 
of the stack. The idea of the algorithm is straightforward: assign vertex Vl color 1 (equivalently, 
vl is colored by popping the stack). 

After vi-1 (i >_ 2) has been colored, we proceed to color vi as follows. Consider the set of colors 
assigned to the vertices 

VFirst[i- 1], t~Firstli- 1]+ 1 , ' • •, t~First[i]- 1. 
Note that  by Corollary 1.1, all these colors must be distinct. Furthermore, none of these vertices 
are adjacent to vi, and so we can reuse any of their colors on vi. With this observation in mind, 
we first release these colors by pushing them onto the stack and then proceed to color vi by 
simply popping the stack (i.e., assigning vi the color at the top of the stack). The details are 
spelled out by the following procedure. 

PROCEDURE. Color(G); 
{Input: an indifference graph G, along with a canonical ordering <; 
Output: an optimum coloring of G;} 

0. begin 
I. color(vl) ~ pop(stack); 
2. :for i ~-- 2 I;o n do  b e g i n  
3. f o r  j ~ F i r s t [ / -  I] t o  First[s I do 
4. push(color(v j)) ;  
5. color(vi) *- pop(stack) 
6. and {for} 
7. end; {Color} 
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THEOREM 5. With an indifference graph G = (V, E) with n vertices and m edges as input, 
procedure Color correctly returns an opthna/coloring of G in O(n) time. 

PROOF. To justify the correctness, we need to show that  procedure Color returns a proper 
coloring of G and that  this coloring uses as few colors as possible. First, we claim that  

no vertex vj (i _< j )  is adjacent to one of the vertices (5) 
vk such that  F i r s t [ i -  1] </~ < First[/] - 1. 

[To see that  this is the case, note that  if some vertex vj with i _< j is adjacent to a vertex vk with 
F i r s t [ i -  1] </~ < First[/] - 1, then by (2) it must be that  vi and vk are adjacent, contradicting 
tha t /c  < First[q.] 

Now (5) implies that  when a color assignment takes place in line 5, vertex vi and the vertices 
that  have received the same color prior to vi are not adjacent. Thus, procedure Color produces 
a proper coloring. 

To argue about the optimality of this coloring, we only need show that  if procedure Color uses 
a total of/c colors, then G contains/c pairwise adjacent vertices (i.e., no fewer than/c  colors can 
possibly be used to properly color G). Consider the first vertex, say v~, that  received color/~. 
Observe that  the way we initialized the stack, along with line 5, guarantees that  all the first ]c-  1 
colors 1 ,2 , . . .  ,k - 1 were in use when vl was about to be colored. Now (5) implies that  these 
colors must have been used on the vertices vk with First[/] </c  < i - 1. But now, Corollary 1.1 
guarantees that  G contains a set of k pairwise adjacent vertices, namely ~Fimt[i] ,  VFirs t [ i ]÷l ,  • • • ,  Vi. 

This shows that  the coloring produced is optimal. 
To address the complexity, we note that  by (5), the loop in lines 3-4 takes at most O(n) time. 

Consequently, the running time of the procedure is bounded by O(n), as claimed. | 

Next, we propose a simple greedy algorithm that  computes a shortest path between two given 
(but otherwise arbitrary) vertices of a connected indifference graph. 

PROCEDURE. Shortest_Path(x, y); 
{Input: a connected indifference graph G with a canonical ordering <E and two vertices z <E y; 

Output:  a shortest path z = Z l ,Z2 , . . .  ,zt  = y joining z and y} 
0. beg in  
1. t ~ l ;  
2. z: ~-- z; 
3. whi le  zt and y are not adjacent do beg in  
4. t ~ t + l ;  
5. Z t + "  1~Lut [z ,_ l l ;  
6. end; {while} 
7. t4---tq-1; 
8. x t  *" y; 

9. return(zl ,  z 2 , . . . ,  zt) 
10. end; {Shortest_Path} 

THEOREM 6. Let G be a connected indifference graph with n vertices and m edges, and let z 
and y, z < y be two vertices of G. Procedure Shortest_Path correctly constructs in O(n) time a 
shortest path between z and y. 

PROOF. The complexity being obvious, we only need address the correctness of this procedure. 
Let z -- Zl, z2, . . . ,  zt - y be the path returned by Shortest_Path(z, y). Suppose that  there exists 
a path z - Zl ,Z2, . . .  ,z¢ - y joining z and y such that  q < t. 

This, however, implies that  for a suitable choice of subscripts i , j  (2 < i < t -  1; 2 < i <_ q -  1) 

z ~ z j  < ~ z j - i - l ~ z i + l .  

Note that  (2) in Theorem 1 guarantees that  zj and zi+l are adjacent. But now we contradict 
the choice of Zj+l in line 5 of the procedure. With this, the proof of Theorem 6 is complete. | 

CN41~ 2S:7-C 
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It is interesting to observe that the greedy procedure above fails to work for interval graphs 
which are not indifference graphs. Consider the graph H featured in Figure 2. The ordering < ,  
of the vertices of H specified in Proposition 4 is a < ,  b < ,  c < ,  d < ,  e < ,  f .  Now with vertices 
a and f as input parameters. Shortest_Path will return a, c, e, d, f which is not the shortest path 
between a and f .  

a c e 

b d f 

Figure  2. A n  in terva l  g r a p h  w i t h  a canonica l  o rder ing  a g *  b ~*  c ~ *  d ~*  e ~*  jr. 

The notion of a center in a graph is motivated by a large class of problems collectively referred 
to as facility-location problems. Here, one is interested in identifying a subset of the vertices of 
the graph at which certain facilities (such as police stations, shopping centers, hospitals, schools, 
etc.) are to be located in such a way that for every vertex in the graph, the distance to the 
nearest facility is minimized. 

More formally, given a connected graph G = (V, E), the distance d(u, v) between vertices u 
and v is the smallest number of edges in a path joining u and v. The diameter and the radius of 
G are defined as 

diam(G) = max d(u,v) 
u , ~ E V  

r(G) = min max d(u, v). 
uEV vEV 

Finally, the center of G is defined as 

C(G) = {u E V [ maxd(u,v) = r(G)). 
vEV 

It is both well-known and easy to see that the center of an arbitrary graph G - (V, E) with n 
vertices and m edges can be computed by the following brute-force approach: perform a breadth- 
first search of G starting, in turn, at every vertex of G. Clearly, this procedure t&kes O(mn) 
time. 

Theorems 2 and 5 seem to imply that in a connected indifference graph, the diameter is realized 
by vertices Vl and vn. This is indeed the case as shown by the following result. 

COROLLARY 6.1. /n a connected indifference graph G with a canonical order/ng ~, diam(G) - 

PROOF. To settle this claim, we prove that 

for all vertices z ,y  with z ~ y, d(z,y) _< d(vl,vn). 

Let vl - UJl,lO2,...,Uyr " Vn be the shortest path between vx and vn. Choose the largest i 
such that z ~ wi; similarly, find the smallest j such that toj ~ y. 

Note that by (2), 
Z ,  t / ) i ÷ l ,  t / ) i . l . 2 ,  . . . , t 0 j _  I ,  y 

is a path in G joining z and y. Since this path contains exactly j - i edges, it follows that 

d(z, y) ~ j - i ~ r - 1 = d(vx, vn). 

This completes the proof of Corollary 6.1. | 



Optlm~ ~ y  ~lsorith,-- 23 

Let G be an indifference graph and let 

v ,  = wo, wx,...,w, = v ,  ( 8 )  

be the path returned by procedure Shortest.Path invoked with parameters vl and vn. For the 
purpose of computing the center of G, we use an array D [ I . . .  n] that stores, for all i (I < i < n) 
the shortest distance from vl to vi. This is accomplished by the following simple procedure. 

PROCEDURE. Find_Distance(G); 
{Input: an indifference graph G = (V, E) with iv i  = ,  and IEI = m, and a path as in (6); 
Output: an array D[1. . .  n] such that for all i, D[i] = d(vl, vi)} 

0. begin 
1. f o r  i ~ 2 to  n do 
2. = wy (0 _ j < r) then 
3. o[,1 .-- j 
4. e l s e  begin 
5. find the largest subscript j for which wj ,~ vi; 
S. D[q . -  j + 1 
7. end 
8. return(D) 
9. end; {Find_Distance} 

THEOREM 7. When procedure Find_Distance terminates, for every i (1 < i < n), Dis 1 - -  d(vl, V i ) .  

Furthermore, the running time is bounded by O(n). 

PROOF. The correctness follows easily by a trivial inductive argument. To argue for the com- 
plexity, we note that by scanning the vertices left to right, we maintain the largest j for which 
t0j is the last vertex on the path (P) encountered thus far. It follows that the overall complexity 
is O(n), as claimed, m 

Once the array D is available, we only need repeat the above procedure starting from v,: 
specifically, we invoke the procedure Shortest_Path with parameters vn and vx and compute a 
shortest path 

t )n  - "  g O , g l , .  . .  , g r  - -  V l .  

Next, using an array 1711... n], record, by invoking the procedure Find_Distance, the distance 
from every vertex to va. Finally, the center C of G contains exactly those vertices vi for which 
[D[i] - D'[sl[ <_ 1. Hence, we have the following result. 

THEOREM 8. The center of an indifference graph can be computed in O(n) time once a canonical 
ordering ~. of  the vertices of  G is available, m 

A Hamiltonian path in a graph G is a path which containA every vertex of the graph once and 
only once. The structure of indifference graphs makes it possible to devise an extremely simple 
greedy algorithm to compute a Hamiltonian path. For this purpose we assume that a connected 
indifference graph G is given along with a canonical ordering ,~ of its vertices. The details are 
spelled out by our next procedure. 

PROCEDURE. Hsrniltonian.Path(G); 
{Input: a connected indifference graph G with a canonical ordering 4;  
Output: a Hsmiltonian path P of G} 

0. begin 
1. P +-- G; 
2. f o r  i ,-.-- 1 to  n - 1 do 
3. add the edge vi~i+x to P; 
4. return(P) 
5. end; {Hsmiltonian.Path} 
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THEOREM 9. Let G be a connected n-vertex indifference graph with a canonical ordering ,~,. 
Procedure Hamiltonian_Path correctly returns a Harr~ltonian path P in O(n ) t/me. 

PROOF. To address the correctness, note that by Corollary 3.1, vi and vi+l are adjacent, for all 
i = 1, 2 , . . . ,  n - 1. Consequently, the set P of edges returned by the procedure is a path in G. 
To see that P is a Hamiltonian path, note that P contains every vertex once. 

The complexity is clearly O(n) once the ordering ~ is known. II 

It is interesting to note that the above procedure fails to return a Hamiltonian path in an 
interval graph which is not an indifference graph. Put differently, with an ordering < .  satisfying 
(1) (but not (2)), procedure Hamiltonian_Path is not guaranteed to work. To see this, consider 
again the graph in Figure 2 with the ordering a <* b <* c < .  d < .  e <*f.  The procedure returns 
ab, bc, cd, de, e f  which is obviously incorrect since e and f are not even adjacent. (A correct 
Hamiltonian path on this graph is ba, ac, ce, ed, dr.) 

A matching in a graph is a set of edges with the property that no two of them share s common 
endpoint. A matching is mazimum if it is as large as possible. The matching problem is to find 
s maximum matching of a given graph G. The literature on matching is extensive. Matching 
problems are related to flow problems, covering problems, and scheduling, to name just a few 
(the interested reader is referred to [10] where many other applications are summarized). 

As it turns out, the canonical ordering of an indifference graph can be used to obtain a very 
simple algorithm to compute a maximum matching. The details are as follows. 

PROCEDURE. Maximum_Matching(G); 
{Input: an indifference graph G with a canonical ordering 4; 
Output: a maximum matching M of G} 

0. begin 
1. M *-- Z; 
2. f o r  i ~-- 1 to  n -  1 etep 2 do 
3. i f  vi and vi+l are adjacent then 
4. add the edge viVi+l to M; 
5. return(M) 
6. end; {Hamiltonian_Path} 

THEOREM 10. Let G be a connected n-vertex indifference graph with a canonical ordering ~.. 
Procedure Maximum_Matching correctly returns a maximum matching in G in O(n) t/me. 

PROOF. To address the correctness, consider a connected component H of G and let 

be the restriction of ~ to H. Note that by Corollary 1.1, vj and vj+l are adjacent to all values 
of j = i, i + 1 , . . . ,  t -  1. Therefore, the set MH of edges returned by the procedure is a matching 
in H. To see that MH is maximal, note that at most one vertex in H is exposed (i.e., not incident 
to an edge in MH). Now the conclusion follows from the observation that a maximum matching 
in G is the union of maximum matching in every component of G. 

The complexity is clearly O(n), and the proof of Theorem 10 is complete. II 

We note that procedure Maximum_Matching fails to return a maximum matching in an interval 
graph which is not an indifference graph. To see this, consider the graph in Figure 2 with the 
ordering a < .  b < .  c < .  d < .  e < .  f .  Note that this ordering does not satisfy (2). The procedure 
returns ab, cd which is clearly not a maximum matching. (A maximum matching is ab, ce, dr.) 
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