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ABSTRACT 

 

THE ROLE OF BACKREEF SOUNDSCAPES AND THEIR SPATIAL 

STTRUCTURE FOR RECRUITMENT OF TROPICAL MARINE LARVAE 

 

Emily R. Anderson 

Old Dominion University, 2021 

Advisor: Dr. Mark J. Butler 

 

 

Underwater sound is a cue used by many marine larvae to orient to coastal habitats 

including backreef, sponge-dominated hardbottom habitat in the Florida Keys (Florida, USA) – a 

particularly “noisy” coastal habitat.  However, the distance over which acoustic cues are 

attractive to settlement-stage larvae - is generally unknown. I examined this phenomenon in a 

region of the Florida Keys where mass sponge die-offs have diminished both underwater 

soundscapes and larval settlement. The absence of pronounced hardbottom-associated sound 

over such a large area allowed me to experimentally test in situ the response of fish and 

invertebrate larvae to broadcasted sounds at different distances from their source. I first 

measured sound recording from healthy hardbottom habitat at seven distances from an 

underwater speaker to determine the maximum range of the signal. Based on those results, larval 

collectors were then deployed at 10, 100, 500, and 1000 m from speakers broadcasting sounds 

recorded at either degraded or healthy hardbottom sites for five consecutive nights during each of 

three new and full moon periods in summer/fall 2019. Larval settlement onto those collectors 

was affected by lunar phase and soundscape type, but the effect of distance on larval settlement 

varied among species and, in most cases, the effect was small and not likely to be ecologically 



 
 

significant. The absence of a strong larval settlement response to a sound cue lies in contrast to 

results from other studies. I hypothesize that the small (<500 m) radius of the broadcasted 

soundscapes may have limited the magnitude of the larval response to locally available larvae 

and because the experiment within a large, relatively quiet seascape where local larval 

abundance may have been low. If so, then planktonic larvae may require a series of acoustic 

“sign-posts”, perhaps in combination with other cues (e.g., chemical), to successfully orient to 

distant nursery habitats. Although habitat restoration efforts may be able to restore healthy 

soundscapes, the typically small size and number of restoration sites may limit the range of the 

acoustic cue and larval attraction to restored habitats.   
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Is Power of signal 

IN Power of background noise 
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INTRODUCTION 

 

Sound is an integral part of the natural landscape. Animals produce sounds for defensive, 

agonistic, and breeding purposes, among others. These sounds are in turn, a source of important 

biological information for other animals. For example, frogs and toads use calls to advertise for 

mates (Gerhardt 1994), birds produce courtship songs and calls to defend their territory or raise 

alarms (Catchpole and Slater 1995, Cresswell 1994), and bats use ultrasonic clicks for 

echolocation (Simmons et al. 1979).  

The combination of sounds produced by physical (e.g., waves, wind), biological (e.g., 

fish, snapping shrimp), and anthropogenic (e.g., ships, drilling) sources emanating from the 

landscape is known as the “soundscape” (Pijanowski et al. 2011a, 2011b). Different habitats 

have unique acoustic signatures (McWilliam and Hawkins 2013, Butler et al. 2016) that can vary 

with time of day (Cato et al. 1978, Radford et al. 2010), temperature (Kaplan et al. 2017), and 

lunar cycle (Staaterman et al. 2014). Soundscapes reflect the biological assemblage (Kaplan et al. 

2015) and can indicate habitat quality. For example, Piercy et al. (2014) found that sound level 

decreased on degraded coral reefs and Butler et al. (2016) found that degraded hardbottom 

habitats were quieter than healthy, sponge-rich hardbottom.   

In the marine world, sound travels faster and farther than in air (~1500 m/s vs ~340 m/s; 

Urick 1983).  Sound speed increases with increasing pressure, temperature, and salinity and 

sound propagation can be altered by some physical factors such as substrate type and sea surface 

state (Urick 1983). Sound waves are comprised of two components: particle motion and 

pressure. Particle motion is the back-and-forth motion of the particles of the medium and is 

dominant within 1-2 wavelengths from a source; this is called the acoustic nearfield. Further 
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from the source, in the acoustic farfield, particle motion decays rapidly and the variation in 

pressure caused by the compression and expansion of the medium is the dominant component of 

sound. Particle motion is inherently directional; the particles move back-and-forth in the same 

direction that the wave is traveling, whereas pressure is not associated with direction 

(Montgomery et al. 2006) though directionality can be determined with multi-sensor arrays 

(Aarabi 2003) or organic arrays like ears (Joris and van der Heijden 2019). Thus, sound can 

transmit information quickly, directionally, and largely unaffected by many environmental 

factors (i.e., currents, light levels) that can alter other forms of information transmission such as 

vision or olfaction (Tyack 1998).  

SOUND PRODUCTION AND PERCEPTION IN THE MARINE ENVIRONMENT 

Given that sound is an effective mechanism for transferring information in the marine 

environment many marine animals have evolved mechanisms of producing and detecting sound. 

Marine mammals, fishes, and invertebrates all contribute to the underwater biophony. Whales 

have a large repertoire of communicative calls (McCauley et al. 2000) and toothed whales and 

porpoises use echolocation for detecting prey (Wood and Evans 1980, Miller et al. 2004), but 

their well-known production of sounds comprise only a small part of underwater soundscapes. 

Most of the biological components of underwater soundscapes are produced by fishes 

(McCauley and Cato 2000, Locascio and Mann 2008, Tricas and Boyle 2014) and invertebrates 

(Johnson et al. 1947, Everest et al. 1948, Lillis et al. 2014). Soniferous fishes (e.g., grouper 

[Serranidae], grunts [Haemulidae], toadfish [Batrachoididae]), produce a range of vocalizations 

such as whistles, booms, growls, and drums (Gray and Winn 1961, Lobel 1992, Mann 1998, 

Nelson et al. 2011). These vocalizations are associated with courtship or agonistic interactions 
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(Mann 1998, Ladich 2004, Schärer et al. 2014) and are produced by various mechanisms such as 

stridulation of the jaw or contraction of muscles attached to the swim-bladder (Kasumyan 2008). 

The popcorn-like crackle that dominates many marine soundscapes is produced by snapping 

shrimp (Everest 1948, Johnson et al. 1947, Au and Banks 1998, Lillis et al. 2014, Butler et al. 

2016) that create cavitation bubbles with their claws to produce their iconic snap (Versluis 

2000). Stomatopods (i.e., mantis shrimps) also create a popping sound with their claws by 

cavitation (Hazlett and Winn 1962) and can produce a low rumble by vibrating their bodies 

(Staaterman et al. 2011). Spiny lobsters produce a distinctive rasping sound by rubbing the 

plectrum, an extension at the base of the long second antennae, against a “file” under each eye 

(Patek 2001, 2002) as a defensive warning (Meyer-Rochow & Penrose 1976, Bouwma & 

Herrnkind 2009, Staaterman et al. 2010). 

The mechanisms of hearing in adult fishes are fairly well understood and although there 

is substantial variation among species, they share the same basic structures (Popper and Coombs 

1980, Popper & Fay 2011). The basic fish ear includes three semicircular canals with associated 

sensory epithelia and three otolith organs that primarily detect the particle motion component of 

a sound field. In a sound field, otoliths essentially act as a differential density accelerometer. The 

fish, which is approximately the same density as the water, moves at the same amplitude and 

phase as the water while the otolith, which is denser than the fish and therefore has more inertia, 

moves with a different amplitude and phase than the rest of the body. Sensory bundles attached 

to the otolith detect the difference and respond as in other vertebrate ears (Popper and Coombs 

1980, Popper and Fay 1999, 2011, Ladich 2004). Many fish species also have specializations that 

link the swim bladder, a gas inclusion inside the fish that vibrates in response to sound pressure, 

to the inner ear which allows the fish to detect the pressure component of the sound field (Popper 
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and Fay 1999, Popper and Fay 2011, Ladich 2004). Fish hearing tends to be most sensitive in 

lower frequencies peaking under 1-5kHz (Popper and Fay 1993, Ladich and Fay 2013, Nedelec 

et al. 2016) and these same mechanisms and sensitivity likely extend to pre-settlement larval fish 

stages (Montgomery et al. 2006).  

In contrast to fishes, far less research has been devoted to sensory physiology and hearing 

mechanisms of invertebrates. In crustaceans, small mechanoreceptor hair cells (20µm-2000µm) 

cover the cuticle and may respond to certain frequencies based on the cell length. Statocysts in 

decapod crustaceans may have a similar function to the fish otolith (Popper et al. 2001). The 

statocyst contains a statolith, a small calcareous particle, surrounded by a gelatinous fluid and in 

contact with sensory hair cells that detect motion of the statolith (Popper et al. 2001). There is 

limited information about these structures in the early life-stages of crustaceans and how they 

may contribute to sound perception (Montgomery et al. 2006). For example, Sekiguchi and 

Terazawa (1997) did not find sensory hairs in the statocyst of spiny lobster (Jasus edwardsii) 

postlarvae yet they respond to sound (Jeffs et al. 2005, Stanley et al. 2015, Hinojosa et al. 2016). 

Few studies have examined the hearing sensitivity of crustaceans. Behavioral studies of some 

crustacean species suggest sensitivity in the range of 5-400Hz (Goodall et al. 1990, Roberts et al. 

2016), whereas electophysiological analyses revealed that a Panopeus crab and a Palaemon 

prawn were sensitive to sound in the range of 75-1600Hz (Hughes et al. 2014) and 100-3000Hz 

(Lovell et al. 2005), respectively. There is little published research on sound perception in non-

arthropod invertebrates. Squid have statocysts and appear to be sensitive to sound in the same 

range as fish (Mooney et al. 2010). Larvae of some sessile invertebrates detect and respond to 

sound, though it is not understood how they detect sound (e.g., oysters: Eggleston et al. 2013, 
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Lillis et al. 2013; mussels: Wilkens et al. 2012; corals: Vermeij et al. 2010, Lillis et al. 2016, 

Lillis et al. 2018). 

SOUND AS A SETTLEMENT CUE 

Almost all reef-associated fish and benthic invertebrates have a pelagic larval stage 

(Bradbury and Snelgrove 2001) and most are active swimmers, meaning they do not rely solely 

on the currents to disperse (Kingsford et al. 2002, Leis 2006, Fiksen et al 2007). But the pelagic 

larvae of coastal species must locate suitable settlement habitat from afar (Pineda et al 2007, 

Cowen et al. 2007). Given the hearing capacity of larvae (Montgomery et al. 2006), and the fact 

that underwater sound propagates long distances (Urick 1983), sound is one of the most likely 

long-distance cues used by larvae for orientation to coastal habitats (Kingsford et al. 2002, 

Rogers and Cox 1988, Stobutzki and Bellwood 1998, Leis et al. 1996, Montgomery et al. 2006). 

Although the mechanisms that allow larvae to detect underwater sound are not completely 

understood, a number of experiments have demonstrated that fish and invertebrate larvae can 

perceive and use auditory information.  

Fishes: Stobutzki & Bellwood (1998) were one of the first to provide evidence that larval 

fish actively swim towards reefs using sound as a potential cue. Multiple experiments since then 

have demonstrated that sound may be an attractive cue for settlement-stage fishes. Light traps 

attached to speakers broadcasting coral reef soundscapes collected more reef fish larvae and of 

greater diversity than silent light traps (Tolimieri et al. 2000, Leis et al. 2003, Simpson et al. 

2004, Simpson et al. 2008) or light traps broadcasting degraded reef soundscapes (Gordon et al. 

2018). Artificial patch reefs in open sandy habitats exposed to healthy coral-reef soundscapes 

also attract greater settlement and diversity than patches without broadcasted sound (Simpson et 
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al. 2005) or patches exposed to degraded habitat soundscapes (Gordon et al. 2018). Additionally, 

Simpson et al. (2005, 2008) found that many coral reef fish genera prefer the high frequency 

component of reef soundscapes (570-2000 Hz), generally produced by invertebrates, over the 

low frequency components (<570 Hz), produced by fish. Binary choice chambers have also been 

used to demonstrate directional movement for several fish species, indicating that fish larvae 

perceive sound and use it as a navigational cue (Tolimieri et al. 2004, Leis & Locket 2005, 

Parmentier et al. 2015). Indeed, numerous fish groups are sensitive to auditory settlement cues 

(e.g., Acanthuridae, Apogonidae, Balistidae, Blenniidae, Chaetodontidae, Gobiidae, 

Holocentridae, Lethrinidae, Monacanthidae, Mullidae, Nemipteridae, Pomacentridae, 

Pseudochromidae, Sphyraenidae, Sygnathidae, Thrichonotidae).  

Despite the large number of behavioral studies, fewer investigations have examined the 

physiological mechanisms associated with larval fish sound detection. Wright et al. (2005, 2008, 

2010, 2011) measured auditory brainstem response (ABR) in several species of settlement-stage 

coral-reef fish larvae, which detected sounds in the range of 100-2000Hz and were sensitive 

enough to detect reef soundscapes at least hundreds of meters away. In general, behavioral 

assays have yielded higher sensitivity to sound than ABR. The variability in sensitivities between 

the different types of studies are due to differences in experimental conditions (Sisneros et al. 

2016). ABR studies are conducted in a tank where the sound field does not behave as it does in 

natural settings and threshold estimates are often subjective to the observer (Sisneros et al. 2016). 

Behavioral assays and field studies, conducted in a more natural acoustic setting, are more likely 

to detect natural behavior.  
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Crustaceans: Several species of decapod crustaceans also respond to soundscapes 

indicative of their settlement habitats. Light traps with broadcasted reef sounds collected more 

larval crabs than silent traps (Jeffs et al. 2003). Five species of coastal crab postlarvae moved 

towards broadcasted reef soundscapes in an in-situ binary choice chamber, but failed to make a 

choice in silent controls (Radford et al. 2007). Similar experiments demonstrated that the spiny 

lobster Jasus edwardsii is attracted to the soundscapes of rocky reef settlement habitats 

(Hinojosa et al. 2016), and those sounds accelerate their metamorphosis (Stanley et al. 2015). 

Stanley et al. (2010, 2012) also found that five brachyuran crab species had shorter time-to-

metamorphosis when exposed to local rocky reef soundscapes compared to silent controls in the 

laboratory and field.  

Non-arthropod invertebrates: A variety of sessile invertebrates respond to the 

soundscapes of settlement habitat (e.g., corals, oysters, mussels, ascidians), though it is not 

understood how they perceive and distinguish among soundscapes. An in-situ study of the larvae 

of a reef building coral (Orbicella faveolate) showed that larvae move towards underwater 

speakers broadcasting coral-reef noise but moved in random directions when no sound was 

broadcasted (Vermeij et al. 2010). Lillis et al. (2016, 2018) observed higher settlement of two 

species of coral larvae in in-situ settlement chambers in response to high quality (i.e., high coral 

and fish diversity and abundance) coral-reef soundscapes compared to low quality reefs. Larvae 

of the oyster Crassotrea virginica settled at higher densities when to oyster-reef soundscapes 

than soft-bottom soundscapes or no-sound treatments in the laboratory and in in-situ chambers 

where oyster larvae were exposed to oyster reefs compared to nearby sandy bottom (Lillis et al. 

2013). Field experiments also demonstrated greater settlement of free-swimming oyster larvae on 

larval collectors exposed to oyster-reef soundscapes compared to silent collectors (Lillis et al. 
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2015). Common biofouling taxa such as mussels (Wilkens et al. 2012) and ascidians (McDonald 

et al. 2014, Stanley et al. 2016) also exhibit faster settlement and metamorphosis when exposed 

to anthropogenic sound from ship engines and generators.  

Other marine larvae avoid certain soundscapes. Simpson et al. (2011) found that two 

common pelagic taxa and some nocturnally active species actively avoided light traps with 

broadcasted reef soundscapes and were more common in control light traps. Parmentier et al. 

(2015) found that some fish taxa avoided certain habitat soundscapes. Indeed, there is mounting 

evidence that suggests that habitat degradation alters the properties of soundscapes and, in turn, 

larval attraction. Piercy et al. (2014) compared coral-reef soundscapes across a quality gradient 

and found that higher quality coral reefs are louder, and their soundscapes may propagate farther. 

Butler et al. (2016) found that degraded backreef hardbottom soundscapes were significantly 

quieter than healthy hardbottom soundscapes. The degradation of nursery habitats and their 

soundscapes may have consequences for the larvae that use sound to locate settlement habitat. 

Playbacks of pre-degradation coral-reef soundscapes were more attractive to fish larvae than 

post-degradation soundscapes (Gordon et al. 2018) and more coral larvae settle in response to 

high-quality reef soundscapes than to soundscapes of low-quality reefs (Lillis et al. 2016). In 

backreef hardbottom habitat, settlement of a variety of taxa to collectors in degraded habitat were 

lower than in loud, healthy habitats (Butler 2016). Given the important role that soundscapes 

play in larval settlement, alterations to soundscapes caused by habitat degradation may hamper 

recruitment and natural recovery.  

SOUND AND SETTLEMENT IN BACKREEF HABITATS 
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In the Caribbean, most studies on underwater sound and larval recruitment have focused 

on coral-reef habitats (Vermeij et al. 2010, Staaterman et al. 2013, Lillis et al. 2016) until the 

recent work by Butler et al. (2016, 2017) on larval fish and invertebrate settlement in response to 

sounds from backreef habitats. The backreef habitats in south Florida are a mosaic of tropical 

habitats that provide important connectivity among life stages and energy transfer among 

habitats. Seagrass and mangroves are well known nurseries for coral-reef associated species 

(Nagelkerken et al. 2000, Heck et al. 2003). But backreef karst hardbottom habitats dominated 

by sponges are also crucial nursery habitats for many of the same reef-species and other 

ecologically and commercially important species such as spiny lobster, stone crab, and 

commercial sponges (Herrnkind et al. 1997). However, cyanobacteria blooms have caused mass 

die-offs of sponges in a portion of Florida Bay leaving large swaths of barren habitat with few 

sponges and associated fauna (Butler et al. 1995, Herrnkind et al. 1997, Stevely et al. 2011). 

“Healthy” hardbottom, with high sponge density and biomass, provides habitat for numerous 

soniferous organisms, particularly snapping shrimp. “Degraded” hardbottom, areas that 

experience mass sponge die-offs, contain little habitat for snapping shrimp and thus exhibit 

significantly lower spectra levels (sound power as a function of frequency) than healthy 

hardbottom (Butler et al. 2016). Restoration of the sponge community through sponge 

transplants restored the natural soundscape (see Fig. 2 in Butler et al. 2016), indicating that 

restoration of the sponge community promoted the return of the soniferous biological community 

(Butler et al. 2016). 

Given that soundscapes are a strong potential settlement cue for a wide range of taxa it is 

not surprising that Butler (2016) found fewer larval settlers on silent collectors deployed in 

degraded hardbottom than those that were exposed to recordings of healthy soundscapes 
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broadcasted at above natural levels. Also, fewer fish and invertebrate larvae settled in natural, 

degraded hardbottom sites compared to unaffected healthy hardbottom sites. However, restored 

sites, while producing similar soundscapes to healthy hardbottom, also had significantly lower 

settlement than healthy sites. These experiments indicate that healthy hardbottom soundscapes 

are a likely settlement cue for a broad range of taxa that settle in shallow hardbottom habitat, but 

that degradation of the sponge community has altered the settlement cue for large areas of 

potential nursery habitat. Alteration of the acoustic settlement cue could reduce settlement and 

recruitment of larval fish and invertebrates, further hindering recovery of these degraded areas. 

Reestablishing the sponge community may return the settlement cue, however, the results of 

these previous studies suggest that the range of the cue for these small restoration patches may be 

limited and preclude larval settlement from returning to pre-degredation levels.  

The aim of my project was to gain a better understanding of fish and invertebrate larval 

response to hardbottom soundscapes. I hypothesized that since healthy habitats have higher 

larval settlement than degraded habitats, that broadcasted healthy soundscapes would likewise 

increase settlement over degraded soundscapes. I also hypothesized that settlement rates would 

vary as a function of the distance from the sound source. To test this, I first determined the 

maximum range of the acoustic cue. I then examined larval settlement at increasing distances 

from an underwater speaker broadcasting healthy soundscapes at natural levels, simulating a 

small, restored patch of habitat, compared to broadcasted degraded soundscapes.  
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METHODS 

 

STUDY AREA 

The studies were carried out in Florida Bay and nearshore waters just north of the middle 

Florida Keys (USA) where there is a mixture of seagrass meadows, sandy-mud bottom, 

mangrove islands, and sponge-dominated karst hardbottom (Fig. 1). These habitats vary 

considerably in their soundscape profiles. Healthy hardbottom produces soundscapes that contain 

high levels of high frequency sounds (>1000Hz) and large numbers of snapping shrimp snaps 

(Butler et al. 2016). In contrast, seagrass beds are far quieter than healthy hardbottom (Butler et 

al. 2016) and absorb sound (Wilson et al. 2013). Degraded hardbottom sites are significantly 

quieter than healthy sites with fewer snapping shrimp snaps and soundscape spectra similar to 

seagrass beds (see Fig. 2 in Butler et al. 2016). The present study takes advantage of the now 

quiet, barren hardbottom areas in a large region in the central Florida Keys affected by sponge 

die-offs, as a location in which I could broadcast experimental soundscapes with minimal 

interference from natural soundscapes. 

TRANSMISSION LOSS 

Modeling sound propagation in shallow waters, such as Florida Bay, is difficult (Urick 

1983) and many of the necessary physical parameter estimates (e.g., bedrock depth and density) 

have not been made. Therefore, the easiest method to estimate transmission loss was with 

empirical measurements. In July 2018, I conducted a transmission loss experiment in degraded 

hardbottom to determine the approximate distance that an auditory cue from a playback device 

can be detected. I defined this point as the distance from the source where the signal can no  
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Figure 1. Map of sampling sites including the approximate extent of hardbottom habitat degraded 

by cyanobacteria blooms and sponge die-offs. 

 

 

longer be distinguished from the background noise and the signal to noise ratio (SNR) is 0 dB. 

SNR is the ratio of the intensity of the signal (IS) to the intensity of the background level (IN), 

expressed in dB, and calculated as:  

𝑆𝑁𝑅 = 10𝑙𝑜𝑔10(𝐼𝑆 𝐼𝑁⁄ ) 

The detection threshold for animals is well above 0 dB SNR (Fish: Ladich 2013, Fay 2011, 

Chapman 1973; manatees: Gaspard et al. 2012; pinnipeds: Southall et al. 2000; cetaceans: 

20km 

July/August Sites 

October Sites 

November Sites 

Bloom Area 

Land 
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Branstetter et al. 2017). Therefore, within a few decibels, the SNR ratio can be considered as 0 

dB for the practical purpose of determining the range of detection for marine larvae.  

I deployed an omnidirectional underwater speaker (Lubell Labs 916H underwater 

loudspeaker; frequency response 200Hz – 20kHz, 180db re 1μPa output @ 1kHz), connected to 

a waterproof barrel containing a WAV player, an amplifier to drive the speaker, and a 12 V deep 

cycle battery to power the speaker and amplifier (Fig. 2). Then, I broadcasted pure tones of 

known frequency (100Hz, 500Hz, 1000Hz, 1500Hz, and 2000Hz) and amplitude (115dB re 

1µPa) in degraded hardbottom habitat. Pure tones were chosen to represent a range of 

frequencies observed in natural hardbottom soundscapes without the variation in amplitude and 

frequency inherent to recordings of natural habitats. I recorded the tones using Aquarian Audio 

H2a omnidirectional hydrophones (Aquarian Audio Products: sensitivity -180dB re 1V/μPa [+/- 

4dB 20Hz-4kHz]; flat frequency response 10 Hz – 100kHz), attached to Roland Edirol R-05 or 

R-07 solid-state WAV recorders (Roland Corporation, Japan; 48kHz; 16bit) contained in 

waterproof housings at increasing distances (1 m, 10 m, 25 m, 50 m, 100 m, 200 m, and 500 m) 

from the speaker (see Fig. 2D). The SNR was calculated for each distance as described above.  

LARVAL RESPONSE TO SOUNDSCAPE AND DISTANCE 

 Soundscapes from healthy and degraded hardbottom habitats were broadcasted at sites 

within Florida Bay using the system described above to test the effects of soundscape type and 

distance from the source on larval settlement. Three pairs of sites (where in a pair of sites 

consists of one site where healthy hardbottom soundscapes were broadcast and one site where 

degraded hardbottom soundscapes were broadcast) were haphazardly chosen. All sites were at 

least 3 km apart and were within the ~500 km2 area of Florida Bay affected by the sponge die- 
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Figure 2. Speaker system, hydrophone system, and transmission loss recording distances. (A) 

Speaker system set up containing a Lubell Labs 916H underwater loudspeaker connected to a 

waterproof barrel containing a WAV player, an amplifier to drive the speaker, and a battery to 

power the speaker and amplifier. (B) Photo of the underwater speaker. (C) Graphical depiction of 

the transmission loss experimental set up with hydrophones set up at 1 m, 10 m, 25 m, 50 m, 100 

m, 200 m, and 500 m from the source. (D) Underwater photo of Aquarian Audio H2a 

omnidirectional hydrophones attached to Roland Edirol R-05 or R-07 solid-state WAV recorders 

contained in a waterproof housing (photo credit: Jack Butler)  

 

 

offs, and thus represented separate sources of sound within a relatively quiet background 

environment. For each pair of sites, experiments were run twice: once during a full moon and  
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once during a new moon to capture the differences in larval settlement that are common between 

the two moon phases (Butler 2016). All larval collections were made between July and 

November 2019.  

 At each site, three artificial collectors were placed in opposing directions at four distances 

from the speaker: ~1 wavelength (10 m), mid-range (100 m), ~0 dB SNR (500 m), and out of 

range (1000 m, Fig. 3). Wavelength is proportional to frequency such that lower frequencies 

have longer wavelengths, therefore10 m was chosen as the ~1 wavelength distance because it 

was the approximate length of the lowest frequency the speaker could produce given the 

speaker’s frequency response. Mid-range and ~0 dB SNR distances were selected based on the 

transmission loss experiment in hardbottom habitat. Collectors were made of frayed rope 

attached to a mesh back 50 cm x 100 cm in size tethered to concrete blocks and suspended in the 

water column by a surface buoy (Fig. 3). These collectors mimic the physical structure of 

hardbottom vegetation that many settling larvae use and have been successful in previous larval 

studies in the area (Butler 2016). Collectors were placed in healthy hardbottom habitat for six 

weeks prior to the start of the experiment to develop a biofilm and were shaken prior to the start 

of each trial to remove any larvae that may have settled between trials so that only larvae settling 

during the trials would be collected.  

 Prior to the start of the experiment, soundscapes from several haphazardly selected 

healthy and degraded sites were recorded at new and full moons using an omnidirectional 

hydrophone (described above). Recordings were only used for one trial to avoid 

pseudoreplication (Kroodsma 1989). Average root-mean-square sound pressure level over a 15 

second clip was calculated for each recording and used to calculate the required voltage output 

for the speaker system in order to broadcast the recordings at approximately the same volume at 
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which they were originally recorded. Voltage output was matched by manipulating the volume of 

the WAV player containing the broadcasted recording prior to deployment of the speaker. The 

sound level of the recorded soundscapes used in the larval settlement ranged from 76-80 dB re 1 

µPa for healthy soundscapes and 65-68 dB re 1 µPa for degraded soundscapes.  

 

 

Figure 3. Larval collector and experimental collector placement. Three artificial larval collectors, 

made of frayed rope attached to a mesh back with ¾ in PVC pipe top and bottom frame and 

tethered to a buoy and anchor made of cement blocks (A [Photo credit: Jack Butler] were 

deployed at four distances (10 m, 100 m, 500 m, 1000 m) from an omnidirectional underwater 

speaker system broadcasting either healthy or degraded hardbottom soundscapes. 

   

 

 Trials were run for five nights: two nights before a full or new moon to two nights after 

the moon phase of interest. During each trial, a speaker was deployed at each site and 

broadcasted either a healthy or a degraded hardbottom soundscape at approximately the same 

volume as the original recording. Speakers were deployed each evening of the trial and retrieved 
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the following morning. Collectors were sampled the morning following the last night of the trial. 

Collectors were unclipped from the mooring and carefully moved into a mesh bag (1 mm2 mesh) 

before being brought aboard a vessel where they were shaken to dislodge the larvae into the bag. 

Larval fish were separated and immediately euthanized by overdose with tricain 

methanosulfonate (MS-222) following an IACUC approved protocol (#19-026). Fish and 

invertebrate larvae were then preserved in 70% ethanol for quantification and identification to 

the lowest taxonomic level.  

 Larval community assemblage data were Hellinger transformed prior to analysis, visually 

represented with two-dimensional non-metric multidimensional scaling (nMDS) and compared 

using a non-parametric (permutational) multivariate analysis of variance (PERMANOVA).  The 

Hellinger transformation was chosen because it does not give high weights to rare species, which 

occurred sporadically in this data set, and it makes the data more suitable for ordination 

techniques (Legendre and Gallagher 2001). PERMANOVA uses traditional analysis of variance 

experimental design extended to a matrix of pairwise distances with P-values obtained by 

permutation (Anderson 2001). PERMANOVA is a flexible multivariate test that allows any 

distance measure and is useful for community composition data (Anderson 2001). Moon phase, 

distance, and soundscape were fixed factors, and site treated as a random variable. Analyses 

were run using the vegan package (v2.5-6; Oksanen et al. 2019) in R 3.6.3 (R Core Team, 2020).  
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RESULTS 

 

TRANSMISSION LOSS 

The SNR decreased exponentially with distance and at 500 m was nearly undetectable 

(~3dB, Fig. 4). Because the recordings used in the larval settlement experiment (65-80dB re 

1µPa) were quieter than the tones used in the transmission loss experiment (115dB re 1µPa), I fit 

a curve to the transmission loss results (Fig. 4) and calculated the expected 3dB SNR distance for 

the broadcasted soundscapes. Based on the curve, the estimated 3dB SNR distance for the 

broadcasted soundscapes ranges from approximately 490 m – 497 m for healthy soundscapes and 

466m-474m for degraded soundscapes. Therefore, the distances used for collector placement are 

still appropriate for the sound levels of the broadcasted hardbottom recordings. 

 LARVAL RESPONSE TO SOUNDSCAPE AND DISTANCE 

Over the course of the experiment 8,551 individual recruits of 41 different taxa were 

collected. Bivalves (50.9%, 4,353 individuals, 5 species) and crustaceans (35.3%, 3,017 

individuals, 6 species) comprised the majority of the catch. Table 1 summarizes the total 

numbers of individuals and species collected by moon phase, soundscape, and distance. The 

larval assemblage differed between moon phases (PERMANOVA: F1,141 = 6.225, R2 = 0.043, p 

= 0.001), soundscapes (PERMANOVA: F1, 141 = 1.863, R2 = 0.013, p = 0.001), but did not differ 

among distances (PERMANOVA, F1,141 = 0.985, R2 = 0.021, p = 0.085). Overall, more larvae 

settled during full moon phases than new moons (full moon = 4,926 total individuals, new moon 

= 3,625 total individuals) and mean individuals per collector was 1.3 times higher during full 

moon than new moon (full moon = 68.4 ± 26.6 95% CI; new moon = 51.2 ± 13.7 95% CI). 
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Collectors exposed to healthy hardbottom soundscapes had greater overall settlement and a 1.4-

fold increase in average settlement per collector (5,006 total individuals; 70.5 ± 28.4 95% CI) 

compared to collectors exposed to degraded soundscapes (3,545 total individuals; 49.9 ± 7.6 

95% CI). 

 

 

Figure 4. Signal to noise ratio (SNR) and regression line of pure tones broadcasted at maximum 

volume in degraded hardbottom calculated from hydrophone recordings taken at seven distances 

(1 m, 10 m, 25 m, 50 m, 100 m, 200 m, 500 m) from the playback device. At 500 m from the 

playback device, the signal is nearly undetectable from the background noise (SNR = 2.6dB). 
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Table 1. Total number of individuals and taxa in parentheses collected over the course of the 

experiment from artificial collectors deployed at 10 m, 100 m, 500 m, and 1000 m from an 

underwater speaker broadcasting healthy or degraded soundscapes during new and full moon. 

 

 

There was no difference in the mean number of settlers between collectors at 10 m and 

100 m from the speaker systems (57.2 ± 13.7 95% CI and 57.8 ± 16.4 95% CI) but larval 

settlement on collectors deployed at 10 m and 100 m was 1.3-fold higher than 500 m (45.6.6 ± 

12.4 95% CI). Even more larvae settled on collectors furthest from the sound source (1000 m = 

79.5 ± 55.5 95% CI) as compared to collectors placed at 10 m, 100 m, and 500 m. Given that the 

collectors at 1000 m were deployed at more than twice the range of the speaker systems, the high 

mean settlement at this distance was not due to the effects of the broadcasted soundscapes. 

However, the effects of distance on mean larval settlement were small when separated by moon 

phase and soundscape (Table 2, Fig 5). 

 New Moon Full Moon 
 

  Healthy  Degraded Healthy  Degraded Total 

10 m 
479 488 605 487 2059 

(18) (19) (16) (20) (41) 

100 m 
395 500 664 521 2080 

(18)  (19) (20) (24) (40) 

500 m 
310 416 533 371 1630 

(15) (21) (20) (22) (39) 

1000 m 
637 400 1383 362 2782 

(15) (22) (18) (20) (38) 

Total 
1821 1804 3185 1741 8551 

(22) (29) (30) (35) (41) 
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Table 2. Mean individuals ± 95% confidence interval collected from artificial collectors 

deployed at 10 m, 100 m, 500 m, and 1000 m from an underwater speaker broadcasting healthy 

or degraded soundscapes during new and full moon 

 

 

 

The nMDS (Fig. 6, stress: 0.153, r2 = 0.993) plot places each artificial collector on a two-

dimensional ordination plane based on the larval assemblage. Fig. 6A-C illustrates the effects of 

moon phase, distance from the speaker system, soundscape, and collection period (one sequential 

new and full moon phase) on the larval assemblage of individual collectors.  While significant in 

the PERMANOVA model, the R2 values for each of the fixed factors and the nMDS suggest that 

the factors account for a small portion of the total variance (Table 3). The nMDS suggests that 

site or sampling period, which are correlated as sites were moved after a full and new moon 

period, may account for some of the variance in larval assemblage.  

 

 

 

 New Moon Full Moon 

  Healthy Degraded Healthy Degraded 

10 m 53.2 ± 27.5 54.2 ± 18.5 67.2 ± 47.8 54.1 ± 27.7 

100 m 43.9 ± 15.5 55.6 ± 20.0 73.8 ± 54.6 57.9 ± 46.2 

500 m 34.4 ± 29.4 52.0 ± 19.0 59.2 ± 34.6 41.2 ± 26.4 

1000 m 79.6 ± 110.2 44.4 ± 10.6 153.7 ± 225.2 40.2 ± 17.9 
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Figure 5. Mean number of larvae and taxa per collector for collectors deployed 10 m, 100 m, 500 

m, and 1000 m, from broadcasted healthy (closed circle) and degraded (open circle) soundcapes 

during new and full moon phases. All error bars are 95% confidence intervals. Dashed lines 

indicate collectors that lie outside the detectable sound range (1000 m). 
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Figure 6. Non-metric Multidimensional Scaling ordination of larval assemblage samples. Each 

point represents the larval assemblage found on an individual collector. (A) Collector points 

colored by the moon phase during collection (blue = full moon, red = new moon). (B) Shapes 

and colors indicate the distance of the collector from the playback device (red circle = 10 m, 

orange triangle = 100 m, blue square = 500 m, green diamond = 1000 m). (C) Collector points 

colored by collection period (red = July/August, green = October, blue = November) and shape 

indicates the broadcasted soundscape (circle = degraded hardbottom, square = healthy 

hardbottom). Each collection period includes one full and one new moon sampling session. (D) 

Plot of influential species vectors, lengths are scaled by their correlation so that strong predictors 

have longer arrows than weak predictors. 
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Table 3. PERMANVOA results testing the effects of moon phase, soundscape type, and distance 

from the underwater speaker on larval community assemblage. 

 

 

Inspection of the larval collector data revealed that two collectors of the 35 deployed at 

1000 m had extremely high settlement, as much as 7 times greater than the collector with the 

next highest number of individuals at 1000 m. At both of the collectors Lima clams had large 

settlement events, up to 4.2 times greater than collector with the next highest number of clams 

(1012 and 356 vs 196 individuals). Removing these two collectors removed differences in mean 

settlement between 500 m and 1000 m (500 m: 45.6 ± 12.4 95% CI, 1000 m: 44.0 ± 8.9 95% CI) 

and effect sizes between the distances inside the range and both distances outside the range of the 

speaker were the same (1.3x).  Removal of these collectors altered the effect of the soundscape 

treatment on mean settlement where healthy soundscapes had only slightly higher mean 

settlement than degraded soundscapes (1.1x; 53.3 ± 13.7 95% CI and 49.9 ± 7.6 95% CI, 

Source DF MS F R2 p 

Moon Phase 1 2.474 6.225 0.043 0.001 

Soundscape 1 0.740 1.863 0.013 0.001 

Distance 3 0.392 0.985 0.021 0.085 

Moon Phase x Soundscape 1 0.461 1.159 0.008 0.106 

Moon Phase x Distance 3 0.178 0.448 0.009 0.875 

Soundscape x Distance 3 0.202 0.509 0.011 0.772 

Moon Phase x Soundscape x Distance 3 0.273 0.688 0.014 0.400 

Residual 126 0.397  0.880  

Total 141   1.000  
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respectively). The effect of moon phase on mean settlement was only slightly altered (1.2x; 46.7 

± 6.4 95% CI and 56.3 ± 11.2 95% CI). 

Species richness did not vary among treatments (Fig. 5), but larval responses to moon 

phase, soundscape, and distance varied among taxa (Fig. 7, Table 4). Some taxa had greater 

settlement during new moon than full moon, such as the spiny lobster Panulirus argus (new 

moon: 0.8 ± 0.1 SE; full moon: 0.2 ± 0.1 SE) whereas others settled in higher numbers during 

full moon (e.g. Lima [new moon: 15.9 ± 5.3 SE; full moon: 31.9 ± 11.8 SE], Paraclinus [new 

moon: 0.4 ± 0.1 SE; full moon 0.9 ± 0.2 SE]).  Several species settled in higher numbers on 

collectors within the range of the soundscapes (10 m and 100 m) compared to outside the range 

with a preference for healthy or degraded soundscapes. For example, the clam genus Lima settled 

in greater numbers during full moon and, with the two outliers at 1000 m removed, settlement 

was higher on collectors deployed at 10 m (37.9 ± 20.5 SE) and 100 m (26.4 ± 12.2 SE) from 

speakers broadcasting healthy soundscapes than on collectors outside the range (500 m: 14.4 ± 

8.2 SE; 1000 m: 13.9 ± 6.6 SE [Fig. 7D]). The blenny genus Paraclinus was found in greater 

numbers during full moon and in greater numbers within the range of the speakers broadcasting 

degraded soundscapes than outside (Fig. 7F, Table 4). The shrimp Palaemonetes had opposing 

settlement patterns with higher settlement on degraded soundscape collectors during new moon 

and healthy soundscape collectors during full moon (Fig. 7G & H). Overall, 29 species had low 

(< 50 individuals) settlement with many absences and no discernable relationship to moon phase, 

type of broadcasted sound, or distance from sound source (Table 5).  
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Figure 7. Mean individuals of selected taxa per collector during new and full moon phases on 

collectors exposed to broadcasted healthy (closed circle) and degraded (open circle) soundscapes 

at 10 m, 100 m, 500 m, and 1000 m from the underwater speaker. All error bars are standard 

error. Selected species are shown: spiny lobster (Panulirus argus [A-B]), clam (Lima [C-D]) with 

two outliers at 1000 m removed, blenny (Paraclinus [E-F]), shrimp (Palaemonetes [G-H]). 

Dashed lines indicate collectors that lie outside the detectable sound range (1000 m). 



 
 
 

2
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Table 4. Total number of larvae per taxon with > 50 total settlers onto collectors deployed at 10 m, 100 m, 500 m, and 1000 m from an 

underwater speaker broadcasting healthy or degraded soundscapes during new and full moon.  

 

  New Moon Full Moon 

Total 

Individuals 

 
 Healthy Degraded Healthy Degraded 

  Species 10m  100m  500m 1000m 10m  100m  500m 1000m 10m  100m  500m 1000m 10m  100m  500m 1000m 

Fish Paraclinus sp. 0 3 4 1 9 1 4 3 3 7 6 8 15 11 3 10 88 
                   

Gastropods 

Bulla sp. 20 3 0 14 0 3 3 1 0 4 2 2 4 6 3 2 67 

Cerithium sp. 53 22 26 52 19 21 21 6 21 57 13 20 11 15 9 17 383 

Echinolittorina sp. 27 4 3 3 1 3 3 5 4 13 5 2 0 3 0 0 76 

Turbo castanea 8 3 2 6 7 10 14 1 3 8 28 14 44 40 34 22 244 

Nudibranch 4 5 1 4 1 5 2 2 3 3 7 8 4 4 5 4 63 
                   

Bivalves 
Lima sp. 124 162 137 376 90 111 46 67 341 238 130 934 177 231 125 120 3409 

Spondylus sp. 35 34 35 54 57 71 34 39 61 110 47 138 72 49 61 32 929 
                   

Arthropods 

Portunus sayi 27 13 16 7 12 15 12 13 19 19 33 14 15 10 12 14 251 

Panulirus argus 12 12 8 4 8 7 5 9 0 0 1 4 2 3 4 1 74 

Palaemonetes sp. 149 102 62 108 270 235 248 227 141 171 249 224 89 120 95 125 2615 
                   

Annelid Annelid 16 13 5 4 4 8 5 6 5 11 6 11 5 7 6 4 116 
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Table 5. Total number of larvae collected for taxa with < 50 settlers collected over the course of 

the experiment during new moon and full moon.  

 

 

  Taxon 

New 

Moon 

Full 

Moon 

Total 

Individuals 

Fish Abudefduf saxatilis 19 13 32 

 Acantharus  1 0 1 

 Haemulon  1 1 2 

 Histrio histrio 0 1 1 

 Opsanus  1 3 4 

 Sygnathus 15 9 24 

 Unkown larval fish 0 1 1 
     

Gastropods Australium  0 3 3 

 Cantharus 2 1 3 

 Costoanachis  0 4 4 

 Crepidula  1 4 5 

 Diodora   1 3 4 

 Modulus 11 7 18 

 Nitidella  2 0 2 

 Pyrgospira  0 1 1 

 Tegula  1 14 15 

 Turritella  2 10 12 

 Unknown snail 1 0 1 1 

 Unknown snail 2 0 1 1 

 Chiton 1 2 3 
     

Bivalves Anadara  7 3 10 

 Chione  1 2 3 

 Lucina  0 2 2 
     

Arthropods Menippe mercenaria 5 23 28 

 Xanthidae 17 31 48 

 Syalpheus  0 1 1 

 Mantis shrimp 1 1 2 
     

Echinoderms Brittle star 2 1 3 

  Sea cucumber  1 1 2 
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DISCUSSION 

 

Underwater soundscapes are useful settlement cues for larval fish and invertebrates, but 

their usefulness depends on the range at which they can be detected (Radford et al. 2011b). In 

this study I examined larval responses to healthy and degraded hardbottom habitat soundscapes 

at increasing distances from an underwater speaker. I examined sound propagation from a point 

source, to determine the potential range of detection for marine larvae that may use sound to 

locate settlement habitat, then compared the larval assemblages that settled on collectors placed 

both within and outside of that radius.  

Overall, larval settlement on collectors exposed to healthy soundscapes was higher than 

degraded soundscapes, although the response to soundscapes was species-specific. The 

PERMANOVA also indicated differences in larval assemblage between soundscapes. A few 

genera (e.g., Lima, Bulla) settled in greater numbers on collectors in response to healthy 

hardbottom soundscapes, in accord with an earlier study conducted in the same region (Butler 

2016). Yet, other taxas (e.g., Paraclinus, Turbo) settled in greater numbers on collectors exposed 

to degraded soundscapes. These animals may prefer different nursery habitat types. Healthy 

hardbottom soundscapes are naturally louder and more complex (Butler et al. 2016) and the 

broadcasted recordings I deployed reflected that. Louder, more complex soundscapes could 

indicate a larger biological community and potentially more predators. Simpson et al. (2011) 

found taxa that had pelagic or nocturnally emergent lifestyles, avoided reef soundscapes. 

Unfortunately, the preferred nursery habitat for most of the more than 50 taxa observed in this 

study are unknown.   
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Larval assemblages did not differ among the different distances but overall, larval 

settlement was higher on collectors based at 10 m and 100 m from the speaker system compared 

to 500 m and 1000 m, once the two 1000 m outliers were removed. Soundscapes were played 

back at a natural level so the ~0dB SNR distance was slightly closer than the 500 m estimated 

from the sound propagation experiment, meaning settlement at this distance should be unaffected 

by the playback. As detection thresholds for most animals require SNRs upwards of 20 dB 

(Ladich 2013, Fay 2011, Chapman 1973), the radius for which healthy soundscapes can be 

detected is likely smaller than the estimated 0 dB SNR range. Collectors deployed at 1000 m, 

more than double the ~0 dB SNR range, were also well outside the range of the speaker system 

so settlement at those collectors should not have been affected by the soundscape treatment. 

Increased larval settlement within the estimated detectable range of the speaker (up to 100 m) 

therefore indicates an effect of the broadcasted soundscape. High settlement at a few of the 1000 

m collectors must therefore be due to other factors and not the broadcasted soundscapes. 

Degraded hardbottom may be so devoid of settlement habitat that the collectors, though outside 

the range of the broadcasted soundscapes, represented ideal settlement substrate and attracted 

more larvae.  

The PERMANOVA indicated that larval assemblages differed between moon phases and 

settlement was higher during new moon overall. Notably, the most abundant fish and bivalve 

genera (Paraclinus, Lima, and Spondylus) in this study settled on collectors in greater numbers 

during full moon phases than new moon. Many animals use the lunar cycle to time release of 

larvae (Corals [Harrison et al. 1984, Brady et al 2016], Fish [Farmer et al. 2017]) and many 

larvae settle around specific moon phases (Fishes – bluehead wrasse [Victor 1986], damselfish 

and surgeonfish [Sponaugle and Cowen 1986], Decapods – crabs [Cannicci et al. 2019], lobster 



31 
 

[Acosta et al. 1997]). Previous work in Florida Bay found higher settlement of marine larvae 

during new moon than full moon but with variation among species (Butler 2016).  

Most of the species with 50 or more settlers followed a particular settlement pattern and 

these patterns varied widely between species. For example, the spiny lobster P. argus had higher 

settlement during new moon regardless of soundscape or collector distance. Patterns for distance 

were usually observed during a particular moon-phase when that species had the highest 

settlement. One such species is the clam genus Lima. During full moon, with the two outliers at 

1000 m removed, Lima settlement was higher within the range of the healthy hardbottom 

soundscape (10 m, 100 m) than outside the range (500 m, 1000 m) or for broadcasted degraded 

soundscapes. Butler (2016) found greater numbers of Lima on collectors exposed to healthy 

hardbottom soundscapes compared to silent collectors during full moon. Both results suggest that 

Lima is responsive to habitat-associated sound cues, similar to other bivalves that have also 

demonstrated responses to sound cues (Lillis et al. 2013, Lillis et al. 2015).  

Butler et al. (Butler, Anderson, and Butler unpublished data) established that there was no 

difference in the larval community between collectors exposed to degraded soundscapes and 

“silent” controls – collectors placed in degraded habitat near a silent mimic speaker. Since the 

degraded soundscapes were broadcast at natural volumes there should be little difference in 

soundscape between collectors inside and outside the range of the broadcast. However, a few 

genera were collected in greater numbers within the range of degraded soundscapes (e.g., 

Paraclinus, Turbo) than outside the range of the speaker system. This indicates that there is a 

difference between broadcasted degraded soundscapes and natural degraded soundscapes for at 

least some settlers. While I broadcasted soundscapes at ecologically-relevant natural volumes, 

there are artefacts of playback that alter the properties of the soundscapes. The speaker frequency 
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response drops off drastically below 200 Hz, so frequencies below 200 Hz in the hardbottom 

soundscape would not have been broadcast as loudly as they were recorded. 

A few taxa had contradictory settlement patterns. For example, the shrimp, 

Palaemonetes, had high settlement during new moon on degraded soundscape collectors and on 

healthy soundscape collectors during full moon (Fig. 7I & J). I was unable to identify this genus 

to species and it is possible that more than one species was collected, each with contrasting 

settlement patterns. This highlights the need to look more deeply at the settlement preferences of 

Palaemonetes and other taxa with inconsistent settlement patterns.  

Though not designed as a factor of interest in the experiment, site and collection date 

were correlated (one pair of sites were used for a consecutive full and new moon period, or one 

“collection period”) and could have affected observed settlement patterns. For many species, 

larval settlement varies both temporally and spatially (O’Beirn et al. 1996, Acosta et al. 1997, 

Martínez and Navarrete 2002, D’Alessandro et al. 2007). As site and date were intrinsically 

linked in this experiment, it was not possible to explore the individual contributions of these 

factors, but both are likely to contribute to the observed variation in larval settlement and 

community assemblage.  

Halfway through the November full moon trial a cold front moved through the Florida 

Keys. Florida Bay is shallow and therefore rapidly warms or cools with changing air temperature 

and wind speed. The water temperature during this sampling session and the subsequent new 

moon sample was 5º-7º C cooler than the summer and October sampling periods (South Florida 

Natural Resources Center DataForEVER). Additionally, a cyanobacteria bloom developed in the 

area around my sites during the cold front, increasing chlorophyll content by ~13 µg/L, and 

remained well beyond the last sampling session (SFNRC DataForEver). Harmful algal blooms 
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can negatively affect the abundance of marine larvae present in the water column (Almeda et al. 

2011) and blooms such as this are the cause for massive sponge mortality events. Algal blooms 

can alter dissolved oxygen concentrations (O’Boyle et al. 2016) and increase water viscosity 

(Seuront et al. 2006). Increased water viscosity, through changes in temperature or by blooms, 

can alter larval movement (Osse and van den Boogaart 1999, Hunt von Herbing 2002) and low 

dissolved oxygen can negatively affect larval settlement (Baker and Mann 1992). It is possible 

that such a bloom, in combination with the drop in temperature, could have affected larval 

settlement.  

Some taxa were rare in the experiment (<50 total individuals). This low settlement could 

indicate low larval supply or the incorrect type of collector or habitat for that taxa. The collectors 

used in this experiment were designed to mimic benthic algae commonly used as settlement 

habitat by many mobile organisms within hardbottom habitat and therefore would not be ideal 

for organisms that prefer a different settlement substrate or for highly mobile organisms such as 

fish. While the collectors appeared to be adequate for capturing some benthic fish species such as 

the blenny, Paraclinus, other common backreef fishes were rarely caught (e.g., Haemulon, 

Opsanus) or not caught at all. Larval fish supply to the Florida Keys is lowest in late fall 

(D’Alessandro et al. 2007) which could also account for the low numbers of fish larvae that I 

observed in our summer-fall study period. 

Estimating ecologically relevant levels of larval settlement requires estimating the 

number required to maintain or grow the population (Cowen et al. 2006). Recruitment to a 

population is often determined by resource availability (e.g., food and space), larval supply, and 

post-settlement processes (e.g. predation; Menge 2000, White and Caselle 2008). Most of the 

species captured in the collectors are understudied so their population and recruitment dynamics 
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are unknown. For P. argus, no correlations have been found with settling density and lagged age 

groups (Ehrhardt and Fitchett 2010). Habitat appears to be the factor limiting recruitment of this 

species to the population. This may be the case for many of the species found in the collectors 

since there is little suitable settlement habitat in degraded areas. If habitat is restored, even a 

small difference in larval settlement might translate to more adults because of the new available 

space allowing them to recruit to the adult population.  

Given the small range of the broadcasted soundscapes that I measured, the soundscapes 

of small patches of healthy hardbottom habitat likely have a very limited range This has 

implications for restoration efforts. Previous work in Florida Bay found greater larval settlement 

within healthy habitats than in degraded habitat (Butler 2016). But within small (25 m x 25 m) 

hardbottom patches, where the sponge community and soundscape had been restored, larval 

settlement did not match natural healthy hardbottom levels (Butler 2016). Though the 

soundscape had been restored within these small patches, they were a point source and therefore 

had a much smaller range of detection than the large area of healthy habitat (Piercy et al. 2014, 

Radford et al 2011b). More larvae were potentially able to detect the sounds at greater distances 

and could explain why Butler (2016) did not see comparable settlement between collectors 

placed in small, restored patches and collectors in natural healthy hardbottom even though 

soundscapes had been restored. My results indicate that the range for a small point source of 

healthy hardbottom soundscape is several hundred meters but the effective detection range for 

larvae is perhaps only tens to a hundred meters.  

While it is possible to restore soundscapes to natural levels, the small patch size of many 

restored sites may limit the range of the acoustic settlement cue, negating its effectiveness as a 

settlement cue for larvae and hindering recovery. Future work should examine what acoustic 
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range or level of acoustic connectivity between patches is necessary to restore the settling larval 

assemblage. A larger patch will have a larger detection range but several small patches within 

range of each other may extend that detection range with fewer resources. Patches close to large 

areas of healthy hardbottom may benefit from being near a potential source of larvae or 

colonizing animals, but the greater detection range may draw more larvae to the natural healthy 

habitat at the expense of the restoration patch. Restoration patch size, patch connectivity, and 

patch location are well studied concepts in other ecosystems (Shulz and Crone 2005, Fink et al. 

2009, Morrison et al. 2010, Gittman et al. 2018) but have not yet been explored in hardbottom 

habitats.  

This work adds to the growing body of literature investigating soundscapes as a 

settlement cue for marine larvae. However, my results were more nuanced than in other studies. 

Only a few species showed a strong response to broadcasted hard-bottom sounds and sound 

emanating from a point source at natural levels had a small range of attraction suggesting that 

habitat patches may not have the necessary range to draw in larvae over long distances. Small 

point sources, such as small restoration patches, may not be effective at restoring settlement to 

the same level as large areas of healthy habitat. However, sound is just one cue that larvae use to 

locate and choose settlement habitat and should be considered in conjunction with other 

settlement cues.  
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