
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Computer Science Theses & Dissertations Computer Science

Summer 1991

Fast Parallel Algorithms for Basic Problems Fast Parallel Algorithms for Basic Problems

Zhaofang Wen
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_etds

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Wen, Zhaofang. "Fast Parallel Algorithms for Basic Problems" (1991). Doctor of Philosophy (PhD),
Dissertation, Computer Science, Old Dominion University, DOI: 10.25777/9m63-1989
https://digitalcommons.odu.edu/computerscience_etds/120

This Dissertation is brought to you for free and open access by the Computer Science at ODU Digital Commons. It
has been accepted for inclusion in Computer Science Theses & Dissertations by an authorized administrator of
ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/computerscience_etds
https://digitalcommons.odu.edu/computerscience
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds/120?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F120&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

FAST PARALLEL ALGORITHMS
FOR BASIC PROBLEMS

by

Zhaofang Wen
B.S. July 1982, ZhongShan University, China
M.S July 1985, ZhongShan University, China

A Dissertation submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirement for the Degree of

DOCTOR OF PHILOSOPHY

COM PUTER SCIENCE

OLD DOMINION UNIVERSITY
August, 1991

Approved by:

va'stree't (Advisoi

S te/han Olariu (Advisor)

Chester E. Grosch

Przemyslaw Bogncki

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

ABSTRACT

FAST PARALLEL ALGORITHMS FOR BASIC PROBLEMS

Zhaofang Wen

Old Dominion University

Advisors: C. Michael Overstreet and Stephan Olariu

Parallel processing is one of the most active research areas these days. We are

interested in one aspect of parallel processing, i.e. the design and analysis of parallel

algorithms. Here, we focus on non-numerical parallel algorithms for basic combinato

rial problems, such as data structures, selection, searching, merging and sorting. The

purposes of studying these types of problems are to obtain basic building blocks which

will be useful in solving complex problems, and to develop fundamental algorithmic

techniques.

In this thesis, we study the following problems: priority queues, multiple search

and multiple selection, and reconstruction of a binary tree from its traversals. The

research on priority queue was motivated by its various applications. The purpose of

studying multiple search and multiple selection is to explore the relationships between

four of the most fundamental problems in algorithm design, tha t is, selection, search

ing, merging and sorting; while our parallel solutions can be used as subroutines in

algorithms for other problems. The research on the last problem, reconstruction of

a binary tree from its traversals, was stim ulated by a challenge proposed in a recent

paper by Berkman e t al. (“Highly Parallelizable Problems,” S T O C 8 9) to design dou

bly logarithmic time optimal parallel algorithms because a remarkably small number

of such parallel algorithms exist.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

ACKNOWLEDGEMENT

I would like to express my deep appreciation to Dr. C. Michael Overstreet, my

advisor, for his constant support and kindness during my graduate study. He not

only provided many ideas and much guidance in academic research, but also taught

me English and many other im portant skills.

I am very grateful to Dr. Stephan Olariu, also my advisor, for his help, guidance,

and friendship over the years. W ith his art of lecturing, his classes were the most

wonderful thing to experience; meanwhile, they gave me the theoretical background

for my research. Among them I want to mention one: Advanced Graph Theory in

Fall 89, from which I learned the interesting research area of design and analysis of

parallel algorithms.

I would like to thank the members of my committee: Thanks to Dr. Mason Chew

for his help. Dr. Schwing provided many helpful suggestions. I am grateful to Dr.

Bogacki for his careful reading on an early draft and many constructive comments

which have largely improved the presentation of the thesis. Special acknowledgement

goes to Dr. Grosch, from whose expertise in parallel processing I benefited a lot.

Thanks to Dr. Stewart Slien and Dr. Shensheng Zhao for their help during my

first year a t ODU. Many thanks to Dr. Larry Wilson for his help during these years.

To Frank Paterra, my fellow student, I would like to express my appreciation for

his friendship. Thanks also to Dr. K urt Maly, the chairman of this departm ent, for

encouraging students to participate actively in research.

I am very grateful to Dr. Yuesheng Xu, my best friend. W ithout his support and

encouragement, I could not have pursued my Ph.D degree.

I would like to thank my parents for teaching me to work hard for fulfilling my

dreams. Finally, I am indebted to my wife, Shaofen, for her understanding and

encouragement in the whole process of my graduate study. She is the one who has

helped me the most.

i

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Contents

1 Introduction 1

1.1 Parallel Computation M o d e ls .. 1

1.2 Analysis of Parallel A lg o rith m .. 4

1.3 Problems of Interest .. 5

2 Priority Queues 8

2.1 Preliminaries .. 9

2.2 A Meldable Double-ended Priority Q ueue.. 11

2.2.1 Basic O p e ra tio n s .. 13

2.2.2 M e ld in g .. 18

2.2.3 D iscussion ... 20

2.3 Parallel Implementations of Priority Queue O p e ra tio n s 22

2.3.1 A Parallel Melding A lg o rith m ... 23

2.3.2 Parallel Initialization Algorithms for A Class of Priority Queues 28

3 Multiple Search and Multiple Selection 42

3.1 Multiple S e a rc h ... 44

3.1.1 P re lim in a rie s .. 45

3.1.2 Sequential Complexity Bounds for Multiple Search 46

3.1.3 Parallel Multiple Search Using n P ro cesso r................................... 48

3.1.4 Parallel Multiple Search Using Fewer P ro cesso rs 52

ii

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3.1.5 D iscussion ... 56

3.2 Multiple Selection.. 57

3.2.1 A Sequential Multiple Selection A lg o rith m 58

3.2.2 Time Bounds for Single Selection on Exclusive W rite PRAMs 60

3.2.3 A Parallel Multiple Selection Algorithm 62

3.2.4 D iscussion .. 64

4 Tree Reconstruction 66

4.1 Preliminaries ... 67

4.2 Sequential Algorithms .. 71

4.3 A Highly Parallel A lg o rith m .. 74

4.4 D iscussion .. 82

5 Concluding Remarks 83

in

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

List o f Figures

1.1 SIMD Computer ... 2

2.1 A min h e a p ... 10

2.2 A min-max heap ... 11

2.3 A min-max-pair h e a p 13

2.4 A min-min-pair h e a p .. 21

2.5 The parallel initialization scheme for priority q ueues............................... 30

2.6 A new way to look a t the deap .. 40

4.1 a binary tree, and its various (Euler) paths and traversa ls 69

iv

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 1

Introduction

The increasing success in development of parallel processing hardware has stimulated

the recent developments in the design of parallel algorithms (see [4, 24, 41, 53, 56,

17, 35, 55, 64, 69, 72] for recent results). A parallel algorithm is a solution method

for a given problem designed to be performed on a parallel computer. The study of

parallel algorithms enables us to understand the inherent parallelism of a problem.

It also provides a context in which we may identify difficult computational problems.

1.1 Parallel C om putation M odels

As is the case for the sequential algorithms which are designed on sequential com

putation models, parallel algorithms need to be developed on parallel computation

models. Any computer, whether sequential or parallel, operates by executing instruc

tions on data. A steam of instructions (the algorithm) tells the computer what to

do a t each step. A stream of data (the input to the algorithm) is affected by these

instructions. Depending on whether one or several of these streams, two types of par

allel computers are used (see [4, 71] for a complete survey): SIMD (Single Instruction

stream , M ultiple D ata stream) computers and MIMD (Multiple Instruction stream,

1

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

DATA STREAM 1 DATA STREAM 2 DATA STREAM k

INSTRUCTION STREAM

PROCESSOR kPROCESSOR 2PROCESSOR 1

CONTROL

SHARED MEMORY
OR

INTERCONNECTION NETWORK

Figure 1.1: SIMD Computer

Multiple D ata stream) computers. Processors in these models can be connected in

many ways such as mesh, hypercube, or shared memory [68, 58]. Among these mod

els, we give more details about the shared memory SIMD model. A SIMD shared

memory computation model consists of k processors [4], as shown in Figure 1.1.

Each of the k processors has its own local memory in which it can store both pro

grams and data. The processors operate synchronously: in every time step (controlled

by some mechanism such as a global clock), the central control issues an instruction

to each of the processors. All processors execute the same instruction, each on a

different datum . Therefore, k data streams exist. Those processors tha t complete the

o

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

execution of the instruction before others must remain idle until the next instruction

is issued. The time interval between two instructions may be fixed or may depend on

the instruction being executed. The processors in this model communicate through

shared memory (SM). Four sub-models are used according to whether two or more

processors can gain access to the same memory location simultaneously:

• Exclusive-Read, Exclusive-Write (EREW) SM SIMD model. Concurrent access

to the same memory location in reading or writing is prohibited.

• Concurrent-Read, Exclusive-Write (CREW) SM SIMD model. Simultaneous

read from the same memory location is allowed, but simultaneous write into

the same memory location is disallowed.

• Exclusive-Read, Concurrent-Write (ERCW) SM SIMD model. Multiple proces

sors are allowed to write into the same memory location but read access remains

exclusive.

• Concurrent-Read, Concurrent-W rite (CRCW) SM SIMD model. Both sim ulta

neous read and simultaneous write are permitted.

The shared-memory SIMD model is also known in the literature as the Parallel

Random Access Machine (PRAM) model. Although it ignores constraints in real

architecture, the PRAM model has proved a popular model for parallel algorithm

design. As Cole put it [39]: “The task of designing efficient, highly parallel al

gorithms is quite difficult, in general. The PRAM model provides an abstraction

tha t strips away problems of synchronization, reliability and communication delays,

thereby perm itting algorithm designers to focus first and foremost on the structure of

the computational problem a t hand, rather than the architecture of a currently avail

able machine.” For this reason, we will also use the PRAM model as the computation

model for our parallel algorithms in this thesis.

3

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1.2 A nalysis o f Parallel A lgorithm

In the design and analysis of parallel algorithms, we need several complexity mea

sures. The most im portant measure in evaluating a parallel algorithms is its running

time, since speeding up computations appears to be the main motivation for studying

parallel computing. The running time of a parallel algorithm is defined as the number

of basic operations, or steps executed by the algorithm in the worst case. Operations

such as comparing, adding, or swapping of two numbers are commonly accepted as

basic operations in the PRAM model (in fact, each of these operations requires a con

s tan t number of time units on a typical sequential machine). Hence, the running time

(or time complexity) of a parallel algorithm is an expression describing the number

of such basic steps as a function of the number of processors used and the input size.

In evaluating a parallel algorithm for a given problem, it is natural to compare its

tim e complexity with tha t of the fastest possible sequential algorithm for the same

problem. Thus, a good measure of a parallel algorithm is the speedup it produces.

The speedup obtained by a parallel algorithm for a problem is defined to be ratio

of the worst-case running time of the fastest possible sequential algorithm for the

problem to the worst-case running time of the parallel algorithm.

The cost of a parallel algorithm is defined as the product of the number of pro

cessors used and the parallel running time.

Assume th a t a lower bound is known on the number of sequential operations

required in the worst case to solve a problem. If the cost of a parallel algorithm for

th a t problem matches this lower bound to within a constant multiplicative factor, then

the parallel algorithm is said to be cost optimal. A cost optimal algorithm is usually

said to be optimal in literature. We will follow this tradition when no confusion is

possible. W hen no optimal sequential algorithm is known for solving a problem, the

efficiency of a parallel algorithm for th a t problem is sometimes used as a measure.

In particular, the efficiency of a parallel algorithm for a problem is defined to be the

4

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

ratio of the worst-case running time of the fastest known sequential algorithm for the

problem to the cost of the parallel algorithm.

Parallel algorithms are often characterized by different complexity classes. The

most popular parallel complexity class is NC (Nick’s Class [23, 24]). In particular,

a parallel algorithm is an NC algorithm if it runs in 0 ((lo g n)c) time using 0 (n k)

processors for some constants c > 0 and k > 0 (see [23] for more details). Studying

membership in the class NC has been the focus of the complexity theory for parallel

computation [24, 41].

Recently, several new classifications for parallel algorithms were introduced: fully

parallel [13], almost fu lly parallel [13], and highly parallel [12]. Specifically, a parallel

algorithm is fu lly parallel if it is optimal and runs in 0 (1) time; a parallel algorithm

is almost fully parallel if it is optimal and runs in 0 (a (n)) time, where a (n) is the

inverse-Ackermann function (see [13, 66] for details about the definition of a (n));

an optim al parallel algorithm is highly parallel if it runs in O (loglogn) time. The

notion of fully parallel algorithms represents an ultim ate theoretical goal for paral

lel algorithm designers. However, research on lower bounds for parallel com putation

shows th a t most of the time this goal is unachievable; this is also the case for de

signing almost fully parallel algorithms for the same problems. For example, any

optimal parallel algorithm to find the minimum among n elements requires a t least

fl(log log n) time. A remarkably small number of problems are known for which there

exist optimal parallel algorithms tha t run in O (loglogn) time. The class of highly

parallel algorithms and the challenge of designing such algorithms is discussed in [12].

1.3 Problem s of Interest

We are interested in non-numerical parallel algorithms for basic problems, such as data

structures, selection, searching, merging and sorting, which are also fundamental in

5

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

the sequential setting. Studying the parallel algorithms for these problems is of both

practical and theoretical importance: the parallel solutions can be used as building

blocks to solve complex problems while the techniques developed in the process can

also be useful in solving many other problems. Much of the recent advance in non-

numerical parallel algorithms is due to several algorithmic techniques and the progress

in solving a number of basic problems such as, parallel prefix sum [29], parallel linked

list ranking [21], the Euler tour technique [65], the parallel tree contraction technique

[44], parallel merge sort [20], parallel merging [43, 7, 33].

In this thesis, we study the following problems: priority queues, multiple search

and multiple selection, and reconstruction of a binary tree from its traversals. A

priority queue is a data structure (more formally, an abstract data type) which finds

many applications in software engineering [45], disk scheduling [18, 36], simulation

[32, 30,45, 14], external sorting [8], operating systems [38], and network optimizations

[67, 31]. Due to its far-reaching applications, parallel implementations of priority

queue operations have recently received much attention in literature. In Chapter

2, we give a survey of the current research on parallel implementations of priority

queue operations and also present our research results. Chapter 3 is devoted to two

problems, multiple search and multiple selection. As we will explain later, the purpose

of this chapter is to explore the relationships among four fundamental problems in

algorithm design, i.e. selection, searching, merging and sorting. It turns out that

our parallel solutions can be used as subroutines in algorithms for other problems.

For example, our optimal parallel solution for the multiple search problem can be

used in Hagerup and Rub’s parallel merging algorithm [33] to obtain the optimal

implementation of their algorithm on the EREW PRAM. In Chapter 4 we study a

classical problem which is to reconstruct a binary tree from its traversals [42], We

present an optimal O(loglogn) time parallel algorithm (i.e. highly parallel) for this

problem. Our solution to this problem is of theoretical importance for the following

6

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

reasons: (i) An extremely small number of problems are known to have highly parallel

solutions, and thus designing such algorithms is proposed as a challenge in [12], (ii)

Due to the research on lower bounds in [25], Berkman et al, point out in [12] tha t

doubly logarithmic time parallel algorithms usually need to run on an CRCW PRAM.

(A known exception is Kruskal’s O (loglogn) time parallel merging algorithm which

runs on an CREW PRAM.) They also proposed in [12] a highly parallel algorithm

for the binary tree reconstruction problem on the CRCW PRAM. Compared to their

algorithm, however, our algorithm can be implemented on the CREW PRAM and

hence gives one more example in the class of highly parallel algorithms tha t run on

the CREW PRAM. Finally, we conclude the thesis in Chapter 5. The research results

in this thesis can also be found in [48, 49, 50, 47, 46, 74].

7

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 2

Priority Queues

In this chapter, we consider priority queues. The research results in this chapter

also appear in [46, 48, 49, 50, 51]. A priority queue is a data structure each of whose

elements is assigned a label representing its priority. In this context, the natural order

of the elements in such a structure is dictated by their respective priority. Priority

queues are widely used in software engineering [45], disk scheduling [18,36], simulation

[32,30,45,14], external sorting [8], operating systems [38], and network optimizations

[67, 31], to name just a few (see [10, 38] for a more competent discussion).

More formally, a priority queue can be viewed as an abstract data type maintain

ing a set of keys from a totally ordered universe and supporting the following basic

operations:

Initialization: initialize the priority queue;

Find-min: find the minimum (find the element with the highest priority);

Delete-min: delete the minimum;

ln se r i[x) : insert key x into the structure.

Of course, instead of finding or deleting the minimum we could just as weli insist

8

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

on maintaining the structure such th a t the maximum is operated upon. Depending

on applications [46], priority queues also support other operations such as Meld:

M eld(Q l,Q 2): combine priority queues Q 1 and Q2

The idea of a priority queue can be naturally extended to a double-ended priority

queue where, in addition to Find-min, Delete-min, the operations of Find-max and

Dclctc-max arc also of interest. Double-ended priority queues can be used to support

order-statistic trees [8] which find applications to signal processing [60].

We give some background about priority queue implementations in Section 2.1.

Our research results will be presented in the following sections: a meldable double-

ended priority queue in Section 2.2, and parallel algorithms for initialization of a class

of priority queues in Section 2.3.

2.1 Prelim inaries

Typically, heaps are used to implement priority queues in computer systems. Various

heaps have been invented such as: binomial heaps [73], leftist heap [67, 62], Fibonacci

heaps [31], and relaxed heaps [27]. Here, we are interested in the one proposed by

Williams [75] called the heap. Specifically, a heap is a binary tree with the following

properties:

• heap-shaped properly, all leaves occur on the last two adjacent levels in the struc

ture, with the leaves on the last level being confined to the leftmost position;

all o ther levels are complete.

• min-ordering: every element is no larger than the smallest of its children.

Figure 2.1 illustrates th e heap concept.

I t is well known tha t in the heap implementation of priority queues Find-min

takes 0 (1) time, while both Delete-min and Insert take O(logn) time.

9

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

5

Figure 2.1: A min heap

Due to the heap-shaped property, a nice feature of heaps is tha t they can be

implemented in situ, with no need for additional pointers. As a m atter of fact, an

n-element heap can be stored in an array of size n [10]: an array //[l..n] can be

interpreted as a heap-shaped binary tree if for every i (1 < i < the children

of H [z] are H[2i] and H[2i + 1],

To implement a double-ended priority queue, Atkinson et al. [8] have recently

proposed an interesting variation on the idea of a heap: they defined the min-max

heap as a binary tree such that: (i) it has the heap-shaped property; and (ii) it is

m in-max ordered: elements on even levels are less than or equal to their descendants,

and elements on odd levels are greater than or equal to their descendants. Figure

2.2 illustrates this min-max heap concept. Max-min heaps are defined completely

analogously: such a structure begins with the maximum element a t the root and

then the heap conditions alternate between minima and maxima.

As it turns out [8], when the double-ended priority queue is implemented as min-

max heap, Find-min and Find-max can be performed in 0 (1) time, while Delete-min,

10

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

min level

max level

min level

24] max level

Figure 2.2: A min-max heap

Delete-max, and Insert takes O(logn) time. In addition, Atkinson ei a i [8] propose

an 0 (n) time, and thus optimal, algorithm to initialize a min-max heap.

As an alternative to min-max heaps introduced in [8], Carlsson [15] propose a new

d ata structure called the deap which provides an efficient implementation of a double-

ended priority queue. Formally, a deap is a heap-shaped da ta structure featuring the

following properties: the left (right) sub-tree of the non-existing root is a min-heap

(max-heap); each leaf in the min-heap is smaller than a corresponding leaf in the

max-heap. On an n-element deap, the operations Find-min and Find-max take 0 (1)

time, Delete-min, Delete-max, and Insert take O (logn) time [15, 16]. Moreover, the

deap can be implemented in situ and initialized in 0 (n) sequential time.

2.2 A M eldable D ouble-ended Priority Queue

An interesting problem arising in fault-tolerant distributed simulation [46] is the fol

lowing: assume tha t several (computationally active) sites in a distributed system are

simulating a process. It is sometimes desirable to implement the corresponding event

11

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

lists as double-ended priority queues. Basic fault-tolerant requirements specify tha t

if one of these sites, say 5,-, suddenly becomes computationally inactive, another one

continue the simulation performed by S;. For this purpose, we need to elect a site S j

(i ^ j) which will then im port the event list of S,- and will meld it with its own event

list.

I t is natural to consider first the meldabilities of the existing double-ended priority

queue implementations, i.e. min-max heaps and deaps. To the best of our knowledge,

it is still an open question whether deaps are meldable. However, it has recently been

proven [34] tha t min-max heaps are not meldable, that is, melding two min-max

heaps of sizes n and k , respectively, cannot be done in less than fl(n + k) time. The

inherent structure of the min-max heaps causing this negative result motivates us to

investigate a different da ta structure to implement efficiently a double-ended priority

queue. This data structure can be defined by modifying slightly the structure in

the definition of the min-max heaps. As we are about to show, however, with this

modification the resulting data structure is meldable. This data structure was first

proposed in a different form by Williams [75], and is herewith referred to as the

min-max-pair heap. In essence, a min-max-pair heap is a binary tree H featuring

the heap-shaped property, such tha t every node in H has two fields, called the min

field and the max field, and such tha t H has a min-max-pair ordering: for every i

(1 < i < n), the value stored in the min field of H[i\ is the smallest key in the

subtree of H rooted a t H [i]; while the value stored in the max field H [z] is the largest

key stored in the subtree of H rooted a t i/[i] (see Figure 2.3). We will show tha t

min-max-pair heaps can be implemented in situ, with no need for additional pointers.

As it turns out, when the double-ended priority queue is implemented as a min-

max-pair heap, Find-min and Find-max can be performed in 0 (1) time, while Delete-

min, Delete-max, and Insert take O(logn) time. However, what really distinguishs

min-max-pair heaps from min-max heaps is the fact tha t min-max-pair heaps can be

12

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Figure 2.3: A min-max-pair heap

melded efficiently in sublinear time. More precisely, we show th a t two min-max-pair

heaps with n and k nodes can be melded in O(logfclog^) time.

2.2.1 Basic Operations

Consider an array i/[l..n] as input. For 1 < i < n, each element # [i] of H has two

fields, H [i\.m in and H [i].m ax. Therefore, the array H can be viewed as containing

2n — 1 or 2n keys altogether; in case H contains 2n — 1 keys, the max field /f[n].m ax

contains a special symbol, namely # .

The initialization algorithm for a min-max-pair heap resembles the initialization

of the standard heap structure [10]. Let //[i] be an arbitrary node of the array to

be made into a min-max-pair heap. We further assume tha t for all j (i < j) , the

subtrees rooted a t the children of H[j], namely H[2j] and H[2j + 1], provided they

exist, have been made into min-max-pair heaps. First, we restore the min-max-pair

heap property along the min fields of the nodes in the subtree rooted a t Zf[i], by

trickling down larger keys. We then restore the min-max-pair heap property along

the max fields of the nodes in the subtree rooted a t #[f], by trickling down smaller

13

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

keys. The purpose of this is to ensure tha t the H[i].min and H [i\.max contain the

smallest and the largest keys in the subtree rooted at H [i], respectively. The details

are given below:

P ro c e d u re Initialization(.//[l..n]);

F o r i <— n d o w n to 1 do Siftdown(i/[i]);

end ;

P ro c e d u re Siftdown(//[z]);

/* Subtrees rooted at //[2i] and H[2i + 1] are already min-max-pair heaps * /

Trickledown-min-field(//[i]);

Trickledown-max-field(H [i]);

end ;

P ro c e d u re TrickIedown-min-field(i/[i]);

P «- [*];

if p.m ax < p .m in th e n Swap(p.mm,p.maa:);

i f p is a leaf th e n return;

p i *— child of p with smallest m in field;

i f p i .m in < p .m in th e n

Swap(pl .m in ,p .m in);

Trickledown-min-field(pl);

e n d if

end ;

14

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Procedure Trickledown-max-field is similar to procedure Trickledown-min-field.

The following result establishes the correctness and the time complexity of our pro

cedure.

T h e o re m 2.2.1 Procedure Initialization correctly constructs a min-max-pair heap

structure over 2n o r2 n — l keys in 0 (n) time.

P ro o f. To settle the correctness we notice the following: For every H[i] (2 < i <

n), when Trickledown-min-field(//[i]) (resp. Trickledown-max-field(//[i])) terminates,

H[i}.min (resp. II[i\.max) contains the smallest (resp. largest) key in the subtree

rooted a t H[i], while the subtrees rooted a t H[2i\ and II[2i 4-1] (provided they exist)

are min-max-pair heap; this is easily seen by induction on the height of node

Therefore, when Initialization(//[l ..n]) terminates, the whole structure is made into

a min-max-pair heap.

To address the complexity, consider what happens in procedure Trickledown-min-

field when node H[i\ is being processed. To ensure tha t Zf[i].min < H[i].max and to

determine the child of H[i] with smallest m in field three comparisons are required.

Consequently, the total number of comparisons to perform initialization is at most:

53 3(log n — log i *f 1)

which is 0 (n) . □

Next, we show th a t performing the standard operation Jnserf(:r) and Delete-min

as well as Delete-max can be done in O(logn) time. Basically, the idea of inserting a

new element x into a min-max-pair heap is the same as the insertion of a new element

into a standard heap. We first place the new key a t the bottom of the structure and

then perform the well known bubble-up operation. Just as in the case of heaps, the

time complexity of the Insert(x) operation for the min-max-pair heap is dominated

by the cost of the bubble-up which is easily seen to O(logn) as shown in the following

procedures:

15

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

P ro c e d u re Bubbleup(//[i]);

V + - # [*];

b «— fa ls e ;

if p.m in > p.m ax th e n Swap{p.mm,p.max);

i f p is the root th e n return;

p i *— the parent of p;

if p i .max < p.m ax th e n

Swap(pl .m ax, p.max)\

b *— true

en d if

if p i .mm > p .m in th e n

Swap (p l.m in , p.min);

b *— true

e n d if

if b th e n Bubbleup(pl);

en d ;

P ro c e d u re Insert(x ,/f[l..n]);

if H[n].max = *#' th e n

i/[n].m ax *— x;

else

r n - n + 1;

H[n].min +— x

16

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

H \n\.m ax <—

e n d if

Bubbleup(/f[n]);

end ;

Similarly, the idea of Delete-min and Delete-max resembles the corresponding

operations on heaps. The details are spelled out in the following procedures. It is an

easy m atter to confirm tha t both these operations can be executed in O(logn) time,

while Find-min and Find-max take 0(1) time.

P ro c e d u re D elete-m in(/f[l..n]);

if H\n].max = th e n

//[lj.m in *—

i n - n - l ;

e lse

H [l\.m in *— H[n\.max;

H[n].max ♦—

e n d if

TrickIedown-min-field(i/[l]);

end ;

17

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2.2.2 Melding

Recently, Sack and S trothotte [61] proposed an efficient algorithm to meld two heaps

in sublinear time. Specifically, melding two heaps of size n and k can be done in

O(log fclog 2) time. The general case of the heap-melding algorithm in [61] reduces,

in stages, to tha t of melding perfect heaps. (A heap H is perfect if the leaves occur a t

the last level only.) The idea in [61] is very elegant: first, to meld two perfect heaps

H i and H 2 of equal size, make the rightmost leaf of H 2 into the new root, whose

children will be the old roots of H i and 112. After this, the new root is sifted down

to restore the heap property.

Next, let H i and H2 be two perfect heaps of sizes n and k , respectively, with

k < n. S tart at the root of I I I and compare it to the root of / / 2; if the root of H 2 is

smaller than the root of H i then exchange the two roots and perform a “sift-down”

on H2. This operation is repeated along the path (Walk-down) in H i from the root

down to the leftmost leaf of H i for log j steps.

We show tha t the heap melding algorithm in [61] can be adapted to meld two

min-max-pair heaps in sublinear time. We shall therefore focus on melding perfect

min-max-pair heaps, tha t is, min-max-pair heaps whose leaves occur a t the last level

only. We refer interested readers to [48] where the tedious details are provided.

Just as in [61], to reduce the am ount of data movement during the execution of our

melding algorithm, we shall assume a pointer-based implementation. In this context,

a min-max-pair heap node v contains the following fields:

• v .m in and v.max fields;

• v.lchild contains a pointer to the left child of v in the min-max-pair heap;

• v.rchild contains a pointer to the right child of v in the min-max-pair heap;

It is convenient to assume tha t depth(H) returns the depth of the min-max-pair

heap H in constant time. The details of our melding algorithms are as follows.

18

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

P ro c e d u re M eld-perfect-equal(//i, / / 2);

/* Hi and / / 2 are two min-max-pair heaps of same size * /

p <— the last node in / / 2

remove p from H2\

p.lchild i— IIi)

p .r child *— / / 2;

Siftdown(p);

H i * - p \

en d ;

P ro c e d u re M eld-perfect(//n, //*);

p <— node on the path from the root to the leftmost leaf in H n,

such tha t the subtree rooted a t p has k nodes

r «— root of H„)

Walk-down (Hn,H k,r,p))

p i <— parent of p;

Meld-perfect-equal(p, Hk)’,

i f p i ^ nil th e n pl.lchild <— p;

else Hn *— p

en d ;

P ro c e d u re Walk-down(Hn, Hk, f rom, to))

I* Hn is a min-max-pair heap with n nodes;

Hk is a min-max-pair heap with k nodes;

19

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

‘from ’ is the starting location of current operation

on the path from the root in //„ to the leftmost leaf;

‘to ’ is the ending position of the operation */

if Ilk .m in < fro m .m in th e n Swap(//jt.min, f rom.min);

if Hk-max > fro m .m a x th e n Swap{Hk.max, from .m ax);

Siftdown (Hk)]

if f r o m = to th e n return;

else

next <— from .lchild

Walk-down{//n, Ilk, n ex t , to);

e n d if

en d ;

It is easy to see th a t the complexity of our algorithm is exactly the same as tha t

of the heap-melding algorithm in [61].

T h e o re m 2 .2 .2 Two min-max-pair heap o f n and k elements, respectively, can be

melded in 0 (log k log j) time. □

2.2.3 Discussion

We have shown in this section that min-max-pair heaps are meldable. It is interesting

to see th a t the idea which leads to the min-max-pair heap can be further expanded.

As an example, we define a min-min-pair heap as a heap-shaped binary tree with each

20

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

oo

Figure 2.4: A min-min-pair heap

node p, containing two fields called m ini and minS , respectively. The value of m ini

is the smallest of all the values stored in the subtree rooted a t p\ min2 contains the

smallest of all the values stored in the min2 fields of all nodes in the subtree rooted at

p. Finally, for every node q in the subtree rooted a t p, p.min2 > q.min 1 (see Figure

2.4).

An interesting feature of a min-min-pair heap is th a t the m in i field of the root

contains the minimum value in the whole structure, while minS of the root contains the

median of the whole structure. As it turns out [48], a min-min-pair heap containing

2n — 1 or 2n keys can be initialized in O(n) time. Clearly, the operations Find-min

and Find-median can be performed in 0 (1) time. Similarly, In ser t(x) , Delete-min

and Delete-median can be done in O(logn) time [48]. Similarly, one can define a max-

max-pair heap and a max-min-pair heap [48]. Unfortunately, none of these variations

of the min-max-pair heap are meldable in sublinear time.

Finally, an interesting open question is whether or not deaps are meldable in

sublinear time. In particular, it would be interesting to see whether the techniques

in [61] can be extended to meld deaps.

21

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2.3 Parallel Im plem entations of Priority Queue

O perations

In this section, we study the parallel implementation of priority queue operations.

Priority queues have been used in a wide variety of parallel algorithms, e.g. mul

tiprocessor scheduling, graph search, and branch-and-bound algorithms [57, 56, 59].

In 1983, Yoo [76, 57] parallelized the Deletc-min operation on a priority queue im

plemented by a heap, in order to obtain a parallel version of Kruskal’s minimum

spanning tree algorithm. In particular, he showed th a t although a single Delete-min

operation on an n-element heap required O (logn) time, by using a software pipelin

ing technique a new Delete-min operation can begin after only 0 (1) time. In 1987,

Biswas and Browne studied simultaneous updates of priority queue structures: their

scheme allows O (logn) processors to be active on a heap. In 1988, Rao and Kumar

[59] presented an interesting approach to allow concurrent Insert and Delete-min op

erations on the heap in the shared memory MIMD computation model. Their main

contribution is to have changed the traditional Insert from the well known bottom

up fashion to a novel top-down approach. In their scheme, several Insert and Delete-

min operations can be active simultaneously without causing deadlocks. In addition,

their scheme retains the strict priority ordering of the serial-access heap algorithms;

i.e. a Delete-min operation returns the smallest key of all the keys in the structure,

including those whose insertion is in progress. Concurrent insertions and Delete-min

operations on a priority queue implemented by skew heaps were studied by Jones

[40]. he showed th a t on an MIMD shared memory model both Insert and Delete-min

operations on an n-element skew heap can performed in O (logn) tim e but, using

pipelining, a new operation can begin after only 0 (1) time. Quinn [57] reports a

parallel initialization algorithm (due to Yoo) of a priority queue implemented by an

n-element heap in 0 ((lo g n)2) time using 0 (n) processors on an MIMD model. It

22

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

is obvious th a t Yoo’s initialization algorithm is not cost-optimal. All the parallel

priority queue schemes above use heaps in which internal nodes contain ju st one key.

Most recently, Deo and Prasad [26] and Pinotti and Pucci [54] proposed similar

variations on the traditional heap structure. Their da ta structure (called bandwidth

heap in [54] and parallel heap in [26]) has the heap-shaped property, with every in

ternal node containing k elements, for some k. In [26] and [54] concurrent insertion

and deletion operations on this new data structure are also investigated. Network

implementation of simultaneously accessible priority queue is studied in [28].

In Section 2.3.1, we will present a parallel algorithm for melding priority queues

which will be followed by optimal parallel initialization algorithms for a class of pri

ority queues in Section 2.3.2.

2.3.1 A Parallel Melding Algorithm

In this section, we consider melding priority queues in parallel. We propose a method

to parallelize Sack and S trothottes’s heap melding algorithm [61] (they called it heap

merging in [61]). As it turns out, our method can also be applied to obtain a parallel

melding algorithm for double-ended priority queues implemented by min-max-pair

heaps.

To reduce the amount of d a ta movement during the execution of parallel melding

algorithm, we shall assume a pointer-based implementation. In this context, a heap

node v contains the following fields:

• v.key contains the key stored a t node v;

• v.lchild contains a pointer to the left child of v in the heap;

• v.rchild contains a pointer to the right child of v in the heap;

O ur parallel algorithm relies, in part, on a new version of the well known “sift-

down” procedure used for restoring the heap property (see [10] and [49]). More

23

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

precisely, several elements of H will be sifted down in parallel. Initially, the root of H

is assigned one processor which proceeds to siftdown for two tim e units; after that, a

new processor is assigned to the (new) root, all active processors acting on I I proceed

to siftdown for two time units, and so on. It is im portant to note th a t a processor

continues to be active as long as it can sift down. After this, it becomes inactive

and will stay inactive until it is reassigned to the root of II at a later moment, in

a cyclic way. To justify the idea of the processor assignment we note tha t if we use

at least t = depth(H) processors Po,Px, . . . ,P t- u and if the processors are assigned

modulo depth{H) then, we are always guaranteed to assign only inactive processors.

It is clear that this processor allocation scheme avoids read and write conflicts in II.

As a m atter of convenience, we assume tha t every processor P, (0 < i < t — 1) stores

in its local memory the following information:

• current(P;), standing for the node in I I where P; is currently at;

• active(Pi), which is either a 1 or a 0 depending on whether or not P; is active.

The initial value is 0.

The details of the processor allocation scheme and siftdown are presented in pro

cedures Siftdown and Parallel- Walkdown.

P ro c e d u re Siftdown(i^);

v <— current(Pi),

let w be the child of u with the smallest key;

if v.key > w.key th e n

Swap(u.fcei/, w.key)',

current(Pi) *— w

else

24

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

active(Pi) 0; {deactivated}

end;

Call a heap / / perfect if the leaves occur a t the last level only. The general case

of the sequential heap-melding algorithm in Sack and S trothotte reduces, in stages,

to th a t of melding perfect heaps. We shall therefore, focus on melding perfect heaps

in parallel. First, melding two perfect heaps heap1 and hcap2 of equal size can be

easily done sequentially: make the rightmost leaf of heap2 into the new root whose

children become the old roots of heapl and heap2, after which the new root is sifted

down to restore the heap property. We shall refer to this simple procedure as Meld-

Equal-Perject-Hcaps.

Next, we present the procedure Parallel-Walkdown which is a t the heart of our

parallel algorithm.

P ro c e d u re Parallel-W alkdow n(/ieapl,/rom , to, heap2)\

/ * d ep th (h ea p l) > depth(heap2) * /

t <— m m { d e p th { h e a p 2) ,d e p th (h e a p l) — depth(heap2)} \

/* We use t processors, P0, P u . . , P t - n to

restore the heap property on heap2 * /

3 0;

fo r i <— 0 to t — 1 d o in parallel

act ive(Pi) <— 0;

fo r i <— 0 to dep th (heap l) — depth(heap2) do

if f r o m . k e y > root{heap2) .key th e n

25

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Swap(from .key , root(heap2).key)-,

assign processor Pj to root(heap2);

j (j + 1) mod t ;

endif;

fo r c <— 1 to 2 do

all active processors Pj do in parallel

Siftdown(Pj);

f r o m «— from.lchild;

en d fo r ;

/* let all active processors siftdown as far as they can */

fo r i 1 to depth(heap2) do

all active processors Pi do in parallel

We can now present the details of a parallel procedure to meld two perfect heaps.

P ro c e d u re Parallel-M eld-Perfect-Heaps(/teapl,heap2)\

Siftdown(P<);

en d ;

0. d\ *— depth(heapl)-,

1. d2 <— depth[heap2)\

2 . u «— root(foeapl);

3. fo r k *— 1 to dy — d2 — 1 do

26

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4. u <— u.lchild;

5. to «— u;

6. Parallel-W alkdown(/ieapl, roof (/ieapl), to, heap 2);

7. u <— to.lchild;

8 . Meld-Equal-Perfect-Heaps(5u6Aecp(/ieapl,u), hcap2)',

9. Add the root of the new heap as the leftchild of to\

en d ;

T h e o re m 2.3.1 Procedure Parallel-Mcld-Perfect-Heaps correctly melds two perfect

heaps heap1 and heap2 with n and k nodes, respectively, in O (logn) time on an

E R E W P R A M with min{ [log nj — [log fcj, [log fcj } + 1 processors.

P ro o f . To begin, we note tha t di = [lognj and d2 = [log k \ . T he correctness

follows directly from Lemma 2.1 in [61], together with the observation th a t when all

processors become inactive, heap2 is guaranteed to be a heap. Afterwards we use the

sequential algorithm to meld perfect heaps of equal size, as describe above. To argue

for the running time, we note that by assumption lines 1-2 take 0 (1) time. Lines

4-5 and 7 take 0 ([lo g n j — [logk\) time. Altogether, the time complexity of the

algorithm is O (logn). From the previous discussion about the parallel-siftdown, we

know th a t no memory conflict is possible. Therefore, the computation can be carried

out on an EREW PRAM, using m in{[lognj — [logfcj, [logfcj} + 1 processors. □

27

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2.3.2 Parallel Initialization Algorithms for A Class of Pri

ority Queues

In this section, wc present a technique for inducing a class of priority queue structures

upon an n-element array. As examples, we show that this technique can be applied

to initialize a heap, a min-max heap, a min-max-pair heap, and a deap in 0 (^) time

using p (1 < p < r j ~ l) processors on an EREW PRAM.

As it turns out, once these data structures implementing double-ended priority

queues have been initialized, the techniques in [59] can be applied directly to obtain ef

ficient concurrent Insert, Delete-min, and Delete-max operations. As a result of these

efficient concurrent operations on double-ended priority queues, efficient concurrent

operations on order statistics trees [8] can be obtained.

Throughout the rest of the section, we assume tha t processors P i,P 2 ,.-.,Pp {1 <

P - f i ^ D a r e a v a i la b le -

Initializing Heaps

Our terminology pertaining to binary trees is borrowed from [10]. Recall th a t an array

H[l..n] can be interpreted as a heap-shaped binary tree if for every i (1 < i < [^ J),

the children of H[i] are / / [2i] and H[2i -f 1]. When no confusion is possible, we shall

refer to the array //]l..n] simply as H.

For further reference we shall review basic properties of heap-shaped binary trees.

Let H be a heap-shaped binary tree with n nodes. The following statements are

satisfied (see [10] for proofs):

(A . l) The depth of H is exactly flog «].

(A.2) For all i = 0 ,1,..., [lognj — 1, there are 2' nodes a t level i.

(A .3) The nodes a t level i (1 < i < [lognj), are 2‘,2 ‘ -f 1 ,...,2 '+1 — 1, provided they

exist.

28

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

(A .4) A binary tree of depth d has at most 2J+1 — 1 nodes.

Writing k — [logpj.

(B) There are a t most p subtrees of H rooted a t nodes of level k.

(To see th a t this is the case, note tha t by (A.2), the number of these subtrees is

2 k < 2,0s p = p .)

Let Hi 2k < i < 2fc+1 — 1) be the subtrees of H rooted a t nodes of level k. Next,

we claim that:

(C) Every 11; 2k < i < 2A+I — 1) contains at most ^ nodes.

To justify this claim, note that by virtue of (A .l) and by our choice of k, the depth

of every such Hi is exactly [log nj - k= [log nj — [log pj < log n — log p + l= log £ + 1 •

Now (A.4) guarantees tha t the total number of nodes in //,- is bounded above by

21o8 p+2 — 1 < —. Furthermore, we note that:
— p i

(D) 2k - 1 < p

(Trivially, 2fc - 1 < 2logp - 1 < p.)

Perhaps the easiest way to explain our technique is by showing how to induce a

heap structure on H. For this purpose, we proceed in the following two stages (see

Figure 2.5):

S ta g e 1. W riting k = |_Log p j, assign one processor to each of the subtrees Hi

(2fc < i < 2fc+1 — 1). By (B), at most p processors are assigned in this way; by (C)

each subtree contains a t most —1 nodes of H. The unique processor assigned to Hi

makes H{ into a heap in O (^) sequential time.

S tag e 2. We propose to “grow” in parallel the heaps Hi (2fc < i < 2t+1 — 1) into

H itself by adapting the well known sequential trickle down. For this purpose, the p

processors are redistributed to the first 2fc — 1 nodes of H , one processor per node.

Note th a t by (D) this can be done using at most the p processors a t our disposal. At

this stage, it is convenient to assume that every processor Pi (1 < i < 2k — 1) stores

29

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

level 0

At most p nodes
in the upper part

level k-2

level k-1

level k

At most p subtrees in
the lower part, each
of size a t most —

(1) Construct the substructures (e.g. heaps) for
the subtrees in the lower part.
(2) Reassign the processor to the upper part, one
processor per node. Trickle down the numbers in
this part, level by level in a pipelined fashion

Figure 2.5: The parallel initialization scheme for priority queues

30

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

in its local memory the following information:

• current(Pi), standing for the node in H which Pi is processing. Initially,

current(Pi) = i;

• active(Pi), which is either a 1 or a 0 depending on whether or not P{ is active.

The initial value is 0 .

Every element of H a t level 0 through k — 1 will be trickled down in parallel. As

it turns out, it is convenient to assume tha t the processor P{ initially assigned to H[i\

(i = 0, 1, . . . ,2fc — 1) will move along with the key contained in H[i}. To avoid read

and write conflicts among processors we proceed in a pipelined fashion: we begin by

activating the processors a t level k — 1 which will proceed to “trickle down” two levels.

After this, the processors at level k — 2 will begin to trickle down, and so on. Every

processor remains active until it reaches a leaf where it will become inactive.

Naturally, in moving down from a node w to one of its children, processor P

does the following: let v stand for the child of w with the smallest key; if key(iu) is

larger than key(u), they are swapped. The details of this procedure are spelled out

as follows:

P ro c e d u re Parallel-Trickledown(Pi);

1. j *— current (P,);

2 . t «— the index of the child of H\j] with the smallest key;

4.

3. if fcei/(If[j]) > fcej/(i/[i]) th e n

S\v&p{key{H [?]), fcej/(//[t]));

31

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

5. currcnt(Pi) <— t ;

6. i f H[t\ is a leaf th e n

7. active(Pi) 0

end ;

We are now in a position to show th a t the different pieces of our heap initialization

algorithm fit together.

P ro c e d u re Parallel-Initialize-Heap(//[l..n]);

I n p u t : an array I/[l..n] containing n key from a totally ordered universe U\

O u tp u t : the same array, organized as a heap;

1. k <— [log p j ;

2 . fo r all i, (2fc < i < 2*,+1 — 1) do in parallel

3. construct the heap Hi rooted a t i;

4. fo r all i, (1 < i < 2k — 1) do in parallel

5. assign processor Pt- to //[*];

6. cu rren t(P i) <— i;

7. active(P{) 0; {all inactive}

8. en d fo r

9. fo r level *— k — 1 dow n to 0 do

10. fo r all active processors Pi with [log current(-P.-)j = level do in parallel

11. active(Pi) <— 1;

12. fo r all active processors Pi do in parallel

32

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

13. Parallel-Trickledown(P,);

14. for all active processors Pi do in parallel

15. Parallel-Trickledown(Pi);

16. en d fo r;

17. /* Let all processors trickle down as far as possible */

18. fo r i «— 1 to [log nj do

19. fo r all active processors Pj do in parallel

20. P arallel-Trickledown (P j);

21. re tu rn(/f)

end;

T h e o re m 2.3 .2 An n element array /f[l..n] can be made into a heap in O (^) time

using p (1 < p < [j ^ l) processors on an E R E W PRAM.

P ro o f . To show the correctness of the procedure, we note the loop in lines 18-20

guarantees that, eventually, all processors will become inactive. Therefore, we only

need prove that:

when all processor Pi are inactive, H is a heap.

Suppose not; we find an index j (1 < j < such th a t

H\ji] > Tcdn{H\lj\,H\2.j + l]}. This cannot occur as the result of a swap in line

4 of Parallel-Trickledown. Hence, no processor P,- has had current(Pi) = j . By

our processor allocation scheme specified in lines 4-8 of Parallel-Initialize-Heap it is

impossible tha t j 6 [l,2 fc—1]. On the other hand, if 2fc < j < then H \j\ belongs

to precisely one of the heaps Hi constructed in lines 2-3 of Parallel-Initialization-

33

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Heap, so the violation of the heap property cannot occur at H[j]. Therefore, we find

a contradiction.

It is easy to see th a t no active processors can be involved in read or write conflicts

in procedure Parallel-Initialize-Heap (note tha t inactive processors cannot create read

or write conflicts). It follows tha t the computation can be performed in the EREW

model of computation. To address the complexity, we note tha t, by our previous

discussion, lines 2-3 take O (^) time using a t most p processors. Lines 4-8 take 0 (1)

time and p processors.

Clearly, every invocation of the procedure Parallel-T rickledow n^) takes 0 (1)

time. Consequently, lines 9-16 run in 0 (k) time, while lines 17-20 take O (logn) time

using a t most p processors. W ith this the proof of the theorem is complete. □

Initializing Min-max Heaps

Next, we propose to show tha t our technique can also be applied to min-max heaps.

Consider, again, an array H [l..n] that we want to make into min-max heap.

The first stage of our parallel min-max heap initialization algorithm is almost the

same as Stage 1 in the previous section: we assign one processor to each subtree Hi

(2fc < i < 2fc+1 — 1) of H , and let every assigned processor make Hi into a min-max

heap or a max-min heap depending on whether [log tj is even or odd. Since every Hi

contains a t most ~ keys, this takes O (^) time using the sequential algorithm in [8],

Once this step is completed, the p processors are reassigned to the first 2k — 1

elements of H. The idea of the second stage is to “grow” in parallel the min-max

heaps Hi (2fc < i < 2fc+1 — 1) into H itself, by adapting the Trickledown procedure

in [8]. More precisely, every element of H a t levels 0 through k — 1 will be trickled

down two m in (resp. m a x) levels in parallel in a pipelined fashion: we s ta rt with the

elements at level k — 1 which will proceed to “trickle down” for two m in (resp. max)

levels; after this, in parallel, the elements at level k — 2 will begin the “trickle down”,

34

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

and so on. As for heaps, it is convenient to assume th a t processors move along with

elements; every processor keeps moving down until it reaches the leaf level, where it

becomes inactive.

For definiteness, we show the actions taken by a processor P performing a trickle

down from a node w situated a t m in level (trickle down from a max level is similar):

if w has grandchildren th e n

v «— the grandchild with the smallest key field;

if key(v) < key(w) th e n

Swap (fcey(v), key(w))\

i f key(v) > key(pareni(v)) th e n

Swap(key(v), key(parent(v))y,

processor P moves down to v;

e lse /* w has no grandchildren * /

u <— the child with the smallest key;

if key(u) < fcey(to) th e n

Swap(fcey(u), key(w))\

processor P moves down to u;

T h e o re m 2 .3 .3 An n element array /f[l..n] can be made into a min-max heap in

0 (~) time using p (1 < p < [j ~ l) processors on an E R E W PRAM .

P ro o f . To settle th e correctness, we note th a t, eventually, all processors will reach

a leaf node, thus becoming inactive. Therefore, we only need prove tha t when this

happens, H is a min-max heap.

35

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

We proceed by contradiction. If the statem ent is false, then let j (1 < j <)

stand for the subscript at which a violation of the properties of the structure occurs.

Symmetry allows us to assume, without loss of generality, th a t [log j j is even (i.e. j

is a t a m in level). Trivially, the following predicate is satisfied:

(HUl > «n i«{ //[2 j], H[2j + l]})o r(//£ i] > m in { //[4 j] , / / [4 j + I], //(-Ij + 2], H[4j + 3]})

T hat is, H[j] is larger than the smallest of its children or grandchildren. Note that

obviously, this cannot occur as a result of a swap in a trickle down. Consequently, no

processor P has “visited” I l \ j \ during our construction algorithm. By our processor

allocation scheme, it is impossible th a t j 6 [1, 2fc — 1], On the other hand, if 2k < j <

I /tM > th en H \ j] belongs to precisely one of the min-max heaps a contradiction.

Furthermore, it is easy to see th a t our way of organizing computation makes

read/w rite conflicts impossible, and so the computation can be performed on an

EREW PRAM. By our allocation scheme, we only use p (1 < p <) processors;

the running time is clearly bounded by O (^). □

Initializing Min-max-pair Heaps

Consider an array if[l..n] as input. For 1 < i < n, each element i/[i] of H has two

fields H[i].min and H[i].max. Therefore, the array H can be viewed as containing

2n — 1 or 2n keys altogether. In case H contains 2n — 1 keys, the m ax field of I/[n]

contains a special symbol namely # .

To make H into a min-max-pair heap, we use a technique similar to the one

developed previously. However, instead of having two stages, our parallel min-max-

pair heap initialization algorithm contains three stages. Stage 1 is quite a reminiscent

of Stage 1 of the algorithm in the heap initialization algorithm: as a first step, letting

k stand for [log p j , our algorithm assigns one processor to each of the subtrees Hi of

36

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

H rooted at Hi (2k < i < 2k+1 — 1). The unique processor assigned to makes Hi

into a min-max-pair heap in 0 (^)tim e , using the sequential algorithm in [46].

After Stage 1, the processors arc redistributed to the first 2k — 1 elements. Again,

to avoid read and write conflicts among processors, we activate the processors in a

pipelined fashion. That is, we start with the m in fields at level k — 1 which will proceed

to trickle down for two levels: after this, in parallel, the m in fields a t level k — 2 will

begin to trickle down, and so on. Just as for the case of heaps, it is convenient

to assume tha t processors move along with the key value in the m in fields; every

processor keeps moving down until it reaches the leaf level, a t which point it becomes

inactive. Finally, in Stage 3, all p processors are reassigned the first 2k — 1 elements

to trickle down the m ax fields of these elements in parallel. To give the reader an

idea, we show the actions taken by a processor P when performing a trickle down of

the m in field of a node w (trickle down on a m ax field is completely similar):

if w .m in > w .max th e n

Swap(io.mm, lu.m ai);

v *— the child of w with the smallest m in field (if exists);

i f w.min > v .m in th e n

Swap(to.min, v.min);

Processor P moves down to v.

T h e o re m 2.3 .4 An n element array /f[l..n] can be made into a min-max-pair heap

in O (^) time using p (1 < p < [j ^ l) processors on an E R E W PRAM .

P ro o f . To settle the correctness we only need to prove tha t when all processors are

inactive, H is a min-max-pair heap.

37

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

To begin, we notice tha t when all processors are inactive, H[j].min < H[j].max,

for all subscripts j (1 < j <)• If not, we find a subscript j such tha t H\j].m in >

H\j].max. Clearly, this situation cannot arise from a swap operation. Consequently,

it must be the case that no processor P has “visited” H\j] in Stage 2 or 3. By our

processor allocation scheme it is impossible that 1 < i < 2k — 1; if 2* < j <

then H\j] belongs to precisely one of the min-max-pair heaps a contradiction.

To settle our main claim, we proceed by contradiction. If the statem ent is false,

then let j (1 < j <) stand for the smallest subscript a t which a violation of the

properties of the min-max-pair heap occurs. Symmetry, together with our previous

observation, allows us to assume that the following predicate is true:

> H[2j].min)or(H[j].min > H[2j}.max)

Again, we note that this cannot occur as the result of a swap operation. It

follows th a t no processor P has “visited” H\j}. By our processor allocation scheme,

this is impossible for j to be in the range [l < j < 2k — l] ; on the other hand, if

2k < j < LnfMi th en H \j\ belongs to precisely one of the min-max-pair heaps Hi,

a contradiction. Therefore, the above predicate cannot be true and the conclusion

follows.

To see the complexity, we note tha t since no read or write conflicts can arise (due

to our way to perform the trickle down operation), the computation can be performed

on an EREW PRAM. The first stage of our algorithm runs in O (^) time. Stages 2-3

can be performed in 0(log n) time using p processors. Therefore, the algorithm runs

in 0 (^ -f logn) = O (^) time using p (1 < p < [j—]) processors on an EREW

PRAM. □

Initializing Deaps

Consider an array H[l..n + 1] with i/[l] undefined and such that I f [2],.., H[n + lj

contain n arbitrary keys from a totally ordered universe. To motivate our approach,

38

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

it is useful to note tha t when I I becomes a dcap i f [2] is the root of the corresponding

min heap, while if[3] is the root of the corresponding max-heap (see [15] for more

details about the dcap properties). Furthermore, it is easy to see tha t the entries at

level i in the min-heap are 2 x 2 ', 2 x 2 ' + 1, 2 x 2' + 2, ..., 2 x 2 ‘ + 2' - 1 provided

they exist; similarly, the entries a t level i in the max-heap (i.e. the right subtree of

/ /[l]) are 3 x 2 \ 3 x 2 i + l , 3 x 2'' + 2, ..., 3 x 2 ' + 2'- - 1.

To construct a deap we mirror the scheme presented a t the beginning Section

2.3.2: in the first stage, with k = jjogpj, we assign one processor to each pair of

subtrees (if t , II t>) of I I rooted a t II[i] and i f [<'] with t = 2 x 2fc + j , and t' = 3 x 2k+ j

(1 < j < 2k — 1). Every assigned processor makes its pair of subtrees into a deap in

0 (j}) time as in [15]. After this, the p processors are redistributed to the first 2* — 1

elements of II. To make our description more transparent, it is helpful to imagine a

deap as in Figure 2.6.

The nodes of I I of the form i f [s] with s = 2 x 2' + j such tha t 0 < i < k and

(1 < j < 2‘ — 1) will be called upper nodes; and all the nodes of the form i f [s'] with

s ' = 3 x 2 ' + j such th a t such th a t 0 < i < k and (1 < j < 2’ — 1) will be called lower

nodes. We also call a pair subtrees (as shown in Figure 2 .6) respectively rooted at

s = 2 x 2' + j and s' = 3 x 2' + j (0 < i < k, 1 < j < 2' — 1) a diamond. It is easy to

see th a t the diamond in Figure 2.6 is bottom-heavy, i.e. the smallest key is a t node

s and the largest key a t node s'. Now the remaining part of our algorithm is divided

into two stages.

In Stage 2, the processors are assigned to the upper nodes only. Every upper

node is trickled down in parallel in a pipelined fashion. This trickle down differs from

the standard one as we are about the explain. In Stage 3, the lower nodes receive

processors and they will trickle down (moving up in Figure 2.6) as in Stage 2.

Again, to show the idea, we give the action by a processor P located a t an upper

node i f [s] when it performs a trickle down in Stage 2 (Stage is perfectly symmetric).

39

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

S contains the smallest
key in the sub-diamondupper nodes

S’ contains the largest
key in the sub-diamondlower nodes

Figure 2 .6 : A new way to look a t the deap

40

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

For simplicity, we let s' stand for s + 2', s' is the other end of the diamond as shown

in Figure 2 .6.

if fccr/(i/[s]) > key(H[s']) th e n

S\vnp(key(H [s]) ,kcy(H [sf}))-,

J/[t>] *— the child of //[s] with the smallest key;

if fcey(//[s]) > key(Ii[v]) th e n

Swap (ke y (H [s]), key (H [u]));

Processor P moves down to / / [v].

T h e o re m 2 .3 .5 An array + 1] with /f[l] unused can be made into a deap in

0 (2) time using p (1 < p < [j j^ D processors on an E R E W PRAM. □

D iscussion

We presented in Section 2.3.2 a technique to develop optimal parallel initialization

algorithms for a class of priority queues. As examples, we have applied our technique

to initialize priority queues implemented by heaps, min-max heaps, min-max-pair

heaps, and deaps. The basic idea is first to partition the original structure into a

number of smaller substructures for which existing optimal sequential algorithms are

readily applicable. After this first stage, the algorithm proceeds to grow these smaller

structures, in parallel, to obtain the final structure. Our point is tha t this method

ology works well for the data structures we discussed in this section. An interesting

question is whether this methodology can be applied to other data structures.

41

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 3

M ultiple Search and M ultiple

Selection

Searching, merging, sorting and selection are the most fundamental problems in the

design and analysis of algorithm [4, 1, 42]. In this chapter, we study the natural

extension of these problems. The research results in this chapter can also be found in

[52, 74]. Our research results are of both theoretical and practical interests because,

on one hand, they reveal the relationships between these fundamental problems; on

the other hand, they can be used as basic building blocks for developing algorithms to

solve complex problems. For example, our optimal parallel solution for the multiple

search problem can be used in Hagerup and Rub’s parallel merging algorithm [33] to

obtain the optimal implementation of their algorithm on the EREW PRAM.

The problems discussed in this chapter are the multiple search problem and the

multiple selection problem. They are defined as follows:

M ultiple Search Problem: Let A = au a2, . . . ,a n and B = bl ,b2,...,bm be two

sorted sequences of items. Determine, for each (1 < i < n), the item bj such th a t

6j_ i < a,- < bj (if necessary, we let 6j_ i = — oo or bj — oo).

The multiple search problem is im portant because it generalizes two problems:

42

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

searching and merging. It is easy to see tha t the multiple search problem is an

extension of searching. We will show in Section 3.1 th a t it is also a generalization of

merging. Therefore, this is a unification of searching and merging.

Multiple Selection Problem: Given an unsorted set S of n items from a totally

ordered universe and a set Q of m integers 1 < qi < q2 < ... < qm < n, answer the

query “find the g,--th smallest element in 5 ” for i = 1, 2 , ...,m .

The multiple selection problem is a natural extension of the traditional (single)

selection problem. Moreover, if m = n the problem is equivalent to sorting. Hence,

the multiple selection problem bridges the gap between selection and sorting.

For simplicity of our presentation, we make the following assumptions: (1) If we

say “a sequence is sorted,” we mean that “the sequence is sorted in non-decreasing

order (or in increasing order, whenever necessary)” . (2) We limit our discussion to

any set of items (e.g. real numbers) over which there is a natural linear order “< ”.

Before discussing the solutions for the multiple search and the multiple selection

problem, we would like to give a brief literature review for the four fundamental

problems, selection, searching, merging and sorting. The problem of selection is to

find the fc-th smallest element in a sequence of n elements (unsorted). It is well known

th a t the sequential complexity of this problem is 0 (n). On the comparison model

[70] (in this model, only the time used for comparisons is counted), the following

results have been obtained: upper bounds of 0 ((loglogn)2) time using n processor

by Cole and Yap [22], and O (loglogn) time using n processors [3]; a lower bound

of fi(loglogn) time using n processors. On the PRAM, the following results have

been achieved: upper bounds of 0 (log n log log n) time using C (iogni”gi08n) processors

on the EREW PRAM by Vishkin (reported in [19]), or in (log n log* n) time using

Q (iog nU>8*n) P r e s s o r s on the EREW PRAM [19], or in time using

optim al number of processors on the CRCW PRAM [19]. The problem of searching

is to look up an item (e.g. a number) in a sorted sequence of size n . The following

43

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

results have been achieved: time using p processors on the CREW PRAM

by Kruskal [43]; an upper bound + 1°6P) time using p processors on the

CREW PRAM by Kruskal [43]. To merge two sorted sequences of size n, optimal

parallel algorithms have been proposed: 0 (logn) time using O (j ^) processors on

the EREW PRAM [7, 33], or in © (loglogn) tim e using 0 (log[[)ĝ) processors on

the CREW PRAM [43]. For parallel sorting, the following results have achieved: a

sorting network of 0 (n) and depth O(logrc) by Ajtai et ah [2]; 0 (lo g n) time using

n processors on both EREW and CREW PRAMs by Cole [20]; and upper bound

^ iogiogfi+^P ^ me us*nS 2n < p < n 2 processors on the CRCW PRAM [20]; and

e („ -^ ^)) processors in a parallel comparison model [9].

In the rest of this chapter, we first discuss the multiple search problem in Section

3.1; vve then study the multiple selection problem in Section 3.2.

3.1 M ultip le Search

We present parallel solutions to the following problem. The materials in this chapter

also appear in [74]. Let A = a j, a2, . . . ,a n and B = 61,621 •••> bm be two sorted sequences

of items. It is required to determine, for each a,- (1 < i < n), the item bj such th a t

bj-i < a,- < bj (if necessary, we let bj_j = —00 or bj = 00). Akl and Meijer [5]

first considered this problem under the assumption m > n, and named it the multiple

search problem. For convenience, we release the restriction, m > n, in their definition,

and still use the name, multiple search problem.

An easy way to solve the multiple search problem is by merging sequences A and

B . Merging two sorted sequences of sized m and n takes 0(log(m + n)) sequential

time, or 0(log(m + n)) time using processors on an EREW PRAM (using

the parallel algorithms in [33]). The cost of this solution is 0 (m + n), which is far

from optim al when m ^ n (e.g. When n = 1, binary search takes only O(logm)

44

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

sequential time).

Another easy solution is to do binary search in B for each item of A\ this takes

0 (n log m) sequential time. It can also be implemented in O(logm) time using n

processors on the CREW PRAM (n processors each carrying an item of A to do

(simultaneously) binary search in B). By simulating the CREW PRAM algorithm

on an EREW PRAM, we can obtain an algorithm for the problem on an EREW

PRAM which takes O (logm logn) tim e using n processors.

Akl and Meijer [5] proposed an algorithm for the problem (assuming m > n)

which takes 0 (‘°s^°S ”) time using n processors on an EREW PRAM. Their solution

was then extended to the case where fewer than n processors are available. This

yielded an EREW PRAM algorithm whose cost is 0{n log m) using p processors,

where p < [5].

In this section, we first propose a parallel algorithm for the multiple search prob

lem. This algorithm improves those in [5] by achieving larger speed-up without in

creasing the cost. We then combine the ideas of our first algorithm with those of the

optimal parallel merging algorithm in [7, 33], and present a better algorithm for the

problem. Our second algorithm improves the first algorithm in the sense that it can

run as fast as the first algorithm while using fewer processors. The second algorithm

is optimal.

3.1.1 Preliminaries

To simplify our presentation, we borrow some terminology of Cole [20]. Let A and B

be two sorted sequences, and let / be an item. We define an item / to be ranked in B,

if we know the item bj of B such th a t bj_i < f < bj (if necessary, we let bj_i = —oo

or bj = oo) We say th a t / is straddled by the 6J-_x and bj\ and we define the rank of

/ in B to be j — 1. We define A to be ranked in B (denoted A —» B) if each item of

A is ranked in B . and define A and B are cross-ranked if both A —> B and B —* A.

45

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

We use A \J B to denote the sorted merged list of all items in A or B [20]. W ith the

terminologies above, the multiple search problem is actually a m atter of computing

A —> B.

We would also like to use some terminologies of Iiagerup and Rub [33]. Let A

and B be two sorted sequences. Define the partition of B induced by A to be the

(| A | + 1) — tuple (B0, B i , ..., B \ a \) where B it for i = 0, 1,..., | A |, is the subsequence

of B consisting of all items of B with rank i in A. We can represent a partition

(B0, B x, ..., Bk) in O(k) space by storing for i = 1 ,2 ,..., k an indication of whether

B{ = <j>\ if Bi ^ <f), the ranks in B of the minimal and maximal items of Bi [33]. We

also denote the partition of B induced by A as (i? o ^ , B ^ A\ ..., where | A |

is the length of sequence A.

L em m a 3.1.1 fa modified version o f Proposition 2 .1 in [S3]). Let A and B be two

sorted sequences. Given A —► B , the partition o f B induced by A can be computed in

constant time using \ A \ processors on the E R E W PRAM . □

It is pointed out in [20] tha t cross-ranking and merging are equivalent concepts in

the following sense. Let A and B be two sorted sequences. For every item of A or B ,

its position (rank) in the merged sequence A (} B is the sum of its ranks in A and B .

If A and B are cross-ranked, then A \J B can be computed without extra comparison.

On the other hand, cross-ranking of A and B can be computed by merging A and B .

From this point of view, the multiple search problem is a generalization of merging.

3.1.2 Sequential Complexity Bounds for Multiple Search

For the analysis of our parallel algorithms, we need an optimal sequential solution

and the sequential time complexity bound of the problem. Let A of size n and B of

size m be the input of the multiple search problem. Consider two case:

(i) If m < n, by the definition of the problem, any sequential solution requires at

46

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

least fi(n) time. Note th a t A —* B can be computed by merging A and B , which

requires 0 (n) time. Therefore, in this case the sequential time complexity of the

problem is 0 (n).

(ii) If m > n, the sequential time complexity of the problem was shown to be

0 (n lo g (see “the generalized binary algorithm g” , Theorem 1, and Theorem 2 in

[37]). To make our presentation self-contained, we give a simpler proof of this result

as the following. First, we show tha t the 0 (n log sequential time is a lower bound.

Then we show tha t the 0 (n log ~) is also an upper bound. To show the lower bound

f!(n log —), we use the decision tree model [l]. Given two sorted sequences A of size
/ \

m + n
possibilities tha t the items of A are straddledn and B of size m, there are

\ 71 /
by the items of B. Therefore, on the decision tree model, any comparison algorithm

/ \
m + n

for the problem requires a t least 0 (log
n

) sequential time.

log m + n (m + n)(m + n - l)...(m + 1)
= lo g ------------------ -T—;-----------> log

n (n - 1J...1
- n!og{] + —)

n

O (n log(l + -)) = 0 ((n lo g —)
n n

From the discussion above, we know that 0 (n log ~) is a sequential lower bound

for the problem. To show 0 (n log is also an upper bound, consider the following

algorithm:

A lg o rith m Sequential-multiple-search;

S te p 1 . Extract from B a sequence B ' of n — 1 items, which (almost) equally divide

B into n subsequences of size ^ each;

47

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

S te p 2. Merge A and B ' so as to determine, for each item of A, the subsequence of

B to which the item belongs;

S te p 3. For each item of A , do a binary search in the corresponding subsequence of

The correctness of this algorithm is easily seen. Steps 1-2 take 0 (n) time. Step 3

takes O (nlog^-) time. So the algorithm takes 0 (n lo g -^) time. Hence, 0 [n log

is also a sequential time upper bound of the problem.

Summarizing two cases above, we have the following lemma:

L em m a 3.1 .2 Let A and B be two sorted sequences with sizes n and m, respectively.

A —> B can be computed in 0 (n) sequential time when m < n, or in 0 (n l o g ^)

sequential time when m > n. □

3.1.3 Parallel M ultiple Search Using n Processor

We now present the parallel solutions using n processors. Solving the problem on a

CREW PRAM with n processors is straightforward: we can simply implement the

sequential algorithm in Section 3.1.2 on an CREW PRAM.

T h e o re m 3.1 .1 Let A and B be two sorted sequences with sizes n and m , respec

tively. A —* B can be solved on a C R E W PR A M with n processors in in O (loglogn)

time when m < n , or in 0 (loglogn + log —) time when m > n.

P ro o f . Assume the problem is solved on a CREW PRAM with n processors. When

m < n , we solve the problem by Kruskal’s merging algorithm [43] which takes

48

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

0(log log n) time. When m > n, we parallelize algorithm Sequential-multiple-search

in the previous section. Step 1 takes 0 (1) time; Step 2 takes O (loglogn) time; and

Step 3 needs 0(log ^-) time. □

Solving the problem on an EREW PRAM with n processors is complicated because

we want to avoid concurrent memory access. We modify the sequential algorithm in

Section 3.1.2 so tha t the new algorithm can be implemented efficiently on an EREW

PRAM. Let A and B be two sorted sequences with sizes n and m , respectively.

W hen m < n we solve the problem by parallel merging because the cost of merging

is 0 (m + n) = 0 (n), which is optimal in this case. When m > n merging does

not guarantee an efficient solution, so our strategy is to reduce a search in a large

range to a search in a small range. For this reason, we first divide sequence B into n

subsequences of ~ each and determine, for every item of sequence A , the subsequence

of B to which the item belongs. We then group the items of A th a t belong to the

same subsequence of U, and thus divide A into segments, each containing all the items

of A tha t belong to the same subsequence of B . Finally, in parallel, we recursively

continue the searches for all the segments of A in their corresponding subsequences

of B . More precisely, the algorithm is spelled out as follows:

A lg o rith m EREW-PRAM-multiple-search. /* n processors axe used * /

In p u t: A = a ! ,a 2, . . . ,a n and B = &2, O u tp u t: A —> B\

S te p 1. i f n = 1 th e n compute A —*■ B by sequential binary search re tu rn ;

S te p 2. if m < n th e n compute A —► B by parallel merging re tu rn ;

49

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

S te p 3. Divide B into n subsequences, B i,B ? , of size ^ each. Let B ' —

b[, l/2\ ..., 6„_j, where b\ is the last item of Bi, for i = l , . . . ,n — 1; T hat is, B ‘

is the list of last items of the first n — 1 subsequences. Compute A —* B ' by

parallel merging;

Step 4. Find all items of A , Gj,, aj3, with following properties:

(1) 1 < j i < k < ... < jt < n ;

(2) for 1 < i < t, dji and aJl+i have dilTernt ranks in B'.

Step 5. Divide A into t + 1 segments, A i ,A 2 , such th a t A \ = a i , . . . , ^ ,

/li+i = a_,v+1, . . . ,a j i+1, (i= 1, 2, ...,t — 1); and A w = aJt+j , ... ,an. Note that by

properties (l)-(2) in Step 4, items of the same segment of A have the same rank

in B ', while items of different segments of A have different ranks in B '.

Step 6. for i = 1,2, ...,t + 1 do in parallel

r,- = (th e rank in B ' of the items of j4,-) +1;

Compute A{ —> B ri (recursively, by j A; | processors);

en d .

T h e o re m 3.1.2 Let A and B be two sorted sequences with sizes n and m , respec

tively. A —* B can be computed in 0 (logm + logn) time using n processors on an

E R E W PRAM .

P ro o f. W ith the correctness of the algorithm being obvious, we turn to the time

complexity. Assume tha t the algorithm is implemented on an EREW PRAM with

50

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

n processors. The complexity of the algorithm is analyzed as follows. Step 1 takes

0(log m) time. Steps 2-3 can be performed in O (logn) time using one of the merging

methods in [11]. Step 4 can be implemented like this: for all i = l , . . . ,n — 1, item a;

checks with a1+i, and a,’ marks itself if they have different ranks in B'. Collecting the

“marked” items in A is an instance of the parallel prefix problem. Using the results

in [21], Step 4 can be implemented in O (logn) time. By Lemma 3.1.1, Step 5 can be

performed in 0 (1) time (with the result from Step 4). Let T (m , n) denote the time

complexity of the algorithm implemented on an EREW PRAM with n processors;

then the time complexity of Step 6 is

m ax {T (^ , j 1), T (f , j 2 - j i) , T{ j t - j , _ ,), T (f , n - j t)}. The time complexity of

the algorithm satisfies:

case 1. m < n: T (m ,n) = O(Jogn)

case 2. m > n = 1: T (m ,n) = O(logm)

case 3. m > n > 1:

T (m ,n) = O (logn) + ma x{T(— , j j - — ,n - it)}
n n n n

where 1 < j i < j'2 < — < jt < n;

We claim tha t T(m , n) = 0 (logm + logn). When m < n, as given in case 1,

T (m ,n) = O(logn) = 0 (logm + logn). When m > n = 1, by case 2, T (m ,n) =

O (logm) = 0 (Iogm + logn). When m > n > 1, we prove the claim by induction

on m as follows, (i) When m = 3, the claim is obviously true, (ii) Assume tha t

T (m ,n) = 0 (lo g m + logn) for m < k. (iii) When m = k, we know tha t ^ < k. By

case 3 and the induction hypothesis (or case 1 if (ji — j i - i) > ^) , we have,

T (m ,n) = O (logn) + m ax{log— + lo g (ji) .lo g — +]o g (jj - i i) , . . . , l o g — + lo g (n - j i)}
71 ti n

51

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

T (m ,n) = O(Iogn) + 0 (I o g —) + O (m ax{log(ji),log{ j2 - j i), ...,!og(n - ; ,)})
n

where 1 < j i < j 2 < ... < jt < n;

Because m a x { ji,j2 — j i >— — jt] < n, T (m ,n) = 0 (lo g m + logn). □

We note tha t both our EREW PRAM and CREW PRAM solutions in this section

are not cost optimal. To see the reason, let us focus on the EREW PRAM solution.

As we know, merging can be used to solve the multiple search problem. Using the

optimal EREW PRAM merging algorithm in [7, 33], two sorted sequences, A and

B with sizes n and m , respectively, can be merged in 0(log(m + n)) time using p

(p <) processors on an EREW PRAM [33]. It is obvious tha t, only when

m > n logn, Algorithm EREW-PRAM-mitUiple-search leads to a better solution than

using the optim al parallel merging algorithms in [7, 33]. Therefore, to improve our

algorithms, we will combine our ideas with those in the optimal parallel merging

algorithms of [7, 33].

3.1.4 Parallel Multiple Search Using Fewer Processors

In this section, we develop a new algorithm which combines the ideas of our algorithms

in Section 3.1.3 and those in the parallel merging algorithms [7, 33]. Let A and B be

two sorted sequences with sizes n and m, respectively. Assume tha t p (p < min{m, n})

processors are available. The main idea of the algorithm is to divide sequence A into

2p — 1 segments each of size a t most and B into 2p — 1 subsequences each of size at

most the division of A and B will be made in such a way tha t, for i = 0 ,1, .. ., 2p—2,

the z-th segment of A belongs to the z-th subsequence of B . Based on these divisions,

52

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

searching each segment of A in its corresponding subsequence of B will be solved

sequentially (every processor is responsible for a t most two segments). The algorithm

is spelled out as follows.

Algorithm Adaptive-parallel-multiple-search.

/* p < m in{m ,n} processors are used * /

Input: two sorted sequences, A = 01, 02, and B = 61, &2> —, 6m;

Output: A B;

Step 1 . Let A ' be a list of p — 1 items of A which equally split A . T hat is,

A' = ai i » • • • » aip-i - where Ji = ^ for * = 1, . . . ,p - 1.

Let B ' be a list of p — 1 items of B which equally split B . T hat is,

-S' = where k{ = for i = 1, ...,p - 1.

Compute C = A ' U B'\

Step 2. Compute C —► A, and C —* B using our first algorithm.

(Note th a t | C |= 2p — 2)

Step 3. Construct partitions (j4</c \ A i ^ , . . . , i 4 | q ^) , and

(5o(C),B 1̂ , . . . , % ^) ;

53

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

S te p 4. fo r i — 0, [C | do in parallel

Compute —► B ^]

e n d .

Theorem 3.1.3 Let A and B be two sorted sequences with sizes n and m , respec

tively. A —► B can be computed on a C R E W P R A M with p (p < m in{m ,n}J pro

cessors, in O (loglogp + time when m < n , or in 0 (log logp + j + j log —.) time

when m > n.

Proof. T he correctness of our second algorithm is obvious. Consider the time com

plexity of the algorithm implemented on an CREW PRAM with p processors. Step 1

takes O(loglogp) tim e using one of the merging algorithms in [43]. By Theorem 3.1.1,

Step 2 takes O (log logp + log ^ + lo g y) time. Step 3 takes 0 (1) time by Lemma 3.1.1.

We now consider Step 4. Due to the choices of A 1 and J3' in Step 1, and C = A' \}B ',

we have | A ^ |< £ j B ^ |< for i = 0 ,1 ,..., | C j. By Lemma 3.1.2, computing

A .iO _> B.IC) (o < i < | C |) can be done in O (^) time when m < n, or in 0 (^ log -^)

time when m > n. Because p processors are available, Step 4 can be performed in

O (^) tim e when m < n, or in 0 (“ lo g -^) time when m > n. Let T (m ,n ,p) de

note the tim e complexity of the algorithm implemented on a CREW PRAM with p

processors. Adding up the time required by all the steps, we have,

0 (log logp + log ~ + log ~ + ~) m < n
T [m ,n ,p) =

O (log log p + log + log ^ ^ log 2-p) m > n

54

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

0 (lo g lo g p + ^) P < m < n
T (m ,n ,p) =

0 (loglogp + log f + 5 log2sl) p < n < m

Summarizing the discussion above, we have proved the theorem. □

C o ro lla ry 3.1.1 Let A and B be two sorted sequences with sizes n and m , where

Joen < m . A -> B can be computed in 0 (log logn + lo g ^) time using 0 (log

processors on a C R E W PRAM .

n loir ^
P ro o f. The result follows when p = Q (logm+logil|ogn) in the theorem above. □.

T h e o re m 3 .1 .4 Let A and B be two sorted sequences with sizes n and m , respec

tively. A —*■ B can be computed on an E R E W P R A M with p (p < m in{m ,n})

processors, in 0 (logn + j) time when m < n, or in 0 (logm + ^ log ~) time when

m > n.

P ro o f Consider the time complexity of algorithm Adaptive-parallel-multiple-search

implemented on an EREW PRAM with p (p < m in{m ,n}) processors. Using one

of the merging methods in [11], computing C = A '\J B ' in Step 1 requires 0 (logp)

time. By Theorem 3.1.2, Step 2 can be implemented in 0(log m + log n + log p) using

p processors on an EREW PRAM. By Lemma 2.1, Step 3 takes 0 (1) time. We know

from the proof the previous theorem th a t Step 4 takes O (^) time when m < n, or

in 0 (~ log “ p') time when m > n. Let T (m ,n ,p) denote the time complexity of the

algorithm implemented on a CREW PRAM with p processors. Adding up the time

required by all the steps, we have,

55

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

T {m ,n ,p) =
0(log m -f logn + log p + m < n

O (logm + logn + lo g p + £ log m > n

T {m ,n ,p) =
0(log n -f- -) p < m < n

O (log m + f log ”) p < n < m

Summarizing the discussion above, we have the theorem. □

C o ro lla ry 3 .1 .2 Let A and B be two sorted sequences with sizes n and m , where

Jojr 3ro
n < m . A —» B can be computed in O(logm) time using 0 (|ogmn) processors on an

E R E W PRAM .

■ 3>n
P ro o f. The result follows when p = ln theorem above. □.

3.1.5 Discussion

We have developed parallel algorithms for the multiple search problem. In Section

3.1.3, we gave two parallel solutions using n processors. The EREW PRAM algorithm

improves the algorithms of Akl and Meijer [5]. Our CREW PRAM solution runs faster

than our EREW PRAM algorithm using the same number of processors.

In Section 3.1.4, we combined the ideas of our algorithm in Section 3.1.3 with

those of the optimal parallel merging algorithms in [7, 33], and presented an adaptive

parallel algorithm using p processors. To appreciate the performance of algorithm

Adaptive-parallel-multiple-search in Section 3.1.4, we notice the following cases:

(a) By Lemma 3.1.2, the algorithm running on an EREW PRAM is cost optimal,

if m > n and p < or if m < n and p <

56

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

(b) The algorithm running on a CREW PRAM is cost optimal, if m > n and

* 2m
p ^ ° (l ^ + r 0Sn|-OSn)» or if m < n and p <

(c) When p — n < m both of our algorithms have the same performance. There

fore, our second algorithm is a generalization of our first algorithm.

(d) Consider the case when n < m. On an EREW PRAM, algorithm Adaptive-

parallcl-multiplc-search needs only processors to run in 0(log m) time, while

our first algorithm needs n processors to achieve the same speed. On a CREW

PRAM, our first algorithm runs in 0 (log logn -f lo g ^) using n processors, yet our

 ̂j 2m
second algorithm needs only Q(j0- ^i+|0gi0gn) processors to achieve the same speed.

Hence, The algorithm in Section 3.1.4 is also an improvement over the algorithms in

Section 3.1.3.

3.2 M ultip le Selection

In this section, we consider the following problem (the materials in this section also

appear in [52]): Given an unsorted set S of n items from a totally ordered universe

and a set Q of m integers 1 < qi < q2 < ... < qm < n, answer the query “find the

9,-th smallest element in 5 ” for i = 1,2,

For convenience, we assume th a t Q is given in an array with elements sorted

in increasing order. To avoid tedious but inconsequential complications, we further

assume th a t all the elements in S are distinct. It is well known that the sequential

complexity of single selection is O(n) [1]. So we assume familiarity with the details

of the traditional single selection algorithm. Here, the selection algorithm in [l] will

57

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

be referred to as Sclect(A t k), which returns the A-th smallest key in set A.

Before we present our parallel EREW PRAM algorithm for the multiple selection

problem in Section 3.2.3, we first give an efficient sequential solution to the problem

in Section 3.2.1; we then discuss the parallel complexities of the single selection on

PRAMs with Concurrent Write (i.e. the EREW and CREW PRAMs) in Section

3.2.2.

3.2.1 A Sequential Multiple Selection Algorithm

We present an efficient sequential algorithm to the multiple selection problem. The

idea is very simple: Let q stand for Q[[y"]]; using procedure Select, we find the

^-th smallest element z in S, and compute the sets Si — {x € S | x < z} and

S 2 = {a; e S | x > z}. A t the same time, we partition Q into Qi containing the first

jy] — 1 entries in Q , and Q2 containing the last [y j entries in Q.

For further reference, we note that all the queries in Qi pertain to S i, while all

the queries in Q2 refer to S 2.

This process is continued recursively until the number of queries th a t have to be

answered on any particular subset of S is 1: a t th a t time, the corresponding query

is answered using procedure Select [1], The details are presented in the following

procedure.

P ro c e d u re Sequential-multiple-selection(S, Q [l,m]);

58

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

In p u t: a set S of keys; a global array Q of queries with

elements sorted in increasing order

O u tp u t : a global array R with 7?[i] containing the answer to query Q[i];

1. if m = 0 th e n return;

2.

3. <i <- QM;

4. z <— Select(S ,q);

5. R\i) <- z\

6. Si *— {x £ 5 | x < z}]

7. S 2 *— {x £ S \ x > z};

8. fo r j i— t + 1 to m do /* update queries */

9. Qbl«- Q U 1 Si I -1;
10. Sequential-multiple-selection(S,Q[l,f — 1]);

11. Sequential-multiple-selection(S,Q[i + 1 , m]);

12. return(i2);

en d ;

T h e o re m 3.2 .1 Given a set S o f n elements and a set Q o f m queries with m < n ,

the multiple selection problem can be solved in 0 (n log 2m) sequential time.

P ro o f . The correctness being obvious we turn to the complexity. Let T (n ,m)

stand for the total running time of this procedure. Since lines 4, 6-9 take 0 (n) time.

The recurrence system describing the behavior of T (n ,m) is given by

59

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

T (n ,m) < c'n + T(\ S , |, |^ 1 - 1) + T (| S , |, [| j)

We claim th a t for some positive constant c,

T {n ,m) < cnlog2m (3.2.1)

The proof of (3.2.1) is by induction. The basis being trivially satisfied, the induc

tion hypothesis allows us to write

m S. |, r?l - 1) < C I S, I loS2(rfl - 1) < c | S, | logm (3.2.2)

and

m I, L fj) < c \ S 2 \ log 2L f J < c I S2 I logm (3.2.3)

Therefore, by (3.2.2) and (3.2.3) combined,

T (n, m) < c'n + cn log m

If we write c = d we have T (n ,m) < cn log 2m, and (3.2.1) is proved. W ith this,

the proof of the theorem is complete. □

3.2.2 Time Bounds for Single Selection on Exclusive Write

PRAM s

In our parallel algorithm for the multiple selection problem in the next section, we

need as a subroutine an efficient parallel single selection algorithm on the EREW

PRAM. We note tha t such an algorithm has been proposed by Cole in [19], In

particular, Cole’s result can be specified by the following theorem:

T h e o re m 3 .2 .2 (Cole [19]). Given a set S o f n items (unsorted), the k-th smallest

item in S can be found in (lognlog* n) time using 0 (logn"—; -) processors on the

60

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

E R E W PRAM . (Here, lo g ^ n = logn, lo g ^ n = log(log^“ ^)n) , and log*n =

min{z | lo g ^ n < 1}). □

C o ro lla ry 3.2.1 Given a set S o f n items (unsorted), the k-th smallest item in S

can be found in O (^) time using p (p < logn”og. n) processors on an E R E W PRAM .

□

To appreciate Cole’s result, we need to know the lower time bound of the single

selection problem on the PRAMs which do not allow concurrent writes.

T h e o re m 3 .2 .3 (Cook, Dwork, and Reischuk [25]). On an C R E W PRAM , every

parallel algorithm that computes the logical “or” o f n bits requires at least ft {log n)

time, no matter how many processors arc used. □

C o ro lla ry 3.2 .2 Let S be a set o fn items (unsorted) from a totally ordered universe.

On a C R E W PRAM , or an E R E W PRAM , every parallel algorithm that computes

the k-th (for any integer k) smallest item in S requires at least ft(logn) time, no

m atter how many processors are used.

P ro o f . Assume the computation model is a CREW PRAM which is stronger than an

EREW PRAM. The following three-step procedure reduces the computation of the

logical “or” of n bits to the problem of selecting the fc-th (for any integer k) smallest

item.

Input : 2?[l..n] of 0/1 bits; Output: logical “or” of the bits of jB[l..n];

61

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Step 1 . Compute array A [l..n + k — 1] such tha t A[i] = 1 — S[i] (i = and

A\i\ — 0 (i = n + l , . . . ,n -f k — 1);

Step 2. R *— the fc-th smallest number in array AfL.n - f t — 1];

Step 3. Return(1 — R)\

It is easy to see tha t this procedure returns “1” if and only if the logical “or” of the bits

in I?[l..n] is “1” . Let T (n ,h) be the time complexity of the fastest parallel algorithm

to select the &-th smallest item in a set of size n. Obviously, T (n , fc) dominates the

time complexity of this procedure. By Theorem 3.2.3, T (n ,k) is a t lest Jl(logn), no

m atter how many processors are used. □

3.2.3 A Parallel Multiple Selection Algorithm

We are now in a position to explain how to solve the multiple selection problem on

an EREW PRAM. Our parallel procedure is, in fact, a simple parallelization of the

sequential multiple selection procedure presented previously. For convenience, we

im port the whole context and the notation used in the description of our sequential

procedure. For completeness, however, we give the details of the parallel version as

well.

P ro c e d u re Parallel-multiple-selection{5, Q [l, m], p);

In p u t: a set S of keys; a global array Q of queries with

elements sorted in increasing order; p is the number of processors used

O u tp u t: a global array R with R[i] containing the answer to query Q[i];

62

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1. if m = 0 th e n return;

2. t «- f y l ;

3. i f p = 1 th e n

4. Sequential-multiple-selection(S, Q[l, m]);

5. q <- Q[t];

6. find in parallel the <pth smallest element 2 of 5;

7. /2[i] «— z;

8. Si «— {ar € S | x < z};

9. S 2 <— {x € S | x > z};

10. fo r j *— t + 1 to m do /* update queries */

11. Q\j] - Q \i\- I s. I - i ;

12. pi «—| Si | x£ ;

13. p2 H 5 2 | x f ;

14. d o in p a ra lle l

15. Parallel-multiple-selection(S, Q[l, t — l], Pi);

16. Parallel-muItiple-selection(S, Q[t + 1, m], p2);

17. return(i?);

en d ;

T h e o re m 3 .2 .4 Given a set S o f n elements and a set Q o f m queries where m <

n, the multiple selection problem can be solved in 0 (^ lo g 2m) time using p (p <

:— ? .) processors on an E R E W PRAM .log n log n / r

63

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

P ro o f . The correctness being obvious we trun to the complexity. Since no read or

write conflicts occur, the computation can be performed in the specified model.

The recursive process in lines 15-16 is continued, in parallel, until the number of

queries tha t have to be answered on any particular subset of 5 is 1. At th a t time,

the corresponding query is answered using Cole’s parallel selection algorithm [19].

Similarly, if p is 1 then we use the sequential procedure for the multiple selection

problem.

The processor assignment is as follows: we assign pi =] of the processors

to S i, and />2 = | ^2 [x ^ of the processors to S2. It is easy to see tha t with this

assignment,

j£i! = = M (3 2 4)
p i p i p ' ’

We shall let T (n , m ,p) stand for the worst-case running time of our parallel pro

cedure. To get a recurrence describing T (n ,m ,p) , we can see that line 6 takes

+ log log* n) time by using Cole’s algorithm [19]. Since p < logn"og- w, we have

0 (j + log log* n) = O (^). Lines 8-9 take 0 (^ + logn) = O (^) time by simple prefix

computation; similarly, the for loop in lines 10-11 runs in 0 (^ + logn) = 0 (|) time.

Finally, the recusive calls in lines 15-16 are done in parallel, taking

m ax{r(| Sj 1, r ? l - l ,P i) ,r (l S, 1, L ? J ,r)}
Consequently, we can write

T (n ,m ,p) < c j + m ax{T(| S: |, f f [- l ,p i) ,T (| S2 |, [f j , P2)}

By induction, we can easily show: T (n ,m ,p) < c2 log 2 m . □

64

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3.2.4 Discussion

Note that our parallel multiple selection procedure uses Cole’s parallel single selection

algorithm as subroutine. From the discussion in Section 3.2.2 we know tha t Cole’s

algorithm has not met the time lower bound for parallel single selection on an EREW

PRAM. Actually, if a faster EREW PRAM parallel algorithm for the single selection is

available, our parallel algorithm for multiple selection can be sped up by an 0(log* n)

factor.

When m = 1 the complexity of our parallel algorithm matches th a t of Cole’s

parallel selection algorithm. However, when m — n our algorithm (being cost optimal)

is an O (logn) factor slower than the fastest sorting algorithm, e.g., Cole’s parallel

merge sort [20]. An interesting open question is whether or not we can use a different

approach to obtain a faster parallel multiple selection algorithm.

65

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 4

Tree R econstruction

In this chapter, we present a parallel algorithm to reconstruct binary trees from their

traversals. The m aterials here can also be found in [46], Formally, the problem is

defined as follows: For a binary tree T = {V ,E) where V = { l ,2 ,. . , ,n } , given its in-

order traversal and either its preorder traversal or its postorder traversal, reconstruct

the binary tree.

It is well known a binary tree can be reconstructed from its inorder traversal along

with either its preorder traversal or its postorder traversal [42]. Recently, a sequential

solution to this classical problem has been reported in [6]. Specifically, the algorithm

in [6] takes O(n) tim e and space. Parallel solutions to this problem can be found

in [12, 63]. In particular, the algorithm in [63] runs in O (logn) time using O(n)

processors on the CREW PRAM; and the solution in [12] takes O (loglogn) time

using 0 (iogl" 8n) processors on the CRCW PRAM.

Here, we present a new algorithm for this problem. Our algorithm requires O(n)

space. The main idea of our algorithm is to reduce the reconstruction process to

66

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

parallel merging. W ith the best results for parallel merging, our algorithm can be

implemented in O (logn) time using 0(y— processors on the EREW PRAM, or in

O (loglogn) time using O (log[*ogn) processors on the CREW PRAM. Our algorithm

thus improves the results in [12, 63],

O ur parallel solution is of theoretical im portance for the following reasons: (i)

Recently, Berkman et al. defined a new class of problems called highly parallelizable

problems [12] which contains problems tha t can be solved in O (loglogn) time using

optimal number of processors. An extremely small number of problems are known

to have optimal doubly logarithmic solutions and thus designing such algorithms was

proposed as a challenge in [12]. (ii) Due to the research on lower bounds in [25],

Berkman et al. pointed out [12] th a t doubly logarithmic time parallel algorithms

usually need to run on an CRCW PRAM. A known exception is Kruskal’s O (Ioglogn)

time optimal parallel algorithm on a CREW PRAM. Our parallel solution thus finds

one more example in the class of problems tha t can be solved in O (loglogn) using

optimal number of processors on a CREW PRAM.

4.1 Prelim inaries

Many methods can be used to generate traversals for a binary tree. Here, we are

interested in one of them, known as the Euler tour technique [65]. This technique was

proposed by Tarjan and Vishkin for designing efficient parallel algorithms on trees.

Specifically, this technique reduces the com putation of various kinds of information

about the tree structure to the computation on a linked list [65]. To make our

67

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

presentation self-contained, the technique is described below:

The Euler tour technique: let T be a binary tree rooted at node r , Every node v of

T is split into three copies v i ,v 2, v-i, all having the same node label as v. For simplicity,

we assume th a t the nodes of the binary tree are labeled by integers 1,2, For

each of the resulting nodes, we define a next field as follows: If v has no left child

then Vi.next = v2. If v has no right child then v2.ncxt = v3. If w is the left child of v

then vi.nex t = wi, and w^.next = v2. If w is the right child of v then v2.next = Wi,

and w3.next = V3 . W hat results is a list, called the Euler path, which starts a t r j , and

ends at r 3 and which traverses each edge of T exactly once in each direction. In other

words, let ^ (T) denote the Euler path of a binary tree T. The Euler path of a binary

tree with left subtree T\ and right subtree T2 can be expressed as)r25/)(T2)r3.

When no confusion is possible, we let Euler path also stand for the sequence of

node labels induced by and Euler path.

Obviously, an Euler path of a tree contains three copies of each node label in the

tree. An interesting property of the Euler path of a tree T is tha t keeping only the

first copy of each label results in a preorder traversal of T ; keeping only the second

copy of each label gives an inorder traversal of T ; keeping only the third copy of each

label yields a postorder traversal of T [65].

For convenience, we define a preorder-inorder path to be a sequence of labels

obtained by deleting the third copy of each label in an Euler path. Similarly, an

inorder-postorder path is a sequence of labels obtained by deleting the first copy of

each label in an Euler path. It is known that a binary can be reconstructed from

its inorder traversal along with either its preorder traversal or postorder traversal. It

68

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

6

Euler path: 1 2 4 4 4 2 5 7 7 7 5 8 8 8 5 2 1 3 3 6 6 6 3 1

Preorder-inorder Euler path: 1 2 4 4 2 5 7 7 5 8 8 1 3 3 6 6

Preorder traversal: 1 2 4 5 7 8 3 6

Inorder traversal: 4 2 7 5 8 1 3 6

Figure 4.1: a binary tree, and its various (Euler) paths and traversals

follows th a t a binary tree is completely determined by its preorder-inorder path or

its inorder-postorder path.

For example, Figure 4.1 features a binary tree along with the associated Euler

path , preorder-inorder path, preorder traversal, and inorder traversal.

L em m a 4.1.1 A sequence o f labels 61, 62, . . . , kn represents a preorder-inorder path

(respectively, the inorder-postorder path) o f an n-node binary tree T i f and only i f the

following conditions hold:

(1) exactly two copies o f each label occur in the sequence; and

(2) there exist no integers i, j , k , m with \ < i < j < k < m < 2 n such that

(k = bk) and (bj = bm).

P ro o f . We prove the statem ent for the case of a preorder-inorder path (the case of

an inorder-postorder path follows by a mirror argument).

69

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Let tj){T) denote the preorder-inorder path of a tree T . By definition, the preorder-

inorder path of a tree rooted a node r with left subtree T\ and right subtree T2 can

be expressed as ri^>(7i)r2̂ (!T2). Thus, the “only if” part of the lemma if obvious.

The “if” part will be proved by induction on n. When n = 1 the lemma is

obviously true. Assume the lemma is true for n < I. When n = /, let bt be the second

copy of 6j, i.e. bt = By condition (2) and the induction hypothesis, &2,...,&i_i and

&(+1, . . . , i 2n can both be seen as preorder-inorder paths. Let 7\ and T2 be the binary

trees induced by 62, . . . ,6j_i and &2n, respectively. The tree rooted a t with

left subtree T\ and right tree T2 is the tree determined by &t, 62, ...,b2n. □

Corollary 4.1.1 Let c\,c2,...,c„ and dx,d 2 , . . . ,d n be the preorder and the inorder

traversals o f a binary tree, respectively. There do not exist integers ii, i2, j \ , ,

k2, such that (1 < z*i < j i < ki < n), (1 < k2 < i2 < j 2 < rc), and (c{l = 42) A(cji =

<*»)A (c/t, = 4 2).

Proof, (by contradiction) Assume there exist integers ii, i2, j i , j 2, iC*i, fc2, such tha t

(1 < *i < j i < ki < n), (1 < k2 < i2 < j 2 < n), and (c,-, = 4 2) A(cj, =) A(c*, =

4 ,) - Then, in the corresponding preorder-inorder path, 4 2 is the second copy of

the c*,. So we have ki < i 2, which further implies i\ < j i < ki < k 2 < i2 <

j 2. The preorder-inorder path must be of this form, ...c,1...Cj1...c<.-,...42—4 2—4 a —

contradicting the condition (2) Lemma 4.1.1. □

70

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4.2 Sequential A lgorithm s

In order to build a background for our parallel algorithm, in this section we present two

sequential algorithms. The first algorithm generates the preorder-inorder path from

the preorder and inorder traversals of a binary tree. The second algorithm uses the

first algorithm as a subroutine to compute preorder-inorder path from the preorder

and inorder traversals, and then reconstruct the binary tree using the information

stored in the preorder-inorder path. The details of the algorithms are given below:

P ro c e d u re Traversal-path;

In p u t: sequence of labels, c i,c2,...,c„ and d i,d 2, ...,dn as the preorder

and inorder traversals of a binary tree;

O u tp u t: 61, ^ , i>2n> the preorder-inorder path of the tree, in which

every label remembers the position of its duplicate;

Stack «— $;

j <- k «- 1;

fo r i 1 to 2 n do

if dk = iop(Stack) th e n

hi *— dk]

k <— k + 1;

a *— p o p Stack]

q and dk remember each other’s position in 6], 62, ..., i,-

else

71

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

hi *— Cj;

p u sh Cj onto Stack]

j *— j + 1;

return(61, 62, - , ^ 2n);

end ;

The correctness and the time complexity of this procedure are established by the

following result.

L em m a 4.2.1 Given the preorder and the inorder traversals o f an n-node binary tree

T , procedure Traversals-path computes in 0 (n) time the preorder-inorder path o fT ,

such that every label remembers the position o f its duplicate in the preorder-inorder

path.

P ro o f . We prove the correctness of the procedure by induction on n. When n = 1

the algorithm is obviously correct. Assume tha t the algorithm is correct for n < k.

Consider the case when n = k. W ithout loss of generality, assume dq = c^. By the

definition of preorder and inorder traversals, cj is the root of T, and the left subtree

of T has preorder traversal c2, ..., cq and inorder traversal d i,..., d?_i while the right

subtree of T has preorder traversal c ,+i ,..., c* and inorder traversal dq+1,..., d By the

induction hypothesis, consuming subsequences c2, cq and d i , ..., dg- i , the algorithm

computes &i,&2, —,^25-2 as the preorder-inorder path of the left subtree, with c2 left

on the top of the Stack. After matching dq with top of the S tack , the algorithm

72

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

computes 62, , . . . , bk as the preorder-inorder path of the right subtree by consuming

subsequences c,+ i,...,c* and dq+i,..., dk. From the statem ents above, we see tha t

the output sequence blt b2, ..., b2n satisfies both conditions of Lemma 4.1.1. Thus,

61, 62,..., b2n represents the preorder-inorder path of some tree. Furthermore, deleting

the second copies of the duplicate labels in &i, b2, ..., &2„ results c i,c 2, ...,c„, while

deleting the first copies gives dlt d2, ..., dn. It follows that , 62, b2n is the preorder-

inorder path of T. According to the way the stack is used in the algorithm, we ensure

th a t each label in the output sequence remembers the position of its duplicate. The

algorithm runs in O(n) time, since each iteration of the for loop has 0 (1) time. □

P ro c e d u re Traversal-path-tree;

I n p u t: sequence of labels, c 1, C 2 , . . . , c n and d^,d2, ...,dn as the prcorder and inorder

traversals of a binary tree;

O u tp u t: A binary tree with root node r , and the node set S = {di,d2,

the preorder-inorder path of the tree, in which every label remembers the position

of its duplicate;

1. 5 <— {di,d2, . . . ,d n};

2. Compute preorder-inorder path 61, 62,..., 62„ of the tree

such th a t every label remembers the position of its duplicate;

3. r 4— the second copy of 61;

4. fo r each label 6; (2 < i < 2n) do

5. i f (6,- is the second copy of its duplicate) th e n

73

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

6. if (6;_i is the second copy of its duplicate label) th e n

7. leftchild(bi) *—

8. if (6I+i is the first copy of its duplicate label) th e n

9. c <— the second copy of 6,+i;

10. rightchild(bi) <— a;

11. return(&i, &2i —, h2„);

end;

L em m a 4.2 .2 Given a preorder-inorder path with 2n labels, procedure Traversal-

path-tree correctly reconstructs the corresponding binary tree in 0 (n) time.

P ro o f . The correctness of the algorithm follows directly from the proof of Lemma

4.1.1. It is also easy to see the time complexity of the algorithm is O(n). □

CombiningX-emma 4.2.1 and Lemma 4.2.2, we have,

T h e o re m 4.2.1 An n-node binary tree can be reconstructed from its preorder and

inorder traversals in 0 (n) time with 0 (n) extra space. □

4.3 A H ighly Parallel A lgorithm

We are now in a position to present our parallel solution to the problem of recon

structing an n-node binary tree from its preorder and inorder traversals. Our parallel

algorithm is developed by parallelizing our sequential procedure, Traversal-paih-tree.

74

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

It is easy to see th a t, except for Line 2 , procedure Travcrsal-path-trce can be imple

mented in 0 (1) time using n processors on an EREW PRAM. The difficult part is

to parallelize Line 2 of procedure Travcrsal-palli-trcc. Our idea here is to show that

computing the preorder-inorder path from the preorder and inorder traversals can be

reduced to parallel merging.

We now discuss how to compute the preorder-inorder path from a preordcr traver

sal C], C2, O n and inorder traversal dj, d2, ...,d„. For simplicity, we assume that

c j ,c 2, C n is 1, 2, ...,n (the case where Cj, c2, c „ is a perm utation of 1, 2 , ...,n can

be reduced to this case easily; we discuss this later). We compute the preorder-inorder

path from c i,c 2,...,c„ and d i,d 2, ..., dn by merging according to some linear order as

we are about explain. We will define such an order that both sequence c1,c2,.. . ,c n

and d i,d 2, . . . ,dn are already sorted.

Construct two sequences of triples: a sequence (l , i i , 0^ , (1, j 2,c 2) , . . . , (l , i;'n,cn)

such th a t djj = Cj, (i = 1, 2, ...,n) (i.e. j i is the position of a in sequence dj, d2, ...,d„);

and a sequence (2, l ,d i) , (2, 2,d 2) , ..., (2,n , dn).

Denote n = {(1,J i ,c i) , (1, j 2,c2) , ..., (1 ,j„ ,c„), (2, l ,d ,) , (2 ,2 ,d2) , ..., (2, n, c„)} Define

a binary relation on fl ^ follows: for arbitrary triples (a ,/? ,7) and (a ', /3',7 ') in

1] we have:

1- ((<* = 1) A { a 1 = 1)) -> (((a,/?,7) < (<*',ft, Y)) «-♦ (7 < Y))i

Rllk-2, ((a = 2) A (a' = 2)) -> (((a,ft7) « K f t , Y)) (P < /5'))l

Rule 3. ((a = 1) A (a' = 2)) -> (((a, ft 7) « K f t , Y)) <- ((P < P') V (7 < 7')))

Rule 4- ((a = 2) A (a' = 1)) - (((a,ft 7) « (a', ft,7')) - { (P < ft) A (7 < Y)))

75

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Theorem 4.3.1 The binary relation <g; defined above is a linear order on n*

Proof. It is easy to see from Rules 1-4 tha t the binary relation <C is total on f]- To

prove tha t <C is a linear order we need to show tha t it is transitive. We shall present

our argum ents in the form of a case-by-case analysis. Let (or, ^ , 7), (o ' , /?', Y) and

(a ”, 0 ”, 7 ”) be arbitrary triples in f] satisfying:

(o r , / ? , 7) < (a ' ,0 ' , 7 ') and (a ',/? ',7 ') <£ 7 ”)

We need 7) <C (a ” ,/?” , 7n).

case 1. a = a”

subcase 1.1 a = a' = a” = 1.

By Rule 1 and the assumption, we have 7 < 7 ' and 7 ' < 7” and therefore

7 < 7” . T he conclusion follows by Rule 1.

subcase 1.2 a = a ” = 1 and a' = 2

By Rule 3,

(a) (7 < y) V (^ < / ? 0

By Rule 4,

(b) {fi’ < n M i < i n

If 7 < 7” then conclusion follows immediately from Rule 1. Therefore, we

assume

(c) 7” < 7

Note th a t (a), (b) and (c) combined imply th a t

(7* < 7” < 7) A(/? < /?' < /?”) which is contradicting Corollary 4.1.1.

76

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

su b c a se 1.3 a = a ' = a ” = 2

By Rule 2, we have P < /?' and /?' < /?” and therefore < /3” . The

conclusion follows by Rule 2.

su b c a se 1.4 a = 2, a ' = 1 and a ” = 2

By Rule 4,

(d) (7 < 7 ') A(P < P')

By Rule 3,

(e) (/?' < < 7”)

If (/? < p ”) then conclusion follows instantly from Rule 2. We may assume,

therefore,

(f) (P* < P)

By now, (d), (e) and (f) combined imply that

(7 < 7 ' < 7”) A{Pn < P < P') which contradicts Corollary 4.1.1.

case 2 . a ^ a ”

su b case 2.1 a = a' = 1 and a ” = 2.

By Rule 1,

(g) (7 < V)

By Rule 3,

(h) (p'<n a (7 ' < 7 ”)

Note tha t if (P <) Vf'y ̂ < 7”) then by Rule 3, we have (a ,/? ,7) <

(a ” ,/?” ,7 ”). Therefore, we may assume tha t

(i) (/T < P) A(7” < 7)

77

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

But now, (g), (h) and (i) combined imply

(7” < 7 < 7 ') A(/?' < /?” < P) which contradicts Corollary 4.1.1.

su b case 2.2 a = 1 and a ' = or” = 2.

By Rule 3,

(j) (/?< /? ')V (7 < 7 ”)

By Rule 2,

(k) (/? '< /? ”)

Note tha t if (/3 < /?”)V (7 < 7”) then the conclusion follows by Rule 3,

Therefore, we may assume that

(1) (/?” < /3)A (7 ” < 7)

But now, (j), (k) and (1) combined imply

(7” < 7 < Y)/\{P ' < P" < fi) which contradicts Corollary 4.1.1.

subcase 2.3 a = 2 and a' = a” = 1.

By Rule 4,

(m) (/? < /3') A (7 < i)

By Rule 1,

(n) (7 '< 7 ”)

Note tha t if (/? < /3”)A (7 < 7”) then the conclusion follows by Rule 4,

Therefore, we may assume that

(o) (/?” < / 3) A (7 ” < - r)

But now, (m), (n) and (o) combined imply

(7 < 7 ' < 7”) A(y^” < 0 < fi") which contradicts Corollary 4.1.1.

78

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

su b c a se 2.4 a = a ' = 2 and a" = 1.

By Rule 2,

(p) W < P)

By Rule 4,

(q) (/? '< /3 ”) A (f < 7”)

Note that if (7 < 7”) then (p) and (q) combined give

(o:,/3,7) (a ” ,/?” , 7”) by Rule 4. Thus, we may assume

(7” < 7)- But now (p) an<l (q) imply

(7 ' < <• -7) /^ /? < /?' < jS) which contradicts Corollary 4.1.1.

□

By Rules 1-2, we can see tha t according to linear order <§[both sequence (1, j j , C j) ,

(1 J 2 ,c 2), and (2 ,l ,d i) , (2 ,2 ,d 2), ..., (2,n ,d n) arc already sorted. Merg

ing these two sequences according to we obtain a sequence of triples: (c*i,/?i,7 i),

(<*2, $ 2, 72), —, (<*n,/?n,72n)- We claim tha t 7! , j 2, ..., 72n is the preorder-inorder path

determined by the traversals. The correctness of the claim relies on the following facts:

(a) Exactly two copies of each label appear in 7j , 72, ..., 72„ satisfying condition

(1) of Lemma 4.1.1;

(b) There do not exist integers l < i < j < k < l < 2 n such th a t 7{ = 7* and

7j = 7(satisfying condition (2) of Lemma 4.1.1;

(c) Deleting the second copies of the duplicate labels in 71, 72, — ,7 2n results in

C i , c 2, . . . , Cy,, and deleting the first copies of the duplicate labels in 71,72, — ,7 2n gives

^1, ^ 2 , •••)

79

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Fact (a) follows directly from Rule 3 and the construction of the triples in [7. By

the definition of <C both sequences (l , j 2,C2), (l , j n, Cn) and (2, l ,d i) ,

(2,2, d2), (2,n ,d n) are already sorted, so fact (c) is also true. The proof of fact

(b) is given below:

P ro o f o f (b). (by contradiction)

(1)(7» = 7fc) A (7j = 7m) [Assumption]

where 1 < i < j < k < m < 2n

(2)(a ;, f t 7,) < (Q j , f t 7,-) < (a*, f t , 7 0 [by 1 < i < j < k < m < 2n

^ (arai^mi7m) (01

(3)(a,- = 1) A (a j = 1) A (a t = 2) A (a m = 2) [by (1), (2), Rule 3 and the

construction of the triples]

(4)(0i = f t) A (f t = f t) [by (1) and the construction

of the triples]

(5)(ft < f t) v (7; < 7/0 [by (a j = 1) A (a k = 2) in (3),

« (<*fc,ft,7*)

in (2) and Rule 3]

(6) (f t < f t) V (7m < 7*) [replace f t , 7,- in (5) with f t ,

7m respectively, by (1) and (4)]

C0 (f t < f t) [by (<*/.-, f t , 7fc) ^ f t i f t i T m)

in (2), (or* = 2) A (crm = 2)

in (3) and Rule 2]

80

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

(8) (7m < I k) [by (6) and (7)]

(9)(7,- < 7j) [by (or,-, f t, 7i) < (a j, f t , 7;)

in (2), (a,- = 1) A {otj = 1)

in (3) and Rule 1]

(10)(7* < 7m) [by (1) and (9)]

(11)Contradiction [(8) and (10)]

□
Up to this point, we have successfully reduced computing the preorder-inorder

path to parallel merging. We now discuss the complexity of this reduction. First, we

consider the complexity to construct J]* For this purpose, let us see how to construct

from the given traversals, sequences (l , f t ,c i) , (l , j 2,c2), (l,jn ,C n) and (2, 1, f t) ,

(2,2, f t) , ..., (2 ,n , f t) such that c, = ft,, (i = 1 ,2 ,..., n). We note tha t this can be done

easily with an auxiliary array A[l..n]. Since ci, C2, ..., c„ is 1,2, ...,n , and f t , f t , ..., f t is

a perm utation of 1, 2 , ...,n , we can compute an A[l..n] as follow: A[ft] = i (1, 2, ...,n)

in 0 (1) time on an EREW PRAM with n processors. To determine the subscript ft

satisfying C{ = ft, (1, 2, ...,n), we simply take ft = A[c;] (l , 2,.. .,n) . This again can

be computed in 0 (1) time on an EREW PRAM with n processors. Consequently,

XI = {(l>ft>ci)> (1)f t, C2) , ..., (l , j n, c„), (2, l , f t) , (2, 2 , f t) , ..., (2, n ,f t) }

can be constructed in 0 (1) time using n processors on an EREW PRAM.

Next, we consider the complexity to merge (l,f t,C i) , (1,f t , c 2), ..., (l,f t,,c „) and

(2, 1, f t) , (2 ,2 ,f t) , ..., (2 ,n ,f t) according «C. Optimal parallel algorithms are pro

posed in [7, 33, 43]. W ith their results, we have,

81

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

T h e o re m 4 .3 .2 For a binary tree T = (V ,E) where V — {1,2 , gi ven its

preorder and inorder traversals, the binary tree can be reconstructed using 0 (n) ex

tra space, in O (logn) time using processors on the E R E W PRAM , or in

O (loglogn) time using Q (log[̂ g^) processors on the C R E W PRAM . □

4.4 D iscussion

We have shown how to reconstruct a binary tree from its inorder traversal along

with either its preorder traversal or its postorder traversal by reducing the problem

to parallel merging. With the best known results for parallel merging, our recon

struction algorithm can be implemented in O (logn) time using processors on

the EREW PRAM, or in O(loglogn) time using 0 (ôĝ ,gn) processors on the CREW

PRAM. We have thus found one more example in the class of problems tha t can be

solved in doubly logarithmic time using optimal number of processors on the CREW

PRAM.

82

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 5

Concluding Remarks

We have studied several basic problems in the design and analysis of non-numerical

parallel algorithms. As we explained in Chapter 1, the purposes of studying this type

of problems are to obtain basic building blocks which will be useful in solving complex

problems and to develop fundamental algorithmic techniques.

In Chapter 2 we studied priority queues. Priority queues have received a great deal

of attention in literature because of its many applications [45,18, 36 ,32 ,30 ,14 ,38 , 67,

31]. Our research in this area started at looking for meldable double-ended priority

queues [48, 46]. The recent enthusiasm in parallel implementations of priority queue

operations [57, 56, 59, 76, 40, 28, 26, 54] also stim ulated us to carry on this research

in the parallel setting [49]. As results of our research, we have found a meldable

double-ended priority queue; we proposed a parallel melding algorithm for priority

queues implemented by heaps or min-max-pair heaps; and more importantly, we have

presented a technique which can be used to develop optim al parallel initialization

83

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

algorithms for a class of priority queues.

In Chapter 3 we studied two problems, multiple search and multiple selection. The

purpose of this chapter is to explore the relationships among four of the most fun

dam ental problems in algorithm design, i.c selection, searching, merging and sorting.

As it turns out, our parallel solutions for the two problems can be used as subroutines

in algorithms for other problems. For example, our optimal parallel solution for the

multiple search problem can be used in Hagcrup and R ub’s parallel merging algorithm

[33] to obtain the optimal implementation of their algorithm on the EREW PRAM.

In Chapter 4 we studied the classical problem of reconstructing a binary tree from

its traversals [42]. We presented a highly parallel algorithm for the problem. This

research was motivated by a challenge proposed in [12] to design doubly logarithmic

time optimal parallel algorithms (highly parallel), since a remarkably small number of

such algorithms are known. Another highly parallel algorithm on the CRCW PRAM

was proposed by Berckman et al. for the same problem. Due to the research on lower

tim e bounds in [25], Berckman et al. pointed out in [12] tha t doubly logarithmic time

parallel algorithms usually need to run on an CRCW PRAM. A known exception

is Kruskal’s doubly logarithmic time parallel merging algorithm which run on an

CREW PRAM. Compared to the algorithm in [12], however, our algorithm can be

implemented on the CREW PRAM and thus gives one more example in the class of

highly parallel problems tha t run on the CREW PRAM.

Although we have achieved some progress the problems we studied, many ques

tions remain open. F irst of all, we would like to know whether or not our technique

to initialize priority queues can be applied to other d a ta structures. We believe our

84

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

parallel m ultiple selection algorithm, though efficient, is not the fastest possible. It

could be nice to find a faster parallel algorithm (keeping the same cost) by a different

approach. Finally, it will be interesting to know whether our highly parallel algorithm

in C hapter 4 can be improved.

85

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Bibliography

[1] A. V. Aho, J. E. Hopcroft, and J . D. Ullman. The Design and Analysis o f

Computer Algorithms. Addison-Wesley Publishing Company, 1974.

[2] M. Ajtai, J. Komlos, W. L. Steiger, and E. Szemeredi. An o(n log n) sort

ing network. In Proceedings o f the Annual AC M Symposium on the Theory o f

Computing, pages 1-9, 1983.

[3] M. Ajtai, J . Komlos, W. L. Steiger, and E. Szemeredi. Deterministic selection

in o(log log n) parallel time. In Proceedings o f the Annual A CM Symposium on

the Theory o f Computing, pages 188-195, 1986.

[4] S. G. Akl. The Design and Analysis o f Parallel Algorithms. Pretice Hall, Engle

wood Cliffs, New Jersey 07632, 1989.

[5] S. G. Akl and J. Meijer. Parallel binary search. IEEE Transactions on Parallel

and Distributed Systems, l(2):247-250, April 1990.

[6] A. Anderson and S. Carlsson. Construction of a tree from its traversals in optimal

tim e and space. Information Processing Letters, 34:21-25, 1990.

86

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

[7] R. J. Anderson, E. W. Mayr, and M. K. Warmuth. Parallel approximation

algorithms for bin backing. Information and Computation, 82:262-277, October

1989.

[8] M. D. Atkinson, J. R. Sack, N. Santoro, and T. Strothotte. Min-max heaps and

generalized priority queues. Communications o f ACM, 29:996-100, 1986.

[9] Y. Azar and U. Vishkin. Tight comparison bounds on the complexity of parallel

sorting. S IA M Journal on Computing, 16(3), June 1987.

[10] S. Baase. Computer Algorithms-An Introduction to Design and Analysis.

Addison-Wesley, 198.

[11] K. E. Batcher. Sorting networks and their applications. In Proceedings o f the

AF IP S Spring Joint. Computer Conference 32, pages 307-314, 1968.

[12] O. Berkman, D. Breslauer, Z. Galil, B. Schieber, and U. Vishkin. Highly paral-

lelizable problems. In Proceedings o f the Annual AC M Symposium on Theory o f

Computing, pages 11- 20, 1989.

[13] 0 . Berkman and U. Vishkin. Recursive *-tree parallel data-structure. In Pro

ceedings o f the Annual IEEE Symposium on Foundation o f Computer Science,

pages 196-202, 1989.

[14] Brown and Randy. Calendar queues: A fast o (l) priority queue implementation

for the simulation event set problem. Communications o f ACM, 31(1Q):1220-

1227, 1988.

87

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

[15] S. Carlsson. the deap-a double ended heap to implement double ended priority

queues. Information Processing Letters, 26:33-36, 1987.

[16] S. Carlsson, J. Chen, and T. Strothotte. A note on the construction of the data

structure ‘deap’. Information Processing Letters, 31:315-317, 1989.

[17] L. Chen and Y. Yesha. Parallel recognition of the consecutive ones property with

applications. Journal o f Algorithms, 12(3):375-393, 1991.

[18] E. G. Coffman and M. Hofri. On scanning disks and the analyst of their steady

state behavior. In Proceedings o f the Conference o f Measurement, Modeling and

Evaluating Computer Systems, 1982.

[19] R. Cole. An optimally efficient selection algorithm. Information Processing

Letters, 26(6):295-299, 1988.

[20] R. Cole. Parallel merge sort. SIA M Journal on Computing, l7(4):770-785,

August 1988.

[21] R. Cole and U. Vishkin. Approximate parallel scheduling, part 1: the basic

technique with applications to optimal parallel list ranking in logarithmic time.

SIA M Journal on Computing, pages 128-142, 1988.

[22] R. Cole and C. K. Yap. A parallel median algorithm. Information Processing

Letters, 20(3):137-139, April 1985.

[23] S. A. Cook. Towards a complexity theory of synchronous parallel computation.

L ’Enseignment Mathematique, 30, 1980.

88

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

[24] S. A. Cook. A taxonomy of problems with fast parallel algorithms. Information

and Control, 64:2-22, 1985.

[25] S. A. Cook, C. Dwork, and R. Reischuk. Upper and lower time bounds for

parallel random access machines without simultaneous writes. SIA M Journal on

Computing, pages 87-98, 1986.

[26] N. Deo and S. Prasad. Parallel heap. In Proceedings o f the IE E E International

Conference on Parallel Processing, 1990.

[27] J. R. Driscoll, R. Shrairman H. N. Gabow, and R. E. Tarjan. Relaxed heaps: an

alternative to fibonacci heaps with applications to parallel computation. Com

munication o f ACM, 31 (11): 1343—1354, 1988.

[28] Z . Fan and K. H. Cheng. A simultaneous access priority queue. In Proceedings o f

the IEEE International Conference on Parallel Processing, pages 195-198, 1989.

[29] M. J. Fischer and R. E. Ladner. Parallel prefix computation. Journal o f ACM,

27(4):831-838, 1980.

[30] W. R. Franta and K. Maly. An efficient data structure for the simulation event-

set. Communications o f ACM, 20(8):585-606, 1977.

[31] H. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved

network optimization algorithms. Journal o f the ACM, 34(3):596—615, 1987.

[32] G. H. Gonnet. Heaps applied to event-driven mechanisms. Communications o f

ACM, 19:417-418, 1976.

89

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

[33] T . Hagerup and C. Rub. Optimal merging and sorting on the ercw pram. Infor

mation Processing Letters, 33:181-185, December 1989.

[34] A. Hasham and J. R. Sack. Bounds for min-max heaps. B IT , 27:315-323, 1987.

[35] X. He. Efficient parallel algorithms for series parallel graphs. Journal o f Algo

rithms, 12(3):409-430, 1991.

[36] M. Hofri. Disk scheduling: Fcfs vs sstf revisited. Communications o f ACM, 23,

1980.

[37] F. K. Hwang and S. Lin. A simple algorithm for merging two disjoint linearly

ordered sets. SIA M Journal on Computing, 1:31-39, March 1972.

[38] K. Hwang and F. A. Briggs. Computer Architecture and Parallel Processing.

McGraw-Hill, 1984.

[39] Editor J. L. C. Sanz. Opportunities and constraints o f Parallel Computing.

Springer-Verlag, 1988.

[40] D. W. Jones. Concurrent operations on priority queues. Communications o f the

ACM, 32(1):132—137, Jan. 1989.

[41] R. M. Karp and V. Ramachandran. A survey of parallel algorithm for shared

memory machines. Rep. No. UCB/CSD 8 8 / 4 0 8 , Computer Science Division,

University of California, Berkeley, CA 94720, March 1988.

[42] D. E. K nuth. The Art o f Computer Programming, Vol. 1 , Fundamental Algo

rithms. Addison-Wesley, Reading, Mass., 1973.

90

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

[43] C. Kruskal. Searching, merging, and sorting in parallel computation. IEEE

Transactions on Computers, pages 942-946, October 1983.

[44] G. L. Miller and J. Reif. Parallel tree contraction and its application. In Pro

ceedings o f the Annual IEEE Symposium on Foundation o f Computer Science,

pages 140-148, 1985.

[45] O. Nevalaineen and J. Teuhola. Priority queue adm inistration by sublist index.

The Computer Journal, 22:220-224, 1977.

[46] S. Olariu, C. M. Overstreet, and Z. Wen. A mergeable double-ended priority

queue. The Computer Joumal-A Special Issue on Data Structures, Oct. 1991.

[47] S. Olariu, C. M. Overstreet, and Z. Wen. An optimal parallel algorithm to recon

struct a binary tree from its traversals. In Proceedings o f the International Con

ference on Computing and Information (Carleton University, Ottawa, Canada,

May 27-29 1991. Submitted to Journal of Parallel and Distributed Computing.

[48] S. Olariu and Z. Wen. The min-max-pair heaps and its variations. Tech. Rep. TR-

89-33, Departm ent of Computer Science, Old Dominion University, Sep. 1989.

[49] S. Olariu and Z. Wen. Fast parallel algorithms on heaps. Tech. Rep. TR-90-12,

Departm ent of Computer Science, Old Dominion University, Feb. 1990.

[50] S. Olariu and Z. Wen. An optimal parallel construction scheme for heap-like

structures. In Proceedings o f the 28th Annual Allerton Conference in Control,

Communication, and Computing(University o f Illinois, Urbana-Champaigh), Oc

tober 1990.

91

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

[51] S. Olariu and Z. Wen. Optimal parallel initilization algorithms for a class of

priority queues. IEEE Transactions on Parallel and Distributed Systems, (in

press).

[52] S. Olariu and Z. Wen. An efficient parallel algorithm for multi-selection. Parallel

Computing, (to appear).

[53] I. Parberry. Parallel Complexity Theory. John Wiley and Sons, Inc. New York,

Toronto, 1987.

[54] M. C. Pinotti and G. Pucci. Parallel priority queue. In Proceedings o f the

28th Annual Allerion Conference in Control, Communication, and Comput

ing (University o f Illinois, Urbana-Champaigh), 1990.

[55] T. Przytycka and D. G. Corneil. Parallel algorithms of parity graphs. Journal

o f Algorithms, 12(1):96—109, 1991.

[56] M. J. Quinn. Designing efficient algorithms fo r parallel computers. New York,

McGraw-Hill, 1987.

[57] M. J. Quinn and N. Deo. Parallel graph algorithms. Computing Survey,

16(3):319—348, Sep. 1984.

[58] A. G. Ranade. How to em ulate shared memory. Journal o f Computer and System

Sciences, 42:307-326, 1991.

[59] V. N. Rao and V. Kumar. Concurrent access of priority queues. IE E E Transac

tions on Computer, 37(12):1G57—1665, Dec. 1988.

92

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

[60] D. S. Richards and J. S. Salowe. Stacks, queues, and deques with order-

statistic operations. In Proceedings o f the 28th Annual Allerton Conference

in Control, Communication, and Computing (University o f Illinois, Urbana-

Champaigh), 1990.

[61] J. R. Sack and T . S trothotte. An algorithms for merging heaps. Acta Informatica,

22:171-186, 1985.

[62] D. D. Sleator and R. Tarjan. Self adjusting heaps. SIA M Journal on Computing,

1986.

[63] F. Springsleel and I. Stojmcnovic. Parallel general prefix computations with ge

ometric, algebraic and other applications. In Proceedings o f International Con

ference on Fundamentals o f Computation Theory, pages 424-433, 1989.

[64] R. Tam assia and J. S. Vitter. Parallel transitivity closure and point location in

planar structures. SIA M Journal on Computing, 20(4):708-726, 1991.

[65] R. Tarjan and U. Vishkin. Approximate and exact parallel scheduling with

application to list, tree and graph. In Proceedings o f the Annual A C M Symposium

on the Theory o f Computing, pages 487-491, 1984.

[66] R. E. Tarjan. Efficiency of a good but not linear set union algorithm. Journal

o f the ACM , 22:215-225, 1975.

[67] R. E. Tarjan. Data Structures and Network Algorithms. SlAm, Philadelphia,

Pa., 1983.

93

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

[68] P. C. Treleaven. Parallel architecture overview. Parallel Computing, pages 59-70,

1988.

[69] J. Ullman and M. Yannakakis. High-probability parallel transitive-closure algo

rithms. SIA M Journal on Computing, 20(1):100—125, 1991.

[70] L. G. Valiant. Parallelism in comparison problems. SIA M Journal on Computing,

4(3):348-355, 1975.

[71] U. Vishkin. Synchronous parallel computation, a Survey, TR71, Department of

Computer Science, Courant Institute, NYU, 1983.

[72] U. Vishkin. Deterministic sampling-a new technique for fast pattern matching.

S IA M Journal on Computing, 20(l):22-40, 1991.

[73] J. A. Viullemin. A data structure for manipulating priority queues. Communi

cations o f ACM, 21:309-314, 1978.

[74] Z. Wen. Parallel multiple search. Information Processing Letters, Feb. 1991.

[75] J . W . J . Williams. Algorithm 232. Communications o f ACM, 7:347-348, 1964.

[76] Y. B. Yoo. Parallel processing for some network optimization problems. Ph.D

dissertation, Computer Science Dept. Washington State University, Pullman,

WA, 1983.

94

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Autobiographical Statement

Zhaofang Wen

I was born on September 2nd, 1961 in Canton Province, China. I have two
previous degree as follows:

• B.S. Computer Science, ZhongShan University, Canton, China., July 1982.

• M.S. Computer Science, ZhongShan University, Canton, China., July 1985.

The following is a list of my published articles:

• “A mergeable double-ended priority queue,” (with S. Olariu and C. M. Over
street) The Computer Jou.ruu.l-A Special Issue on Data Structures, October,
1991.

• “Merging heaps in parallel,” (with S. Olariu) International Journal of Computer
Mathematics, Feb. 1991.

• “Optimal parallel initialization algorithms for a class of priority queues,” (with
S. Olariu) IEEE Transactions on Parallel and Distributed Systems (in press).

• “Parallel multiple search,” Information Processing Letters, 37(4), Feb. 1991.

• “An efficient parallel algorithm for multi-selection,” (with 5. Olariu) Parallel
Computing, (in press).

• “A faster optimal parallel algorithm for the measure problem,” (with S. Olariu
and W . Zhang) Parallel Computing, (in press).

• “An optimal parallel algorithm to reconstruct a binary tree from its traversals,”
(S. Olariu and C. M. Overstreet) in Proceedings o f the International Conferences
on Computing and Information, May 27-29, 1991, O ttawa, Canada.

• “Efficient parallel algorithms for some integer problems,” (with W. Zhang) in
Proceedings o f the Annual ACM Computer Science Conference, March 4-7,1991,
San Antonio, TX.

• “An optimal parallel construction scheme for heap-like structures,” (with 5.
Olariu) in Proceedings o f the 28th Annual Allerton Conference on Control, Com
munication and Computing, University of Illinois, Urbana-Champaign, IL, Oct.
3-5, 1990.

• “Optimal parallel encoding and decoding algorithms for trees,” (with S. Olariu,
J. Schwing and J. Zhang) in Proceedings o f the Annual A C M Computer Science
Conference, March 4-7, 1991, San Antonio, TX.

Upon receiving my m aster degree from ZhongShan University, China, I was hired
as an Instructor of Computer Science a t the same university, where I served for two
years. In 1987, I enrolled as a graduate student at Oklahoma State University. In
1988, 1 joint the Ph.D program of computer science at Old Dominion University. My
research interests include Parallel Processing, Software Engineering, and Data Struc
tures. Funding for the research done in this thesis was through a research assistantship
from NASA and Navy, and a Special Doctoral Fellowship from the Department of
Computer Science, Old Dominion University.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

	Fast Parallel Algorithms for Basic Problems
	Recommended Citation

	tmp.1571077289.pdf.1kfd5

