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ABSTRACT

FAST PARALLEL ALGORITHMS FOR BASIC PROBLEMS

Zhaofang Wen 

Old Dominion University 

Advisors: C. Michael Overstreet and Stephan Olariu

Parallel processing is one of the most active research areas these days. We are 

interested in one aspect of parallel processing, i.e. the design and analysis of parallel 

algorithms. Here, we focus on non-numerical parallel algorithms for basic combinato

rial problems, such as data  structures, selection, searching, merging and sorting. The 

purposes of studying these types of problems are to obtain basic building blocks which 

will be useful in solving complex problems, and to develop fundamental algorithmic 

techniques.

In this thesis, we study the following problems: priority queues, multiple search 

and multiple selection, and reconstruction of a binary tree from its traversals. The 

research on priority queue was motivated by its various applications. The purpose of 

studying multiple search and multiple selection is to explore the relationships between 

four of the most fundamental problems in algorithm design, tha t is, selection, search

ing, merging and sorting; while our parallel solutions can be used as subroutines in 

algorithms for other problems. The research on the last problem, reconstruction of 

a  binary tree from its traversals, was stim ulated by a  challenge proposed in a  recent 

paper by Berkman e t al. ( “Highly Parallelizable Problems,” S T O C 8 9) to design dou

bly logarithmic time optimal parallel algorithms because a remarkably small number 

of such parallel algorithms exist.
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Chapter 1

Introduction

The increasing success in development of parallel processing hardware has stimulated 

the recent developments in the design of parallel algorithms (see [4, 24, 41, 53, 56, 

17, 35, 55, 64, 69, 72] for recent results). A parallel algorithm is a solution method 

for a  given problem designed to  be performed on a  parallel computer. The study of 

parallel algorithms enables us to understand the inherent parallelism of a  problem. 

It also provides a  context in which we may identify difficult computational problems.

1.1 Parallel C om putation M odels

As is the  case for the sequential algorithms which are designed on sequential com

putation models, parallel algorithms need to  be developed on parallel computation 

models. Any computer, whether sequential or parallel, operates by executing instruc

tions on data. A steam  of instructions (the algorithm) tells the computer what to 

do a t each step. A stream  of data (the input to the algorithm) is affected by these 

instructions. Depending on whether one or several of these streams, two types of par

allel computers are used (see [4, 71] for a complete survey): SIMD (Single Instruction 

stream , M ultiple D ata stream) computers and MIMD (Multiple Instruction stream,

1
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DATA STREAM 1 DATA STREAM 2 DATA STREAM k

INSTRUCTION STREAM

PROCESSOR kPROCESSOR 2PROCESSOR 1

CONTROL

SHARED MEMORY 
OR

INTERCONNECTION NETWORK

Figure 1.1: SIMD Computer

Multiple D ata stream) computers. Processors in these models can be connected in 

many ways such as mesh, hypercube, or shared memory [68, 58]. Among these mod

els, we give more details about the shared memory SIMD model. A SIMD shared 

memory computation model consists of k  processors [4], as shown in Figure 1.1.

Each of the k processors has its own local memory in which it can store both pro

grams and data. The processors operate synchronously: in every time step (controlled 

by some mechanism such as a global clock), the central control issues an instruction 

to  each of the processors. All processors execute the same instruction, each on a 

different datum . Therefore, k  data streams exist. Those processors tha t complete the

o
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execution of the instruction before others must remain idle until the next instruction 

is issued. The time interval between two instructions may be fixed or may depend on 

the instruction being executed. The processors in this model communicate through 

shared memory (SM). Four sub-models are used according to whether two or more 

processors can gain access to the same memory location simultaneously:

•  Exclusive-Read, Exclusive-Write (EREW ) SM SIMD model. Concurrent access 

to the same memory location in reading or writing is prohibited.

• Concurrent-Read, Exclusive-Write (CREW) SM SIMD model. Simultaneous 

read from the same memory location is allowed, but simultaneous write into 

the same memory location is disallowed.

• Exclusive-Read, Concurrent-Write (ERCW) SM SIMD model. Multiple proces

sors are allowed to write into the same memory location but read access remains 

exclusive.

•  Concurrent-Read, Concurrent-W rite (CRCW) SM SIMD model. Both sim ulta

neous read and simultaneous write are permitted.

The shared-memory SIMD model is also known in the literature as the Parallel 

Random Access Machine (PRAM) model. Although it ignores constraints in real 

architecture, the PRAM model has proved a popular model for parallel algorithm 

design. As Cole put it [39]: “The task of designing efficient, highly parallel al

gorithms is quite difficult, in general. The PRAM model provides an abstraction 

tha t strips away problems of synchronization, reliability and communication delays, 

thereby perm itting algorithm designers to focus first and foremost on the structure of 

the computational problem a t hand, rather than the architecture of a currently avail

able machine.” For this reason, we will also use the PRAM model as the computation 

model for our parallel algorithms in this thesis.

3
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1.2 A nalysis o f Parallel A lgorithm

In the design and analysis of parallel algorithms, we need several complexity mea

sures. The most im portant measure in evaluating a parallel algorithms is its running 

time, since speeding up computations appears to be the main motivation for studying 

parallel computing. The running time of a  parallel algorithm is defined as the number 

of basic operations, or steps executed by the algorithm in the worst case. Operations 

such as comparing, adding, or swapping of two numbers are commonly accepted as 

basic operations in the PRAM model (in fact, each of these operations requires a con

s tan t number of time units on a typical sequential machine). Hence, the running time 

(or time complexity) of a parallel algorithm is an expression describing the number 

of such basic steps as a function of the number of processors used and the input size.

In evaluating a  parallel algorithm for a  given problem, it is natural to compare its 

tim e complexity with tha t of the fastest possible sequential algorithm for the same 

problem. Thus, a  good measure of a  parallel algorithm is the speedup it produces. 

The speedup obtained by a parallel algorithm for a  problem is defined to  be ratio 

of the worst-case running time of the fastest possible sequential algorithm for the 

problem to the worst-case running time of the parallel algorithm.

The cost of a  parallel algorithm is defined as the product of the number of pro

cessors used and the parallel running time.

Assume th a t a  lower bound is known on the number of sequential operations 

required in the worst case to solve a  problem. If the cost of a parallel algorithm for 

th a t problem matches this lower bound to within a  constant multiplicative factor, then 

the  parallel algorithm is said to be cost optimal. A cost optimal algorithm is usually 

said to  be optimal in literature. We will follow this tradition when no confusion is 

possible. W hen no optimal sequential algorithm is known for solving a  problem, the 

efficiency of a  parallel algorithm for th a t problem is sometimes used as a  measure. 

In particular, the efficiency of a parallel algorithm for a problem is defined to be the

4
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ratio of the worst-case running time of the fastest known sequential algorithm for the 

problem to the cost of the parallel algorithm.

Parallel algorithms are often characterized by different complexity classes. The 

most popular parallel complexity class is NC  (Nick’s Class [23, 24]). In particular, 

a parallel algorithm is an NC algorithm if it runs in 0 (( lo g n )c) time using 0 ( n k) 

processors for some constants c >  0 and k > 0 (see [23] for more details). Studying 

membership in the class NC has been the focus of the complexity theory for parallel 

computation [24, 41].

Recently, several new classifications for parallel algorithms were introduced: fully  

parallel [13], almost fu lly parallel [13], and highly parallel [12]. Specifically, a parallel 

algorithm is fu lly parallel if it is optimal and runs in 0 (1 ) time; a parallel algorithm 

is almost fully parallel if it is optimal and runs in 0 (a (n ) )  time, where a (n ) is the 

inverse-Ackermann function (see [13, 66] for details about the definition of a (n )); 

an optim al parallel algorithm is highly parallel if it runs in O (loglogn) time. The 

notion of fully parallel algorithms represents an ultim ate theoretical goal for paral

lel algorithm designers. However, research on lower bounds for parallel com putation 

shows th a t most of the time this goal is unachievable; this is also the case for de

signing almost fully parallel algorithms for the same problems. For example, any 

optimal parallel algorithm to find the minimum among n elements requires a t least 

fl(log log n) time. A remarkably small number of problems are known for which there 

exist optimal parallel algorithms tha t run in O (loglogn) time. The class of highly 

parallel algorithms and the challenge of designing such algorithms is discussed in [12].

1.3 Problem s of Interest

We are interested in non-numerical parallel algorithms for basic problems, such as data  

structures, selection, searching, merging and sorting, which are also fundamental in

5
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the sequential setting. Studying the parallel algorithms for these problems is of both 

practical and theoretical importance: the parallel solutions can be used as building 

blocks to solve complex problems while the techniques developed in the process can 

also be useful in solving many other problems. Much of the recent advance in non- 

numerical parallel algorithms is due to several algorithmic techniques and the progress 

in solving a  number of basic problems such as, parallel prefix sum [29], parallel linked 

list ranking [21], the Euler tour technique [65], the parallel tree contraction technique 

[44], parallel merge sort [20], parallel merging [43, 7, 33].

In this thesis, we study the following problems: priority queues, multiple search 

and multiple selection, and reconstruction of a binary tree from its traversals. A 

priority queue is a data  structure (more formally, an abstract data type) which finds 

many applications in software engineering [45], disk scheduling [18, 36], simulation 

[32, 30,45, 14], external sorting [8], operating systems [38], and network optimizations 

[67, 31]. Due to its far-reaching applications, parallel implementations of priority 

queue operations have recently received much attention in literature. In Chapter 

2, we give a  survey of the current research on parallel implementations of priority 

queue operations and also present our research results. Chapter 3 is devoted to two 

problems, multiple search and multiple selection. As we will explain later, the purpose 

of this chapter is to explore the relationships among four fundamental problems in 

algorithm design, i.e. selection, searching, merging and sorting. It turns out that 

our parallel solutions can be used as subroutines in algorithms for other problems. 

For example, our optimal parallel solution for the multiple search problem can be 

used in Hagerup and Rub’s parallel merging algorithm [33] to obtain the optimal 

implementation of their algorithm on the EREW  PRAM. In Chapter 4 we study a 

classical problem which is to reconstruct a  binary tree from its traversals [42], We 

present an optimal O(loglogn) time parallel algorithm (i.e. highly parallel) for this 

problem. Our solution to this problem is of theoretical importance for the following

6
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reasons: (i) An extremely small number of problems are known to have highly parallel 

solutions, and thus designing such algorithms is proposed as a challenge in [12], (ii) 

Due to the research on lower bounds in [25], Berkman et al, point out in [12] tha t 

doubly logarithmic time parallel algorithms usually need to run on an CRCW PRAM. 

(A known exception is Kruskal’s O (loglogn) time parallel merging algorithm which 

runs on an CREW  PRAM.) They also proposed in [12] a  highly parallel algorithm 

for the binary tree reconstruction problem on the CRCW PRAM. Compared to their 

algorithm, however, our algorithm can be implemented on the CREW PRAM and 

hence gives one more example in the class of highly parallel algorithms tha t run on 

the CREW PRAM. Finally, we conclude the thesis in Chapter 5. The research results 

in this thesis can also be found in [48, 49, 50, 47, 46, 74].

7
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Chapter 2

Priority Queues

In this chapter, we consider priority queues. The research results in this chapter 

also appear in [46, 48, 49, 50, 51]. A priority queue is a data  structure each of whose 

elements is assigned a  label representing its priority. In this context, the natural order 

of the elements in such a  structure is dictated by their respective priority. Priority 

queues are widely used in software engineering [45], disk scheduling [18,36], simulation 

[32,30,45,14], external sorting [8], operating systems [38], and network optimizations 

[67, 31], to  name just a  few (see [10, 38] for a  more competent discussion).

More formally, a priority queue can be viewed as an abstract data  type maintain

ing a  set of keys from a  totally ordered universe and supporting the following basic 

operations:

Initialization: initialize the priority queue;

Find-min: find the minimum (find the element with the highest priority);

Delete-min: delete the minimum;

ln se r i[x )  : insert key x  into the structure.

Of course, instead of finding or deleting the minimum we could just as weli insist

8
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on maintaining the structure such th a t the maximum is operated upon. Depending 

on applications [46], priority queues also support other operations such as Meld:

M eld(Q l,Q 2): combine priority queues Q 1 and Q2

The idea of a  priority queue can be naturally extended to a  double-ended priority 

queue where, in addition to Find-min, Delete-min, the operations of Find-max and 

Dclctc-max arc also of interest. Double-ended priority queues can be used to support 

order-statistic trees [8] which find applications to signal processing [60].

We give some background about priority queue implementations in Section 2.1. 

Our research results will be presented in the following sections: a  meldable double- 

ended priority queue in Section 2.2, and parallel algorithms for initialization of a  class 

of priority queues in Section 2.3.

2.1 Prelim inaries

Typically, heaps are used to implement priority queues in computer systems. Various 

heaps have been invented such as: binomial heaps [73], leftist heap [67, 62], Fibonacci 

heaps [31], and relaxed heaps [27]. Here, we are interested in the one proposed by 

Williams [75] called the heap. Specifically, a heap is a binary tree with the following 

properties:

•  heap-shaped properly, all leaves occur on the  last two adjacent levels in the struc

ture, with the leaves on the last level being confined to the leftmost position; 

all o ther levels are complete.

•  min-ordering: every element is no larger than the smallest of its children. 

Figure 2.1 illustrates th e  heap concept.

I t  is well known tha t in the heap implementation of priority queues Find-min 

takes 0 (1 ) time, while both Delete-min and Insert take O(logn) time.

9

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



5

Figure 2.1: A min heap

Due to  the heap-shaped property, a nice feature of heaps is tha t they can be 

implemented in situ, with no need for additional pointers. As a  m atter of fact, an 

n-element heap can be stored in an array of size n [10]: an array //[l..n ] can be 

interpreted as a  heap-shaped binary tree if for every i (1 <  i <  the children

of H  [z] are H[2i] and H[2i +  1],

To implement a double-ended priority queue, Atkinson et al. [8] have recently 

proposed an interesting variation on the idea of a heap: they defined the min-max 

heap as a  binary tree such that: (i) it has the heap-shaped property; and (ii) it is 

m in-max ordered: elements on even levels are less than or equal to  their descendants, 

and elements on odd levels are greater than or equal to their descendants. Figure

2.2 illustrates this min-max heap concept. Max-min heaps are defined completely 

analogously: such a  structure begins with the maximum element a t the root and 

then the heap conditions alternate between minima and maxima.

As it turns out [8], when the double-ended priority queue is implemented as min- 

max heap, Find-min and Find-max can be performed in 0 (1 ) time, while Delete-min,

10
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min level

max level

min level

24] max level

Figure 2.2: A min-max heap

Delete-max, and Insert takes O(logn) time. In addition, Atkinson ei a i [8] propose 

an 0 (n )  time, and thus optimal, algorithm to initialize a  min-max heap.

As an alternative to min-max heaps introduced in [8], Carlsson [15] propose a new 

d ata  structure called the deap which provides an efficient implementation of a  double- 

ended priority queue. Formally, a deap is a heap-shaped da ta  structure featuring the 

following properties: the left (right) sub-tree of the non-existing root is a  min-heap 

(max-heap); each leaf in the min-heap is smaller than a corresponding leaf in the 

max-heap. On an n-element deap, the operations Find-min and Find-max take 0 (1) 

time, Delete-min, Delete-max, and Insert take O (logn) time [15, 16]. Moreover, the 

deap can be implemented in situ and initialized in 0 (n )  sequential time.

2.2 A M eldable D ouble-ended Priority Queue

An interesting problem arising in fault-tolerant distributed simulation [46] is the fol

lowing: assume tha t several (computationally active) sites in a  distributed system are 

simulating a process. It is sometimes desirable to implement the corresponding event

11
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lists as double-ended priority queues. Basic fault-tolerant requirements specify tha t 

if one of these sites, say 5,-, suddenly becomes computationally inactive, another one 

continue the simulation performed by S;. For this purpose, we need to elect a site S j  

(i ^  j )  which will then im port the event list of S,- and will meld it with its own event 

list.

I t is natural to consider first the meldabilities of the existing double-ended priority 

queue implementations, i.e. min-max heaps and deaps. To the best of our knowledge, 

it is still an open question whether deaps are meldable. However, it has recently been 

proven [34] tha t min-max heaps are not meldable, that is, melding two min-max 

heaps of sizes n  and k , respectively, cannot be done in less than fl(n  +  k) time. The 

inherent structure of the min-max heaps causing this negative result motivates us to 

investigate a  different da ta  structure to implement efficiently a double-ended priority 

queue. This data  structure can be defined by modifying slightly the structure in 

the definition of the min-max heaps. As we are about to show, however, with this 

modification the resulting data  structure is meldable. This data structure was first 

proposed in a different form by Williams [75], and is herewith referred to as the 

min-max-pair heap. In essence, a min-max-pair heap is a binary tree H  featuring 

the heap-shaped property, such tha t every node in H  has two fields, called the min 

field and the max field, and such tha t H  has a  min-max-pair ordering: for every i 

(1 <  i <  n), the value stored in the min field of H[i\ is the smallest key in the 

subtree of H  rooted a t H [i]; while the value stored in the max field H [z] is the largest 

key stored in the subtree of H  rooted a t i/[i] (see Figure 2.3). We will show tha t 

min-max-pair heaps can be implemented in situ, with no need for additional pointers.

As it turns out, when the double-ended priority queue is implemented as a  min- 

max-pair heap, Find-min and Find-max can be performed in 0 (1 ) time, while Delete- 

min, Delete-max, and Insert take O(logn) time. However, what really distinguishs 

min-max-pair heaps from min-max heaps is the fact tha t min-max-pair heaps can be

12
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Figure 2.3: A min-max-pair heap

melded efficiently in sublinear time. More precisely, we show th a t two min-max-pair 

heaps with n and k nodes can be melded in O(logfclog^) time.

2.2.1 Basic Operations

Consider an array i/[ l..n ]  as input. For 1 <  i <  n, each element # [i] of H  has two 

fields, H [i\.m in  and H [i].m ax. Therefore, the array H  can be viewed as containing 

2n — 1 or 2n keys altogether; in case H  contains 2n — 1 keys, the max field /f[n].m ax 

contains a  special symbol, namely # .

The initialization algorithm for a min-max-pair heap resembles the  initialization 

of the standard heap structure [10]. Let //[i] be an arbitrary node of the array to 

be made into a  min-max-pair heap. We further assume tha t for all j  (i <  j ) ,  the 

subtrees rooted a t the children of H[j], namely H[2j] and H[2j +  1], provided they 

exist, have been made into min-max-pair heaps. First, we restore the min-max-pair 

heap property along the min fields of the nodes in the subtree rooted a t Zf[i], by 

trickling down larger keys. We then restore the min-max-pair heap property along 

the max fields of the nodes in the subtree rooted a t #[f], by trickling down smaller

13

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



keys. The purpose of this is to ensure tha t the H[i].min and H [i\.max contain the 

smallest and the largest keys in the subtree rooted at H [i], respectively. The details 

are given below:

P ro c e d u re  Initialization(.//[l..n]);

F o r  i <— n d o w n to  1 do Siftdown(i/[i]);

end ;

P ro c e d u re  Siftdown(//[z]);

/*  Subtrees rooted at //[2i] and H[2i +  1] are already min-max-pair heaps * / 

Trickledown-min-field(//[i]);

Trickledown-max-field( H  [i]);

end ;

P ro c e d u re  TrickIedown-min-field(i/[i]);

P «- [*];

if  p.m ax < p .m in  th e n  Swap(p.mm,p.maa:); 

i f  p is a leaf th e n  return; 

p i *— child of p with smallest m in  field; 

i f  p i .m in < p .m in  th e n  

Swap(pl .m in ,p .m in);

Trickledown-min-field(pl);

e n d if

end ;
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Procedure Trickledown-max-field is similar to procedure Trickledown-min-field. 

The following result establishes the correctness and the time complexity of our pro

cedure.

T h e o re m  2.2.1 Procedure Initialization correctly constructs a min-max-pair heap 

structure over 2n o r2 n  — l keys in 0 ( n ) time.

P ro o f. To settle the correctness we notice the following: For every H[i] (2 <  i < 

n), when Trickledown-min-field(//[i]) (resp. Trickledown-max-field(//[i])) terminates, 

H[i}.min (resp. II[i\.max) contains the smallest (resp. largest) key in the subtree 

rooted a t H[i], while the subtrees rooted a t H[2i\ and II[2i 4-1] (provided they exist) 

are min-max-pair heap; this is easily seen by induction on the height of node 

Therefore, when Initialization(//[l ..n]) terminates, the whole structure is made into 

a min-max-pair heap.

To address the complexity, consider what happens in procedure Trickledown-min- 

field when node H[i\ is being processed. To ensure tha t Zf[i].min <  H[i].max and to 

determine the child of H[i] with smallest m in  field three comparisons are required. 

Consequently, the total number of comparisons to perform initialization is at most:

53 3(log n — log i *f 1) 

which is 0 (n ) .  □

Next, we show th a t performing the standard operation Jnserf(:r) and Delete-min 

as well as Delete-max can be done in O(logn) time. Basically, the idea of inserting a 

new element x  into a  min-max-pair heap is the same as the insertion of a  new element 

into a  standard heap. We first place the new key a t the bottom  of the structure and 

then perform the well known bubble-up operation. Just as in the case of heaps, the 

time complexity of the Insert(x)  operation for the min-max-pair heap is dominated 

by the  cost of the  bubble-up which is easily seen to  O(logn) as shown in the  following 

procedures:
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P ro c e d u re  Bubbleup(//[i]);

V + - #  [*]; 

b «— fa ls e ;

if  p.m in > p.m ax  th e n  Swap{p.mm,p.max); 

i f  p is the root th e n  return; 

p i *— the parent of p; 

if  p i .max <  p.m ax  th e n  

Swap(pl .m ax, p.max)\ 

b *— true 

en d if

if  p i .mm >  p .m in  th e n  

Swap (p l.m in , p.min); 

b *— true  

e n d if

if  b th e n  Bubbleup(pl);

en d ;

P ro c e d u re  Insert(x ,/f[l..n ]);

if  H[n].max =  *#' th e n  

i/[n].m ax *— x; 

else

r n - n  +  1;

H[n].min +— x
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H \n\.m ax  <— 

e n d if

Bubbleup(/f[n]);

end ;

Similarly, the idea of Delete-min and Delete-max resembles the corresponding 

operations on heaps. The details are spelled out in the following procedures. It is an 

easy m atter to confirm tha t both these operations can be executed in O(logn) time, 

while Find-min and Find-max take 0(1) time.

P ro c e d u re  D elete-m in(/f[l..n]);

if  H\n].max  =  th e n  

//[ lj.m in  *— 

i n - n - l ;  

e lse

H [l\.m in  *— H[n\.max; 

H[n].max ♦— 

e n d if

TrickIedown-min-field(i/[l]);

end ;
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2.2.2 Melding

Recently, Sack and S trothotte [61] proposed an efficient algorithm to meld two heaps 

in sublinear time. Specifically, melding two heaps of size n and k can be done in 

O(log fclog 2 ) time. The general case of the heap-melding algorithm in [61] reduces, 

in stages, to tha t of melding perfect heaps. (A heap H  is perfect if the leaves occur a t 

the last level only.) The idea in [61] is very elegant: first, to meld two perfect heaps 

H i  and H 2 of equal size, make the rightmost leaf of H 2 into the new root, whose 

children will be the old roots of H i  and 112. After this, the new root is sifted down 

to restore the heap property.

Next, let H i  and H2  be two perfect heaps of sizes n and k , respectively, with 

k < n. S tart at the root of I I I  and compare it to the root of / / 2; if the root of H 2 is 

smaller than the root of H i  then exchange the two roots and perform a  “sift-down” 

on H2. This operation is repeated along the path ( Walk-down) in H i  from the root 

down to the leftmost leaf of H i  for log j  steps.

We show tha t the heap melding algorithm in [61] can be adapted to meld two 

min-max-pair heaps in sublinear time. We shall therefore focus on melding perfect 

min-max-pair heaps, tha t is, min-max-pair heaps whose leaves occur a t the last level 

only. We refer interested readers to [48] where the tedious details are provided.

Just as in [61], to reduce the am ount of data movement during the execution of our 

melding algorithm, we shall assume a  pointer-based implementation. In this context, 

a min-max-pair heap node v  contains the following fields:

• v .m in  and v.max  fields;

•  v.lchild contains a  pointer to the left child of v in the min-max-pair heap;

• v.rchild contains a pointer to the right child of v in the min-max-pair heap;

It is convenient to assume tha t depth(H) returns the depth of the min-max-pair 

heap H  in constant time. The details of our melding algorithms are as follows.
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P ro c e d u re  M eld-perfect-equal(//i, / / 2);

/*  Hi and / / 2 are two min-max-pair heaps of same size * / 

p <— the last node in / / 2 

remove p from H2\ 

p.lchild i— IIi) 

p .r child *— / / 2;

Siftdown(p);

H i * - p \

en d ;

P ro c e d u re  M eld-perfect(//n, //*);

p <— node on the path from the root to the leftmost leaf in H n, 

such tha t the subtree rooted a t p has k  nodes 

r  «— root of H„)

Walk-down (Hn,H k,r,p))  

p i <— parent of p;

Meld-perfect-equal(p, Hk)’, 

i f  p i ^  nil  th e n  pl.lchild  <— p; 

else Hn *— p

en d ;

P ro c e d u re  Walk-down(Hn, Hk, f  rom, to))

I* Hn is a min-max-pair heap with n nodes;

Hk is a  min-max-pair heap with k  nodes;
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‘from ’ is the starting location of current operation 

on the path from the root in //„  to the leftmost leaf;

‘to ’ is the ending position of the operation */

if Ilk .m in  < fro m .m in  th e n  Swap(//jt.min, f  rom.min);

if  Hk-max > fro m .m a x  th e n  Swap{Hk.max, from .m ax);

Siftdown (Hk)]

if f r o m  =  to th e n  return;

else

next  <— from .lchild  

Walk-down{//n, Ilk, n ex t , to); 

e n d if

en d ;

It is easy to see th a t the complexity of our algorithm is exactly the same as tha t 

of the heap-melding algorithm in [61].

T h e o re m  2 .2 .2  Two min-max-pair heap o f  n  and k  elements, respectively, can be 

melded in 0 (log k  log j )  time. □

2.2.3 Discussion

We have shown in this section that min-max-pair heaps are meldable. It is interesting 

to see th a t the idea which leads to the min-max-pair heap can be further expanded. 

As an example, we define a min-min-pair heap as a  heap-shaped binary tree with each
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oo

Figure 2.4: A min-min-pair heap

node p, containing two fields called m ini  and minS , respectively. The value of m ini  

is the smallest of all the values stored in the subtree rooted a t p\ min2  contains the 

smallest of all the values stored in the min2  fields of all nodes in the subtree rooted at 

p. Finally, for every node q in the subtree rooted a t p, p.min2 > q.min  1 (see Figure 

2.4).

An interesting feature of a  min-min-pair heap is th a t the m in i  field of the root 

contains the minimum value in the whole structure, while minS  of the root contains the 

median of the whole structure. As it turns out [48], a  min-min-pair heap containing 

2n — 1 or 2n keys can be initialized in O(n) time. Clearly, the operations Find-min 

and Find-median can be performed in 0 (1 ) time. Similarly, In ser t(x ) ,  Delete-min 

and Delete-median can be done in O(logn) time [48]. Similarly, one can define a  max- 

max-pair heap and a max-min-pair heap [48]. Unfortunately, none of these variations 

of the min-max-pair heap are meldable in sublinear time.

Finally, an interesting open question is whether or not deaps are meldable in 

sublinear time. In particular, it would be interesting to see whether the techniques 

in [61] can be extended to  meld deaps.
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2.3 Parallel Im plem entations of Priority Queue

O perations

In this section, we study the parallel implementation of priority queue operations. 

Priority queues have been used in a wide variety of parallel algorithms, e.g. mul

tiprocessor scheduling, graph search, and branch-and-bound algorithms [57, 56, 59]. 

In 1983, Yoo [76, 57] parallelized the Deletc-min operation on a  priority queue im 

plemented by a  heap, in order to obtain a parallel version of Kruskal’s minimum 

spanning tree algorithm. In particular, he showed th a t although a  single Delete-min 

operation on an n-element heap required O (logn) time, by using a  software pipelin

ing technique a new Delete-min operation can begin after only 0 (1 ) time. In 1987, 

Biswas and Browne studied simultaneous updates of priority queue structures: their 

scheme allows O (logn) processors to be active on a heap. In 1988, Rao and Kumar 

[59] presented an interesting approach to allow concurrent Insert and Delete-min op

erations on the heap in the shared memory MIMD computation model. Their main 

contribution is to have changed the traditional Insert from the well known bottom  

up fashion to a  novel top-down approach. In their scheme, several Insert and Delete- 

min operations can be active simultaneously without causing deadlocks. In addition, 

their scheme retains the strict priority ordering of the serial-access heap algorithms;

i.e. a  Delete-min operation returns the smallest key of all the keys in the structure, 

including those whose insertion is in progress. Concurrent insertions and Delete-min 

operations on a  priority queue implemented by skew heaps were studied by Jones 

[40]. he showed th a t on an MIMD shared memory model both Insert and Delete-min 

operations on an n-element skew heap can performed in O (logn) tim e but, using 

pipelining, a  new operation can begin after only 0 (1 ) time. Quinn [57] reports a 

parallel initialization algorithm (due to Yoo) of a priority queue implemented by an 

n-element heap in 0 (( lo g n )2) time using 0 (n )  processors on an MIMD model. It
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is obvious th a t Yoo’s initialization algorithm is not cost-optimal. All the parallel 

priority queue schemes above use heaps in which internal nodes contain ju st one key.

Most recently, Deo and Prasad [26] and Pinotti and Pucci [54] proposed similar 

variations on the traditional heap structure. Their da ta  structure (called bandwidth 

heap in [54] and parallel heap in [26]) has the heap-shaped property, with every in

ternal node containing k elements, for some k. In [26] and [54] concurrent insertion 

and deletion operations on this new data structure are also investigated. Network 

implementation of simultaneously accessible priority queue is studied in [28].

In Section 2.3.1, we will present a parallel algorithm for melding priority queues 

which will be followed by optimal parallel initialization algorithms for a  class of pri

ority queues in Section 2.3.2.

2.3.1 A  Parallel Melding Algorithm

In this section, we consider melding priority queues in parallel. We propose a  method 

to parallelize Sack and S trothottes’s heap melding algorithm [61] (they called it heap 

merging in [61]). As it turns out, our method can also be applied to obtain a parallel 

melding algorithm for double-ended priority queues implemented by min-max-pair 

heaps.

To reduce the  amount of d a ta  movement during the execution of parallel melding 

algorithm, we shall assume a pointer-based implementation. In this context, a heap 

node v  contains the following fields:

•  v.key  contains the key stored a t node v;

•  v.lchild  contains a  pointer to  the left child of v  in the heap;

• v.rchild  contains a  pointer to the right child of v in the heap;

O ur parallel algorithm relies, in part, on a  new version of the well known “sift- 

down” procedure used for restoring the heap property (see [10] and [49]). More
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precisely, several elements of H  will be sifted down in parallel. Initially, the root of H  

is assigned one processor which proceeds to siftdown for two tim e units; after that, a 

new processor is assigned to the (new) root, all active processors acting on I I  proceed 

to siftdown for two time units, and so on. It is im portant to note th a t a processor 

continues to be active as long as it can sift down. After this, it becomes inactive 

and will stay inactive until it is reassigned to the root of II  at a  later moment, in 

a cyclic way. To justify the idea of the processor assignment we note tha t if we use 

at least t =  depth(H) processors Po,Px, . . . ,P t- u  and if the processors are assigned 

modulo depth{H ) then, we are always guaranteed to assign only inactive processors. 

It is clear that this processor allocation scheme avoids read and write conflicts in II.  

As a m atter of convenience, we assume tha t every processor P, (0 <  i <  t — 1) stores 

in its local memory the following information:

• current(P;), standing for the node in I I  where P; is currently at;

• active(Pi), which is either a  1 or a 0 depending on whether or not P; is active.

The initial value is 0.

The details of the processor allocation scheme and siftdown are presented in pro

cedures Siftdown and Parallel- Walkdown.

P ro c e d u re  Siftdown(i^);

v <— current(Pi),

let w be the child of u with the smallest key; 

if  v.key > w.key th e n  

Swap(u.fcei/, w.key)', 

current(Pi) *— w 

else
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active(Pi) 0; {deactivated}

end;

Call a  heap / /  perfect if the leaves occur a t the last level only. The general case 

of the sequential heap-melding algorithm in Sack and S trothotte reduces, in stages, 

to  th a t of melding perfect heaps. We shall therefore, focus on melding perfect heaps 

in parallel. First, melding two perfect heaps heap1 and hcap2 of equal size can be 

easily done sequentially: make the rightmost leaf of heap2 into the new root whose 

children become the old roots of heapl and heap2, after which the new root is sifted 

down to restore the heap property. We shall refer to  this simple procedure as Meld- 

Equal-Perject-Hcaps.

Next, we present the procedure Parallel-Walkdown which is a t the heart of our 

parallel algorithm.

P ro c e d u re  Parallel-W alkdow n(/ieapl,/rom , to, heap2)\

/ *  d ep th (h ea p l ) >  depth(heap2 ) * /

t  <— m m { d e p th { h e a p 2 ) ,d e p th (h e a p l ) — depth(heap2)} \  

/*  We use t processors, P0, P u . . , P t - n  to 

restore the heap property on heap2 * /

3 0;

fo r i <— 0 to  t — 1 d o  in parallel 

act ive(Pi)  <— 0; 

fo r i  <— 0 to  dep th (heap l)  — depth(heap2 ) do 

if  f r o m . k e y  >  root{heap2) .key  th e n
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Swap( from .key , root(heap2).key)-, 

assign processor Pj to root(heap2); 

j  (j  +  1) mod t ; 

endif;

fo r c <— 1 to  2 do

all active processors Pj do in parallel 

Siftdown(Pj); 

f r o m  «— from.lchild;  

en d fo r ;

/*  let all active processors siftdown as far as they can */ 

fo r i 1 to  depth(heap2) do

all active processors Pi do in parallel

We can now present the details of a  parallel procedure to meld two perfect heaps.

P ro c e d u re  Parallel-M eld-Perfect-Heaps(/teapl,heap2)\

Siftdown(P<);

en d ;

0. d\ *— depth(heapl)-,

1. d2 <— depth[heap2)\

2 . u «— root(foeapl);

3. fo r k *— 1 to  dy — d2 — 1 do
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4. u <— u.lchild;

5. to «— u;

6. Parallel-W alkdown(/ieapl, roof (/ieapl), to, heap 2);

7. u <— to.lchild;

8 . Meld-Equal-Perfect-Heaps(5u6Aecp(/ieapl,u), hcap2)',

9. Add the root of the new heap as the leftchild of to\

en d ;

T h e o re m  2.3.1 Procedure Parallel-Mcld-Perfect-Heaps correctly melds two perfect 

heaps heap1 and heap2 with n and k nodes, respectively, in O (logn) time on an 

E R E W  P R A M  with min{ [log nj — [log fcj, [log fcj } +  1 processors.

P ro o f . To begin, we note tha t di =  [lognj and d2 = [log k \ . T he correctness 

follows directly from Lemma 2.1 in [61], together with the observation th a t when all 

processors become inactive, heap2 is guaranteed to be a  heap. Afterwards we use the 

sequential algorithm to meld perfect heaps of equal size, as describe above. To argue 

for the running time, we note that by assumption lines 1-2 take 0 (1 ) time. Lines 

4-5 and 7 take 0 ([ lo g n j — [logk\ ) time. Altogether, the time complexity of the 

algorithm is O (logn). From the previous discussion about the parallel-siftdown, we 

know th a t no memory conflict is possible. Therefore, the computation can be carried 

out on an EREW  PRAM, using m in{[lognj — [logfcj, [logfcj} +  1 processors. □

27

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



2.3.2 Parallel Initialization Algorithms for A Class of Pri

ority Queues

In this section, wc present a technique for inducing a  class of priority queue structures 

upon an n-element array. As examples, we show that this technique can be applied 

to initialize a  heap, a min-max heap, a min-max-pair heap, and a deap in 0 ( ^ )  time 

using p (1 <  p <  r j ~ l )  processors on an EREW PRAM.

As it turns out, once these data structures implementing double-ended priority 

queues have been initialized, the techniques in [59] can be applied directly to obtain ef

ficient concurrent Insert, Delete-min, and Delete-max operations. As a  result of these 

efficient concurrent operations on double-ended priority queues, efficient concurrent 

operations on order statistics trees [8] can be obtained.

Throughout the rest of the section, we assume tha t processors P i,P 2 ,.-.,Pp {1 <

P  -  f i ^ D  a r e  a v a i la b le - 

Initializing Heaps

Our terminology pertaining to binary trees is borrowed from [10]. Recall th a t an array 

H[l..n] can be interpreted as a heap-shaped binary tree if for every i (1 <  i <  [ ^ J ), 

the children of H[i] are / / [ 2i] and H[2i -f 1]. When no confusion is possible, we shall 

refer to the array //]l..n ] simply as H.

For further reference we shall review basic properties of heap-shaped binary trees. 

Let H  be a heap-shaped binary tree with n nodes. The following statements are 

satisfied (see [10] for proofs):

(A . l )  The depth of H  is exactly flog «].

(A.2) For all i =  0 ,1,..., [lognj — 1, there are 2' nodes a t level i.

(A .3) The nodes a t level i (1 <  i <  [lognj), are 2‘,2 ‘ -f 1 ,...,2 '+1 — 1, provided they 

exist.
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(A .4) A binary tree of depth d has at most 2J+1 — 1 nodes.

Writing k — [logpj.

(B ) There are a t most p subtrees of H  rooted a t nodes of level k.

(To see th a t this is the case, note tha t by (A.2), the number of these subtrees is

2 k <  2,0s p  =  p .)

Let Hi 2k <  i <  2fc+1 — 1) be the subtrees of H  rooted a t nodes of level k. Next, 

we claim that:

(C ) Every 11; 2k <  i <  2A+I — 1) contains at most ^  nodes.

To justify this claim, note that by virtue of (A .l) and by our choice of k, the depth 

of every such Hi is exactly [log nj -  k=  [log nj — [log pj < log n — log p +  l= log £ + 1  • 

Now (A.4) guarantees tha t the total number of nodes in //,- is bounded above by 

21o8 p+2 — 1 <  —. Furthermore, we note that:
—  p  i

(D) 2k -  1 < p

(Trivially, 2fc -  1 <  2logp -  1 < p.)

Perhaps the easiest way to explain our technique is by showing how to induce a 

heap structure on H.  For this purpose, we proceed in the following two stages (see 

Figure 2.5):

S ta g e  1. W riting k =  |_Log p j, assign one processor to each of the subtrees Hi 

(2fc <  i <  2fc+1 — 1). By (B), at most p processors are assigned in this way; by (C) 

each subtree contains a t most —1 nodes of H. The unique processor assigned to Hi 

makes H{ into a  heap in O (^) sequential time.

S tag e  2. We propose to “grow” in parallel the heaps Hi (2fc <  i < 2t+1 — 1) into 

H  itself by adapting the well known sequential trickle down. For this purpose, the p 

processors are redistributed to the first 2fc — 1 nodes of H ,  one processor per node. 

Note th a t by (D) this can be done using at most the p processors a t our disposal. At 

this stage, it is convenient to assume that every processor Pi (1 <  i <  2k — 1) stores
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level 0

At most p nodes 
in the upper part

level k-2

level k-1

level k

At most p subtrees in 
the lower part, each 
of size a t most —

( 1) Construct the substructures (e.g. heaps) for 
the  subtrees in the lower part.
(2) Reassign the processor to the upper part, one 
processor per node. Trickle down the numbers in 
this part, level by level in a  pipelined fashion

Figure 2.5: The parallel initialization scheme for priority queues
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in its local memory the following information:

• current(Pi), standing for the node in H  which Pi is processing. Initially, 

current(Pi) =  i;

• active(Pi), which is either a 1 or a 0 depending on whether or not P{ is active. 

The initial value is 0 .

Every element of H  a t level 0 through k — 1 will be trickled down in parallel. As 

it turns out, it is convenient to assume tha t the processor P{ initially assigned to H[i\ 

(i =  0, 1, . . . ,2fc — 1) will move along with the key contained in H[i}. To avoid read 

and write conflicts among processors we proceed in a pipelined fashion: we begin by 

activating the processors a t level k — 1 which will proceed to “trickle down” two levels. 

After this, the processors at level k — 2 will begin to trickle down, and so on. Every 

processor remains active until it reaches a leaf where it will become inactive.

Naturally, in moving down from a  node w  to one of its children, processor P  

does the following: let v stand for the child of w  with the smallest key; if key(iu) is 

larger than key(u), they are swapped. The details of this procedure are spelled out 

as follows:

P ro c e d u re  Parallel-Trickledown(Pi);

1. j  *— current (P,);

2 . t «— the index of the child of H\j] with the smallest key;

4.

3. if  fcei/(If[j]) >  fcej/(i/[i]) th e n  

S\v&p{key{H [?]), fcej/(//[t]));
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5. currcnt(Pi) <— t ;

6. i f  H[t\ is a leaf th e n

7. active(Pi) 0

end ;

We are now in a position to show th a t the different pieces of our heap initialization 

algorithm fit together.

P ro c e d u re  Parallel-Initialize-Heap(//[l..n]);

I n p u t :  an array I/[l..n ] containing n key from a totally ordered universe U\ 

O u tp u t :  the same array, organized as a heap;

1. k  <— [log p j ;

2 . fo r all i, (2fc <  i <  2*,+1 — 1) do in parallel

3. construct the heap Hi rooted a t i;

4. fo r all i, (1 <  i < 2k — 1) do  in parallel

5. assign processor Pt- to //[*];

6. cu rren t(P i)  <— i;

7. active(P{) 0; {all inactive}

8. en d fo r

9. fo r  level *— k — 1 dow n to  0 do

10. fo r all active processors Pi with [log current(-P.-)j =  level do  in parallel

11. active(Pi) <— 1;

12. fo r all active processors Pi do  in parallel
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13. Parallel-Trickledown(P,);

14. for all active processors Pi do  in parallel

15. Parallel-Trickledown(Pi);

16. en d fo r;

17. /*  Let all processors trickle down as far as possible */

18. fo r i «— 1 to  [log nj do

19. fo r all active processors Pj do  in parallel

20. P arallel-Trickledown (P j);

21. re tu rn(/f)

end;

T h e o re m  2.3 .2  An n element array /f[l..n ] can be made into a heap in O (^) time 

using p (1 <  p <  [ j ^ l )  processors on an E R E W  PRAM.

P ro o f . To show the correctness of the procedure, we note the loop in lines 18-20 

guarantees that, eventually, all processors will become inactive. Therefore, we only 

need prove that:

when all processor Pi are inactive, H  is a  heap.

Suppose not; we find an index j  (1 <  j  <  such th a t

H\ji] >  Tcdn{H\lj\,H\2.j +  l]}. This cannot occur as the result of a swap in line 

4 of Parallel-Trickledown. Hence, no processor P,- has had current(Pi) =  j .  By 

our processor allocation scheme specified in lines 4-8 of Parallel-Initialize-Heap it is 

impossible tha t j  6  [ l,2 fc—1]. On the other hand, if 2fc <  j  <  then H \j\  belongs

to precisely one of the heaps Hi constructed in lines 2-3 of Parallel-Initialization-
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Heap, so the violation of the heap property cannot occur at H[j]. Therefore, we find 

a contradiction.

It is easy to see th a t no active processors can be involved in read or write conflicts 

in procedure Parallel-Initialize-Heap (note tha t inactive processors cannot create read 

or write conflicts). It follows tha t the computation can be performed in the EREW 

model of computation. To address the complexity, we note tha t, by our previous 

discussion, lines 2-3 take O (^)  time using a t most p  processors. Lines 4-8 take 0 (1) 

time and p processors.

Clearly, every invocation of the procedure Parallel-T rickledow n^) takes 0 (1) 

time. Consequently, lines 9-16 run in 0 (k )  time, while lines 17-20 take O (logn) time 

using a t most p processors. W ith this the proof of the theorem is complete. □

Initializing Min-max Heaps

Next, we propose to show tha t our technique can also be applied to min-max heaps. 

Consider, again, an array H [l..n] that we want to make into min-max heap.

The first stage of our parallel min-max heap initialization algorithm is almost the 

same as Stage 1 in the previous section: we assign one processor to each subtree Hi 

(2fc <  i <  2fc+1 — 1) of H , and let every assigned processor make Hi into a  min-max 

heap or a max-min heap depending on whether [log tj is even or odd. Since every Hi 

contains a t most ~  keys, this takes O (^) time using the sequential algorithm in [8],

Once this step is completed, the p processors are reassigned to the first 2k — 1 

elements of H.  The idea of the second stage is to  “grow” in parallel the min-max 

heaps Hi  (2fc <  i <  2fc+1 — 1) into H  itself, by adapting the Trickledown procedure 

in [8]. More precisely, every element of H  a t levels 0 through k  — 1 will be trickled 

down two m in  (resp. m a x ) levels in parallel in a  pipelined fashion: we s ta rt with the 

elements at level k — 1 which will proceed to “trickle down” for two m in  (resp. max)  

levels; after this, in parallel, the elements at level k — 2 will begin the “trickle down”,

34

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



and so on. As for heaps, it is convenient to  assume th a t processors move along with 

elements; every processor keeps moving down until it reaches the leaf level, where it 

becomes inactive.

For definiteness, we show the actions taken by a processor P  performing a trickle 

down from a  node w  situated a t m in  level (trickle down from a max level is similar):

if  w  has grandchildren th e n

v  «— the grandchild with the smallest key field; 

if  key(v) < key(w) th e n  

Swap (fcey(v), key(w))\ 

i f  key(v) > key(pareni(v)) th e n  

Swap(key(v), key(parent(v))y, 

processor P  moves down to v; 

e lse  /*  w  has no grandchildren * / 

u <— the child with the smallest key; 

if  key(u) <  fcey(to) th e n  

Swap(fcey(u), key(w))\ 

processor P  moves down to u;

T h e o re m  2 .3 .3  An n element array /f[l..n ] can be made into a min-max heap in 

0 ( ~ )  time using p (1 < p <  [ j ~ l )  processors on an E R E W  PRAM .

P ro o f . To settle th e  correctness, we note th a t, eventually, all processors will reach 

a  leaf node, thus becoming inactive. Therefore, we only need prove tha t when this 

happens, H  is a min-max heap.
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We proceed by contradiction. If the statem ent is false, then let j  (1 <  j  <  )

stand for the subscript at which a  violation of the properties of the structure occurs. 

Symmetry allows us to assume, without loss of generality, th a t [log j j  is even (i.e. j  

is a t a  m in  level). Trivially, the following predicate is satisfied:

( HUl  >  «n i«{ //[2 j], H[2j  +  l]} )o r( //£ i]  >  m in { //[4 j] , / / [ 4 j  +  I], //(-Ij  +  2], H[ 4j  +  3]})

T hat is, H[j] is larger than the smallest of its children or grandchildren. Note that 

obviously, this cannot occur as a result of a  swap in a  trickle down. Consequently, no 

processor P  has “visited” I l \ j \  during our construction algorithm. By our processor 

allocation scheme, it is impossible th a t j  6 [1, 2fc — 1], On the other hand, if 2k < j  < 

I /tM  > th en H \ j ] belongs to precisely one of the min-max heaps a  contradiction.

Furthermore, it is easy to see th a t our way of organizing computation makes 

read/w rite conflicts impossible, and so the computation can be performed on an 

EREW  PRAM. By our allocation scheme, we only use p (1 <  p <  ) processors;

the running time is clearly bounded by O (^). □

Initializing Min-max-pair Heaps

Consider an array if[l..n ] as input. For 1 <  i <  n, each element i/[i] of H  has two 

fields H[i].min  and H[i].max. Therefore, the array H  can be viewed as containing 

2n — 1 or 2n keys altogether. In case H  contains 2n — 1 keys, the m ax  field of I/[n] 

contains a  special symbol namely # .

To make H  into a  min-max-pair heap, we use a  technique similar to  the one 

developed previously. However, instead of having two stages, our parallel min-max- 

pair heap initialization algorithm contains three stages. Stage 1 is quite a  reminiscent 

of Stage 1 of the  algorithm in the heap initialization algorithm: as a  first step, letting 

k  stand for [log p j , our algorithm assigns one processor to each of the subtrees Hi of
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H  rooted at Hi (2k < i < 2k+1 — 1). The unique processor assigned to makes Hi 

into a min-max-pair heap in 0 (^)tim e , using the sequential algorithm in [46].

After Stage 1, the processors arc redistributed to the first 2k — 1 elements. Again, 

to avoid read and write conflicts among processors, we activate the processors in a 

pipelined fashion. That is, we start with the m in  fields at level k — 1 which will proceed 

to trickle down for two levels: after this, in parallel, the m in  fields a t level k — 2 will 

begin to trickle down, and so on. Just as for the case of heaps, it is convenient 

to assume tha t processors move along with the key value in the m in  fields; every 

processor keeps moving down until it reaches the leaf level, a t which point it becomes 

inactive. Finally, in Stage 3, all p processors are reassigned the first 2k — 1 elements 

to trickle down the m ax  fields of these elements in parallel. To give the reader an 

idea, we show the actions taken by a processor P  when performing a  trickle down of 

the m in  field of a node w  (trickle down on a m ax  field is completely similar):

if  w .m in  > w .max  th e n  

Swap(io.mm, lu.m ai); 

v *— the child of w with the smallest m in  field (if exists); 

i f  w.min > v .m in  th e n  

Swap(to.min, v.min);

Processor P  moves down to v.

T h e o re m  2.3 .4  An n element array /f[l..n ] can be made into a min-max-pair heap 

in O (^) time using p (1 <  p < [ j ^ l )  processors on an E R E W  PRAM .

P ro o f . To settle the correctness we only need to prove tha t when all processors are 

inactive, H  is a min-max-pair heap.
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To begin, we notice tha t when all processors are inactive, H[j].min  < H[j].max, 

for all subscripts j  (1 < j  < )• If not, we find a subscript j  such tha t H\j].m in  >

H\j].max. Clearly, this situation cannot arise from a swap operation. Consequently, 

it must be the case that no processor P  has “visited” H\j] in Stage 2 or 3. By our 

processor allocation scheme it is impossible that 1 <  i <  2k — 1; if 2* <  j  < 

then H\j] belongs to precisely one of the min-max-pair heaps a  contradiction.

To settle our main claim, we proceed by contradiction. If the statem ent is false, 

then let j  (1 <  j  <  ) stand for the smallest subscript a t which a violation of the

properties of the min-max-pair heap occurs. Symmetry, together with our previous 

observation, allows us to assume that the following predicate is true:

> H[2j].min)or(H[j].min  > H[2j}.max)

Again, we note that this cannot occur as the result of a swap operation. It 

follows th a t no processor P  has “visited” H\j}. By our processor allocation scheme, 

this is impossible for j  to be in the range [l <  j  < 2k — l] ; on the other hand, if 

2k <  j  < LnfMi th en H \j\  belongs to precisely one of the min-max-pair heaps Hi, 

a contradiction. Therefore, the above predicate cannot be true and the conclusion 

follows.

To see the complexity, we note tha t since no read or write conflicts can arise (due 

to  our way to perform the trickle down operation), the computation can be performed 

on an EREW PRAM. The first stage of our algorithm runs in O (^) time. Stages 2-3 

can be performed in 0(log n) time using p processors. Therefore, the algorithm runs 

in 0 ( ^  -f logn) =  O (^) time using p (1 <  p <  [j— ])  processors on an EREW 

PRAM. □

Initializing Deaps

Consider an array H[l..n  +  1] with i/[ l]  undefined and such that I f [2],.., H[n +  lj 

contain n arbitrary keys from a  totally ordered universe. To motivate our approach,
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it is useful to note tha t when I I  becomes a  dcap i f [2] is the root of the corresponding 

min heap, while if[3] is the root of the corresponding max-heap (see [15] for more 

details about the dcap properties). Furthermore, it is easy to see tha t the entries at 

level i in the min-heap are 2 x 2 ', 2 x 2 ' +  1, 2 x 2'  +  2, ..., 2 x 2 ‘ +  2' -  1 provided 

they exist; similarly, the entries a t level i in the max-heap (i.e. the right subtree of 

/ /[ l] )  are 3 x  2 \  3 x 2 i + l , 3 x  2'' +  2, ..., 3 x 2 '  +  2'- -  1.

To construct a deap we mirror the scheme presented a t the beginning Section 

2.3.2: in the  first stage, with k  =  jjogpj, we assign one processor to each pair of 

subtrees ( if t , II t>) of I I  rooted a t II[i] and i f  [<'] with t = 2 x 2fc +  j ,  and t' =  3 x 2k+ j  

(1 <  j  < 2k — 1). Every assigned processor makes its pair of subtrees into a  deap in 

0 (  j}) time as in [15]. After this, the p processors are redistributed to the first 2* — 1 

elements of II. To make our description more transparent, it is helpful to imagine a 

deap as in Figure 2.6.

The nodes of I I  of the form i f  [s] with s =  2 x 2' +  j  such tha t 0 <  i <  k  and 

(1 < j  < 2‘ — 1) will be called upper nodes; and all the nodes of the form i f  [s'] with 

s ' =  3 x 2 ' + j  such th a t such th a t 0 <  i <  k  and (1 < j  <  2’ — 1) will be called lower 

nodes. We also call a pair subtrees (as shown in Figure 2 .6) respectively rooted at 

s =  2 x  2' + j  and s' = 3 x 2' + j  (0 <  i <  k, 1 <  j  <  2' — 1) a  diamond. It is easy to 

see th a t the diamond in Figure 2.6 is bottom-heavy, i.e. the smallest key is a t node 

s and the largest key a t node s'. Now the remaining part of our algorithm is divided 

into two stages.

In Stage 2, the processors are assigned to  the upper nodes only. Every upper 

node is trickled down in parallel in a pipelined fashion. This trickle down differs from 

the standard one as we are about the explain. In Stage 3, the lower nodes receive 

processors and they will trickle down (moving up in Figure 2.6) as in Stage 2.

Again, to show the idea, we give the action by a  processor P  located a t an upper 

node i f  [s] when it performs a trickle down in Stage 2 (Stage is perfectly symmetric).
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S contains the smallest 
key in the sub-diamondupper nodes

S’ contains the largest 
key in the sub-diamondlower nodes

Figure 2 .6 : A new way to  look a t the deap
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For simplicity, we let s' stand for s +  2', s' is the other end of the diamond as shown 

in Figure 2 .6.

if fccr/(i/[s]) >  key(H[s']) th e n  

S\vnp(key(H [s] ) ,kcy(H [sf}))-,

J/[t>] *— the child of //[s] with the smallest key; 

if  fcey(//[s]) >  key(Ii[v]) th e n  

Swap (ke y (H  [s]), key (H  [u]));

Processor P  moves down to / / [ v].

T h e o re m  2 .3 .5  An array +  1] with /f[l] unused can be made into a deap in

0 (2 )  time using p  (1 <  p <  [ j j^ D  processors on an E R E W  PRAM. □

D iscussion

We presented in Section 2.3.2 a technique to develop optimal parallel initialization 

algorithms for a  class of priority queues. As examples, we have applied our technique 

to initialize priority queues implemented by heaps, min-max heaps, min-max-pair 

heaps, and deaps. The basic idea is first to partition the original structure into a 

number of smaller substructures for which existing optimal sequential algorithms are 

readily applicable. After this first stage, the algorithm proceeds to grow these smaller 

structures, in parallel, to obtain the final structure. Our point is tha t this method

ology works well for the data structures we discussed in this section. An interesting 

question is whether this methodology can be applied to other data structures.
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Chapter 3 

M ultiple Search and M ultiple  

Selection

Searching, merging, sorting and selection are the most fundamental problems in the 

design and analysis of algorithm [4, 1, 42]. In this chapter, we study the natural 

extension of these problems. The research results in this chapter can also be found in 

[52, 74]. Our research results are of both theoretical and practical interests because, 

on one hand, they reveal the relationships between these fundamental problems; on 

the other hand, they can be used as basic building blocks for developing algorithms to 

solve complex problems. For example, our optimal parallel solution for the multiple 

search problem can be used in Hagerup and Rub’s parallel merging algorithm [33] to 

obtain the optimal implementation of their algorithm on the EREW PRAM.

The problems discussed in this chapter are the multiple search problem and the 

multiple selection problem. They are defined as follows:

M ultiple Search Problem: Let A = au a2, . . . ,a n and B  =  bl ,b2,...,bm be two 

sorted sequences of items. Determine, for each (1 <  i <  n ), the item bj such th a t 

6j_ i <  a,- <  bj (if necessary, we let 6j_ i =  — oo or bj — oo).

The multiple search problem is im portant because it generalizes two problems:
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searching and merging. It is easy to see tha t the multiple search problem is an 

extension of searching. We will show in Section 3.1 th a t it is also a generalization of 

merging. Therefore, this is a  unification of searching and merging.

Multiple Selection Problem: Given an unsorted set S  of n items from a totally 

ordered universe and a  set Q of m  integers 1 < qi < q2 < ... <  qm <  n, answer the 

query “find the g,--th smallest element in 5 ” for i =  1, 2 , ...,m .

The multiple selection problem is a natural extension of the traditional (single) 

selection problem. Moreover, if m =  n the problem is equivalent to sorting. Hence, 

the multiple selection problem bridges the gap between selection and sorting.

For simplicity of our presentation, we make the following assumptions: (1) If we 

say “a sequence is sorted,” we mean that “the sequence is sorted in non-decreasing 

order (or in increasing order, whenever necessary)” . (2) We limit our discussion to 

any set of items (e.g. real numbers) over which there is a  natural linear order “< ”.

Before discussing the solutions for the multiple search and the multiple selection 

problem, we would like to give a  brief literature review for the four fundamental 

problems, selection, searching, merging and sorting. The problem of selection is to 

find the fc-th smallest element in a sequence of n  elements (unsorted). It is well known 

th a t the sequential complexity of this problem is 0 (n ). On the comparison model 

[70] (in this model, only the time used for comparisons is counted), the following 

results have been obtained: upper bounds of 0 ((loglogn)2) time using n processor 

by Cole and Yap [22], and O (loglogn) time using n  processors [3]; a lower bound 

of fi(loglogn) time using n processors. On the PRAM, the following results have 

been achieved: upper bounds of 0 (log n log log n) time using C (iogni”gi08n) processors 

on the EREW  PRAM by Vishkin (reported in [19]), or in (log n  log* n) time using 

Q ( iog nU>8*n) P r e s s o r s  on the EREW PRAM [19], or in time using

optim al number of processors on the CRCW PRAM [19]. The problem of searching 

is to look up an item (e.g. a number) in a  sorted sequence of size n . The following
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results have been achieved: time using p  processors on the CREW  PRAM

by Kruskal [43]; an upper bound +  1°6P) time using p  processors on the

CREW  PRAM by Kruskal [43]. To merge two sorted sequences of size n, optimal 

parallel algorithms have been proposed: 0 (logn) time using O ( j ^ )  processors on 

the EREW  PRAM [7, 33], or in © (loglogn) tim e using 0 ( log[[)ĝ ) processors on 

the CREW  PRAM [43]. For parallel sorting, the following results have achieved: a 

sorting network of 0 ( n ) and depth O(logrc) by Ajtai et ah [2]; 0 (lo g n ) time using 

n processors on both EREW  and CREW  PRAMs by Cole [20]; and upper bound 

^ iogiogfi+^P ^ me us*nS 2n <  p <  n 2 processors on the CRCW PRAM [20]; and 

e ( „ -^ ^ ) ) processors in a  parallel comparison model [9].

In the  rest of this chapter, we first discuss the multiple search problem in Section 

3.1; vve then study the multiple selection problem in Section 3.2.

3.1 M ultip le Search

We present parallel solutions to the following problem. The materials in this chapter 

also appear in [74]. Let A  =  a j, a2, . . . ,a n and B  = 61,621 •••> bm be two sorted sequences 

of items. It is required to determine, for each a,- (1 <  i <  n), the item bj such th a t 

bj-i <  a,- <  bj (if necessary, we let bj_j =  —00 or bj =  00). Akl and Meijer [5] 

first considered this problem under the assumption m  >  n, and named it the multiple 

search problem. For convenience, we release the restriction, m  > n, in their definition, 

and still use the name, multiple search problem.

An easy way to solve the multiple search problem is by merging sequences A  and 

B . Merging two sorted sequences of sized m and n  takes 0(log(m  +  n )) sequential 

time, or 0(log(m  +  n)) time using processors on an EREW  PRAM (using

the parallel algorithms in [33]). The cost of this solution is 0 (m  +  n), which is far 

from optim al when m  ^  n (e.g. When n =  1, binary search takes only O(logm )
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sequential time).

Another easy solution is to  do binary search in B  for each item of A\ this takes 

0 (n  log m) sequential time. It can also be implemented in O(logm) time using n 

processors on the CREW  PRAM (n processors each carrying an item of A  to do 

(simultaneously) binary search in B ). By simulating the CREW  PRAM algorithm 

on an EREW  PRAM, we can obtain an algorithm for the problem on an EREW  

PRAM which takes O (logm logn) tim e using n processors.

Akl and Meijer [5] proposed an algorithm for the problem (assuming m  >  n) 

which takes 0 (‘°s^°S ” ) time using n processors on an EREW  PRAM. Their solution 

was then extended to the case where fewer than n processors are available. This 

yielded an EREW  PRAM algorithm whose cost is 0{n  log m) using p processors, 

where p <  [5].

In this section, we first propose a  parallel algorithm for the multiple search prob

lem. This algorithm improves those in [5] by achieving larger speed-up without in

creasing the cost. We then combine the ideas of our first algorithm with those of the 

optimal parallel merging algorithm in [7, 33], and present a  better algorithm for the 

problem. Our second algorithm improves the first algorithm in the sense that it can 

run as fast as the  first algorithm while using fewer processors. The second algorithm 

is optimal.

3.1.1 Preliminaries

To simplify our presentation, we borrow some terminology of Cole [20]. Let A  and B  

be two sorted sequences, and let /  be an item. We define an item /  to be ranked in B, 

if we know the item bj of B  such th a t bj_i < f  < bj (if necessary, we let bj_i =  —oo 

or bj =  oo) We say th a t /  is straddled by the 6J-_x and bj\ and we define the rank of 

/  in B  to  be j  — 1. We define A  to be ranked in B  (denoted A  —» B )  if each item of 

A  is ranked in B . and define A  and B  are cross-ranked if both A  —> B  and B  —* A.
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We use A \J B  to denote the sorted merged list of all items in A  or B  [20]. W ith the 

terminologies above, the multiple search problem is actually a  m atter of computing 

A  —> B.

We would also like to use some terminologies of Iiagerup and Rub [33]. Let A 

and B  be two sorted sequences. Define the partition of B  induced by A  to be the 

(| A  | + 1) — tuple (B0, B i , ..., B \ a \) where B it for i = 0, 1,..., | A  |, is the subsequence 

of B  consisting of all items of B  with rank i in A. We can represent a partition 

(B0, B x, ..., Bk) in O(k) space by storing for i =  1 ,2 ,..., k an indication of whether 

B{ = <j>\ if Bi ^  <f), the ranks in B  of the minimal and maximal items of Bi [33]. We 

also denote the partition of B  induced by A  as ( i? o ^ , B ^ A\ ..., where | A  |

is the length of sequence A.

L em m a 3.1.1 fa modified version o f Proposition 2 .1  in [S3]). Let A and B  be two 

sorted sequences. Given A  —► B , the partition o f B  induced by A  can be computed in 

constant time using \ A \ processors on the E R E W  PRAM . □

It is pointed out in [20] tha t cross-ranking and merging are equivalent concepts in 

the following sense. Let A  and B  be two sorted sequences. For every item of A  or B , 

its position (rank) in the merged sequence A (} B  is the sum of its ranks in A  and B . 

If A  and B  are cross-ranked, then A \J B  can be computed without extra comparison. 

On the other hand, cross-ranking of A  and B  can be computed by merging A  and B . 

From this point of view, the multiple search problem is a  generalization of merging.

3.1.2 Sequential Complexity Bounds for Multiple Search

For the analysis of our parallel algorithms, we need an optimal sequential solution 

and the sequential time complexity bound of the problem. Let A  of size n and B  of 

size m  be the input of the multiple search problem. Consider two case:

(i) If m  <  n, by the definition of the problem, any sequential solution requires at
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least fi(n) time. Note th a t A —* B  can be computed by merging A  and B , which 

requires 0 (n )  time. Therefore, in this case the sequential time complexity of the 

problem is 0 (n).

(ii) If m  > n, the sequential time complexity of the problem was shown to be 

0 (n lo g  (see “the generalized binary algorithm g” , Theorem 1, and Theorem 2 in 

[37]). To make our presentation self-contained, we give a simpler proof of this result 

as the following. First, we show tha t the 0 (n  log sequential time is a lower bound. 

Then we show tha t the 0 (n  log ~ )  is also an upper bound. To show the lower bound

f!(n log — ), we use the decision tree model [l]. Given two sorted sequences A  of size
/  \ 

m  +  n
possibilities tha t the items of A  are straddledn and B  of size m, there are

\ 71 /
by the items of B. Therefore, on the decision tree model, any comparison algorithm

/  \ 
m +  n

for the problem requires a t least 0 (log
n

) sequential time.

log m +  n (m +  n)(m  +  n -  l)...(m  +  1)
=  lo g ------------------   -T—;----------->  log

n (n  -  1J...1
-  n!og{] +  — ) 

n

O (n log(l +  - ) )  =  0 ( ( n lo g — ) 
n n

From the discussion above, we know that 0 (n  log ~ )  is a  sequential lower bound 

for the problem. To show 0 (n  log is also an upper bound, consider the following 

algorithm:

A lg o rith m  Sequential-multiple-search;

S te p  1 . Extract from B  a  sequence B ' of n — 1 items, which (almost) equally divide 

B  into n subsequences of size ^  each;
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S te p  2. Merge A  and B ' so as to determine, for each item of A, the subsequence of 

B  to which the item belongs;

S te p  3. For each item of A , do a  binary search in the corresponding subsequence of

The correctness of this algorithm is easily seen. Steps 1-2 take 0 ( n ) time. Step 3 

takes O (nlog^-) time. So the algorithm takes 0 (n lo g -^ )  time. Hence, 0 [n  log 

is also a sequential time upper bound of the problem.

Summarizing two cases above, we have the following lemma:

L em m a 3.1 .2  Let A  and B  be two sorted sequences with sizes n and  m, respectively. 

A  —> B  can be computed in 0 (n )  sequential time when m  < n, or in 0 ( n l o g ^ )  

sequential time when m  > n. □

3.1.3 Parallel M ultiple Search Using n  Processor

We now present the parallel solutions using n processors. Solving the problem on a 

CREW  PRAM with n  processors is straightforward: we can simply implement the 

sequential algorithm in Section 3.1.2 on an CREW PRAM.

T h e o re m  3.1 .1  Let A  and B  be two sorted sequences with sizes n and m , respec

tively. A  —* B  can be solved on a C R E W  PR A M  with n processors in in O (loglogn) 

time when m  < n , or in 0 (loglogn +  log —) time when m  > n.

P ro o f . Assume the problem is solved on a CREW PRAM with n  processors. When 

m  <  n , we solve the problem by Kruskal’s merging algorithm [43] which takes
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0(log log n ) time. When m > n, we parallelize algorithm Sequential-multiple-search 

in the previous section. Step 1 takes 0 (1 ) time; Step 2 takes O (loglogn) time; and 

Step 3 needs 0(log ^-) time. □

Solving the problem on an EREW PRAM with n processors is complicated because 

we want to avoid concurrent memory access. We modify the sequential algorithm in 

Section 3.1.2 so tha t the new algorithm can be implemented efficiently on an EREW 

PRAM. Let A  and B  be two sorted sequences with sizes n  and m , respectively. 

W hen m < n  we solve the problem by parallel merging because the cost of merging 

is 0 (m  +  n) =  0 (n ), which is optimal in this case. When m  > n merging does 

not guarantee an efficient solution, so our strategy is to reduce a  search in a large 

range to a  search in a small range. For this reason, we first divide sequence B  into n 

subsequences of ~  each and determine, for every item  of sequence A , the subsequence 

of B  to which the item belongs. We then group the items of A  th a t belong to the 

same subsequence of U, and thus divide A  into segments, each containing all the items 

of A  tha t belong to the same subsequence of B . Finally, in parallel, we recursively 

continue the searches for all the segments of A  in their corresponding subsequences 

of B . More precisely, the algorithm is spelled out as  follows:

A lg o rith m  EREW-PRAM-multiple-search. /*  n processors axe used * /

In p u t:  A  =  a ! ,a 2, . . . ,a n and B  =  &2, O u tp u t:  A  —> B\

S te p  1. i f  n =  1 th e n  compute A —*■ B  by sequential binary search re tu rn ;

S te p  2. if  m  < n  th e n  compute A —► B  by parallel merging re tu rn ;
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S te p  3. Divide B  into n subsequences, B i,B ? , of size ^  each. Let B ' —

b[, l/2\ ..., 6„_j, where b\ is the last item of Bi, for i =  l , . . . ,n  — 1; T hat is, B ‘ 

is the list of last items of the first n — 1 subsequences. Compute A —* B ' by 

parallel merging;

Step 4. Find all items of A , Gj,, aj3, with following properties:

(1) 1 <  j i  < k  < ... < jt  < n ;

(2) for 1 <  i < t, dji and aJl+i have dilTernt ranks in B'.

Step 5. Divide A  into t +  1 segments, A i ,A 2 , such th a t A \ =  a i , . . . , ^ ,

/li+i =  a_,v+1, . . . ,a j i+1, ( i=  1, 2, ...,t — 1); and A w  =  aJt+j , ... ,an. Note that by 

properties (l)-(2) in Step 4, items of the same segment of A  have the same rank 

in B ', while items of different segments of A  have different ranks in B '.

Step 6. for i = 1,2, ...,t +  1 do in parallel

r,- = (th e  rank in B ' of the items of j4,-) +1;

Compute A{ —> B ri (recursively, by j A; | processors);

en d .

T h e o re m  3.1.2 Let A  and B  be two sorted sequences with sizes n and m , respec

tively. A  —* B  can be computed in 0 (logm  +  logn) time using n processors on an 

E R E W  PRAM .

P ro o f. W ith the correctness of the algorithm being obvious, we turn to  the time 

complexity. Assume tha t the algorithm is implemented on an EREW  PRAM with
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n processors. The complexity of the algorithm is analyzed as follows. Step 1 takes 

0(log  m) time. Steps 2-3 can be performed in O (logn) time using one of the merging 

methods in [11]. Step 4 can be implemented like this: for all i =  l , . . . ,n  — 1, item a; 

checks with a1+i, and a,’ marks itself if they have different ranks in B'. Collecting the 

“marked” items in A  is an instance of the parallel prefix problem. Using the results 

in [21], Step 4 can be implemented in O (logn) time. By Lemma 3.1.1, Step 5 can be 

performed in 0 (1 ) time (with the result from Step 4). Let T (m , n) denote the time 

complexity of the algorithm implemented on an EREW  PRAM with n processors; 

then the time complexity of Step 6 is

m ax {T (^ , j 1), T ( f ,  j 2 -  j i ) , T{ j t -  j , _ , ), T ( f ,  n - j t)}. The time complexity of 

the algorithm satisfies:

case 1. m <  n: T (m ,n ) =  O(Jogn) 

case 2. m > n =  1: T (m ,n ) =  O(logm)

case 3. m  > n  >  1:

T (m ,n ) =  O (logn) +  ma x{T( — , j j  -  — ,n  -  it)}
n n  n  n

where 1 <  j i  <  j'2 <  — < jt  < n;

We claim tha t T(m , n) =  0 (logm +  logn). When m  < n, as given in case 1, 

T (m ,n ) =  O(logn) =  0 (logm  +  logn). When m  >  n =  1, by case 2, T (m ,n ) =  

O (logm ) =  0 (Iogm  +  logn). When m  > n > 1, we prove the claim by induction 

on m as follows, (i) When m =  3, the claim is obviously true, (ii) Assume tha t 

T (m ,n )  =  0 (lo g m  +  logn) for m < k. (iii) When m  =  k, we know tha t ^  <  k. By 

case 3 and the induction hypothesis (or case 1 if (ji — j i - i )  >  ^ ) ,  we have,

T (m ,n ) =  O (logn) +  m ax{log— +  lo g (ji) .lo g — + ]o g (jj  - i i ) , . . . , l o g —  + lo g (n  -  j i)}
71 ti n
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T (m ,n )  =  O(Iogn) + 0 ( I o g — ) + O (m ax{log(ji),log{ j2 -  j i ), ...,!og(n -  ; ,)} )
n

where 1 <  j i  <  j 2 <  ... <  jt < n;

Because m a x { ji,j2 — j i >— — jt]  <  n, T (m ,n ) =  0 (lo g m  +  logn). □

We note tha t both our EREW  PRAM and CREW PRAM solutions in this section 

are not cost optimal. To see the reason, let us focus on the EREW  PRAM solution. 

As we know, merging can be used to solve the multiple search problem. Using the 

optimal EREW  PRAM merging algorithm in [7, 33], two sorted sequences, A  and 

B  with sizes n  and m , respectively, can be merged in 0(log(m  +  n)) time using p 

(p <  ) processors on an EREW PRAM [33]. It is obvious tha t, only when

m  > n  logn, Algorithm EREW-PRAM-mitUiple-search leads to a better solution than 

using the optim al parallel merging algorithms in [7, 33]. Therefore, to improve our 

algorithms, we will combine our ideas with those in the optimal parallel merging 

algorithms of [7, 33].

3.1.4 Parallel Multiple Search Using Fewer Processors

In this section, we develop a  new algorithm which combines the ideas of our algorithms 

in Section 3.1.3 and those in the parallel merging algorithms [7, 33]. Let A  and B  be 

two sorted sequences with sizes n and m, respectively. Assume tha t p (p <  min{m, n}) 

processors are available. The main idea of the algorithm is to  divide sequence A  into 

2p — 1 segments each of size a t most and B  into 2p — 1 subsequences each of size at 

most the division of A  and B  will be made in such a  way tha t, for i =  0 ,1, .. .,  2p—2, 

the z-th segment of A  belongs to the z-th subsequence of B . Based on these divisions,
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searching each segment of A  in its corresponding subsequence of B  will be solved 

sequentially (every processor is responsible for a t most two segments). The algorithm 

is spelled out as follows.

Algorithm Adaptive-parallel-multiple-search.

/*  p  <  m in{m ,n} processors are used * /

Input: two sorted sequences, A  =  01, 02, and B  =  61, &2> —, 6m;

Output: A  B;

Step 1 . Let A ' be a  list of p — 1 items of A  which equally split A . T hat is,

A' =  ai i » • • • »  aip-i - where Ji =  ^  for * =  1, . . . ,p -  1.

Let B ' be a  list of p — 1 items of B  which equally split B . T hat is,

-S' =  where k{ = for i =  1, ...,p  -  1.

Compute C = A ' U B'\

Step 2. Compute C —► A, and C —* B  using our first algorithm.

(Note th a t | C  |=  2p — 2)

Step 3. Construct partitions (j4</c \ A i ^ , . . . , i 4 | q ^ ) ,  and 

(5o(C),B 1̂ , . . . , % ^ ) ;
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S te p  4. fo r i — 0, [  C  | do  in parallel 

Compute —► B ^ ]

e n d .

Theorem 3.1.3 Let A  and B  be two sorted sequences with sizes n and m , respec

tively. A  —► B  can be computed on a C R E W  P R A M  with p (p < m in{m ,n}J pro

cessors, in O (loglogp +  time when m  < n ,  or in 0 (log logp +  j  +  j  log —.) time 

when m  > n.

Proof. T he correctness of our second algorithm is obvious. Consider the time com

plexity of the algorithm implemented on an CREW  PRAM with p  processors. Step 1 

takes O(loglogp) tim e using one of the merging algorithms in [43]. By Theorem 3.1.1, 

Step 2 takes O (log logp +  log ^ +  lo g y ) time. Step 3 takes 0 (1) time by Lemma 3.1.1. 

We now consider Step 4. Due to the choices of A 1 and J3' in Step 1, and C = A' \}B ', 

we have | A ^  |<  £ j B ^  |<  for i = 0 ,1 ,..., | C  j. By Lemma 3.1.2, computing 

A .iO _> B.IC) (o <  i < | C  |) can be done in O (^) time when m <  n, or in 0 (^ log -^ )  

time when m  > n. Because p processors are available, Step 4 can be performed in 

O (^) tim e when m  < n, or in 0 ( “ lo g -^ ) time when m > n. Let T (m ,n ,p )  de

note the tim e complexity of the algorithm implemented on a  CREW PRAM with p 

processors. Adding up the time required by all the steps, we have,

0 (log logp +  log ~  +  log ~ +  ~) m  < n
T [ m ,n ,p ) =

O (log log p +  log +  log ^ ^ log 2-p) m > n

54

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



0 ( lo g lo g p + ^ )  P < m < n
T (m ,n ,p )  =

0  (loglogp +  log f  +  5 log2sl) p <  n < m  

Summarizing the discussion above, we have proved the theorem. □

C o ro lla ry  3.1.1 Let A  and B  be two sorted sequences with sizes n and m , where

Joen < m . A ->  B  can be computed in 0 (log logn  +  lo g ^ )  time using 0 ( log 

processors on a C R E W  PRAM .

n  loir ^
P ro o f. The result follows when p =  Q (logm+logil|ogn) in the theorem above. □.

T h e o re m  3 .1 .4  Let A  and B  be two sorted sequences with sizes n and m , respec

tively. A  —*■ B  can be computed on an E R E W  P R A M  with p  (p <  m in{m ,n}) 

processors, in 0 (logn +  j )  time when m  <  n, or in 0 (logm +  ^ log ~ ) time when 

m  > n.

P ro o f  Consider the time complexity of algorithm Adaptive-parallel-multiple-search 

implemented on an EREW  PRAM with p (p < m in{m ,n}) processors. Using one 

of the merging methods in [11], computing C  =  A '\J B '  in Step 1 requires 0 (logp) 

time. By Theorem 3.1.2, Step 2 can be implemented in 0(log m +  log n +  log p) using 

p processors on an EREW  PRAM. By Lemma 2.1, Step 3 takes 0 (1) time. We know 

from the proof the previous theorem th a t Step 4 takes O (^) time when m  < n, or 

in 0 (~  log “ p') time when m  > n. Let T (m ,n ,p )  denote the time complexity of the 

algorithm implemented on a  CREW  PRAM with p  processors. Adding up the time 

required by all the steps, we have,
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T {m ,n ,p )  =
0(log m -f logn +  log p +  m < n

O (logm  +  logn +  lo g p +  £ log m > n

T {m ,n ,p )  =
0(log n -f- - )  p < m  < n

O (log m +  f  log ” ) p < n  < m  

Summarizing the discussion above, we have the theorem. □

C o ro lla ry  3 .1 .2  Let A  and B  be two sorted sequences with sizes n and m , where

Jojr 3ro
n < m . A  —» B  can be computed in O(logm ) time using 0 (  |ogmn ) processors on an 

E R E W  PRAM .

■ 3>n
P ro o f. The result follows when p = ln theorem above. □.

3.1.5 Discussion

We have developed parallel algorithms for the multiple search problem. In Section 

3.1.3, we gave two parallel solutions using n processors. The EREW  PRAM algorithm 

improves the algorithms of Akl and Meijer [5]. Our CREW  PRAM solution runs faster 

than our EREW  PRAM algorithm using the same number of processors.

In Section 3.1.4, we combined the ideas of our algorithm in Section 3.1.3 with 

those of the optimal parallel merging algorithms in [7, 33], and presented an adaptive 

parallel algorithm using p processors. To appreciate the performance of algorithm 

Adaptive-parallel-multiple-search in Section 3.1.4, we notice the following cases:

(a) By Lemma 3.1.2, the algorithm running on an EREW  PRAM is cost optimal, 

if m  > n  and p <  or if m < n and p <
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(b) The algorithm running on a CREW  PRAM is cost optimal, if m  > n and

* 2m
p ^  ° ( l ^ + r 0Sn|-OSn)» or if m <  n and p <

(c) When p — n < m  both of our algorithms have the same performance. There

fore, our second algorithm is a generalization of our first algorithm.

(d) Consider the case when n <  m. On an EREW  PRAM, algorithm Adaptive- 

parallcl-multiplc-search needs only processors to run in 0(log m) time, while 

our first algorithm needs n processors to achieve the same speed. On a  CREW 

PRAM, our first algorithm runs in 0 (log logn  -f lo g ^ )  using n processors, yet our

 ̂j 2m
second algorithm needs only Q( j0- ^i+|0gi0gn) processors to achieve the same speed. 

Hence, The algorithm in Section 3.1.4 is also an improvement over the algorithms in 

Section 3.1.3.

3.2 M ultip le Selection

In this section, we consider the following problem (the materials in this section also 

appear in [52]): Given an unsorted set S  of n items from a  totally ordered universe 

and a  set Q of m  integers 1 <  qi < q2 <  ... <  qm <  n, answer the query “find the 

9,-th smallest element in 5 ” for i =  1,2,

For convenience, we assume th a t Q is given in an array with elements sorted 

in increasing order. To avoid tedious but inconsequential complications, we further 

assume th a t all the elements in S  are distinct. It is well known that the sequential 

complexity of single selection is O(n) [1]. So we assume familiarity with the details 

of the traditional single selection algorithm. Here, the selection algorithm in [l] will
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be referred to as Sclect(A t k), which returns the A-th smallest key in set A.

Before we present our parallel EREW  PRAM algorithm for the multiple selection 

problem in Section 3.2.3, we first give an efficient sequential solution to  the problem 

in Section 3.2.1; we then discuss the parallel complexities of the single selection on 

PRAMs with Concurrent Write (i.e. the EREW  and CREW PRAMs) in Section 

3.2.2.

3.2.1 A Sequential Multiple Selection Algorithm

We present an efficient sequential algorithm to the multiple selection problem. The 

idea is very simple: Let q stand for Q[[y"]]; using procedure Select, we find the 

^-th smallest element z  in S, and compute the sets Si — {x €  S  | x  <  z}  and 

S 2 =  {a; e  S  | x >  z}. A t the same time, we partition Q into Qi containing the first 

jy ]  — 1 entries in Q , and Q2 containing the last [ y j  entries in Q.

For further reference, we note that all the queries in Qi pertain to S i, while all 

the queries in Q2 refer to  S 2.

This process is continued recursively until the number of queries th a t have to  be 

answered on any particular subset of S  is 1: a t th a t time, the corresponding query 

is answered using procedure Select [1], The details are presented in the following 

procedure.

P ro c e d u re  Sequential-multiple-selection(S, Q [l,m ]);
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In p u t:  a  set S  of keys; a  global array Q of queries with 

elements sorted in increasing order

O u tp u t :  a  global array R  with 7?[i] containing the answer to query Q[i];

1. if  m  =  0 th e n  return;

2.

3. <i <- QM;

4. z  <— Select(S ,q );

5. R\i) <- z\

6. Si *— {x £ 5  | x < z}]

7. S 2 *— {x £ S  \ x > z};

8. fo r j  i— t +  1 to  m  do /*  update queries */

9. Qbl«- Q U 1 Si I -1;
10. Sequential-multiple-selection(S,Q[l,f — 1]);

11. Sequential-multiple-selection(S,Q[i + 1 ,  m]);

12. return(i2);

en d ;

T h e o re m  3.2 .1  Given a set S  o f n elements and a set Q o f m  queries with m  < n ,  

the multiple selection problem can be solved in 0 (n  log 2m) sequential time.

P ro o f . The correctness being obvious we turn to the complexity. Let T (n ,m ) 

stand for the total running time of this procedure. Since lines 4, 6-9 take 0 ( n ) time. 

The recurrence system describing the behavior of T (n ,m )  is given by
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T (n ,m )  <  c'n +  T(\ S , |, |^ 1  -  1) + T ( | S , |, [ | j )

We claim th a t for some positive constant c,

T {n ,m )  <  cnlog2m  (3.2.1)

The proof of (3.2.1) is by induction. The basis being trivially satisfied, the induc

tion hypothesis allows us to write

m  S. |, r?l -  1) <  C I S, I loS2(rfl -  1) < c | S, | logm (3.2.2)

and

m  I, L fj)  < c \ S 2 \ log 2L f J <  c I S2 I logm (3.2.3)

Therefore, by (3.2.2) and (3.2.3) combined,

T (n, m) <  c'n +  cn log m 

If we write c =  d  we have T (n ,m ) <  cn log 2m, and (3.2.1) is proved. W ith this, 

the proof of the theorem is complete. □

3.2.2 Time Bounds for Single Selection on Exclusive Write 

PRAM s

In our parallel algorithm for the multiple selection problem in the next section, we 

need as a  subroutine an efficient parallel single selection algorithm on the EREW  

PRAM. We note tha t such an algorithm has been proposed by Cole in [19], In 

particular, Cole’s result can be specified by the following theorem:

T h e o re m  3 .2 .2  (Cole [19]). Given a set S  o f n items (unsorted), the k-th smallest 

item in S  can be found in (lognlog* n) time using 0 ( logn"—; - ) processors on the
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E R E W  PRAM . (Here, lo g ^ n  =  logn, lo g ^ n  =  log(log^“ ^ )n ) , and log*n =  

min{z | lo g ^ n  <  1} ). □

C o ro lla ry  3.2.1 Given a set S  o f n items (unsorted), the k-th smallest item in S  

can be found in O (^) time using p (p <  logn”og. n ) processors on an E R E W  PRAM . 

□

To appreciate Cole’s result, we need to know the lower time bound of the single 

selection problem on the PRAMs which do not allow concurrent writes.

T h e o re m  3 .2 .3  (Cook, Dwork, and Reischuk [25]). On an C R E W  PRAM , every 

parallel algorithm that computes the logical “or” o f n bits requires at least ft {log n) 

time, no matter how many processors arc used. □

C o ro lla ry  3.2 .2  Let S  be a set o fn  items (unsorted) from a totally ordered universe. 

On a C R E W  PRAM , or an E R E W  PRAM , every parallel algorithm that computes 

the k-th  (for any integer k) smallest item in S  requires at least ft(logn) time, no 

m atter how many processors are used.

P ro o f . Assume the computation model is a CREW PRAM which is stronger than an 

EREW  PRAM. The following three-step procedure reduces the computation of the 

logical “or” of n bits to the problem of selecting the fc-th (for any integer k) smallest 

item.

Input : 2?[l..n] of 0/1 bits; Output: logical “or” of the bits of jB[l..n];
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Step 1 . Compute array A [l..n +  k — 1] such tha t A[i] =  1 — S[i] (i =  and

A\i\ — 0 (i =  n +  l , . . . ,n  -f k — 1);

Step 2. R  *— the fc-th smallest number in array AfL.n - f t  — 1];

Step 3. Return(1 — R)\

It is easy to see tha t this procedure returns “1” if and only if the logical “or” of the bits 

in I?[l..n] is “1” . Let T (n ,h ) be the time complexity of the fastest parallel algorithm 

to select the &-th smallest item in a  set of size n. Obviously, T (n , fc) dominates the 

time complexity of this procedure. By Theorem 3.2.3, T ( n ,k ) is a t lest Jl(logn), no 

m atter how many processors are used. □

3.2.3 A Parallel Multiple Selection Algorithm

We are now in a  position to explain how to solve the multiple selection problem on 

an EREW  PRAM. Our parallel procedure is, in fact, a  simple parallelization of the 

sequential multiple selection procedure presented previously. For convenience, we 

im port the whole context and the notation used in the description of our sequential 

procedure. For completeness, however, we give the details of the parallel version as 

well.

P ro c e d u re  Parallel-multiple-selection{5, Q [l, m], p);

In p u t:  a  set S of keys; a  global array Q of queries with

elements sorted in increasing order; p is the number of processors used

O u tp u t:  a  global array R  with R[i] containing the answer to query Q[i];
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1. if  m  =  0 th e n  return;

2. t «- f y l ;

3. i f  p =  1 th e n

4. Sequential-multiple-selection(S, Q[l, m]);

5. q <- Q[t];

6. find in parallel the <pth smallest element 2 of 5;

7. /2[i] «— z;

8. Si «— {ar € S  | x <  z};

9. S 2 <— {x € S  | x  >  z};

10. fo r j  *— t +  1 to  m  do  /* update queries */

11. Q\j] -  Q \i\-  I s. I - i ;

12. pi «—| Si | x£ ;

13. p2 H 5 2 | x f ;

14. d o  in  p a ra lle l

15. Parallel-multiple-selection(S, Q[l, t — l], Pi);

16. Parallel-muItiple-selection(S, Q[t +  1, m], p2);

17. return(i?);

en d ;

T h e o re m  3 .2 .4  Given a set S  o f n  elements and a set Q o f m  queries where m  < 

n, the multiple selection problem can be solved in 0 (^ lo g 2m) time using p (p <  

:— ? . ) processors on an E R E W  PRAM .log n  log n  / r
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P ro o f . The correctness being obvious we trun to the complexity. Since no read or 

write conflicts occur, the computation can be performed in the specified model.

The recursive process in lines 15-16 is continued, in parallel, until the number of 

queries tha t have to  be answered on any particular subset of 5  is 1. At th a t time, 

the corresponding query is answered using Cole’s parallel selection algorithm [19]. 

Similarly, if p is 1 then we use the sequential procedure for the multiple selection 

problem.

The processor assignment is as follows: we assign pi =] of the processors

to S i, and />2 =  | ^2 [ x ^  of the processors to S2. It is easy to see tha t with this 

assignment,

j£i! =  =  M  (3 2 4 )
p i  p i  p  '  ’

We shall let T (n , m ,p )  stand for the worst-case running time of our parallel pro

cedure. To get a  recurrence describing T (n ,m ,p ) ,  we can see that line 6 takes 

+  log log* n) time by using Cole’s algorithm [19]. Since p <  logn"og- w, we have 

0 ( j  +  log log* n) =  O (^). Lines 8-9 take 0 ( ^  +  logn) =  O (^) time by simple prefix 

computation; similarly, the for loop in lines 10-11 runs in 0 ( ^  +  logn) =  0 ( | )  time. 

Finally, the recusive calls in lines 15-16 are done in parallel, taking

m ax{r(| Sj 1, r ? l  -  l ,P i) ,r ( l  S, 1, L ? J ,r)}
Consequently, we can write

T (n ,m ,p ) <  c j  +  m ax{T(| S: |, f f [  -  l ,p i) ,T ( | S2 |, [ f  j , P2)}

By induction, we can easily show: T (n ,m ,p )  < c2 log 2 m . □
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3.2.4 Discussion

Note that our parallel multiple selection procedure uses Cole’s parallel single selection 

algorithm as subroutine. From the discussion in Section 3.2.2 we know tha t Cole’s 

algorithm has not met the time lower bound for parallel single selection on an EREW 

PRAM. Actually, if a faster EREW PRAM parallel algorithm for the single selection is 

available, our parallel algorithm for multiple selection can be sped up by an 0(log* n) 

factor.

When m  = 1 the complexity of our parallel algorithm matches th a t of Cole’s 

parallel selection algorithm. However, when m  — n our algorithm (being cost optimal) 

is an O (logn) factor slower than the fastest sorting algorithm, e.g., Cole’s parallel 

merge sort [20]. An interesting open question is whether or not we can use a  different 

approach to obtain a faster parallel multiple selection algorithm.
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Chapter 4

Tree R econstruction

In this chapter, we present a  parallel algorithm to reconstruct binary trees from their 

traversals. The m aterials here can also be found in [46], Formally, the problem is 

defined as follows: For a  binary tree T  = {V ,E ) where V  = { l ,2 ,. . , ,n } , given its in- 

order traversal and either its preorder traversal or its postorder traversal, reconstruct 

the binary tree.

It is well known a  binary tree can be reconstructed from its inorder traversal along 

with either its preorder traversal or its postorder traversal [42]. Recently, a sequential 

solution to this classical problem has been reported in [6]. Specifically, the algorithm 

in [6] takes O(n) tim e and space. Parallel solutions to  this problem can be found 

in [12, 63]. In particular, the algorithm in [63] runs in O (logn) time using O(n) 

processors on the CREW  PRAM; and the solution in [12] takes O (loglogn) time 

using 0 ( iogl" 8n) processors on the CRCW PRAM.

Here, we present a  new algorithm for this problem. Our algorithm requires O(n) 

space. The main idea of our algorithm is to  reduce the reconstruction process to
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parallel merging. W ith the best results for parallel merging, our algorithm can be 

implemented in O (logn) time using 0(y— processors on the EREW  PRAM, or in 

O (loglogn) time using O (log[*ogn) processors on the CREW  PRAM. Our algorithm 

thus improves the results in [12, 63],

O ur parallel solution is of theoretical im portance for the following reasons: (i) 

Recently, Berkman et al. defined a new class of problems called highly parallelizable 

problems [12] which contains problems tha t can be solved in O (loglogn) time using 

optimal number of processors. An extremely small number of problems are known 

to have optimal doubly logarithmic solutions and thus designing such algorithms was 

proposed as a challenge in [12]. (ii) Due to the research on lower bounds in [25], 

Berkman et al. pointed out [12] th a t doubly logarithmic time parallel algorithms 

usually need to run on an CRCW PRAM. A known exception is Kruskal’s O (Ioglogn) 

time optimal parallel algorithm on a  CREW  PRAM. Our parallel solution thus finds 

one more example in the class of problems tha t can be solved in O (loglogn) using 

optimal number of processors on a CREW PRAM.

4.1 Prelim inaries

Many methods can be used to generate traversals for a  binary tree. Here, we are 

interested in one of them, known as the Euler tour technique [65]. This technique was 

proposed by Tarjan and Vishkin for designing efficient parallel algorithms on trees. 

Specifically, this technique reduces the com putation of various kinds of information 

about the tree structure to the computation on a  linked list [65]. To make our
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presentation self-contained, the technique is described below:

The Euler tour technique: let T  be a binary tree rooted at node r ,  Every node v  of 

T  is split into three copies v i ,v 2, v-i, all having the same node label as v. For simplicity, 

we assume th a t the nodes of the binary tree are labeled by integers 1,2, For

each of the resulting nodes, we define a  next field as follows: If v  has no left child 

then Vi.next = v2. If v has no right child then v2.ncxt = v3. If w  is the left child of v 

then vi.nex t =  wi, and w^.next = v2. If w  is the right child of v then v2.next = Wi, 

and w3.next =  V3 . W hat results is a list, called the Euler path, which starts a t r j ,  and 

ends at r 3 and which traverses each edge of T  exactly once in each direction. In other 

words, let ^ (T ) denote the Euler path of a binary tree T. The Euler path of a  binary 

tree with left subtree T\ and right subtree T2 can be expressed as )r25/)(T2)r3.

When no confusion is possible, we let Euler path also stand for the sequence of 

node labels induced by and Euler path.

Obviously, an Euler path of a tree contains three copies of each node label in the 

tree. An interesting property of the Euler path of a  tree T  is tha t keeping only the 

first copy of each label results in a  preorder traversal of T ; keeping only the  second 

copy of each label gives an inorder traversal of T ; keeping only the third copy of each 

label yields a  postorder traversal of T  [65].

For convenience, we define a preorder-inorder path to be a  sequence of labels 

obtained by deleting the third copy of each label in an Euler path. Similarly, an 

inorder-postorder path is a sequence of labels obtained by deleting the first copy of 

each label in an Euler path. It is known that a binary can be reconstructed from 

its inorder traversal along with either its preorder traversal or postorder traversal. It
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6

Euler path: 1 2 4 4 4 2 5 7 7 7 5 8 8 8 5 2 1 3 3 6 6 6 3 1  

Preorder-inorder Euler path: 1 2 4 4 2 5 7 7 5 8 8 1 3 3 6 6

Preorder traversal: 1 2 4 5 7 8 3 6  

Inorder traversal: 4 2 7 5 8 1 3 6

Figure 4.1: a binary tree, and its various (Euler) paths and traversals

follows th a t a  binary tree is completely determined by its preorder-inorder path or 

its inorder-postorder path.

For example, Figure 4.1 features a  binary tree along with the associated Euler 

path , preorder-inorder path, preorder traversal, and inorder traversal.

L em m a  4.1.1 A sequence o f labels 61, 62, . . . , kn  represents a preorder-inorder path 

(respectively, the inorder-postorder path) o f an n-node binary tree T  i f  and only i f  the 

following conditions hold:

(1) exactly two copies o f each label occur in the sequence; and

(2 )  there exist no integers i, j ,  k , m  with \ < i < j < k < m < 2 n such that 

( k  = bk) and (bj =  bm).

P ro o f . We prove the statem ent for the case of a preorder-inorder path (the case of 

an inorder-postorder path follows by a  mirror argument).

69

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Let tj){T) denote the preorder-inorder path of a  tree T . By definition, the preorder- 

inorder path of a tree rooted a  node r  with left subtree T\ and right subtree T2 can 

be expressed as ri^>(7i)r2̂ (!T2). Thus, the “only if” part of the lemma if obvious.

The “if” part will be proved by induction on n. When n =  1 the lemma is 

obviously true. Assume the lemma is true for n < I. When n  =  /, let bt be the second 

copy of 6j, i.e. bt = By condition (2) and the induction hypothesis, &2,...,&i_i and 

&(+1, . . . , i 2n can both be seen as preorder-inorder paths. Let 7\ and T2 be the binary 

trees induced by 62, . . . ,6j_i and &2n, respectively. The tree rooted a t with

left subtree T\ and right tree T2 is the tree determined by &t, 62, ...,b2n. □

Corollary 4.1.1 Let c\,c2,...,c„ and dx,d 2 , . . . ,d n be the preorder and the inorder 

traversals o f a binary tree, respectively. There do not exist integers ii, i2, j \ , ,

k2, such that (1 < z*i < j i < ki < n), (1 < k2 < i2 < j 2 < rc), and (c{l =  42) A(cji =

<*»)A (c/t, =  4 2).

Proof, (by contradiction) Assume there exist integers ii, i2, j i ,  j 2, iC*i, fc2, such tha t 

(1 < *i < j i  < ki < n), (1 < k2 < i2 < j 2 < n), and (c,-, =  4 2) A(cj, =  ) A(c*, =

4 , ) -  Then, in the corresponding preorder-inorder path, 4 2 is the second copy of 

the  c*,. So we have ki <  i 2, which further implies i\ < j i  < ki < k 2 < i2 < 

j 2. The preorder-inorder path must be of this form, ...c,1...Cj1...c<.-,...42—4 2—4 a — 

contradicting the condition (2) Lemma 4.1.1. □
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4.2 Sequential A lgorithm s

In order to  build a background for our parallel algorithm, in this section we present two 

sequential algorithms. The first algorithm generates the preorder-inorder path  from 

the preorder and inorder traversals of a  binary tree. The second algorithm uses the 

first algorithm as a  subroutine to compute preorder-inorder path from the preorder 

and inorder traversals, and then reconstruct the binary tree using the information 

stored in the preorder-inorder path. The details of the algorithms are given below:

P ro c e d u re  Traversal-path;

In p u t:  sequence of labels, c i,c2,...,c„  and d i,d 2, ...,dn as the preorder 

and inorder traversals of a  binary tree;

O u tp u t:  61, ^ , i>2n> the preorder-inorder path of the tree, in which 

every label remembers the position of its duplicate;

Stack  «— $ ; 

j  <- k «- 1; 

fo r i 1 to  2 n do

if  dk =  iop(Stack) th e n  

hi *— dk] 

k  <— k  +  1; 

a  *— p o p  Stack]

q  and dk remember each other’s position in 6], 62, ..., i,- 

else
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hi *— Cj;

p u sh  Cj onto Stack]

j  *— j  +  1; 

return(61, 62, - , ^ 2n);

end ;

The correctness and the time complexity of this procedure are established by the 

following result.

L em m a 4.2.1 Given the preorder and the inorder traversals o f  an n-node binary tree 

T , procedure Traversals-path computes in 0 ( n ) time the preorder-inorder path o fT ,  

such that every label remembers the position o f its duplicate in the preorder-inorder 

path.

P ro o f . We prove the correctness of the procedure by induction on n. When n  =  1 

the algorithm is obviously correct. Assume tha t the algorithm is correct for n < k. 

Consider the case when n =  k. W ithout loss of generality, assume dq = c^. By the 

definition of preorder and inorder traversals, cj is the root of T, and the left subtree 

of T  has preorder traversal c2, ..., cq and inorder traversal d i,..., d?_i while the right 

subtree of T  has preorder traversal c ,+i ,..., c* and inorder traversal dq+1,..., d By the 

induction hypothesis, consuming subsequences c2, cq and d i , ..., dg- i ,  the algorithm 

computes &i,&2, —,^25-2 as the preorder-inorder path of the left subtree, with c2 left 

on the  top of the Stack. After matching dq with top of the S tack , the algorithm
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computes 62, , . . . , bk as the preorder-inorder path of the right subtree by consuming 

subsequences c,+ i,...,c* and dq+i,..., dk. From the statem ents above, we see tha t 

the output sequence blt b2, ..., b2n satisfies both conditions of Lemma 4.1.1. Thus, 

61, 62,..., b2n represents the preorder-inorder path of some tree. Furthermore, deleting 

the second copies of the duplicate labels in &i, b2, ..., &2„ results c i,c 2, ...,c„, while 

deleting the first copies gives dlt d2, ..., dn. It follows that , 62, b2n is the preorder- 

inorder path of T. According to the way the stack is used in the algorithm, we ensure 

th a t each label in the output sequence remembers the position of its duplicate. The 

algorithm runs in O(n) time, since each iteration of the for loop has 0 (1) time. □

P ro c e d u re  Traversal-path-tree;

I n p u t:  sequence of labels, c 1, C 2 , . . . , c n and d^,d2, ...,dn as the prcorder and inorder 

traversals of a binary tree;

O u tp u t:  A binary tree with root node r , and the node set S  = {di,d2,

the preorder-inorder path of the tree, in which every label remembers the position

of its duplicate;

1. 5  <— {di,d2, . . . ,d n};

2. Compute preorder-inorder path 61, 62,..., 62„ of the tree

such th a t every label remembers the position of its duplicate;

3. r  4— the second copy of 61;

4. fo r  each label 6; (2 <  i < 2n) do

5. i f  (6,- is the second copy of its duplicate) th e n
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6. if  (6;_i is the second copy of its duplicate label) th e n

7. leftchild(bi) *—

8. if  (6I+i is the first copy of its duplicate label) th e n

9. c <— the second copy of 6,+i;

10. rightchild(bi) <— a;

11. return(&i, &2i —, h2„);

end;

L em m a 4.2 .2  Given a preorder-inorder path with 2n labels, procedure Traversal- 

path-tree correctly reconstructs the corresponding binary tree in 0 (n ) time.

P ro o f . The correctness of the algorithm follows directly from the  proof of Lemma 

4.1.1. It is also easy to see the time complexity of the algorithm is O(n). □ 

CombiningX-emma 4.2.1 and Lemma 4.2.2, we have,

T h e o re m  4.2.1 An n-node binary tree can be reconstructed from  its preorder and 

inorder traversals in 0 (n ) time with 0 (n) extra space. □

4.3 A H ighly Parallel A lgorithm

We are now in a  position to present our parallel solution to  the problem of recon

structing an n-node binary tree from its preorder and inorder traversals. Our parallel 

algorithm is developed by parallelizing our sequential procedure, Traversal-paih-tree.
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It is easy to see th a t, except for Line 2 , procedure Travcrsal-path-trce can be imple

mented in 0 (1 ) time using n processors on an EREW  PRAM. The difficult part is 

to parallelize Line 2 of procedure Travcrsal-palli-trcc. Our idea here is to show that 

computing the preorder-inorder path from the preorder and inorder traversals can be 

reduced to parallel merging.

We now discuss how to compute the preorder-inorder path from a  preordcr traver

sal C], C2, O n  and inorder traversal dj, d2, ...,d„. For simplicity, we assume that 

c j ,c 2, C n  is 1, 2, ...,n  (the case where Cj, c2, c „  is a perm utation of 1, 2 , ...,n  can 

be reduced to this case easily; we discuss this later). We compute the preorder-inorder 

path from c i,c 2,...,c„  and d i,d 2, ..., dn by merging according to some linear order as 

we are about explain. We will define such an order that both sequence c1,c2,.. . ,c n 

and d i,d 2, . . . ,dn are already sorted.

Construct two sequences of triples: a  sequence ( l , i i , 0^ , ( 1, j 2,c 2) , . . . , ( l , i;'n,cn) 

such th a t djj =  Cj, (i =  1, 2, ...,n ) (i.e. j i  is the position of a  in sequence dj, d2, ...,d„); 

and a sequence (2, l ,d i) ,  (2, 2,d 2) , ..., (2,n , dn).

Denote n  =  {(1,J i ,c i) ,  (1, j 2,c2) , ..., (1 ,j„ ,c„ ), (2, l ,d ,) ,  (2 ,2 ,d2) , ..., (2, n, c„)} Define 

a  binary relation on fl ^  follows: for arbitrary triples (a ,/? ,7 ) and ( a ', /3',7 ') in 

1] we have:

1- ((<* = 1) A { a 1 =  1)) -> (((a,/?,7) <  (<*',ft, Y)) «-♦ (7 < Y))i

Rllk-2, ((a =  2) A (a' =  2)) ->  (((a,ft7) «  K f t ,  Y)) (P <  /5'))l

Rule 3. ((a = 1) A (a' = 2)) -> (((a, ft 7 ) «  K f t ,  Y)) <- ( ( P  <  P') V (7 < 7')))

Rule 4- ((a = 2) A (a' = 1)) -  (((a,ft 7) «  (a', ft,7')) -  { (P <  ft) A (7 < Y)))
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Theorem 4.3.1 The binary relation <g; defined above is a linear order on n*

Proof. It is easy to  see from Rules 1-4 tha t the binary relation <C is total on f]- To 

prove tha t <C is a  linear order we need to show tha t it is transitive. We shall present 

our argum ents in the form of a  case-by-case analysis. Let (or, ^ , 7 ), ( o ' , /?', Y )  and 

(a ”, 0 ”, 7 ”) be arbitrary triples in f] satisfying:

( o r , / ? , 7 ) <  ( a ' ,0 ' , 7 ') and (a ',/? ',7 ') <£ 7 ” )

We need 7 ) <C (a ” ,/?” , 7n).

case 1. a = a”

subcase 1.1 a =  a' =  a” = 1.

By Rule 1 and the assumption, we have 7  <  7 ' and 7 '  <  7” and therefore 

7  <  7” . T he conclusion follows by Rule 1.

subcase 1.2 a =  a ” = 1 and a' =  2 

By Rule 3,

(a) ( 7 < y ) V ( ^ < / ? 0  

By Rule 4,

(b) {fi’ < n  M i  < i n

If 7  <  7” then conclusion follows immediately from Rule 1. Therefore, we

assume

(c) 7” <  7

Note th a t (a), (b) and (c) combined imply th a t

(7* <  7” <  7 ) A(/? <  /?' < /?”) which is contradicting Corollary 4.1.1.
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su b c a se  1.3 a  = a ' =  a ” =  2

By Rule 2, we have P <  /?' and /?' <  /?” and therefore <  /3” . The 

conclusion follows by Rule 2.

su b c a se  1.4 a  =  2, a ' =  1 and a ” =  2 

By Rule 4,

(d) (7 <  7 ') A(P <  P')

By Rule 3,

(e) (/?' < < 7” )

If (/? <  p ” ) then conclusion follows instantly from Rule 2. We may assume, 

therefore,

(f) (P* < P)

By now, (d), (e) and (f) combined imply that

(7 < 7 ' <  7” ) A{Pn <  P < P') which contradicts Corollary 4.1.1.

case 2 . a  ^  a ”

su b case  2.1  a  =  a' =  1 and a ” =  2.

By Rule 1,

(g) (7 <  V )

By Rule 3,

(h) (p'<n  a ( 7 ' < 7 ”)

Note tha t if (P <  ) Vf'y  ̂ <  7”) then by Rule 3, we have (a ,/? ,7 ) <

(a ” ,/?” ,7 ” ). Therefore, we may assume tha t

(i) (/T  <  P) A(7” <  7 )
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But now, (g), (h) and (i) combined imply

(7” <  7 < 7 ') A(/?' <  /?” < P) which contradicts Corollary 4.1.1.

su b case  2.2  a  = 1 and a ' =  or” =  2.

By Rule 3,

(j) ( /?< /? ')V ( 7 < 7 ” )

By Rule 2,

(k) ( /? '< /? ” )

Note tha t if (/3 < /?” )V (7 <  7” ) then the conclusion follows by Rule 3,

Therefore, we may assume that

(1) (/?” < /3 )A (7 ” < 7 )

But now, (j), (k) and (1) combined imply

(7” < 7  <  Y )/\{P ' < P" <  fi) which contradicts Corollary 4.1.1.

subcase 2.3 a = 2 and a' = a” = 1.

By Rule 4,

(m) (/? < /3') A (7 < i)

By Rule 1,

(n) ( 7 '< 7 ” )

Note tha t if (/? <  /3” )A (7 <  7” ) then the conclusion follows by Rule 4,

Therefore, we may assume that

(o)  (/?” < / 3 ) A ( 7 ” < - r )

But now, (m), (n) and (o) combined imply

(7  < 7 ' <  7” ) A(y^” <  0  < fi") which contradicts Corollary 4.1.1.
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su b c a se  2.4 a  = a ' = 2 and a" =  1.

By Rule 2,

(p) W  < P )

By Rule 4,

(q) ( /? '< /3 ”) A ( f  < 7” )

Note that if (7  <  7” ) then (p) and (q) combined give

(o:,/3,7 ) (a ” ,/?” , 7” ) by Rule 4. Thus, we may assume

(7” <  7)- But now (p) an<l (q) imply

(7 ' <  <• -7) /^ /?  <  /?' < jS) which contradicts Corollary 4.1.1.

□

By Rules 1-2, we can see tha t according to linear order <§[ both sequence (1, j j ,  C j ) ,  

(1 J 2 ,c 2), and (2 ,l ,d i) ,  (2 ,2 ,d 2), ..., (2,n ,d n) arc already sorted. Merg

ing these two sequences according to we obtain a sequence of triples: (c*i,/?i,7 i), 

(<*2, $ 2, 72), —, (<*n,/?n,72n)- We claim tha t 7! , j 2, ..., 72n is the preorder-inorder path 

determined by the traversals. The correctness of the claim relies on the following facts:

(a) Exactly two copies of each label appear in 7j ,  72, ..., 72„ satisfying condition

(1) of Lemma 4.1.1;

(b) There do not exist integers l < i < j < k < l < 2 n  such th a t 7{ =  7* and 

7j =  7( satisfying condition (2) of Lemma 4.1.1;

(c) Deleting the second copies of the duplicate labels in 71, 72, — ,7 2n results in 

C i , c 2, . . . , Cy,, and deleting the first copies of the duplicate labels in 71,72, — ,7 2n gives 

^1, ^ 2 ,  •••)
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Fact (a) follows directly from Rule 3 and the construction of the triples in [7. By 

the definition of <C both sequences ( l , j 2,C2), ( l , j n, Cn) and (2, l ,d i) ,

(2,2, d2), (2,n ,d n) are already sorted, so fact (c) is also true. The proof of fact

(b) is given below:

P ro o f  o f (b ). (by contradiction)

(1)(7» =  7fc) A (7j  =  7m) [Assumption]

where 1 <  i  < j  < k < m  <  2n

(2)(a ;, f t 7,) <  ( Q j , f t  7,-) <  (a*, f t ,  7 0  [by 1 <  i < j  < k  < m  <  2n

^  (arai^mi7m) (01

(3)(a,- =  1) A (a j  =  1) A (a t  =  2) A ( a m =  2) [by (1), (2), Rule 3 and the

construction of the triples]

(4)(0i =  f t )  A ( f t  = f t )  [ by (1) and the construction

of the triples ]

(5 )(ft <  f t ) v  (7; <  7/0 [by (a j =  1) A (a k =  2) in (3),

«  (<*fc,ft,7*) 

in (2) and Rule 3]

(6) ( f t  <  f t )  V (7m <  7*) [replace f t ,  7,- in (5) with f t ,

7m respectively, by (1) and (4)]

C0 ( f t  <  f t )  [by (<*/.-, f t ,  7fc) ^  f t i f t i T m )

in (2), (or* =  2) A (crm =  2) 

in (3) and Rule 2]
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(8) (7m <  I k )  [by (6) and (7)]

(9)(7,- < 7j) [by (or,-, f t, 7i) <  (a j,  f t ,  7;)

in (2), (a,- =  1) A {otj = 1) 

in (3) and Rule 1]

(10)(7* <  7m) [by (1) and (9) ]

(11)Contradiction [(8) and (10)]

□
Up to this point, we have successfully reduced computing the preorder-inorder 

path to parallel merging. We now discuss the complexity of this reduction. First, we 

consider the complexity to construct J]* For this purpose, let us see how to construct 

from the given traversals, sequences ( l , f t ,c i ) ,  ( l , j 2,c2), (l,jn ,C n) and (2, 1, f t) ,  

(2,2, f t ) , ..., ( 2 ,n , f t )  such that c, =  ft,, (i =  1 ,2 ,..., n). We note tha t this can be done 

easily with an auxiliary array A[l..n]. Since ci, C2, ..., c„ is 1,2, ...,n , and f t ,  f t , ..., f t  is 

a  perm utation of 1, 2 , ...,n , we can compute an A[l..n] as follow: A[ft] = i (1, 2, ...,n) 

in 0 (1 ) time on an EREW PRAM with n processors. To determine the subscript ft 

satisfying C{ =  ft, (1, 2, ...,n ), we simply take ft =  A[c;] ( l , 2,.. .,n ) . This again can 

be computed in 0 (1 ) time on an EREW PRAM with n  processors. Consequently,

XI =  {(l>ft>ci)> (1)f t, C2) , ..., ( l , j n, c„), (2, l , f t ) ,  (2, 2 , f t ) , ..., (2, n ,f t ) }

can be constructed in 0 (1 ) time using n processors on an EREW PRAM.

Next, we consider the complexity to merge ( l,f t,C i) , (1,f t , c 2), ..., ( l,f t,,c „ ) and 

(2, 1, f t ) ,  (2 ,2 ,f t ) ,  ..., ( 2 ,n ,f t )  according «C. Optimal parallel algorithms are pro

posed in [7, 33, 43]. W ith their results, we have,
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T h e o re m  4 .3 .2  For a binary tree T  =  (V ,E ) where V  — {1,2 , gi ven its 

preorder and inorder traversals, the binary tree can be reconstructed using 0 (n ) ex

tra space, in O (logn) time using processors on the E R E W  PRAM , or in

O (loglogn) time using Q (log[̂ g^ ) processors on the C R E W  PRAM . □

4.4 D iscussion

We have shown how to reconstruct a binary tree from its inorder traversal along 

with either its preorder traversal or its postorder traversal by reducing the problem 

to parallel merging. With the best known results for parallel merging, our recon

struction algorithm can be implemented in O (logn) time using processors on

the EREW  PRAM, or in O(loglogn) time using 0 ( ôĝ ,gn) processors on the CREW 

PRAM. We have thus found one more example in the class of problems tha t can be 

solved in doubly logarithmic time using optimal number of processors on the CREW 

PRAM.
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Chapter 5

Concluding Remarks

We have studied several basic problems in the design and analysis of non-numerical 

parallel algorithms. As we explained in Chapter 1, the purposes of studying this type 

of problems are to obtain basic building blocks which will be useful in solving complex 

problems and to develop fundamental algorithmic techniques.

In Chapter 2 we studied priority queues. Priority queues have received a great deal 

of attention in literature because of its many applications [45,18, 36 ,32 ,30 ,14 ,38 , 67, 

31]. Our research in this area started at looking for meldable double-ended priority 

queues [48, 46]. The recent enthusiasm in parallel implementations of priority queue 

operations [57, 56, 59, 76, 40, 28, 26, 54] also stim ulated us to carry on this research 

in the parallel setting [49]. As results of our research, we have found a  meldable 

double-ended priority queue; we proposed a parallel melding algorithm for priority 

queues implemented by heaps or min-max-pair heaps; and more importantly, we have 

presented a technique which can be used to develop optim al parallel initialization
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algorithms for a  class of priority queues.

In Chapter 3 we studied two problems, multiple search and multiple selection. The 

purpose of this chapter is to explore the relationships among four of the most fun

dam ental problems in algorithm design, i.c selection, searching, merging and sorting. 

As it turns out, our parallel solutions for the two problems can be used as subroutines 

in algorithms for other problems. For example, our optimal parallel solution for the 

multiple search problem can be used in Hagcrup and R ub’s parallel merging algorithm

[33] to obtain the  optimal implementation of their algorithm on the EREW PRAM.

In Chapter 4 we studied the classical problem of reconstructing a binary tree from 

its traversals [42]. We presented a highly parallel algorithm for the problem. This 

research was motivated by a challenge proposed in [12] to design doubly logarithmic 

time optimal parallel algorithms (highly parallel), since a  remarkably small number of 

such algorithms are known. Another highly parallel algorithm on the CRCW PRAM 

was proposed by Berckman et al. for the same problem. Due to the research on lower 

tim e bounds in [25], Berckman et al. pointed out in [12] tha t doubly logarithmic time 

parallel algorithms usually need to run on an CRCW PRAM. A known exception 

is Kruskal’s doubly logarithmic time parallel merging algorithm which run on an 

CREW  PRAM. Compared to the algorithm in [12], however, our algorithm can be 

implemented on the CREW PRAM and thus gives one more example in the class of 

highly parallel problems tha t run on the CREW PRAM.

Although we have achieved some progress the problems we studied, many ques

tions remain open. F irst of all, we would like to know whether or not our technique 

to initialize priority queues can be applied to other d a ta  structures. We believe our
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parallel m ultiple selection algorithm, though efficient, is not the fastest possible. It 

could be nice to find a  faster parallel algorithm (keeping the same cost) by a different 

approach. Finally, it will be interesting to know whether our highly parallel algorithm 

in C hapter 4 can be improved.

85

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Bibliography

[1] A. V. Aho, J. E. Hopcroft, and J . D. Ullman. The Design and Analysis o f 

Computer Algorithms. Addison-Wesley Publishing Company, 1974.

[2] M. Ajtai, J. Komlos, W. L. Steiger, and E. Szemeredi. An o(n log n) sort

ing network. In Proceedings o f the Annual AC M  Symposium on the Theory o f 

Computing, pages 1-9, 1983.

[3] M. Ajtai, J . Komlos, W. L. Steiger, and E. Szemeredi. Deterministic selection 

in o(log log n) parallel time. In Proceedings o f the Annual A CM Symposium on 

the Theory o f Computing, pages 188-195, 1986.

[4] S. G. Akl. The Design and Analysis o f Parallel Algorithms. Pretice Hall, Engle

wood Cliffs, New Jersey 07632, 1989.

[5] S. G. Akl and J. Meijer. Parallel binary search. IEEE Transactions on Parallel 

and Distributed Systems, l(2):247-250, April 1990.

[6] A. Anderson and S. Carlsson. Construction of a  tree from its traversals in optimal 

tim e and space. Information Processing Letters, 34:21-25, 1990.

86

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



[7] R. J. Anderson, E. W. Mayr, and M. K. Warmuth. Parallel approximation 

algorithms for bin backing. Information and Computation, 82:262-277, October 

1989.

[8] M. D. Atkinson, J. R. Sack, N. Santoro, and T. Strothotte. Min-max heaps and 

generalized priority queues. Communications o f ACM, 29:996-100, 1986.

[9] Y. Azar and U. Vishkin. Tight comparison bounds on the complexity of parallel 

sorting. S IA M  Journal on Computing, 16(3), June 1987.

[10] S. Baase. Computer Algorithms-An Introduction to Design and Analysis. 

Addison-Wesley, 198.

[11] K. E. Batcher. Sorting networks and their applications. In Proceedings o f the 

AF IP S Spring Joint. Computer Conference 32, pages 307-314, 1968.

[12] O. Berkman, D. Breslauer, Z. Galil, B. Schieber, and U. Vishkin. Highly paral- 

lelizable problems. In Proceedings o f the Annual AC M  Symposium on Theory o f 

Computing, pages 11- 20, 1989.

[13] 0 .  Berkman and U. Vishkin. Recursive *-tree parallel data-structure. In Pro

ceedings o f the Annual IEEE Symposium on Foundation o f Computer Science, 

pages 196-202, 1989.

[14] Brown and Randy. Calendar queues: A fast o (l)  priority queue implementation 

for the simulation event set problem. Communications o f ACM, 31(1Q):1220- 

1227, 1988.

87

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



[15] S. Carlsson. the deap-a double ended heap to  implement double ended priority 

queues. Information Processing Letters, 26:33-36, 1987.

[16] S. Carlsson, J. Chen, and T. Strothotte. A note on the construction of the data 

structure ‘deap’. Information Processing Letters, 31:315-317, 1989.

[17] L. Chen and Y. Yesha. Parallel recognition of the consecutive ones property with 

applications. Journal o f  Algorithms, 12(3):375-393, 1991.

[18] E. G. Coffman and M. Hofri. On scanning disks and the analyst of their steady 

state  behavior. In Proceedings o f the Conference o f Measurement, Modeling and 

Evaluating Computer Systems, 1982.

[19] R. Cole. An optimally efficient selection algorithm. Information Processing 

Letters, 26(6):295-299, 1988.

[20] R. Cole. Parallel merge sort. SIA M  Journal on Computing, l7(4):770-785, 

August 1988.

[21] R. Cole and U. Vishkin. Approximate parallel scheduling, part 1: the basic 

technique with applications to optimal parallel list ranking in logarithmic time. 

SIA M  Journal on Computing, pages 128-142, 1988.

[22] R. Cole and C. K. Yap. A parallel median algorithm. Information Processing 

Letters, 20(3):137-139, April 1985.

[23] S. A. Cook. Towards a  complexity theory of synchronous parallel computation. 

L ’Enseignment Mathematique, 30, 1980.

88

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



[24] S. A. Cook. A taxonomy of problems with fast parallel algorithms. Information 

and Control, 64:2-22, 1985.

[25] S. A. Cook, C. Dwork, and R. Reischuk. Upper and lower time bounds for 

parallel random access machines without simultaneous writes. SIA M  Journal on 

Computing, pages 87-98, 1986.

[26] N. Deo and S. Prasad. Parallel heap. In Proceedings o f the IE E E  International 

Conference on Parallel Processing, 1990.

[27] J. R. Driscoll, R. Shrairman H. N. Gabow, and R. E. Tarjan. Relaxed heaps: an 

alternative to fibonacci heaps with applications to parallel computation. Com

munication o f ACM, 31 (11): 1343—1354, 1988.

[28] Z . Fan and K. H. Cheng. A simultaneous access priority queue. In Proceedings o f 

the IEEE International Conference on Parallel Processing, pages 195-198, 1989.

[29] M. J. Fischer and R. E. Ladner. Parallel prefix computation. Journal o f  ACM, 

27(4):831-838, 1980.

[30] W. R. Franta and K. Maly. An efficient data structure for the simulation event- 

set. Communications o f ACM, 20(8):585-606, 1977.

[31] H. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved 

network optimization algorithms. Journal o f the ACM, 34(3):596—615, 1987.

[32] G. H. Gonnet. Heaps applied to event-driven mechanisms. Communications o f 

ACM, 19:417-418, 1976.

89

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



[33] T . Hagerup and C. Rub. Optimal merging and sorting on the ercw pram. Infor

mation Processing Letters, 33:181-185, December 1989.

[34] A. Hasham and J. R. Sack. Bounds for min-max heaps. B IT , 27:315-323, 1987.

[35] X. He. Efficient parallel algorithms for series parallel graphs. Journal o f Algo

rithms, 12(3):409-430, 1991.

[36] M. Hofri. Disk scheduling: Fcfs vs sstf revisited. Communications o f ACM, 23, 

1980.

[37] F. K. Hwang and S. Lin. A simple algorithm for merging two disjoint linearly 

ordered sets. SIA M  Journal on Computing, 1:31-39, March 1972.

[38] K. Hwang and F. A. Briggs. Computer Architecture and Parallel Processing. 

McGraw-Hill, 1984.

[39] Editor J. L. C. Sanz. Opportunities and constraints o f Parallel Computing. 

Springer-Verlag, 1988.

[40] D. W. Jones. Concurrent operations on priority queues. Communications o f the 

ACM, 32(1):132—137, Jan. 1989.

[41] R. M. Karp and V. Ramachandran. A survey of parallel algorithm for shared 

memory machines. Rep. No. UCB/CSD 8 8 / 4 0 8 , Computer Science Division, 

University of California, Berkeley, CA 94720, March 1988.

[42] D. E. K nuth. The Art o f Computer Programming, Vol. 1 , Fundamental Algo

rithms. Addison-Wesley, Reading, Mass., 1973.

90

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



[43] C. Kruskal. Searching, merging, and sorting in parallel computation. IEEE  

Transactions on Computers, pages 942-946, October 1983.

[44] G. L. Miller and J. Reif. Parallel tree contraction and its application. In Pro

ceedings o f the Annual IEEE Symposium on Foundation o f Computer Science, 

pages 140-148, 1985.

[45] O. Nevalaineen and J. Teuhola. Priority queue adm inistration by sublist index. 

The Computer Journal, 22:220-224, 1977.

[46] S. Olariu, C. M. Overstreet, and Z. Wen. A mergeable double-ended priority 

queue. The Computer Joumal-A Special Issue on Data Structures, Oct. 1991.

[47] S. Olariu, C. M. Overstreet, and Z. Wen. An optimal parallel algorithm to recon

struct a binary tree from its traversals. In Proceedings o f the International Con

ference on Computing and Information (Carleton University, Ottawa, Canada, 

May 27-29 1991. Submitted to Journal of Parallel and Distributed Computing.

[48] S. Olariu and Z. Wen. The min-max-pair heaps and its variations. Tech. Rep. TR- 

89-33, Departm ent of Computer Science, Old Dominion University, Sep. 1989.

[49] S. Olariu and Z. Wen. Fast parallel algorithms on heaps. Tech. Rep. TR-90-12, 

Departm ent of Computer Science, Old Dominion University, Feb. 1990.

[50] S. Olariu and Z. Wen. An optimal parallel construction scheme for heap-like 

structures. In Proceedings o f the 28th Annual Allerton Conference in Control, 

Communication, and Computing(University o f  Illinois, Urbana-Champaigh), Oc

tober 1990.

91

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



[51] S. Olariu and Z. Wen. Optimal parallel initilization algorithms for a  class of 

priority queues. IEEE Transactions on Parallel and Distributed Systems, (in 

press).

[52] S. Olariu and Z. Wen. An efficient parallel algorithm for multi-selection. Parallel 

Computing, (to appear).

[53] I. Parberry. Parallel Complexity Theory. John Wiley and Sons, Inc. New York, 

Toronto, 1987.

[54] M. C. Pinotti and G. Pucci. Parallel priority queue. In Proceedings o f the 

28th Annual Allerion Conference in Control, Communication, and Comput

ing (University o f Illinois, Urbana-Champaigh), 1990.

[55] T. Przytycka and D. G. Corneil. Parallel algorithms of parity graphs. Journal 

o f  Algorithms, 12(1 ):96—109, 1991.

[56] M. J. Quinn. Designing efficient algorithms fo r  parallel computers. New York, 

McGraw-Hill, 1987.

[57] M. J. Quinn and N. Deo. Parallel graph algorithms. Computing Survey, 

16(3):319—348, Sep. 1984.

[58] A. G. Ranade. How to em ulate shared memory. Journal o f Computer and System  

Sciences, 42:307-326, 1991.

[59] V. N. Rao and V. Kumar. Concurrent access of priority queues. IE E E  Transac

tions on Computer, 37( 12):1G57—1665, Dec. 1988.

92

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



[60] D. S. Richards and J. S. Salowe. Stacks, queues, and deques with order- 

statistic operations. In Proceedings o f the 28th Annual Allerton Conference 

in Control, Communication, and Computing (University o f Illinois, Urbana- 

Champaigh), 1990.

[61] J. R. Sack and T . S trothotte. An algorithms for merging heaps. Acta Informatica, 

22:171-186, 1985.

[62] D. D. Sleator and R. Tarjan. Self adjusting heaps. SIA M  Journal on Computing, 

1986.

[63] F. Springsleel and I. Stojmcnovic. Parallel general prefix computations with ge

ometric, algebraic and other applications. In Proceedings o f International Con

ference on Fundamentals o f  Computation Theory, pages 424-433, 1989.

[64] R. Tam assia and J. S. Vitter. Parallel transitivity closure and point location in 

planar structures. SIA M  Journal on Computing, 20(4):708-726, 1991.

[65] R. Tarjan and U. Vishkin. Approximate and exact parallel scheduling with

application to list, tree and graph. In Proceedings o f the Annual A C M  Symposium

on the Theory o f Computing, pages 487-491, 1984.

[66] R. E. Tarjan. Efficiency of a  good but not linear set union algorithm. Journal

o f the ACM , 22:215-225, 1975.

[67] R. E. Tarjan. Data Structures and Network Algorithms. SlAm, Philadelphia, 

Pa., 1983.

93

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



[68] P. C. Treleaven. Parallel architecture overview. Parallel Computing, pages 59-70, 

1988.

[69] J. Ullman and M. Yannakakis. High-probability parallel transitive-closure algo

rithms. SIA M  Journal on Computing, 20(1 ):100—125, 1991.

[70] L. G. Valiant. Parallelism in comparison problems. SIA M  Journal on Computing, 

4(3):348-355, 1975.

[71] U. Vishkin. Synchronous parallel computation, a Survey, TR71, Department of 

Computer Science, Courant Institute, NYU, 1983.

[72] U. Vishkin. Deterministic sampling-a new technique for fast pattern matching. 

S IA M  Journal on Computing, 20(l):22-40, 1991.

[73] J. A. Viullemin. A data  structure for manipulating priority queues. Communi

cations o f ACM, 21:309-314, 1978.

[74] Z. Wen. Parallel multiple search. Information Processing Letters, Feb. 1991.

[75] J . W . J . Williams. Algorithm 232. Communications o f ACM, 7:347-348, 1964.

[76] Y. B. Yoo. Parallel processing for some network optimization problems. Ph.D 

dissertation, Computer Science Dept. Washington State University, Pullman, 

WA, 1983.

94

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Autobiographical Statement 

Zhaofang Wen

I was born on September 2nd, 1961 in Canton Province, China. I have two 
previous degree as follows:

• B.S. Computer Science, ZhongShan University, Canton, China., July 1982.

• M.S. Computer Science, ZhongShan University, Canton, China., July 1985.

The following is a  list of my published articles:

• “A mergeable double-ended priority queue,” (with S. Olariu and C. M. Over
street) The Computer Jou.ruu.l-A Special Issue on Data Structures, October, 
1991.

•  “Merging heaps in parallel,” (with S. Olariu) International Journal of Computer 
Mathematics, Feb. 1991.

• “Optimal parallel initialization algorithms for a class of priority queues,” (with
S. Olariu) IEEE Transactions on Parallel and Distributed Systems (in press).

• “Parallel multiple search,” Information Processing Letters, 37(4), Feb. 1991.

• “An efficient parallel algorithm for multi-selection,” (with 5. Olariu) Parallel 
Computing, (in press).

• “A faster optimal parallel algorithm for the measure problem,” (with S. Olariu 
and W . Zhang) Parallel Computing, (in press).

•  “An optimal parallel algorithm to reconstruct a binary tree from its traversals,” 
(S. Olariu and C. M. Overstreet) in Proceedings o f the International Conferences 
on Computing and Information, May 27-29, 1991, O ttawa, Canada.

• “Efficient parallel algorithms for some integer problems,” (with W. Zhang) in 
Proceedings o f the Annual ACM  Computer Science Conference, March 4-7,1991, 
San Antonio, TX.

• “An optimal parallel construction scheme for heap-like structures,” (with 5. 
Olariu) in Proceedings o f the 28th Annual Allerton Conference on Control, Com
munication and Computing, University of Illinois, Urbana-Champaign, IL, Oct. 
3-5, 1990.

•  “Optimal parallel encoding and decoding algorithms for trees,” (with S. Olariu, 
J. Schwing and J. Zhang) in Proceedings o f the Annual A C M  Computer Science 
Conference, March 4-7, 1991, San Antonio, TX.

Upon receiving my m aster degree from ZhongShan University, China, I was hired 
as an Instructor of Computer Science a t the same university, where I served for two 
years. In 1987, I enrolled as a graduate student at Oklahoma State University. In 
1988, 1 joint the Ph.D program of computer science at Old Dominion University. My 
research interests include Parallel Processing, Software Engineering, and Data Struc
tures. Funding for the research done in this thesis was through a  research assistantship 
from NASA and Navy, and a Special Doctoral Fellowship from the Department of 
Computer Science, Old Dominion University.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.


	Fast Parallel Algorithms for Basic Problems
	Recommended Citation

	tmp.1571077289.pdf.1kfd5

